From 40efb0cb28e5e11d20fbb4f179ab2182375d07c6 Mon Sep 17 00:00:00 2001 From: Mr-Geekman <36005824+Mr-Geekman@users.noreply.github.com> Date: Tue, 22 Nov 2022 10:12:07 +0300 Subject: [PATCH 01/12] Add `SaveMixin` (#1007) --- CHANGELOG.md | 2 +- etna/core/__init__.py | 2 + etna/core/mixins.py | 88 ++ etna/core/saving.py | 31 + etna/models/base.py | 4 +- etna/models/catboost.py | 7 + etna/models/nn/mlp.py | 10 +- etna/models/nn/rnn.py | 9 +- etna/models/prophet.py | 5 + etna/transforms/base.py | 5 +- etna/transforms/outliers/point_outliers.py | 8 +- poetry.lock | 1026 +++-------------- pyproject.toml | 5 +- scripts/check_imported_dependencies.py | 2 +- tests/test_core/test_mixins.py | 84 ++ tests/test_models/nn/test_deepar.py | 16 + tests/test_models/nn/test_mlp.py | 18 + tests/test_models/nn/test_rnn.py | 7 + tests/test_models/nn/test_tft.py | 10 + tests/test_models/test_autoarima_model.py | 6 + tests/test_models/test_catboost.py | 15 + tests/test_models/test_holt_winters_model.py | 6 + tests/test_models/test_linear_model.py | 10 + tests/test_models/test_prophet.py | 7 + tests/test_models/test_sarimax_model.py | 6 + tests/test_models/test_simple_models.py | 14 + tests/test_models/test_sklearn.py | 14 + tests/test_models/test_tbats.py | 7 + tests/test_models/utils.py | 38 + .../test_binseg_trend_transform.py | 6 + ...st_change_points_segmentation_transform.py | 9 + .../test_change_points_trend_transform.py | 9 + .../test_detrend_transform.py | 10 + .../test_decomposition/test_stl_transform.py | 12 + .../test_trend_transform.py | 6 + .../test_categorical_transform.py | 19 + .../test_mean_segment_encoder_transform.py | 6 + .../test_segment_encoder_transform.py | 6 + .../test_feature_importance_transform.py | 15 + .../test_filter_transform.py | 14 + .../test_gale_shapley_transform.py | 14 + .../test_math/test_add_constant_transform.py | 7 + .../test_math/test_differencing_transform.py | 8 + .../test_math/test_lag_transform.py | 7 + .../test_math/test_lambda_transform.py | 20 + .../test_math/test_log_transform.py | 9 + .../test_math/test_power_transform.py | 9 + .../test_math/test_scalers_transform.py | 21 + .../test_math/test_statistics_transform.py | 18 + .../test_impute_transform.py | 6 + .../test_resample_transform.py | 18 + .../test_outliers/test_outliers_transform.py | 25 + .../test_dateflags_transform.py | 8 + .../test_timestamp/test_fourier_transform.py | 6 + .../test_timestamp/test_holiday_transform.py | 6 + .../test_special_days_transform.py | 11 + .../test_timeflags_transform.py | 8 + tests/test_transforms/utils.py | 32 + 58 files changed, 909 insertions(+), 898 deletions(-) create mode 100644 etna/core/saving.py create mode 100644 tests/test_core/test_mixins.py create mode 100644 tests/test_models/utils.py create mode 100644 tests/test_transforms/utils.py diff --git a/CHANGELOG.md b/CHANGELOG.md index f7d5be6ff..c5ae42821 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -10,7 +10,7 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0 ### Added - - -- +- Add `SaveMixin` to models and transforms ([#1007](https://github.com/tinkoff-ai/etna/pull/1007)) - Add `plot_change_points_interactive` ([#988](https://github.com/tinkoff-ai/etna/pull/988)) - Add `experimental` module with `TimeSeriesBinaryClassifier` and `PredictabilityAnalyzer` ([#985](https://github.com/tinkoff-ai/etna/pull/985)) - Inference track results: add `predict` method to pipelines, teach some models to work with context, change hierarchy of base models, update notebook examples ([#979](https://github.com/tinkoff-ai/etna/pull/979)) diff --git a/etna/core/__init__.py b/etna/core/__init__.py index d2f2da86d..e94cc2918 100644 --- a/etna/core/__init__.py +++ b/etna/core/__init__.py @@ -1,2 +1,4 @@ from etna.core.mixins import BaseMixin +from etna.core.mixins import SaveMixin from etna.core.mixins import StringEnumWithRepr +from etna.core.saving import AbstractSaveable diff --git a/etna/core/mixins.py b/etna/core/mixins.py index 7817311fa..e9a2a3d4d 100644 --- a/etna/core/mixins.py +++ b/etna/core/mixins.py @@ -1,10 +1,17 @@ import inspect +import json +import pathlib +import pickle +import sys import warnings from enum import Enum from typing import Any from typing import Callable from typing import Dict from typing import List +from typing import Tuple +from typing import cast +from zipfile import ZipFile from sklearn.base import BaseEstimator @@ -89,3 +96,84 @@ class StringEnumWithRepr(str, Enum): def __repr__(self): """Get string representation for enum string so that enum can be created from it.""" return self.value.__repr__() + + +def get_etna_version() -> Tuple[int, int, int]: + """Get current version of etna library.""" + python_version = sys.version_info + if python_version[0] == 3 and python_version[1] >= 8: + from importlib.metadata import version + + str_version = version("etna") + result = tuple([int(x) for x in str_version.split(".")]) + result = cast(Tuple[int, int, int], result) + return result + else: + import pkg_resources + + str_version = pkg_resources.get_distribution("etna").version + result = tuple([int(x) for x in str_version.split(".")]) + result = cast(Tuple[int, int, int], result) + return result + + +class SaveMixin: + """Basic implementation of AbstractSaveable abstract class. + + It saves object to the zip archive with 2 files: + + * metadata.json: contains library version and class name. + + * object.pkl: pickled object. + """ + + def save(self, path: pathlib.Path): + """Save the object. + + Parameters + ---------- + path: + Path to save object to. + """ + with ZipFile(path, "w") as zip_file: + full_class_name = f"{inspect.getmodule(self).__name__}.{self.__class__.__name__}" # type: ignore + metadata = { + "etna_version": get_etna_version(), + "class": full_class_name, + } + metadata_str = json.dumps(metadata, indent=2, sort_keys=True) + metadata_bytes = metadata_str.encode("utf-8") + with zip_file.open("metadata.json", "w") as output_file: + output_file.write(metadata_bytes) + + with zip_file.open("object.pkl", "w") as output_file: + pickle.dump(self, output_file) + + @classmethod + def load(cls, path: pathlib.Path) -> Any: + """Load an object. + + Parameters + ---------- + path: + Path to load object from. + """ + with ZipFile(path, "r") as zip_file: + with zip_file.open("metadata.json", "r") as input_file: + metadata_bytes = input_file.read() + metadata_str = metadata_bytes.decode("utf-8") + metadata = json.loads(metadata_str) + current_etna_version = get_etna_version() + saved_etna_version = tuple(metadata["etna_version"]) + + # if major version is different give a warning + if current_etna_version[0] != saved_etna_version[0] or current_etna_version[:2] < saved_etna_version[:2]: + current_etna_version_str = ".".join([str(x) for x in current_etna_version]) + saved_etna_version_str = ".".join([str(x) for x in saved_etna_version]) + warnings.warn( + f"The object was saved under etna version {saved_etna_version_str} " + f"but running version is {current_etna_version_str}, this can cause problems with compatibility!" + ) + + with zip_file.open("object.pkl", "r") as input_file: + return pickle.load(input_file) diff --git a/etna/core/saving.py b/etna/core/saving.py new file mode 100644 index 000000000..25c84ae53 --- /dev/null +++ b/etna/core/saving.py @@ -0,0 +1,31 @@ +import pathlib +from abc import ABC +from abc import abstractmethod +from typing import Any + + +class AbstractSaveable(ABC): + """Abstract class with methods for saving, loading objects.""" + + @abstractmethod + def save(self, path: pathlib.Path): + """Save the object. + + Parameters + ---------- + path: + Path to save object to. + """ + pass + + @classmethod + @abstractmethod + def load(cls, path: pathlib.Path) -> Any: + """Load an object. + + Parameters + ---------- + path: + Path to load object from. + """ + pass diff --git a/etna/models/base.py b/etna/models/base.py index bf9f48771..07d7056b5 100644 --- a/etna/models/base.py +++ b/etna/models/base.py @@ -14,6 +14,8 @@ import pandas as pd from etna import SETTINGS +from etna.core import AbstractSaveable +from etna.core import SaveMixin from etna.core.mixins import BaseMixin from etna.datasets.tsdataset import TSDataset from etna.loggers import tslogger @@ -32,7 +34,7 @@ LightningModule = Mock # type: ignore -class AbstractModel(ABC, BaseMixin): +class AbstractModel(SaveMixin, AbstractSaveable, ABC, BaseMixin): """Interface for model with fit method.""" @property diff --git a/etna/models/catboost.py b/etna/models/catboost.py index 0c2fe02a0..1c2258030 100644 --- a/etna/models/catboost.py +++ b/etna/models/catboost.py @@ -115,6 +115,8 @@ class CatBoostPerSegmentModel( ): """Class for holding per segment Catboost model. + Currently, pickle is used in ``save`` and ``load`` methods. It can work unreliably. + Examples -------- >>> from etna.datasets import generate_periodic_df @@ -241,6 +243,11 @@ class CatBoostMultiSegmentModel( ): """Class for holding Catboost model for all segments. + Warning + ------- + Currently, pickle is used in ``save`` and ``load`` methods. It can work unreliably, because + there is a native method :py:meth:`catboost.CatBoost.save_model`. + Examples -------- >>> from etna.datasets import generate_periodic_df diff --git a/etna/models/nn/mlp.py b/etna/models/nn/mlp.py index 859cc51c9..b4e239514 100644 --- a/etna/models/nn/mlp.py +++ b/etna/models/nn/mlp.py @@ -146,7 +146,14 @@ def configure_optimizers(self): class MLPModel(DeepBaseModel): - """MLPModel.""" + """MLPModel. + + Warning + ------- + Currently, pickle is used in ``save`` and ``load`` methods. + It can work unreliably, because there is a native method :py:meth:`pytorch_lightning.Trainer.save_checkpoint` + that solves problems with using multiple devices. + """ def __init__( self, @@ -166,6 +173,7 @@ def __init__( split_params: Optional[dict] = None, ): """Init MLP model. + Parameters ---------- input_size: diff --git a/etna/models/nn/rnn.py b/etna/models/nn/rnn.py index 7dd410812..76d6db4f2 100644 --- a/etna/models/nn/rnn.py +++ b/etna/models/nn/rnn.py @@ -193,7 +193,14 @@ def configure_optimizers(self) -> "torch.optim.Optimizer": class RNNModel(DeepBaseModel): - """RNN based model on LSTM cell.""" + """RNN based model on LSTM cell. + + Warning + ------- + Currently, pickle is used in ``save`` and ``load`` methods. + It can work unreliably, because there is a native method :py:meth:`pytorch_lightning.Trainer.save_checkpoint` + that solves problems with using multiple devices. + """ def __init__( self, diff --git a/etna/models/prophet.py b/etna/models/prophet.py index 06cb7777e..15fa769a0 100644 --- a/etna/models/prophet.py +++ b/etna/models/prophet.py @@ -165,6 +165,11 @@ class ProphetModel( Original Prophet can use features 'cap' and 'floor', they should be added to the known_future list on dataset initialization. + Warning + ------- + Currently, pickle is used in ``save`` and ``load`` methods. + It can work unreliably according to `documentation `_. + Examples -------- >>> from etna.datasets import generate_periodic_df diff --git a/etna/transforms/base.py b/etna/transforms/base.py index 978039bb5..d71070fe6 100644 --- a/etna/transforms/base.py +++ b/etna/transforms/base.py @@ -1,17 +1,18 @@ -from abc import ABC from abc import abstractmethod from copy import deepcopy import pandas as pd +from etna.core import AbstractSaveable from etna.core import BaseMixin +from etna.core import SaveMixin class FutureMixin: """Mixin for transforms that can convert non-regressor column to a regressor one.""" -class Transform(ABC, BaseMixin): +class Transform(SaveMixin, AbstractSaveable, BaseMixin): """Base class to create any transforms to apply to data.""" @abstractmethod diff --git a/etna/transforms/outliers/point_outliers.py b/etna/transforms/outliers/point_outliers.py index 6e98cf507..9e85bf4c1 100644 --- a/etna/transforms/outliers/point_outliers.py +++ b/etna/transforms/outliers/point_outliers.py @@ -122,7 +122,13 @@ def detect_outliers(self, ts: TSDataset) -> Dict[str, List[pd.Timestamp]]: class PredictionIntervalOutliersTransform(OutliersTransform): - """Transform that uses :py:func:`~etna.analysis.outliers.prediction_interval_outliers.get_anomalies_prediction_interval` to find anomalies in data.""" + """Transform that uses :py:func:`~etna.analysis.outliers.prediction_interval_outliers.get_anomalies_prediction_interval` to find anomalies in data. + + Warning + ------- + Currently, pickle is used in ``save`` and ``load`` methods. + It can work unreliably according to `documentation `_. + """ def __init__( self, diff --git a/poetry.lock b/poetry.lock index 3a5b274c0..725c58a0c 100644 --- a/poetry.lock +++ b/poetry.lock @@ -26,7 +26,7 @@ typing-extensions = {version = ">=3.7.4", markers = "python_version < \"3.8\""} yarl = ">=1.0,<2.0" [package.extras] -speedups = ["Brotli", "aiodns", "cchardet"] +speedups = ["aiodns", "brotli", "cchardet"] [[package]] name = "aiosignal" @@ -169,7 +169,7 @@ python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" dev = ["cloudpickle", "coverage[toml] (>=5.0.2)", "furo", "hypothesis", "mypy", "pre-commit", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "six", "sphinx", "sphinx-notfound-page", "zope.interface"] docs = ["furo", "sphinx", "sphinx-notfound-page", "zope.interface"] tests = ["cloudpickle", "coverage[toml] (>=5.0.2)", "hypothesis", "mypy", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "six", "zope.interface"] -tests-no-zope = ["cloudpickle", "coverage[toml] (>=5.0.2)", "hypothesis", "mypy", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "six"] +tests_no_zope = ["cloudpickle", "coverage[toml] (>=5.0.2)", "hypothesis", "mypy", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "six"] [[package]] name = "autopage" @@ -353,7 +353,7 @@ optional = true python-versions = ">=3.6.0" [package.extras] -unicode-backport = ["unicodedata2"] +unicode_backport = ["unicodedata2"] [[package]] name = "click" @@ -549,7 +549,7 @@ python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" wrapt = ">=1.10,<2" [package.extras] -dev = ["PyTest", "PyTest (<5)", "PyTest-Cov", "PyTest-Cov (<2.6)", "bump2version (<1)", "configparser (<5)", "importlib-metadata (<3)", "importlib-resources (<4)", "sphinx (<2)", "sphinxcontrib-websupport (<2)", "tox", "zipp (<2)"] +dev = ["PyTest (<5)", "PyTest-Cov (<2.6)", "bump2version (<1)", "configparser (<5)", "importlib-metadata (<3)", "importlib-resources (<4)", "pytest", "pytest-cov", "sphinx (<2)", "sphinxcontrib-websupport (<2)", "tox", "zipp (<2)"] [[package]] name = "dill" @@ -704,7 +704,7 @@ python-versions = ">=3.7" [[package]] name = "fsspec" -version = "2022.8.2" +version = "2022.11.0" description = "File-system specification" category = "main" optional = true @@ -776,7 +776,7 @@ six = ">=1.9.0" [package.extras] aiohttp = ["aiohttp (>=3.6.2,<4.0.0dev)", "requests (>=2.20.0,<3.0.0dev)"] -enterprise-cert = ["cryptography (==36.0.2)", "pyopenssl (==22.0.0)"] +enterprise_cert = ["cryptography (==36.0.2)", "pyopenssl (==22.0.0)"] pyopenssl = ["pyopenssl (>=20.0.0)"] reauth = ["pyu2f (>=0.1.5)"] @@ -817,7 +817,7 @@ optional = true python-versions = ">=2.7,!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*" [package.extras] -docs = ["Sphinx"] +docs = ["sphinx"] [[package]] name = "grpcio" @@ -962,7 +962,6 @@ pexpect = {version = ">4.3", markers = "sys_platform != \"win32\""} pickleshare = "*" prompt-toolkit = ">=2.0.0,<3.0.0 || >3.0.0,<3.0.1 || >3.0.1,<3.1.0" pygments = "*" -setuptools = ">=18.5" traitlets = ">=4.2" [package.extras] @@ -1013,9 +1012,9 @@ python-versions = ">=3.6.1,<4.0" [package.extras] colors = ["colorama (>=0.4.3,<0.5.0)"] -pipfile-deprecated-finder = ["pipreqs", "requirementslib"] +pipfile_deprecated_finder = ["pipreqs", "requirementslib"] plugins = ["setuptools"] -requirements-deprecated-finder = ["pip-api", "pipreqs"] +requirements_deprecated_finder = ["pip-api", "pipreqs"] [[package]] name = "jedi" @@ -1265,7 +1264,7 @@ importlib-metadata = {version = "*", markers = "python_version < \"3.8\""} MarkupSafe = ">=0.9.2" [package.extras] -babel = ["Babel"] +babel = ["babel"] lingua = ["lingua"] testing = ["pytest"] @@ -1296,7 +1295,7 @@ attrs = ">=19,<22" typing-extensions = {version = ">=3.7.4", markers = "python_version < \"3.8\""} [package.extras] -code-style = ["pre-commit (==2.6)"] +code_style = ["pre-commit (==2.6)"] compare = ["commonmark (>=0.9.1,<0.10.0)", "markdown (>=3.2.2,<3.3.0)", "mistletoe-ebp (>=0.10.0,<0.11.0)", "mistune (>=0.8.4,<0.9.0)", "panflute (>=1.12,<2.0)"] linkify = ["linkify-it-py (>=1.0,<2.0)"] plugins = ["mdit-py-plugins"] @@ -1361,7 +1360,7 @@ python-versions = "~=3.6" markdown-it-py = ">=1.0,<2.0" [package.extras] -code-style = ["pre-commit (==2.6)"] +code_style = ["pre-commit (==2.6)"] rtd = ["myst-parser (==0.14.0a3)", "sphinx-book-theme (>=0.1.0,<0.2.0)"] testing = ["coverage", "pytest (>=3.6,<4)", "pytest-cov", "pytest-regressions"] @@ -1424,7 +1423,7 @@ pyyaml = "*" sphinx = ">=3.1,<5" [package.extras] -code-style = ["pre-commit (>=2.12,<3.0)"] +code_style = ["pre-commit (>=2.12,<3.0)"] linkify = ["linkify-it-py (>=1.0,<2.0)"] rtd = ["ipython", "sphinx-book-theme (>=0.1.0,<0.2.0)", "sphinx-panels (>=0.5.2,<0.6.0)", "sphinxcontrib-bibtex (>=2.1,<3.0)", "sphinxcontrib.mermaid (>=0.6.3,<0.7.0)", "sphinxext-opengraph (>=0.4.2,<0.5.0)", "sphinxext-rediraffe (>=0.2,<1.0)"] testing = ["beautifulsoup4", "coverage", "docutils (>=0.17.0,<0.18.0)", "pytest (>=3.6,<4)", "pytest-cov", "pytest-regressions"] @@ -1612,7 +1611,6 @@ python-versions = ">=3.7,<3.11" [package.dependencies] llvmlite = ">=0.38.0rc1,<0.39" numpy = ">=1.18,<1.23" -setuptools = "*" [[package]] name = "numpy" @@ -1888,7 +1886,6 @@ numpy = ">=1.21" pandas = ">=0.19" scikit-learn = ">=0.22" scipy = ">=1.3.2" -setuptools = ">=38.6.0,<50.0.0 || >50.0.0" statsmodels = ">=0.13.2" urllib3 = "*" @@ -1961,10 +1958,8 @@ matplotlib = ">=2.0.0" numpy = ">=1.15.4" pandas = ">=1.0.4" python-dateutil = ">=2.8.0" -setuptools = ">=42" setuptools-git = ">=1.2" tqdm = ">=4.36.1" -wheel = ">=0.37.0" [[package]] name = "protobuf" @@ -2211,10 +2206,10 @@ tqdm = ">=4.57.0" typing-extensions = ">=4.0.0" [package.extras] -all = ["cloudpickle (>=1.3)", "codecov (>=2.1)", "comet-ml (>=3.1.12)", "coverage (>=6.4)", "deepspeed (>=0.6.0)", "fairscale (>=0.4.5)", "fastapi", "gcsfs (>=2021.5.0)", "gym[classic-control] (>=0.17.0)", "hivemind (>=1.0.1)", "horovod (>=0.21.2,!=0.24.0)", "hydra-core (>=1.0.5)", "ipython[all]", "jsonargparse[signatures] (>=4.12.0)", "matplotlib (>3.1)", "mlflow (>=1.0.0)", "mypy (==0.971)", "neptune-client (>=0.10.0)", "omegaconf (>=2.0.5)", "onnxruntime", "pandas (>1.0)", "pre-commit (>=1.0)", "protobuf (<=3.20.1)", "psutil", "pytest (>=7.0)", "pytest-cov", "pytest-forked", "pytest-rerunfailures (>=10.2)", "rich (>=10.14.0,!=10.15.0.a)", "scikit-learn (>0.22.1)", "torchtext (>=0.10)", "torchvision (>=0.10)", "uvicorn", "wandb (>=0.10.22)"] +all = ["cloudpickle (>=1.3)", "codecov (>=2.1)", "comet-ml (>=3.1.12)", "coverage (>=6.4)", "deepspeed (>=0.6.0)", "fairscale (>=0.4.5)", "fastapi", "gcsfs (>=2021.5.0)", "gym[classic_control] (>=0.17.0)", "hivemind (>=1.0.1)", "horovod (>=0.21.2,!=0.24.0)", "hydra-core (>=1.0.5)", "ipython", "jsonargparse[signatures] (>=4.12.0)", "matplotlib (>3.1)", "mlflow (>=1.0.0)", "mypy (==0.971)", "neptune-client (>=0.10.0)", "omegaconf (>=2.0.5)", "onnxruntime", "pandas (>1.0)", "pre-commit (>=1.0)", "protobuf (<=3.20.1)", "psutil", "pytest (>=7.0)", "pytest-cov", "pytest-forked", "pytest-rerunfailures (>=10.2)", "rich (>=10.14.0,!=10.15.0.a)", "scikit-learn (>0.22.1)", "torchtext (>=0.10)", "torchvision (>=0.10)", "uvicorn", "wandb (>=0.10.22)"] deepspeed = ["deepspeed (>=0.6.0)"] dev = ["cloudpickle (>=1.3)", "codecov (>=2.1)", "comet-ml (>=3.1.12)", "coverage (>=6.4)", "fastapi", "gcsfs (>=2021.5.0)", "hydra-core (>=1.0.5)", "jsonargparse[signatures] (>=4.12.0)", "matplotlib (>3.1)", "mlflow (>=1.0.0)", "mypy (==0.971)", "neptune-client (>=0.10.0)", "omegaconf (>=2.0.5)", "onnxruntime", "pandas (>1.0)", "pre-commit (>=1.0)", "protobuf (<=3.20.1)", "psutil", "pytest (>=7.0)", "pytest-cov", "pytest-forked", "pytest-rerunfailures (>=10.2)", "rich (>=10.14.0,!=10.15.0.a)", "scikit-learn (>0.22.1)", "torchtext (>=0.10)", "uvicorn", "wandb (>=0.10.22)"] -examples = ["gym[classic-control] (>=0.17.0)", "ipython[all]", "torchvision (>=0.10)"] +examples = ["gym[classic_control] (>=0.17.0)", "ipython", "torchvision (>=0.10)"] extra = ["gcsfs (>=2021.5.0)", "hydra-core (>=1.0.5)", "jsonargparse[signatures] (>=4.12.0)", "matplotlib (>3.1)", "omegaconf (>=2.0.5)", "protobuf (<=3.20.1)", "rich (>=10.14.0,!=10.15.0.a)", "torchtext (>=0.10)"] fairscale = ["fairscale (>=0.4.5)"] hivemind = ["hivemind (>=1.0.1)"] @@ -2338,7 +2333,7 @@ urllib3 = ">=1.21.1,<1.27" [package.extras] socks = ["PySocks (>=1.5.6,!=1.5.7)"] -use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"] +use_chardet_on_py3 = ["chardet (>=3.0.2,<6)"] [[package]] name = "requests-oauthlib" @@ -2460,8 +2455,8 @@ optional = true python-versions = "*" [package.extras] -nativelib = ["pyobjc-framework-Cocoa", "pywin32"] -objc = ["pyobjc-framework-Cocoa"] +nativelib = ["pyobjc-framework-cocoa", "pywin32"] +objc = ["pyobjc-framework-cocoa"] win32 = ["pywin32"] [[package]] @@ -2487,7 +2482,7 @@ falcon = ["falcon (>=1.4)"] fastapi = ["fastapi (>=0.79.0)"] flask = ["blinker (>=1.1)", "flask (>=0.11)"] httpx = ["httpx (>=0.16.0)"] -pure-eval = ["asttokens", "executing", "pure-eval"] +pure_eval = ["asttokens", "executing", "pure-eval"] pyspark = ["pyspark (>=2.4.4)"] quart = ["blinker (>=1.1)", "quart (>=0.16.1)"] rq = ["rq (>=0.6)"] @@ -2507,19 +2502,6 @@ python-versions = ">=3.7" [package.extras] test = ["pytest"] -[[package]] -name = "setuptools" -version = "65.5.0" -description = "Easily download, build, install, upgrade, and uninstall Python packages" -category = "main" -optional = false -python-versions = ">=3.7" - -[package.extras] -docs = ["furo", "jaraco.packaging (>=9)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-hoverxref (<2)", "sphinx-inline-tabs", "sphinx-notfound-page (==0.8.3)", "sphinx-reredirects", "sphinxcontrib-towncrier"] -testing = ["build[virtualenv]", "filelock (>=3.4.0)", "flake8 (<5)", "flake8-2020", "ini2toml[lite] (>=0.9)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "mock", "pip (>=19.1)", "pip-run (>=8.8)", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=1.3)", "pytest-flake8", "pytest-mypy (>=0.9.1)", "pytest-perf", "pytest-xdist", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel"] -testing-integration = ["build[virtualenv]", "filelock (>=3.4.0)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "pytest", "pytest-enabler", "pytest-xdist", "tomli", "virtualenv (>=13.0.0)", "wheel"] - [[package]] name = "setuptools-git" version = "1.2" @@ -2538,7 +2520,6 @@ python-versions = ">=3.6" [package.dependencies] packaging = ">=20.0" -setuptools = "*" tomli = ">=1.0.0" [package.extras] @@ -2739,21 +2720,21 @@ aiomysql = ["aiomysql", "greenlet (!=0.4.17)"] aiosqlite = ["aiosqlite", "greenlet (!=0.4.17)", "typing_extensions (!=3.10.0.1)"] asyncio = ["greenlet (!=0.4.17)"] asyncmy = ["asyncmy (>=0.2.3,!=0.2.4)", "greenlet (!=0.4.17)"] -mariadb-connector = ["mariadb (>=1.0.1,!=1.1.2)"] +mariadb_connector = ["mariadb (>=1.0.1,!=1.1.2)"] mssql = ["pyodbc"] -mssql-pymssql = ["pymssql"] -mssql-pyodbc = ["pyodbc"] +mssql_pymssql = ["pymssql"] +mssql_pyodbc = ["pyodbc"] mypy = ["mypy (>=0.910)", "sqlalchemy2-stubs"] mysql = ["mysqlclient (>=1.4.0)", "mysqlclient (>=1.4.0,<2)"] -mysql-connector = ["mysql-connector-python"] +mysql_connector = ["mysql-connector-python"] oracle = ["cx_oracle (>=7)", "cx_oracle (>=7,<8)"] postgresql = ["psycopg2 (>=2.7)"] -postgresql-asyncpg = ["asyncpg", "greenlet (!=0.4.17)"] -postgresql-pg8000 = ["pg8000 (>=1.16.6,!=1.29.0)"] -postgresql-psycopg2binary = ["psycopg2-binary"] -postgresql-psycopg2cffi = ["psycopg2cffi"] +postgresql_asyncpg = ["asyncpg", "greenlet (!=0.4.17)"] +postgresql_pg8000 = ["pg8000 (>=1.16.6,!=1.29.0)"] +postgresql_psycopg2binary = ["psycopg2-binary"] +postgresql_psycopg2cffi = ["psycopg2cffi"] pymysql = ["pymysql", "pymysql (<1)"] -sqlcipher = ["sqlcipher3_binary"] +sqlcipher = ["sqlcipher3-binary"] [[package]] name = "statsmodels" @@ -2773,7 +2754,7 @@ scipy = ">=1.3" [package.extras] build = ["cython (>=0.29.26)"] develop = ["cython (>=0.29.26)"] -docs = ["ipykernel", "jupyter_client", "matplotlib", "nbconvert", "nbformat", "numpydoc", "pandas-datareader", "sphinx"] +docs = ["ipykernel", "jupyter-client", "matplotlib", "nbconvert", "nbformat", "numpydoc", "pandas-datareader", "sphinx"] [[package]] name = "stevedore" @@ -2832,11 +2813,9 @@ markdown = ">=2.6.8" numpy = ">=1.12.0" protobuf = ">=3.9.2,<3.20" requests = ">=2.21.0,<3" -setuptools = ">=41.0.0" tensorboard-data-server = ">=0.6.0,<0.7.0" tensorboard-plugin-wit = ">=1.6.0" werkzeug = ">=1.0.1" -wheel = ">=0.26" [[package]] name = "tensorboard-data-server" @@ -2890,7 +2869,7 @@ python-versions = ">=3.7" webencodings = ">=0.4" [package.extras] -doc = ["sphinx", "sphinx_rtd_theme"] +doc = ["sphinx", "sphinx-rtd-theme"] test = ["flake8", "isort", "pytest"] [[package]] @@ -3029,6 +3008,14 @@ category = "main" optional = true python-versions = "*" +[[package]] +name = "types-setuptools" +version = "65.5.0.3" +description = "Typing stubs for setuptools" +category = "main" +optional = true +python-versions = "*" + [[package]] name = "typing-extensions" version = "4.4.0" @@ -3078,7 +3065,6 @@ PyYAML = "*" requests = ">=2.0.0,<3" sentry-sdk = ">=1.0.0" setproctitle = "*" -setuptools = "*" shortuuid = ">=0.5.0" six = ">=1.13.0" @@ -3136,17 +3122,6 @@ MarkupSafe = ">=2.1.1" [package.extras] watchdog = ["watchdog"] -[[package]] -name = "wheel" -version = "0.37.1" -description = "A built-package format for Python" -category = "main" -optional = true -python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,>=2.7" - -[package.extras] -test = ["pytest (>=3.0.0)", "pytest-cov"] - [[package]] name = "widgetsnbextension" version = "3.6.1" @@ -3204,14 +3179,14 @@ testing = ["flake8 (<5)", "func-timeout", "jaraco.functools", "jaraco.itertools" [extras] all = ["prophet", "torch", "pytorch-forecasting", "wandb", "optuna", "pyts"] -all-dev = ["prophet", "torch", "pytorch-forecasting", "wandb", "optuna", "click", "semver", "Sphinx", "numpydoc", "sphinx-rtd-theme", "nbsphinx", "sphinx-mathjax-offline", "myst-parser", "GitPython", "pytest-cov", "coverage", "pytest", "black", "isort", "flake8", "pep8-naming", "flake8-docstrings", "mypy", "types-PyYAML", "codespell", "flake8-bugbear", "flake8-comprehensions", "click", "semver", "jupyter", "nbconvert", "pyts"] +all-dev = ["prophet", "torch", "pytorch-forecasting", "wandb", "optuna", "click", "semver", "Sphinx", "numpydoc", "sphinx-rtd-theme", "nbsphinx", "sphinx-mathjax-offline", "myst-parser", "GitPython", "pytest-cov", "coverage", "pytest", "black", "isort", "flake8", "pep8-naming", "flake8-docstrings", "mypy", "types-PyYAML", "codespell", "flake8-bugbear", "flake8-comprehensions", "types-setuptools", "click", "semver", "jupyter", "nbconvert", "pyts"] auto = ["optuna"] classification = ["pyts"] docs = ["Sphinx", "numpydoc", "sphinx-rtd-theme", "nbsphinx", "sphinx-mathjax-offline", "myst-parser", "GitPython"] jupyter = ["jupyter", "nbconvert", "black"] prophet = ["prophet"] release = ["click", "semver"] -style = ["black", "isort", "flake8", "pep8-naming", "flake8-docstrings", "mypy", "types-PyYAML", "codespell", "flake8-bugbear", "flake8-comprehensions"] +style = ["black", "isort", "flake8", "pep8-naming", "flake8-docstrings", "mypy", "types-PyYAML", "codespell", "flake8-bugbear", "flake8-comprehensions", "types-setuptools"] tests = ["pytest-cov", "coverage", "pytest"] torch = ["torch", "pytorch-forecasting", "pytorch-lightning"] wandb = ["wandb"] @@ -3219,7 +3194,7 @@ wandb = ["wandb"] [metadata] lock-version = "1.1" python-versions = ">=3.7.1, <3.10.0" -content-hash = "933b7e12b7d51b8ecd78c9e17652529c4611a543ace3790c40a1207c870fa38f" +content-hash = "f33028a15392c38031b09f2400654b11198b37d0be3a0e4d3e5939d32d96a4e7" [metadata.files] absl-py = [ @@ -3323,21 +3298,13 @@ alabaster = [ {file = "alabaster-0.7.12-py2.py3-none-any.whl", hash = "sha256:446438bdcca0e05bd45ea2de1668c1d9b032e1a9154c2c259092d77031ddd359"}, {file = "alabaster-0.7.12.tar.gz", hash = "sha256:a661d72d58e6ea8a57f7a86e37d86716863ee5e92788398526d58b26a4e4dc02"}, ] -alembic = [ - {file = "alembic-1.8.1-py3-none-any.whl", hash = "sha256:0a024d7f2de88d738d7395ff866997314c837be6104e90c5724350313dee4da4"}, - {file = "alembic-1.8.1.tar.gz", hash = "sha256:cd0b5e45b14b706426b833f06369b9a6d5ee03f826ec3238723ce8caaf6e5ffa"}, -] -antlr4-python3-runtime = [ - {file = "antlr4-python3-runtime-4.9.3.tar.gz", hash = "sha256:f224469b4168294902bb1efa80a8bf7855f24c99aef99cbefc1bcd3cce77881b"}, -] +alembic = [] +antlr4-python3-runtime = [] anyio = [ {file = "anyio-3.6.1-py3-none-any.whl", hash = "sha256:cb29b9c70620506a9a8f87a309591713446953302d7d995344d0d7c6c0c9a7be"}, {file = "anyio-3.6.1.tar.gz", hash = "sha256:413adf95f93886e442aea925f3ee43baa5a765a64a0f52c6081894f9992fdd0b"}, ] -appnope = [ - {file = "appnope-0.1.3-py2.py3-none-any.whl", hash = "sha256:265a455292d0bd8a72453494fa24df5a11eb18373a60c7c0430889f22548605e"}, - {file = "appnope-0.1.3.tar.gz", hash = "sha256:02bd91c4de869fbb1e1c50aafc4098827a7a54ab2f39d9dcba6c9547ed920e24"}, -] +appnope = [] argon2-cffi = [ {file = "argon2-cffi-21.3.0.tar.gz", hash = "sha256:d384164d944190a7dd7ef22c6aa3ff197da12962bd04b17f64d4e93d934dba5b"}, {file = "argon2_cffi-21.3.0-py3-none-any.whl", hash = "sha256:8c976986f2c5c0e5000919e6de187906cfd81fb1c72bf9d88c01177e77da7f80"}, @@ -3365,37 +3332,20 @@ argon2-cffi-bindings = [ {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ed2937d286e2ad0cc79a7087d3c272832865f779430e0cc2b4f3718d3159b0cb"}, {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:5e00316dabdaea0b2dd82d141cc66889ced0cdcbfa599e8b471cf22c620c329a"}, ] -async-timeout = [ - {file = "async-timeout-4.0.2.tar.gz", hash = "sha256:2163e1640ddb52b7a8c80d0a67a08587e5d245cc9c553a74a847056bc2976b15"}, - {file = "async_timeout-4.0.2-py3-none-any.whl", hash = "sha256:8ca1e4fcf50d07413d66d1a5e416e42cfdf5851c981d679a09851a6853383b3c"}, -] +async-timeout = [] asynctest = [ {file = "asynctest-0.13.0-py3-none-any.whl", hash = "sha256:5da6118a7e6d6b54d83a8f7197769d046922a44d2a99c21382f0a6e4fadae676"}, {file = "asynctest-0.13.0.tar.gz", hash = "sha256:c27862842d15d83e6a34eb0b2866c323880eb3a75e4485b079ea11748fd77fac"}, ] -atomicwrites = [ - {file = "atomicwrites-1.4.1.tar.gz", hash = "sha256:81b2c9071a49367a7f770170e5eec8cb66567cfbbc8c73d20ce5ca4a8d71cf11"}, -] -attrs = [ - {file = "attrs-21.4.0-py2.py3-none-any.whl", hash = "sha256:2d27e3784d7a565d36ab851fe94887c5eccd6a463168875832a1be79c82828b4"}, - {file = "attrs-21.4.0.tar.gz", hash = "sha256:626ba8234211db98e869df76230a137c4c40a12d72445c45d5f5b716f076e2fd"}, -] -autopage = [ - {file = "autopage-0.5.1-py3-none-any.whl", hash = "sha256:0fbf5efbe78d466a26753e1dee3272423a3adc989d6a778c700e89a3f8ff0d88"}, - {file = "autopage-0.5.1.tar.gz", hash = "sha256:01be3ee61bb714e9090fcc5c10f4cf546c396331c620c6ae50a2321b28ed3199"}, -] -babel = [ - {file = "Babel-2.10.3-py3-none-any.whl", hash = "sha256:ff56f4892c1c4bf0d814575ea23471c230d544203c7748e8c68f0089478d48eb"}, - {file = "Babel-2.10.3.tar.gz", hash = "sha256:7614553711ee97490f732126dc077f8d0ae084ebc6a96e23db1482afabdb2c51"}, -] +atomicwrites = [] +attrs = [] +autopage = [] +babel = [] backcall = [ {file = "backcall-0.2.0-py2.py3-none-any.whl", hash = "sha256:fbbce6a29f263178a1f7915c1940bde0ec2b2a967566fe1c65c1dfb7422bd255"}, {file = "backcall-0.2.0.tar.gz", hash = "sha256:5cbdbf27be5e7cfadb448baf0aa95508f91f2bbc6c6437cd9cd06e2a4c215e1e"}, ] -beautifulsoup4 = [ - {file = "beautifulsoup4-4.11.1-py3-none-any.whl", hash = "sha256:58d5c3d29f5a36ffeb94f02f0d786cd53014cf9b3b3951d42e0080d8a9498d30"}, - {file = "beautifulsoup4-4.11.1.tar.gz", hash = "sha256:ad9aa55b65ef2808eb405f46cf74df7fcb7044d5cbc26487f96eb2ef2e436693"}, -] +beautifulsoup4 = [] black = [ {file = "black-22.10.0-1fixedarch-cp310-cp310-macosx_11_0_x86_64.whl", hash = "sha256:5cc42ca67989e9c3cf859e84c2bf014f6633db63d1cbdf8fdb666dcd9e77e3fa"}, {file = "black-22.10.0-1fixedarch-cp311-cp311-macosx_11_0_x86_64.whl", hash = "sha256:5d8f74030e67087b219b032aa33a919fae8806d49c867846bfacde57f43972ef"}, @@ -3419,10 +3369,7 @@ black = [ {file = "black-22.10.0-py3-none-any.whl", hash = "sha256:c957b2b4ea88587b46cf49d1dc17681c1e672864fd7af32fc1e9664d572b3458"}, {file = "black-22.10.0.tar.gz", hash = "sha256:f513588da599943e0cde4e32cc9879e825d58720d6557062d1098c5ad80080e1"}, ] -bleach = [ - {file = "bleach-5.0.1-py3-none-any.whl", hash = "sha256:085f7f33c15bd408dd9b17a4ad77c577db66d76203e5984b1bd59baeee948b2a"}, - {file = "bleach-5.0.1.tar.gz", hash = "sha256:0d03255c47eb9bd2f26aa9bb7f2107732e7e8fe195ca2f64709fcf3b0a4a085c"}, -] +bleach = [] boto3 = [ {file = "boto3-1.24.92-py3-none-any.whl", hash = "sha256:3c6cc4e9e38cf4523267f89eb90c0b6084fa415cb4f44e3bf0cad6199340cc92"}, {file = "boto3-1.24.92.tar.gz", hash = "sha256:d28bcb98aee4d333b163c55b98341627d933dbf088832f7fc050893617be7dac"}, @@ -3431,48 +3378,8 @@ botocore = [ {file = "botocore-1.27.92-py3-none-any.whl", hash = "sha256:b49c34b80c782625905be75e669da4b42a99f074e0aa3007e15ccc6955682a07"}, {file = "botocore-1.27.92.tar.gz", hash = "sha256:70cf2cb04968794ed4688cc3b07874f6f4c932e325611be4e693a995fdb481be"}, ] -bottleneck = [ - {file = "Bottleneck-1.3.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:75ed4ffbe26672da14d9e9e29b7bca79f82c7ecf1e8a32f1d3f7b4dda53b486e"}, - {file = "Bottleneck-1.3.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c8f5562e5f27ab39775758b3d57c6144e29ca33edc76ee60cb220b5a99d5a1f5"}, - {file = "Bottleneck-1.3.5-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5d26675caa9ce86a299877b14e909bc456c0d1fec30ae63bbb52a20b01beedb9"}, - {file = "Bottleneck-1.3.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:cc1395aabff7db940f2cd952b8e42f014461feecd563c6dddb9077022a361a80"}, - {file = "Bottleneck-1.3.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:d17af36baa48cd68c83eeefd830236410981556987c5ea9d8212f99c64c696ae"}, - {file = "Bottleneck-1.3.5-cp310-cp310-win32.whl", hash = "sha256:fe75dff7ad1ec63cd832aa7529fc60ef78ce13ee29318a1437b0634c01ad59f4"}, - {file = "Bottleneck-1.3.5-cp310-cp310-win_amd64.whl", hash = "sha256:9a53cfddc71bdfa14e444deab90173b658fbe98a784cdfee55725641b21be175"}, - {file = "Bottleneck-1.3.5-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:826ecaa26132179ce43b7796473eff62b232db47b39f3b6fcc4365488f3b0b00"}, - {file = "Bottleneck-1.3.5-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3283f98c01702404fde4c674b19ae444eaa2668da77124fcc6de40f82c6cda93"}, - {file = "Bottleneck-1.3.5-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f5f7cffb0de10d83901a942a50f1a8421776fc0489603ce938b31bdf867ab0e9"}, - {file = "Bottleneck-1.3.5-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:005578d5ffbef148d1bc8cdd74d71734a5add7379142e1add339ad68c20ad13b"}, - {file = "Bottleneck-1.3.5-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:538dc29cf97410cb767ea7f369806be487ba6fe125329e0cf410cb6dd225c891"}, - {file = "Bottleneck-1.3.5-cp36-cp36m-win32.whl", hash = "sha256:7b1c0f1a4ab2240dcee5df4968d0b70892d958435750c1dfb1c835b091436453"}, - {file = "Bottleneck-1.3.5-cp36-cp36m-win_amd64.whl", hash = "sha256:698c8b92da3c0638910a81a5c404e199080f0dd6d64c56de7d21dd90870c58cb"}, - {file = "Bottleneck-1.3.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:97d628e66f59255d65d6bcd43f58d64b976388d3cc4e330832a260793cdbdb2a"}, - {file = "Bottleneck-1.3.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:103fe3f2166667448271698394a15eae9d43a252dbb41a9d4397e08e4852934e"}, - {file = "Bottleneck-1.3.5-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a56e945a323896f9c76e99c1401e86bbca68ec0828b38d5832b5881fbacd5da2"}, - {file = "Bottleneck-1.3.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:8a7dbf8e79b9f6821df964b964cfe10ba58ad92334a3cca6e6c8cc5c72ec92d1"}, - {file = "Bottleneck-1.3.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:da08bd0978be264daff090d3cddeff809810bb58ef4dbad418fcb1de0770dafb"}, - {file = "Bottleneck-1.3.5-cp37-cp37m-win32.whl", hash = "sha256:a4280a609b37b12827b3c86fe72869bb580462ae06c970f904412a0bc1b9ba12"}, - {file = "Bottleneck-1.3.5-cp37-cp37m-win_amd64.whl", hash = "sha256:1dc6bc824ff24e55edb5e0738e7e9de838091471406df63a20a12cca006eab2d"}, - {file = "Bottleneck-1.3.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:930a2e86ef95eab1a5ef00467de45d316a8dfb0de9604aa23cdbf7fefbdab765"}, - {file = "Bottleneck-1.3.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e069baf7a3208aaa55e3d2c2fa315661cd61a1e0c5cc33be42111e9520fa5802"}, - {file = "Bottleneck-1.3.5-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f3bb670f70c86978b99566e39959b151e211c814b336cacda6931109f19b280a"}, - {file = "Bottleneck-1.3.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:9a4cb657afba02c01471e78879bc01652268a8d23dec3c8ea432df174c10f61d"}, - {file = "Bottleneck-1.3.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:0b624ebe4660545534f6408dbe069157600d89392caabfc0c337f2a01aa2c990"}, - {file = "Bottleneck-1.3.5-cp38-cp38-win32.whl", hash = "sha256:c907f1be11ab6e2b9c980a61feabee21dbe16d62db1e605fbffe6a85d2a8a23b"}, - {file = "Bottleneck-1.3.5-cp38-cp38-win_amd64.whl", hash = "sha256:73084b263d5ec3091e92664ae1276258db2865e6801b7f99864af42baebd6d2d"}, - {file = "Bottleneck-1.3.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:f0eaf6e9dc1a8efe56b90b790c0bd47453639c4a6427d6206c8bd26f7c06c3a6"}, - {file = "Bottleneck-1.3.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b5cffd0b4a7b929f94412586e78ca3506b3c2b50d213f7a4aaff67f913736e38"}, - {file = "Bottleneck-1.3.5-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5a87a21081fb27995ef2123d85a5cc392a3aab707189c6ba98b4a4808d0905d0"}, - {file = "Bottleneck-1.3.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:04c938dea6ca735bed69e0e01b3d83c31da4861c10d3332363a4f697db02a341"}, - {file = "Bottleneck-1.3.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:5712542be5b067f10c064139227757008ecd6e494967e26ecc03e24d5953e6c4"}, - {file = "Bottleneck-1.3.5-cp39-cp39-win32.whl", hash = "sha256:f24fc607466edf97d46aeafe0ac4797e0f7b654aef4a547b1699bb8ae15db3ff"}, - {file = "Bottleneck-1.3.5-cp39-cp39-win_amd64.whl", hash = "sha256:dce5ba9eaab354fdc13c7969f026ef2e9f4757415f565a188322e6cc9a296ce5"}, - {file = "Bottleneck-1.3.5.tar.gz", hash = "sha256:2c0d27afe45351f6f421893362621804fa7dea14fe29a78eaa52d4323f646de7"}, -] -cachetools = [ - {file = "cachetools-5.2.0-py3-none-any.whl", hash = "sha256:f9f17d2aec496a9aa6b76f53e3b614c965223c061982d434d160f930c698a9db"}, - {file = "cachetools-5.2.0.tar.gz", hash = "sha256:6a94c6402995a99c3970cc7e4884bb60b4a8639938157eeed436098bf9831757"}, -] +bottleneck = [] +cachetools = [] catboost = [ {file = "catboost-1.1-cp310-none-macosx_10_6_universal2.whl", hash = "sha256:b5b47ad4c640e8061e00b9d9e620d47d64c2cdb2a3f34f403290922b71b4d8dc"}, {file = "catboost-1.1-cp310-none-manylinux1_x86_64.whl", hash = "sha256:d21afd39b561ff6775bccbd6671ea6dc1f02717c0aa2a0f9276c133b2b98072d"}, @@ -3494,92 +3401,18 @@ certifi = [ {file = "certifi-2022.9.24-py3-none-any.whl", hash = "sha256:90c1a32f1d68f940488354e36370f6cca89f0f106db09518524c88d6ed83f382"}, {file = "certifi-2022.9.24.tar.gz", hash = "sha256:0d9c601124e5a6ba9712dbc60d9c53c21e34f5f641fe83002317394311bdce14"}, ] -cffi = [ - {file = "cffi-1.15.1-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:a66d3508133af6e8548451b25058d5812812ec3798c886bf38ed24a98216fab2"}, - {file = "cffi-1.15.1-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:470c103ae716238bbe698d67ad020e1db9d9dba34fa5a899b5e21577e6d52ed2"}, - {file = "cffi-1.15.1-cp27-cp27m-manylinux1_x86_64.whl", hash = "sha256:9ad5db27f9cabae298d151c85cf2bad1d359a1b9c686a275df03385758e2f914"}, - {file = "cffi-1.15.1-cp27-cp27m-win32.whl", hash = "sha256:b3bbeb01c2b273cca1e1e0c5df57f12dce9a4dd331b4fa1635b8bec26350bde3"}, - {file = "cffi-1.15.1-cp27-cp27m-win_amd64.whl", hash = "sha256:e00b098126fd45523dd056d2efba6c5a63b71ffe9f2bbe1a4fe1716e1d0c331e"}, - {file = "cffi-1.15.1-cp27-cp27mu-manylinux1_i686.whl", hash = "sha256:d61f4695e6c866a23a21acab0509af1cdfd2c013cf256bbf5b6b5e2695827162"}, - {file = "cffi-1.15.1-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:ed9cb427ba5504c1dc15ede7d516b84757c3e3d7868ccc85121d9310d27eed0b"}, - {file = "cffi-1.15.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:39d39875251ca8f612b6f33e6b1195af86d1b3e60086068be9cc053aa4376e21"}, - {file = "cffi-1.15.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:285d29981935eb726a4399badae8f0ffdff4f5050eaa6d0cfc3f64b857b77185"}, - {file = "cffi-1.15.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3eb6971dcff08619f8d91607cfc726518b6fa2a9eba42856be181c6d0d9515fd"}, - {file = "cffi-1.15.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:21157295583fe8943475029ed5abdcf71eb3911894724e360acff1d61c1d54bc"}, - {file = "cffi-1.15.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5635bd9cb9731e6d4a1132a498dd34f764034a8ce60cef4f5319c0541159392f"}, - {file = "cffi-1.15.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2012c72d854c2d03e45d06ae57f40d78e5770d252f195b93f581acf3ba44496e"}, - {file = "cffi-1.15.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd86c085fae2efd48ac91dd7ccffcfc0571387fe1193d33b6394db7ef31fe2a4"}, - {file = "cffi-1.15.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:fa6693661a4c91757f4412306191b6dc88c1703f780c8234035eac011922bc01"}, - {file = "cffi-1.15.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:59c0b02d0a6c384d453fece7566d1c7e6b7bae4fc5874ef2ef46d56776d61c9e"}, - {file = "cffi-1.15.1-cp310-cp310-win32.whl", hash = "sha256:cba9d6b9a7d64d4bd46167096fc9d2f835e25d7e4c121fb2ddfc6528fb0413b2"}, - {file = "cffi-1.15.1-cp310-cp310-win_amd64.whl", hash = "sha256:ce4bcc037df4fc5e3d184794f27bdaab018943698f4ca31630bc7f84a7b69c6d"}, - {file = "cffi-1.15.