-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathformelblad-mse.tex
244 lines (216 loc) · 6.05 KB
/
formelblad-mse.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
\documentclass[a4paper]{article}
\usepackage[utf8]{inputenc}
\usepackage{mathtools,graphicx,amssymb}
\usepackage{array} % nicer tables
% instead of \usepackage{fullpage} <<<
\advance \topmargin by -4.5\headheight
\advance \textheight by 125pt
\oddsidemargin 0pt
\evensidemargin \oddsidemargin
\marginparwidth 0.5in
\textwidth 6.6in
\parindent=0pt
\advance\parskip by 1pt
% >>>
\pagestyle{headings}
\everymath{\textstyle}
%-------------
%- LaTeX def's
%-------------
\everymath{\displaystyle}
% Header matter %<<<
\makeatletter
\renewcommand{\@oddhead}{}
\renewcommand{\@evenhead}{}
\renewcommand{\@oddfoot}
{\ifnum\thepage=1
\today\hfill file:~\small\texttt{\jobname.pdf}
\else
Math for Soft Eng Formula Sheet
\hfill
\Tr{p}{s}.~\thepage{} \Tr{of}{av} \pageref{LastPageNo}
\fi}
\renewcommand{\@evenfoot}{\small
\texttt{\jobname.pdf},\hfill}
\makeatother%>>>
\input ../bz/StdLaTeXdef.h
\begin{document}
\section*{MSE Formula Sheet}
All parameters, if nothing else specified, assumed in $\Zone$;
notation used: $[a]_n \iff a\; (\mbox{mod } n)$.
\vspace{-10pt}
\subsubsection*{Generating functions:} \vspace{-1.2em}%<<<
\[
\begin{array}[t]{|ll|ll|}
\hline
&&& \\[-9pt]
\mbox{Geometirc sum:} & 1+t+\cdots+t^n = \frac{1-t^{n+1}}{1-t} &
\mbox{Geometirc series:} & 1+t+t^2+\cdots = \frac{1}{1-t}
\\[7pt]\hline
&&& \\[-9pt]
\multicolumn{2}{|l|}{(1+t)^n = \sum_{r=0}^{n} \binom nr t^r, \; \binom nr = \frac{n!}{r!(n-r)!}} &
\multicolumn{2}{l|}{(1-t)^{-n} = \sum_{r=0}^{\infty} \binom {-n}r (-t)^r = \sum_{r=0}^{\infty}\binom {n-1+r}r t^r}
\\[11pt]\hline
&&& \\[-9pt]
\multicolumn{2}{|l|}{e^t = \sum_{k=0}^{\infty} \frac{t^k}{k!} = 1 + \frac{t}{1!} + \frac{t^2}{2!} + \cdots}&
\multicolumn{2}{l|}{\ln(1+t) = \sum_{k=1}^{\infty}(-1)^{k+1}\frac{t^k}{k} = t - \frac{t^2}{2} + \frac{t^3}{3} - \cdots}
\\[11pt]\hline
\end{array}
\]%>>>
\subsubsection*{Greatest common divisor, least common multiple:} \vspace{-1.2em}%<<<
\[
\begin{array}[t]{|*{3}{l|}}
\hline
&& \\[-8pt]
m\perp n \iff \gcd(m,n)=1 & \gcd(m,n) = d \iff \frac md\perp\frac nd & \gcd(m,n)\,\mbox{lcm}(m,n) = mn
\\[6pt] \hline
\end{array}
\]%>>>
\subsubsection*{Sets:} \vspace{-2.5em} %<<<
\[
\begin{array}[t]{|*{3}{l|}}
\hline
&& \\[-8pt]
n\Zone = \{0,\pm n,\pm 2n,\ldots \}
& Z_n,\Zone/n\Zone = \{[0]_n,[1]_n,\ldots,[n-1]_n\}
& Z_n^* = \{[1]_n,\ldots,[n-1]_n\} \\[6pt]
\Rone - \mbox{the reals}
& \Zone^* = \Zone\setminus\{0\},\;
\Rone^* = \Rone\setminus\{0\},\;
\Cone^* = \Cone\setminus\{0\}
& U_n = \{k\in\Zone_n: k\perp n\}
\\[3pt] \hline
\end{array}
\]%>>>
\textbf{Groups:}%<<<
\vspace{-15pt}
\[
\begin{array}[t]{|l|l|}
\hline
\rule{0pt}{10pt}
\Zone_n := (\Zone_n,+_n) \text{ -- $\Zone_n$ under summation mod $n$}
& U_n := (U_n,\cdot_n) \text{ -- $U_n$ under multiplication mod $n$}
\\\hline
