-
-
Notifications
You must be signed in to change notification settings - Fork 96
/
Copy pathtrain_stylegan.py
164 lines (138 loc) · 5.61 KB
/
train_stylegan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# coding: UTF-8
"""
@author: samuel ko
"""
import torchvision_sunner.transforms as sunnertransforms
import torchvision_sunner.data as sunnerData
import torchvision.transforms as transforms
from networks_stylegan import StyleGenerator, StyleDiscriminator
from networks_gan import Generator, Discriminator
from utils.utils import plotLossCurve
from loss.loss import gradient_penalty, R1Penalty, R2Penalty
from opts.opts import TrainOptions, INFO
from torchvision.utils import save_image
from tqdm import tqdm
from matplotlib import pyplot as plt
from torch import nn
import torch.optim as optim
from torch.autograd import Variable
import numpy as np
import random
import torch
import os
# Set random seem for reproducibility
manualSeed = 999
#manualSeed = random.randint(1, 10000) # use if you want new results
print("Random Seed: ", manualSeed)
random.seed(manualSeed)
torch.manual_seed(manualSeed)
# Hyper-parameters
CRITIC_ITER = 5
def main(opts):
# Create the data loader
loader = sunnerData.DataLoader(sunnerData.ImageDataset(
root=[[opts.path]],
transform=transforms.Compose([
sunnertransforms.Resize((1024, 1024)),
sunnertransforms.ToTensor(),
sunnertransforms.ToFloat(),
sunnertransforms.Transpose(sunnertransforms.BHWC2BCHW),
sunnertransforms.Normalize(),
])),
batch_size=opts.batch_size,
shuffle=True,
)
# Create the model
start_epoch = 0
G = StyleGenerator()
D = StyleDiscriminator()
# Load the pre-trained weight
if os.path.exists(opts.resume):
INFO("Load the pre-trained weight!")
state = torch.load(opts.resume)
G.load_state_dict(state['G'])
D.load_state_dict(state['D'])
start_epoch = state['start_epoch']
else:
INFO("Pre-trained weight cannot load successfully, train from scratch!")
# Multi-GPU support
if torch.cuda.device_count() > 1:
INFO("Multiple GPU:" + str(torch.cuda.device_count()) + "\t GPUs")
G = nn.DataParallel(G)
D = nn.DataParallel(D)
G.to(opts.device)
D.to(opts.device)
# Create the criterion, optimizer and scheduler
optim_D = optim.Adam(D.parameters(), lr=0.00001, betas=(0.5, 0.999))
optim_G = optim.Adam(G.parameters(), lr=0.00001, betas=(0.5, 0.999))
scheduler_D = optim.lr_scheduler.ExponentialLR(optim_D, gamma=0.99)
scheduler_G = optim.lr_scheduler.ExponentialLR(optim_G, gamma=0.99)
# Train
fix_z = torch.randn([opts.batch_size, 512]).to(opts.device)
softplus = nn.Softplus()
Loss_D_list = [0.0]
Loss_G_list = [0.0]
for ep in range(start_epoch, opts.epoch):
bar = tqdm(loader)
loss_D_list = []
loss_G_list = []
for i, (real_img,) in enumerate(bar):
# =======================================================================================================
# (1) Update D network: maximize log(D(x)) + log(1 - D(G(z)))
# =======================================================================================================
# Compute adversarial loss toward discriminator
D.zero_grad()
real_img = real_img.to(opts.device)
real_logit = D(real_img)
fake_img = G(torch.randn([real_img.size(0), 512]).to(opts.device))
fake_logit = D(fake_img.detach())
d_loss = softplus(fake_logit).mean()
d_loss = d_loss + softplus(-real_logit).mean()
if opts.r1_gamma != 0.0:
r1_penalty = R1Penalty(real_img.detach(), D)
d_loss = d_loss + r1_penalty * (opts.r1_gamma * 0.5)
if opts.r2_gamma != 0.0:
r2_penalty = R2Penalty(fake_img.detach(), D)
d_loss = d_loss + r2_penalty * (opts.r2_gamma * 0.5)
loss_D_list.append(d_loss.item())
# Update discriminator
d_loss.backward()
optim_D.step()
# =======================================================================================================
# (2) Update G network: maximize log(D(G(z)))
# =======================================================================================================
if i % CRITIC_ITER == 0:
G.zero_grad()
fake_logit = D(fake_img)
g_loss = softplus(-fake_logit).mean()
loss_G_list.append(g_loss.item())
# Update generator
g_loss.backward()
optim_G.step()
# Output training stats
bar.set_description("Epoch {} [{}, {}] [G]: {} [D]: {}".format(ep, i+1, len(loader), loss_G_list[-1], loss_D_list[-1]))
# Save the result
Loss_G_list.append(np.mean(loss_G_list))
Loss_D_list.append(np.mean(loss_D_list))
# Check how the generator is doing by saving G's output on fixed_noise
with torch.no_grad():
fake_img = G(fix_z).detach().cpu()
save_image(fake_img, os.path.join(opts.det, 'images', str(ep) + '.png'), nrow=4, normalize=True)
# Save model
state = {
'G': G.state_dict(),
'D': D.state_dict(),
'Loss_G': Loss_G_list,
'Loss_D': Loss_D_list,
'start_epoch': ep,
}
torch.save(state, os.path.join(opts.det, 'models', 'latest.pth'))
scheduler_D.step()
scheduler_G.step()
# Plot the total loss curve
Loss_D_list = Loss_D_list[1:]
Loss_G_list = Loss_G_list[1:]
plotLossCurve(opts, Loss_D_list, Loss_G_list)
if __name__ == '__main__':
opts = TrainOptions().parse()
main(opts)