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3d08afd128ddaa624a48cf2b859afef385b720bb4b43df214f85616922e6a5ac"}, - {file = "cffi-1.15.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:3799aecf2e17cf585d977b780ce79ff0dc9b78d799fc694221ce814c2c19db83"}, - {file = "cffi-1.15.1-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a591fe9e525846e4d154205572a029f653ada1a78b93697f3b5a8f1f2bc055b9"}, - {file = "cffi-1.15.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3548db281cd7d2561c9ad9984681c95f7b0e38881201e157833a2342c30d5e8c"}, - {file = "cffi-1.15.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:91fc98adde3d7881af9b59ed0294046f3806221863722ba7d8d120c575314325"}, - {file = "cffi-1.15.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:94411f22c3985acaec6f83c6df553f2dbe17b698cc7f8ae751ff2237d96b9e3c"}, - {file = "cffi-1.15.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:03425bdae262c76aad70202debd780501fabeaca237cdfddc008987c0e0f59ef"}, - {file = "cffi-1.15.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:cc4d65aeeaa04136a12677d3dd0b1c0c94dc43abac5860ab33cceb42b801c1e8"}, - {file = "cffi-1.15.1-cp311-cp311-win32.whl", hash = "sha256:a0f100c8912c114ff53e1202d0078b425bee3649ae34d7b070e9697f93c5d52d"}, - {file = "cffi-1.15.1-cp311-cp311-win_amd64.whl", hash = "sha256:04ed324bda3cda42b9b695d51bb7d54b680b9719cfab04227cdd1e04e5de3104"}, - {file = "cffi-1.15.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:50a74364d85fd319352182ef59c5c790484a336f6db772c1a9231f1c3ed0cbd7"}, - {file = "cffi-1.15.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e263d77ee3dd201c3a142934a086a4450861778baaeeb45db4591ef65550b0a6"}, - {file = "cffi-1.15.1-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cec7d9412a9102bdc577382c3929b337320c4c4c4849f2c5cdd14d7368c5562d"}, - {file = "cffi-1.15.1-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4289fc34b2f5316fbb762d75362931e351941fa95fa18789191b33fc4cf9504a"}, - {file = "cffi-1.15.1-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:173379135477dc8cac4bc58f45db08ab45d228b3363adb7af79436135d028405"}, - {file = "cffi-1.15.1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:6975a3fac6bc83c4a65c9f9fcab9e47019a11d3d2cf7f3c0d03431bf145a941e"}, - {file = "cffi-1.15.1-cp36-cp36m-win32.whl", hash = "sha256:2470043b93ff09bf8fb1d46d1cb756ce6132c54826661a32d4e4d132e1977adf"}, - {file = "cffi-1.15.1-cp36-cp36m-win_amd64.whl", hash = "sha256:30d78fbc8ebf9c92c9b7823ee18eb92f2e6ef79b45ac84db507f52fbe3ec4497"}, - {file = "cffi-1.15.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:198caafb44239b60e252492445da556afafc7d1e3ab7a1fb3f0584ef6d742375"}, - {file = "cffi-1.15.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5ef34d190326c3b1f822a5b7a45f6c4535e2f47ed06fec77d3d799c450b2651e"}, - {file = "cffi-1.15.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8102eaf27e1e448db915d08afa8b41d6c7ca7a04b7d73af6514df10a3e74bd82"}, - {file = "cffi-1.15.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5df2768244d19ab7f60546d0c7c63ce1581f7af8b5de3eb3004b9b6fc8a9f84b"}, - {file = "cffi-1.15.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a8c4917bd7ad33e8eb21e9a5bbba979b49d9a97acb3a803092cbc1133e20343c"}, - {file = "cffi-1.15.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0e2642fe3142e4cc4af0799748233ad6da94c62a8bec3a6648bf8ee68b1c7426"}, - {file = "cffi-1.15.1-cp37-cp37m-win32.whl", hash = "sha256:e229a521186c75c8ad9490854fd8bbdd9a0c9aa3a524326b55be83b54d4e0ad9"}, - {file = "cffi-1.15.1-cp37-cp37m-win_amd64.whl", hash = "sha256:a0b71b1b8fbf2b96e41c4d990244165e2c9be83d54962a9a1d118fd8657d2045"}, - {file = "cffi-1.15.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:320dab6e7cb2eacdf0e658569d2575c4dad258c0fcc794f46215e1e39f90f2c3"}, - {file = "cffi-1.15.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1e74c6b51a9ed6589199c787bf5f9875612ca4a8a0785fb2d4a84429badaf22a"}, - {file = "cffi-1.15.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5c84c68147988265e60416b57fc83425a78058853509c1b0629c180094904a5"}, - {file = "cffi-1.15.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3b926aa83d1edb5aa5b427b4053dc420ec295a08e40911296b9eb1b6170f6cca"}, - {file = "cffi-1.15.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:87c450779d0914f2861b8526e035c5e6da0a3199d8f1add1a665e1cbc6fc6d02"}, - {file = "cffi-1.15.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4f2c9f67e9821cad2e5f480bc8d83b8742896f1242dba247911072d4fa94c192"}, - {file = "cffi-1.15.1-cp38-cp38-win32.whl", hash = "sha256:8b7ee99e510d7b66cdb6c593f21c043c248537a32e0bedf02e01e9553a172314"}, - {file = "cffi-1.15.1-cp38-cp38-win_amd64.whl", hash = "sha256:00a9ed42e88df81ffae7a8ab6d9356b371399b91dbdf0c3cb1e84c03a13aceb5"}, - {file = "cffi-1.15.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:54a2db7b78338edd780e7ef7f9f6c442500fb0d41a5a4ea24fff1c929d5af585"}, - {file = "cffi-1.15.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:fcd131dd944808b5bdb38e6f5b53013c5aa4f334c5cad0c72742f6eba4b73db0"}, - {file = "cffi-1.15.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7473e861101c9e72452f9bf8acb984947aa1661a7704553a9f6e4baa5ba64415"}, - {file = "cffi-1.15.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6c9a799e985904922a4d207a94eae35c78ebae90e128f0c4e521ce339396be9d"}, - {file = "cffi-1.15.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3bcde07039e586f91b45c88f8583ea7cf7a0770df3a1649627bf598332cb6984"}, - {file = "cffi-1.15.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:33ab79603146aace82c2427da5ca6e58f2b3f2fb5da893ceac0c42218a40be35"}, - {file = "cffi-1.15.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5d598b938678ebf3c67377cdd45e09d431369c3b1a5b331058c338e201f12b27"}, - {file = "cffi-1.15.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:db0fbb9c62743ce59a9ff687eb5f4afbe77e5e8403d6697f7446e5f609976f76"}, - {file = "cffi-1.15.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:98d85c6a2bef81588d9227dde12db8a7f47f639f4a17c9ae08e773aa9c697bf3"}, - {file = "cffi-1.15.1-cp39-cp39-win32.whl", hash = "sha256:40f4774f5a9d4f5e344f31a32b5096977b5d48560c5592e2f3d2c4374bd543ee"}, - {file = "cffi-1.15.1-cp39-cp39-win_amd64.whl", hash = "sha256:70df4e3b545a17496c9b3f41f5115e69a4f2e77e94e1d2a8e1070bc0c38c8a3c"}, - {file = "cffi-1.15.1.tar.gz", hash = "sha256:d400bfb9a37b1351253cb402671cea7e89bdecc294e8016a707f6d1d8ac934f9"}, -] +cffi = [] charset-normalizer = [ {file = "charset-normalizer-2.1.1.tar.gz", hash = "sha256:5a3d016c7c547f69d6f81fb0db9449ce888b418b5b9952cc5e6e66843e9dd845"}, {file = "charset_normalizer-2.1.1-py3-none-any.whl", hash = "sha256:83e9a75d1911279afd89352c68b45348559d1fc0506b054b346651b5e7fee29f"}, ] -click = [ - {file = "click-8.0.4-py3-none-any.whl", hash = "sha256:6a7a62563bbfabfda3a38f3023a1db4a35978c0abd76f6c9605ecd6554d6d9b1"}, - {file = "click-8.0.4.tar.gz", hash = "sha256:8458d7b1287c5fb128c90e23381cf99dcde74beaf6c7ff6384ce84d6fe090adb"}, -] -cliff = [ - {file = "cliff-3.10.1-py3-none-any.whl", hash = "sha256:a21da482714b9f0b0e9bafaaf2f6a8b3b14161bb47f62e10e28d2fe4ff4b1626"}, - {file = "cliff-3.10.1.tar.gz", hash = "sha256:045aee3f3c64471965d7ad507ce8474a4e2f20815fbb5405a770f8596a2a00a0"}, -] +click = [] +cliff = [] cmaes = [ {file = "cmaes-0.8.2-py3-none-any.whl", hash = "sha256:9c4127be8942da3ac6857a7564d18a4a655462d77aa2d551a8e88063b23e0699"}, {file = "cmaes-0.8.2.tar.gz", hash = "sha256:1c04ba23ded925ef13b96f42cfbd667a905ea5b80754c750e6448b9fcda96a5d"}, ] -cmd2 = [ - {file = "cmd2-2.4.2-py3-none-any.whl", hash = "sha256:a77e3056751393270b4125c990cf527db132f15951a20a3a5dd2df4290aadf20"}, - {file = "cmd2-2.4.2.tar.gz", hash = "sha256:073e555c05853b0f6965f3d03329babdf9e38a5f2cea028e61a64cd7eeb74ad5"}, -] +cmd2 = [] cmdstanpy = [ {file = "cmdstanpy-1.0.7-py3-none-any.whl", hash = "sha256:590c7babe711aff7bd9ad6fe6c4a3f92da425258448262491c019afc789e1107"}, {file = "cmdstanpy-1.0.7.tar.gz", hash = "sha256:032cdba9f54aba9e292e5fc980372834a162e6d7b841f3bb28ab77a4235ee0df"}, @@ -3588,18 +3421,12 @@ codespell = [ {file = "codespell-2.2.2-py3-none-any.whl", hash = "sha256:87dfcd9bdc9b3cb8b067b37f0af22044d7a84e28174adfc8eaa203056b7f9ecc"}, {file = "codespell-2.2.2.tar.gz", hash = "sha256:c4d00c02b5a2a55661f00d5b4b3b5a710fa803ced9a9d7e45438268b099c319c"}, ] -colorama = [ - {file = "colorama-0.4.5-py2.py3-none-any.whl", hash = "sha256:854bf444933e37f5824ae7bfc1e98d5bce2ebe4160d46b5edf346a89358e99da"}, - {file = "colorama-0.4.5.tar.gz", hash = "sha256:e6c6b4334fc50988a639d9b98aa429a0b57da6e17b9a44f0451f930b6967b7a4"}, -] +colorama = [] colorlog = [ {file = "colorlog-6.7.0-py2.py3-none-any.whl", hash = "sha256:0d33ca236784a1ba3ff9c532d4964126d8a2c44f1f0cb1d2b0728196f512f662"}, {file = "colorlog-6.7.0.tar.gz", hash = "sha256:bd94bd21c1e13fac7bd3153f4bc3a7dc0eb0974b8bc2fdf1a989e474f6e582e5"}, ] -convertdate = [ - {file = "convertdate-2.4.0-py3-none-any.whl", hash = "sha256:fcffe3a67522172648cf03b0c3757cfd079726fe5ae04ce29989ad3958039e4e"}, - {file = "convertdate-2.4.0.tar.gz", hash = "sha256:770c6b2195544d3e451e230b3f1c9b121ed02680b877f896306a04cf6f26b48f"}, -] +convertdate = [] coverage = [ {file = "coverage-5.5-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:b6d534e4b2ab35c9f93f46229363e17f63c53ad01330df9f2d6bd1187e5eaacf"}, {file = "coverage-5.5-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:b7895207b4c843c76a25ab8c1e866261bcfe27bfaa20c192de5190121770672b"}, @@ -3720,22 +3547,13 @@ debugpy = [ {file = "debugpy-1.6.3-py2.py3-none-any.whl", hash = "sha256:84c39940a0cac410bf6aa4db00ba174f973eef521fbe9dd058e26bcabad89c4f"}, {file = "debugpy-1.6.3.zip", hash = "sha256:e8922090514a890eec99cfb991bab872dd2e353ebb793164d5f01c362b9a40bf"}, ] -decorator = [ - {file = "decorator-5.1.1-py3-none-any.whl", hash = "sha256:b8c3f85900b9dc423225913c5aace94729fe1fa9763b38939a95226f02d37186"}, - {file = "decorator-5.1.1.tar.gz", hash = "sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330"}, -] +decorator = [] defusedxml = [ {file = "defusedxml-0.7.1-py2.py3-none-any.whl", hash = "sha256:a352e7e428770286cc899e2542b6cdaedb2b4953ff269a210103ec58f6198a61"}, {file = "defusedxml-0.7.1.tar.gz", hash = "sha256:1bb3032db185915b62d7c6209c5a8792be6a32ab2fedacc84e01b52c51aa3e69"}, ] -deprecated = [ - {file = "Deprecated-1.2.13-py2.py3-none-any.whl", hash = "sha256:64756e3e14c8c5eea9795d93c524551432a0be75629f8f29e67ab8caf076c76d"}, - {file = "Deprecated-1.2.13.tar.gz", hash = "sha256:43ac5335da90c31c24ba028af536a91d41d53f9e6901ddb021bcc572ce44e38d"}, -] -dill = [ - {file = "dill-0.3.5.1-py2.py3-none-any.whl", hash = "sha256:33501d03270bbe410c72639b350e941882a8b0fd55357580fbc873fba0c59302"}, - {file = "dill-0.3.5.1.tar.gz", hash = "sha256:d75e41f3eff1eee599d738e76ba8f4ad98ea229db8b085318aa2b3333a208c86"}, -] +deprecated = [] +dill = [] docker-pycreds = [ {file = "docker-pycreds-0.4.0.tar.gz", hash = "sha256:6ce3270bcaf404cc4c3e27e4b6c70d3521deae82fb508767870fdbf772d584d4"}, {file = "docker_pycreds-0.4.0-py2.py3-none-any.whl", hash = "sha256:7266112468627868005106ec19cd0d722702d2b7d5912a28e19b826c3d37af49"}, @@ -3744,10 +3562,7 @@ docutils = [ {file = "docutils-0.16-py2.py3-none-any.whl", hash = "sha256:0c5b78adfbf7762415433f5515cd5c9e762339e23369dbe8000d84a4bf4ab3af"}, {file = "docutils-0.16.tar.gz", hash = "sha256:c2de3a60e9e7d07be26b7f2b00ca0309c207e06c100f9cc2a94931fc75a478fc"}, ] -entrypoints = [ - {file = "entrypoints-0.4-py3-none-any.whl", hash = "sha256:f174b5ff827504fd3cd97cc3f8649f3693f51538c7e4bdf3ef002c8429d42f9f"}, - {file = "entrypoints-0.4.tar.gz", hash = "sha256:b706eddaa9218a19ebcd67b56818f05bb27589b1ca9e8d797b74affad4ccacd4"}, -] +entrypoints = [] ephem = [ {file = "ephem-4.1.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0dc6e240cacd65820ec39687233d7de1cfd1ff3bf83fd62337831c201cd80d47"}, {file = "ephem-4.1.3-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:cf65bfd4753f2aacf5caa1c5b8bcba276b03cb59f13e9f2d9850c93efaf47fa7"}, @@ -3818,10 +3633,7 @@ flake8-bugbear = [ {file = "flake8-bugbear-22.9.23.tar.gz", hash = "sha256:17b9623325e6e0dcdcc80ed9e4aa811287fcc81d7e03313b8736ea5733759937"}, {file = "flake8_bugbear-22.9.23-py3-none-any.whl", hash = "sha256:cd2779b2b7ada212d7a322814a1e5651f1868ab0d3f24cc9da66169ab8fda474"}, ] -flake8-comprehensions = [ - {file = "flake8-comprehensions-3.10.0.tar.gz", hash = "sha256:181158f7e7aa26a63a0a38e6017cef28c6adee71278ce56ce11f6ec9c4905058"}, - {file = "flake8_comprehensions-3.10.0-py3-none-any.whl", hash = "sha256:dad454fd3d525039121e98fa1dd90c46bc138708196a4ebbc949ad3c859adedb"}, -] +flake8-comprehensions = [] flake8-docstrings = [ {file = "flake8-docstrings-1.6.0.tar.gz", hash = "sha256:9fe7c6a306064af8e62a055c2f61e9eb1da55f84bb39caef2b84ce53708ac34b"}, {file = "flake8_docstrings-1.6.0-py2.py3-none-any.whl", hash = "sha256:99cac583d6c7e32dd28bbfbef120a7c0d1b6dde4adb5a9fd441c4227a6534bde"}, @@ -3896,8 +3708,8 @@ frozenlist = [ {file = "frozenlist-1.3.1.tar.gz", hash = "sha256:3a735e4211a04ccfa3f4833547acdf5d2f863bfeb01cfd3edaffbc251f15cec8"}, ] fsspec = [ - {file = "fsspec-2022.8.2-py3-none-any.whl", hash = "sha256:6374804a2c0d24f225a67d009ee1eabb4046ad00c793c3f6df97e426c890a1d9"}, - {file = "fsspec-2022.8.2.tar.gz", hash = "sha256:7f12b90964a98a7e921d27fb36be536ea036b73bf3b724ac0b0bd7b8e39c7c18"}, + {file = "fsspec-2022.11.0-py3-none-any.whl", hash = "sha256:d6e462003e3dcdcb8c7aa84c73a228f8227e72453cd22570e2363e8844edfe7b"}, + {file = "fsspec-2022.11.0.tar.gz", hash = "sha256:259d5fd5c8e756ff2ea72f42e7613c32667dc2049a4ac3d84364a7ca034acb8b"}, ] gitdb = [ {file = "gitdb-4.0.9-py3-none-any.whl", hash = "sha256:8033ad4e853066ba6ca92050b9df2f89301b8fc8bf7e9324d412a63f8bf1a8fd"}, @@ -4034,14 +3846,8 @@ grpcio = [ {file = "grpcio-1.49.1-cp39-cp39-win_amd64.whl", hash = "sha256:274ffbb39717918c514b35176510ae9be06e1d93121e84d50b350861dcb9a705"}, {file = "grpcio-1.49.1.tar.gz", hash = "sha256:d4725fc9ec8e8822906ae26bb26f5546891aa7fbc3443de970cc556d43a5c99f"}, ] -hijri-converter = [ - {file = "hijri-converter-2.2.4.tar.gz", hash = "sha256:9e1d9fa4c220f6867da2abb1a96240675ae974abba951c686a781f4ef6ac218f"}, - {file = "hijri_converter-2.2.4-py3-none-any.whl", hash = "sha256:5ed4f4c284626e3916cd770e09346d5cc319e2a7762c22357838864908fd6e6d"}, -] -holidays = [ - {file = "holidays-0.13-py3-none-any.whl", hash = "sha256:ca944d20762f027770ceae2f21d037f959c9b206afe92db97161ce78538c275e"}, - {file = "holidays-0.13.tar.gz", hash = "sha256:c6f7c3ab8ada94806702da931d94d37cd61bcfa92cb4d39d351b6a9c5210675c"}, -] +hijri-converter = [] +holidays = [] hydra-slayer = [ {file = "hydra-slayer-0.2.0.tar.gz", hash = "sha256:6eeceae6fa3e3078462b7fc2e186274918c910004f082abe7fe334d0e8f26a3c"}, {file = "hydra_slayer-0.2.0-py3-none-any.whl", hash = "sha256:b21dee230df654c87fc5c1c87400ee68b8f1082d8341b0aed2c050792121854c"}, @@ -4050,10 +3856,7 @@ idna = [ {file = "idna-3.4-py3-none-any.whl", hash = "sha256:90b77e79eaa3eba6de819a0c442c0b4ceefc341a7a2ab77d7562bf49f425c5c2"}, {file = "idna-3.4.tar.gz", hash = "sha256:814f528e8dead7d329833b91c5faa87d60bf71824cd12a7530b5526063d02cb4"}, ] -imagesize = [ - {file = "imagesize-1.4.1-py2.py3-none-any.whl", hash = "sha256:0d8d18d08f840c19d0ee7ca1fd82490fdc3729b7ac93f49870406ddde8ef8d8b"}, - {file = "imagesize-1.4.1.tar.gz", hash = "sha256:69150444affb9cb0d5cc5a92b3676f0b2fb7cd9ae39e947a5e11a36b4497cd4a"}, -] +imagesize = [] importlib-metadata = [ {file = "importlib_metadata-5.0.0-py3-none-any.whl", hash = "sha256:ddb0e35065e8938f867ed4928d0ae5bf2a53b7773871bfe6bcc7e4fcdc7dea43"}, {file = "importlib_metadata-5.0.0.tar.gz", hash = "sha256:da31db32b304314d044d3c12c79bd59e307889b287ad12ff387b3500835fc2ab"}, @@ -4070,10 +3873,7 @@ ipykernel = [ {file = "ipykernel-6.16.0-py3-none-any.whl", hash = "sha256:d3d95241cd4dd302fea9d5747b00509b58997356d1f6333c9a074c3eccb78cb3"}, {file = "ipykernel-6.16.0.tar.gz", hash = "sha256:7fe42c0d58435e971dc15fd42189f20d66bf35f3056bda4f6554271bc1fa3d0d"}, ] -ipython = [ - {file = "ipython-7.34.0-py3-none-any.whl", hash = "sha256:c175d2440a1caff76116eb719d40538fbb316e214eda85c5515c303aacbfb23e"}, - {file = "ipython-7.34.0.tar.gz", hash = "sha256:af3bdb46aa292bce5615b1b2ebc76c2080c5f77f54bda2ec72461317273e7cd6"}, -] +ipython = [] ipython-genutils = [ {file = "ipython_genutils-0.2.0-py2.py3-none-any.whl", hash = "sha256:72dd37233799e619666c9f639a9da83c34013a73e8bbc79a7a6348d93c61fab8"}, {file = "ipython_genutils-0.2.0.tar.gz", hash = "sha256:eb2e116e75ecef9d4d228fdc66af54269afa26ab4463042e33785b887c628ba8"}, @@ -4090,14 +3890,8 @@ jedi = [ {file = "jedi-0.18.1-py2.py3-none-any.whl", hash = "sha256:637c9635fcf47945ceb91cd7f320234a7be540ded6f3e99a50cb6febdfd1ba8d"}, {file = "jedi-0.18.1.tar.gz", hash = "sha256:74137626a64a99c8eb6ae5832d99b3bdd7d29a3850fe2aa80a4126b2a7d949ab"}, ] -jinja2 = [ - {file = "Jinja2-3.1.2-py3-none-any.whl", hash = "sha256:6088930bfe239f0e6710546ab9c19c9ef35e29792895fed6e6e31a023a182a61"}, - {file = "Jinja2-3.1.2.tar.gz", hash = "sha256:31351a702a408a9e7595a8fc6150fc3f43bb6bf7e319770cbc0db9df9437e852"}, -] -jmespath = [ - {file = "jmespath-1.0.1-py3-none-any.whl", hash = "sha256:02e2e4cc71b5bcab88332eebf907519190dd9e6e82107fa7f83b1003a6252980"}, - {file = "jmespath-1.0.1.tar.gz", hash = "sha256:90261b206d6defd58fdd5e85f478bf633a2901798906be2ad389150c5c60edbe"}, -] +jinja2 = [] +jmespath = [] joblib = [ {file = "joblib-1.2.0-py3-none-any.whl", hash = "sha256:091138ed78f800342968c523bdde947e7a305b8594b910a0fea2ab83c3c6d385"}, {file = "joblib-1.2.0.tar.gz", hash = "sha256:e1cee4a79e4af22881164f218d4311f60074197fb707e082e803b61f6d137018"}, @@ -4115,26 +3909,14 @@ jupyter-client = [ {file = "jupyter_client-7.4.2-py3-none-any.whl", hash = "sha256:f8929321204d3f0b446401cfadc04ed8226e77002a9e379416df8c252607f695"}, {file = "jupyter_client-7.4.2.tar.gz", hash = "sha256:b91a9a7b91ac69adf170d98c87917320f6b466e1c5e89b300226ef4047193376"}, ] -jupyter-console = [ - {file = "jupyter_console-6.4.4-py3-none-any.whl", hash = "sha256:756df7f4f60c986e7bc0172e4493d3830a7e6e75c08750bbe59c0a5403ad6dee"}, - {file = "jupyter_console-6.4.4.tar.gz", hash = "sha256:172f5335e31d600df61613a97b7f0352f2c8250bbd1092ef2d658f77249f89fb"}, -] -jupyter-core = [ - {file = "jupyter_core-4.11.1-py3-none-any.whl", hash = "sha256:715e22bb6cc7db3718fddfac1f69f1c7e899ca00e42bdfd4bf3705452b9fd84a"}, - {file = "jupyter_core-4.11.1.tar.gz", hash = "sha256:2e5f244d44894c4154d06aeae3419dd7f1b0ef4494dc5584929b398c61cfd314"}, -] +jupyter-console = [] +jupyter-core = [] jupyter-server = [ {file = "jupyter_server-1.21.0-py3-none-any.whl", hash = "sha256:992531008544d77e05a16251cdfbd0bdff1b1efa14760c79b9cc776ac9214cf1"}, {file = "jupyter_server-1.21.0.tar.gz", hash = "sha256:d0adca19913a3763359be7f0b8c2ea8bfde356f4b8edd8e3149d7d0fbfaa248b"}, ] -jupyterlab-pygments = [ - {file = "jupyterlab_pygments-0.2.2-py2.py3-none-any.whl", hash = "sha256:2405800db07c9f770863bcf8049a529c3dd4d3e28536638bd7c1c01d2748309f"}, - {file = "jupyterlab_pygments-0.2.2.tar.gz", hash = "sha256:7405d7fde60819d905a9fa8ce89e4cd830e318cdad22a0030f7a901da705585d"}, -] -jupyterlab-widgets = [ - {file = "jupyterlab_widgets-1.1.1-py3-none-any.whl", hash = "sha256:90ab47d99da03a3697074acb23b2975ead1d6171aa41cb2812041a7f2a08177a"}, - {file = "jupyterlab_widgets-1.1.1.tar.gz", hash = "sha256:67d0ef1e407e0c42c8ab60b9d901cd7a4c68923650763f75bf17fb06c1943b79"}, -] +jupyterlab-pygments = [] +jupyterlab-widgets = [] kiwisolver = [ {file = "kiwisolver-1.4.4-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:2f5e60fabb7343a836360c4f0919b8cd0d6dbf08ad2ca6b9cf90bf0c76a3c4f6"}, {file = "kiwisolver-1.4.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:10ee06759482c78bdb864f4109886dff7b8a56529bc1609d4f1112b93fe6423c"}, @@ -4209,36 +3991,7 @@ korean-lunar-calendar = [ {file = "korean_lunar_calendar-0.3.1-py3-none-any.whl", hash = "sha256:392757135c492c4f42a604e6038042953c35c6f449dda5f27e3f86a7f9c943e5"}, {file = "korean_lunar_calendar-0.3.1.tar.gz", hash = "sha256:eb2c485124a061016926bdea6d89efdf9b9fdbf16db55895b6cf1e5bec17b857"}, ] -llvmlite = [ - {file = "llvmlite-0.38.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a7dd2bd1d6406e7789273e3f8a304ed5d9adcfaa5768052fca7dc233a857be98"}, - {file = "llvmlite-0.38.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:7a5e0ed215a576f0f872f47a70b8cb49864e0aefc8586aff5ce83e3bff47bc23"}, - {file = "llvmlite-0.38.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:633c9026eb43b9903cc4ffbc1c7d5293b2e3ad95d06fa9eab0f6ce6ff6ea15b3"}, - {file = "llvmlite-0.38.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b98da8436dbc29013ea301f1fdb0d596ab53bf0ab65c976d96d00bb6faa0b479"}, - {file = "llvmlite-0.38.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0c0adce1793d66d009c554809f27baeb6258bf13f6fbaa12eff7443500caec25"}, - {file = "llvmlite-0.38.1-cp310-cp310-win32.whl", hash = "sha256:8c64c90a8b0b7b7e1ed1912ba82c1a3f43cf25affbe06aa3c56c84050edee8ac"}, - {file = "llvmlite-0.38.1-cp310-cp310-win_amd64.whl", hash = "sha256:ab070266f0f51304789a6c20d4be91a9e69683ad9bd4861eb89980e8eb613b3a"}, - {file = "llvmlite-0.38.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:ed7528b8b85de930b76407e44b080e4f376b7a007c2879749599ff8e2fe32753"}, - {file = "llvmlite-0.38.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7db018da2863034ad9c73c946625637f3a89635bc70576068bab4bd085eea90d"}, - {file = "llvmlite-0.38.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4c1e5805c92e049b4956ed01204c6647de6160ab9aefb0d67ea83ca02a1d889a"}, - {file = "llvmlite-0.38.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5559e46c79b4017c3c25edc3b9512d11adc3689b9046120c685b0905c08d48a5"}, - {file = "llvmlite-0.38.1-cp37-cp37m-win32.whl", hash = "sha256:ef9aa574eff2e15f8c47b255da0db5dab326dc7f76384c307ae35490e2d2489a"}, - {file = "llvmlite-0.38.1-cp37-cp37m-win_amd64.whl", hash = "sha256:84d5a0163c172db2b2ae561d2fc0866fbd9f716cf13f92c0d41ca4338e682672"}, - {file = "llvmlite-0.38.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:a263252a68d85450110ec1f2b406c0414e49b04a4d216d31c0515ea1d59c3882"}, - {file = "llvmlite-0.38.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:de8bd61480173930f2a029673e7cd0738fbbb5171dfe490340839ad7301d4cf0"}, - {file = "llvmlite-0.38.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fbfbe546394c39db39a6898a51972aa131c8d6b0628517728b350552f58bdc19"}, - {file = "llvmlite-0.38.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8c4f26c6c370e134a909ac555a671fa1376e74c69af0208f25c0979472577a9d"}, - {file = "llvmlite-0.38.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f95f455697c44d7c04ef95fdfce04629f48df08a832d0a0d9eb2363186dbb969"}, - {file = "llvmlite-0.38.1-cp38-cp38-win32.whl", hash = "sha256:41e638a71c85a9a4a33f279c4cd812bc2f84122505b1f6ab8984ec7debb8548b"}, - {file = "llvmlite-0.38.1-cp38-cp38-win_amd64.whl", hash = "sha256:5c07d63df4578f31b39b764d3b4291f70157af7f42e171a8884ae7aaf989d1f7"}, - {file = "llvmlite-0.38.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4e11bd9929dcbd55d5eb5cd7b08bf71b0097ea48cc192b69d102a90dd6e9816f"}, - {file = "llvmlite-0.38.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:edfa2c761cfa56cf76e783290d82e117f829bb691d8d90aa375505204888abac"}, - {file = "llvmlite-0.38.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0e609f7312a439b53b6f622d99180c3ff6a3e1e4ceca4d18aca1c5b46f4e3664"}, - {file = "llvmlite-0.38.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9f53c3448410cc84d0e1af84dbc0d60ad32779853d40bcc8b1ee3c67ebbe94b1"}, - {file = "llvmlite-0.38.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9c8fac4edbadefa4dddf5dc6cca76bc2ae81df211dcd16a6638d60cc41249e56"}, - {file = "llvmlite-0.38.1-cp39-cp39-win32.whl", hash = "sha256:3d76c0fa42390bef56979ed213fbf0150c3fef36f5ea68d3d780d5d725da8c01"}, - {file = "llvmlite-0.38.1-cp39-cp39-win_amd64.whl", hash = "sha256:66462d768c30d5f648ca3361d657b434efa8b09f6cf04d6b6eae66e62e993644"}, - {file = "llvmlite-0.38.1.tar.gz", hash = "sha256:0622a86301fcf81cc50d7ed5b4bebe992c030580d413a8443b328ed4f4d82561"}, -] +llvmlite = [] loguru = [ {file = "loguru-0.5.3-py3-none-any.whl", hash = "sha256:f8087ac396b5ee5f67c963b495d615ebbceac2796379599820e324419d53667c"}, {file = "loguru-0.5.3.tar.gz", hash = "sha256:b28e72ac7a98be3d28ad28570299a393dfcd32e5e3f6a353dec94675767b6319"}, @@ -4259,48 +4012,7 @@ markdown-it-py = [ {file = "markdown-it-py-1.1.0.tar.gz", hash = "sha256:36be6bb3ad987bfdb839f5ba78ddf094552ca38ccbd784ae4f74a4e1419fc6e3"}, {file = "markdown_it_py-1.1.0-py3-none-any.whl", hash = "sha256:98080fc0bc34c4f2bcf0846a096a9429acbd9d5d8e67ed34026c03c61c464389"}, ] -markupsafe = [ - {file = "MarkupSafe-2.1.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:86b1f75c4e7c2ac2ccdaec2b9022845dbb81880ca318bb7a0a01fbf7813e3812"}, - {file = "MarkupSafe-2.1.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:f121a1420d4e173a5d96e47e9a0c0dcff965afdf1626d28de1460815f7c4ee7a"}, - {file = "MarkupSafe-2.1.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a49907dd8420c5685cfa064a1335b6754b74541bbb3706c259c02ed65b644b3e"}, - {file = "MarkupSafe-2.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:10c1bfff05d95783da83491be968e8fe789263689c02724e0c691933c52994f5"}, - {file = "MarkupSafe-2.1.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b7bd98b796e2b6553da7225aeb61f447f80a1ca64f41d83612e6139ca5213aa4"}, - {file = "MarkupSafe-2.1.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:b09bf97215625a311f669476f44b8b318b075847b49316d3e28c08e41a7a573f"}, - {file = "MarkupSafe-2.1.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:694deca8d702d5db21ec83983ce0bb4b26a578e71fbdbd4fdcd387daa90e4d5e"}, - {file = "MarkupSafe-2.1.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:efc1913fd2ca4f334418481c7e595c00aad186563bbc1ec76067848c7ca0a933"}, - {file = "MarkupSafe-2.1.1-cp310-cp310-win32.whl", hash = "sha256:4a33dea2b688b3190ee12bd7cfa29d39c9ed176bda40bfa11099a3ce5d3a7ac6"}, - {file = "MarkupSafe-2.1.1-cp310-cp310-win_amd64.whl", hash = "sha256:dda30ba7e87fbbb7eab1ec9f58678558fd9a6b8b853530e176eabd064da81417"}, - {file = "MarkupSafe-2.1.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:671cd1187ed5e62818414afe79ed29da836dde67166a9fac6d435873c44fdd02"}, - {file = "MarkupSafe-2.1.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3799351e2336dc91ea70b034983ee71cf2f9533cdff7c14c90ea126bfd95d65a"}, - {file = "MarkupSafe-2.1.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e72591e9ecd94d7feb70c1cbd7be7b3ebea3f548870aa91e2732960fa4d57a37"}, - {file = "MarkupSafe-2.1.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6fbf47b5d3728c6aea2abb0589b5d30459e369baa772e0f37a0320185e87c980"}, - {file = "MarkupSafe-2.1.1-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:d5ee4f386140395a2c818d149221149c54849dfcfcb9f1debfe07a8b8bd63f9a"}, - {file = "MarkupSafe-2.1.1-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:bcb3ed405ed3222f9904899563d6fc492ff75cce56cba05e32eff40e6acbeaa3"}, - {file = "MarkupSafe-2.1.1-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:e1c0b87e09fa55a220f058d1d49d3fb8df88fbfab58558f1198e08c1e1de842a"}, - {file = "MarkupSafe-2.1.1-cp37-cp37m-win32.whl", hash = "sha256:8dc1c72a69aa7e082593c4a203dcf94ddb74bb5c8a731e4e1eb68d031e8498ff"}, - {file = "MarkupSafe-2.1.1-cp37-cp37m-win_amd64.whl", hash = "sha256:97a68e6ada378df82bc9f16b800ab77cbf4b2fada0081794318520138c088e4a"}, - {file = "MarkupSafe-2.1.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:e8c843bbcda3a2f1e3c2ab25913c80a3c5376cd00c6e8c4a86a89a28c8dc5452"}, - {file = "MarkupSafe-2.1.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:0212a68688482dc52b2d45013df70d169f542b7394fc744c02a57374a4207003"}, - {file = "MarkupSafe-2.1.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8e576a51ad59e4bfaac456023a78f6b5e6e7651dcd383bcc3e18d06f9b55d6d1"}, - {file = "MarkupSafe-2.1.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4b9fe39a2ccc108a4accc2676e77da025ce383c108593d65cc909add5c3bd601"}, - {file = "MarkupSafe-2.1.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:96e37a3dc86e80bf81758c152fe66dbf60ed5eca3d26305edf01892257049925"}, - {file = "MarkupSafe-2.1.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:6d0072fea50feec76a4c418096652f2c3238eaa014b2f94aeb1d56a66b41403f"}, - {file = "MarkupSafe-2.1.1-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:089cf3dbf0cd6c100f02945abeb18484bd1ee57a079aefd52cffd17fba910b88"}, - {file = "MarkupSafe-2.1.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:6a074d34ee7a5ce3effbc526b7083ec9731bb3cbf921bbe1d3005d4d2bdb3a63"}, - {file = "MarkupSafe-2.1.1-cp38-cp38-win32.whl", hash = "sha256:421be9fbf0ffe9ffd7a378aafebbf6f4602d564d34be190fc19a193232fd12b1"}, - {file = "MarkupSafe-2.1.1-cp38-cp38-win_amd64.whl", hash = "sha256:fc7b548b17d238737688817ab67deebb30e8073c95749d55538ed473130ec0c7"}, - {file = "MarkupSafe-2.1.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:e04e26803c9c3851c931eac40c695602c6295b8d432cbe78609649ad9bd2da8a"}, - {file = "MarkupSafe-2.1.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b87db4360013327109564f0e591bd2a3b318547bcef31b468a92ee504d07ae4f"}, - {file = "MarkupSafe-2.1.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:99a2a507ed3ac881b975a2976d59f38c19386d128e7a9a18b7df6fff1fd4c1d6"}, - {file = "MarkupSafe-2.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:56442863ed2b06d19c37f94d999035e15ee982988920e12a5b4ba29b62ad1f77"}, - {file = "MarkupSafe-2.1.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3ce11ee3f23f79dbd06fb3d63e2f6af7b12db1d46932fe7bd8afa259a5996603"}, - {file = "MarkupSafe-2.1.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:33b74d289bd2f5e527beadcaa3f401e0df0a89927c1559c8566c066fa4248ab7"}, - {file = "MarkupSafe-2.1.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:43093fb83d8343aac0b1baa75516da6092f58f41200907ef92448ecab8825135"}, - {file = "MarkupSafe-2.1.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:8e3dcf21f367459434c18e71b2a9532d96547aef8a871872a5bd69a715c15f96"}, - {file = "MarkupSafe-2.1.1-cp39-cp39-win32.whl", hash = "sha256:d4306c36ca495956b6d568d276ac11fdd9c30a36f1b6eb928070dc5360b22e1c"}, - {file = "MarkupSafe-2.1.1-cp39-cp39-win_amd64.whl", hash = "sha256:46d00d6cfecdde84d40e572d63735ef81423ad31184100411e6e3388d405e247"}, - {file = "MarkupSafe-2.1.1.tar.gz", hash = "sha256:7f91197cc9e48f989d12e4e6fbc46495c446636dfc81b9ccf50bb0ec74b91d4b"}, -] +markupsafe = [] matplotlib = [ {file = "matplotlib-3.5.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:a206a1b762b39398efea838f528b3a6d60cdb26fe9d58b48265787e29cd1d693"}, {file = "matplotlib-3.5.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:cd45a6f3e93a780185f70f05cf2a383daed13c3489233faad83e81720f7ede24"}, @@ -4354,67 +4066,7 @@ mistune = [ {file = "mistune-2.0.4-py2.py3-none-any.whl", hash = "sha256:182cc5ee6f8ed1b807de6b7bb50155df7b66495412836b9a74c8fbdfc75fe36d"}, {file = "mistune-2.0.4.tar.gz", hash = "sha256:9ee0a66053e2267aba772c71e06891fa8f1af6d4b01d5e84e267b4570d4d9808"}, ] -multidict = [ - {file = "multidict-6.0.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:0b9e95a740109c6047602f4db4da9949e6c5945cefbad34a1299775ddc9a62e2"}, - {file = "multidict-6.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:ac0e27844758d7177989ce406acc6a83c16ed4524ebc363c1f748cba184d89d3"}, - {file = "multidict-6.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:041b81a5f6b38244b34dc18c7b6aba91f9cdaf854d9a39e5ff0b58e2b5773b9c"}, - {file = "multidict-6.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5fdda29a3c7e76a064f2477c9aab1ba96fd94e02e386f1e665bca1807fc5386f"}, - {file = "multidict-6.0.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3368bf2398b0e0fcbf46d85795adc4c259299fec50c1416d0f77c0a843a3eed9"}, - {file = "multidict-6.0.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f4f052ee022928d34fe1f4d2bc743f32609fb79ed9c49a1710a5ad6b2198db20"}, - {file = "multidict-6.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:225383a6603c086e6cef0f2f05564acb4f4d5f019a4e3e983f572b8530f70c88"}, - {file = "multidict-6.0.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:50bd442726e288e884f7be9071016c15a8742eb689a593a0cac49ea093eef0a7"}, - {file = "multidict-6.0.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:47e6a7e923e9cada7c139531feac59448f1f47727a79076c0b1ee80274cd8eee"}, - {file = "multidict-6.0.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:0556a1d4ea2d949efe5fd76a09b4a82e3a4a30700553a6725535098d8d9fb672"}, - {file = "multidict-6.0.2-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:626fe10ac87851f4cffecee161fc6f8f9853f0f6f1035b59337a51d29ff3b4f9"}, - {file = "multidict-6.0.2-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:8064b7c6f0af936a741ea1efd18690bacfbae4078c0c385d7c3f611d11f0cf87"}, - {file = "multidict-6.0.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:2d36e929d7f6a16d4eb11b250719c39560dd70545356365b494249e2186bc389"}, - {file = "multidict-6.0.2-cp310-cp310-win32.whl", hash = "sha256:fcb91630817aa8b9bc4a74023e4198480587269c272c58b3279875ed7235c293"}, - {file = "multidict-6.0.2-cp310-cp310-win_amd64.whl", hash = "sha256:8cbf0132f3de7cc6c6ce00147cc78e6439ea736cee6bca4f068bcf892b0fd658"}, - {file = "multidict-6.0.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:05f6949d6169878a03e607a21e3b862eaf8e356590e8bdae4227eedadacf6e51"}, - {file = "multidict-6.0.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e2c2e459f7050aeb7c1b1276763364884595d47000c1cddb51764c0d8976e608"}, - {file = "multidict-6.0.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d0509e469d48940147e1235d994cd849a8f8195e0bca65f8f5439c56e17872a3"}, - {file = "multidict-6.0.2-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:514fe2b8d750d6cdb4712346a2c5084a80220821a3e91f3f71eec11cf8d28fd4"}, - {file = "multidict-6.0.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:19adcfc2a7197cdc3987044e3f415168fc5dc1f720c932eb1ef4f71a2067e08b"}, - {file = "multidict-6.0.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b9d153e7f1f9ba0b23ad1568b3b9e17301e23b042c23870f9ee0522dc5cc79e8"}, - {file = "multidict-6.0.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:aef9cc3d9c7d63d924adac329c33835e0243b5052a6dfcbf7732a921c6e918ba"}, - {file = "multidict-6.0.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:4571f1beddff25f3e925eea34268422622963cd8dc395bb8778eb28418248e43"}, - {file = "multidict-6.0.2-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:d48b8ee1d4068561ce8033d2c344cf5232cb29ee1a0206a7b828c79cbc5982b8"}, - {file = "multidict-6.0.2-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:45183c96ddf61bf96d2684d9fbaf6f3564d86b34cb125761f9a0ef9e36c1d55b"}, - {file = "multidict-6.0.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:75bdf08716edde767b09e76829db8c1e5ca9d8bb0a8d4bd94ae1eafe3dac5e15"}, - {file = "multidict-6.0.2-cp37-cp37m-win32.whl", hash = "sha256:a45e1135cb07086833ce969555df39149680e5471c04dfd6a915abd2fc3f6dbc"}, - {file = "multidict-6.0.2-cp37-cp37m-win_amd64.whl", hash = "sha256:6f3cdef8a247d1eafa649085812f8a310e728bdf3900ff6c434eafb2d443b23a"}, - {file = "multidict-6.0.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:0327292e745a880459ef71be14e709aaea2f783f3537588fb4ed09b6c01bca60"}, - {file = "multidict-6.0.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:e875b6086e325bab7e680e4316d667fc0e5e174bb5611eb16b3ea121c8951b86"}, - {file = "multidict-6.0.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:feea820722e69451743a3d56ad74948b68bf456984d63c1a92e8347b7b88452d"}, - {file = "multidict-6.0.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9cc57c68cb9139c7cd6fc39f211b02198e69fb90ce4bc4a094cf5fe0d20fd8b0"}, - {file = "multidict-6.0.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:497988d6b6ec6ed6f87030ec03280b696ca47dbf0648045e4e1d28b80346560d"}, - {file = "multidict-6.0.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:89171b2c769e03a953d5969b2f272efa931426355b6c0cb508022976a17fd376"}, - {file = "multidict-6.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:684133b1e1fe91eda8fa7447f137c9490a064c6b7f392aa857bba83a28cfb693"}, - {file = "multidict-6.0.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fd9fc9c4849a07f3635ccffa895d57abce554b467d611a5009ba4f39b78a8849"}, - {file = "multidict-6.0.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:e07c8e79d6e6fd37b42f3250dba122053fddb319e84b55dd3a8d6446e1a7ee49"}, - {file = "multidict-6.0.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:4070613ea2227da2bfb2c35a6041e4371b0af6b0be57f424fe2318b42a748516"}, - {file = "multidict-6.0.2-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:47fbeedbf94bed6547d3aa632075d804867a352d86688c04e606971595460227"}, - {file = "multidict-6.0.2-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:5774d9218d77befa7b70d836004a768fb9aa4fdb53c97498f4d8d3f67bb9cfa9"}, - {file = "multidict-6.0.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:2957489cba47c2539a8eb7ab32ff49101439ccf78eab724c828c1a54ff3ff98d"}, - {file = "multidict-6.0.2-cp38-cp38-win32.whl", hash = "sha256:e5b20e9599ba74391ca0cfbd7b328fcc20976823ba19bc573983a25b32e92b57"}, - {file = "multidict-6.0.2-cp38-cp38-win_amd64.whl", hash = "sha256:8004dca28e15b86d1b1372515f32eb6f814bdf6f00952699bdeb541691091f96"}, - {file = "multidict-6.0.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:2e4a0785b84fb59e43c18a015ffc575ba93f7d1dbd272b4cdad9f5134b8a006c"}, - {file = "multidict-6.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6701bf8a5d03a43375909ac91b6980aea74b0f5402fbe9428fc3f6edf5d9677e"}, - {file = "multidict-6.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a007b1638e148c3cfb6bf0bdc4f82776cef0ac487191d093cdc316905e504071"}, - {file = "multidict-6.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:07a017cfa00c9890011628eab2503bee5872f27144936a52eaab449be5eaf032"}, - {file = "multidict-6.0.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c207fff63adcdf5a485969131dc70e4b194327666b7e8a87a97fbc4fd80a53b2"}, - {file = "multidict-6.0.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:373ba9d1d061c76462d74e7de1c0c8e267e9791ee8cfefcf6b0b2495762c370c"}, - {file = "multidict-6.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bfba7c6d5d7c9099ba21f84662b037a0ffd4a5e6b26ac07d19e423e6fdf965a9"}, - {file = "multidict-6.0.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:19d9bad105dfb34eb539c97b132057a4e709919ec4dd883ece5838bcbf262b80"}, - {file = "multidict-6.0.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:de989b195c3d636ba000ee4281cd03bb1234635b124bf4cd89eeee9ca8fcb09d"}, - {file = "multidict-6.0.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:7c40b7bbece294ae3a87c1bc2abff0ff9beef41d14188cda94ada7bcea99b0fb"}, - {file = "multidict-6.0.2-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:d16cce709ebfadc91278a1c005e3c17dd5f71f5098bfae1035149785ea6e9c68"}, - {file = "multidict-6.0.2-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:a2c34a93e1d2aa35fbf1485e5010337c72c6791407d03aa5f4eed920343dd360"}, - {file = "multidict-6.0.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:feba80698173761cddd814fa22e88b0661e98cb810f9f986c54aa34d281e4937"}, - {file = "multidict-6.0.2-cp39-cp39-win32.whl", hash = "sha256:23b616fdc3c74c9fe01d76ce0d1ce872d2d396d8fa8e4899398ad64fb5aa214a"}, - {file = "multidict-6.0.2-cp39-cp39-win_amd64.whl", hash = "sha256:4bae31803d708f6f15fd98be6a6ac0b6958fcf68fda3c77a048a4f9073704aae"}, - {file = "multidict-6.0.2.tar.gz", hash = "sha256:5ff3bd75f38e4c43f1f470f2df7a4d430b821c4ce22be384e1459cb57d6bb013"}, -] +multidict = [] mypy = [ {file = "mypy-0.910-cp35-cp35m-macosx_10_9_x86_64.whl", hash = "sha256:a155d80ea6cee511a3694b108c4494a39f42de11ee4e61e72bc424c490e46457"}, {file = "mypy-0.910-cp35-cp35m-manylinux1_x86_64.whl", hash = "sha256:b94e4b785e304a04ea0828759172a15add27088520dc7e49ceade7834275bedb"}, @@ -4464,10 +4116,7 @@ nbformat = [ {file = "nbformat-5.7.0-py3-none-any.whl", hash = "sha256:1b05ec2c552c2f1adc745f4eddce1eac8ca9ffd59bb9fd859e827eaa031319f9"}, {file = "nbformat-5.7.0.tar.gz", hash = "sha256:1d4760c15c1a04269ef5caf375be8b98dd2f696e5eb9e603ec2bf091f9b0d3f3"}, ] -nbsphinx = [ - {file = "nbsphinx-0.8.9-py3-none-any.whl", hash = "sha256:a7d743762249ee6bac3350a91eb3717a6e1c75f239f2c2a85491f9aca5a63be1"}, - {file = "nbsphinx-0.8.9.tar.gz", hash = "sha256:4ade86b2a41f8f41efd3ea99dae84c3368fe8ba3f837d50c8815ce9424c5994f"}, -] +nbsphinx = [] nest-asyncio = [ {file = "nest_asyncio-1.5.6-py3-none-any.whl", hash = "sha256:b9a953fb40dceaa587d109609098db21900182b16440652454a146cffb06e8b8"}, {file = "nest_asyncio-1.5.6.tar.gz", hash = "sha256:d267cc1ff794403f7df692964d1d2a3fa9418ffea2a3f6859a439ff482fef290"}, @@ -4480,69 +4129,8 @@ notebook-shim = [ {file = "notebook_shim-0.2.0-py3-none-any.whl", hash = "sha256:481711abddfb2e5305b83cf0efe18475824eb47d1ba9f87f66a8c574b8b5c9e4"}, {file = "notebook_shim-0.2.0.tar.gz", hash = "sha256:fdb81febb05932c6d19e44e10382ce05469cac5e1b6e99b49be6159ddb5e4804"}, ] -numba = [ - {file = "numba-0.55.2-cp310-cp310-macosx_10_14_x86_64.whl", hash = "sha256:dd05f7c0ce64b6977596aa4e5a44747c6ef414d7989da1c7672337c54381a5ef"}, - {file = "numba-0.55.