-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmodel.py
151 lines (115 loc) · 5.97 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import tensorflow as tf
def inference(images, batch_size, n_classes):
"""
:param images: image batch , 4D tensor, tf.float32, [batch_size, width, height, channels]
:param batch_size:
:param n_classes: 2 airport and port
:return: output tensor with the computed logits , float, [batch_size, n_class]
"""
# conv1, shape = [kernel size, kernel size, channels, kernel numbers]
with tf.variable_scope('conv1') as scope:
weights =tf.get_variable('weight',
shape=[3, 3, 3, 16], # 卷积核大小为3*3 深度为3 一共16个
dtype=tf.float32,
initializer=tf.truncated_normal_initializer(stddev=0.1, dtype=tf.float32))
biases = tf.get_variable('biases',
shape=[16],
dtype=tf.float32,
initializer=tf.constant_initializer(0.1))
conv = tf.nn.conv2d(images, weights, strides=[1, 1, 1, 1], padding='SAME')
pre_activation = tf.nn.bias_add(conv, biases)
conv1 = tf.nn.relu(pre_activation, name=scope.name)
# pool1 and norm1
with tf.variable_scope('pooling1_lrn') as scope:
pool1 = tf.nn.max_pool(conv1, ksize=[1,3, 3, 1], strides=[1, 2, 2, 1],
padding='SAME', name='pooling1')
norm1 = tf.nn.lrn(pool1, depth_radius=4, bias=1.0, alpha=0.001/9.0,
beta=0.75,name='norm1')
# conv2
with tf.variable_scope('conv2') as scope:
weights = tf.get_variable('weight',
shape=[3, 3, 16, 16],
dtype=tf.float32,
initializer=tf.truncated_normal_initializer(stddev=0.1, dtype=tf.float32))
biases = tf.get_variable('biases', shape=[16],
dtype=tf.float32,
initializer=tf.constant_initializer(0.1))
conv = tf.nn.conv2d(norm1, weights, strides=[1, 1, 1, 1], padding='SAME')
pre_activation = tf.nn.bias_add(conv, biases)
conv2 = tf.nn.relu(pre_activation, name='conv2')
# pool2 and norm2
with tf.variable_scope('pooling2_lrn') as scope:
norm2 = tf.nn.lrn(conv2, depth_radius=4, bias=1.0, alpha=0.001/9.0,
beta=0.75, name='norm2')
pool2 = tf.nn.max_pool(norm2, ksize=[1, 3, 3, 1], strides=[1, 1, 1, 1],
padding='SAME', name='pooling2')
# local3
with tf.variable_scope('local3') as scope:
reshape = tf.reshape(pool2, shape=[batch_size, -1])
dim = reshape.get_shape()[1].value
weights = tf.get_variable('weights',
shape=[dim, 128],
dtype=tf.float32,
initializer=tf.truncated_normal_initializer(stddev=0.005, dtype=tf.float32))
biases = tf.get_variable('biases', shape=[128],
dtype= tf.float32,
initializer=tf.constant_initializer(0.1))
local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name)
# local4
with tf.variable_scope('local4') as scope:
weights = tf.get_variable('weights',
shape=[128, 128],
dtype=tf.float32,
initializer=tf.truncated_normal_initializer(stddev= 0.005, dtype=tf.float32))
biases = tf.get_variable('biases', shape=[128],
dtype=tf.float32,
initializer=tf.constant_initializer(0.1))
local4 = tf.nn.relu(tf.matmul(local3, weights) + biases, name=scope.name)
# softmax
with tf.variable_scope('softmax_linear') as scope:
weights = tf.get_variable('softmax_linear',
shape=[128, n_classes],
dtype= tf.float32,
initializer=tf.truncated_normal_initializer(stddev=0.005, dtype=tf.float32))
biases = tf.get_variable('biases', shape=[n_classes],
dtype=tf.float32,
initializer=tf.constant_initializer(0, 1))
softmax_linear = tf.add(tf.matmul(local4, weights), biases, name=scope.name)
return softmax_linear
def losses(logits, label):
"""
:param logits: logits tensor, float, [batch_size, n_classses]
:param label: label tensor, tf.int32, [batch_size]
:return: loss tensor of float type
"""
with tf.variable_scope('loss') as scope:
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits\
(logits=logits, labels=label, name='xentropy_per_example')
loss = tf.reduce_mean(cross_entropy, name='loss')
tf.summary.scalar(scope.name+'/loss', loss)
return loss
def trainning(loss, learning_rate):
"""
Training ops , the Op returned by this function is what must be passed to
'sess.run()' call to cause the odel to train
:param loss: loss tensor from losses()
:param learning_rate:
:return:trainning op for training
"""
with tf.name_scope('optimizer'):
optimizer = tf.train.AdamOptimizer(learning_rate= learning_rate)
global_step = tf.Variable(0, name='global_step', trainable=False)
train_op = optimizer.minimize(loss, global_step= global_step)
return train_op
def evaluation(logits, labels):
"""
:param logits: Logits tensor, float [batch_size, num_classes]
:param labels: Label tensor in32
:return: Ascalar int32 tensor with the number of examples(out of batch_size) that were predicted correctly
"""
with tf.variable_scope('evaluation') as scope:
correct = tf.nn.in_top_k(logits, labels, 1)
correct = tf.cast(correct, tf.float16)
accuracy = tf.reduce_mean(correct)
tf.summary.scalar(scope.name+'/accuracy', accuracy)
return accuracy