-
Notifications
You must be signed in to change notification settings - Fork 544
/
word2phrase.c
344 lines (325 loc) · 10.1 KB
/
word2phrase.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
// Copyright 2013 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <pthread.h>
#define MAX_STRING 60
const int vocab_hash_size = 500000000; // Maximum 500M entries in the vocabulary
typedef float real; // Precision of float numbers
struct vocab_word {
long long cn;
char *word;
};
char train_file[MAX_STRING], output_file[MAX_STRING];
struct vocab_word *vocab;
int debug_mode = 2, min_count = 5, *vocab_hash, min_reduce = 1;
long long vocab_max_size = 10000, vocab_size = 0;
long long train_words = 0;
real threshold = 100;
unsigned long long next_random = 1;
// Reads a single word from a file, assuming space + tab + EOL to be word boundaries
void ReadWord(char *word, FILE *fin, char *eof) {
int a = 0, ch;
while (1) {
ch = fgetc_unlocked(fin);
if (ch == EOF) {
*eof = 1;
break;
}
if (ch == 13) continue;
if ((ch == ' ') || (ch == '\t') || (ch == '\n')) {
if (a > 0) {
if (ch == '\n') ungetc(ch, fin);
break;
}
if (ch == '\n') {
//strcpy(word, (char *)"</s>");
word[0] = '\n';
word[1] = 0;
return;
} else continue;
}
word[a] = ch;
a++;
if (a >= MAX_STRING - 1) a--; // Truncate too long words
}
word[a] = 0;
}
// Returns hash value of a word
int GetWordHash(char *word) {
unsigned long long a, hash = 1;
for (a = 0; a < strlen(word); a++) hash = hash * 257 + word[a];
hash = hash % vocab_hash_size;
return hash;
}
// Returns position of a word in the vocabulary; if the word is not found, returns -1
int SearchVocab(char *word) {
unsigned int hash = GetWordHash(word);
while (1) {
if (vocab_hash[hash] == -1) return -1;
if (!strcmp(word, vocab[vocab_hash[hash]].word)) return vocab_hash[hash];
hash = (hash + 1) % vocab_hash_size;
}
return -1;
}
// Reads a word and returns its index in the vocabulary
int ReadWordIndex(FILE *fin, char *eof) {
char word[MAX_STRING], eof_l = 0;
ReadWord(word, fin, &eof_l);
if (eof_l) {
*eof = 1;
return -1;
}
return SearchVocab(word);
}
// Adds a word to the vocabulary
int AddWordToVocab(char *word) {
unsigned int hash, length = strlen(word) + 1;
if (length > MAX_STRING) length = MAX_STRING;
vocab[vocab_size].word = (char *)calloc(length, sizeof(char));
strcpy(vocab[vocab_size].word, word);
vocab[vocab_size].cn = 0;
vocab_size++;
// Reallocate memory if needed
if (vocab_size + 2 >= vocab_max_size) {
vocab_max_size += 10000;
vocab=(struct vocab_word *)realloc(vocab, vocab_max_size * sizeof(struct vocab_word));
}
hash = GetWordHash(word);
while (vocab_hash[hash] != -1) hash = (hash + 1) % vocab_hash_size;
vocab_hash[hash]=vocab_size - 1;
return vocab_size - 1;
}
// Used later for sorting by word counts
int VocabCompare(const void *a, const void *b) {
return ((struct vocab_word *)b)->cn - ((struct vocab_word *)a)->cn;
}
// Sorts the vocabulary by frequency using word counts
void SortVocab() {
int a;
unsigned int hash;
// Sort the vocabulary and keep </s> at the first position
qsort(&vocab[1], vocab_size - 1, sizeof(struct vocab_word), VocabCompare);
for (a = 0; a < vocab_hash_size; a++) vocab_hash[a] = -1;
for (a = 0; a < vocab_size; a++) {
// Words occuring less than min_count times will be discarded from the vocab
if (vocab[a].cn < min_count) {
vocab_size--;
free(vocab[vocab_size].word);
} else {
// Hash will be re-computed, as after the sorting it is not actual
hash = GetWordHash(vocab[a].word);
while (vocab_hash[hash] != -1) hash = (hash + 1) % vocab_hash_size;
vocab_hash[hash] = a;
}
}
vocab = (struct vocab_word *)realloc(vocab, vocab_size * sizeof(struct vocab_word));
}
// Reduces the vocabulary by removing infrequent tokens
void ReduceVocab() {
int a, b = 0;
unsigned int hash;
for (a = 0; a < vocab_size; a++) if (vocab[a].cn > min_reduce) {
vocab[b].cn = vocab[a].cn;
vocab[b].word = vocab[a].word;
b++;
} else free(vocab[a].word);
vocab_size = b;
for (a = 0; a < vocab_hash_size; a++) vocab_hash[a] = -1;
for (a = 0; a < vocab_size; a++) {
// Hash will be re-computed, as it is not actual
hash = GetWordHash(vocab[a].word);
while (vocab_hash[hash] != -1) hash = (hash + 1) % vocab_hash_size;
vocab_hash[hash] = a;
}
fflush(stdout);
min_reduce++;
}
void LearnVocabFromTrainFile() {
char word[MAX_STRING], last_word[MAX_STRING], bigram_word[MAX_STRING * 2], eof = 0;
FILE *fin;
long long a, b, i, start = 1;
for (a = 0; a < vocab_hash_size; a++) vocab_hash[a] = -1;
fin = fopen(train_file, "rb");