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e36232eccd172c583b1f021c5c48744c087ae6fc9dc5c5f0dd2cb2286e517bf8"}, - {file = "numba-0.55.2-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:25410557d0deb1d97397b71e142a36772133986a7dd4fe2935786e2dd149245f"}, - {file = "numba-0.55.2-cp310-cp310-manylinux2014_i686.manylinux_2_17_i686.whl", hash = "sha256:676c081162cc9403706071c1d1d42e479c0741551ab28096ba13859a2e3e9b80"}, - {file = "numba-0.55.2-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:2665ef28e900b3a55bf370daa81c12ebc64cd434116accd60c38a95a159a3182"}, - {file = "numba-0.55.2-cp310-cp310-win32.whl", hash = "sha256:d7ac9ea5feef9536ab8bfbbb3ded1a0617ea8794d7547800d535b7857800f996"}, - {file = "numba-0.55.2-cp310-cp310-win_amd64.whl", hash = "sha256:29b89a68af162acf87adeb8fbf01f6bb1effae4711b28146f95108d82e905624"}, - {file = "numba-0.55.2-cp37-cp37m-macosx_10_14_x86_64.whl", hash = "sha256:6e0f9b5d1c8ea1bdef39b0ad921a9bbf0cc4a88e76d722d756c68f1653787c35"}, - {file = "numba-0.55.2-cp37-cp37m-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:135fb7694928f9f57b4ff5b1be58f20f4771fedd1680636a9affdead96051959"}, - {file = "numba-0.55.2-cp37-cp37m-manylinux2014_i686.manylinux_2_17_i686.whl", hash = "sha256:de1f93bd7e2d431451aec20a52ac651a020e98a4ba46797fad860bba338a7e64"}, - {file = "numba-0.55.2-cp37-cp37m-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:3eaf53e73e700370163e58257257299ac0d46fea4f244bf5476e4635bc31d808"}, - {file = "numba-0.55.2-cp37-cp37m-win32.whl", hash = "sha256:da4485e0f0b9562f39c78887149b33d13d787aa696553c9257b95575122905ed"}, - {file = "numba-0.55.2-cp37-cp37m-win_amd64.whl", hash = "sha256:5559c6684bf6cce7a22c656d8fef3e7c38ff5fec5153abef5955f6f7cae9f102"}, - {file = "numba-0.55.2-cp38-cp38-macosx_10_14_x86_64.whl", hash = "sha256:a85779adc5234f7857615d1bd2c7b514314521f9f0163c33017707ed9816e6e6"}, - {file = "numba-0.55.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:16a52a0641c342b09b39f6762dcbe3846e44aa9baaaf4703b2ca42a3aee7346f"}, - {file = "numba-0.55.2-cp38-cp38-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:46715180f87d5a1f3e4077d207ade66c96fc01159f5b7d49cee2d6ffb9e6539f"}, - {file = "numba-0.55.2-cp38-cp38-manylinux2014_i686.manylinux_2_17_i686.whl", hash = "sha256:d1c3cef3289fefb5673ceae32024ab5a8a08d4f4380bcb8348d01f1ba570ccff"}, - {file = "numba-0.55.2-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:68bb33eaef1d6155fc1ae4fa6c915b8a42e5052c89a58742254eaad072eab118"}, - {file = "numba-0.55.2-cp38-cp38-win32.whl", hash = "sha256:dfddd633141608a09cbce275fb9fe7aa514918625ace20b0e587898a2d93c030"}, - {file = "numba-0.55.2-cp38-cp38-win_amd64.whl", hash = "sha256:a669212aa66ffee4ad778016ac3819add33f9bcb96b4c384d3099531dd175085"}, - {file = "numba-0.55.2-cp39-cp39-macosx_10_14_x86_64.whl", hash = "sha256:dcde1a1a3a430fb5f83c7e095b0b6ac7adb5595f50a3ee05babb2964f31613c4"}, - {file = "numba-0.55.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:69b2e823efa40d32b259f5c094476dde2226b92032f17015d8cd7c10472654ce"}, - {file = "numba-0.55.2-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:20de0139d2267c8f0e2470d4f88540446cd1bf40de0f29f31b7ab9bf25d49b45"}, - {file = "numba-0.55.2-cp39-cp39-manylinux2014_i686.manylinux_2_17_i686.whl", hash = "sha256:09ff4d690abb05ffbb8a29a96d1cf35b46887a26796d3670de104beeec73d639"}, - {file = "numba-0.55.2-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:1105449247f338e49d63eb04a4aaa5c440bb5435df00f718c8e6e7afad841bb0"}, - {file = "numba-0.55.2-cp39-cp39-win32.whl", hash = "sha256:32649584144c35ced239937ab2c416ab22bbc1490ef8d90609c30fff9f6aa1b8"}, - {file = "numba-0.55.2-cp39-cp39-win_amd64.whl", hash = "sha256:8d5760a1e6a48d98d6b9cf774e4d2a64813d981cca60d7b7356af61195a6ca17"}, - {file = "numba-0.55.2.tar.gz", hash = "sha256:e428d9e11d9ba592849ccc9f7a009003eb7d30612007e365afe743ce7118c6f4"}, -] -numpy = [ - {file = "numpy-1.21.6-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:8737609c3bbdd48e380d463134a35ffad3b22dc56295eff6f79fd85bd0eeeb25"}, - {file = "numpy-1.21.6-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:fdffbfb6832cd0b300995a2b08b8f6fa9f6e856d562800fea9182316d99c4e8e"}, - {file = "numpy-1.21.6-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:3820724272f9913b597ccd13a467cc492a0da6b05df26ea09e78b171a0bb9da6"}, - {file = "numpy-1.21.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f17e562de9edf691a42ddb1eb4a5541c20dd3f9e65b09ded2beb0799c0cf29bb"}, - {file = "numpy-1.21.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5f30427731561ce75d7048ac254dbe47a2ba576229250fb60f0fb74db96501a1"}, - {file = "numpy-1.21.6-cp310-cp310-win32.whl", hash = "sha256:d4bf4d43077db55589ffc9009c0ba0a94fa4908b9586d6ccce2e0b164c86303c"}, - {file = "numpy-1.21.6-cp310-cp310-win_amd64.whl", hash = "sha256:d136337ae3cc69aa5e447e78d8e1514be8c3ec9b54264e680cf0b4bd9011574f"}, - {file = "numpy-1.21.6-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:6aaf96c7f8cebc220cdfc03f1d5a31952f027dda050e5a703a0d1c396075e3e7"}, - {file = "numpy-1.21.6-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:67c261d6c0a9981820c3a149d255a76918278a6b03b6a036800359aba1256d46"}, - {file = "numpy-1.21.6-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:a6be4cb0ef3b8c9250c19cc122267263093eee7edd4e3fa75395dfda8c17a8e2"}, - {file = "numpy-1.21.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7c4068a8c44014b2d55f3c3f574c376b2494ca9cc73d2f1bd692382b6dffe3db"}, - {file = "numpy-1.21.6-cp37-cp37m-win32.whl", hash = "sha256:7c7e5fa88d9ff656e067876e4736379cc962d185d5cd808014a8a928d529ef4e"}, - {file = "numpy-1.21.6-cp37-cp37m-win_amd64.whl", hash = "sha256:bcb238c9c96c00d3085b264e5c1a1207672577b93fa666c3b14a45240b14123a"}, - {file = "numpy-1.21.6-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:82691fda7c3f77c90e62da69ae60b5ac08e87e775b09813559f8901a88266552"}, - {file = "numpy-1.21.6-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:643843bcc1c50526b3a71cd2ee561cf0d8773f062c8cbaf9ffac9fdf573f83ab"}, - {file = "numpy-1.21.6-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:357768c2e4451ac241465157a3e929b265dfac85d9214074985b1786244f2ef3"}, - {file = "numpy-1.21.6-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:9f411b2c3f3d76bba0865b35a425157c5dcf54937f82bbeb3d3c180789dd66a6"}, - {file = "numpy-1.21.6-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:4aa48afdce4660b0076a00d80afa54e8a97cd49f457d68a4342d188a09451c1a"}, - {file = "numpy-1.21.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d6a96eef20f639e6a97d23e57dd0c1b1069a7b4fd7027482a4c5c451cd7732f4"}, - {file = "numpy-1.21.6-cp38-cp38-win32.whl", hash = "sha256:5c3c8def4230e1b959671eb959083661b4a0d2e9af93ee339c7dada6759a9470"}, - {file = "numpy-1.21.6-cp38-cp38-win_amd64.whl", hash = "sha256:bf2ec4b75d0e9356edea834d1de42b31fe11f726a81dfb2c2112bc1eaa508fcf"}, - {file = "numpy-1.21.6-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:4391bd07606be175aafd267ef9bea87cf1b8210c787666ce82073b05f202add1"}, - {file = "numpy-1.21.6-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:67f21981ba2f9d7ba9ade60c9e8cbaa8cf8e9ae51673934480e45cf55e953673"}, - {file = "numpy-1.21.6-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ee5ec40fdd06d62fe5d4084bef4fd50fd4bb6bfd2bf519365f569dc470163ab0"}, - {file = "numpy-1.21.6-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:1dbe1c91269f880e364526649a52eff93ac30035507ae980d2fed33aaee633ac"}, - {file = "numpy-1.21.6-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:d9caa9d5e682102453d96a0ee10c7241b72859b01a941a397fd965f23b3e016b"}, - {file = "numpy-1.21.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:58459d3bad03343ac4b1b42ed14d571b8743dc80ccbf27444f266729df1d6f5b"}, - {file = "numpy-1.21.6-cp39-cp39-win32.whl", hash = "sha256:7f5ae4f304257569ef3b948810816bc87c9146e8c446053539947eedeaa32786"}, - {file = "numpy-1.21.6-cp39-cp39-win_amd64.whl", hash = "sha256:e31f0bb5928b793169b87e3d1e070f2342b22d5245c755e2b81caa29756246c3"}, - {file = "numpy-1.21.6-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:dd1c8f6bd65d07d3810b90d02eba7997e32abbdf1277a481d698969e921a3be0"}, - {file = "numpy-1.21.6.zip", hash = "sha256:ecb55251139706669fdec2ff073c98ef8e9a84473e51e716211b41aa0f18e656"}, -] +numba = [] +numpy = [] numpydoc = [ {file = "numpydoc-1.5.0-py3-none-any.whl", hash = "sha256:c997759fb6fc32662801cece76491eedbc0ec619b514932ffd2b270ae89c07f9"}, {file = "numpydoc-1.5.0.tar.gz", hash = "sha256:b0db7b75a32367a0e25c23b397842c65e344a1206524d16c8069f0a1c91b5f4c"}, @@ -4555,41 +4143,12 @@ omegaconf = [ {file = "omegaconf-2.2.3-py3-none-any.whl", hash = "sha256:d6f2cbf79a992899eb76c6cb1aedfcf0fe7456a8654382edd5ee0c1b199c0657"}, {file = "omegaconf-2.2.3.tar.gz", hash = "sha256:59ff9fba864ffbb5fb710b64e8a9ba37c68fa339a2e2bb4f1b648d6901552523"}, ] -optuna = [ - {file = "optuna-2.10.1-py3-none-any.whl", hash = "sha256:d57dc1fd911d20697098bdef83836f8078387a3be2a5400ab26db15f8341e1f4"}, - {file = "optuna-2.10.1.tar.gz", hash = "sha256:8a12009b57757c1070b3bff2261c24824d6430c22926dd1e2ace33b3deff555f"}, -] +optuna = [] packaging = [ {file = "packaging-21.3-py3-none-any.whl", hash = "sha256:ef103e05f519cdc783ae24ea4e2e0f508a9c99b2d4969652eed6a2e1ea5bd522"}, {file = "packaging-21.3.tar.gz", hash = "sha256:dd47c42927d89ab911e606518907cc2d3a1f38bbd026385970643f9c5b8ecfeb"}, ] -pandas = [ - {file = "pandas-1.3.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:62d5b5ce965bae78f12c1c0df0d387899dd4211ec0bdc52822373f13a3a022b9"}, - {file = "pandas-1.3.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:adfeb11be2d54f275142c8ba9bf67acee771b7186a5745249c7d5a06c670136b"}, - {file = "pandas-1.3.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:60a8c055d58873ad81cae290d974d13dd479b82cbb975c3e1fa2cf1920715296"}, - {file = "pandas-1.3.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fd541ab09e1f80a2a1760032d665f6e032d8e44055d602d65eeea6e6e85498cb"}, - {file = "pandas-1.3.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2651d75b9a167cc8cc572cf787ab512d16e316ae00ba81874b560586fa1325e0"}, - {file = "pandas-1.3.5-cp310-cp310-win_amd64.whl", hash = "sha256:aaf183a615ad790801fa3cf2fa450e5b6d23a54684fe386f7e3208f8b9bfbef6"}, - {file = "pandas-1.3.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:344295811e67f8200de2390093aeb3c8309f5648951b684d8db7eee7d1c81fb7"}, - {file = "pandas-1.3.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:552020bf83b7f9033b57cbae65589c01e7ef1544416122da0c79140c93288f56"}, - {file = "pandas-1.3.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5cce0c6bbeb266b0e39e35176ee615ce3585233092f685b6a82362523e59e5b4"}, - {file = "pandas-1.3.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7d28a3c65463fd0d0ba8bbb7696b23073efee0510783340a44b08f5e96ffce0c"}, - {file = "pandas-1.3.5-cp37-cp37m-win32.whl", hash = "sha256:a62949c626dd0ef7de11de34b44c6475db76995c2064e2d99c6498c3dba7fe58"}, - {file = "pandas-1.3.5-cp37-cp37m-win_amd64.whl", hash = "sha256:8025750767e138320b15ca16d70d5cdc1886e8f9cc56652d89735c016cd8aea6"}, - {file = "pandas-1.3.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:fe95bae4e2d579812865db2212bb733144e34d0c6785c0685329e5b60fcb85dd"}, - {file = "pandas-1.3.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5f261553a1e9c65b7a310302b9dbac31cf0049a51695c14ebe04e4bfd4a96f02"}, - {file = "pandas-1.3.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8b6dbec5f3e6d5dc80dcfee250e0a2a652b3f28663492f7dab9a24416a48ac39"}, - {file = "pandas-1.3.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d3bc49af96cd6285030a64779de5b3688633a07eb75c124b0747134a63f4c05f"}, - {file = "pandas-1.3.5-cp38-cp38-win32.whl", hash = "sha256:b6b87b2fb39e6383ca28e2829cddef1d9fc9e27e55ad91ca9c435572cdba51bf"}, - {file = "pandas-1.3.5-cp38-cp38-win_amd64.whl", hash = "sha256:a395692046fd8ce1edb4c6295c35184ae0c2bbe787ecbe384251da609e27edcb"}, - {file = "pandas-1.3.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:bd971a3f08b745a75a86c00b97f3007c2ea175951286cdda6abe543e687e5f2f"}, - {file = "pandas-1.3.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:37f06b59e5bc05711a518aa10beaec10942188dccb48918bb5ae602ccbc9f1a0"}, - {file = "pandas-1.3.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2c21778a688d3712d35710501f8001cdbf96eb70a7c587a3d5613573299fdca6"}, - {file = "pandas-1.3.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3345343206546545bc26a05b4602b6a24385b5ec7c75cb6059599e3d56831da2"}, - {file = "pandas-1.3.5-cp39-cp39-win32.whl", hash = "sha256:c69406a2808ba6cf580c2255bcf260b3f214d2664a3a4197d0e640f573b46fd3"}, - {file = "pandas-1.3.5-cp39-cp39-win_amd64.whl", hash = "sha256:32e1a26d5ade11b547721a72f9bfc4bd113396947606e00d5b4a5b79b3dcb006"}, - {file = "pandas-1.3.5.tar.gz", hash = "sha256:1e4285f5de1012de20ca46b188ccf33521bff61ba5c5ebd78b4fb28e5416a9f1"}, -] +pandas = [] pandocfilters = [ {file = "pandocfilters-1.5.0-py2.py3-none-any.whl", hash = "sha256:33aae3f25fd1a026079f5d27bdd52496f0e0803b3469282162bafdcbdf6ef14f"}, {file = "pandocfilters-1.5.0.tar.gz", hash = "sha256:0b679503337d233b4339a817bfc8c50064e2eff681314376a47cb582305a7a38"}, @@ -4625,74 +4184,12 @@ pickleshare = [ {file = "pickleshare-0.7.5-py2.py3-none-any.whl", hash = "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56"}, {file = "pickleshare-0.7.5.tar.gz", hash = "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca"}, ] -pillow = [ - {file = "Pillow-9.2.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:a9c9bc489f8ab30906d7a85afac4b4944a572a7432e00698a7239f44a44e6efb"}, - {file = "Pillow-9.2.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:510cef4a3f401c246cfd8227b300828715dd055463cdca6176c2e4036df8bd4f"}, - {file = "Pillow-9.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7888310f6214f19ab2b6df90f3f06afa3df7ef7355fc025e78a3044737fab1f5"}, - {file = "Pillow-9.2.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:831e648102c82f152e14c1a0938689dbb22480c548c8d4b8b248b3e50967b88c"}, - {file = "Pillow-9.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1cc1d2451e8a3b4bfdb9caf745b58e6c7a77d2e469159b0d527a4554d73694d1"}, - {file = "Pillow-9.2.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:136659638f61a251e8ed3b331fc6ccd124590eeff539de57c5f80ef3a9594e58"}, - {file = "Pillow-9.2.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:6e8c66f70fb539301e064f6478d7453e820d8a2c631da948a23384865cd95544"}, - {file = "Pillow-9.2.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:37ff6b522a26d0538b753f0b4e8e164fdada12db6c6f00f62145d732d8a3152e"}, - {file = "Pillow-9.2.0-cp310-cp310-win32.whl", hash = "sha256:c79698d4cd9318d9481d89a77e2d3fcaeff5486be641e60a4b49f3d2ecca4e28"}, - {file = "Pillow-9.2.0-cp310-cp310-win_amd64.whl", hash = "sha256:254164c57bab4b459f14c64e93df11eff5ded575192c294a0c49270f22c5d93d"}, - {file = "Pillow-9.2.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:adabc0bce035467fb537ef3e5e74f2847c8af217ee0be0455d4fec8adc0462fc"}, - {file = "Pillow-9.2.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:336b9036127eab855beec9662ac3ea13a4544a523ae273cbf108b228ecac8437"}, - {file = "Pillow-9.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50dff9cc21826d2977ef2d2a205504034e3a4563ca6f5db739b0d1026658e004"}, - {file = "Pillow-9.2.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:cb6259196a589123d755380b65127ddc60f4c64b21fc3bb46ce3a6ea663659b0"}, - {file = "Pillow-9.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7b0554af24df2bf96618dac71ddada02420f946be943b181108cac55a7a2dcd4"}, - {file = "Pillow-9.2.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:15928f824870535c85dbf949c09d6ae7d3d6ac2d6efec80f3227f73eefba741c"}, - {file = "Pillow-9.2.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:bdd0de2d64688ecae88dd8935012c4a72681e5df632af903a1dca8c5e7aa871a"}, - {file = "Pillow-9.2.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:d5b87da55a08acb586bad5c3aa3b86505f559b84f39035b233d5bf844b0834b1"}, - {file = "Pillow-9.2.0-cp311-cp311-win32.whl", hash = "sha256:b6d5e92df2b77665e07ddb2e4dbd6d644b78e4c0d2e9272a852627cdba0d75cf"}, - {file = "Pillow-9.2.0-cp311-cp311-win_amd64.whl", hash = "sha256:6bf088c1ce160f50ea40764f825ec9b72ed9da25346216b91361eef8ad1b8f8c"}, - {file = "Pillow-9.2.0-cp37-cp37m-macosx_10_10_x86_64.whl", hash = "sha256:2c58b24e3a63efd22554c676d81b0e57f80e0a7d3a5874a7e14ce90ec40d3069"}, - {file = "Pillow-9.2.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eef7592281f7c174d3d6cbfbb7ee5984a671fcd77e3fc78e973d492e9bf0eb3f"}, - {file = "Pillow-9.2.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dcd7b9c7139dc8258d164b55696ecd16c04607f1cc33ba7af86613881ffe4ac8"}, - {file = "Pillow-9.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a138441e95562b3c078746a22f8fca8ff1c22c014f856278bdbdd89ca36cff1b"}, - {file = "Pillow-9.2.0-cp37-cp37m-manylinux_2_28_aarch64.whl", hash = "sha256:93689632949aff41199090eff5474f3990b6823404e45d66a5d44304e9cdc467"}, - {file = "Pillow-9.2.0-cp37-cp37m-manylinux_2_28_x86_64.whl", hash = "sha256:f3fac744f9b540148fa7715a435d2283b71f68bfb6d4aae24482a890aed18b59"}, - {file = "Pillow-9.2.0-cp37-cp37m-win32.whl", hash = "sha256:fa768eff5f9f958270b081bb33581b4b569faabf8774726b283edb06617101dc"}, - {file = "Pillow-9.2.0-cp37-cp37m-win_amd64.whl", hash = "sha256:69bd1a15d7ba3694631e00df8de65a8cb031911ca11f44929c97fe05eb9b6c1d"}, - {file = "Pillow-9.2.0-cp38-cp38-macosx_10_10_x86_64.whl", hash = "sha256:030e3460861488e249731c3e7ab59b07c7853838ff3b8e16aac9561bb345da14"}, - {file = "Pillow-9.2.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:74a04183e6e64930b667d321524e3c5361094bb4af9083db5c301db64cd341f3"}, - {file = "Pillow-9.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2d33a11f601213dcd5718109c09a52c2a1c893e7461f0be2d6febc2879ec2402"}, - {file = "Pillow-9.2.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1fd6f5e3c0e4697fa7eb45b6e93996299f3feee73a3175fa451f49a74d092b9f"}, - {file = "Pillow-9.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a647c0d4478b995c5e54615a2e5360ccedd2f85e70ab57fbe817ca613d5e63b8"}, - {file = "Pillow-9.2.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:4134d3f1ba5f15027ff5c04296f13328fecd46921424084516bdb1b2548e66ff"}, - {file = "Pillow-9.2.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:bc431b065722a5ad1dfb4df354fb9333b7a582a5ee39a90e6ffff688d72f27a1"}, - {file = "Pillow-9.2.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:1536ad017a9f789430fb6b8be8bf99d2f214c76502becc196c6f2d9a75b01b76"}, - {file = "Pillow-9.2.0-cp38-cp38-win32.whl", hash = "sha256:2ad0d4df0f5ef2247e27fc790d5c9b5a0af8ade9ba340db4a73bb1a4a3e5fb4f"}, - {file = "Pillow-9.2.0-cp38-cp38-win_amd64.whl", hash = "sha256:ec52c351b35ca269cb1f8069d610fc45c5bd38c3e91f9ab4cbbf0aebc136d9c8"}, - {file = "Pillow-9.2.0-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:0ed2c4ef2451de908c90436d6e8092e13a43992f1860275b4d8082667fbb2ffc"}, - {file = "Pillow-9.2.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:4ad2f835e0ad81d1689f1b7e3fbac7b01bb8777d5a985c8962bedee0cc6d43da"}, - {file = "Pillow-9.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ea98f633d45f7e815db648fd7ff0f19e328302ac36427343e4432c84432e7ff4"}, - {file = "Pillow-9.2.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7761afe0126d046974a01e030ae7529ed0ca6a196de3ec6937c11df0df1bc91c"}, - {file = "Pillow-9.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9a54614049a18a2d6fe156e68e188da02a046a4a93cf24f373bffd977e943421"}, - {file = "Pillow-9.2.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:5aed7dde98403cd91d86a1115c78d8145c83078e864c1de1064f52e6feb61b20"}, - {file = "Pillow-9.2.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:13b725463f32df1bfeacbf3dd197fb358ae8ebcd8c5548faa75126ea425ccb60"}, - {file = "Pillow-9.2.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:808add66ea764ed97d44dda1ac4f2cfec4c1867d9efb16a33d158be79f32b8a4"}, - {file = "Pillow-9.2.0-cp39-cp39-win32.whl", hash = "sha256:337a74fd2f291c607d220c793a8135273c4c2ab001b03e601c36766005f36885"}, - {file = "Pillow-9.2.0-cp39-cp39-win_amd64.whl", hash = "sha256:fac2d65901fb0fdf20363fbd345c01958a742f2dc62a8dd4495af66e3ff502a4"}, - {file = "Pillow-9.2.0-pp37-pypy37_pp73-macosx_10_10_x86_64.whl", hash = "sha256:ad2277b185ebce47a63f4dc6302e30f05762b688f8dc3de55dbae4651872cdf3"}, - {file = "Pillow-9.2.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7c7b502bc34f6e32ba022b4a209638f9e097d7a9098104ae420eb8186217ebbb"}, - {file = "Pillow-9.2.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3d1f14f5f691f55e1b47f824ca4fdcb4b19b4323fe43cc7bb105988cad7496be"}, - {file = "Pillow-9.2.0-pp37-pypy37_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:dfe4c1fedfde4e2fbc009d5ad420647f7730d719786388b7de0999bf32c0d9fd"}, - {file = "Pillow-9.2.0-pp38-pypy38_pp73-macosx_10_10_x86_64.whl", hash = "sha256:f07f1f00e22b231dd3d9b9208692042e29792d6bd4f6639415d2f23158a80013"}, - {file = "Pillow-9.2.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1802f34298f5ba11d55e5bb09c31997dc0c6aed919658dfdf0198a2fe75d5490"}, - {file = "Pillow-9.2.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:17d4cafe22f050b46d983b71c707162d63d796a1235cdf8b9d7a112e97b15bac"}, - {file = "Pillow-9.2.0-pp38-pypy38_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:96b5e6874431df16aee0c1ba237574cb6dff1dcb173798faa6a9d8b399a05d0e"}, - {file = "Pillow-9.2.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:0030fdbd926fb85844b8b92e2f9449ba89607231d3dd597a21ae72dc7fe26927"}, - {file = "Pillow-9.2.0.tar.gz", hash = "sha256:75e636fd3e0fb872693f23ccb8a5ff2cd578801251f3a4f6854c6a5d437d3c04"}, -] +pillow = [] pkgutil-resolve-name = [ {file = "pkgutil_resolve_name-1.3.10-py3-none-any.whl", hash = "sha256:ca27cc078d25c5ad71a9de0a7a330146c4e014c2462d9af19c6b828280649c5e"}, {file = "pkgutil_resolve_name-1.3.10.tar.gz", hash = "sha256:357d6c9e6a755653cfd78893817c0853af365dd51ec97f3d358a819373bbd174"}, ] -platformdirs = [ - {file = "platformdirs-2.5.2-py3-none-any.whl", hash = "sha256:027d8e83a2d7de06bbac4e5ef7e023c02b863d7ea5d079477e722bb41ab25788"}, - {file = "platformdirs-2.5.2.tar.gz", hash = "sha256:58c8abb07dcb441e6ee4b11d8df0ac856038f944ab98b7be6b27b2a3c7feef19"}, -] +platformdirs = [] plotly = [ {file = "plotly-5.10.0-py2.py3-none-any.whl", hash = "sha256:989b13825cc974390aa0169479485d9257d37848a47bc63957251f8e1a7046ba"}, {file = "plotly-5.10.0.tar.gz", hash = "sha256:4d36d9859b7a153b273562deeed8c292587a472eb1fd57cd4158ec89d9defadb"}, @@ -4738,21 +4235,7 @@ prompt-toolkit = [ {file = "prompt_toolkit-3.0.31-py3-none-any.whl", hash = "sha256:9696f386133df0fc8ca5af4895afe5d78f5fcfe5258111c2a79a1c3e41ffa96d"}, {file = "prompt_toolkit-3.0.31.tar.gz", hash = "sha256:9ada952c9d1787f52ff6d5f3484d0b4df8952787c087edf6a1f7c2cb1ea88148"}, ] -prophet = [ - {file = "prophet-1.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:f094e0dbf53faf3ea556dbf8e6912a53a5c2c37918af362cdcf8ba211cab4dd0"}, - {file = "prophet-1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ff6c18c3ce5cb48b9365ac6d744d8ac9bdb22a522bbdfe6d5bb42d06f31e0acb"}, - {file = "prophet-1.1-cp310-cp310-win_amd64.whl", hash = "sha256:9cc9b22829263c180ef5e65e6dc7a5b81c17e5c950f266ef55bdecb0f238641b"}, - {file = "prophet-1.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:f743740eb0b9417023598cb8b0968a457a8a8806a5f89697ce789c9a255ad0a0"}, - {file = "prophet-1.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dea763ffeb50123642c17becab5450e41db10dff241b52e1be81cb469ffa1cf8"}, - {file = "prophet-1.1-cp37-cp37m-win_amd64.whl", hash = "sha256:1d10c1aa39412954962b2bbe7c1aab7c23aeabf168374296316603d7eeec8777"}, - {file = "prophet-1.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1f8ce8c62facdae4cd048f9156e8b0f902f574a6651637617adde829943a8edd"}, - {file = "prophet-1.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3724d4d8af25d3e951c3f442257086c78f14ca64f6352138b7bd1c438a44b041"}, - {file = "prophet-1.1-cp38-cp38-win_amd64.whl", hash = "sha256:92a7b5833e0293f877e4c8cd4b2ee172be98b01e1644703f2081eea30d8e0038"}, - {file = "prophet-1.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:72a0a11adc5d1ef8b774e50b1e1a763e94443ef041629a4ce5bb95bba1dc4c16"}, - {file = "prophet-1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:86d15dad5d8696e3341544a593adca31d6a24eb9245b5154163075385ab1b1de"}, - {file = "prophet-1.1-cp39-cp39-win_amd64.whl", hash = "sha256:4ec66394ac488d6e004ddaac3ff9b315a70f8b248b2eb6df46a584eab40a1dd6"}, - {file = "prophet-1.1.tar.gz", hash = "sha256:963b117d56fe0dabc247b5b36cdb20d7ce7ac6899e77ec4037040b773a713ffe"}, -] +prophet = [] protobuf = [ {file = "protobuf-3.19.6-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:010be24d5a44be7b0613750ab40bc8b8cedc796db468eae6c779b395f50d1fa1"}, {file = "protobuf-3.19.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:11478547958c2dfea921920617eb457bc26867b0d1aa065ab05f35080c5d9eb6"}, @@ -4823,12 +4306,34 @@ py = [ {file = "py-1.11.0.tar.gz", hash = "sha256:51c75c4126074b472f746a24399ad32f6053d1b34b68d2fa41e558e6f4a98719"}, ] pyasn1 = [ + {file = "pyasn1-0.4.8-py2.4.egg", hash = "sha256:fec3e9d8e36808a28efb59b489e4528c10ad0f480e57dcc32b4de5c9d8c9fdf3"}, + {file = "pyasn1-0.4.8-py2.5.egg", hash = "sha256:0458773cfe65b153891ac249bcf1b5f8f320b7c2ce462151f8fa74de8934becf"}, + {file = "pyasn1-0.4.8-py2.6.egg", hash = "sha256:5c9414dcfede6e441f7e8f81b43b34e834731003427e5b09e4e00e3172a10f00"}, + {file = "pyasn1-0.4.8-py2.7.egg", hash = "sha256:6e7545f1a61025a4e58bb336952c5061697da694db1cae97b116e9c46abcf7c8"}, {file = "pyasn1-0.4.8-py2.py3-none-any.whl", hash = "sha256:39c7e2ec30515947ff4e87fb6f456dfc6e84857d34be479c9d4a4ba4bf46aa5d"}, + {file = "pyasn1-0.4.8-py3.1.egg", hash = "sha256:78fa6da68ed2727915c4767bb386ab32cdba863caa7dbe473eaae45f9959da86"}, + {file = "pyasn1-0.4.8-py3.2.egg", hash = "sha256:08c3c53b75eaa48d71cf8c710312316392ed40899cb34710d092e96745a358b7"}, + {file = "pyasn1-0.4.8-py3.3.egg", hash = "sha256:03840c999ba71680a131cfaee6fab142e1ed9bbd9c693e285cc6aca0d555e576"}, + {file = "pyasn1-0.4.8-py3.4.egg", hash = "sha256:7ab8a544af125fb704feadb008c99a88805126fb525280b2270bb25cc1d78a12"}, + {file = "pyasn1-0.4.8-py3.5.egg", hash = "sha256:e89bf84b5437b532b0803ba5c9a5e054d21fec423a89952a74f87fa2c9b7bce2"}, + {file = "pyasn1-0.4.8-py3.6.egg", hash = "sha256:014c0e9976956a08139dc0712ae195324a75e142284d5f87f1a87ee1b068a359"}, + {file = "pyasn1-0.4.8-py3.7.egg", hash = "sha256:99fcc3c8d804d1bc6d9a099921e39d827026409a58f2a720dcdb89374ea0c776"}, {file = "pyasn1-0.4.8.tar.gz", hash = "sha256:aef77c9fb94a3ac588e87841208bdec464471d9871bd5050a287cc9a475cd0ba"}, ] pyasn1-modules = [ {file = "pyasn1-modules-0.2.8.tar.gz", hash = "sha256:905f84c712230b2c592c19470d3ca8d552de726050d1d1716282a1f6146be65e"}, + {file = "pyasn1_modules-0.2.8-py2.4.egg", hash = "sha256:0fe1b68d1e486a1ed5473f1302bd991c1611d319bba158e98b106ff86e1d7199"}, + {file = "pyasn1_modules-0.2.8-py2.5.egg", hash = "sha256:fe0644d9ab041506b62782e92b06b8c68cca799e1a9636ec398675459e031405"}, + {file = "pyasn1_modules-0.2.8-py2.6.egg", hash = "sha256:a99324196732f53093a84c4369c996713eb8c89d360a496b599fb1a9c47fc3eb"}, + {file = "pyasn1_modules-0.2.8-py2.7.egg", hash = "sha256:0845a5582f6a02bb3e1bde9ecfc4bfcae6ec3210dd270522fee602365430c3f8"}, {file = "pyasn1_modules-0.2.8-py2.py3-none-any.whl", hash = "sha256:a50b808ffeb97cb3601dd25981f6b016cbb3d31fbf57a8b8a87428e6158d0c74"}, + {file = "pyasn1_modules-0.2.8-py3.1.egg", hash = "sha256:f39edd8c4ecaa4556e989147ebf219227e2cd2e8a43c7e7fcb1f1c18c5fd6a3d"}, + {file = "pyasn1_modules-0.2.8-py3.2.egg", hash = "sha256:b80486a6c77252ea3a3e9b1e360bc9cf28eaac41263d173c032581ad2f20fe45"}, + {file = "pyasn1_modules-0.2.8-py3.3.egg", hash = "sha256:65cebbaffc913f4fe9e4808735c95ea22d7a7775646ab690518c056784bc21b4"}, + {file = "pyasn1_modules-0.2.8-py3.4.egg", hash = "sha256:15b7c67fabc7fc240d87fb9aabf999cf82311a6d6fb2c70d00d3d0604878c811"}, + {file = "pyasn1_modules-0.2.8-py3.5.egg", hash = "sha256:426edb7a5e8879f1ec54a1864f16b882c2837bfd06eee62f2c982315ee2473ed"}, + {file = "pyasn1_modules-0.2.8-py3.6.egg", hash = "sha256:cbac4bc38d117f2a49aeedec4407d23e8866ea4ac27ff2cf7fb3e5b570df19e0"}, + {file = "pyasn1_modules-0.2.8-py3.7.egg", hash = "sha256:c29a5e5cc7a3f05926aff34e097e84f8589cd790ce0ed41b67aed6857b26aafd"}, ] pycodestyle = [ {file = "pycodestyle-2.7.0-py2.py3-none-any.whl", hash = "sha256:514f76d918fcc0b55c6680472f0a37970994e07bbb80725808c17089be302068"}, @@ -4838,10 +4343,7 @@ pycparser = [ {file = "pycparser-2.21-py2.py3-none-any.whl", hash = "sha256:8ee45429555515e1f6b185e78100aea234072576aa43ab53aefcae078162fca9"}, {file = "pycparser-2.21.tar.gz", hash = "sha256:e644fdec12f7872f86c58ff790da456218b10f863970249516d60a5eaca77206"}, ] -pydeprecate = [ - {file = "pyDeprecate-0.3.2-py3-none-any.whl", hash = "sha256:ed86b68ed837e6465245904a3de2f59bf9eef78ac7a2502ee280533d04802457"}, - {file = "pyDeprecate-0.3.2.tar.gz", hash = "sha256:d481116cc5d7f6c473e7c4be820efdd9b90a16b594b350276e9e66a6cb5bdd29"}, -] +pydeprecate = [] pydocstyle = [ {file = "pydocstyle-6.1.1-py3-none-any.whl", hash = "sha256:6987826d6775056839940041beef5c08cc7e3d71d63149b48e36727f70144dc4"}, {file = "pydocstyle-6.1.1.tar.gz", hash = "sha256:1d41b7c459ba0ee6c345f2eb9ae827cab14a7533a88c5c6f7e94923f72df92dc"}, @@ -4857,40 +4359,12 @@ pygments = [ pymeeus = [ {file = "PyMeeus-0.5.11.tar.gz", hash = "sha256:bb9d670818d8b0594317b48a7dadea02a0594e5344263bf2054e1a011c8fed55"}, ] -pyparsing = [ - {file = "pyparsing-3.0.9-py3-none-any.whl", hash = "sha256:5026bae9a10eeaefb61dab2f09052b9f4307d44aee4eda64b309723d8d206bbc"}, - {file = "pyparsing-3.0.9.tar.gz", hash = "sha256:2b020ecf7d21b687f219b71ecad3631f644a47f01403fa1d1036b0c6416d70fb"}, -] +pyparsing = [] pyperclip = [ {file = "pyperclip-1.8.2.tar.gz", hash = "sha256:105254a8b04934f0bc84e9c24eb360a591aaf6535c9def5f29d92af107a9bf57"}, ] -pyreadline3 = [ - {file = "pyreadline3-3.4.1-py3-none-any.whl", hash = "sha256:b0efb6516fd4fb07b45949053826a62fa4cb353db5be2bbb4a7aa1fdd1e345fb"}, - {file = "pyreadline3-3.4.1.tar.gz", hash = "sha256:6f3d1f7b8a31ba32b73917cefc1f28cc660562f39aea8646d30bd6eff21f7bae"}, -] -pyrsistent = [ - {file = "pyrsistent-0.18.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:df46c854f490f81210870e509818b729db4488e1f30f2a1ce1698b2295a878d1"}, - {file = "pyrsistent-0.18.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5d45866ececf4a5fff8742c25722da6d4c9e180daa7b405dc0a2a2790d668c26"}, - {file = "pyrsistent-0.18.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4ed6784ceac462a7d6fcb7e9b663e93b9a6fb373b7f43594f9ff68875788e01e"}, - {file = "pyrsistent-0.18.1-cp310-cp310-win32.whl", hash = "sha256:e4f3149fd5eb9b285d6bfb54d2e5173f6a116fe19172686797c056672689daf6"}, - {file = "pyrsistent-0.18.1-cp310-cp310-win_amd64.whl", hash = "sha256:636ce2dc235046ccd3d8c56a7ad54e99d5c1cd0ef07d9ae847306c91d11b5fec"}, - {file = "pyrsistent-0.18.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:e92a52c166426efbe0d1ec1332ee9119b6d32fc1f0bbfd55d5c1088070e7fc1b"}, - {file = "pyrsistent-0.18.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d7a096646eab884bf8bed965bad63ea327e0d0c38989fc83c5ea7b8a87037bfc"}, - {file = "pyrsistent-0.18.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:cdfd2c361b8a8e5d9499b9082b501c452ade8bbf42aef97ea04854f4a3f43b22"}, - {file = "pyrsistent-0.18.1-cp37-cp37m-win32.whl", hash = "sha256:7ec335fc998faa4febe75cc5268a9eac0478b3f681602c1f27befaf2a1abe1d8"}, - {file = "pyrsistent-0.18.1-cp37-cp37m-win_amd64.whl", hash = "sha256:6455fc599df93d1f60e1c5c4fe471499f08d190d57eca040c0ea182301321286"}, - {file = "pyrsistent-0.18.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:fd8da6d0124efa2f67d86fa70c851022f87c98e205f0594e1fae044e7119a5a6"}, - {file = "pyrsistent-0.18.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7bfe2388663fd18bd8ce7db2c91c7400bf3e1a9e8bd7d63bf7e77d39051b85ec"}, - {file = "pyrsistent-0.18.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0e3e1fcc45199df76053026a51cc59ab2ea3fc7c094c6627e93b7b44cdae2c8c"}, - {file = "pyrsistent-0.18.1-cp38-cp38-win32.whl", hash = "sha256:b568f35ad53a7b07ed9b1b2bae09eb15cdd671a5ba5d2c66caee40dbf91c68ca"}, - {file = "pyrsistent-0.18.1-cp38-cp38-win_amd64.whl", hash = "sha256:d1b96547410f76078eaf66d282ddca2e4baae8964364abb4f4dcdde855cd123a"}, - {file = "pyrsistent-0.18.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:f87cc2863ef33c709e237d4b5f4502a62a00fab450c9e020892e8e2ede5847f5"}, - {file = "pyrsistent-0.18.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6bc66318fb7ee012071b2792024564973ecc80e9522842eb4e17743604b5e045"}, - {file = "pyrsistent-0.18.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:914474c9f1d93080338ace89cb2acee74f4f666fb0424896fcfb8d86058bf17c"}, - {file = "pyrsistent-0.18.1-cp39-cp39-win32.whl", hash = "sha256:1b34eedd6812bf4d33814fca1b66005805d3640ce53140ab8bbb1e2651b0d9bc"}, - {file = "pyrsistent-0.18.1-cp39-cp39-win_amd64.whl", hash = "sha256:e24a828f57e0c337c8d8bb9f6b12f09dfdf0273da25fda9e314f0b684b415a07"}, - {file = "pyrsistent-0.18.1.tar.gz", hash = "sha256:d4d61f8b993a7255ba714df3aca52700f8125289f84f704cf80916517c46eb96"}, -] +pyreadline3 = [] +pyrsistent = [] pytest = [ {file = "pytest-6.2.5-py3-none-any.whl", hash = "sha256:7310f8d27bc79ced999e760ca304d69f6ba6c6649c0b60fb0e04a4a77cacc134"}, {file = "pytest-6.2.5.tar.gz", hash = "sha256:131b36680866a76e6781d13f101efb86cf674ebb9762eb70d3082b6f29889e89"}, @@ -4903,10 +4377,7 @@ python-dateutil = [ {file = "python-dateutil-2.8.2.tar.gz", hash = "sha256:0123cacc1627ae19ddf3c27a5de5bd67ee4586fbdd6440d9748f8abb483d3e86"}, {file = "python_dateutil-2.8.2-py2.py3-none-any.whl", hash = "sha256:961d03dc3453ebbc59dbdea9e4e11c5651520a876d0f4db161e8674aae935da9"}, ] -pytorch-forecasting = [ - {file = "pytorch_forecasting-0.9.2-py3-none-any.whl", hash = "sha256:b5f92fec3565d4b70bb52456c6f4e864939a0bacae7559b448556306c3176693"}, - {file = "pytorch_forecasting-0.9.2.tar.gz", hash = "sha256:af7ebae532fe73b360a9c22d055233ce38e415936a77b3a0719a0bdd414bd98e"}, -] +pytorch-forecasting = [] pytorch-lightning = [ {file = "pytorch-lightning-1.7.7.tar.gz", hash = "sha256:27c2dd01a18db2415168e3fa3775ccb5a1fa1e2961a50439ad9365507fe9d4ae"}, {file = "pytorch_lightning-1.7.7-py3-none-any.whl", hash = "sha256:4438b8284d7f7fdb06cf3566a7b5b6f102ac8971cf7bb6d3f1b1de64628241f3"}, @@ -4919,22 +4390,7 @@ pytz = [ {file = "pytz-2022.4-py2.py3-none-any.whl", hash = "sha256:2c0784747071402c6e99f0bafdb7da0fa22645f06554c7ae06bf6358897e9c91"}, {file = "pytz-2022.4.tar.gz", hash = "sha256:48ce799d83b6f8aab2020e369b627446696619e79645419610b9facd909b3174"}, ] -pywin32 = [ - {file = "pywin32-304-cp310-cp310-win32.whl", hash = "sha256:3c7bacf5e24298c86314f03fa20e16558a4e4138fc34615d7de4070c23e65af3"}, - {file = "pywin32-304-cp310-cp310-win_amd64.whl", hash = "sha256:4f32145913a2447736dad62495199a8e280a77a0ca662daa2332acf849f0be48"}, - {file = "pywin32-304-cp310-cp310-win_arm64.whl", hash = "sha256:d3ee45adff48e0551d1aa60d2ec066fec006083b791f5c3527c40cd8aefac71f"}, - {file = "pywin32-304-cp311-cp311-win32.whl", hash = "sha256:30c53d6ce44c12a316a06c153ea74152d3b1342610f1b99d40ba2795e5af0269"}, - {file = "pywin32-304-cp311-cp311-win_amd64.whl", hash = "sha256:7ffa0c0fa4ae4077e8b8aa73800540ef8c24530057768c3ac57c609f99a14fd4"}, - {file = "pywin32-304-cp311-cp311-win_arm64.whl", hash = "sha256:cbbe34dad39bdbaa2889a424d28752f1b4971939b14b1bb48cbf0182a3bcfc43"}, - {file = "pywin32-304-cp36-cp36m-win32.whl", hash = "sha256:be253e7b14bc601718f014d2832e4c18a5b023cbe72db826da63df76b77507a1"}, - {file = "pywin32-304-cp36-cp36m-win_amd64.whl", hash = "sha256:de9827c23321dcf43d2f288f09f3b6d772fee11e809015bdae9e69fe13213988"}, - {file = "pywin32-304-cp37-cp37m-win32.whl", hash = "sha256:f64c0377cf01b61bd5e76c25e1480ca8ab3b73f0c4add50538d332afdf8f69c5"}, - {file = "pywin32-304-cp37-cp37m-win_amd64.whl", hash = "sha256:bb2ea2aa81e96eee6a6b79d87e1d1648d3f8b87f9a64499e0b92b30d141e76df"}, - {file = "pywin32-304-cp38-cp38-win32.whl", hash = "sha256:94037b5259701988954931333aafd39cf897e990852115656b014ce72e052e96"}, - {file = "pywin32-304-cp38-cp38-win_amd64.whl", hash = "sha256:ead865a2e179b30fb717831f73cf4373401fc62fbc3455a0889a7ddac848f83e"}, - {file = "pywin32-304-cp39-cp39-win32.whl", hash = "sha256:25746d841201fd9f96b648a248f731c1dec851c9a08b8e33da8b56148e4c65cc"}, - {file = "pywin32-304-cp39-cp39-win_amd64.whl", hash = "sha256:d24a3382f013b21aa24a5cfbfad5a2cd9926610c0affde3e8ab5b3d7dbcf4ac9"}, -] +pywin32 = [] pywinpty = [ {file = "pywinpty-2.0.8-cp310-none-win_amd64.whl", hash = "sha256:9cbf89834abc8d4d4c5f295f11e15dd93889a8069db876f2bc10cc64aa4060ac"}, {file = "pywinpty-2.0.8-cp37-none-win_amd64.whl", hash = "sha256:a2f9a95f3b74262ef73f1be5257c295c8caab1f79f081aa3400ca61c724f9bc6"}, @@ -4950,13 +4406,6 @@ pyyaml = [ {file = "PyYAML-6.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:f84fbc98b019fef2ee9a1cb3ce93e3187a6df0b2538a651bfb890254ba9f90b5"}, {file = "PyYAML-6.0-cp310-cp310-win32.whl", hash = "sha256:2cd5df3de48857ed0544b34e2d40e9fac445930039f3cfe4bcc592a1f836d513"}, {file = "PyYAML-6.0-cp310-cp310-win_amd64.whl", hash = "sha256:daf496c58a8c52083df09b80c860005194014c3698698d1a57cbcfa182142a3a"}, - {file = "PyYAML-6.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:d4b0ba9512519522b118090257be113b9468d804b19d63c71dbcf4a48fa32358"}, - {file = "PyYAML-6.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:81957921f441d50af23654aa6c5e5eaf9b06aba7f0a19c18a538dc7ef291c5a1"}, - {file = "PyYAML-6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:afa17f5bc4d1b10afd4466fd3a44dc0e245382deca5b3c353d8b757f9e3ecb8d"}, - {file = "PyYAML-6.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dbad0e9d368bb989f4515da330b88a057617d16b6a8245084f1b05400f24609f"}, - {file = "PyYAML-6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:432557aa2c09802be39460360ddffd48156e30721f5e8d917f01d31694216782"}, - {file = "PyYAML-6.0-cp311-cp311-win32.whl", hash = "sha256:bfaef573a63ba8923503d27530362590ff4f576c626d86a9fed95822a8255fd7"}, - {file = "PyYAML-6.0-cp311-cp311-win_amd64.whl", hash = "sha256:01b45c0191e6d66c470b6cf1b9531a771a83c1c4208272ead47a3ae4f2f603bf"}, {file = "PyYAML-6.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:897b80890765f037df3403d22bab41627ca8811ae55e9a722fd0392850ec4d86"}, {file = "PyYAML-6.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50602afada6d6cbfad699b0c7bb50d5ccffa7e46a3d738092afddc1f9758427f"}, {file = "PyYAML-6.0-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:48c346915c114f5fdb3ead70312bd042a953a8ce5c7106d5bfb1a5254e47da92"}, @@ -5068,14 +4517,8 @@ qtpy = [ {file = "QtPy-2.2.1-py3-none-any.whl", hash = "sha256:268cf5328f41353be1b127e04a81bc74ec9a9b54c9ac75dd8fe0ff48d8ad6ead"}, {file = "QtPy-2.2.1.tar.gz", hash = "sha256:7d5231133b772e40b4ee514b6673aca558331e4b88ca038b26c9e16c5c95524f"}, ] -requests = [ - {file = "requests-2.28.1-py3-none-any.whl", hash = "sha256:8fefa2a1a1365bf5520aac41836fbee479da67864514bdb821f31ce07ce65349"}, - {file = "requests-2.28.1.tar.gz", hash = "sha256:7c5599b102feddaa661c826c56ab4fee28bfd17f5abca1ebbe3e7f19d7c97983"}, -] -requests-oauthlib = [ - {file = "requests-oauthlib-1.3.1.tar.gz", hash = "sha256:75beac4a47881eeb94d5ea5d6ad31ef88856affe2332b9aafb52c6452ccf0d7a"}, - {file = "requests_oauthlib-1.3.1-py2.py3-none-any.whl", hash = "sha256:2577c501a2fb8d05a304c09d090d6e47c306fef15809d102b327cf8364bddab5"}, -] +requests = [] +requests-oauthlib = [] rsa = [ {file = "rsa-4.9-py3-none-any.whl", hash = "sha256:90260d9058e514786967344d0ef75fa8727eed8a7d2e43ce9f4bcf1b536174f7"}, {file = "rsa-4.9.tar.gz", hash = "sha256:e38464a49c6c85d7f1351b0126661487a7e0a14a50f1675ec50eb34d4f20ef21"}, @@ -5107,44 +4550,8 @@ ruptures = [ {file = "ruptures-1.1.5-cp39-cp39-win_amd64.whl", hash = "sha256:b9e9194fe649e2c6a08347751fde1a11fd7ef3182eeb1687d019f494f923c657"}, {file = "ruptures-1.1.5.tar.gz", hash = "sha256:fcf1d51e0abfd1aaea7d414c98af5d939990f061944a9b6587a8defa0bb54cff"}, ] -s3transfer = [ - {file = "s3transfer-0.6.0-py3-none-any.whl", hash = "sha256:06176b74f3a15f61f1b4f25a1fc29a4429040b7647133a463da8fa5bd28d5ecd"}, - {file = "s3transfer-0.6.0.tar.gz", hash = "sha256:2ed07d3866f523cc561bf4a00fc5535827981b117dd7876f036b0c1aca42c947"}, -] -scikit-learn = [ - {file = "scikit-learn-1.0.2.tar.gz", hash = "sha256:b5870959a5484b614f26d31ca4c17524b1b0317522199dc985c3b4256e030767"}, - {file = "scikit_learn-1.0.2-cp310-cp310-macosx_10_13_x86_64.whl", hash = "sha256:da3c84694ff693b5b3194d8752ccf935a665b8b5edc33a283122f4273ca3e687"}, - {file = "scikit_learn-1.0.2-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:75307d9ea39236cad7eea87143155eea24d48f93f3a2f9389c817f7019f00705"}, - {file = "scikit_learn-1.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f14517e174bd7332f1cca2c959e704696a5e0ba246eb8763e6c24876d8710049"}, - {file = "scikit_learn-1.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d9aac97e57c196206179f674f09bc6bffcd0284e2ba95b7fe0b402ac3f986023"}, - {file = "scikit_learn-1.0.2-cp310-cp310-win_amd64.whl", hash = "sha256:d93d4c28370aea8a7cbf6015e8a669cd5d69f856cc2aa44e7a590fb805bb5583"}, - {file = "scikit_learn-1.0.2-cp37-cp37m-macosx_10_13_x86_64.whl", hash = "sha256:85260fb430b795d806251dd3bb05e6f48cdc777ac31f2bcf2bc8bbed3270a8f5"}, - {file = "scikit_learn-1.0.2-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:a053a6a527c87c5c4fa7bf1ab2556fa16d8345cf99b6c5a19030a4a7cd8fd2c0"}, - {file = "scikit_learn-1.0.2-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:245c9b5a67445f6f044411e16a93a554edc1efdcce94d3fc0bc6a4b9ac30b752"}, - {file = "scikit_learn-1.0.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:158faf30684c92a78e12da19c73feff9641a928a8024b4fa5ec11d583f3d8a87"}, - {file = "scikit_learn-1.0.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:08ef968f6b72033c16c479c966bf37ccd49b06ea91b765e1cc27afefe723920b"}, - {file = "scikit_learn-1.0.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:16455ace947d8d9e5391435c2977178d0ff03a261571e67f627c8fee0f9d431a"}, - {file = "scikit_learn-1.0.2-cp37-cp37m-win32.whl", hash = "sha256:2f3b453e0b149898577e301d27e098dfe1a36943f7bb0ad704d1e548efc3b448"}, - {file = "scikit_learn-1.0.2-cp37-cp37m-win_amd64.whl", hash = "sha256:46f431ec59dead665e1370314dbebc99ead05e1c0a9df42f22d6a0e00044820f"}, - {file = "scikit_learn-1.0.2-cp38-cp38-macosx_10_13_x86_64.whl", hash = "sha256:ff3fa8ea0e09e38677762afc6e14cad77b5e125b0ea70c9bba1992f02c93b028"}, - {file = "scikit_learn-1.0.2-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:9369b030e155f8188743eb4893ac17a27f81d28a884af460870c7c072f114243"}, - {file = "scikit_learn-1.0.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:7d6b2475f1c23a698b48515217eb26b45a6598c7b1840ba23b3c5acece658dbb"}, - {file = "scikit_learn-1.0.