\rule{0pt}{10pt}
C_n = \langle a\rangle = \{e,a,a^2,\ldots,a^{n-1}\} \text{ -- the cyclic group}
& GL_n = \{A_{n\times n} \,|\, \det(A)\neq 0 \text{ -- the general linear group}
\\ \hline
\multicolumn{2}{|l|}{%
\text{Product groups: } G\times H = \{(g,h)\,|\, g\in G, h\in H\}, \;
\text{ multiplication: }
(g,h)\circ(g',h')\defeq (g\circ_Gg', h\circ_H h')
} % multicolumn
\cr\hline
\end{array}
\]%>>>
\subsubsection*{Arithmetic mod $n$:} \vspace{-1.2em} %<<<
\[
\begin{array}[t]{|*{4}{l|}}
\hline
&&& \\[-8pt]
[a+b]_n = [[a]_n + [b]_n]_n &
[ab]_n = [[a]_n[b]_n]_n &
[ka]_{kn} = k [a]_n &
\mbox{Euler: }a\perp n \ergo [a^{\varphi(n)}]_n = 1
\\[3pt] \hline
\end{array}
\]%>>>
\textbf{Euler totient}: %<<<
\begin{tabular}[m]{|l|l|l|}
\hline
\rule{0pt}{16pt}
$\varphi(n)=|U_n|=n\prod_{p\,|\,n}\Bigl(1-\frac1p\Bigr)$ &
$\phi(p^k)=(p-1)p^{k-1}$, $p$--prime &
$\varphi(st)=\varphi(s)\varphi(t)$, $s\perp t$ \cr
\hline
\end{tabular}%>>>
\subsubsection*{Solve Bézout \fbox{$mx\pm ny=1$, $m\perp n$} (find inverse in $U_n$) %<<<
by row red.~in Euklides extended:}
\[
\boxed{
m\perp n \ergo
\begin{pmatrix}
m \BAR 1 & 0 \cr
n \BAR 0 & 1 \cr
\end{pmatrix}
\sim \{\mbox{row op.}\} \sim
\begin{pmatrix}
1 \BAR m & -n \cr
0 \BAR -y & x \cr
\end{pmatrix}
\iff
mx-ny=1
\iff
\begin{cases}
\hfill x = m^{-1} & \text{in }\, U_n \cr
-y = n^{-1} & \text{in }\, U_m \cr
% [mx]_n &=1 \cr
% [(-n)y]_m &= 1.
\end{cases}
}
\]%>>>
\subsubsection*{Concurrent congruences/The Chinese Remainder Theorem}%<<<
\[
\boxed{
\left\{
\begin{array}{ll}
[x]_{n_j} = [r_j],& j=1,\cdots,k \\[2pt]
\hfil n_i\perp n_j ,& 1\le i\neq j\le k
\end{array}\right.
\;\iff\;
x = \Bigl[ \sum_{j=1}^{k} r_jN_j[N_j^{-1}]_{n_j} \Bigr]_n, \; N_j= \frac{n}{n_j}, \,
n=n_1\cdots n_k.
}
\]%>>>
\subsubsection*{Automorphisms $S_X$ of a set $X$; $S_n$ %<<<
-- the groups of permutations of $\{0,1,\ldots,n-1\}$}
Any finite set $X=\{x_1,\ldots,x_n\}$ gives rise to the group of its
permutations \, $\text{Sym}(X)=S_X\cong S_n$ under composition.
Fixed elements in DCF are most often ommitted, e.g., the unit element in $S_n$, $e=()$, $\forall n$.
\medskip
\textbf{Notation} for permutations in $S_n$:
\begin{tabular}[m]{|l|l|}
\hline
& \\[-10pt]
Two-line notation: & Disjoint cycle form (DCF): \cr \hline
& \\[-9pt]
$
\alpha =
\begin{pmatrix}
0 & 1 & 2 & 3 & 4 & 5 \cr
5 & 4 & 0 & 3 & 1 & 2 \cr
\end{pmatrix} \in S_6
$
&
$
\begin{array}[m]{ll}
\alpha
&= (0,5,2)(1,4)(3)\cr
&= (0,5,2)(1,4)
\end{array}
$
\\[9pt]\hline
\end{tabular}
\begin{center}
\begin{tabular}[m]{|l|l|}
\hline
& \\[-10pt]
Left group action on a set (list): & Multiplication (right-to-left) : \cr \hline
& \\[-9pt]
$
(0,5,2)(1,4)[a,b,c,d,e,f]
= [f,e,a,d,b,c]
$
&
$
\begin{array}[m]{l}
\alpha\circ\beta = (0,5,2)(1,4)\circ(0,4) = (0,1,4,5,2) \cr
\beta\circ\alpha = (0,4)\circ(0,5,2)(1,4) = (0,5,2,4,1)
\end{array}
$
\\[1pt]\hline
\end{tabular}
\end{center}%>>>
\label{LastPageNo}
\end{document}
% vim: foldmethod=marker spelllang=en