if (fin == NULL) {
printf("ERROR: training data file not found!\n");
exit(1);
}
vocab_size = 0;
AddWordToVocab((char *)"</s>");
while (1) {
ReadWord(word, fin, &eof);
if (eof) break;
if (word[0] == '\n') {
start = 1;
continue;
} else start = 0;
train_words++;
if ((debug_mode > 1) && (train_words % 1000000 == 0)) {
printf("Words processed: %lldM Vocab size: %lldK %c", train_words / 1000000, vocab_size / 1000, 13);
fflush(stdout);
}
i = SearchVocab(word);
if (i == -1) {
a = AddWordToVocab(word);
vocab[a].cn = 1;
} else vocab[i].cn++;
if (start) continue;
//sprintf(bigram_word, "%s_%s", last_word, word);
a = 0;
b = 0;
while (last_word[a]) {
bigram_word[b] = last_word[a];
a++;
b++;
}
bigram_word[b] = '_';
b++;
a = 0;
while (word[a]) {
bigram_word[b] = word[a];
a++;
b++;
}
bigram_word[b] = 0;
bigram_word[MAX_STRING - 1] = 0;
//
strcpy(last_word, word);
i = SearchVocab(bigram_word);
if (i == -1) {
a = AddWordToVocab(bigram_word);
vocab[a].cn = 1;
} else vocab[i].cn++;
if (vocab_size > vocab_hash_size * 0.7) ReduceVocab();
}
SortVocab();
if (debug_mode > 0) {
printf("\nVocab size (unigrams + bigrams): %lld\n", vocab_size);
printf("Words in train file: %lld\n", train_words);
}
fclose(fin);
}
void TrainModel() {
long long a, b, pa = 0, pb = 0, pab = 0, oov, i, li = -1, cn = 0;
char word[MAX_STRING], last_word[MAX_STRING], bigram_word[MAX_STRING * 2], eof = 0;
real score;
unsigned long long next_random = 1;
FILE *fo, *fin;
printf("Starting training using file %s\n", train_file);
LearnVocabFromTrainFile();
fin = fopen(train_file, "rb");
fo = fopen(output_file, "wb");
word[0] = 0;
while (1) {
strcpy(last_word, word);
ReadWord(word, fin, &eof);
if (eof) break;
if (word[0] == '\n') {
//fprintf(fo, "\n");
fputc_unlocked('\n', fo);
continue;
}
cn++;
if ((debug_mode > 1) && (cn % 1000000 == 0)) {
printf("Words written: %lldM%c", cn / 1000000, 13);
fflush(stdout);
}
oov = 0;
i = SearchVocab(word);
if (i == -1) oov = 1; else pb = vocab[i].cn;
if (li == -1) oov = 1;
li = i;
//sprintf(bigram_word, "%s_%s", last_word, word);
a = 0;
b = 0;
while (last_word[a]) {
bigram_word[b] = last_word[a];
a++;
b++;
}
bigram_word[b] = '_';
b++;
a = 0;
while (word[a]) {
bigram_word[b] = word[a];
a++;
b++;
}
bigram_word[b] = 0;
bigram_word[MAX_STRING - 1] = 0;
//
i = SearchVocab(bigram_word);
if (i == -1) oov = 1; else pab = vocab[i].cn;
if (pa < min_count) oov = 1;
if (pb < min_count) oov = 1;
if (oov) score = 0; else score = (pab - min_count) / (real)pa / (real)pb * (real)train_words;
next_random = next_random * (unsigned long long)25214903917 + 11;
//if (next_random & 0x10000) score = 0;
if (score > threshold) {
fputc_unlocked('_', fo);
pb = 0;
} else fputc_unlocked(' ', fo);
a = 0;
while (word[a]) {
fputc_unlocked(word[a], fo);
a++;
}
pa = pb;
}
fclose(fo);
fclose(fin);
}
int ArgPos(char *str, int argc, char **argv) {
int a;
for (a = 1; a < argc; a++) if (!strcmp(str, argv[a])) {
if (a == argc - 1) {
printf("Argument missing for %s\n", str);
exit(1);
}
return a;
}
return -1;
}
int main(int argc, char **argv) {
int i;
if (argc == 1) {
printf("WORD2PHRASE tool v0.1a\n\n");
printf("Options:\n");
printf("Parameters for training:\n");
printf("\t-train <file>\n");
printf("\t\tUse text data from <file> to train the model\n");
printf("\t-output <file>\n");
printf("\t\tUse <file> to save the resulting word vectors / word clusters / phrases\n");
printf("\t-min-count <int>\n");
printf("\t\tThis will discard words that appear less than <int> times; default is 5\n");
printf("\t-threshold <float>\n");
printf("\t\t The <float> value represents threshold for forming the phrases (higher means less phrases); default 100\n");
printf("\t-debug <int>\n");
printf("\t\tSet the debug mode (default = 2 = more info during training)\n");
printf("\nExamples:\n");
printf("./word2phrase -train text.txt -output phrases.txt -threshold 100 -debug 2\n\n");
return 0;
}
if ((i = ArgPos((char *)"-train", argc, argv)) > 0) strcpy(train_file, argv[i + 1]);
if ((i = ArgPos((char *)"-debug", argc, argv)) > 0) debug_mode = atoi(argv[i + 1]);
if ((i = ArgPos((char *)"-output", argc, argv)) > 0) strcpy(output_file, argv[i + 1]);
if ((i = ArgPos((char *)"-min-count", argc, argv)) > 0) min_count = atoi(argv[i + 1]);
if ((i = ArgPos((char *)"-threshold", argc, argv)) > 0) threshold = atof(argv[i + 1]);
vocab = (struct vocab_word *)calloc(vocab_max_size, sizeof(struct vocab_word));
vocab_hash = (int *)calloc(vocab_hash_size, sizeof(int));
TrainModel();
return 0;
}