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:285db0352e635b9e3392b0b426bc48c3b485512d3b4ac3c7a44ec2a2ba061e66"}, - {file = "scikit_learn-1.0.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5cb33fe1dc6f73dc19e67b264dbb5dde2a0539b986435fdd78ed978c14654830"}, - {file = "scikit_learn-1.0.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b1391d1a6e2268485a63c3073111fe3ba6ec5145fc957481cfd0652be571226d"}, - {file = "scikit_learn-1.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc3744dabc56b50bec73624aeca02e0def06b03cb287de26836e730659c5d29c"}, - {file = "scikit_learn-1.0.2-cp38-cp38-win32.whl", hash = "sha256:a999c9f02ff9570c783069f1074f06fe7386ec65b84c983db5aeb8144356a355"}, - {file = "scikit_learn-1.0.2-cp38-cp38-win_amd64.whl", hash = "sha256:7626a34eabbf370a638f32d1a3ad50526844ba58d63e3ab81ba91e2a7c6d037e"}, - {file = "scikit_learn-1.0.2-cp39-cp39-macosx_10_13_x86_64.whl", hash = "sha256:a90b60048f9ffdd962d2ad2fb16367a87ac34d76e02550968719eb7b5716fd10"}, - {file = "scikit_learn-1.0.2-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:7a93c1292799620df90348800d5ac06f3794c1316ca247525fa31169f6d25855"}, - {file = "scikit_learn-1.0.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:eabceab574f471de0b0eb3f2ecf2eee9f10b3106570481d007ed1c84ebf6d6a1"}, - {file = "scikit_learn-1.0.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:55f2f3a8414e14fbee03782f9fe16cca0f141d639d2b1c1a36779fa069e1db57"}, - {file = "scikit_learn-1.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:80095a1e4b93bd33261ef03b9bc86d6db649f988ea4dbcf7110d0cded8d7213d"}, - {file = "scikit_learn-1.0.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fa38a1b9b38ae1fad2863eff5e0d69608567453fdfc850c992e6e47eb764e846"}, - {file = "scikit_learn-1.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ff746a69ff2ef25f62b36338c615dd15954ddc3ab8e73530237dd73235e76d62"}, - {file = "scikit_learn-1.0.2-cp39-cp39-win32.whl", hash = "sha256:e174242caecb11e4abf169342641778f68e1bfaba80cd18acd6bc84286b9a534"}, - {file = "scikit_learn-1.0.2-cp39-cp39-win_amd64.whl", hash = "sha256:b54a62c6e318ddbfa7d22c383466d38d2ee770ebdb5ddb668d56a099f6eaf75f"}, -] +s3transfer = [] +scikit-learn = [] scipy = [ {file = "scipy-1.7.3-1-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:c9e04d7e9b03a8a6ac2045f7c5ef741be86727d8f49c45db45f244bdd2bcff17"}, {file = "scipy-1.7.3-1-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:b0e0aeb061a1d7dcd2ed59ea57ee56c9b23dd60100825f98238c06ee5cc4467e"}, @@ -5254,10 +4661,6 @@ setproctitle = [ {file = "setproctitle-1.3.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:7aa0aac1711fadffc1d51e9d00a3bea61f68443d6ac0241a224e4d622489d665"}, {file = "setproctitle-1.3.2.tar.gz", hash = "sha256:b9fb97907c830d260fa0658ed58afd48a86b2b88aac521135c352ff7fd3477fd"}, ] -setuptools = [ - {file = "setuptools-65.5.0-py3-none-any.whl", hash = "sha256:f62ea9da9ed6289bfe868cd6845968a2c854d1427f8548d52cae02a42b4f0356"}, - {file = "setuptools-65.5.0.tar.gz", hash = "sha256:512e5536220e38146176efb833d4a62aa726b7bbff82cfbc8ba9eaa3996e0b17"}, -] setuptools-git = [ {file = "setuptools-git-1.2.tar.gz", hash = "sha256:ff64136da01aabba76ae88b050e7197918d8b2139ccbf6144e14d472b9c40445"}, {file = "setuptools_git-1.2-py2.py3-none-any.whl", hash = "sha256:e7764dccce7d97b4b5a330d7b966aac6f9ac026385743fd6cedad553f2494cfa"}, @@ -5266,10 +4669,7 @@ setuptools-scm = [ {file = "setuptools_scm-6.4.2-py3-none-any.whl", hash = "sha256:acea13255093849de7ccb11af9e1fb8bde7067783450cee9ef7a93139bddf6d4"}, {file = "setuptools_scm-6.4.2.tar.gz", hash = "sha256:6833ac65c6ed9711a4d5d2266f8024cfa07c533a0e55f4c12f6eff280a5a9e30"}, ] -shortuuid = [ - {file = "shortuuid-1.0.9-py3-none-any.whl", hash = "sha256:b2bb9eb7773170e253bb7ba25971023acb473517a8b76803d9618668cb1dd46f"}, - {file = "shortuuid-1.0.9.tar.gz", hash = "sha256:459f12fa1acc34ff213b1371467c0325169645a31ed989e268872339af7563d5"}, -] +shortuuid = [] six = [ {file = "six-1.16.0-py2.py3-none-any.whl", hash = "sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254"}, {file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"}, @@ -5286,14 +4686,8 @@ snowballstemmer = [ {file = "snowballstemmer-2.2.0-py2.py3-none-any.whl", hash = "sha256:c8e1716e83cc398ae16824e5572ae04e0d9fc2c6b985fb0f900f5f0c96ecba1a"}, {file = "snowballstemmer-2.2.0.tar.gz", hash = "sha256:09b16deb8547d3412ad7b590689584cd0fe25ec8db3be37788be3810cbf19cb1"}, ] -soupsieve = [ - {file = "soupsieve-2.3.2.post1-py3-none-any.whl", hash = "sha256:3b2503d3c7084a42b1ebd08116e5f81aadfaea95863628c80a3b774a11b7c759"}, - {file = "soupsieve-2.3.2.post1.tar.gz", hash = "sha256:fc53893b3da2c33de295667a0e19f078c14bf86544af307354de5fcf12a3f30d"}, -] -sphinx = [ - {file = "Sphinx-4.5.0-py3-none-any.whl", hash = "sha256:ebf612653238bcc8f4359627a9b7ce44ede6fdd75d9d30f68255c7383d3a6226"}, - {file = "Sphinx-4.5.0.tar.gz", hash = "sha256:7bf8ca9637a4ee15af412d1a1d9689fec70523a68ca9bb9127c2f3eeb344e2e6"}, -] +soupsieve = [] +sphinx = [] sphinx-mathjax-offline = [ {file = "sphinx-mathjax-offline-0.0.1.tar.gz", hash = "sha256:55c53aeb555620f8b0ec0b26083d58ba629edbf6e0306117c3ae3028fea9aed0"}, {file = "sphinx_mathjax_offline-0.0.1-py3-none-any.whl", hash = "sha256:df11439f39b342bc89a8562f1c6fc44b4c0e72a7a542e291a620bd02d8b26184"}, @@ -5369,31 +4763,7 @@ sqlalchemy = [ {file = "SQLAlchemy-1.4.42-cp39-cp39-win_amd64.whl", hash = "sha256:5f966b64c852592469a7eb759615bbd351571340b8b344f1d3fa2478b5a4c934"}, {file = "SQLAlchemy-1.4.42.tar.gz", hash = "sha256:177e41914c476ed1e1b77fd05966ea88c094053e17a85303c4ce007f88eff363"}, ] -statsmodels = [ - {file = "statsmodels-0.13.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:3e7ca5b7e678c0bb7a24f5c735d58ac104a50eb61b17c484cce0e221a095560f"}, - {file = "statsmodels-0.13.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:066a75d5585378b2df972f81a90b9a3da5e567b7d4833300c1597438c1a35e29"}, - {file = "statsmodels-0.13.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f15f38dfc9c5c091662cb619e12322047368c67aef449c7554d9b324a15f7a94"}, - {file = "statsmodels-0.13.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5c4ccc6b4744613367e8a233bd952c8a838db8f528f9fe033bda25aa13fc7d08"}, - {file = "statsmodels-0.13.2-cp310-cp310-win_amd64.whl", hash = "sha256:855b1cc2a91ab140b9bcf304b1731705805ce73223bf500b988804968554c0ed"}, - {file = "statsmodels-0.13.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:b69c9af7606325095f7c40c581957bad9f28775653d41537c1ec4cd1b185ff5b"}, - {file = "statsmodels-0.13.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ab31bac0f72b83bca1f217a12ec6f309a56485a50c4a705fbdd63112213d4da4"}, - {file = "statsmodels-0.13.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5d680b910b57fc0aa87472662cdfe09aae0e21db4bdf19ccd6420fd4dffda892"}, - {file = "statsmodels-0.13.2-cp37-cp37m-win32.whl", hash = "sha256:9e9a3f661d372431850d55157d049e079493c97fc06f550d23d8c8c70805cc48"}, - {file = "statsmodels-0.13.2-cp37-cp37m-win_amd64.whl", hash = "sha256:c9f6326870c095ef688f072cd476b932aff0906d60193eaa08e93ec23b29ca83"}, - {file = "statsmodels-0.13.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:5bc050f25f1ba1221efef9ea01b751c60935ad787fcd4259f4ece986f2da9141"}, - {file = "statsmodels-0.13.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:426b1c8ea3918d3d27dbfa38f2bee36cabf41d32163e2cbb3adfb0178b24626a"}, - {file = "statsmodels-0.13.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:45b80fac4a63308b1e93fa9dc27a8598930fd5dfd77c850ca077bb850254c6d7"}, - {file = "statsmodels-0.13.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:78ee69ec0e0f79f627245c65f8a495b8581c2ea19084aac63941815feb15dcf3"}, - {file = "statsmodels-0.13.2-cp38-cp38-win32.whl", hash = "sha256:20483cc30e11aa072b30d307bb80470f86a23ae8fffa51439ca54509d7aa9b05"}, - {file = "statsmodels-0.13.2-cp38-cp38-win_amd64.whl", hash = "sha256:bf43051a92231ccb9de95e4b6d22d3b15e499ee5ee9bff0a20e6b6ad293e34cb"}, - {file = "statsmodels-0.13.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6bf0dfed5f5edb59b5922b295392cd276463b10a5e730f7e57ee4ff2d8e9a87e"}, - {file = "statsmodels-0.13.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a403b559c5586dab7ac0fc9e754c737b017c96cce0ddd66ff9094764cdaf293d"}, - {file = "statsmodels-0.13.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9f23554dd025ea354ce072ba32bfaa840d2b856372e5734290e181d27a1f9e0c"}, - {file = "statsmodels-0.13.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:815f4df713e3eb6f40ae175c71f2a70d32f9219b5b4d23d4e0faab1171ba93ba"}, - {file = "statsmodels-0.13.2-cp39-cp39-win32.whl", hash = "sha256:461c82ab2265fa8457b96afc23ef3ca19f42eb070436e0241b57e58a38863901"}, - {file = "statsmodels-0.13.2-cp39-cp39-win_amd64.whl", hash = "sha256:39daab5a8a9332c8ea83d6464d065080c9ba65f236daf6a64aa18f64ef776fad"}, - {file = "statsmodels-0.13.2.tar.gz", hash = "sha256:77dc292c9939c036a476f1770f9d08976b05437daa229928da73231147cde7d4"}, -] +statsmodels = [] stevedore = [ {file = "stevedore-3.5.1-py3-none-any.whl", hash = "sha256:df36e6c003264de286d6e589994552d3254052e7fc6a117753d87c471f06de2a"}, {file = "stevedore-3.5.1.tar.gz", hash = "sha256:1fecadf3d7805b940227f10e6a0140b202c9a24ba5c60cb539159046dc11e8d7"}, @@ -5414,17 +4784,12 @@ tensorboard-data-server = [ {file = "tensorboard_data_server-0.6.1-py3-none-macosx_10_9_x86_64.whl", hash = "sha256:fa8cef9be4fcae2f2363c88176638baf2da19c5ec90addb49b1cde05c95c88ee"}, {file = "tensorboard_data_server-0.6.1-py3-none-manylinux2010_x86_64.whl", hash = "sha256:d8237580755e58eff68d1f3abefb5b1e39ae5c8b127cc40920f9c4fb33f4b98a"}, ] -tensorboard-plugin-wit = [ - {file = "tensorboard_plugin_wit-1.8.1-py3-none-any.whl", hash = "sha256:ff26bdd583d155aa951ee3b152b3d0cffae8005dc697f72b44a8e8c2a77a8cbe"}, -] +tensorboard-plugin-wit = [] terminado = [ {file = "terminado-0.16.0-py3-none-any.whl", hash = "sha256:3e995072a7178a104c41134548ce9b03e4e7f0a538e9c29df4f1fbc81c7cfc75"}, {file = "terminado-0.16.0.tar.gz", hash = "sha256:fac14374eb5498bdc157ed32e510b1f60d5c3c7981a9f5ba018bb9a64cec0c25"}, ] -threadpoolctl = [ - {file = "threadpoolctl-3.1.0-py3-none-any.whl", hash = "sha256:8b99adda265feb6773280df41eece7b2e6561b772d21ffd52e372f999024907b"}, - {file = "threadpoolctl-3.1.0.tar.gz", hash = "sha256:a335baacfaa4400ae1f0d8e3a58d6674d2f8828e3716bb2802c44955ad391380"}, -] +threadpoolctl = [] tinycss2 = [ {file = "tinycss2-1.2.0-py3-none-any.whl", hash = "sha256:9f16c0a652838606c50b1b660c2021df608d9f7ec5a21673d8a35b0dad1b1718"}, {file = "tinycss2-1.2.0.tar.gz", hash = "sha256:b0e04b0d8682c96dabca57654d3650c2d79f8bd0f1a6fc57b0939598ec3f4f5e"}, @@ -5437,48 +4802,13 @@ toml = [ {file = "toml-0.10.2-py2.py3-none-any.whl", hash = "sha256:806143ae5bfb6a3c6e736a764057db0e6a0e05e338b5630894a5f779cabb4f9b"}, {file = "toml-0.10.2.tar.gz", hash = "sha256:b3bda1d108d5dd99f4a20d24d9c348e91c4db7ab1b749200bded2f839ccbe68f"}, ] -tomli = [ - {file = "tomli-2.0.1-py3-none-any.whl", hash = "sha256:939de3e7a6161af0c887ef91b7d41a53e7c5a1ca976325f429cb46ea9bc30ecc"}, - {file = "tomli-2.0.1.tar.gz", hash = "sha256:de526c12914f0c550d15924c62d72abc48d6fe7364aa87328337a31007fe8a4f"}, -] -torch = [ - {file = "torch-1.11.0-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:62052b50fffc29ca7afc0c04ef8206b6f1ca9d10629cb543077e12967e8d0398"}, - {file = "torch-1.11.0-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:866bfba29ac98dec35d893d8e17eaec149d0ac7a53be7baae5c98069897db667"}, - {file = "torch-1.11.0-cp310-cp310-win_amd64.whl", hash = "sha256:951640fb8db308a59d9b510e7d1ad910aff92913323bbe4bc75435347ddd346d"}, - {file = "torch-1.11.0-cp310-none-macosx_10_9_x86_64.whl", hash = "sha256:5d77b5ece78fdafa5c7f42995ff9474399d22571cd6b2de21a5d666306a2ff8c"}, - {file = "torch-1.11.0-cp310-none-macosx_11_0_arm64.whl", hash = "sha256:b5a38682769b544c875ecc34bcb81fbad5c922139b61319aacffcfd8a32f528c"}, - {file = "torch-1.11.0-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:f82d77695a60626f2b7382d85bc566de8a6b3e50d32080755abc040db802e419"}, - {file = "torch-1.11.0-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:b96654d42566080a134e784705f33f8536b3b95b5dcde357ed7879b1692a5f78"}, - {file = "torch-1.11.0-cp37-cp37m-win_amd64.whl", hash = "sha256:8ee7c2e8d7f7020d5bfbc1bb91b9591044c26bbd0cee5e4f694cfd7ed8649260"}, - {file = "torch-1.11.0-cp37-none-macosx_10_9_x86_64.whl", hash = "sha256:6860b1d1bf0bb0b67a6bd47f85a0e4c825b518eea13b5d6101999dbbcbd5bc0c"}, - {file = "torch-1.11.0-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:4322aa29f50da7f404db06cdf30896ea67b09f673af4a985afc7162bc897864d"}, - {file = "torch-1.11.0-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:e4d2e0ddd652f30e94cff750220324ec45705d4ecc69658f773b3cb1c7a28dd0"}, - {file = "torch-1.11.0-cp38-cp38-win_amd64.whl", hash = "sha256:34ce5ea4d8d85da32cdbadb50d4585106901e9f8a3527991daa70c13a09de1f7"}, - {file = "torch-1.11.0-cp38-none-macosx_10_9_x86_64.whl", hash = "sha256:0ccc85cd06227a3edf809e2c795fd5762c3d4e8a38b5c9f744c6e7cf841361bb"}, - {file = "torch-1.11.0-cp38-none-macosx_11_0_arm64.whl", hash = "sha256:c1554e49d74f1b2c3e7202d77056ba2dd7465437585bac64062b580f714a44e9"}, - {file = "torch-1.11.0-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:58c7814502b1c129a650d7092033bbb0bbd64faf1a7941631aaa1aeaddc37570"}, - {file = "torch-1.11.0-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:831cf588f01dda9409e75576741d2823453990dee2983d670f2584b37a01adf7"}, - {file = "torch-1.11.0-cp39-cp39-win_amd64.whl", hash = "sha256:44a1d02fd20f827f0f36dc26fdcfc45e793806a6ad52769a22260655a77a4369"}, - {file = "torch-1.11.0-cp39-none-macosx_10_9_x86_64.whl", hash = "sha256:50fd9bf85c578c871c28f1cb0ace9dfc6024401c7f399b174fb0f370899f4454"}, - {file = "torch-1.11.0-cp39-none-macosx_11_0_arm64.whl", hash = "sha256:0e48af66ad755f0f9c5f2664028a414f57c49d6adc37e77e06fe0004da4edb61"}, -] +tomli = [] +torch = [] torchmetrics = [ {file = "torchmetrics-0.10.0-py3-none-any.whl", hash = "sha256:1e99ee7379f8ff7e383383513ae0594bc5424de83b43e36c6ce12d464f1635b9"}, {file = "torchmetrics-0.10.0.tar.gz", hash = "sha256:990bafc7f76d7442894533771d0ba7492dbca2bbf2989fb32de7e9c68eb3d133"}, ] -tornado = [ - {file = "tornado-6.2-cp37-abi3-macosx_10_9_universal2.whl", hash = "sha256:20f638fd8cc85f3cbae3c732326e96addff0a15e22d80f049e00121651e82e72"}, - {file = "tornado-6.2-cp37-abi3-macosx_10_9_x86_64.whl", hash = "sha256:87dcafae3e884462f90c90ecc200defe5e580a7fbbb4365eda7c7c1eb809ebc9"}, - {file = "tornado-6.2-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ba09ef14ca9893954244fd872798b4ccb2367c165946ce2dd7376aebdde8e3ac"}, - {file = "tornado-6.2-cp37-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b8150f721c101abdef99073bf66d3903e292d851bee51910839831caba341a75"}, - {file = "tornado-6.2-cp37-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d3a2f5999215a3a06a4fc218026cd84c61b8b2b40ac5296a6db1f1451ef04c1e"}, - {file = "tornado-6.2-cp37-abi3-musllinux_1_1_aarch64.whl", hash = "sha256:5f8c52d219d4995388119af7ccaa0bcec289535747620116a58d830e7c25d8a8"}, - {file = "tornado-6.2-cp37-abi3-musllinux_1_1_i686.whl", hash = "sha256:6fdfabffd8dfcb6cf887428849d30cf19a3ea34c2c248461e1f7d718ad30b66b"}, - {file = "tornado-6.2-cp37-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:1d54d13ab8414ed44de07efecb97d4ef7c39f7438cf5e976ccd356bebb1b5fca"}, - {file = "tornado-6.2-cp37-abi3-win32.whl", hash = "sha256:5c87076709343557ef8032934ce5f637dbb552efa7b21d08e89ae7619ed0eb23"}, - {file = "tornado-6.2-cp37-abi3-win_amd64.whl", hash = "sha256:e5f923aa6a47e133d1cf87d60700889d7eae68988704e20c75fb2d65677a8e4b"}, - {file = "tornado-6.2.tar.gz", hash = "sha256:9b630419bde84ec666bfd7ea0a4cb2a8a651c2d5cccdbdd1972a0c859dfc3c13"}, -] +tornado = [] tqdm = [ {file = "tqdm-4.64.1-py2.py3-none-any.whl", hash = "sha256:6fee160d6ffcd1b1c68c65f14c829c22832bc401726335ce92c52d395944a6a1"}, {file = "tqdm-4.64.1.tar.gz", hash = "sha256:5f4f682a004951c1b450bc753c710e9280c5746ce6ffedee253ddbcbf54cf1e4"}, @@ -5519,18 +4849,16 @@ typed-ast = [ {file = "typed_ast-1.4.3-cp39-cp39-win_amd64.whl", hash = "sha256:9c6d1a54552b5330bc657b7ef0eae25d00ba7ffe85d9ea8ae6540d2197a3788c"}, {file = "typed_ast-1.4.3.tar.gz", hash = "sha256:fb1bbeac803adea29cedd70781399c99138358c26d05fcbd23c13016b7f5ec65"}, ] -typer = [ - {file = "typer-0.4.2-py3-none-any.whl", hash = "sha256:023bae00d1baf358a6cc7cea45851639360bb716de687b42b0a4641cd99173f1"}, - {file = "typer-0.4.2.tar.gz", hash = "sha256:b8261c6c0152dd73478b5ba96ba677e5d6948c715c310f7c91079f311f62ec03"}, -] -types-deprecated = [ - {file = "types-Deprecated-1.2.9.tar.gz", hash = "sha256:e04ce58929509865359e91dcc38720123262b4cd68fa2a8a90312d50390bb6fa"}, - {file = "types_Deprecated-1.2.9-py3-none-any.whl", hash = "sha256:53d05621e1d75de537f5a57d93508c8df17e37c07ee60b9fb09d39e1b7586c1e"}, -] +typer = [] +types-deprecated = [] types-pyyaml = [ {file = "types-PyYAML-6.0.12.tar.gz", hash = "sha256:f6f350418125872f3f0409d96a62a5a5ceb45231af5cc07ee0034ec48a3c82fa"}, {file = "types_PyYAML-6.0.12-py3-none-any.whl", hash = "sha256:29228db9f82df4f1b7febee06bbfb601677882e98a3da98132e31c6874163e15"}, ] +types-setuptools = [ + {file = "types-setuptools-65.5.0.3.tar.gz", hash = "sha256:17769171f5f2a2dc69b25c0d3106552a5cda767bbf6b36cb6212b26dae5aa9fc"}, + {file = "types_setuptools-65.5.0.3-py3-none-any.whl", hash = "sha256:9254c32b0cc91c486548e7d7561243b5bd185402a383e93c6691e1b9bc8d86e2"}, +] typing-extensions = [ {file = "typing_extensions-4.4.0-py3-none-any.whl", hash = "sha256:16fa4864408f655d35ec496218b85f79b3437c829e93320c7c9215ccfd92489e"}, {file = "typing_extensions-4.4.0.tar.gz", hash = "sha256:1511434bb92bf8dd198c12b1cc812e800d4181cfcb867674e0f8279cc93087aa"}, @@ -5606,10 +4934,7 @@ urllib3 = [ {file = "urllib3-1.26.12-py2.py3-none-any.whl", hash = "sha256:b930dd878d5a8afb066a637fbb35144fe7901e3b209d1cd4f524bd0e9deee997"}, {file = "urllib3-1.26.12.tar.gz", hash = "sha256:3fa96cf423e6987997fc326ae8df396db2a8b7c667747d47ddd8ecba91f4a74e"}, ] -wandb = [ - {file = "wandb-0.12.21-py2.py3-none-any.whl", hash = "sha256:150842447d355d90dc7f368b824951a625e5b2d1be355a00e99b11b73728bc1f"}, - {file = "wandb-0.12.21.tar.gz", hash = "sha256:1975ff88c5024923c3321c93cfefb8d9b871543c0b009f34001bf0f31e444b04"}, -] +wandb = [] wcwidth = [ {file = "wcwidth-0.2.5-py2.py3-none-any.whl", hash = "sha256:beb4802a9cebb9144e99086eff703a642a13d6a0052920003a230f3294bbe784"}, {file = "wcwidth-0.2.5.tar.gz", hash = "sha256:c4d647b99872929fdb7bdcaa4fbe7f01413ed3d98077df798530e5b04f116c83"}, @@ -5626,84 +4951,9 @@ werkzeug = [ {file = "Werkzeug-2.2.2-py3-none-any.whl", hash = "sha256:f979ab81f58d7318e064e99c4506445d60135ac5cd2e177a2de0089bfd4c9bd5"}, {file = "Werkzeug-2.2.2.tar.gz", hash = "sha256:7ea2d48322cc7c0f8b3a215ed73eabd7b5d75d0b50e31ab006286ccff9e00b8f"}, ] -wheel = [ - {file = "wheel-0.37.1-py2.py3-none-any.whl", hash = "sha256:4bdcd7d840138086126cd09254dc6195fb4fc6f01c050a1d7236f2630db1d22a"}, - {file = "wheel-0.37.1.tar.gz", hash = "sha256:e9a504e793efbca1b8e0e9cb979a249cf4a0a7b5b8c9e8b65a5e39d49529c1c4"}, -] -widgetsnbextension = [ - {file = "widgetsnbextension-3.6.1-py2.py3-none-any.whl", hash = "sha256:954e0faefdd414e4e013f17dbc7fd86f24cf1d243a3ac85d5f0fc2c2d2b50c66"}, - {file = "widgetsnbextension-3.6.1.tar.gz", hash = "sha256:9c84ae64c2893c7cbe2eaafc7505221a795c27d68938454034ac487319a75b10"}, -] -win32-setctime = [ - {file = "win32_setctime-1.1.0-py3-none-any.whl", hash = "sha256:231db239e959c2fe7eb1d7dc129f11172354f98361c4fa2d6d2d7e278baa8aad"}, - {file = "win32_setctime-1.1.0.tar.gz", hash = "sha256:15cf5750465118d6929ae4de4eb46e8edae9a5634350c01ba582df868e932cb2"}, -] -wrapt = [ - {file = "wrapt-1.14.1-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:1b376b3f4896e7930f1f772ac4b064ac12598d1c38d04907e696cc4d794b43d3"}, - {file = "wrapt-1.14.1-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:903500616422a40a98a5a3c4ff4ed9d0066f3b4c951fa286018ecdf0750194ef"}, - {file = "wrapt-1.14.1-cp27-cp27m-manylinux1_x86_64.whl", hash = "sha256:5a9a0d155deafd9448baff28c08e150d9b24ff010e899311ddd63c45c2445e28"}, - {file = "wrapt-1.14.1-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:ddaea91abf8b0d13443f6dac52e89051a5063c7d014710dcb4d4abb2ff811a59"}, - {file = "wrapt-1.14.1-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:36f582d0c6bc99d5f39cd3ac2a9062e57f3cf606ade29a0a0d6b323462f4dd87"}, - {file = "wrapt-1.14.1-cp27-cp27mu-manylinux1_i686.whl", hash = "sha256:7ef58fb89674095bfc57c4069e95d7a31cfdc0939e2a579882ac7d55aadfd2a1"}, - {file = "wrapt-1.14.1-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:e2f83e18fe2f4c9e7db597e988f72712c0c3676d337d8b101f6758107c42425b"}, - {file = "wrapt-1.14.1-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:ee2b1b1769f6707a8a445162ea16dddf74285c3964f605877a20e38545c3c462"}, - {file = "wrapt-1.14.1-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:833b58d5d0b7e5b9832869f039203389ac7cbf01765639c7309fd50ef619e0b1"}, - {file = "wrapt-1.14.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:80bb5c256f1415f747011dc3604b59bc1f91c6e7150bd7db03b19170ee06b320"}, - {file = "wrapt-1.14.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:07f7a7d0f388028b2df1d916e94bbb40624c59b48ecc6cbc232546706fac74c2"}, - {file = "wrapt-1.14.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:02b41b633c6261feff8ddd8d11c711df6842aba629fdd3da10249a53211a72c4"}, - {file = "wrapt-1.14.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2fe803deacd09a233e4762a1adcea5db5d31e6be577a43352936179d14d90069"}, - {file = "wrapt-1.14.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:257fd78c513e0fb5cdbe058c27a0624c9884e735bbd131935fd49e9fe719d310"}, - {file = "wrapt-1.14.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:4fcc4649dc762cddacd193e6b55bc02edca674067f5f98166d7713b193932b7f"}, - {file = "wrapt-1.14.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:11871514607b15cfeb87c547a49bca19fde402f32e2b1c24a632506c0a756656"}, - {file = "wrapt-1.14.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:8ad85f7f4e20964db4daadcab70b47ab05c7c1cf2a7c1e51087bfaa83831854c"}, - {file = "wrapt-1.14.1-cp310-cp310-win32.whl", hash = "sha256:a9a52172be0b5aae932bef82a79ec0a0ce87288c7d132946d645eba03f0ad8a8"}, - {file = "wrapt-1.14.1-cp310-cp310-win_amd64.whl", hash = "sha256:6d323e1554b3d22cfc03cd3243b5bb815a51f5249fdcbb86fda4bf62bab9e164"}, - {file = "wrapt-1.14.1-cp35-cp35m-manylinux1_i686.whl", hash = "sha256:43ca3bbbe97af00f49efb06e352eae40434ca9d915906f77def219b88e85d907"}, - {file = "wrapt-1.14.1-cp35-cp35m-manylinux1_x86_64.whl", hash = "sha256:6b1a564e6cb69922c7fe3a678b9f9a3c54e72b469875aa8018f18b4d1dd1adf3"}, - {file = "wrapt-1.14.1-cp35-cp35m-manylinux2010_i686.whl", hash = "sha256:00b6d4ea20a906c0ca56d84f93065b398ab74b927a7a3dbd470f6fc503f95dc3"}, - {file = "wrapt-1.14.1-cp35-cp35m-manylinux2010_x86_64.whl", hash = "sha256:a85d2b46be66a71bedde836d9e41859879cc54a2a04fad1191eb50c2066f6e9d"}, - {file = "wrapt-1.14.1-cp35-cp35m-win32.whl", hash = "sha256:dbcda74c67263139358f4d188ae5faae95c30929281bc6866d00573783c422b7"}, - {file = "wrapt-1.14.1-cp35-cp35m-win_amd64.whl", hash = "sha256:b21bb4c09ffabfa0e85e3a6b623e19b80e7acd709b9f91452b8297ace2a8ab00"}, - {file = "wrapt-1.14.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:9e0fd32e0148dd5dea6af5fee42beb949098564cc23211a88d799e434255a1f4"}, - {file = "wrapt-1.14.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9736af4641846491aedb3c3f56b9bc5568d92b0692303b5a305301a95dfd38b1"}, - {file = "wrapt-1.14.1-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5b02d65b9ccf0ef6c34cba6cf5bf2aab1bb2f49c6090bafeecc9cd81ad4ea1c1"}, - {file = "wrapt-1.14.1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:21ac0156c4b089b330b7666db40feee30a5d52634cc4560e1905d6529a3897ff"}, - {file = "wrapt-1.14.1-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:9f3e6f9e05148ff90002b884fbc2a86bd303ae847e472f44ecc06c2cd2fcdb2d"}, - {file = "wrapt-1.14.1-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:6e743de5e9c3d1b7185870f480587b75b1cb604832e380d64f9504a0535912d1"}, - {file = "wrapt-1.14.1-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:d79d7d5dc8a32b7093e81e97dad755127ff77bcc899e845f41bf71747af0c569"}, - {file = "wrapt-1.14.1-cp36-cp36m-win32.whl", hash = "sha256:81b19725065dcb43df02b37e03278c011a09e49757287dca60c5aecdd5a0b8ed"}, - {file = "wrapt-1.14.1-cp36-cp36m-win_amd64.whl", hash = "sha256:b014c23646a467558be7da3d6b9fa409b2c567d2110599b7cf9a0c5992b3b471"}, - {file = "wrapt-1.14.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:88bd7b6bd70a5b6803c1abf6bca012f7ed963e58c68d76ee20b9d751c74a3248"}, - {file = "wrapt-1.14.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b5901a312f4d14c59918c221323068fad0540e34324925c8475263841dbdfe68"}, - {file = "wrapt-1.14.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d77c85fedff92cf788face9bfa3ebaa364448ebb1d765302e9af11bf449ca36d"}, - {file = "wrapt-1.14.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8d649d616e5c6a678b26d15ece345354f7c2286acd6db868e65fcc5ff7c24a77"}, - {file = "wrapt-1.14.1-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:7d2872609603cb35ca513d7404a94d6d608fc13211563571117046c9d2bcc3d7"}, - {file = "wrapt-1.14.1-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:ee6acae74a2b91865910eef5e7de37dc6895ad96fa23603d1d27ea69df545015"}, - {file = "wrapt-1.14.1-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:2b39d38039a1fdad98c87279b48bc5dce2c0ca0d73483b12cb72aa9609278e8a"}, - {file = "wrapt-1.14.1-cp37-cp37m-win32.whl", hash = "sha256:60db23fa423575eeb65ea430cee741acb7c26a1365d103f7b0f6ec412b893853"}, - {file = "wrapt-1.14.1-cp37-cp37m-win_amd64.whl", hash = "sha256:709fe01086a55cf79d20f741f39325018f4df051ef39fe921b1ebe780a66184c"}, - {file = "wrapt-1.14.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:8c0ce1e99116d5ab21355d8ebe53d9460366704ea38ae4d9f6933188f327b456"}, - {file = "wrapt-1.14.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:e3fb1677c720409d5f671e39bac6c9e0e422584e5f518bfd50aa4cbbea02433f"}, - {file = "wrapt-1.14.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:642c2e7a804fcf18c222e1060df25fc210b9c58db7c91416fb055897fc27e8cc"}, - {file = "wrapt-1.14.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7b7c050ae976e286906dd3f26009e117eb000fb2cf3533398c5ad9ccc86867b1"}, - {file = "wrapt-1.14.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ef3f72c9666bba2bab70d2a8b79f2c6d2c1a42a7f7e2b0ec83bb2f9e383950af"}, - {file = "wrapt-1.14.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:01c205616a89d09827986bc4e859bcabd64f5a0662a7fe95e0d359424e0e071b"}, - {file = "wrapt-1.14.1-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:5a0f54ce2c092aaf439813735584b9537cad479575a09892b8352fea5e988dc0"}, - {file = "wrapt-1.14.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:2cf71233a0ed05ccdabe209c606fe0bac7379fdcf687f39b944420d2a09fdb57"}, - {file = "wrapt-1.14.1-cp38-cp38-win32.whl", hash = "sha256:aa31fdcc33fef9eb2552cbcbfee7773d5a6792c137b359e82879c101e98584c5"}, - {file = "wrapt-1.14.1-cp38-cp38-win_amd64.whl", hash = "sha256:d1967f46ea8f2db647c786e78d8cc7e4313dbd1b0aca360592d8027b8508e24d"}, - {file = "wrapt-1.14.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:3232822c7d98d23895ccc443bbdf57c7412c5a65996c30442ebe6ed3df335383"}, - {file = "wrapt-1.14.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:988635d122aaf2bdcef9e795435662bcd65b02f4f4c1ae37fbee7401c440b3a7"}, - {file = "wrapt-1.14.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9cca3c2cdadb362116235fdbd411735de4328c61425b0aa9f872fd76d02c4e86"}, - {file = "wrapt-1.14.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d52a25136894c63de15a35bc0bdc5adb4b0e173b9c0d07a2be9d3ca64a332735"}, - {file = "wrapt-1.14.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:40e7bc81c9e2b2734ea4bc1aceb8a8f0ceaac7c5299bc5d69e37c44d9081d43b"}, - {file = "wrapt-1.14.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:b9b7a708dd92306328117d8c4b62e2194d00c365f18eff11a9b53c6f923b01e3"}, - {file = "wrapt-1.14.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:6a9a25751acb379b466ff6be78a315e2b439d4c94c1e99cb7266d40a537995d3"}, - {file = "wrapt-1.14.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:34aa51c45f28ba7f12accd624225e2b1e5a3a45206aa191f6f9aac931d9d56fe"}, - {file = "wrapt-1.14.1-cp39-cp39-win32.whl", hash = "sha256:dee0ce50c6a2dd9056c20db781e9c1cfd33e77d2d569f5d1d9321c641bb903d5"}, - {file = "wrapt-1.14.1-cp39-cp39-win_amd64.whl", hash = "sha256:dee60e1de1898bde3b238f18340eec6148986da0455d8ba7848d50470a7a32fb"}, - {file = "wrapt-1.14.1.tar.gz", hash = "sha256:380a85cf89e0e69b7cfbe2ea9f765f004ff419f34194018a6827ac0e3edfed4d"}, -] +widgetsnbextension = [] +win32-setctime = [] +wrapt = [] yarl = [ {file = "yarl-1.8.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:abc06b97407868ef38f3d172762f4069323de52f2b70d133d096a48d72215d28"}, {file = "yarl-1.8.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:07b21e274de4c637f3e3b7104694e53260b5fc10d51fb3ec5fed1da8e0f754e3"}, diff --git a/pyproject.toml b/pyproject.toml index f6fb541a4..dcb03c278 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -103,6 +103,7 @@ flake8-docstrings = {version = "^1.6.0", optional = true} mypy = {version = "^0.910", optional = true} types-PyYAML = {version = "^6.0.0", optional = true} codespell = {version = "^2.0.0", optional = true} +types-setuptools = {version = "^65.5.0", optional = true} click = {version = ">=8.0.1, <8.1", optional = true} semver = {version = "^2.13.0", optional = true} @@ -125,7 +126,7 @@ release = ["click", "semver"] docs = ["Sphinx", "numpydoc", "sphinx-rtd-theme", "nbsphinx", "sphinx-mathjax-offline", "myst-parser", "GitPython"] tests = ["pytest-cov", "coverage", "pytest"] jupyter = ["jupyter", "nbconvert", "black"] -style = ["black", "isort", "flake8", "pep8-naming", "flake8-docstrings", "mypy", "types-PyYAML", "codespell", "flake8-bugbear", "flake8-comprehensions"] +style = ["black", "isort", "flake8", "pep8-naming", "flake8-docstrings", "mypy", "types-PyYAML", "codespell", "flake8-bugbear", "flake8-comprehensions", "types-setuptools"] all = [ "prophet", @@ -143,7 +144,7 @@ all-dev = [ "click", "semver", "Sphinx", "numpydoc", "sphinx-rtd-theme", "nbsphinx", "sphinx-mathjax-offline", "myst-parser", "GitPython", "pytest-cov", "coverage", "pytest", - "black", "isort", "flake8", "pep8-naming", "flake8-docstrings", "mypy", "types-PyYAML", "codespell", "flake8-bugbear", "flake8-comprehensions", + "black", "isort", "flake8", "pep8-naming", "flake8-docstrings", "mypy", "types-PyYAML", "codespell", "flake8-bugbear", "flake8-comprehensions", "types-setuptools", "click", "semver", "jupyter", "nbconvert", "pyts" diff --git a/scripts/check_imported_dependencies.py b/scripts/check_imported_dependencies.py index 238ddc3c1..249ffc433 100644 --- a/scripts/check_imported_dependencies.py +++ b/scripts/check_imported_dependencies.py @@ -56,7 +56,7 @@ def find_imported_modules(path: pathlib.Path): pyproject_deps = [i for i, value in pyproject["tool"]["poetry"]["dependencies"].items() if i != "python"] -missed_deps = [module for module in modules if module not in ["sklearn", "tsfresh"] and min([lev_dist(module, dep) for dep in pyproject_deps]) > 2] +missed_deps = [module for module in modules if module not in ["sklearn", "tsfresh", "pkg_resources"] and min([lev_dist(module, dep) for dep in pyproject_deps]) > 2] if len(missed_deps) > 0: raise ValueError(f"Missing deps: {missed_deps}") diff --git a/tests/test_core/test_mixins.py b/tests/test_core/test_mixins.py new file mode 100644 index 000000000..68c382fb7 --- /dev/null +++ b/tests/test_core/test_mixins.py @@ -0,0 +1,84 @@ +import json +import pathlib +import pickle +import tempfile +from unittest.mock import patch +from zipfile import ZipFile + +import pytest + +from etna.core.mixins import SaveMixin +from etna.core.mixins import get_etna_version + + +class Dummy(SaveMixin): + def __init__(self, a, b): + self.a = a + self.b = b + + +def test_get_etna_version(): + version = get_etna_version() + assert len(version) == 3 + + +def test_save_mixin_save(): + with tempfile.TemporaryDirectory() as dir_path_str: + dummy = Dummy(a=1, b=2) + dir_path = pathlib.Path(dir_path_str) + path = dir_path.joinpath("dummy.zip") + + dummy.save(path) + + with ZipFile(path, "r") as zip_file: + files = zip_file.namelist() + assert sorted(files) == ["metadata.json", "object.pkl"] + + with zip_file.open("metadata.json", "r") as input_file: + metadata_bytes = input_file.read() + metadata_str = metadata_bytes.decode("utf-8") + metadata = json.loads(metadata_str) + assert sorted(metadata.keys()) == ["class", "etna_version"] + assert metadata["class"] == "tests.test_core.test_mixins.Dummy" + + with zip_file.open("object.pkl", "r") as input_file: + loaded_dummy = pickle.load(input_file) + assert loaded_dummy.a == dummy.a + assert loaded_dummy.b == dummy.b + + +def test_save_mixin_load_ok(recwarn): + with tempfile.TemporaryDirectory() as dir_path_str: + dummy = Dummy(a=1, b=2) + dir_path = pathlib.Path(dir_path_str) + path = dir_path.joinpath("dummy.zip") + + dummy.save(path) + loaded_dummy = Dummy.load(path) + + assert loaded_dummy.a == dummy.a + assert loaded_dummy.b == dummy.b + assert len(recwarn) == 0 + + +@pytest.mark.parametrize( + "save_version, load_version", [((1, 5, 0), (2, 5, 0)), ((2, 5, 0), (1, 5, 0)), ((1, 5, 0), (1, 3, 0))] +) +@patch("etna.core.mixins.get_etna_version") +def test_save_mixin_load_warning(get_version_mock, save_version, load_version): + with tempfile.TemporaryDirectory() as dir_path_str: + dummy = Dummy(a=1, b=2) + dir_path = pathlib.Path(dir_path_str) + path = dir_path.joinpath("dummy.zip") + + get_version_mock.return_value = save_version + dummy.save(path) + + save_version_str = ".".join([str(x) for x in save_version]) + load_version_str = ".".join([str(x) for x in load_version]) + with pytest.warns( + UserWarning, + match=f"The object was saved under etna version {save_version_str} but running version is {load_version_str}", + ): + get_version_mock.return_value = load_version + _ = Dummy.load(path) diff --git a/tests/test_models/nn/test_deepar.py b/tests/test_models/nn/test_deepar.py index 63fa10f0a..255d47027 100644 --- a/tests/test_models/nn/test_deepar.py +++ b/tests/test_models/nn/test_deepar.py @@ -10,6 +10,7 @@ from etna.transforms import DateFlagsTransform from etna.transforms import PytorchForecastingTransform from etna.transforms import StandardScalerTransform +from tests.test_models.utils import assert_model_equals_loaded_original def test_fit_wrong_order_transform(weekly_period_df): @@ -169,3 +170,18 @@ def test_prediction_interval_run_infuture(example_tsds): assert (segment_slice["target_0.975"] - segment_slice["target_0.025"] >= 0).all() assert (segment_slice["target"] - segment_slice["target_0.025"] >= 0).all() assert (segment_slice["target_0.975"] - segment_slice["target"] >= 0).all() + + +@pytest.mark.xfail(reason="Should be fixed in inference-v2.0", strict=True) +def test_save_load(example_tsds): + horizon = 3 + model = DeepARModel(max_epochs=2, learning_rate=[0.01], gpus=0, batch_size=64) + transform = PytorchForecastingTransform( + max_encoder_length=horizon, + max_prediction_length=horizon, + time_varying_known_reals=["time_idx"], + time_varying_unknown_reals=["target"], + target_normalizer=GroupNormalizer(groups=["segment"]), + ) + transforms = [transform] + assert_model_equals_loaded_original(model=model, ts=example_tsds, transforms=transforms, horizon=horizon) diff --git a/tests/test_models/nn/test_mlp.py b/tests/test_models/nn/test_mlp.py index d091d7d34..2c1d708a2 100644 --- a/tests/test_models/nn/test_mlp.py +++ b/tests/test_models/nn/test_mlp.py @@ -12,6 +12,7 @@ from etna.transforms import FourierTransform from etna.transforms import LagTransform from etna.transforms import StandardScalerTransform +from tests.test_models.utils import assert_model_equals_loaded_original @pytest.mark.parametrize( @@ -101,3 +102,20 @@ def test_mlp_layers(): nn.Linear(in_features=3, out_features=10), nn.ReLU(), nn.Linear(in_features=10, out_features=1) ) assert repr(model_) == repr(model.mlp) + + +@pytest.mark.xfail(reason="Non native serialization, should be fixed in inference-v2.0") +def test_save_load(example_tsds): + horizon = 3 + model = MLPModel( + input_size=10, + hidden_size=[10, 10, 10, 10, 10], + lr=1e-1, + decoder_length=14, + trainer_params=dict(max_epochs=2), + ) + lag = LagTransform(in_column="target", lags=list(range(horizon, horizon + 3))) + fourier = FourierTransform(period=7, order=3) + std = StandardScalerTransform(in_column="target") + transforms = [lag, fourier, std] + assert_model_equals_loaded_original(model=model, ts=example_tsds, transforms=transforms, horizon=horizon) diff --git a/tests/test_models/nn/test_rnn.py b/tests/test_models/nn/test_rnn.py index 3710aed09..e50345b9a 100644 --- a/tests/test_models/nn/test_rnn.py +++ b/tests/test_models/nn/test_rnn.py @@ -7,6 +7,7 @@ from etna.models.nn import RNNModel from etna.models.nn.rnn import RNNNet from etna.transforms import StandardScalerTransform +from tests.test_models.utils import assert_model_equals_loaded_original @pytest.mark.long_2 @@ -72,3 +73,9 @@ def test_context_size(encoder_length): ) assert model.context_size == encoder_length + + +@pytest.mark.xfail(reason="Non native serialization, should be fixed in inference-v2.0") +def test_save_load(example_tsds): + model = RNNModel(input_size=1, encoder_length=14, decoder_length=14, trainer_params=dict(max_epochs=2)) + assert_model_equals_loaded_original(model=model, ts=example_tsds, transforms=[], horizon=3) diff --git a/tests/test_models/nn/test_tft.py b/tests/test_models/nn/test_tft.py index 795980039..c57affea7 100644 --- a/tests/test_models/nn/test_tft.py +++ b/tests/test_models/nn/test_tft.py @@ -8,6 +8,7 @@ from etna.transforms import DateFlagsTransform from etna.transforms import PytorchForecastingTransform from etna.transforms import StandardScalerTransform +from tests.test_models.utils import assert_model_equals_loaded_original def test_fit_wrong_order_transform(weekly_period_df): @@ -178,3 +179,12 @@ def test_prediction_interval_run_infuture_warning_loss(example_tsds): segment_slice = forecast[:, segment, :][segment] assert {"target"}.issubset(segment_slice.columns) assert {"target_0.02", "target_0.98"}.isdisjoint(segment_slice.columns) + + +@pytest.mark.xfail(reason="Should be fixed in inference-v2.0", strict=True) +def test_save_load(example_tsds): + horizon = 3 + model = TFTModel(max_epochs=2, learning_rate=[0.1], gpus=0, batch_size=64, loss=MAEPF()) + transform = _get_default_transform(horizon) + transforms = [transform] + assert_model_equals_loaded_original(model=model, ts=example_tsds, transforms=transforms, horizon=horizon) diff --git a/tests/test_models/test_autoarima_model.py b/tests/test_models/test_autoarima_model.py index b5358c2ed..f47b96f5b 100644 --- a/tests/test_models/test_autoarima_model.py +++ b/tests/test_models/test_autoarima_model.py @@ -5,6 +5,7 @@ from etna.models import AutoARIMAModel from etna.pipeline import Pipeline +from tests.test_models.utils import assert_model_equals_loaded_original def _check_forecast(ts, model, horizon): @@ -138,3 +139,8 @@ def test_forecast_1_point(example_tsds): assert len(pred.df) == horizon pred_quantiles = model.forecast(future_ts, prediction_interval=True, quantiles=[0.025, 0.8]) assert len(pred_quantiles.df) == horizon + + +def test_save_load(example_tsds): + model = AutoARIMAModel() + assert_model_equals_loaded_original(model=model, ts=example_tsds, transforms=[], horizon=3) diff --git a/tests/test_models/test_catboost.py b/tests/test_models/test_catboost.py index 988785aae..d31534fe6 100644 --- a/tests/test_models/test_catboost.py +++ b/tests/test_models/test_catboost.py @@ -13,6 +13,7 @@ from etna.transforms import LabelEncoderTransform from etna.transforms import OneHotEncoderTransform from etna.transforms.math import LagTransform +from tests.test_models.utils import assert_model_equals_loaded_original @pytest.mark.parametrize("catboostmodel", [CatBoostMultiSegmentModel, CatBoostPerSegmentModel]) @@ -127,3 +128,17 @@ def test_encoder_catboost(encoder): model = CatBoostMultiSegmentModel(iterations=100) pipeline = Pipeline(model=model, transforms=transforms, horizon=1) _ = pipeline.backtest(ts=ts, metrics=[MAE()], n_folds=1) + + +@pytest.mark.xfail(reason="Non native serialization, should be fixed in inference-v2.0") +@pytest.mark.parametrize( + "model", + [ + CatBoostPerSegmentModel(), + CatBoostMultiSegmentModel(), + ], +) +def test_save_load(model, example_tsds): + horizon = 3 + transforms = [LagTransform(in_column="target", lags=list(range(horizon, horizon + 3)))] + assert_model_equals_loaded_original(model=model, ts=example_tsds, transforms=transforms, horizon=horizon) diff --git a/tests/test_models/test_holt_winters_model.py b/tests/test_models/test_holt_winters_model.py index 6d4cf8764..c137ee35f 100644 --- a/tests/test_models/test_holt_winters_model.py +++ b/tests/test_models/test_holt_winters_model.py @@ -9,6 +9,7 @@ from etna.models import HoltWintersModel from etna.models import SimpleExpSmoothingModel from etna.pipeline import Pipeline +from tests.test_models.utils import assert_model_equals_loaded_original @pytest.fixture @@ -113,3 +114,8 @@ def test_get_model_after_training(example_tsds, etna_model_class, expected_class assert isinstance(models_dict, dict) for segment in example_tsds.segments: assert isinstance(models_dict[segment], expected_class) + + +@pytest.mark.parametrize("model", [HoltModel(), HoltWintersModel(), SimpleExpSmoothingModel()]) +def test_save_load(model, example_tsds): + assert_model_equals_loaded_original(model=model, ts=example_tsds, transforms=[], horizon=3) diff --git a/tests/test_models/test_linear_model.py b/tests/test_models/test_linear_model.py index 9fbc0c471..a07e80b03 100644 --- a/tests/test_models/test_linear_model.py +++ b/tests/test_models/test_linear_model.py @@ -12,6 +12,7 @@ from etna.pipeline import Pipeline from