forked from tyagi-iiitv/PointPillars
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpoint_pillars_custom_prediction_v2_2.py
138 lines (99 loc) · 6.3 KB
/
point_pillars_custom_prediction_v2_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import os
from glob import glob
import numpy as np
import tensorflow as tf
from point_pillars_custom_processors_v2_2 import CustomDataGenerator, AnalyseCustomDataGenerator
from inference_utils_v2_2 import generate_bboxes_from_pred
from inference_utils_v2_2 import focal_loss_checker, rotational_nms, generate_bboxes_from_pred_and_np_array
from readers import KittiDataReader
from config_v2_2 import Parameters
from network_v2_2 import build_point_pillar_graph
from datetime import datetime
from point_viz.converter import PointvizConverter
DATA_ROOT = "/media/data3/tjtanaa/kitti_dataset/"
MODEL_ROOT = "./logs_Car_Custom_Dataset_No_Early_Stopping_wo_Aug_wo_val_new_network"
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "3"
def limit_period(val, offset=0.5, period=np.pi):
return val - np.floor(val / period + offset) * period
if __name__ == "__main__":
params = Parameters()
pillar_net = build_point_pillar_graph(params)
pillar_net.load_weights(os.path.join(MODEL_ROOT, "model.h5"))
pillar_net.summary()
# save_viz_path = "/home/tan/tjtanaa/PointPillars/visualization/custom_prediction_multiprocessing"
save_viz_path = os.path.join("/home/tan/tjtanaa/PointPillars/visualization", MODEL_ROOT.split('/')[-1])
# Initialize and setup output directory.
Converter = PointvizConverter(save_viz_path)
gt_database_dir = os.path.join(DATA_ROOT, "gt_database")
# validation_gen = AnalyseCustomDataGenerator(batch_size=params.batch_size,root_dir = DATA_ROOT,
# npoints=20000, split='train', classes=list(params.classes_map.keys()),
# random_select=True, gt_database_dir=None, aug_hard_ratio=0.7)
validation_gen = AnalyseCustomDataGenerator(batch_size=params.batch_size, root_dir=DATA_ROOT,
npoints=20000, split='train_val_test',random_select=False, classes=list(params.classes_map.keys()))
# validation_gen = AnalyseCustomDataGenerator(batch_size=params.batch_size, root_dir=DATA_ROOT,
# npoints=20000, split='val',random_select=False, classes=list(params.classes_map.keys()))
inference_duration = []
for batch_idx in range(0,10):
[pillars, voxels], [occupancy_, position_, size_, angle_, heading_], [pts_input, gt_boxes3d, sample] = validation_gen[batch_idx]
# 4 * 12000 * 100 * 9, 502 * 502 * 2
# 4 * 20000 * 4
start=datetime.now()
occupancy, position, size, angle, heading = pillar_net.predict([pillars, voxels])
inference_duration.append( datetime.now()-start)
# angle = limit_period(angle, offset=0.5, period=2*np.pi)
classification = np.zeros(shape=np.array(occupancy).shape)
classification_ = classification
# occupancy[:,:,:,:2] = 0
# print(occupancy.shape)
# exit()
set_boxes, confidences = [], []
loop_range = occupancy_.shape[0] if len(occupancy_.shape) == 4 else 1
for i in range(loop_range):
set_box, predicted_boxes3d = generate_bboxes_from_pred_and_np_array(occupancy[i], position[i], size[i], angle[i],
heading[i],
classification[i], params.anchor_dims, occ_threshold=0.5)
_, decoded_gt_boxes3d = generate_bboxes_from_pred_and_np_array(occupancy_[i], position_[i], size_[i], angle_[i],
heading_[i],
classification_[i], params.anchor_dims, occ_threshold=0.4)
# gt_boxes3d_ = gt_boxes3d[i]
gt_boxes3d_ = decoded_gt_boxes3d
print(gt_boxes3d_.shape)
if(len(gt_boxes3d_) == 0):
gt_bbox_params_list = []
else:
gt_bbox_params = np.stack([gt_boxes3d_[:,3], gt_boxes3d_[:,5], gt_boxes3d_[:,4],
gt_boxes3d_[:,1], gt_boxes3d_[:,2] ,
gt_boxes3d_[:,0],
gt_boxes3d_[:,6]], axis=1)
gt_bbox_params_list = gt_bbox_params.tolist()
# gt_bbox_params_list = []
for k in range(len(gt_bbox_params_list)):
msg = "%.5f, %s, %.5f"%(decoded_gt_boxes3d[k,9], params.map_classes[int(decoded_gt_boxes3d[k,8])], decoded_gt_boxes3d[k,6])
# msg = "%.5f, %.5f"%(gt_bbox_params_list[k][3],gt_bbox_params_list[k][5])
gt_bbox_params_list[k].append("Green")
# gt_bbox_params_list[k].append("1.0")
gt_bbox_params_list[k].append(msg)
if len(set_box) > 0:
predicted_boxes3d_ = predicted_boxes3d
# bbox_params = validation_gen.convert_predictions_into_point_viz_format(predicted_boxes3d[:,[1, 2, 0, 5, 3, 4, 6 ]])
print("batch_idx: ", batch_idx * params.batch_size + i, " has ", predicted_boxes3d_.shape, "predictions")
# print(predicted_boxes3d_)
# print(size[i])
bbox_params = np.stack([predicted_boxes3d_[:,3], predicted_boxes3d_[:,5], predicted_boxes3d_[:,4],
predicted_boxes3d_[:,1], predicted_boxes3d_[:,2] ,
predicted_boxes3d_[:,0],
predicted_boxes3d_[:,6]], axis=1)
bbox_params_list = bbox_params.tolist()
# bbox_labels_conf = [str(predicted_boxes3d[k,9]) for k in range(predicted_boxes3d.shape[0])]
for k in range(predicted_boxes3d.shape[0]):
msg = "%.5f, %s, %.5f"%(predicted_boxes3d[k,9],params.map_classes[int(predicted_boxes3d[k,8])], predicted_boxes3d[k,6])
bbox_params_list[k].append("Magenta")
bbox_params_list[k].append(msg)
# bbox_params_list[k].append(str(predicted_boxes3d[k,9]) + "=" + params.map_classes[int(predicted_boxes3d[k,8])])
gt_bbox_params_list.append(bbox_params_list[k])
coor = pts_input[i][:,[1,2,0]]
# coor[:,1] *= -1
Converter.compile("val_custom_sample_{}".format(batch_idx * params.batch_size+i), coors=coor, intensity=pts_input[i][:,3],
bbox_params=gt_bbox_params_list)
print("Average runtime speed: ", np.mean(inference_duration[4:]))