forked from apache/mxnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_score.py
64 lines (59 loc) · 2.39 KB
/
test_score.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""
test pretrained models
"""
from __future__ import print_function
import mxnet as mx
from common import find_mxnet, modelzoo
from score import score
import pytest
@pytest.fixture(scope="session")
def imagenet_val_5k_settings():
mx.test_utils.download(
'http://data.mxnet.io/data/val-5k-256.rec', 'data/val-5k-256.rec')
num_gpus = mx.context.num_gpus()
assert num_gpus > 0
gpus = ','.join(map(str, range(num_gpus)))
batch_size = 16 * num_gpus
kwargs = {'gpus':gpus, 'batch_size':batch_size, 'max_num_examples':500}
return 'data/val-5k-256.rec', kwargs
def test_imagenet1k_resnet(imagenet_val_5k_settings):
imagenet_val_5k, kwargs = imagenet_val_5k_settings
models = ['imagenet1k-resnet-50', 'imagenet1k-resnet-152']
accs = [.77, .78]
for (m, g) in zip(models, accs):
acc = mx.gluon.metric.create('acc')
(speed,) = score(model=m, data_val=imagenet_val_5k,
rgb_mean='0,0,0', metrics=acc, **kwargs)
r = acc.get()[1]
print('Tested %s, acc = %f, speed = %f img/sec' % (m, r, speed))
assert r > g and r < g + .1
def test_imagenet1k_inception_bn(imagenet_val_5k_settings):
imagenet_val_5k, kwargs = imagenet_val_5k_settings
acc = mx.gluon.metric.create('acc')
m = 'imagenet1k-inception-bn'
g = 0.75
(speed,) = score(model=m,
data_val=imagenet_val_5k,
rgb_mean='123.68,116.779,103.939', metrics=acc, **kwargs)
r = acc.get()[1]
print('Tested %s acc = %f, speed = %f img/sec' % (m, r, speed))
assert r > g and r < g + .1