etna.transforms.math import LagTransform from etna.transforms.timestamp import DateFlagsTransform +from tests.test_models.utils import assert_model_equals_loaded_original @pytest.fixture @@ -257,3 +258,12 @@ def test_get_model_per_segment_after_training(example_tsds, etna_class, expected assert isinstance(models_dict, dict) for segment in example_tsds.segments: assert isinstance(models_dict[segment], expected_model_class) + + +@pytest.mark.parametrize( + "model", [ElasticPerSegmentModel(), LinearPerSegmentModel(), ElasticMultiSegmentModel(), LinearMultiSegmentModel()] +) +def test_save_load(model, example_tsds): + horizon = 3 + transforms = [LagTransform(in_column="target", lags=list(range(horizon, horizon + 3)))] + assert_model_equals_loaded_original(model=model, ts=example_tsds, transforms=transforms, horizon=horizon) diff --git a/tests/test_models/test_prophet.py b/tests/test_models/test_prophet.py index 7795c8986..bd19a9235 100644 --- a/tests/test_models/test_prophet.py +++ b/tests/test_models/test_prophet.py @@ -6,6 +6,7 @@ from etna.datasets.tsdataset import TSDataset from etna.models import ProphetModel from etna.pipeline import Pipeline +from tests.test_models.utils import assert_model_equals_loaded_original def test_run(new_format_df): @@ -120,3 +121,9 @@ def test_get_model_after_training(example_tsds): assert isinstance(models_dict, dict) for segment in example_tsds.segments: assert isinstance(models_dict[segment], Prophet) + + +@pytest.mark.xfail(reason="Non native serialization, should be fixed in inference-v2.0") +def test_save_load(example_tsds): + model = ProphetModel() + assert_model_equals_loaded_original(model=model, ts=example_tsds, transforms=[], horizon=3) diff --git a/tests/test_models/test_sarimax_model.py b/tests/test_models/test_sarimax_model.py index 33230b455..71dde7d71 100644 --- a/tests/test_models/test_sarimax_model.py +++ b/tests/test_models/test_sarimax_model.py @@ -5,6 +5,7 @@ from etna.models import SARIMAXModel from etna.pipeline import Pipeline +from tests.test_models.utils import assert_model_equals_loaded_original def _check_forecast(ts, model, horizon): @@ -127,3 +128,8 @@ def test_forecast_1_point(example_tsds): assert len(pred.df) == horizon pred_quantiles = model.forecast(future_ts, prediction_interval=True, quantiles=[0.025, 0.8]) assert len(pred_quantiles.df) == horizon + + +def test_save_load(example_tsds): + model = SARIMAXModel() + assert_model_equals_loaded_original(model=model, ts=example_tsds, transforms=[], horizon=3) diff --git a/tests/test_models/test_simple_models.py b/tests/test_models/test_simple_models.py index df1696ed3..37365d455 100644 --- a/tests/test_models/test_simple_models.py +++ b/tests/test_models/test_simple_models.py @@ -12,6 +12,7 @@ from etna.models.seasonal_ma import SeasonalMovingAverageModel from etna.models.seasonal_ma import _SeasonalMovingAverageModel from etna.pipeline import Pipeline +from tests.test_models.utils import assert_model_equals_loaded_original def _check_forecast(ts, model, horizon): @@ -697,3 +698,16 @@ def test_deadline_model_forecast_correct_with_big_horizons(two_month_ts): ] ) assert np.all(res.df.values == expected) + + +@pytest.mark.parametrize( + "model", + [ + NaiveModel(), + MovingAverageModel(), + SeasonalMovingAverageModel(), + DeadlineMovingAverageModel(), + ], +) +def test_save_load(model, example_tsds): + assert_model_equals_loaded_original(model=model, ts=example_tsds, transforms=[], horizon=3) diff --git a/tests/test_models/test_sklearn.py b/tests/test_models/test_sklearn.py index 28ad61e57..6719062ff 100644 --- a/tests/test_models/test_sklearn.py +++ b/tests/test_models/test_sklearn.py @@ -6,6 +6,7 @@ from etna.models.sklearn import SklearnPerSegmentModel from etna.transforms import AddConstTransform from etna.transforms import LagTransform +from tests.test_models.utils import assert_model_equals_loaded_original @pytest.fixture @@ -47,3 +48,16 @@ def test_sklearn_multisegment_model_regressors_number(ts_with_regressors, model) """Test that the number of features used by SklearnMultiSegmentModel is the same as the number of regressors.""" model.fit(ts_with_regressors) assert len(model._base_model.model.coef_) == len(ts_with_regressors.regressors) + + +@pytest.mark.parametrize( + "model", + [ + SklearnPerSegmentModel(regressor=LinearRegression()), + SklearnMultiSegmentModel(regressor=LinearRegression()), + ], +) +def test_save_load(model, example_tsds): + horizon = 3 + transforms = [LagTransform(in_column="target", lags=list(range(horizon, horizon + 3)))] + assert_model_equals_loaded_original(model=model, ts=example_tsds, transforms=transforms, horizon=horizon) diff --git a/tests/test_models/test_tbats.py b/tests/test_models/test_tbats.py index 4a728162e..1278f2165 100644 --- a/tests/test_models/test_tbats.py +++ b/tests/test_models/test_tbats.py @@ -8,6 +8,7 @@ from etna.models.tbats import TBATSModel from etna.transforms import LagTransform from tests.test_models.test_linear_model import linear_segments_by_parameters +from tests.test_models.utils import assert_model_equals_loaded_original @pytest.fixture() @@ -119,3 +120,9 @@ def test_prediction_interval(model, example_tsds): segment_slice = forecast[:, segment, :][segment] assert {"target_0.025", "target_0.975", "target"}.issubset(segment_slice.columns) assert (segment_slice["target_0.975"] - segment_slice["target_0.025"] >= 0).all() + + +@pytest.mark.long_2 +@pytest.mark.parametrize("model", [TBATSModel(), BATSModel()]) +def test_save_load(model, example_tsds): + assert_model_equals_loaded_original(model=model, ts=example_tsds, transforms=[], horizon=3) diff --git a/tests/test_models/utils.py b/tests/test_models/utils.py new file mode 100644 index 000000000..c6f089a33 --- /dev/null +++ b/tests/test_models/utils.py @@ -0,0 +1,38 @@ +import pathlib +import tempfile +from copy import deepcopy +from typing import Sequence +from typing import Tuple + +import pandas as pd + +from etna.datasets import TSDataset +from etna.models.base import ModelType +from etna.pipeline import Pipeline +from etna.transforms import Transform + + +def get_loaded_model(model: ModelType) -> ModelType: + with tempfile.TemporaryDirectory() as dir_path_str: + dir_path = pathlib.Path(dir_path_str) + path = dir_path.joinpath("dummy.zip") + model.save(path) + loaded_model = deepcopy(model).load(path) + return loaded_model + + +def assert_model_equals_loaded_original( + model: ModelType, ts: TSDataset, transforms: Sequence[Transform], horizon: int +) -> Tuple[ModelType, ModelType]: + pipeline_1 = Pipeline(model=model, transforms=transforms, horizon=horizon) + pipeline_1.fit(ts) + loaded_model = get_loaded_model(pipeline_1.model) + pipeline_2 = deepcopy(pipeline_1) + pipeline_2.model = loaded_model + + forecast_ts_1 = pipeline_1.forecast() + forecast_ts_2 = pipeline_2.forecast() + + pd.testing.assert_frame_equal(forecast_ts_1.to_pandas(), forecast_ts_2.to_pandas()) + + return model, loaded_model diff --git a/tests/test_transforms/test_decomposition/test_binseg_trend_transform.py b/tests/test_transforms/test_decomposition/test_binseg_trend_transform.py index 85e6487d6..970342078 100644 --- a/tests/test_transforms/test_decomposition/test_binseg_trend_transform.py +++ b/tests/test_transforms/test_decomposition/test_binseg_trend_transform.py @@ -15,6 +15,7 @@ from etna.datasets import TSDataset from etna.transforms.decomposition import BinsegTrendTransform +from tests.test_transforms.utils import assert_transformation_equals_loaded_original def test_binseg_in_pipeline(example_tsds: TSDataset): @@ -67,3 +68,8 @@ def test_fit_transform_with_nans_in_middle_raise_error(df_with_nans): transform = BinsegTrendTransform(in_column="target") with pytest.raises(ValueError, match="The input column contains NaNs in the middle of the series!"): _ = transform.fit_transform(df=df_with_nans) + + +def test_save_load(example_tsds): + transform = BinsegTrendTransform(in_column="target") + assert_transformation_equals_loaded_original(transform=transform, ts=example_tsds) diff --git a/tests/test_transforms/test_decomposition/test_change_points_segmentation_transform.py b/tests/test_transforms/test_decomposition/test_change_points_segmentation_transform.py index f8320f68a..7c2734680 100644 --- a/tests/test_transforms/test_decomposition/test_change_points_segmentation_transform.py +++ b/tests/test_transforms/test_decomposition/test_change_points_segmentation_transform.py @@ -11,6 +11,7 @@ from etna.transforms import ChangePointsSegmentationTransform from etna.transforms.decomposition.base_change_points import RupturesChangePointsModel from etna.transforms.decomposition.change_points_segmentation import _OneSegmentChangePointsSegmentationTransform +from tests.test_transforms.utils import assert_transformation_equals_loaded_original OUT_COLUMN = "result" N_BKPS = 5 @@ -122,3 +123,11 @@ def test_make_future(simple_ar_ts): future = simple_ar_ts.make_future(10) for seg in simple_ar_ts.segments: assert (future.to_pandas()[seg][OUT_COLUMN].astype(int) == 5).all() + + +def test_save_load(simple_ar_ts): + change_point_model = RupturesChangePointsModel(change_point_model=Binseg(), n_bkps=N_BKPS) + transform = ChangePointsSegmentationTransform( + in_column="target", change_point_model=change_point_model, out_column=OUT_COLUMN + ) + assert_transformation_equals_loaded_original(transform=transform, ts=simple_ar_ts) diff --git a/tests/test_transforms/test_decomposition/test_change_points_trend_transform.py b/tests/test_transforms/test_decomposition/test_change_points_trend_transform.py index cc2891513..28c3a78f7 100644 --- a/tests/test_transforms/test_decomposition/test_change_points_trend_transform.py +++ b/tests/test_transforms/test_decomposition/test_change_points_trend_transform.py @@ -7,6 +7,7 @@ from etna.datasets import TSDataset from etna.transforms.decomposition.change_points_trend import ChangePointsTrendTransform from etna.transforms.decomposition.change_points_trend import _OneSegmentChangePointsTrendTransform +from tests.test_transforms.utils import assert_transformation_equals_loaded_original @pytest.fixture @@ -178,3 +179,11 @@ def test_fit_transform_with_nans_in_middle_raise_error(df_with_nans): ) with pytest.raises(ValueError, match="The input column contains NaNs in the middle of the series!"): _ = bs.fit_transform(df=df_with_nans) + + +def test_save_load(multitrend_df): + ts = TSDataset(df=multitrend_df, freq="D") + transform = ChangePointsTrendTransform( + in_column="target", change_point_model=Binseg(), detrend_model=LinearRegression(), n_bkps=5 + ) + assert_transformation_equals_loaded_original(transform=transform, ts=ts) diff --git a/tests/test_transforms/test_decomposition/test_detrend_transform.py b/tests/test_transforms/test_decomposition/test_detrend_transform.py index db228d758..f1f04849f 100644 --- a/tests/test_transforms/test_decomposition/test_detrend_transform.py +++ b/tests/test_transforms/test_decomposition/test_detrend_transform.py @@ -10,6 +10,7 @@ from etna.transforms.decomposition import LinearTrendTransform from etna.transforms.decomposition import TheilSenTrendTransform from etna.transforms.decomposition.detrend import _OneSegmentLinearTrendBaseTransform +from tests.test_transforms.utils import assert_transformation_equals_loaded_original DEFAULT_SEGMENT = "segment_1" @@ -410,3 +411,12 @@ def test_inverse_transform_segments_diff_size(df_two_segments_diff_size: pd.Data ) def test_fit_transform_with_nans(transformer, df_with_nans, decimal): _test_unbiased_fit_transform_many_segments(trend_transform=transformer, df=df_with_nans, decimal=decimal) + + +@pytest.mark.parametrize( + "transform", + [LinearTrendTransform(in_column="target"), TheilSenTrendTransform(in_column="target")], +) +def test_save_load(transform, df_two_segments_linear): + ts = TSDataset(df=df_two_segments_linear, freq="D") + assert_transformation_equals_loaded_original(transform=transform, ts=ts) diff --git a/tests/test_transforms/test_decomposition/test_stl_transform.py b/tests/test_transforms/test_decomposition/test_stl_transform.py index 589b7823e..55217f885 100644 --- a/tests/test_transforms/test_decomposition/test_stl_transform.py +++ b/tests/test_transforms/test_decomposition/test_stl_transform.py @@ -6,6 +6,7 @@ from etna.models import NaiveModel from etna.transforms.decomposition import STLTransform from etna.transforms.decomposition.stl import _OneSegmentSTLTransform +from tests.test_transforms.utils import assert_transformation_equals_loaded_original def add_trend(series: pd.Series, coef: float = 1) -> pd.Series: @@ -184,3 +185,14 @@ def test_fit_transform_with_nans_in_middle_raise_error(df_with_nans): transform = STLTransform(in_column="target", period=7) with pytest.raises(ValueError, match="The input column contains NaNs in the middle of the series!"): _ = transform.fit_transform(df_with_nans) + + +@pytest.mark.parametrize( + "transform", + [ + STLTransform(in_column="target", period=7, model="arima"), + STLTransform(in_column="target", period=7, model="holt"), + ], +) +def test_save_load(transform, ts_trend_seasonal): + assert_transformation_equals_loaded_original(transform=transform, ts=ts_trend_seasonal) diff --git a/tests/test_transforms/test_decomposition/test_trend_transform.py b/tests/test_transforms/test_decomposition/test_trend_transform.py index d09c5abc9..83ec9ce3f 100644 --- a/tests/test_transforms/test_decomposition/test_trend_transform.py +++ b/tests/test_transforms/test_decomposition/test_trend_transform.py @@ -9,6 +9,7 @@ from etna.datasets.tsdataset import TSDataset from etna.transforms.decomposition import TrendTransform from etna.transforms.decomposition.trend import _OneSegmentTrendTransform +from tests.test_transforms.utils import assert_transformation_equals_loaded_original DEFAULT_SEGMENT = "segment_1" @@ -138,3 +139,8 @@ def test_fit_transform_with_nans_in_middle_raise_error(df_with_nans, model): transform = TrendTransform(in_column="target", detrend_model=model, model="rbf") with pytest.raises(ValueError, match="The input column contains NaNs in the middle of the series!"): _ = transform.fit_transform(df=df_with_nans) + + +def test_save_load(example_tsds): + transform = TrendTransform(in_column="target", detrend_model=LinearRegression(), model="ar") + assert_transformation_equals_loaded_original(transform=transform, ts=example_tsds) diff --git a/tests/test_transforms/test_encoders/test_categorical_transform.py b/tests/test_transforms/test_encoders/test_categorical_transform.py index ab527de08..50bb0aeb5 100644 --- a/tests/test_transforms/test_encoders/test_categorical_transform.py +++ b/tests/test_transforms/test_encoders/test_categorical_transform.py @@ -11,6 +11,7 @@ from etna.transforms import FilterFeaturesTransform from etna.transforms.encoders.categorical import LabelEncoderTransform from etna.transforms.encoders.categorical import OneHotEncoderTransform +from tests.test_transforms.utils import assert_transformation_equals_loaded_original def get_two_df_with_new_values(dtype: str = "int"): @@ -271,3 +272,21 @@ def test_ohe_sanity(ts_for_ohe_sanity): forecast_ts = model.forecast(future_ts) r2 = R2() assert 1 - r2(test_ts, forecast_ts)["segment_0"] < 1e-5 + + +@pytest.mark.parametrize("dtype", ["float", "int", "str", "category"]) +def test_save_load_le(dtype): + df, answers = get_df_for_label_encoding(dtype=dtype) + ts = TSDataset(df=df, freq="D") + for i in range(3): + transform = LabelEncoderTransform(in_column=f"regressor_{i}", out_column="test") + assert_transformation_equals_loaded_original(transform=transform, ts=ts) + + +@pytest.mark.parametrize("dtype", ["float", "int", "str", "category"]) +def test_save_load_ohe(dtype): + df, answers = get_df_for_ohe_encoding(dtype=dtype) + ts = TSDataset(df=df, freq="D") + for i in range(3): + transform = OneHotEncoderTransform(in_column=f"regressor_{i}", out_column="test") + assert_transformation_equals_loaded_original(transform=transform, ts=ts) diff --git a/tests/test_transforms/test_encoders/test_mean_segment_encoder_transform.py b/tests/test_transforms/test_encoders/test_mean_segment_encoder_transform.py index a0906106d..0ac9bced2 100644 --- a/tests/test_transforms/test_encoders/test_mean_segment_encoder_transform.py +++ b/tests/test_transforms/test_encoders/test_mean_segment_encoder_transform.py @@ -6,6 +6,7 @@ from etna.metrics import R2 from etna.models import LinearMultiSegmentModel from etna.transforms import MeanSegmentEncoderTransform +from tests.test_transforms.utils import assert_transformation_equals_loaded_original @pytest.mark.parametrize("expected_global_means", ([[3, 30]])) @@ -56,3 +57,8 @@ def test_mean_segment_encoder_forecast(almost_constant_ts): def test_fit_transform_with_nans(ts_diff_endings): encoder = MeanSegmentEncoderTransform() ts_diff_endings.fit_transform([encoder]) + + +def test_save_load(almost_constant_ts): + transform = MeanSegmentEncoderTransform() + assert_transformation_equals_loaded_original(transform=transform, ts=almost_constant_ts) diff --git a/tests/test_transforms/test_encoders/test_segment_encoder_transform.py b/tests/test_transforms/test_encoders/test_segment_encoder_transform.py index 0501db7d5..8a8891bb3 100644 --- a/tests/test_transforms/test_encoders/test_segment_encoder_transform.py +++ b/tests/test_transforms/test_encoders/test_segment_encoder_transform.py @@ -2,6 +2,7 @@ import pandas as pd from etna.transforms import SegmentEncoderTransform +from tests.test_transforms.utils import assert_transformation_equals_loaded_original def test_segment_encoder_transform(dummy_df): @@ -18,3 +19,8 @@ def test_segment_encoder_transform(dummy_df): assert np.all(column == column.iloc[0]), "Values are not the same for the whole column" codes.add(column.iloc[0]) assert codes == {0, 1}, "Codes are not 0 and 1" + + +def test_save_load(example_tsds): + transform = SegmentEncoderTransform() + assert_transformation_equals_loaded_original(transform=transform, ts=example_tsds) diff --git a/tests/test_transforms/test_feature_selection/test_feature_importance_transform.py b/tests/test_transforms/test_feature_selection/test_feature_importance_transform.py index 981e8347f..2cd94e894 100644 --- a/tests/test_transforms/test_feature_selection/test_feature_importance_transform.py +++ b/tests/test_transforms/test_feature_selection/test_feature_importance_transform.py @@ -18,6 +18,7 @@ from etna.transforms import SegmentEncoderTransform from etna.transforms.feature_selection import TreeFeatureSelectionTransform from etna.transforms.feature_selection.feature_importance import MRMRFeatureSelectionTransform +from tests.test_transforms.utils import assert_transformation_equals_loaded_original @pytest.fixture @@ -269,3 +270,17 @@ def test_mrmr_right_regressors(relevance_table, ts_with_regressors): if column.startswith("regressor"): selected_regressors.add(column) assert set(selected_regressors) == {"regressor_useful_0", "regressor_useful_1", "regressor_useful_2"} + + +@pytest.mark.parametrize( + "transform", + [ + TreeFeatureSelectionTransform(model=DecisionTreeRegressor(random_state=42), top_k=3), + MRMRFeatureSelectionTransform( + relevance_table=ModelRelevanceTable(), top_k=3, model=RandomForestRegressor(random_state=42) + ), + MRMRFeatureSelectionTransform(relevance_table=StatisticsRelevanceTable(), top_k=3), + ], +) +def test_save_load(transform, ts_with_regressors): + assert_transformation_equals_loaded_original(transform=transform, ts=ts_with_regressors) diff --git a/tests/test_transforms/test_feature_selection/test_filter_transform.py b/tests/test_transforms/test_feature_selection/test_filter_transform.py index da03344e3..cd3169a2b 100644 --- a/tests/test_transforms/test_feature_selection/test_filter_transform.py +++ b/tests/test_transforms/test_feature_selection/test_filter_transform.py @@ -4,6 +4,7 @@ from etna.datasets import TSDataset from etna.transforms.feature_selection import FilterFeaturesTransform +from tests.test_transforms.utils import assert_transformation_equals_loaded_original @pytest.fixture @@ -189,3 +190,16 @@ def test_inverse_transform_back_included_columns(ts_with_features, columns, retu assert columns_inversed == set(expected_columns) for column in ts_with_features.columns: assert np.all(ts_with_features[:, :, column] == original_df.loc[:, pd.IndexSlice[:, column]]) + + +@pytest.mark.parametrize( + "transform", + [ + FilterFeaturesTransform(include=["target"], return_features=True), + FilterFeaturesTransform(include=["target"], return_features=False), + FilterFeaturesTransform(exclude=["exog_1", "exog_2"], return_features=False), + FilterFeaturesTransform(exclude=["exog_1", "exog_2"], return_features=False), + ], +) +def test_save_load(transform, ts_with_features): + assert_transformation_equals_loaded_original(transform=transform, ts=ts_with_features) diff --git a/tests/test_transforms/test_feature_selection/test_gale_shapley_transform.py b/tests/test_transforms/test_feature_selection/test_gale_shapley_transform.py index d46bec38d..ba92e786d 100644 --- a/tests/test_transforms/test_feature_selection/test_gale_shapley_transform.py +++ b/tests/test_transforms/test_feature_selection/test_gale_shapley_transform.py @@ -16,6 +16,7 @@ from etna.transforms.feature_selection.gale_shapley import FeatureGaleShapley from etna.transforms.feature_selection.gale_shapley import GaleShapleyMatcher from etna.transforms.feature_selection.gale_shapley import SegmentGaleShapley +from tests.test_transforms.utils import assert_transformation_equals_loaded_original @pytest.fixture @@ -608,3 +609,16 @@ def test_work_with_non_regressors(ts_with_exog): relevance_table=StatisticsRelevanceTable(), top_k=3, use_rank=False, features_to_use="all" ) ts_with_exog.fit_transform([selector]) + + +@pytest.mark.parametrize( + "transform", + [ + GaleShapleyFeatureSelectionTransform( + relevance_table=ModelRelevanceTable(), top_k=3, use_rank=False, model=RandomForestRegressor(random_state=42) + ), + GaleShapleyFeatureSelectionTransform(relevance_table=StatisticsRelevanceTable(), top_k=3, use_rank=False), + ], +) +def test_save_load(transform, ts_with_large_regressors_number): + assert_transformation_equals_loaded_original(transform=transform, ts=ts_with_large_regressors_number) diff --git a/tests/test_transforms/test_math/test_add_constant_transform.py b/tests/test_transforms/test_math/test_add_constant_transform.py index 018480c58..1d6f0eaa0 100644 --- a/tests/test_transforms/test_math/test_add_constant_transform.py +++ b/tests/test_transforms/test_math/test_add_constant_transform.py @@ -3,6 +3,7 @@ import pytest from etna.transforms.math import AddConstTransform +from tests.test_transforms.utils import assert_transformation_equals_loaded_original @pytest.mark.parametrize("value", (-3.14, 6, 9.99)) @@ -62,3 +63,9 @@ def test_inverse_transform_out_column(example_df_: pd.DataFrame): def test_fit_transform_with_nans(ts_diff_endings): transform = AddConstTransform(in_column="target", value=10) ts_diff_endings.fit_transform([transform]) + + +@pytest.mark.parametrize("inplace", [False, True]) +def test_save_load(inplace, example_tsds): + transform = AddConstTransform(in_column="target", value=10, inplace=inplace) + assert_transformation_equals_loaded_original(transform=transform, ts=example_tsds) diff --git a/tests/test_transforms/test_math/test_differencing_transform.py b/tests/test_transforms/test_math/test_differencing_transform.py index 4e92d79b5..717471c26 100644 --- a/tests/test_transforms/test_math/test_differencing_transform.py +++ b/tests/test_transforms/test_math/test_differencing_transform.py @@ -13,6 +13,7 @@ from etna.transforms import LagTransform from etna.transforms.math import DifferencingTransform from etna.transforms.math.differencing import _SingleDifferencingTransform +from tests.test_transforms.utils import assert_transformation_equals_loaded_original GeneralDifferencingTransform = Union[_SingleDifferencingTransform, DifferencingTransform] @@ -456,3 +457,10 @@ def test_full_backtest_sanity(period, order, df_nans_with_noise): """Test that DifferencingTransform correctly works in backtest.""" transform = DifferencingTransform(in_column="target", period=period, order=order, inplace=True) check_backtest_sanity(transform, df_nans_with_noise) + + +@pytest.mark.parametrize("inplace", [False, True]) +def test_save_load(inplace, df_nans): + ts = TSDataset(df=df_nans, freq="D") + transform = DifferencingTransform(in_column="target", inplace=inplace) + assert_transformation_equals_loaded_original(transform=transform, ts=ts) diff --git a/tests/test_transforms/test_math/test_lag_transform.py b/tests/test_transforms/test_math/test_lag_transform.py index 7e2b9e91f..164bff01b 100644 --- a/tests/test_transforms/test_math/test_lag_transform.py +++ b/tests/test_transforms/test_math/test_lag_transform.py @@ -9,6 +9,7 @@ from etna.datasets.tsdataset import TSDataset from etna.transforms.math import LagTransform +from tests.test_transforms.utils import assert_transformation_equals_loaded_original @pytest.fixture @@ -116,3 +117,9 @@ def test_fit_transform_with_nans(ts_diff_endings): """Test that transform correctly works with NaNs at the end.""" transform = LagTransform(in_column="target", lags=10) ts_diff_endings.fit_transform([transform]) + + +def test_save_load(int_df_two_segments): + ts = TSDataset(df=int_df_two_segments, freq="D") + transform = LagTransform(in_column="target", lags=10) + assert_transformation_equals_loaded_original(transform=transform, ts=ts) diff --git a/tests/test_transforms/test_math/test_lambda_transform.py b/tests/test_transforms/test_math/test_lambda_transform.py index 19d58d96b..c2ce872f0 100644 --- a/tests/test_transforms/test_math/test_lambda_transform.py +++ b/tests/test_transforms/test_math/test_lambda_transform.py @@ -8,6 +8,7 @@ from etna.transforms import LagTransform from etna.transforms import LambdaTransform from etna.transforms import LogTransform +from tests.test_transforms.utils import assert_transformation_equals_loaded_original @pytest.fixture @@ -136,3 +137,22 @@ def test_inverse_transform(ts_range_const, function, inverse_function): np.testing.assert_allclose( ts_range_const[:, segment, check_column], original_df[(segment, check_column)], rtol=1e-9 ) + + +def example_transform_func(x): + return x**2 + + +def example_inverse_transform_func(x): + return x ** (0.5) + + +@pytest.mark.parametrize("inplace", [False, True]) +def test_save_load(inplace, ts_range_const): + transform = LambdaTransform( + in_column="target", + transform_func=example_transform_func, + inplace=True, + inverse_transform_func=example_inverse_transform_func, + ) + assert_transformation_equals_loaded_original(transform=transform, ts=ts_range_const) diff --git a/tests/test_transforms/test_math/test_log_transform.py b/tests/test_transforms/test_math/test_log_transform.py index 8ba0a4578..230265280 100644 --- a/tests/test_transforms/test_math/test_log_transform.py +++ b/tests/test_transforms/test_math/test_log_transform.py @@ -4,8 +4,10 @@ import pandas as pd import pytest +from etna.datasets import TSDataset from etna.transforms import AddConstTransform from etna.transforms.math import LogTransform +from tests.test_transforms.utils import assert_transformation_equals_loaded_original @pytest.fixture @@ -103,3 +105,10 @@ def test_inverse_transform_out_column(positive_df_: pd.DataFrame): def test_fit_transform_with_nans(ts_diff_endings): transform = LogTransform(in_column="target", inplace=True) ts_diff_endings.fit_transform([AddConstTransform(in_column="target", value=100)] + [transform]) + + +@pytest.mark.parametrize("inplace", [False, True]) +def test_save_load(inplace, positive_df_): + ts = TSDataset(df=positive_df_, freq="D") + transform = LogTransform(in_column="target", inplace=inplace) + assert_transformation_equals_loaded_original(transform=transform, ts=ts) diff --git a/tests/test_transforms/test_math/test_power_transform.py b/tests/test_transforms/test_math/test_power_transform.py index ae64fe465..bd07276de 100644 --- a/tests/test_transforms/test_math/test_power_transform.py +++ b/tests/test_transforms/test_math/test_power_transform.py @@ -10,6 +10,7 @@ from etna.transforms import AddConstTransform from etna.transforms.math import BoxCoxTransform from etna.transforms.math import YeoJohnsonTransform +from tests.test_transforms.utils import assert_transformation_equals_loaded_original @pytest.fixture @@ -107,3 +108,11 @@ def test_inverse_transform_one_column(positive_df: pd.DataFrame, preprocessing_c def test_fit_transform_with_nans(preprocessing_class, mode, ts_diff_endings): preprocess = preprocessing_class(in_column="target", mode=mode) ts_diff_endings.fit_transform([AddConstTransform(in_column="target", value=100)] + [preprocess]) + + +@pytest.mark.parametrize("transform_constructor", (BoxCoxTransform, YeoJohnsonTransform)) +@pytest.mark.parametrize("mode", ("macro", "per-segment")) +def test_save_load(transform_constructor, mode, positive_df): + transform = transform_constructor(in_column="target", mode=mode) + ts = TSDataset(df=positive_df, freq="D") + assert_transformation_equals_loaded_original(transform=transform, ts=ts) diff --git a/tests/test_transforms/test_math/test_scalers_transform.py b/tests/test_transforms/test_math/test_scalers_transform.py index 75b0b4f51..408530f0f 100644 --- a/tests/test_transforms/test_math/test_scalers_transform.py +++ b/tests/test_transforms/test_math/test_scalers_transform.py @@ -14,6 +14,7 @@ from etna.transforms import StandardScalerTransform from etna.transforms.math.sklearn import SklearnTransform from etna.transforms.math.sklearn import TransformMode +from tests.test_transforms.utils import assert_transformation_equals_loaded_original class DummySkTransform: @@ -143,3 +144,23 @@ def test_inverse_transform_not_inplace(normal_distributed_df, scaler, mode): def test_fit_transform_with_nans(scaler, mode, ts_diff_endings): preprocess = scaler(in_column="target", mode=mode) ts_diff_endings.fit_transform([preprocess]) + + +@pytest.mark.parametrize( + "transform_constructor", + ( + DummyTransform, + StandardScalerTransform, + RobustScalerTransform, + MinMaxScalerTransform, + MaxAbsScalerTransform, + StandardScalerTransform, + RobustScalerTransform, + MinMaxScalerTransform, + ), +) +@pytest.mark.parametrize("mode", ("macro", "per-segment")) +def test_save_load(transform_constructor, mode, normal_distributed_df): + ts = TSDataset(df=normal_distributed_df, freq="D") + transform = transform_constructor(in_column="target", mode=mode) + assert_transformation_equals_loaded_original(transform=transform, ts=ts) diff --git a/tests/test_transforms/test_math/test_statistics_transform.py b/tests/test_transforms/test_math/test_statistics_transform.py index dd73b4706..890bc159e 100644 --- a/tests/test_transforms/test_math/test_statistics_transform.py +++ b/tests/test_transforms/test_math/test_statistics_transform.py @@ -13,6 +13,7 @@ from etna.transforms.math import MinTransform from etna.transforms.math import QuantileTransform from etna.transforms.math import StdTransform +from tests.test_transforms.utils import assert_transformation_equals_loaded_original @pytest.fixture @@ -293,3 +294,20 @@ def test_min_max_diff_feature( ) def test_fit_transform_with_nans(transform, ts_diff_endings): ts_diff_endings.fit_transform([transform]) + + +@pytest.mark.parametrize( + "transform", + ( + MaxTransform(in_column="target", window=5), + MinTransform(in_column="target", window=5), + MedianTransform(in_column="target", window=5), + MeanTransform(in_column="target", window=5), + StdTransform(in_column="target", window=5), + MADTransform(in_column="target", window=5), + MinMaxDifferenceTransform(in_column="target", window=5), + ), +) +def test_save_load(transform, simple_df_for_agg): + ts = TSDataset(df=simple_df_for_agg, freq="D") + assert_transformation_equals_loaded_original(transform=transform, ts=ts) diff --git a/tests/test_transforms/test_missing_values/test_impute_transform.py b/tests/test_transforms/test_missing_values/test_impute_transform.py index 48da62bfc..063892a85 100644 --- a/tests/test_transforms/test_missing_values/test_impute_transform.py +++ b/tests/test_transforms/test_missing_values/test_impute_transform.py @@ -8,6 +8,7 @@ from etna.models import NaiveModel from etna.transforms.missing_values import TimeSeriesImputerTransform from etna.transforms.missing_values.imputation import _OneSegmentTimeSeriesImputerTransform +from tests.test_transforms.utils import assert_transformation_equals_loaded_original @pytest.fixture @@ -386,3 +387,8 @@ def test_constant_fill_strategy(df_with_missing_range_x_index_two_segments: pd.D df = ts.to_pandas(flatten=False) for segment in ["segment_1", "segment_2"]: np.testing.assert_array_equal(df.loc[rng][segment]["target"].values, [constant_value] * 5) + + +def test_save_load(ts_to_fill): + transform = TimeSeriesImputerTransform() + assert_transformation_equals_loaded_original(transform=transform, ts=ts_to_fill) diff --git a/tests/test_transforms/test_missing_values/test_resample_transform.py b/tests/test_transforms/test_missing_values/test_resample_transform.py index 05575f26c..d93e73f94 100644 --- a/tests/test_transforms/test_missing_values/test_resample_transform.py +++ b/tests/test_transforms/test_missing_values/test_resample_transform.py @@ -1,6 +1,7 @@ import pytest from etna.transforms.missing_values import ResampleWithDistributionTransform +from tests.test_transforms.utils import assert_transformation_equals_loaded_original def test_fail_on_incompatible_freq(incompatible_freq_ts): @@ -78,3 +79,20 @@ def test_fit_transform_with_nans(daily_exog_ts_diff_endings): in_column="regressor_exog", inplace=True, distribution_column="target" ) daily_exog_ts_diff_endings.fit_transform([resampler]) + + +@pytest.mark.parametrize( + "inplace,out_column", + ( + [ + (True, None), + (False, "resampled_exog"), + ] + ), +) +def test_save_load(inplace, out_column, daily_exog_ts): + daily_exog_ts = daily_exog_ts["ts"] + transform = ResampleWithDistributionTransform( + in_column="regressor_exog", inplace=inplace, distribution_column="target", out_column=out_column + ) + assert_transformation_equals_loaded_original(transform=transform, ts=daily_exog_ts) diff --git a/tests/test_transforms/test_outliers/test_outliers_transform.py b/tests/test_transforms/test_outliers/test_outliers_transform.py index 13213049a..f334f44b6 100644 --- a/tests/test_transforms/test_outliers/test_outliers_transform.py +++ b/tests/test_transforms/test_outliers/test_outliers_transform.py @@ -7,9 +7,11 @@ from etna.analysis import get_anomalies_prediction_interval from etna.datasets.tsdataset import TSDataset from etna.models import ProphetModel +from etna.models import SARIMAXModel from etna.transforms import DensityOutliersTransform from etna.transforms import MedianOutliersTransform from etna.transforms import PredictionIntervalOutliersTransform +from tests.test_transforms.utils import assert_transformation_equals_loaded_original @pytest.fixture() @@ -163,3 +165,26 @@ def test_inverse_transform_raise_error_if_not_fitted(transform, outliers_solid_t ) def test_fit_transform_with_nans(transform, ts_diff_endings): ts_diff_endings.fit_transform([transform]) + + +@pytest.mark.parametrize( + "transform", + ( + MedianOutliersTransform(in_column="target"), + DensityOutliersTransform(in_column="target"), + ), +) +def test_save_load(transform, outliers_solid_tsds): + assert_transformation_equals_loaded_original(transform=transform, ts=outliers_solid_tsds) + + +@pytest.mark.xfail(reason="Non native serialization, should be fixed in inference-v2.0") +@pytest.mark.parametrize( + "transform", + ( + PredictionIntervalOutliersTransform(in_column="target", model=ProphetModel), + PredictionIntervalOutliersTransform(in_column="target", model=SARIMAXModel), + ), +) +def test_save_load_prediction_interval(transform, outliers_solid_tsds): + assert_transformation_equals_loaded_original(transform=transform, ts=outliers_solid_tsds) diff --git a/tests/test_transforms/test_timestamp/test_dateflags_transform.py b/tests/test_transforms/test_timestamp/test_dateflags_transform.py index 5e962dba7..8ae976405 100644 --- a/tests/test_transforms/test_timestamp/test_dateflags_transform.py +++ b/tests/test_transforms/test_timestamp/test_dateflags_transform.py @@ -9,7 +9,9 @@ import pandas as pd import pytest +from etna.datasets import TSDataset from etna.transforms.timestamp import DateFlagsTransform +from tests.test_transforms.utils import assert_transformation_equals_loaded_original WEEKEND_DAYS = (5, 6) SPECIAL_DAYS = [1, 4] @@ -280,3 +282,9 @@ def test_feature_values( true_df = segment_true[true_params + ["target"]].sort_index(axis=1) result_df = result[seg].sort_index(axis=1) assert (true_df == result_df).all().all() + + +def test_save_load(train_df): + ts = TSDataset(df=train_df, freq="D") + transform = DateFlagsTransform() + assert_transformation_equals_loaded_original(transform=transform, ts=ts) diff --git a/tests/test_transforms/test_timestamp/test_fourier_transform.py b/tests/test_transforms/test_timestamp/test_fourier_transform.py index 4207b2d66..81864c556 100644 --- a/tests/test_transforms/test_timestamp/test_fourier_transform.py +++ b/tests/test_transforms/test_timestamp/test_fourier_transform.py @@ -6,6 +6,7 @@ from etna.metrics import R2 from etna.models import LinearPerSegmentModel from etna.transforms.timestamp import FourierTransform +from tests.test_transforms.utils import assert_transformation_equals_loaded_original def add_seasonality(series: pd.Series, period: int, magnitude: float) -> pd.Series: @@ -152,3 +153,8 @@ def test_forecast(ts_trend_seasonal): metric = R2("macro") r2 = metric(ts_test, ts_forecast) assert r2 > 0.95 + + +def test_save_load(ts_trend_seasonal): + transform = FourierTransform(period=7, order=3) + assert_transformation_equals_loaded_original(transform=transform, ts=ts_trend_seasonal) diff --git a/tests/test_transforms/test_timestamp/test_holiday_transform.py b/tests/test_transforms/test_timestamp/test_holiday_transform.py index 4b56d10ae..4c3f2d754 100644 --- a/tests/test_transforms/test_timestamp/test_holiday_transform.py +++ b/tests/test_transforms/test_timestamp/test_holiday_transform.py @@ -5,6 +5,7 @@ from etna.datasets import TSDataset from etna.datasets import generate_const_df from etna.transforms.timestamp import HolidayTransform +from tests.test_transforms.utils import assert_transformation_equals_loaded_original @pytest.fixture() @@ -175,3 +176,8 @@ def test_holidays_out_column_added_to_regressors(example_tsds, expected_regresso holidays_finder = HolidayTransform(out_column="regressor_holidays") example_tsds.fit_transform([holidays_finder]) assert sorted(example_tsds.regressors) == sorted(expected_regressors) + + +def test_save_load(example_tsds): + transform = HolidayTransform() + assert_transformation_equals_loaded_original(transform=transform, ts=example_tsds) diff --git a/tests/test_transforms/test_timestamp/test_special_days_transform.py b/tests/test_transforms/test_timestamp/test_special_days_transform.py index 837cd1fa1..d86c36de3 100644 --- a/tests/test_transforms/test_timestamp/test_special_days_transform.py +++ b/tests/test_transforms/test_timestamp/test_special_days_transform.py @@ -3,8 +3,10 @@ import pandas as pd import pytest +from etna.datasets import TSDataset from etna.transforms.timestamp import SpecialDaysTransform from etna.transforms.timestamp.special_days import _OneSegmentSpecialDaysTransform +from tests.test_transforms.utils import assert_transformation_equals_loaded_original @pytest.fixture() @@ -189,3 +191,12 @@ def test_transform_raise_error_if_not_fitted(constant_days_df: pd.DataFrame): def test_fit_transform_with_nans(ts_diff_endings): transform = SpecialDaysTransform(find_special_weekday=True, find_special_month_day=True) ts_diff_endings.fit_transform([transform]) + + +def test_save_load(df_with_specials): + df = df_with_specials.reset_index() + df["segment"] = "1" + df = df[["timestamp", "segment", "target"]] + ts = TSDataset(df=TSDataset.to_dataset(df), freq="D") + transform = SpecialDaysTransform() + assert_transformation_equals_loaded_original(transform=transform, ts=ts) diff --git a/tests/test_transforms/test_timestamp/test_timeflags_transform.py b/tests/test_transforms/test_timestamp/test_timeflags_transform.py index 61ac09407..724247479 100644 --- a/tests/test_transforms/test_timestamp/test_timeflags_transform.py +++ b/tests/test_transforms/test_timestamp/test_timeflags_transform.py @@ -8,7 +8,9 @@ import pandas as pd import pytest +from etna.datasets import TSDataset from etna.transforms.timestamp import TimeFlagsTransform +from tests.test_transforms.utils import assert_transformation_equals_loaded_original INIT_PARAMS_TEMPLATE = { "minute_in_hour_number": False, @@ -214,3 +216,9 @@ def test_feature_values( true_df = segment_true[true_params + ["target"]].sort_index(axis=1) result_df = result[seg].sort_index(axis=1) assert (true_df == result_df).all().all() + + +def test_save_load(train_df): + ts = TSDataset(df=train_df, freq="D") + transform = TimeFlagsTransform() + assert_transformation_equals_loaded_original(transform=transform, ts=ts) diff --git a/tests/test_transforms/utils.py b/tests/test_transforms/utils.py new file mode 100644 index 000000000..a32efdc08 --- /dev/null +++ b/tests/test_transforms/utils.py @@ -0,0 +1,32 @@ +import pathlib +import tempfile +from copy import deepcopy +from typing import Tuple + +import pandas as pd + +from etna.datasets import TSDataset +from etna.transforms import Transform + + +def get_loaded_transform(transform: Transform) -> Transform: + with tempfile.TemporaryDirectory() as dir_path_str: + dir_path = pathlib.Path(dir_path_str) + path = dir_path.joinpath("dummy.zip") + transform.save(path) + loaded_transform = deepcopy(transform).load(path) + return loaded_transform + + +def assert_transformation_equals_loaded_original(transform: Transform, ts: TSDataset) -> Tuple[Transform, Transform]: + transform.fit(ts.to_pandas()) + loaded_transform = get_loaded_transform(transform) + ts_1 = deepcopy(ts) + ts_2 = deepcopy(ts) + + ts_1.transform([transform]) + ts_2.transform([loaded_transform]) + + pd.testing.assert_frame_equal(ts_1.to_pandas(), ts_2.to_pandas()) + + return transform, loaded_transform From 7d2cf1b9606dcf0d68f482970452edafc784cbe1 Mon Sep 17 00:00:00 2001 From: "d.a.bunin" Date: Thu, 24 Nov 2022 18:43:40 +0300 Subject: [PATCH 02/12] Add SaveNNMixin for fixing saving/loading of NNs --- etna/core/mixins.py | 85 ++++++++++++++++----------- etna/models/base.py | 4 +- etna/models/mixins.py | 27 +++++++++ etna/models/nn/deepar.py | 3 +- etna/models/nn/mlp.py | 9 +-- etna/models/nn/rnn.py | 9 +-- etna/models/nn/tft.py | 3 +- tests/test_core/test_mixins.py | 90 ++++++++++++++--------------- tests/test_models/nn/test_deepar.py | 1 - tests/test_models/nn/test_mlp.py | 1 - tests/test_models/nn/test_rnn.py | 1 - tests/test_models/nn/test_tft.py | 3 +- tests/test_models/test_mixins.py | 76 ++++++++++++++++++++++++ tests/test_models/utils.py | 16 ++--- 14 files changed, 217 insertions(+), 111 deletions(-) diff --git a/etna/core/mixins.py b/etna/core/mixins.py index e9a2a3d4d..1be2dadd2 100644 --- a/etna/core/mixins.py +++ b/etna/core/mixins.py @@ -4,6 +4,7 @@ import pickle import sys import warnings +import zipfile from enum import Enum from typing import Any from typing import Callable @@ -118,7 +119,7 @@ def get_etna_version() -> Tuple[int, int, int]: class SaveMixin: - """Basic implementation of AbstractSaveable abstract class. + """Basic implementation of ``AbstractSaveable`` abstract class. It saves object to the zip archive with 2 files: @@ -127,6 +128,21 @@ class SaveMixin: * object.pkl: pickled object. """ + def _save_metadata(self, archive: zipfile.ZipFile): + full_class_name = f"{inspect.getmodule(self).