-
Notifications
You must be signed in to change notification settings - Fork 0
/
DESCRIPTION
34 lines (34 loc) · 1.33 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
Package: causalglm
Type: Package
Title: Interpretable and robust causal inference for heterogeneous treatment effects using generalized linear models with targeted machine-learning.
Version: 0.1.0
Author: Lars van der Laan
Maintainer: Lars van der Laan <[email protected]>
Description: Utilizing the framework of Targeted Maximum-Likelihood estimation (TMLE) and machine-learning,
robust and efficient estimates and inference can be obtained for user-specified semiparametric and nonparametric generalized linear models including:
Conditional odds ratios between a binary outcome and binary treatment variables (causal semiparametric logisic regression)
Conditional additive treatment effects for a continuous outcome (causal semiparametric linear regression with general link functions)
Conditional relative risk/treatment-effects for a nonnegative outcome (e.g. binary or count) (causal semiparametric relative risk regression with general link functions)
License: GPL-3
Encoding: UTF-8
LazyData: true
Imports:
sl3,
hal9001,
stats,
data.table,
R6,
doMC,
tmle3
Depends:
sl3,
hal9001,
stats,
data.table,
R6,
tmle3
RoxygenNote: 7.1.1
Remotes: github::tlverse/hal9001@master, github::tlverse/sl3@Larsvanderlaan-formula_fix, github::tlverse/tmle3@categoricalNP
Suggests:
testthat (>= 3.0.0)
Config/testthat/edition: 3