__name__}.{self.__class__.__name__}" # type: ignore + metadata = { + "etna_version": get_etna_version(), + "class": full_class_name, + } + metadata_str = json.dumps(metadata, indent=2, sort_keys=True) + metadata_bytes = metadata_str.encode("utf-8") + with archive.open("metadata.json", "w") as output_file: + output_file.write(metadata_bytes) + + def _save_state(self, archive: zipfile.ZipFile): + with archive.open("object.pkl", "w") as output_file: + pickle.dump(self, output_file) + def save(self, path: pathlib.Path): """Save the object. @@ -135,19 +151,36 @@ def save(self, path: pathlib.Path): path: Path to save object to. """ - with ZipFile(path, "w") as zip_file: - full_class_name = f"{inspect.getmodule(self).__name__}.{self.__class__.__name__}" # type: ignore - metadata = { - "etna_version": get_etna_version(), - "class": full_class_name, - } - metadata_str = json.dumps(metadata, indent=2, sort_keys=True) - metadata_bytes = metadata_str.encode("utf-8") - with zip_file.open("metadata.json", "w") as output_file: - output_file.write(metadata_bytes) - - with zip_file.open("object.pkl", "w") as output_file: - pickle.dump(self, output_file) + with ZipFile(path, "w") as archive: + self._save_metadata(archive) + self._save_state(archive) + + @classmethod + def _load_metadata(cls, archive: zipfile.ZipFile) -> Dict[str, Any]: + with archive.open("metadata.json", "r") as input_file: + metadata_bytes = input_file.read() + metadata_str = metadata_bytes.decode("utf-8") + metadata = json.loads(metadata_str) + return metadata + + @classmethod + def _validate_metadata(cls, metadata: Dict[str, Any]): + current_etna_version = get_etna_version() + saved_etna_version = tuple(metadata["etna_version"]) + + # if major version is different give a warning + if current_etna_version[0] != saved_etna_version[0] or current_etna_version[:2] < saved_etna_version[:2]: + current_etna_version_str = ".".join([str(x) for x in current_etna_version]) + saved_etna_version_str = ".".join([str(x) for x in saved_etna_version]) + warnings.warn( + f"The object was saved under etna version {saved_etna_version_str} " + f"but running version is {current_etna_version_str}, this can cause problems with compatibility!" + ) + + @classmethod + def _load_state(cls, archive: zipfile.ZipFile) -> Any: + with archive.open("object.pkl", "r") as input_file: + return pickle.load(input_file) @classmethod def load(cls, path: pathlib.Path) -> Any: @@ -158,22 +191,8 @@ def load(cls, path: pathlib.Path) -> Any: path: Path to load object from. """ - with ZipFile(path, "r") as zip_file: - with zip_file.open("metadata.json", "r") as input_file: - metadata_bytes = input_file.read() - metadata_str = metadata_bytes.decode("utf-8") - metadata = json.loads(metadata_str) - current_etna_version = get_etna_version() - saved_etna_version = tuple(metadata["etna_version"]) - - # if major version is different give a warning - if current_etna_version[0] != saved_etna_version[0] or current_etna_version[:2] < saved_etna_version[:2]: - current_etna_version_str = ".".join([str(x) for x in current_etna_version]) - saved_etna_version_str = ".".join([str(x) for x in saved_etna_version]) - warnings.warn( - f"The object was saved under etna version {saved_etna_version_str} " - f"but running version is {current_etna_version_str}, this can cause problems with compatibility!" - ) - - with zip_file.open("object.pkl", "r") as input_file: - return pickle.load(input_file) + with ZipFile(path, "r") as archive: + metadata = cls._load_metadata(archive) + cls._validate_metadata(metadata) + obj = cls._load_state(archive) + return obj diff --git a/etna/models/base.py b/etna/models/base.py index 07d7056b5..957f3f5b0 100644 --- a/etna/models/base.py +++ b/etna/models/base.py @@ -20,6 +20,7 @@ from etna.datasets.tsdataset import TSDataset from etna.loggers import tslogger from etna.models.decorators import log_decorator +from etna.models.mixins import SaveNNMixin if SETTINGS.torch_required: import torch @@ -32,6 +33,7 @@ from unittest.mock import Mock LightningModule = Mock # type: ignore + SaveNNMixin = Mock # type: ignore class AbstractModel(SaveMixin, AbstractSaveable, ABC, BaseMixin): @@ -430,7 +432,7 @@ def validation_step(self, batch: dict, *args, **kwargs): # type: ignore return loss -class DeepBaseModel(DeepBaseAbstractModel, NonPredictionIntervalContextRequiredAbstractModel): +class DeepBaseModel(DeepBaseAbstractModel, SaveNNMixin, NonPredictionIntervalContextRequiredAbstractModel): """Class for partially implemented interfaces for holding deep models.""" def __init__( diff --git a/etna/models/mixins.py b/etna/models/mixins.py index 0916de2ed..05379ff88 100644 --- a/etna/models/mixins.py +++ b/etna/models/mixins.py @@ -1,3 +1,4 @@ +import zipfile from abc import ABC from abc import abstractmethod from copy import deepcopy @@ -7,9 +8,11 @@ from typing import Optional from typing import Sequence +import dill import numpy as np import pandas as pd +from etna.core.mixins import SaveMixin from etna.datasets.tsdataset import TSDataset from etna.models.decorators import log_decorator @@ -441,3 +444,27 @@ def get_model(self) -> Any: if not hasattr(self._base_model, "get_model"): raise NotImplementedError(f"get_model method is not implemented for {self._base_model.__class__.__name__}") return self._base_model.get_model() + + +class SaveNNMixin(SaveMixin): + """Implementation of ``AbstractSaveable`` torch related classes. + + It saves object to the zip archive with 2 files: + + * metadata.json: contains library version and class name. + + * object.pt: object saved by ``torch.save``. + """ + + def _save_state(self, archive: zipfile.ZipFile): + import torch + + with archive.open("object.pt", "w") as output_file: + torch.save(self, output_file, pickle_module=dill) + + @classmethod + def _load_state(cls, archive: zipfile.ZipFile) -> Any: + import torch + + with archive.open("object.pt", "r") as input_file: + return torch.load(input_file, pickle_module=dill) diff --git a/etna/models/nn/deepar.py b/etna/models/nn/deepar.py index 97977eee2..5d2d7e97e 100644 --- a/etna/models/nn/deepar.py +++ b/etna/models/nn/deepar.py @@ -12,6 +12,7 @@ from etna.loggers import tslogger from etna.models.base import PredictionIntervalContextIgnorantAbstractModel from etna.models.base import log_decorator +from etna.models.mixins import SaveNNMixin from etna.models.nn.utils import _DeepCopyMixin from etna.transforms import PytorchForecastingTransform @@ -24,7 +25,7 @@ from pytorch_lightning import LightningModule -class DeepARModel(_DeepCopyMixin, PredictionIntervalContextIgnorantAbstractModel): +class DeepARModel(_DeepCopyMixin, SaveNNMixin, PredictionIntervalContextIgnorantAbstractModel): """Wrapper for :py:class:`pytorch_forecasting.models.deepar.DeepAR`. Notes diff --git a/etna/models/nn/mlp.py b/etna/models/nn/mlp.py index b4e239514..3887b58a8 100644 --- a/etna/models/nn/mlp.py +++ b/etna/models/nn/mlp.py @@ -146,14 +146,7 @@ def configure_optimizers(self): class MLPModel(DeepBaseModel): - """MLPModel. - - Warning - ------- - Currently, pickle is used in ``save`` and ``load`` methods. - It can work unreliably, because there is a native method :py:meth:`pytorch_lightning.Trainer.save_checkpoint` - that solves problems with using multiple devices. - """ + """MLPModel.""" def __init__( self, diff --git a/etna/models/nn/rnn.py b/etna/models/nn/rnn.py index 76d6db4f2..7dd410812 100644 --- a/etna/models/nn/rnn.py +++ b/etna/models/nn/rnn.py @@ -193,14 +193,7 @@ def configure_optimizers(self) -> "torch.optim.Optimizer": class RNNModel(DeepBaseModel): - """RNN based model on LSTM cell. - - Warning - ------- - Currently, pickle is used in ``save`` and ``load`` methods. - It can work unreliably, because there is a native method :py:meth:`pytorch_lightning.Trainer.save_checkpoint` - that solves problems with using multiple devices. - """ + """RNN based model on LSTM cell.""" def __init__( self, diff --git a/etna/models/nn/tft.py b/etna/models/nn/tft.py index 3835df363..e945cbddc 100644 --- a/etna/models/nn/tft.py +++ b/etna/models/nn/tft.py @@ -13,6 +13,7 @@ from etna.loggers import tslogger from etna.models.base import PredictionIntervalContextIgnorantAbstractModel from etna.models.base import log_decorator +from etna.models.mixins import SaveNNMixin from etna.models.nn.utils import _DeepCopyMixin from etna.transforms import PytorchForecastingTransform @@ -25,7 +26,7 @@ from pytorch_lightning import LightningModule -class TFTModel(_DeepCopyMixin, PredictionIntervalContextIgnorantAbstractModel): +class TFTModel(_DeepCopyMixin, SaveNNMixin, PredictionIntervalContextIgnorantAbstractModel): """Wrapper for :py:class:`pytorch_forecasting.models.temporal_fusion_transformer.TemporalFusionTransformer`. Notes diff --git a/tests/test_core/test_mixins.py b/tests/test_core/test_mixins.py index 68c382fb7..4b44afec0 100644 --- a/tests/test_core/test_mixins.py +++ b/tests/test_core/test_mixins.py @@ -1,7 +1,6 @@ import json import pathlib import pickle -import tempfile from unittest.mock import patch from zipfile import ZipFile @@ -22,63 +21,60 @@ def test_get_etna_version(): assert len(version) == 3 -def test_save_mixin_save(): - with tempfile.TemporaryDirectory() as dir_path_str: - dummy = Dummy(a=1, b=2) - dir_path = pathlib.Path(dir_path_str) - path = dir_path.joinpath("dummy.zip") +def test_save_mixin_save(tmp_path): + dummy = Dummy(a=1, b=2) + dir_path = pathlib.Path(tmp_path) + path = dir_path.joinpath("dummy.zip") - dummy.save(path) + dummy.save(path) - with ZipFile(path, "r") as zip_file: - files = zip_file.namelist() - assert sorted(files) == ["metadata.json", "object.pkl"] + with ZipFile(path, "r") as zip_file: + files = zip_file.namelist() + assert sorted(files) == ["metadata.json", "object.pkl"] - with zip_file.open("metadata.json", "r") as input_file: - metadata_bytes = input_file.read() - metadata_str = metadata_bytes.decode("utf-8") - metadata = json.loads(metadata_str) - assert sorted(metadata.keys()) == ["class", "etna_version"] - assert metadata["class"] == "tests.test_core.test_mixins.Dummy" + with zip_file.open("metadata.json", "r") as input_file: + metadata_bytes = input_file.read() + metadata_str = metadata_bytes.decode("utf-8") + metadata = json.loads(metadata_str) + assert sorted(metadata.keys()) == ["class", "etna_version"] + assert metadata["class"] == "tests.test_core.test_mixins.Dummy" - with zip_file.open("object.pkl", "r") as input_file: - loaded_dummy = pickle.load(input_file) - assert loaded_dummy.a == dummy.a - assert loaded_dummy.b == dummy.b + with zip_file.open("object.pkl", "r") as input_file: + loaded_dummy = pickle.load(input_file) + assert loaded_dummy.a == dummy.a + assert loaded_dummy.b == dummy.b -def test_save_mixin_load_ok(recwarn): - with tempfile.TemporaryDirectory() as dir_path_str: - dummy = Dummy(a=1, b=2) - dir_path = pathlib.Path(dir_path_str) - path = dir_path.joinpath("dummy.zip") +def test_save_mixin_load_ok(recwarn, tmp_path): + dummy = Dummy(a=1, b=2) + dir_path = pathlib.Path(tmp_path) + path = dir_path.joinpath("dummy.zip") - dummy.save(path) - loaded_dummy = Dummy.load(path) + dummy.save(path) + loaded_dummy = Dummy.load(path) - assert loaded_dummy.a == dummy.a - assert loaded_dummy.b == dummy.b - assert len(recwarn) == 0 + assert loaded_dummy.a == dummy.a + assert loaded_dummy.b == dummy.b + assert len(recwarn) == 0 @pytest.mark.parametrize( "save_version, load_version", [((1, 5, 0), (2, 5, 0)), ((2, 5, 0), (1, 5, 0)), ((1, 5, 0), (1, 3, 0))] ) @patch("etna.core.mixins.get_etna_version") -def test_save_mixin_load_warning(get_version_mock, save_version, load_version): - with tempfile.TemporaryDirectory() as dir_path_str: - dummy = Dummy(a=1, b=2) - dir_path = pathlib.Path(dir_path_str) - path = dir_path.joinpath("dummy.zip") - - get_version_mock.return_value = save_version - dummy.save(path) - - save_version_str = ".".join([str(x) for x in save_version]) - load_version_str = ".".join([str(x) for x in load_version]) - with pytest.warns( - UserWarning, - match=f"The object was saved under etna version {save_version_str} but running version is {load_version_str}", - ): - get_version_mock.return_value = load_version - _ = Dummy.load(path) +def test_save_mixin_load_warning(get_version_mock, save_version, load_version, tmp_path): + dummy = Dummy(a=1, b=2) + dir_path = pathlib.Path(tmp_path) + path = dir_path.joinpath("dummy.zip") + + get_version_mock.return_value = save_version + dummy.save(path) + + save_version_str = ".".join([str(x) for x in save_version]) + load_version_str = ".".join([str(x) for x in load_version]) + with pytest.warns( + UserWarning, + match=f"The object was saved under etna version {save_version_str} but running version is {load_version_str}", + ): + get_version_mock.return_value = load_version + _ = Dummy.load(path) diff --git a/tests/test_models/nn/test_deepar.py b/tests/test_models/nn/test_deepar.py index 255d47027..d8b72ba52 100644 --- a/tests/test_models/nn/test_deepar.py +++ b/tests/test_models/nn/test_deepar.py @@ -172,7 +172,6 @@ def test_prediction_interval_run_infuture(example_tsds): assert (segment_slice["target_0.975"] - segment_slice["target"] >= 0).all() -@pytest.mark.xfail(reason="Should be fixed in inference-v2.0", strict=True) def test_save_load(example_tsds): horizon = 3 model = DeepARModel(max_epochs=2, learning_rate=[0.01], gpus=0, batch_size=64) diff --git a/tests/test_models/nn/test_mlp.py b/tests/test_models/nn/test_mlp.py index 2c1d708a2..419d3207a 100644 --- a/tests/test_models/nn/test_mlp.py +++ b/tests/test_models/nn/test_mlp.py @@ -104,7 +104,6 @@ def test_mlp_layers(): assert repr(model_) == repr(model.mlp) -@pytest.mark.xfail(reason="Non native serialization, should be fixed in inference-v2.0") def test_save_load(example_tsds): horizon = 3 model = MLPModel( diff --git a/tests/test_models/nn/test_rnn.py b/tests/test_models/nn/test_rnn.py index e50345b9a..ee5409aee 100644 --- a/tests/test_models/nn/test_rnn.py +++ b/tests/test_models/nn/test_rnn.py @@ -75,7 +75,6 @@ def test_context_size(encoder_length): assert model.context_size == encoder_length -@pytest.mark.xfail(reason="Non native serialization, should be fixed in inference-v2.0") def test_save_load(example_tsds): model = RNNModel(input_size=1, encoder_length=14, decoder_length=14, trainer_params=dict(max_epochs=2)) assert_model_equals_loaded_original(model=model, ts=example_tsds, transforms=[], horizon=3) diff --git a/tests/test_models/nn/test_tft.py b/tests/test_models/nn/test_tft.py index c57affea7..5292b5c5c 100644 --- a/tests/test_models/nn/test_tft.py +++ b/tests/test_models/nn/test_tft.py @@ -181,10 +181,9 @@ def test_prediction_interval_run_infuture_warning_loss(example_tsds): assert {"target_0.02", "target_0.98"}.isdisjoint(segment_slice.columns) -@pytest.mark.xfail(reason="Should be fixed in inference-v2.0", strict=True) def test_save_load(example_tsds): horizon = 3 - model = TFTModel(max_epochs=2, learning_rate=[0.1], gpus=0, batch_size=64, loss=MAEPF()) + model = TFTModel(max_epochs=2, learning_rate=[0.1], gpus=0, batch_size=64) transform = _get_default_transform(horizon) transforms = [transform] assert_model_equals_loaded_original(model=model, ts=example_tsds, transforms=transforms, horizon=horizon) diff --git a/tests/test_models/test_mixins.py b/tests/test_models/test_mixins.py index 2e46ced62..0b7f8c9d3 100644 --- a/tests/test_models/test_mixins.py +++ b/tests/test_models/test_mixins.py @@ -1,9 +1,20 @@ +import json +import pathlib from unittest.mock import MagicMock +from unittest.mock import patch +from zipfile import ZipFile +import dill import pytest +from etna import SETTINGS + +if SETTINGS.torch_required: + import torch + from etna.models.mixins import MultiSegmentModelMixin from etna.models.mixins import PerSegmentModelMixin +from etna.models.mixins import SaveNNMixin @pytest.fixture() @@ -48,3 +59,68 @@ def test_calling_private_prediction( mixin._make_predictions.assert_called_once_with( ts=ts, prediction_method=getattr(base_model.__class__, expected_method_name) ) + + +class DummyNN(SaveNNMixin): + def __init__(self, a, b): + self.a = torch.tensor(a) + self.b = torch.tensor(b) + + +def test_save_nn_mixin_save(tmp_path): + dummy = DummyNN(a=1, b=2) + dir_path = pathlib.Path(tmp_path) + path = dir_path.joinpath("dummy.zip") + + dummy.save(path) + + with ZipFile(path, "r") as zip_file: + files = zip_file.namelist() + assert sorted(files) == ["metadata.json", "object.pt"] + + with zip_file.open("metadata.json", "r") as input_file: + metadata_bytes = input_file.read() + metadata_str = metadata_bytes.decode("utf-8") + metadata = json.loads(metadata_str) + assert sorted(metadata.keys()) == ["class", "etna_version"] + assert metadata["class"] == "tests.test_models.test_mixins.DummyNN" + + with zip_file.open("object.pt", "r") as input_file: + loaded_dummy = torch.load(input_file, pickle_module=dill) + assert loaded_dummy.a == dummy.a + assert loaded_dummy.b == dummy.b + + +def test_save_mixin_load_ok(recwarn, tmp_path): + dummy = DummyNN(a=1, b=2) + dir_path = pathlib.Path(tmp_path) + path = dir_path.joinpath("dummy.zip") + + dummy.save(path) + loaded_dummy = DummyNN.load(path) + + assert loaded_dummy.a == dummy.a + assert loaded_dummy.b == dummy.b + assert len(recwarn) == 0 + + +@pytest.mark.parametrize( + "save_version, load_version", [((1, 5, 0), (2, 5, 0)), ((2, 5, 0), (1, 5, 0)), ((1, 5, 0), (1, 3, 0))] +) +@patch("etna.core.mixins.get_etna_version") +def test_save_mixin_load_warning(get_version_mock, save_version, load_version, tmp_path): + dummy = DummyNN(a=1, b=2) + dir_path = pathlib.Path(tmp_path) + path = dir_path.joinpath("dummy.zip") + + get_version_mock.return_value = save_version + dummy.save(path) + + save_version_str = ".".join([str(x) for x in save_version]) + load_version_str = ".".join([str(x) for x in load_version]) + with pytest.warns( + UserWarning, + match=f"The object was saved under etna version {save_version_str} but running version is {load_version_str}", + ): + get_version_mock.return_value = load_version + _ = DummyNN.load(path) diff --git a/tests/test_models/utils.py b/tests/test_models/utils.py index c6f089a33..c726f1726 100644 --- a/tests/test_models/utils.py +++ b/tests/test_models/utils.py @@ -1,6 +1,5 @@ import pathlib import tempfile -from copy import deepcopy from typing import Sequence from typing import Tuple @@ -17,21 +16,24 @@ def get_loaded_model(model: ModelType) -> ModelType: dir_path = pathlib.Path(dir_path_str) path = dir_path.joinpath("dummy.zip") model.save(path) - loaded_model = deepcopy(model).load(path) + loaded_model = model.load(path) return loaded_model def assert_model_equals_loaded_original( model: ModelType, ts: TSDataset, transforms: Sequence[Transform], horizon: int ) -> Tuple[ModelType, ModelType]: + import torch # TODO: remove after fix at issue-802 + pipeline_1 = Pipeline(model=model, transforms=transforms, horizon=horizon) pipeline_1.fit(ts) - loaded_model = get_loaded_model(pipeline_1.model) - pipeline_2 = deepcopy(pipeline_1) - pipeline_2.model = loaded_model - + torch.manual_seed(11) forecast_ts_1 = pipeline_1.forecast() - forecast_ts_2 = pipeline_2.forecast() + + loaded_model = get_loaded_model(pipeline_1.model) + pipeline_1.model = loaded_model + torch.manual_seed(11) + forecast_ts_2 = pipeline_1.forecast() pd.testing.assert_frame_equal(forecast_ts_1.to_pandas(), forecast_ts_2.to_pandas()) From 75c4623ebc174f67923cf435dfb6ec05f3af3cf5 Mon Sep 17 00:00:00 2001 From: "d.a.bunin" Date: Thu, 24 Nov 2022 18:45:25 +0300 Subject: [PATCH 03/12] Revert "Add SaveNNMixin for fixing saving/loading of NNs" This reverts commit 7d2cf1b9606dcf0d68f482970452edafc784cbe1. --- etna/core/mixins.py | 85 +++++++++++---------------- etna/models/base.py | 4 +- etna/models/mixins.py | 27 --------- etna/models/nn/deepar.py | 3 +- etna/models/nn/mlp.py | 9 ++- etna/models/nn/rnn.py | 9 ++- etna/models/nn/tft.py | 3 +- tests/test_core/test_mixins.py | 90 +++++++++++++++-------------- tests/test_models/nn/test_deepar.py | 1 + tests/test_models/nn/test_mlp.py | 1 + tests/test_models/nn/test_rnn.py | 1 + tests/test_models/nn/test_tft.py | 3 +- tests/test_models/test_mixins.py | 76 ------------------------ tests/test_models/utils.py | 16 +++-- 14 files changed, 111 insertions(+), 217 deletions(-) diff --git a/etna/core/mixins.py b/etna/core/mixins.py index 1be2dadd2..e9a2a3d4d 100644 --- a/etna/core/mixins.py +++ b/etna/core/mixins.py @@ -4,7 +4,6 @@ import pickle import sys import warnings -import zipfile from enum import Enum from typing import Any from typing import Callable @@ -119,7 +118,7 @@ def get_etna_version() -> Tuple[int, int, int]: class SaveMixin: - """Basic implementation of ``AbstractSaveable`` abstract class. + """Basic implementation of AbstractSaveable abstract class. It saves object to the zip archive with 2 files: @@ -128,21 +127,6 @@ class SaveMixin: * object.pkl: pickled object. """ - def _save_metadata(self, archive: zipfile.ZipFile): - full_class_name = f"{inspect.getmodule(self).__name__}.{self.__class__.__name__}" # type: ignore - metadata = { - "etna_version": get_etna_version(), - "class": full_class_name, - } - metadata_str = json.dumps(metadata, indent=2, sort_keys=True) - metadata_bytes = metadata_str.encode("utf-8") - with archive.open("metadata.json", "w") as output_file: - output_file.write(metadata_bytes) - - def _save_state(self, archive: zipfile.ZipFile): - with archive.open("object.pkl", "w") as output_file: - pickle.dump(self, output_file) - def save(self, path: pathlib.Path): """Save the object. @@ -151,36 +135,19 @@ def save(self, path: pathlib.Path): path: Path to save object to. """ - with ZipFile(path, "w") as archive: - self._save_metadata(archive) - self._save_state(archive) - - @classmethod - def _load_metadata(cls, archive: zipfile.ZipFile) -> Dict[str, Any]: - with archive.open("metadata.json", "r") as input_file: - metadata_bytes = input_file.read() - metadata_str = metadata_bytes.decode("utf-8") - metadata = json.loads(metadata_str) - return metadata - - @classmethod - def _validate_metadata(cls, metadata: Dict[str, Any]): - current_etna_version = get_etna_version() - saved_etna_version = tuple(metadata["etna_version"]) - - # if major version is different give a warning - if current_etna_version[0] != saved_etna_version[0] or current_etna_version[:2] < saved_etna_version[:2]: - current_etna_version_str = ".".join([str(x) for x in current_etna_version]) - saved_etna_version_str = ".".join([str(x) for x in saved_etna_version]) - warnings.warn( - f"The object was saved under etna version {saved_etna_version_str} " - f"but running version is {current_etna_version_str}, this can cause problems with compatibility!" - ) - - @classmethod - def _load_state(cls, archive: zipfile.ZipFile) -> Any: - with archive.open("object.pkl", "r") as input_file: - return pickle.load(input_file) + with ZipFile(path, "w") as zip_file: + full_class_name = f"{inspect.getmodule(self).__name__}.{self.__class__.__name__}" # type: ignore + metadata = { + "etna_version": get_etna_version(), + "class": full_class_name, + } + metadata_str = json.dumps(metadata, indent=2, sort_keys=True) + metadata_bytes = metadata_str.encode("utf-8") + with zip_file.open("metadata.json", "w") as output_file: + output_file.write(metadata_bytes) + + with zip_file.open("object.pkl", "w") as output_file: + pickle.dump(self, output_file) @classmethod def load(cls, path: pathlib.Path) -> Any: @@ -191,8 +158,22 @@ def load(cls, path: pathlib.Path) -> Any: path: Path to load object from. """ - with ZipFile(path, "r") as archive: - metadata = cls._load_metadata(archive) - cls._validate_metadata(metadata) - obj = cls._load_state(archive) - return obj + with ZipFile(path, "r") as zip_file: + with zip_file.open("metadata.json", "r") as input_file: + metadata_bytes = input_file.read() + metadata_str = metadata_bytes.decode("utf-8") + metadata = json.loads(metadata_str) + current_etna_version = get_etna_version() + saved_etna_version = tuple(metadata["etna_version"]) + + # if major version is different give a warning + if current_etna_version[0] != saved_etna_version[0] or current_etna_version[:2] < saved_etna_version[:2]: + current_etna_version_str = ".".join([str(x) for x in current_etna_version]) + saved_etna_version_str = ".".join([str(x) for x in saved_etna_version]) + warnings.warn( + f"The object was saved under etna version {saved_etna_version_str} " + f"but running version is {current_etna_version_str}, this can cause problems with compatibility!" + ) + + with zip_file.open("object.pkl", "r") as input_file: + return pickle.load(input_file) diff --git a/etna/models/base.py b/etna/models/base.py index 957f3f5b0..07d7056b5 100644 --- a/etna/models/base.py +++ b/etna/models/base.py @@ -20,7 +20,6 @@ from etna.datasets.tsdataset import TSDataset from etna.loggers import tslogger from etna.models.decorators import log_decorator -from etna.models.mixins import SaveNNMixin if SETTINGS.torch_required: import torch @@ -33,7 +32,6 @@ from unittest.mock import Mock LightningModule = Mock # type: ignore - SaveNNMixin = Mock # type: ignore class AbstractModel(SaveMixin, AbstractSaveable, ABC, BaseMixin): @@ -432,7 +430,7 @@ def validation_step(self, batch: dict, *args, **kwargs): # type: ignore return loss -class DeepBaseModel(DeepBaseAbstractModel, SaveNNMixin, NonPredictionIntervalContextRequiredAbstractModel): +class DeepBaseModel(DeepBaseAbstractModel, NonPredictionIntervalContextRequiredAbstractModel): """Class for partially implemented interfaces for holding deep models.""" def __init__( diff --git a/etna/models/mixins.py b/etna/models/mixins.py index 05379ff88..0916de2ed 100644 --- a/etna/models/mixins.py +++ b/etna/models/mixins.py @@ -1,4 +1,3 @@ -import zipfile from abc import ABC from abc import abstractmethod from copy import deepcopy @@ -8,11 +7,9 @@ from typing import Optional from typing import Sequence -import dill import numpy as np import pandas as pd -from etna.core.mixins import SaveMixin from etna.datasets.tsdataset import TSDataset from etna.models.decorators import log_decorator @@ -444,27 +441,3 @@ def get_model(self) -> Any: if not hasattr(self._base_model, "get_model"): raise NotImplementedError(f"get_model method is not implemented for {self._base_model.__class__.__name__}") return self._base_model.get_model() - - -class SaveNNMixin(SaveMixin): - """Implementation of ``AbstractSaveable`` torch related classes. - - It saves object to the zip archive with 2 files: - - * metadata.json: contains library version and class name. - - * object.pt: object saved by ``torch.save``. - """ - - def _save_state(self, archive: zipfile.ZipFile): - import torch - - with archive.open("object.pt", "w") as output_file: - torch.save(self, output_file, pickle_module=dill) - - @classmethod - def _load_state(cls, archive: zipfile.ZipFile) -> Any: - import torch - - with archive.open("object.pt", "r") as input_file: - return torch.load(input_file, pickle_module=dill) diff --git a/etna/models/nn/deepar.py b/etna/models/nn/deepar.py index 5d2d7e97e..97977eee2 100644 --- a/etna/models/nn/deepar.py +++ b/etna/models/nn/deepar.py @@ -12,7 +12,6 @@ from etna.loggers import tslogger from etna.models.base import PredictionIntervalContextIgnorantAbstractModel from etna.models.base import log_decorator -from etna.models.mixins import SaveNNMixin from etna.models.nn.utils import _DeepCopyMixin from etna.transforms import PytorchForecastingTransform @@ -25,7 +24,7 @@ from pytorch_lightning import LightningModule -class DeepARModel(_DeepCopyMixin, SaveNNMixin, PredictionIntervalContextIgnorantAbstractModel): +class DeepARModel(_DeepCopyMixin, PredictionIntervalContextIgnorantAbstractModel): """Wrapper for :py:class:`pytorch_forecasting.models.deepar.DeepAR`. Notes diff --git a/etna/models/nn/mlp.py b/etna/models/nn/mlp.py index 3887b58a8..b4e239514 100644 --- a/etna/models/nn/mlp.py +++ b/etna/models/nn/mlp.py @@ -146,7 +146,14 @@ def configure_optimizers(self): class MLPModel(DeepBaseModel): - """MLPModel.""" + """MLPModel. + + Warning + ------- + Currently, pickle is used in ``save`` and ``load`` methods. + It can work unreliably, because there is a native method :py:meth:`pytorch_lightning.Trainer.save_checkpoint` + that solves problems with using multiple devices. + """ def __init__( self, diff --git a/etna/models/nn/rnn.py b/etna/models/nn/rnn.py index 7dd410812..76d6db4f2 100644 --- a/etna/models/nn/rnn.py +++ b/etna/models/nn/rnn.py @@ -193,7 +193,14 @@ def configure_optimizers(self) -> "torch.optim.Optimizer": class RNNModel(DeepBaseModel): - """RNN based model on LSTM cell.""" + """RNN based model on LSTM cell. + + Warning + ------- + Currently, pickle is used in ``save`` and ``load`` methods. + It can work unreliably, because there is a native method :py:meth:`pytorch_lightning.Trainer.save_checkpoint` + that solves problems with using multiple devices. + """ def __init__( self, diff --git a/etna/models/nn/tft.py b/etna/models/nn/tft.py index e945cbddc..3835df363 100644 --- a/etna/models/nn/tft.py +++ b/etna/models/nn/tft.py @@ -13,7 +13,6 @@ from etna.loggers import tslogger from etna.models.base import PredictionIntervalContextIgnorantAbstractModel from etna.models.base import log_decorator -from etna.models.mixins import SaveNNMixin from etna.models.nn.utils import _DeepCopyMixin from etna.transforms import PytorchForecastingTransform @@ -26,7 +25,7 @@ from pytorch_lightning import LightningModule -class TFTModel(_DeepCopyMixin, SaveNNMixin, PredictionIntervalContextIgnorantAbstractModel): +class TFTModel(_DeepCopyMixin, PredictionIntervalContextIgnorantAbstractModel): """Wrapper for :py:class:`pytorch_forecasting.models.temporal_fusion_transformer.TemporalFusionTransformer`. Notes diff --git a/tests/test_core/test_mixins.py b/tests/test_core/test_mixins.py index 4b44afec0..68c382fb7 100644 --- a/tests/test_core/test_mixins.py +++ b/tests/test_core/test_mixins.py @@ -1,6 +1,7 @@ import json import pathlib import pickle +import tempfile from unittest.mock import patch from zipfile import ZipFile @@ -21,60 +22,63 @@ def test_get_etna_version(): assert len(version) == 3 -def test_save_mixin_save(tmp_path): - dummy = Dummy(a=1, b=2) - dir_path = pathlib.Path(tmp_path) - path = dir_path.joinpath("dummy.zip") +def test_save_mixin_save(): + with tempfile.TemporaryDirectory() as dir_path_str: + dummy = Dummy(a=1, b=2) + dir_path = pathlib.Path(dir_path_str) + path = dir_path.joinpath("dummy.zip") - dummy.save(path) + dummy.save(path) - with ZipFile(path, "r") as zip_file: - files = zip_file.namelist() - assert sorted(files) == ["metadata.json", "object.pkl"] + with ZipFile(path, "r") as zip_file: + files = zip_file.namelist() + assert sorted(files) == ["metadata.json", "object.pkl"] - with zip_file.open("metadata.json", "r") as input_file: - metadata_bytes = input_file.read() - metadata_str = metadata_bytes.decode("utf-8") - metadata = json.loads(metadata_str) - assert sorted(metadata.keys()) == ["class", "etna_version"] - assert metadata["class"] == "tests.test_core.test_mixins.Dummy" + with zip_file.open("metadata.json", "r") as input_file: + metadata_bytes = input_file.read() + metadata_str = metadata_bytes.decode("utf-8") + metadata = json.loads(metadata_str) + assert sorted(metadata.keys()) == ["class", "etna_version"] + assert metadata["class"] == "tests.test_core.test_mixins.Dummy" - with zip_file.open("object.pkl", "r") as input_file: - loaded_dummy = pickle.load(input_file) - assert loaded_dummy.a == dummy.a - assert loaded_dummy.b == dummy.b + with zip_file.open("object.pkl", "r") as input_file: + loaded_dummy = pickle.load(input_file) + assert loaded_dummy.a == dummy.a + assert loaded_dummy.b == dummy.b -def test_save_mixin_load_ok(recwarn, tmp_path): - dummy = Dummy(a=1, b=2) - dir_path = pathlib.Path(tmp_path) - path = dir_path.joinpath("dummy.zip") +def test_save_mixin_load_ok(recwarn): + with tempfile.TemporaryDirectory() as dir_path_str: + dummy = Dummy(a=1, b=2) + dir_path = pathlib.Path(dir_path_str) + path = dir_path.joinpath("dummy.zip") - dummy.save(path) - loaded_dummy = Dummy.load(path) + dummy.save(path) + loaded_dummy = Dummy.load(path) - assert loaded_dummy.a == dummy.a - assert loaded_dummy.b == dummy.b - assert len(recwarn) == 0 + assert loaded_dummy.a == dummy.a + assert loaded_dummy.b == dummy.b + assert len(recwarn) == 0 @pytest.mark.parametrize( "save_version, load_version", [((1, 5, 0), (2, 5, 0)), ((2, 5, 0), (1, 5, 0)), ((1, 5, 0), (1, 3, 0))] ) @patch("etna.core.mixins.get_etna_version") -def test_save_mixin_load_warning(get_version_mock, save_version, load_version, tmp_path): - dummy = Dummy(a=1, b=2) - dir_path = pathlib.Path(tmp_path) - path = dir_path.joinpath("dummy.zip") - - get_version_mock.return_value = save_version - dummy.save(path) - - save_version_str = ".".join([str(x) for x in save_version]) - load_version_str = ".".join([str(x) for x in load_version]) - with pytest.warns( - UserWarning, - match=f"The object was saved under etna version {save_version_str} but running version is {load_version_str}", - ): - get_version_mock.return_value = load_version - _ = Dummy.load(path) +def test_save_mixin_load_warning(get_version_mock, save_version, load_version): + with tempfile.TemporaryDirectory() as dir_path_str: + dummy = Dummy(a=1, b=2) + dir_path = pathlib.Path(dir_path_str) + path = dir_path.joinpath("dummy.zip") + + get_version_mock.return_value = save_version + dummy.save(path) + + save_version_str = ".".join([str(x) for x in save_version]) + load_version_str = ".".join([str(x) for x in load_version]) + with pytest.warns( + UserWarning, + match=f"The object was saved under etna version {save_version_str} but running version is {load_version_str}", + ): + get_version_mock.return_value = load_version + _ = Dummy.load(path) diff --git a/tests/test_models/nn/test_deepar.py b/tests/test_models/nn/test_deepar.py index d8b72ba52..255d47027 100644 --- a/tests/test_models/nn/test_deepar.py +++ b/tests/test_models/nn/test_deepar.py @@ -172,6 +172,7 @@ def test_prediction_interval_run_infuture(example_tsds): assert (segment_slice["target_0.975"] - segment_slice["target"] >= 0).all() +@pytest.mark.xfail(reason="Should be fixed in inference-v2.0", strict=True) def test_save_load(example_tsds): horizon = 3 model = DeepARModel(max_epochs=2, learning_rate=[0.01], gpus=0, batch_size=64) diff --git a/tests/test_models/nn/test_mlp.py b/tests/test_models/nn/test_mlp.py index 419d3207a..2c1d708a2 100644 --- a/tests/test_models/nn/test_mlp.py +++ b/tests/test_models/nn/test_mlp.py @@ -104,6 +104,7 @@ def test_mlp_layers(): assert repr(model_) == repr(model.mlp) +@pytest.mark.xfail(reason="Non native serialization, should be fixed in inference-v2.0") def test_save_load(example_tsds): horizon = 3 model = MLPModel( diff --git a/tests/test_models/nn/test_rnn.py b/tests/test_models/nn/test_rnn.py index ee5409aee..e50345b9a 100644 --- a/tests/test_models/nn/test_rnn.py +++ b/tests/test_models/nn/test_rnn.py @@ -75,6 +75,7 @@ def test_context_size(encoder_length): assert model.context_size == encoder_length +@pytest.mark.xfail(reason="Non native serialization, should be fixed in inference-v2.0") def test_save_load(example_tsds): model = RNNModel(input_size=1, encoder_length=14, decoder_length=14, trainer_params=dict(max_epochs=2)) assert_model_equals_loaded_original(model=model, ts=example_tsds, transforms=[], horizon=3) diff --git a/tests/test_models/nn/test_tft.py b/tests/test_models/nn/test_tft.py index 5292b5c5c..c57affea7 100644 --- a/tests/test_models/nn/test_tft.py +++ b/tests/test_models/nn/test_tft.py @@ -181,9 +181,10 @@ def test_prediction_interval_run_infuture_warning_loss(example_tsds): assert {"target_0.02", "target_0.98"}.isdisjoint(segment_slice.columns) +@pytest.mark.xfail(reason="Should be fixed in inference-v2.0", strict=True) def test_save_load(example_tsds): horizon = 3 - model = TFTModel(max_epochs=2, learning_rate=[0.1], gpus=0, batch_size=64) + model = TFTModel(max_epochs=2, learning_rate=[0.1], gpus=0, batch_size=64, loss=MAEPF()) transform = _get_default_transform(horizon) transforms = [transform] assert_model_equals_loaded_original(model=model, ts=example_tsds, transforms=transforms, horizon=horizon) diff --git a/tests/test_models/test_mixins.py b/tests/test_models/test_mixins.py index 0b7f8c9d3..2e46ced62 100644 --- a/tests/test_models/test_mixins.py +++ b/tests/test_models/test_mixins.py @@ -1,20 +1,9 @@ -import json -import pathlib from unittest.mock import MagicMock -from unittest.mock import patch -from zipfile import ZipFile -import dill import pytest -from etna import SETTINGS - -if SETTINGS.torch_required: - import torch - from etna.models.mixins import MultiSegmentModelMixin from etna.models.mixins import PerSegmentModelMixin -from etna.models.mixins import SaveNNMixin @pytest.fixture() @@ -59,68 +48,3 @@ def test_calling_private_prediction( mixin._make_predictions.assert_called_once_with( ts=ts, prediction_method=getattr(base_model.__class__, expected_method_name) ) - - -class DummyNN(SaveNNMixin): - def __init__(self, a, b): - self.a = torch.tensor(a) - self.b = torch.tensor(b) - - -def test_save_nn_mixin_save(tmp_path): - dummy = DummyNN(a=1, b=2) - dir_path = pathlib.Path(tmp_path) - path = dir_path.joinpath("dummy.zip") - - dummy.save(path) - - with ZipFile(path, "r") as zip_file: - files = zip_file.namelist() - assert sorted(files) == ["metadata.json", "object.pt"] - - with zip_file.open("metadata.json", "r") as input_file: - metadata_bytes = input_file.read() - metadata_str = metadata_bytes.decode("utf-8") - metadata = json.loads(metadata_str) - assert sorted(metadata.keys()) == ["class", "etna_version"] - assert metadata["class"] == "tests.test_models.test_mixins.DummyNN" - - with zip_file.open("object.pt", "r") as input_file: - loaded_dummy = torch.load(input_file, pickle_module=dill) - assert loaded_dummy.a == dummy.a - assert loaded_dummy.b == dummy.b - - -def test_save_mixin_load_ok(recwarn, tmp_path): - dummy = DummyNN(a=1, b=2) - dir_path = pathlib.Path(tmp_path) - path = dir_path.joinpath("dummy.zip") - - dummy.save(path) - loaded_dummy = DummyNN.load(path) - - assert loaded_dummy.a == dummy.a - assert loaded_dummy.b == dummy.b - assert len(recwarn) == 0 - - -@pytest.mark.parametrize( - "save_version, load_version", [((1, 5, 0), (2, 5, 0)), ((2, 5, 0), (1, 5, 0)), ((1, 5, 0), (1, 3, 0))] -) -@patch("etna.core.mixins.get_etna_version") -def test_save_mixin_load_warning(get_version_mock, save_version, load_version, tmp_path): - dummy = DummyNN(a=1, b=2) - dir_path = pathlib.Path(tmp_path) - path = dir_path.joinpath("dummy.zip") - - get_version_mock.return_value = save_version - dummy.save(path) - - save_version_str = ".".join([str(x) for x in save_version]) - load_version_str = ".".join([str(x) for x in load_version]) - with pytest.warns( - UserWarning, - match=f"The object was saved under etna version {save_version_str} but running version is {load_version_str}", - ): - get_version_mock.return_value = load_version - _ = DummyNN.load(path) diff --git a/tests/test_models/utils.py b/tests/test_models/utils.py index c726f1726..c6f089a33 100644 --- a/tests/test_models/utils.py +++ b/tests/test_models/utils.py @@ -1,5 +1,6 @@ import pathlib import tempfile +from copy import deepcopy from typing import Sequence from typing import Tuple @@ -16,24 +17,21 @@ def get_loaded_model(model: ModelType) -> ModelType: dir_path = pathlib.Path(dir_path_str) path = dir_path.joinpath("dummy.zip") model.save(path) - loaded_model = model.load(path) + loaded_model = deepcopy(model).load(path) return loaded_model def assert_model_equals_loaded_original( model: ModelType, ts: TSDataset, transforms: Sequence[Transform], horizon: int ) -> Tuple[ModelType, ModelType]: - import torch # TODO: remove after fix at issue-802 - pipeline_1 = Pipeline(model=model, transforms=transforms, horizon=horizon) pipeline_1.fit(ts) - torch.manual_seed(11) - forecast_ts_1 = pipeline_1.forecast() - loaded_model = get_loaded_model(pipeline_1.model) - pipeline_1.model = loaded_model - torch.manual_seed(11) - forecast_ts_2 = pipeline_1.forecast() + pipeline_2 = deepcopy(pipeline_1) + pipeline_2.model = loaded_model + + forecast_ts_1 = pipeline_1.forecast() + forecast_ts_2 = pipeline_2.forecast() pd.testing.assert_frame_equal(forecast_ts_1.to_pandas(), forecast_ts_2.to_pandas()) From f25a88e4a169b22dd965f6e67febd28c8a51ddd9 Mon Sep 17 00:00:00 2001 From: Mr-Geekman <36005824+Mr-Geekman@users.noreply.github.com> Date: Tue, 29 Nov 2022 16:52:59 +0300 Subject: [PATCH 04/12] Remove documentation warning about using pickle in saving/loading catboost (#1020) --- CHANGELOG.md | 2 +- etna/models/catboost.py | 7 ------- tests/test_models/test_catboost.py | 1 - 3 files changed, 1 insertion(+), 9 deletions(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index c5ae42821..dfeb594c0 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -33,7 +33,7 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0 - Fix release docs and docker images cron job ([#982](https://github.com/tinkoff-ai/etna/pull/982)) - - -- +- Remove documentation warning about using pickle in saving/loading catboost ([#1020](https://github.com/tinkoff-ai/etna/pull/1020)) - ## [1.13.0] - 2022-10-10 ### Added diff --git a/etna/models/catboost.py b/etna/models/catboost.py index 1c2258030..0c2fe02a0 100644 --- a/etna/models/catboost.py +++ b/etna/models/catboost.py @@ -115,8 +115,6 @@ class CatBoostPerSegmentModel( ): """Class for holding per segment Catboost model. - Currently, pickle is used in ``save`` and ``load`` methods. It can work unreliably. - Examples -------- >>> from etna.datasets import generate_periodic_df @@ -243,11 +241,6 @@ class CatBoostMultiSegmentModel( ): """Class for holding Catboost model for all segments. - Warning - ------- - Currently, pickle is used in ``save`` and ``load`` methods. It can work unreliably, because - there is a native method :py:meth:`catboost.CatBoost.save_model`. - Examples -------- >>> from etna.datasets import generate_periodic_df diff --git a/tests/test_models/test_catboost.py b/tests/test_models/test_catboost.py index d31534fe6..10ca7c8cf 100644 --- a/tests/test_models/test_catboost.py +++ b/tests/test_models/test_catboost.py @@ -130,7 +130,6 @@ def test_encoder_catboost(encoder): _ = pipeline.backtest(ts=ts, metrics=[MAE()], n_folds=1) -@pytest.mark.xfail(reason="Non native serialization, should be fixed in inference-v2.0") @pytest.mark.parametrize( "model", [ From 3a40f757d44f89f39546fc5483777635c2c607b4 Mon Sep 17 00:00:00 2001 From: Mr-Geekman <36005824+Mr-Geekman@users.noreply.github.com> Date: Tue, 29 Nov 2022 18:57:09 +0300 Subject: [PATCH 05/12] Add SaveNNMixin for fixing saving/loading of NNs (#1012) --- CHANGELOG.md | 2 +- etna/core/mixins.py | 85 ++++++++++++++++----------- etna/models/base.py | 9 ++- etna/models/mixins.py | 27 +++++++++ etna/models/nn/deepar.py | 3 +- etna/models/nn/mlp.py | 9 +-- etna/models/nn/rnn.py | 9 +-- etna/models/nn/tft.py | 3 +- tests/test_core/test_mixins.py | 90 ++++++++++++++--------------- tests/test_models/nn/test_deepar.py | 1 - tests/test_models/nn/test_mlp.py | 5 +- tests/test_models/nn/test_rnn.py | 1 - tests/test_models/nn/test_tft.py | 3 +- tests/test_models/test_mixins.py | 76 ++++++++++++++++++++++++ tests/test_models/utils.py | 16 ++--- 15 files changed, 223 insertions(+), 116 deletions(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index dfeb594c0..9342db073 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -24,7 +24,7 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0 - Change returned model in `get_model` of `HoltWintersModel`, `HoltModel`, `SimpleExpSmoothingModel` ([#986](https://github.com/tinkoff-ai/etna/pull/986)) - - -- +- Add `SaveNNMixin` to fix saving/loading of NNs ([#1011](https://github.com/tinkoff-ai/etna/issues/1011)) - - ### Fixed diff --git a/etna/core/mixins.py b/etna/core/mixins.py index e9a2a3d4d..1be2dadd2 100644 --- a/etna/core/mixins.py +++ b/etna/core/mixins.py @@ -4,6 +4,7 @@ import pickle import sys import warnings +import zipfile from enum import Enum from typing import Any from typing import Callable @@ -118,7 +119,7 @@ def get_etna_version() -> Tuple[int, int, int]: class SaveMixin: - """Basic implementation of AbstractSaveable abstract class. + """Basic implementation of ``AbstractSaveable`` abstract class. It saves object to the zip archive with 2 files: @@ -127,6 +128,21 @@ class SaveMixin: * object.pkl: pickled object. """ + def _save_metadata(self, archive: zipfile.ZipFile): + full_class_name = f"{inspect.getmodule(self).__name__}.{self.__class__.__name__}" # type: ignore + metadata = { + "etna_version": get_etna_version(), + "class": full_class_name, + } + metadata_str = json.dumps(metadata, indent=2, sort_keys=True) + metadata_bytes = metadata_str.encode("utf-8") + with archive.open("metadata.json", "w") as output_file: + output_file.write(metadata_bytes) + + def _save_state(self, archive: zipfile.ZipFile): + with archive.open("object.pkl", "w") as output_file: + pickle.dump(self, output_file) + def save(self, path: pathlib.Path): """Save the object. @@ -135,19 +151,36 @@ def save(self, path: pathlib.Path): path: Path to save object to. """ - with ZipFile(path, "w") as zip_file: - full_class_name = f"{inspect.getmodule(self).__name__}.{self.__class__.__name__}" # type: ignore - metadata = { - "etna_version": get_etna_version(), - "class": full_class_name, - } - metadata_str = json.dumps(metadata, indent=2, sort_keys=True) - metadata_bytes = metadata_str.encode("utf-8") - with zip_file.open("metadata.json", "w") as output_file: - output_file.write(metadata_bytes) - - with zip_file.open("object.pkl", "w") as output_file: - pickle.dump(self, output_file) + with ZipFile(path, "w") as archive: + self._save_metadata(archive) + self._save_state(archive) + + @classmethod + def _load_metadata(cls, archive: zipfile.ZipFile) -> Dict[str, Any]: + with archive.open("metadata.json", "r") as input_file: + metadata_bytes = input_file.read() + metadata_str = metadata_bytes.decode("utf-8") + metadata = json.loads(metadata_str) + return metadata + + @classmethod + def _validate_metadata(cls, metadata: Dict[str, Any]): + current_etna_version = get_etna_version() + saved_etna_version = tuple(metadata["etna_version"]) + + # if major version is different give a warning + if current_etna_version[0] != saved_etna_version[0] or current_etna_version[:2] < saved_etna_version[:2]: + current_etna_version_str = ".".join([str(x) for x in current_etna_version]) + saved_etna_version_str = ".".join([str(x) for x in saved_etna_version]) + warnings.warn( + f"The object was saved under etna version {saved_etna_version_str} " + f"but running version is {current_etna_version_str}, this can cause problems with compatibility!" + ) + + @classmethod + def _load_state(cls, archive: zipfile.ZipFile) -> Any: + with archive.open("object.pkl", "r") as input_file: + return pickle.load(input_file) @classmethod def load(cls, path: pathlib.Path) -> Any: @@ -158,22 +191,8 @@ def load(cls, path: pathlib.Path) -> Any: path: Path to load object from. """ - with ZipFile(path, "r") as zip_file: - with zip_file.open("metadata.json", "r") as input_file: - metadata_bytes = input_file.read() - metadata_str = metadata_bytes.decode("utf-8") - metadata = json.loads(metadata_str) - current_etna_version = get_etna_version() - saved_etna_version = tuple(metadata["etna_version"]) - - # if major version is different give a warning - if current_etna_version[0] != saved_etna_version[0] or current_etna_version[:2] < saved_etna_version[:2]: - current_etna_version_str = ".".join([str(x) for x in current_etna_version]) - saved_etna_version_str = ".".join([str(x) for x in saved_etna_version]) - warnings.warn( - f"The object was saved under etna version {saved_etna_version_str} " - f"but running version is {current_etna_version_str}, this can cause problems with compatibility!" - ) - - with zip_file.open("object.pkl", "r") as input_file: - return pickle.load(input_file) + with ZipFile(path, "r") as archive: + metadata = cls._load_metadata(archive) + cls._validate_metadata(metadata) + obj = cls._load_state(archive) + return obj diff --git a/etna/models/base.py b/etna/models/base.py index 07d7056b5..abfa20b4d 100644 --- a/etna/models/base.py +++ b/etna/models/base.py @@ -20,6 +20,7 @@ from etna.datasets.tsdataset import TSDataset from etna.loggers import tslogger from etna.models.decorators import log_decorator +from etna.models.mixins import SaveNNMixin if SETTINGS.torch_required: import torch @@ -32,6 +33,7 @@ from unittest.mock import Mock LightningModule = Mock # type: ignore + SaveNNMixin = Mock # type: ignore class AbstractModel(SaveMixin, AbstractSaveable, ABC, BaseMixin): @@ -430,7 +432,7 @@ def validation_step(self, batch: dict, *args, **kwargs): # type: ignore return loss -class DeepBaseModel(DeepBaseAbstractModel, NonPredictionIntervalContextRequiredAbstractModel): +class DeepBaseModel(DeepBaseAbstractModel, SaveNNMixin, NonPredictionIntervalContextRequiredAbstractModel): """Class for partially implemented interfaces for holding deep models.""" def __init__( @@ -488,6 +490,7 @@ def __init__( self.val_dataloader_params = {} if val_dataloader_params is None else val_dataloader_params self.trainer_params = {} if trainer_params is None else trainer_params self.split_params = {} if split_params is None else split_params + self.trainer: Optional[Trainer] = None @property def context_size(self) -> int: @@ -565,8 +568,8 @@ def raw_fit(self, torch_dataset: "Dataset") -> "DeepBaseModel": else: self.trainer_params["logger"] += tslogger.pl_loggers - trainer = Trainer(**self.trainer_params) - trainer.fit(self.net, train_dataloaders=train_dataloader, val_dataloaders=val_dataloader) + self.trainer = Trainer(**self.trainer_params) + self.trainer.fit(self.net, train_dataloaders=train_dataloader, val_dataloaders=val_dataloader) return self def raw_predict(self, torch_dataset: "Dataset") -> Dict[Tuple[str, str], np.ndarray]: diff --git a/etna/models/mixins.py b/etna/models/mixins.py index 0916de2ed..05379ff88 100644 --- a/etna/models/mixins.py +++ b/etna/models/mixins.py @@ -1,3 +1,4 @@ +import zipfile from abc import ABC from abc import abstractmethod from copy import deepcopy @@ -7,9 +8,11 @@ from typing import Optional from typing import Sequence +import dill import numpy as np import pandas as pd +from etna.core.mixins import SaveMixin from etna.datasets.tsdataset import TSDataset from etna.models.decorators import log_decorator @@ -441,3 +444,27 @@ def get_model(self) -> Any: if not hasattr(self._base_model, "get_model"): raise NotImplementedError(f"get_model method is not implemented for {self._base_model.__class__.__name__}") return self._base_model.get_model() + + +class SaveNNMixin(SaveMixin): + """Implementation of ``AbstractSaveable`` torch related classes. + + It saves object to the zip archive with 2 files: + + * metadata.json: contains library version and class name. + + * object.pt: object saved by ``torch.save``. + """ + + def _save_state(self, archive: zipfile.ZipFile): + import torch + + with archive.open("object.pt", "w") as output_file: + torch.save(self, output_file, pickle_module=dill) + + @classmethod + def _load_state(cls, archive: zipfile.ZipFile) -> Any: + import torch + + with archive.open("object.pt", "r") as input_file: + return torch.load(input_file, pickle_module=dill) diff --git a/etna/models/nn/deepar.py b/etna/models/nn/deepar.py index 97977eee2..5d2d7e97e 100644 --- a/etna/models/nn/deepar.py +++ b/etna/models/nn/deepar.py @@ -12,6 +12,7 @@ from etna.loggers import tslogger from etna.models.base import PredictionIntervalContextIgnorantAbstractModel from etna.models.base import log_decorator +from etna.models.mixins import SaveNNMixin from etna.models.nn.utils import _DeepCopyMixin from etna.transforms import PytorchForecastingTransform @@ -24,7 +25,7 @@ from pytorch_lightning import LightningModule -class DeepARModel(_DeepCopyMixin, PredictionIntervalContextIgnorantAbstractModel): +class DeepARModel(_DeepCopyMixin, SaveNNMixin, PredictionIntervalContextIgnorantAbstractModel): """Wrapper for :py:class:`pytorch_forecasting.models.deepar.DeepAR`. Notes diff --git a/etna/models/nn/mlp.py b/etna/models/nn/mlp.py index b4e239514..3887b58a8 100644 --- a/etna/models/nn/mlp.py +++ b/etna/models/nn/mlp.py @@ -146,14 +146,7 @@ def configure_optimizers(self): class MLPModel(DeepBaseModel): - """MLPModel. - - Warning - ------- - Currently, pickle is used in ``save`` and ``load`` methods. - It can work unreliably, because there is a native method :py:meth:`pytorch_lightning.Trainer.save_checkpoint` - that solves problems with using multiple devices. - """ + """MLPModel.""" def __init__( self, diff --git a/etna/models/nn/rnn.py b/etna/models/nn/rnn.py index 76d6db4f2..7dd410812 100644 --- a/etna/models/nn/rnn.py +++ b/etna/models/nn/rnn.py @@ -193,14 +193,7 @@ def configure_optimizers(self) -> "torch.optim.Optimizer": class RNNModel(DeepBaseModel): - """RNN based model on LSTM cell. - - Warning - ------- - Currently, pickle is used in ``save`` and ``load`` methods. - It can work unreliably, because there is a native method :py:meth:`pytorch_lightning.Trainer.save_checkpoint` - that solves problems with using multiple devices. - """ + """RNN based model on LSTM cell.""" def __init__( self, diff --git a/etna/models/nn/tft.py b/etna/models/nn/tft.py index 3835df363..e945cbddc 100644 --- a/etna/models/nn/tft.py +++ b/etna/models/nn/tft.py @@ -13,6 +13,7 @@ from etna.loggers import tslogger from etna.models.base import PredictionIntervalContextIgnorantAbstractModel from etna.models.base import log_decorator +from etna.models.mixins import SaveNNMixin from etna.models.nn.utils import _DeepCopyMixin from etna.transforms import PytorchForecastingTransform @@ -25,7 +26,7 @@ from pytorch_lightning import LightningModule -class TFTModel(_DeepCopyMixin, PredictionIntervalContextIgnorantAbstractModel): +class TFTModel(_DeepCopyMixin, SaveNNMixin, PredictionIntervalContextIgnorantAbstractModel): """Wrapper for :py:class:`pytorch_forecasting.models.temporal_fusion_transformer.TemporalFusionTransformer`. Notes diff --git a/tests/test_core/test_mixins.py b/tests/test_core/test_mixins.py index 68c382fb7..4b44afec0 100644 --- a/tests/test_core/test_mixins.py +++ b/tests/test_core/test_mixins.py @@ -1,7 +1,6 @@ import json import pathlib import pickle -import tempfile from unittest.mock import patch from zipfile import ZipFile @@ -22,63 +21,60 @@ def test_get_etna_version(): assert len(version) == 3 -def test_save_mixin_save(): - with tempfile.TemporaryDirectory() as dir_path_str: - dummy = Dummy(a=1, b=2) - dir_path = pathlib.Path(dir_path_str) - path = dir_path.joinpath("dummy.zip") +def test_save_mixin_save(tmp_path): + dummy = Dummy(a=1, b=2) + dir_path = pathlib.Path(tmp_path) + path = dir_path.joinpath("dummy.zip") - dummy.save(path) + dummy.save(path) - with ZipFile(path, "r") as zip_file: - files = zip_file.namelist() - assert sorted(files) == ["metadata.json", "object.pkl"] + with ZipFile(path, "r") as zip_file: + files = zip_file.namelist() + assert sorted(files) == ["metadata.json", "object.pkl"] - with zip_file.open("metadata.json", "r") as input_file: - metadata_bytes = input_file.read() - metadata_str = metadata_bytes.decode("utf-8") - metadata = json.loads(metadata_str) - assert sorted(metadata.keys()) == ["class", "etna_version"] - assert metadata["class"] == "tests.test_core.test_mixins.Dummy" + with zip_file.open("metadata.json", "r") as input_file: + metadata_bytes = input_file.read() + metadata_str = metadata_bytes.decode("utf-8") + metadata = json.loads(metadata_str) + assert sorted(metadata.keys()) == ["class", "etna_version"] + assert metadata["class"] == "tests.test_core.test_mixins.Dummy" - with zip_file.open("object.pkl", "r") as input_file: - loaded_dummy = pickle.load(input_file) - assert loaded_dummy.a == dummy.a - assert loaded_dummy.b == dummy.b + with zip_file.open("object.pkl", "r") as input_file: + loaded_dummy = pickle.load(input_file) + assert loaded_dummy.a == dummy.a + assert loaded_dummy.b == dummy.b -def test_save_mixin_load_ok(recwarn): - with tempfile.TemporaryDirectory() as dir_path_str: - dummy = Dummy(a=1, b=2) - dir_path = pathlib.Path(dir_path_str) - path = dir_path.joinpath("dummy.zip") +def test_save_mixin_load_ok(recwarn, tmp_path): + dummy = Dummy(a=1, b=2) + dir_path = pathlib.Path(tmp_path) + path = dir_path.joinpath("dummy.zip") - dummy.save(path) - loaded_dummy = Dummy.load(path) + dummy.save(path) + loaded_dummy = Dummy.load(path) - assert loaded_dummy.a == dummy.a - assert loaded_dummy.b == dummy.b - assert len(recwarn) == 0 + assert loaded_dummy.a == dummy.a + assert loaded_dummy.b == dummy.b + assert len(recwarn) == 0 @pytest.mark.parametrize( "save_version, load_version", [((1, 5, 0), (2, 5, 0)), ((2, 5, 0), (1, 5, 0)), ((1, 5, 0), (1, 3, 0))] ) @patch("etna.core.mixins.get_etna_version") -def test_save_mixin_load_warning(get_version_mock, save_version, load_version): - with tempfile.TemporaryDirectory() as dir_path_str: - dummy = Dummy(a=1, b=2) - dir_path = pathlib.Path(dir_path_str) - path = dir_path.joinpath("dummy.zip") - - get_version_mock.return_value = save_version - dummy.save(path) - - save_version_str = ".".join([str(x) for x in save_version]) - load_version_str = ".".join([str(x) for x in load_version]) - with pytest.warns( - UserWarning, - match=f"The object was saved under etna version {save_version_str} but running version is {load_version_str}", - ): - get_version_mock.return_value = load_version - _ = Dummy.load(path) +def test_save_mixin_load_warning(get_version_mock, save_version, load_version, tmp_path): + dummy = Dummy(a=1, b=2) + dir_path = pathlib.Path(tmp_path) + path = dir_path.joinpath("dummy.zip") + + get_version_mock.return_value = save_version + dummy.save(path) + + save_version_str = ".".join([str(x) for x in save_version]) + load_version_str = ".".join([str(x) for x in load_version]) + with pytest.warns( + UserWarning, + match=f"The object was saved under etna version {save_version_str} but running version is {load_version_str}", + ): + get_version_mock.return_value = load_version + _ = Dummy.load(path) diff --git a/tests/test_models/nn/test_deepar.py b/tests/test_models/nn/test_deepar.py index 255d47027..d8b72ba52 100644 --- a/tests/test_models/nn/test_deepar.py +++ b/tests/test_models/nn/test_deepar.py @@ -172,7 +172,6 @@ def test_prediction_interval_run_infuture(example_tsds): assert (segment_slice["target_0.975"] - segment_slice["target"] >= 0).all() -@pytest.mark.xfail(reason="Should be fixed in inference-v2.0", strict=True) def test_save_load(example_tsds): horizon = 3 model = DeepARModel(max_epochs=2, learning_rate=[0.01], gpus=0, batch_size=64) diff --git a/tests/test_models/nn/test_mlp.py b/tests/test_models/nn/test_mlp.py index 2c1d708a2..639305244 100644 --- a/tests/test_models/nn/test_mlp.py +++ b/tests/test_models/nn/test_mlp.py @@ -104,12 +104,11 @@ def test_mlp_layers(): assert repr(model_) == repr(model.mlp) -@pytest.mark.xfail(reason="Non native serialization, should be fixed in inference-v2.0") def test_save_load(example_tsds): horizon = 3 model = MLPModel( - input_size=10, - hidden_size=[10, 10, 10, 10, 10], + input_size=9, + hidden_size=[10], lr=1e-1, decoder_length=14, trainer_params=dict(max_epochs=2), diff --git a/tests/test_models/nn/test_rnn.py b/tests/test_models/nn/test_rnn.py index e50345b9a..ee5409aee 100644 --- a/tests/test_models/nn/test_rnn.py +++ b/tests/test_models/nn/test_rnn.py @@ -75,7 +75,6 @@ def test_context_size(encoder_length): assert model.context_size == encoder_length -@pytest.mark.xfail(reason="Non native serialization, should be fixed in inference-v2.0") def test_save_load(example_tsds): model = RNNModel(input_size=1, encoder_length=14, decoder_length=14, trainer_params=dict(max_epochs=2)) assert_model_equals_loaded_original(model=model, ts=example_tsds, transforms=[], horizon=3) diff --git a/tests/test_models/nn/test_tft.py b/tests/test_models/nn/test_tft.py index c57affea7..5292b5c5c 100644 --- a/tests/test_models/nn/test_tft.py +++ b/tests/test_models/nn/test_tft.py @@ -181,10 +181,9 @@ def test_prediction_interval_run_infuture_warning_loss(example_tsds): assert {"target_0.02", "target_0.98"}.isdisjoint(segment_slice.columns) -@pytest.mark.xfail(reason="Should be fixed in inference-v2.0", strict=True) def test_save_load(example_tsds): horizon = 3 - model = TFTModel(max_epochs=2, learning_rate=[0.1], gpus=0, batch_size=64, loss=MAEPF()) + model = TFTModel(max_epochs=2, learning_rate=[0.1], gpus=0, batch_size=64) transform = _get_default_transform(horizon) transforms = [transform] assert_model_equals_loaded_original(model=model, ts=example_tsds, transforms=transforms, horizon=horizon) diff --git a/tests/test_models/test_mixins.py b/tests/test_models/test_mixins.py index 2e46ced62..0b7f8c9d3 100644 --- a/tests/test_models/test_mixins.py +++ b/tests/test_models/test_mixins.py @@ -1,9 +1,20 @@ +import json +import pathlib from unittest.mock import MagicMock +from unittest.mock import patch +from zipfile import ZipFile +import dill import pytest +from etna import SETTINGS + +if SETTINGS.torch_required: + import torch + from etna.models.mixins import MultiSegmentModelMixin from etna.models.mixins import PerSegmentModelMixin +from etna.models.mixins import SaveNNMixin @pytest.fixture() @@ -48,3 +59,68 @@ def test_calling_private_prediction( mixin._make_predictions.assert_called_once_with( ts=ts, prediction_method=getattr(base_model.__class__, expected_method_name) ) + + +class DummyNN(SaveNNMixin): + def __init__(self, a, b): + self.a = torch.tensor(a) + self.b = torch.tensor(b) + + +def test_save_nn_mixin_save(tmp_path): + dummy = DummyNN(a=1, b=2) + dir_path = pathlib.Path(tmp_path) + path = dir_path.joinpath("dummy.zip") + + dummy.save(path) + + with ZipFile(path, "r") as zip_file: + files = zip_file.namelist() + assert sorted(files) == ["metadata.json", "object.pt"] + + with zip_file.open("metadata.json", "r") as input_file: + metadata_bytes = input_file.read() + metadata_str = metadata_bytes.decode("utf-8") + metadata = json.loads(metadata_str) + assert sorted(metadata.keys()) == ["class", "etna_version"] + assert metadata["class"] == "tests.test_models.test_mixins.DummyNN" + + with zip_file.open("object.pt", "r") as input_file: + loaded_dummy = torch.load(input_file, pickle_module=dill) + assert loaded_dummy.a == dummy.a + assert loaded_dummy.b == dummy.b + + +def test_save_mixin_load_ok(recwarn, tmp_path): + dummy = DummyNN(a=1, b=2) + dir_path = pathlib.Path(tmp_path) + path = dir_path.joinpath("dummy.zip") + + dummy.save(path) + loaded_dummy = DummyNN.load(path) + + assert loaded_dummy.a == dummy.a + assert loaded_dummy.b == dummy.b + assert len(recwarn) == 0 + + +@pytest.mark.parametrize( + "save_version, load_version", [((1, 5, 0), (2, 5, 0)), ((2, 5, 0), (1, 5, 0)), ((1, 5, 0), (1, 3, 0))] +) +@patch("etna.core.mixins.get_etna_version") +def test_save_mixin_load_warning(get_version_mock, save_version, load_version, tmp_path): + dummy = DummyNN(a=1, b=2) + dir_path = pathlib.Path(tmp_path) + path = dir_path.joinpath("dummy.zip") + + get_version_mock.return_value = save_version + dummy.save(path) + + save_version_str = ".".join([str(x) for x in save_version]) + load_version_str = ".".join([str(x) for x in load_version]) + with pytest.warns( + UserWarning, + match=f"The object was saved under etna version {save_version_str} but running version is {load_version_str}", + ): + get_version_mock.return_value = load_version + _ = DummyNN.load(path) diff --git a/tests/test_models/utils.py b/tests/test_models/utils.py index c6f089a33..c726f1726 100644 --- a/tests/test_models/utils.py +++ b/tests/test_models/utils.py @@ -1,6 +1,5 @@ import pathlib import tempfile -from copy import deepcopy from typing import Sequence from typing import Tuple @@ -17,21 +16,24 @@ def get_loaded_model(model: ModelType) -> ModelType: dir_path = pathlib.Path(dir_path_str) path = dir_path.joinpath("dummy.zip") model.save(path) - loaded_model = deepcopy(model).load(path) + loaded_model = model.load(path) return loaded_model def assert_model_equals_loaded_original( model: ModelType, ts: TSDataset, transforms: Sequence[Transform], horizon: int ) -> Tuple[ModelType, ModelType]: + import torch # TODO: remove after fix at issue-802 + pipeline_1 = Pipeline(model=model, transforms=transforms, horizon=horizon) pipeline_1.fit(ts) - loaded_model = get_loaded_model(pipeline_1.model) - pipeline_2 = deepcopy(pipeline_1) - pipeline_2.model = loaded_model - + torch.manual_seed(11) forecast_ts_1 = pipeline_1.forecast() - forecast_ts_2 = pipeline_2.forecast() + + loaded_model = get_loaded_model(pipeline_1.model) + pipeline_1.model = loaded_model + torch.manual_seed(11) + forecast_ts_2 = pipeline_1.forecast() pd.testing.assert_frame_equal(forecast_ts_1.to_pandas(), forecast_ts_2.to_pandas()) From 6ca6f8237d3d2ee2e5d18241542831976b7386b6 Mon Sep 17 00:00:00 2001 From: Mr-Geekman <36005824+Mr-Geekman@users.noreply.github.com> Date: Wed, 30 Nov 2022 11:25:09 +0300 Subject: [PATCH 06/12] Fix saving/loading `ProphetModel` (#1019) --- CHANGELOG.md | 2 + etna/models/prophet.py | 50 ++++++++++--- etna/transforms/outliers/point_outliers.py | 8 +- tests/test_models/test_prophet.py | 74 +++++++++++++++++++ .../test_outliers/test_outliers_transform.py | 1 - 5 files changed, 117 insertions(+), 18 deletions(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index 9342db073..a9449f583 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -34,6 +34,8 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0 - - - Remove documentation warning about using pickle in saving/loading catboost ([#1020](https://github.com/tinkoff-ai/etna/pull/1020)) +- Fix saving/loading ProphetModel ([#1019](https://github.com/tinkoff-ai/etna/pull/1019)) +- - ## [1.13.0] - 2022-10-10 ### Added diff --git a/etna/models/prophet.py b/etna/models/prophet.py index 15fa769a0..51e4904e3 100644 --- a/etna/models/prophet.py +++ b/etna/models/prophet.py @@ -1,3 +1,4 @@ +from copy import deepcopy from datetime import datetime from typing import Dict from typing import Iterable @@ -16,6 +17,8 @@ if SETTINGS.prophet_required: from prophet import Prophet + from prophet.serialize import model_from_dict + from prophet.serialize import model_to_dict class _ProphetAdapter(BaseAdapter): @@ -62,11 +65,16 @@ def __init__( self.stan_backend = stan_backend self.additional_seasonality_params = additional_seasonality_params - self.model = Prophet( + self.model = self._create_model() + + self.regressor_columns: Optional[List[str]] = None + + def _create_model(self) -> "Prophet": + model = Prophet( growth=self.growth, - changepoints=changepoints, - n_changepoints=n_changepoints, - changepoint_range=changepoint_range, + changepoints=self.changepoints, + n_changepoints=self.n_changepoints, + changepoint_range=self.changepoint_range, yearly_seasonality=self.yearly_seasonality, weekly_seasonality=self.weekly_seasonality, daily_seasonality=self.daily_seasonality, @@ -84,7 +92,7 @@ def __init__( for seasonality_params in self.additional_seasonality_params: self.model.add_seasonality(**seasonality_params) - self.regressor_columns: Optional[List[str]] = None + return model def fit(self, df: pd.DataFrame, regressors: List[str]) -> "_ProphetAdapter": """ @@ -154,6 +162,33 @@ def get_model(self) -> Prophet: """ return self.model + def __getstate__(self): + state = self.__dict__.copy() + try: + model_dict = model_to_dict(self.model) + is_fitted = True + except ValueError: + is_fitted = False + model_dict = {} + del state["model"] + state["_is_fitted"] = is_fitted + state["_model_dict"] = model_dict + return state + + def __setstate__(self, state): + local_state = deepcopy(state) + is_fitted = local_state["_is_fitted"] + model_dict = local_state["_model_dict"] + del local_state["_is_fitted"] + del local_state["_model_dict"] + + self.__dict__.update(local_state) + + if is_fitted: + self.model = model_from_dict(model_dict) + else: + self.model = self._create_model() + class ProphetModel( PerSegmentModelMixin, PredictionIntervalContextIgnorantModelMixin, PredictionIntervalContextIgnorantAbstractModel @@ -165,11 +200,6 @@ class ProphetModel( Original Prophet can use features 'cap' and 'floor', they should be added to the known_future list on dataset initialization. - Warning - ------- - Currently, pickle is used in ``save`` and ``load`` methods. - It can work unreliably according to `documentation `_. - Examples -------- >>> from etna.datasets import generate_periodic_df diff --git a/etna/transforms/outliers/point_outliers.py b/etna/transforms/outliers/point_outliers.py index 9e85bf4c1..6e98cf507 100644 --- a/etna/transforms/outliers/point_outliers.py +++ b/etna/transforms/outliers/point_outliers.py @@ -122,13 +122,7 @@ def detect_outliers(self, ts: TSDataset) -> Dict[str, List[pd.Timestamp]]: class PredictionIntervalOutliersTransform(OutliersTransform): - """Transform that uses :py:func:`~etna.analysis.outliers.prediction_interval_outliers.get_anomalies_prediction_interval` to find anomalies in data. - - Warning - ------- - Currently, pickle is used in ``save`` and ``load`` methods. - It can work unreliably according to `documentation `_. - """ + """Transform that uses :py:func:`~etna.analysis.outliers.prediction_interval_outliers.get_anomalies_prediction_interval` to find anomalies in data.""" def __init__( self, diff --git a/tests/test_models/test_prophet.py b/tests/test_models/test_prophet.py index bd19a9235..cc3aa4418 100644 --- a/tests/test_models/test_prophet.py +++ b/tests/test_models/test_prophet.py @@ -2,9 +2,11 @@ import pandas as pd import pytest from prophet import Prophet +from prophet.serialize import model_to_dict from etna.datasets.tsdataset import TSDataset from etna.models import ProphetModel +from etna.models.prophet import _ProphetAdapter from etna.pipeline import Pipeline from tests.test_models.utils import assert_model_equals_loaded_original @@ -123,6 +125,78 @@ def test_get_model_after_training(example_tsds): assert isinstance(models_dict[segment], Prophet) +@pytest.fixture +def prophet_default_params(): + params = { + "growth": "linear", + "changepoints": None, + "n_changepoints": 25, + "changepoint_range": 0.8, + "yearly_seasonality": "auto", + "weekly_seasonality": "auto", + "daily_seasonality": "auto", + "holidays": None, + "seasonality_mode": "additive", + "seasonality_prior_scale": 10.0, + "holidays_prior_scale": 10.0, + "changepoint_prior_scale": 0.05, + "mcmc_samples": 0, + "interval_width": 0.8, + "uncertainty_samples": 1000, + "stan_backend": None, + "additional_seasonality_params": (), + } + return params + + +def test_getstate_not_fitted(prophet_default_params): + model = _ProphetAdapter() + state = model.__getstate__() + expected_state = { + "_is_fitted": False, + "_model_dict": {}, + "regressor_columns": None, + **prophet_default_params, + } + assert state == expected_state + + +def test_getstate_fitted(example_tsds, prophet_default_params): + model = _ProphetAdapter() + df = example_tsds.to_pandas()["segment_1"].reset_index() + model.fit(df, regressors=[]) + state = model.__getstate__() + expected_state = { + "_is_fitted": True, + "_model_dict": model_to_dict(model.model), + "regressor_columns": [], + **prophet_default_params, + } + assert state == expected_state + + +def test_setstate_not_fitted(): + model_1 = _ProphetAdapter(n_changepoints=25) + initial_state = model_1.__getstate__() + + model_2 = _ProphetAdapter(n_changepoints=20) + model_2.__setstate__(initial_state) + new_state = model_2.__getstate__() + assert new_state == initial_state + + +def test_setstate_fitted(example_tsds): + model_1 = _ProphetAdapter() + df = example_tsds.to_pandas()["segment_1"].reset_index() + model_1.fit(df, regressors=[]) + initial_state = model_1.__getstate__() + + model_2 = _ProphetAdapter() + model_2.__setstate__(initial_state) + new_state = model_2.__getstate__() + assert new_state == initial_state + + @pytest.mark.xfail(reason="Non native serialization, should be fixed in inference-v2.0") def test_save_load(example_tsds): model = ProphetModel() diff --git a/tests/test_transforms/test_outliers/test_outliers_transform.py b/tests/test_transforms/test_outliers/test_outliers_transform.py index f334f44b6..3bb734f3b 100644 --- a/tests/test_transforms/test_outliers/test_outliers_transform.py +++ b/tests/test_transforms/test_outliers/test_outliers_transform.py @@ -178,7 +178,6 @@ def test_save_load(transform, outliers_solid_tsds): assert_transformation_equals_loaded_original(transform=transform, ts=outliers_solid_tsds) -@pytest.mark.xfail(reason="Non native serialization, should be fixed in inference-v2.0") @pytest.mark.parametrize( "transform", ( From 8f7cf4eb488a31e1e951a47dafa8a9a55e70a495 Mon Sep 17 00:00:00 2001 From: Mr-Geekman <36005824+Mr-Geekman@users.noreply.github.com> Date: Fri, 16 Dec 2022 13:22:13 +0300 Subject: [PATCH 07/12] Add `SaveModelPipelineMixin`, add `load`, add saving for `Pipeline` and `AutoRegressivePipeline` (#1036) --- CHANGELOG.md | 2 +- etna/core/__init__.py | 1 + etna/core/mixins.py | 10 +- etna/core/utils.py | 34 +++++ etna/ensembles/base.py | 23 +++ etna/ensembles/direct_ensemble.py | 2 +- etna/ensembles/stacking_ensemble.py | 2 +- etna/ensembles/voting_ensemble.py | 2 +- etna/pipeline/autoregressive_pipeline.py | 3 +- etna/pipeline/base.py | 4 +- etna/pipeline/mixins.py | 110 ++++++++++++++ etna/pipeline/pipeline.py | 3 +- tests/test_core/test_mixins.py | 22 ++- tests/test_core/test_utils.py | 26 ++++ .../test_autoregressive_pipeline.py | 23 +++ tests/test_pipeline/test_base.py | 9 ++ tests/test_pipeline/test_mixins.py | 141 ++++++++++++++++-- tests/test_pipeline/test_pipeline.py | 23 +++ tests/test_pipeline/utils.py | 35 +++++ 19 files changed, 447 insertions(+), 28 deletions(-) create mode 100644 tests/test_core/test_utils.py create mode 100644 tests/test_pipeline/utils.py diff --git a/CHANGELOG.md b/CHANGELOG.md index a9449f583..f5b66a0fc 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -9,7 +9,7 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0 ## Unreleased ### Added - -- +- Add `SaveModelPipelineMixin`, add `load`, add saving for `Pipeline` and `AutoRegressivePipeline` ([#1036](https://github.com/tinkoff-ai/etna/pull/1036)) - Add `SaveMixin` to models and transforms ([#1007](https://github.com/tinkoff-ai/etna/pull/1007)) - Add `plot_change_points_interactive` ([#988](https://github.com/tinkoff-ai/etna/pull/988)) - Add `experimental` module with `TimeSeriesBinaryClassifier` and `PredictabilityAnalyzer` ([#985](https://github.com/tinkoff-ai/etna/pull/985)) diff --git a/etna/core/__init__.py b/etna/core/__init__.py index e94cc2918..927668025 100644 --- a/etna/core/__init__.py +++ b/etna/core/__init__.py @@ -2,3 +2,4 @@ from etna.core.mixins import SaveMixin from etna.core.mixins import StringEnumWithRepr from etna.core.saving import AbstractSaveable +from etna.core.utils import load diff --git a/etna/core/mixins.py b/etna/core/mixins.py index 1be2dadd2..29f446a4a 100644 --- a/etna/core/mixins.py +++ b/etna/core/mixins.py @@ -12,7 +12,6 @@ from typing import List from typing import Tuple from typing import cast -from zipfile import ZipFile from sklearn.base import BaseEstimator @@ -151,7 +150,7 @@ def save(self, path: pathlib.Path): path: Path to save object to. """ - with ZipFile(path, "w") as archive: + with zipfile.ZipFile(path, "w") as archive: self._save_metadata(archive) self._save_state(archive) @@ -190,8 +189,13 @@ def load(cls, path: pathlib.Path) -> Any: ---------- path: Path to load object from. + + Returns + ------- + : + Loaded object. """ - with ZipFile(path, "r") as archive: + with zipfile.ZipFile(path, "r") as archive: metadata = cls._load_metadata(archive) cls._validate_metadata(metadata) obj = cls._load_state(archive) diff --git a/etna/core/utils.py b/etna/core/utils.py index 4eddf219d..d067e7af9 100644 --- a/etna/core/utils.py +++ b/etna/core/utils.py @@ -1,8 +1,42 @@ import inspect +import json +import pathlib +import zipfile from copy import deepcopy from functools import wraps +from typing import Any from typing import Callable +from hydra_slayer import get_factory + + +def load(path: pathlib.Path) -> Any: + """Load saved object by path. + + Parameters + ---------- + path: + Path to load object from. + + Returns + ------- + : + Loaded object. + """ + with zipfile.ZipFile(path, "r") as archive: + # read object class + with archive.open("metadata.json", "r") as input_file: + metadata_bytes = input_file.read() + metadata_str = metadata_bytes.decode("utf-8") + metadata = json.loads(metadata_str) + object_class_name = metadata["class"] + + # create object for that class + object_class = get_factory(object_class_name) + loaded_object = object_class.load(path=path) + + return loaded_object + def init_collector(init: Callable) -> Callable: """ diff --git a/etna/ensembles/base.py b/etna/ensembles/base.py index 017634956..80e0468a0 100644 --- a/etna/ensembles/base.py +++ b/etna/ensembles/base.py @@ -1,3 +1,5 @@ +import pathlib +from typing import Any from typing import List from typing import Optional @@ -53,3 +55,24 @@ def _predict_pipeline( prediction = pipeline.predict(ts=ts, start_timestamp=start_timestamp, end_timestamp=end_timestamp) tslogger.log(msg=f"Prediction is done with {pipeline}.") return prediction + + def save(self, path: pathlib.Path): + """Save the object. + + Parameters + ---------- + path: + Path to save object to. + """ + raise NotImplementedError() + + @classmethod + def load(cls, path: pathlib.Path) -> Any: + """Load an object. + + Parameters + ---------- + path: + Path to load object from. + """ + raise NotImplementedError() diff --git a/etna/ensembles/direct_ensemble.py b/etna/ensembles/direct_ensemble.py index 6835420e4..9c0c0a580 100644 --- a/etna/ensembles/direct_ensemble.py +++ b/etna/ensembles/direct_ensemble.py @@ -15,7 +15,7 @@ from etna.pipeline.base import BasePipeline -class DirectEnsemble(BasePipeline, EnsembleMixin): +class DirectEnsemble(EnsembleMixin, BasePipeline): """DirectEnsemble is a pipeline that forecasts future values merging the forecasts of base pipelines. Ensemble expects several pipelines during init. These pipelines are expected to have different forecasting horizons. diff --git a/etna/ensembles/stacking_ensemble.py b/etna/ensembles/stacking_ensemble.py index 54329e560..7361391c9 100644 --- a/etna/ensembles/stacking_ensemble.py +++ b/etna/ensembles/stacking_ensemble.py @@ -25,7 +25,7 @@ from etna.pipeline.base import BasePipeline -class StackingEnsemble(BasePipeline, EnsembleMixin): +class StackingEnsemble(EnsembleMixin, BasePipeline): """StackingEnsemble is a pipeline that forecast future using the metamodel to combine the forecasts of the base models. Examples diff --git a/etna/ensembles/voting_ensemble.py b/etna/ensembles/voting_ensemble.py index 8718dfd9b..0bbc29307 100644 --- a/etna/ensembles/voting_ensemble.py +++ b/etna/ensembles/voting_ensemble.py @@ -21,7 +21,7 @@ from etna.pipeline.base import BasePipeline -class VotingEnsemble(BasePipeline, EnsembleMixin): +class VotingEnsemble(EnsembleMixin, BasePipeline): """VotingEnsemble is a pipeline that forecast future values with weighted averaging of it's pipelines forecasts. Examples diff --git a/etna/pipeline/autoregressive_pipeline.py b/etna/pipeline/autoregressive_pipeline.py index 48442ab30..a2f13772a 100644 --- a/etna/pipeline/autoregressive_pipeline.py +++ b/etna/pipeline/autoregressive_pipeline.py @@ -11,10 +11,11 @@ from etna.models.base import ModelType from etna.pipeline.base import BasePipeline from etna.pipeline.mixins import ModelPipelinePredictMixin +from etna.pipeline.mixins import SaveModelPipelineMixin from etna.transforms import Transform -class AutoRegressivePipeline(ModelPipelinePredictMixin, BasePipeline): +class AutoRegressivePipeline(ModelPipelinePredictMixin, SaveModelPipelineMixin, BasePipeline): """Pipeline that make regressive models autoregressive. Examples diff --git a/etna/pipeline/base.py b/etna/pipeline/base.py index 3a0b6dd99..2c6939783 100644 --- a/etna/pipeline/base.py +++ b/etna/pipeline/base.py @@ -1,4 +1,3 @@ -from abc import ABC from abc import abstractmethod from copy import deepcopy from enum import Enum @@ -17,6 +16,7 @@ from joblib import delayed from scipy.stats import norm +from etna.core import AbstractSaveable from etna.core import BaseMixin from etna.datasets import TSDataset from etna.loggers import tslogger @@ -109,7 +109,7 @@ def validate_on_dataset(self, ts: TSDataset, horizon: int): raise ValueError(f"Last target timestamp should be not later than {dataset_last_target_timestamp}!") -class AbstractPipeline(ABC): +class AbstractPipeline(AbstractSaveable): """Interface for pipeline.""" @abstractmethod diff --git a/etna/pipeline/mixins.py b/etna/pipeline/mixins.py index c16949a05..fb803d8f2 100644 --- a/etna/pipeline/mixins.py +++ b/etna/pipeline/mixins.py @@ -1,10 +1,17 @@ +import pathlib +import tempfile +import zipfile from copy import deepcopy +from typing import Any +from typing import Optional from typing import Sequence import numpy as np import pandas as pd from typing_extensions import get_args +from etna.core import SaveMixin +from etna.core import load from etna.datasets import TSDataset from etna.models import ModelType from etna.models import NonPredictionIntervalContextIgnorantAbstractModel @@ -80,3 +87,106 @@ def _predict( else: raise NotImplementedError(f"Unknown model type: {self.model.__class__.__name__}!") return results + + +class SaveModelPipelineMixin(SaveMixin): + """Implementation of ``AbstractSaveable`` abstract class for pipelines with model inside. + + It saves object to the zip archive with 2 files: + + * metadata.json: contains library version and class name. + + * object.pkl: pickled without model, transforms and ts. + + * model.zip: saved model. + + * transforms: folder with saved transforms. + """ + + model: ModelType + transforms: Sequence[Transform] + ts: Optional[TSDataset] + + def save(self, path: pathlib.Path): + """Save the object. + + Parameters + ---------- + path: + Path to save object to. + """ + model = self.model + transforms = self.transforms + ts = self.ts + try: + # extract attributes we can't easily save + delattr(self, "model") + delattr(self, "transforms") + delattr(self, "ts") + + # save the remaining part + super().save(path=path) + finally: + self.model = model + self.transforms = transforms + self.ts = ts + + with zipfile.ZipFile(path, "a") as archive: + with tempfile.TemporaryDirectory() as _temp_dir: + temp_dir = pathlib.Path(_temp_dir) + + # save model separately + model_save_path = temp_dir / "model.zip" + model.save(model_save_path) + archive.write(model_save_path, "model.zip") + + # save transforms separately + transforms_dir = temp_dir / "transforms" + transforms_dir.mkdir() + num_digits = len(str(len(transforms) - 1)) + for i, transform in enumerate(transforms): + save_name = f"{i:0{num_digits}d}.zip" + transform_save_path = transforms_dir / save_name + transform.save(transform_save_path) + archive.write(transform_save_path, f"transforms/{save_name}") + + @classmethod + def load(cls, path: pathlib.Path, ts: Optional[TSDataset] = None) -> Any: + """Load an object. + + Parameters + ---------- + path: + Path to load object from. + ts: + TSDataset to set into loaded pipeline. + + Returns + ------- + : + Loaded object. + """ + obj = super().load(path=path) + obj.ts = deepcopy(ts) + + with zipfile.ZipFile(path, "r") as archive: + with tempfile.TemporaryDirectory() as _temp_dir: + temp_dir = pathlib.Path(_temp_dir) + + archive.extractall(temp_dir) + + # load model + model_path = temp_dir / "model.zip" + obj.model = load(model_path) + + # load transforms + transforms_dir = temp_dir / "transforms" + transforms = [] + + if transforms_dir.exists(): + for path in sorted(transforms_dir.iterdir()): + transforms.append(load(path)) + + obj.transforms = transforms + + return obj diff --git a/etna/pipeline/pipeline.py b/etna/pipeline/pipeline.py index daf8ffded..456925bd5 100644 --- a/etna/pipeline/pipeline.py +++ b/etna/pipeline/pipeline.py @@ -11,10 +11,11 @@ from etna.models.base import PredictionIntervalContextRequiredAbstractModel from etna.pipeline.base import BasePipeline from etna.pipeline.mixins import ModelPipelinePredictMixin +from etna.pipeline.mixins import SaveModelPipelineMixin from etna.transforms.base import Transform -class Pipeline(ModelPipelinePredictMixin, BasePipeline): +class Pipeline(ModelPipelinePredictMixin, SaveModelPipelineMixin, BasePipeline): """Pipeline of transforms with a final estimator.""" def __init__(self, model: ModelType, transforms: Sequence[Transform] = (), horizon: int = 1): diff --git a/tests/test_core/test_mixins.py b/tests/test_core/test_mixins.py index 4b44afec0..7bf283b79 100644 --- a/tests/test_core/test_mixins.py +++ b/tests/test_core/test_mixins.py @@ -1,8 +1,8 @@ import json import pathlib import pickle +import zipfile from unittest.mock import patch -from zipfile import ZipFile import pytest @@ -24,31 +24,37 @@ def test_get_etna_version(): def test_save_mixin_save(tmp_path): dummy = Dummy(a=1, b=2) dir_path = pathlib.Path(tmp_path) - path = dir_path.joinpath("dummy.zip") + path = dir_path / "dummy.zip" dummy.save(path) - with ZipFile(path, "r") as zip_file: - files = zip_file.namelist() + with zipfile.ZipFile(path, "r") as archive: + files = archive.namelist() assert sorted(files) == ["metadata.json", "object.pkl"] - with zip_file.open("metadata.json", "r") as input_file: + with archive.open("metadata.json", "r") as input_file: metadata_bytes = input_file.read() metadata_str = metadata_bytes.decode("utf-8") metadata = json.loads(metadata_str) assert sorted(metadata.keys()) == ["class", "etna_version"] assert metadata["class"] == "tests.test_core.test_mixins.Dummy" - with zip_file.open("object.pkl", "r") as input_file: + with archive.open("object.pkl", "r") as input_file: loaded_dummy = pickle.load(input_file) assert loaded_dummy.a == dummy.a assert loaded_dummy.b == dummy.b +def test_save_mixin_load_fail_file_not_found(): + non_existent_path = pathlib.Path("archive.zip") + with pytest.raises(FileNotFoundError): + Dummy.load(non_existent_path) + + def test_save_mixin_load_ok(recwarn, tmp_path): dummy = Dummy(a=1, b=2) dir_path = pathlib.Path(tmp_path) - path = dir_path.joinpath("dummy.zip") + path = dir_path / "dummy.zip" dummy.save(path) loaded_dummy = Dummy.load(path) @@ -65,7 +71,7 @@ def test_save_mixin_load_ok(recwarn, tmp_path): def test_save_mixin_load_warning(get_version_mock, save_version, load_version, tmp_path): dummy = Dummy(a=1, b=2) dir_path = pathlib.Path(tmp_path) - path = dir_path.joinpath("dummy.zip") + path = dir_path / "dummy.zip" get_version_mock.return_value = save_version dummy.save(path) diff --git a/tests/test_core/test_utils.py b/tests/test_core/test_utils.py new file mode 100644 index 000000000..bcdc4c873 --- /dev/null +++ b/tests/test_core/test_utils.py @@ -0,0 +1,26 @@ +import pathlib +import tempfile + +import pytest + +from etna.core import load +from etna.transforms import AddConstTransform + + +def test_load_fail_file_not_found(): + non_existent_path = pathlib.Path("archive.zip") + with pytest.raises(FileNotFoundError): + load(non_existent_path) + + +def test_load_ok(): + transform = AddConstTransform(in_column="target", value=10.0, inplace=False) + with tempfile.TemporaryDirectory() as _temp_dir: + temp_dir = pathlib.Path(_temp_dir) + save_path = temp_dir / "transform.zip" + transform.save(save_path) + + new_transform = load(save_path) + assert type(new_transform) == type(transform) + for attribute in ["in_column", "value", "inplace"]: + assert getattr(new_transform, attribute) == getattr(transform, attribute) diff --git a/tests/test_pipeline/test_autoregressive_pipeline.py b/tests/test_pipeline/test_autoregressive_pipeline.py index d1f7550b1..939d3bad4 100644 --- a/tests/test_pipeline/test_autoregressive_pipeline.py +++ b/tests/test_pipeline/test_autoregressive_pipeline.py @@ -26,6 +26,7 @@ from etna.transforms import DateFlagsTransform from etna.transforms import LagTransform from etna.transforms import LinearTrendTransform +from tests.test_pipeline.utils import assert_pipeline_equals_loaded_original DEFAULT_METRICS = [MAE(mode=MetricAggregationMode.per_segment)] @@ -272,3 +273,25 @@ def test_predict(model, transforms, example_tsds): assert not np.any(result_df["target"].isna()) assert len(result_df) == len(example_tsds.segments) * num_points + + +@pytest.mark.parametrize( + "model, transforms", + [ + ( + CatBoostMultiSegmentModel(iterations=100), + [DateFlagsTransform(), LagTransform(in_column="target", lags=list(range(3, 10)))], + ), + ( + LinearPerSegmentModel(), + [DateFlagsTransform(), LagTransform(in_column="target", lags=list(range(3, 10)))], + ), + (SeasonalMovingAverageModel(window=2, seasonality=7), []), + (SARIMAXModel(), []), + (ProphetModel(), []), + ], +) +def test_save_load(model, transforms, example_tsds): + horizon = 3 + pipeline = AutoRegressivePipeline(model=model, transforms=transforms, horizon=horizon, step=1) + assert_pipeline_equals_loaded_original(pipeline=pipeline, ts=example_tsds) diff --git a/tests/test_pipeline/test_base.py b/tests/test_pipeline/test_base.py index a168862bc..cb7fac75d 100644 --- a/tests/test_pipeline/test_base.py +++ b/tests/test_pipeline/test_base.py @@ -1,3 +1,5 @@ +import pathlib +from typing import Any from unittest.mock import MagicMock import pandas as pd @@ -52,6 +54,13 @@ def fit(self, ts: TSDataset): def _forecast(self) -> TSDataset: return self.ts + def save(self, path: pathlib.Path): + raise NotImplementedError() + + @classmethod + def load(cls, path: pathlib.Path) -> Any: + raise NotImplementedError() + @pytest.mark.parametrize( "start_timestamp, end_timestamp", diff --git a/tests/test_pipeline/test_mixins.py b/tests/test_pipeline/test_mixins.py index 7b82a250c..5cb4f3148 100644 --- a/tests/test_pipeline/test_mixins.py +++ b/tests/test_pipeline/test_mixins.py @@ -1,13 +1,22 @@ +import json +import pathlib +import pickle +import zipfile +from copy import deepcopy from unittest.mock import MagicMock +from unittest.mock import patch import pandas as pd import pytest +from etna.models import NaiveModel from etna.models.base import NonPredictionIntervalContextIgnorantAbstractModel from etna.models.base import NonPredictionIntervalContextRequiredAbstractModel from etna.models.base import PredictionIntervalContextIgnorantAbstractModel from etna.models.base import PredictionIntervalContextRequiredAbstractModel from etna.pipeline.mixins import ModelPipelinePredictMixin +from etna.pipeline.mixins import SaveModelPipelineMixin +from etna.transforms import AddConstTransform from etna.transforms import DateFlagsTransform from etna.transforms import FilterFeaturesTransform @@ -44,7 +53,7 @@ def make_mixin(model=None, transforms=(), mock_recreate_ts=True, mock_determine_ [DateFlagsTransform(), FilterFeaturesTransform(exclude=["regressor_exog_weekend"])], ], ) -def test_create_ts(context_size, start_timestamp, end_timestamp, transforms, example_reg_tsds): +def test_predict_mixin_create_ts(context_size, start_timestamp, end_timestamp, transforms, example_reg_tsds): ts = example_reg_tsds model = MagicMock() model.context_size = context_size @@ -70,7 +79,9 @@ def test_create_ts(context_size, start_timestamp, end_timestamp, transforms, exa (pd.Timestamp("2020-01-05"), pd.Timestamp("2020-01-10"), 6), ], ) -def test_determine_prediction_size(start_timestamp, end_timestamp, expected_prediction_size, example_tsds): +def test_predict_mixin_determine_prediction_size( + start_timestamp, end_timestamp, expected_prediction_size, example_tsds +): ts = example_tsds mixin = make_mixin(mock_determine_prediction_size=False) @@ -90,7 +101,7 @@ def test_determine_prediction_size(start_timestamp, end_timestamp, expected_pred (pd.Timestamp("2020-01-05"), pd.Timestamp("2020-01-10")), ], ) -def test_predict_create_ts_called(start_timestamp, end_timestamp, example_tsds): +def test_predict_mixin_predict_create_ts_called(start_timestamp, end_timestamp, example_tsds): ts = MagicMock() mixin = make_mixin() @@ -110,7 +121,7 @@ def test_predict_create_ts_called(start_timestamp, end_timestamp, example_tsds): (pd.Timestamp("2020-01-05"), pd.Timestamp("2020-01-10")), ], ) -def test_predict_determine_prediction_size_called(start_timestamp, end_timestamp, example_tsds): +def test_predict_mixin_predict_determine_prediction_size_called(start_timestamp, end_timestamp, example_tsds): ts = MagicMock() mixin = make_mixin() @@ -127,7 +138,7 @@ def test_predict_determine_prediction_size_called(start_timestamp, end_timestamp "model_class", [NonPredictionIntervalContextIgnorantAbstractModel, NonPredictionIntervalContextRequiredAbstractModel], ) -def test_predict_fail_doesnt_support_prediction_interval(model_class): +def test_predict_mixin_predict_fail_doesnt_support_prediction_interval(model_class): ts = MagicMock() model = MagicMock(spec=model_class) mixin = make_mixin(model=model) @@ -170,7 +181,7 @@ def _check_predict_called(spec, prediction_interval, quantiles, check_keys): assert result == mixin.model.predict.return_value -def test_predict_model_predict_called_non_prediction_interval_context_ignorant(): +def test_predict_mixin_predict_called_non_prediction_interval_context_ignorant(): _check_predict_called( spec=NonPredictionIntervalContextIgnorantAbstractModel, prediction_interval=False, @@ -179,7 +190,7 @@ def test_predict_model_predict_called_non_prediction_interval_context_ignorant() ) -def test_predict_model_predict_called_non_prediction_interval_context_required(): +def test_predict_mixin_predict_called_non_prediction_interval_context_required(): _check_predict_called( spec=NonPredictionIntervalContextRequiredAbstractModel, prediction_interval=False, @@ -190,7 +201,7 @@ def test_predict_model_predict_called_non_prediction_interval_context_required() @pytest.mark.parametrize("quantiles", [(0.025, 0.975), (0.5,), ()]) @pytest.mark.parametrize("prediction_interval", [False, True]) -def test_predict_model_predict_called_prediction_interval_context_ignorant(prediction_interval, quantiles): +def test_predict_mixin_predict_called_prediction_interval_context_ignorant(prediction_interval, quantiles): _check_predict_called( spec=PredictionIntervalContextIgnorantAbstractModel, prediction_interval=False, @@ -201,10 +212,122 @@ def test_predict_model_predict_called_prediction_interval_context_ignorant(predi @pytest.mark.parametrize("quantiles", [(0.025, 0.975), (0.5,), ()]) @pytest.mark.parametrize("prediction_interval", [False, True]) -def test_predict_model_predict_called_prediction_interval_context_required(prediction_interval, quantiles): +def test_predict_mixin_predict_called_prediction_interval_context_required(prediction_interval, quantiles): _check_predict_called( spec=PredictionIntervalContextRequiredAbstractModel, prediction_interval=False, quantiles=(), check_keys=["ts", "prediction_size", "prediction_interval", "quantiles"], ) + + +class Dummy(SaveModelPipelineMixin): + def __init__(self, a, b, ts, model, transforms): + self.a = a + self.b = b + self.ts = ts + self.model = model + self.transforms = transforms + + +def test_save_mixin_save(example_tsds, tmp_path): + model = NaiveModel() + transforms = [AddConstTransform(in_column="target", value=10.0)] + dummy = Dummy(a=1, b=2, ts=example_tsds, model=model, transforms=transforms) + dir_path = pathlib.Path(tmp_path) + path = dir_path / "dummy.zip" + + initial_ts = deepcopy(example_tsds) + initial_model = deepcopy(model) + initial_transforms = deepcopy(transforms) + dummy.save(path) + + with zipfile.ZipFile(path, "r") as archive: + files = archive.namelist() + assert sorted(files) == sorted(["metadata.json", "object.pkl", "model.zip", "transforms/0.zip"]) + + with archive.open("metadata.json", "r") as input_file: + metadata_bytes = input_file.read() + metadata_str = metadata_bytes.decode("utf-8") + metadata = json.loads(metadata_str) + assert sorted(metadata.keys()) == ["class", "etna_version"] + assert metadata["class"] == "tests.test_pipeline.test_mixins.Dummy" + + with archive.open("object.pkl", "r") as input_file: + loaded_obj = pickle.load(input_file) + assert loaded_obj.a == dummy.a + assert loaded_obj.b == dummy.b + + # check that we didn't break dummy object itself + assert pickle.dumps(dummy.ts) == pickle.dumps(initial_ts) + assert pickle.dumps(dummy.model) == pickle.dumps(initial_model) + assert pickle.dumps(dummy.transforms) == pickle.dumps(initial_transforms) + + +def test_save_mixin_load_fail_file_not_found(): + non_existent_path = pathlib.Path("archive.zip") + with pytest.raises(FileNotFoundError): + Dummy.load(non_existent_path) + + +def test_save_mixin_load_ok_no_ts(example_tsds, recwarn, tmp_path): + model = NaiveModel() + transform_values = list(range(1, 11)) + transforms = [AddConstTransform(in_column="target", value=value) for value in transform_values] + dummy = Dummy(a=1, b=2, ts=example_tsds, model=model, transforms=transforms) + dir_path = pathlib.Path(tmp_path) + path = dir_path / "dummy.zip" + + dummy.save(path) + loaded_dummy = Dummy.load(path) + + assert loaded_dummy.a == dummy.a + assert loaded_dummy.b == dummy.b + assert loaded_dummy.ts is None + assert isinstance(loaded_dummy.model, NaiveModel) + assert [transform.value for transform in loaded_dummy.transforms] == transform_values + assert len(recwarn) == 0 + + +def test_save_mixin_load_ok_with_ts(example_tsds, recwarn, tmp_path): + model = NaiveModel() + transform_values = list(range(1, 11)) + transforms = [AddConstTransform(in_column="target", value=value) for value in transform_values] + dummy = Dummy(a=1, b=2, ts=example_tsds, model=model, transforms=transforms) + dir_path = pathlib.Path(tmp_path) + path = dir_path / "dummy.zip" + + dummy.save(path) + loaded_dummy = Dummy.load(path, ts=example_tsds) + + assert loaded_dummy.a == dummy.a + assert loaded_dummy.b == dummy.b + assert loaded_dummy.ts is not example_tsds + pd.testing.assert_frame_equal(loaded_dummy.ts.to_pandas(), dummy.ts.to_pandas()) + assert isinstance(loaded_dummy.model, NaiveModel) + assert [transform.value for transform in loaded_dummy.transforms] == transform_values + assert len(recwarn) == 0 + + +@pytest.mark.parametrize( + "save_version, load_version", [((1, 5, 0), (2, 5, 0)), ((2, 5, 0), (1, 5, 0)), ((1, 5, 0), (1, 3, 0))] +) +@patch("etna.core.mixins.get_etna_version") +def test_save_mixin_load_warning(get_version_mock, save_version, load_version, example_tsds, tmp_path): + model = NaiveModel() + transforms = [AddConstTransform(in_column="target", value=10.0)] + dummy = Dummy(a=1, b=2, ts=example_tsds, model=model, transforms=transforms) + dir_path = pathlib.Path(tmp_path) + path = dir_path / "dummy.zip" + + get_version_mock.return_value = save_version + dummy.save(path) + + save_version_str = ".".join([str(x) for x in save_version]) + load_version_str = ".".join([str(x) for x in load_version]) + with pytest.warns( + UserWarning, + match=f"The object was saved under etna version {save_version_str} but running version is {load_version_str}", + ): + get_version_mock.return_value = load_version + _ = Dummy.load(path) diff --git a/tests/test_pipeline/test_pipeline.py b/tests/test_pipeline/test_pipeline.py index 09f6ec7f1..31358459e 100644 --- a/tests/test_pipeline/test_pipeline.py +++ b/tests/test_pipeline/test_pipeline.py @@ -36,6 +36,7 @@ from etna.transforms import LagTransform from etna.transforms import LogTransform from etna.transforms import TimeSeriesImputerTransform +from tests.test_pipeline.utils import assert_pipeline_equals_loaded_original from tests.utils import DummyMetric DEFAULT_METRICS = [MAE(mode=MetricAggregationMode.per_segment)] @@ -721,3 +722,25 @@ def test_predict(model, transforms, example_tsds): assert not np.any(result_df["target"].isna()) assert len(result_df) == len(example_tsds.segments) * num_points + + +@pytest.mark.parametrize( + "model, transforms", + [ + ( + CatBoostMultiSegmentModel(iterations=100), + [DateFlagsTransform(), LagTransform(in_column="target", lags=list(range(3, 10)))], + ), + ( + LinearPerSegmentModel(), + [DateFlagsTransform(), LagTransform(in_column="target", lags=list(range(3, 10)))], + ), + (SeasonalMovingAverageModel(window=2, seasonality=7), []), + (SARIMAXModel(), []), + (ProphetModel(), []), + ], +) +def test_save_load(model, transforms, example_tsds): + horizon = 3 + pipeline = Pipeline(model=model, transforms=transforms, horizon=horizon) + assert_pipeline_equals_loaded_original(pipeline=pipeline, ts=example_tsds) diff --git a/tests/test_pipeline/utils.py b/tests/test_pipeline/utils.py new file mode 100644 index 000000000..5613e1352 --- /dev/null +++ b/tests/test_pipeline/utils.py @@ -0,0 +1,35 @@ +import pathlib +import tempfile +from typing import Tuple + +import pandas as pd + +from etna.datasets import TSDataset +from etna.pipeline.base import AbstractPipeline + + +def get_loaded_pipeline(pipeline: AbstractPipeline) -> AbstractPipeline: + with tempfile.TemporaryDirectory() as dir_path_str: + dir_path = pathlib.Path(dir_path_str) + path = dir_path.joinpath("dummy.zip") + pipeline.save(path) + loaded_model = pipeline.load(path, ts=pipeline.ts) + return loaded_model + + +def assert_pipeline_equals_loaded_original( + pipeline: AbstractPipeline, ts: TSDataset +) -> Tuple[AbstractPipeline, AbstractPipeline]: + import torch # TODO: remove after fix at issue-802 + + pipeline.fit(ts) + torch.manual_seed(11) + forecast_ts_1 = pipeline.forecast() + + loaded_pipeline = get_loaded_pipeline(pipeline) + torch.manual_seed(11) + forecast_ts_2 = loaded_pipeline.forecast() + + pd.testing.assert_frame_equal(forecast_ts_1.to_pandas(), forecast_ts_2.to_pandas()) + + return pipeline, loaded_pipeline From 8cbb1a1337cfe57449e71e8501d0e775f98717d9 Mon Sep 17 00:00:00 2001 From: Mr-Geekman <36005824+Mr-Geekman@users.noreply.github.com> Date: Thu, 22 Dec 2022 10:40:11 +0300 Subject: [PATCH 08/12] Add `SaveEnsembleMixin` (#1046) --- CHANGELOG.md | 4 +- etna/core/utils.py | 6 +- etna/ensembles/__init__.py | 2 +- etna/ensembles/direct_ensemble.py | 5 +- etna/ensembles/{base.py => mixins.py} | 76 +++++++++- etna/ensembles/stacking_ensemble.py | 5 +- etna/ensembles/voting_ensemble.py | 5 +- etna/pipeline/mixins.py | 9 +- tests/test_core/test_utils.py | 19 +++ tests/test_ensembles/test_direct_ensemble.py | 40 ++--- tests/test_ensembles/test_ensemble_mixin.py | 24 --- tests/test_ensembles/test_mixins.py | 139 ++++++++++++++++++ .../test_ensembles/test_stacking_ensemble.py | 5 + tests/test_ensembles/test_voting_ensemble.py | 5 + tests/test_pipeline/test_mixins.py | 11 +- tests/test_pipeline/utils.py | 11 +- 16 files changed, 299 insertions(+), 67 deletions(-) rename etna/ensembles/{base.py => mixins.py} (50%) delete mode 100644 tests/test_ensembles/test_ensemble_mixin.py create mode 100644 tests/test_ensembles/test_mixins.py diff --git a/CHANGELOG.md b/CHANGELOG.md index f5b66a0fc..aff2112d5 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -9,13 +9,13 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0 ## Unreleased ### Added - -- Add `SaveModelPipelineMixin`, add `load`, add saving for `Pipeline` and `AutoRegressivePipeline` ([#1036](https://github.com/tinkoff-ai/etna/pull/1036)) +- Add `SaveModelPipelineMixin`, add `load`, add saving and loading for `Pipeline` and `AutoRegressivePipeline` ([#1036](https://github.com/tinkoff-ai/etna/pull/1036)) - Add `SaveMixin` to models and transforms ([#1007](https://github.com/tinkoff-ai/etna/pull/1007)) - Add `plot_change_points_interactive` ([#988](https://github.com/tinkoff-ai/etna/pull/988)) - Add `experimental` module with `TimeSeriesBinaryClassifier` and `PredictabilityAnalyzer` ([#985](https://github.com/tinkoff-ai/etna/pull/985)) - Inference track results: add `predict` method to pipelines, teach some models to work with context, change hierarchy of base models, update notebook examples ([#979](https://github.com/tinkoff-ai/etna/pull/979)) - Add `get_ruptures_regularization` into `experimental` module ([#1001](https://github.com/tinkoff-ai/etna/pull/1001)) -- +- Add `SaveEnsembleMixin`, add saving and loading for `VotingEnsemble`, `StackingEnsemble` and `DirectEnsemble` ([#1046](https://github.com/tinkoff-ai/etna/pull/1046)) ### Changed - - Change returned model in get_model of BATSModel, TBATSModel ([#987](https://github.com/tinkoff-ai/etna/pull/987)) diff --git a/etna/core/utils.py b/etna/core/utils.py index d067e7af9..0dc2ee29b 100644 --- a/etna/core/utils.py +++ b/etna/core/utils.py @@ -10,13 +10,15 @@ from hydra_slayer import get_factory -def load(path: pathlib.Path) -> Any: +def load(path: pathlib.Path, **kwargs: Any) -> Any: """Load saved object by path. Parameters ---------- path: Path to load object from. + kwargs: + Parameters for loading specific for the loaded object. Returns ------- @@ -33,7 +35,7 @@ def load(path: pathlib.Path) -> Any: # create object for that class object_class = get_factory(object_class_name) - loaded_object = object_class.load(path=path) + loaded_object = object_class.load(path=path, **kwargs) return loaded_object diff --git a/etna/ensembles/__init__.py b/etna/ensembles/__init__.py index 835ee4366..a6dcd27ab 100644 --- a/etna/ensembles/__init__.py +++ b/etna/ensembles/__init__.py @@ -1,4 +1,4 @@ -from etna.ensembles.base import EnsembleMixin from etna.ensembles.direct_ensemble import DirectEnsemble +from etna.ensembles.mixins import EnsembleMixin from etna.ensembles.stacking_ensemble import StackingEnsemble from etna.ensembles.voting_ensemble import VotingEnsemble diff --git a/etna/ensembles/direct_ensemble.py b/etna/ensembles/direct_ensemble.py index 9c0c0a580..4b20c7e50 100644 --- a/etna/ensembles/direct_ensemble.py +++ b/etna/ensembles/direct_ensemble.py @@ -11,11 +11,12 @@ from joblib import delayed from etna.datasets import TSDataset -from etna.ensembles import EnsembleMixin +from etna.ensembles.mixins import EnsembleMixin +from etna.ensembles.mixins import SaveEnsembleMixin from etna.pipeline.base import BasePipeline -class DirectEnsemble(EnsembleMixin, BasePipeline): +class DirectEnsemble(EnsembleMixin, SaveEnsembleMixin, BasePipeline): """DirectEnsemble is a pipeline that forecasts future values merging the forecasts of base pipelines. Ensemble expects several pipelines during init. These pipelines are expected to have different forecasting horizons. diff --git a/etna/ensembles/base.py b/etna/ensembles/mixins.py similarity index 50% rename from etna/ensembles/base.py rename to etna/ensembles/mixins.py index 80e0468a0..256ddd602 100644 --- a/etna/ensembles/base.py +++ b/etna/ensembles/mixins.py @@ -1,10 +1,15 @@ import pathlib +import tempfile +import zipfile +from copy import deepcopy from typing import Any from typing import List from typing import Optional import pandas as pd +from etna.core import SaveMixin +from etna.core import load from etna.datasets import TSDataset from etna.loggers import tslogger from etna.pipeline.base import BasePipeline @@ -56,6 +61,22 @@ def _predict_pipeline( tslogger.log(msg=f"Prediction is done with {pipeline}.") return prediction + +class SaveEnsembleMixin(SaveMixin): + """Implementation of ``AbstractSaveable`` abstract class for ensemble pipelines. + + It saves object to the zip archive with 3 entities: + + * metadata.json: contains library version and class name. + + * object.pkl: pickled without pipelines and ts. + + * pipelines: folder with saved pipelines. + """ + + pipelines: List[BasePipeline] + ts: Optional[TSDataset] + def save(self, path: pathlib.Path): """Save the object. @@ -64,15 +85,64 @@ def save(self, path: pathlib.Path): path: Path to save object to. """ - raise NotImplementedError() + pipelines = self.pipelines + ts = self.ts + try: + # extract attributes we can't easily save + delattr(self, "pipelines") + delattr(self, "ts") + + # save the remaining part + super().save(path=path) + finally: + self.pipelines = pipelines + self.ts = ts + + with zipfile.ZipFile(path, "a") as archive: + with tempfile.TemporaryDirectory() as _temp_dir: + temp_dir = pathlib.Path(_temp_dir) + + # save transforms separately + pipelines_dir = temp_dir / "pipelines" + pipelines_dir.mkdir() + num_digits = 8 + for i, pipeline in enumerate(pipelines): + save_name = f"{i:0{num_digits}d}.zip" + pipeline_save_path = pipelines_dir / save_name + pipeline.save(pipeline_save_path) + archive.write(pipeline_save_path, f"pipelines/{save_name}") @classmethod - def load(cls, path: pathlib.Path) -> Any: + def load(cls, path: pathlib.Path, ts: Optional[TSDataset] = None) -> Any: """Load an object. Parameters ---------- path: Path to load object from. + ts: + TSDataset to set into loaded pipeline. + + Returns + ------- + : + Loaded object. """ - raise NotImplementedError() + obj = super().load(path=path) + obj.ts = deepcopy(ts) + + with zipfile.ZipFile(path, "r") as archive: + with tempfile.TemporaryDirectory() as _temp_dir: + temp_dir = pathlib.Path(_temp_dir) + + archive.extractall(temp_dir) + + # load pipelines + pipelines_dir = temp_dir / "pipelines" + pipelines = [] + for path in sorted(pipelines_dir.iterdir()): + pipelines.append(load(path, ts=ts)) + + obj.pipelines = pipelines + + return obj diff --git a/etna/ensembles/stacking_ensemble.py b/etna/ensembles/stacking_ensemble.py index 7361391c9..db5fd31e5 100644 --- a/etna/ensembles/stacking_ensemble.py +++ b/etna/ensembles/stacking_ensemble.py @@ -19,13 +19,14 @@ from typing_extensions import Literal from etna.datasets import TSDataset -from etna.ensembles import EnsembleMixin +from etna.ensembles.mixins import EnsembleMixin +from etna.ensembles.mixins import SaveEnsembleMixin from etna.loggers import tslogger from etna.metrics import MAE from etna.pipeline.base import BasePipeline -class StackingEnsemble(EnsembleMixin, BasePipeline): +class StackingEnsemble(EnsembleMixin, SaveEnsembleMixin, BasePipeline): """StackingEnsemble is a pipeline that forecast future using the metamodel to combine the forecasts of the base models. Examples diff --git a/etna/ensembles/voting_ensemble.py b/etna/ensembles/voting_ensemble.py index 0bbc29307..effc1edfa 100644 --- a/etna/ensembles/voting_ensemble.py +++ b/etna/ensembles/voting_ensemble.py @@ -15,13 +15,14 @@ from etna.analysis.feature_relevance.relevance_table import TreeBasedRegressor from etna.datasets import TSDataset -from etna.ensembles import EnsembleMixin +from etna.ensembles.mixins import EnsembleMixin +from etna.ensembles.mixins import SaveEnsembleMixin from etna.loggers import tslogger from etna.metrics import MAE from etna.pipeline.base import BasePipeline -class VotingEnsemble(EnsembleMixin, BasePipeline): +class VotingEnsemble(EnsembleMixin, SaveEnsembleMixin, BasePipeline): """VotingEnsemble is a pipeline that forecast future values with weighted averaging of it's pipelines forecasts. Examples diff --git a/etna/pipeline/mixins.py b/etna/pipeline/mixins.py index fb803d8f2..b0954ca1a 100644 --- a/etna/pipeline/mixins.py +++ b/etna/pipeline/mixins.py @@ -92,7 +92,7 @@ def _predict( class SaveModelPipelineMixin(SaveMixin): """Implementation of ``AbstractSaveable`` abstract class for pipelines with model inside. - It saves object to the zip archive with 2 files: + It saves object to the zip archive with 4 entities: * metadata.json: contains library version and class name. @@ -118,6 +118,7 @@ def save(self, path: pathlib.Path): model = self.model transforms = self.transforms ts = self.ts + try: # extract attributes we can't easily save delattr(self, "model") @@ -143,7 +144,7 @@ def save(self, path: pathlib.Path): # save transforms separately transforms_dir = temp_dir / "transforms" transforms_dir.mkdir() - num_digits = len(str(len(transforms) - 1)) + num_digits = 8 for i, transform in enumerate(transforms): save_name = f"{i:0{num_digits}d}.zip" transform_save_path = transforms_dir / save_name @@ -189,4 +190,8 @@ def load(cls, path: pathlib.Path, ts: Optional[TSDataset] = None) -> Any: obj.transforms = transforms + # set transforms in ts + if obj.ts is not None: + obj.ts.transforms = transforms + return obj diff --git a/tests/test_core/test_utils.py b/tests/test_core/test_utils.py index bcdc4c873..583f272f2 100644 --- a/tests/test_core/test_utils.py +++ b/tests/test_core/test_utils.py @@ -1,9 +1,12 @@ import pathlib import tempfile +import pandas as pd import pytest from etna.core import load +from etna.models import NaiveModel +from etna.pipeline import Pipeline from etna.transforms import AddConstTransform @@ -21,6 +24,22 @@ def test_load_ok(): transform.save(save_path) new_transform = load(save_path) + assert type(new_transform) == type(transform) for attribute in ["in_column", "value", "inplace"]: assert getattr(new_transform, attribute) == getattr(transform, attribute) + + +def test_load_ok_with_params(example_tsds): + pipeline = Pipeline(model=NaiveModel(), horizon=7) + with tempfile.TemporaryDirectory() as _temp_dir: + temp_dir = pathlib.Path(_temp_dir) + save_path = temp_dir / "pipeline.zip" + pipeline.fit(ts=example_tsds) + pipeline.save(save_path) + + new_pipeline = load(save_path, ts=example_tsds) + + assert new_pipeline.ts is not None + assert type(new_pipeline) == type(pipeline) + pd.testing.assert_frame_equal(new_pipeline.ts.to_pandas(), example_tsds.to_pandas()) diff --git a/tests/test_ensembles/test_direct_ensemble.py b/tests/test_ensembles/test_direct_ensemble.py index c48600b04..031b8efdd 100644 --- a/tests/test_ensembles/test_direct_ensemble.py +++ b/tests/test_ensembles/test_direct_ensemble.py @@ -8,6 +8,18 @@ from etna.ensembles import DirectEnsemble from etna.models import NaiveModel from etna.pipeline import Pipeline +from tests.test_pipeline.utils import assert_pipeline_equals_loaded_original + + +@pytest.fixture +def direct_ensemble_pipeline() -> DirectEnsemble: + ensemble = DirectEnsemble( + pipelines=[ + Pipeline(model=NaiveModel(lag=1), transforms=[], horizon=1), + Pipeline(model=NaiveModel(lag=3), transforms=[], horizon=2), + ] + ) + return ensemble @pytest.fixture @@ -36,32 +48,24 @@ def test_get_horizon_raise_error_on_same_horizons(): _ = DirectEnsemble(pipelines=[Mock(horizon=1), Mock(horizon=1)]) -def test_forecast(simple_ts_train, simple_ts_forecast): - ensemble = DirectEnsemble( - pipelines=[ - Pipeline(model=NaiveModel(lag=1), transforms=[], horizon=1), - Pipeline(model=NaiveModel(lag=3), transforms=[], horizon=2), - ] - ) - ensemble.fit(simple_ts_train) - forecast = ensemble.forecast() +def test_forecast(direct_ensemble_pipeline, simple_ts_train, simple_ts_forecast): + direct_ensemble_pipeline.fit(simple_ts_train) + forecast = direct_ensemble_pipeline.forecast() pd.testing.assert_frame_equal(forecast.to_pandas(), simple_ts_forecast.to_pandas()) -def test_predict(simple_ts_train): - ensemble = DirectEnsemble( - pipelines=[ - Pipeline(model=NaiveModel(lag=1), transforms=[], horizon=1), - Pipeline(model=NaiveModel(lag=3), transforms=[], horizon=2), - ] - ) +def test_predict(direct_ensemble_pipeline, simple_ts_train): smallest_pipeline = Pipeline(model=NaiveModel(lag=1), transforms=[], horizon=1) - ensemble.fit(simple_ts_train) + direct_ensemble_pipeline.fit(simple_ts_train) smallest_pipeline.fit(simple_ts_train) - prediction = ensemble.predict( + prediction = direct_ensemble_pipeline.predict( ts=simple_ts_train, start_timestamp=simple_ts_train.index[1], end_timestamp=simple_ts_train.index[2] ) expected_prediction = smallest_pipeline.predict( ts=simple_ts_train, start_timestamp=simple_ts_train.index[1], end_timestamp=simple_ts_train.index[2] ) pd.testing.assert_frame_equal(prediction.to_pandas(), expected_prediction.to_pandas()) + + +def test_save_load(direct_ensemble_pipeline, example_tsds): + assert_pipeline_equals_loaded_original(pipeline=direct_ensemble_pipeline, ts=example_tsds) diff --git a/tests/test_ensembles/test_ensemble_mixin.py b/tests/test_ensembles/test_ensemble_mixin.py deleted file mode 100644 index 13ce2c4c3..000000000 --- a/tests/test_ensembles/test_ensemble_mixin.py +++ /dev/null @@ -1,24 +0,0 @@ -import pytest - -from etna.ensembles.stacking_ensemble import StackingEnsemble -from etna.pipeline import Pipeline - -HORIZON = 7 - - -def test_invalid_pipelines_number(catboost_pipeline: Pipeline): - """Test StackingEnsemble behavior in case of invalid pipelines number.""" - with pytest.raises(ValueError, match="At least two pipelines are expected."): - _ = StackingEnsemble(pipelines=[catboost_pipeline]) - - -def test_get_horizon_pass(catboost_pipeline: Pipeline, prophet_pipeline: Pipeline): - """Check that StackingEnsemble._get horizon works correctly in case of valid pipelines list.""" - horizon = StackingEnsemble._get_horizon(pipelines=[catboost_pipeline, prophet_pipeline]) - assert horizon == HORIZON - - -def test_get_horizon_fail(catboost_pipeline: Pipeline, naive_pipeline: Pipeline): - """Check that StackingEnsemble._get horizon works correctly in case of invalid pipelines list.""" - with pytest.raises(ValueError, match="All the pipelines should have the same horizon."): - _ = StackingEnsemble._get_horizon(pipelines=[catboost_pipeline, naive_pipeline]) diff --git a/tests/test_ensembles/test_mixins.py b/tests/test_ensembles/test_mixins.py new file mode 100644 index 000000000..95a4d7c1c --- /dev/null +++ b/tests/test_ensembles/test_mixins.py @@ -0,0 +1,139 @@ +import json +import pathlib +import pickle +import zipfile +from copy import deepcopy +from unittest.mock import patch + +import pandas as pd +import pytest + +from etna.ensembles.mixins import SaveEnsembleMixin +from etna.ensembles.stacking_ensemble import StackingEnsemble +from etna.models import NaiveModel +from etna.pipeline import Pipeline + +HORIZON = 7 + + +def test_ensemble_invalid_pipelines_number(catboost_pipeline: Pipeline): + """Test StackingEnsemble behavior in case of invalid pipelines number.""" + with pytest.raises(ValueError, match="At least two pipelines are expected."): + _ = StackingEnsemble(pipelines=[catboost_pipeline]) + + +def test_ensemble_get_horizon_pass(catboost_pipeline: Pipeline, prophet_pipeline: Pipeline): + """Check that StackingEnsemble._get horizon works correctly in case of valid pipelines list.""" + horizon = StackingEnsemble._get_horizon(pipelines=[catboost_pipeline, prophet_pipeline]) + assert horizon == HORIZON + + +def test_ensemble_get_horizon_fail(catboost_pipeline: Pipeline, naive_pipeline: Pipeline): + """Check that StackingEnsemble._get horizon works correctly in case of invalid pipelines list.""" + with pytest.raises(ValueError, match="All the pipelines should have the same horizon."): + _ = StackingEnsemble._get_horizon(pipelines=[catboost_pipeline, naive_pipeline]) + + +class Dummy(SaveEnsembleMixin): + def __init__(self, a, b, ts, pipelines): + self.a = a + self.b = b + self.ts = ts + self.pipelines = pipelines + + +def test_save_mixin_save(example_tsds, tmp_path): + pipelines = [Pipeline(model=NaiveModel(lag=1), horizon=HORIZON), Pipeline(model=NaiveModel(lag=2), horizon=HORIZON)] + dummy = Dummy(a=1, b=2, ts=example_tsds, pipelines=pipelines) + dir_path = pathlib.Path(tmp_path) + path = dir_path / "dummy.zip" + + initial_dummy = deepcopy(dummy) + dummy.save(path) + + with zipfile.ZipFile(path, "r") as archive: + files = archive.namelist() + assert sorted(files) == sorted( + ["metadata.json", "object.pkl", "pipelines/00000000.zip", "pipelines/00000001.zip"] + ) + + with archive.open("metadata.json", "r") as input_file: + metadata_bytes = input_file.read() + metadata_str = metadata_bytes.decode("utf-8") + metadata = json.loads(metadata_str) + assert sorted(metadata.keys()) == ["class", "etna_version"] + assert metadata["class"] == "tests.test_ensembles.test_mixins.Dummy" + + with archive.open("object.pkl", "r") as input_file: + loaded_obj = pickle.load(input_file) + assert loaded_obj.a == dummy.a + assert loaded_obj.b == dummy.b + + # basic check that we didn't break dummy object itself + assert dummy.a == initial_dummy.a + assert pickle.dumps(dummy.ts) == pickle.dumps(initial_dummy.ts) + assert len(dummy.pipelines) == len(initial_dummy.pipelines) + + +def test_save_mixin_load_fail_file_not_found(): + non_existent_path = pathlib.Path("archive.zip") + with pytest.raises(FileNotFoundError): + Dummy.load(non_existent_path) + + +def test_save_mixin_load_ok_no_ts(example_tsds, recwarn, tmp_path): + lag_values = list(range(1, 11)) + pipelines = [Pipeline(model=NaiveModel(lag=lag), horizon=HORIZON) for lag in lag_values] + dummy = Dummy(a=1, b=2, ts=example_tsds, pipelines=pipelines) + dir_path = pathlib.Path(tmp_path) + path = dir_path / "dummy.zip" + + dummy.save(path) + loaded_dummy = Dummy.load(path) + + assert loaded_dummy.a == dummy.a + assert loaded_dummy.b == dummy.b + assert loaded_dummy.ts is None + assert [pipeline.model.lag for pipeline in loaded_dummy.pipelines] == lag_values + assert len(recwarn) == 0 + + +def test_save_mixin_load_ok_with_ts(example_tsds, recwarn, tmp_path): + lag_values = list(range(1, 11)) + pipelines = [Pipeline(model=NaiveModel(lag=lag), horizon=HORIZON) for lag in lag_values] + dummy = Dummy(a=1, b=2, ts=example_tsds, pipelines=pipelines) + dir_path = pathlib.Path(tmp_path) + path = dir_path / "dummy.zip" + + dummy.save(path) + loaded_dummy = Dummy.load(path, ts=example_tsds) + + assert loaded_dummy.a == dummy.a + assert loaded_dummy.b == dummy.b + assert loaded_dummy.ts is not example_tsds + pd.testing.assert_frame_equal(loaded_dummy.ts.to_pandas(), dummy.ts.to_pandas()) + assert [pipeline.model.lag for pipeline in loaded_dummy.pipelines] == lag_values + assert len(recwarn) == 0 + + +@pytest.mark.parametrize( + "save_version, load_version", [((1, 5, 0), (2, 5, 0)), ((2, 5, 0), (1, 5, 0)), ((1, 5, 0), (1, 3, 0))] +) +@patch("etna.core.mixins.get_etna_version") +def test_save_mixin_load_warning(get_version_mock, save_version, load_version, example_tsds, tmp_path): + pipelines = [Pipeline(model=NaiveModel(lag=1), horizon=HORIZON), Pipeline(model=NaiveModel(lag=2), horizon=HORIZON)] + dummy = Dummy(a=1, b=2, ts=example_tsds, pipelines=pipelines) + dir_path = pathlib.Path(tmp_path) + path = dir_path / "dummy.zip" + + get_version_mock.return_value = save_version + dummy.save(path) + + save_version_str = ".".join([str(x) for x in save_version]) + load_version_str = ".".join([str(x) for x in load_version]) + with pytest.warns( + UserWarning, + match=f"The object was saved under etna version {save_version_str} but running version is {load_version_str}", + ): + get_version_mock.return_value = load_version + _ = Dummy.load(path) diff --git a/tests/test_ensembles/test_stacking_ensemble.py b/tests/test_ensembles/test_stacking_ensemble.py index a8fe8add4..c10ae042c 100644 --- a/tests/test_ensembles/test_stacking_ensemble.py +++ b/tests/test_ensembles/test_stacking_ensemble.py @@ -14,6 +14,7 @@ from etna.ensembles.stacking_ensemble import StackingEnsemble from etna.metrics import MAE from etna.pipeline import Pipeline +from tests.test_pipeline.utils import assert_pipeline_equals_loaded_original HORIZON = 7 @@ -317,3 +318,7 @@ def test_forecast_raise_error_if_not_fitted(naive_ensemble: StackingEnsemble): """Test that StackingEnsemble raise error when calling forecast without being fit.""" with pytest.raises(ValueError, match="StackingEnsemble is not fitted!"): _ = naive_ensemble.forecast() + + +def test_save_load(stacking_ensemble_pipeline, example_tsds): + assert_pipeline_equals_loaded_original(pipeline=stacking_ensemble_pipeline, ts=example_tsds) diff --git a/tests/test_ensembles/test_voting_ensemble.py b/tests/test_ensembles/test_voting_ensemble.py index 996834bc8..72d8d3d8a 100644 --- a/tests/test_ensembles/test_voting_ensemble.py +++ b/tests/test_ensembles/test_voting_ensemble.py @@ -15,6 +15,7 @@ from etna.ensembles.voting_ensemble import VotingEnsemble from etna.metrics import MAE from etna.pipeline import Pipeline +from tests.test_pipeline.utils import assert_pipeline_equals_loaded_original HORIZON = 7 @@ -194,3 +195,7 @@ def test_backtest(voting_ensemble_pipeline: VotingEnsemble, example_tsds: TSData results = voting_ensemble_pipeline.backtest(ts=example_tsds, metrics=[MAE()], n_jobs=n_jobs, n_folds=3) for df in results: assert isinstance(df, pd.DataFrame) + + +def test_save_load(voting_ensemble_pipeline, example_tsds): + assert_pipeline_equals_loaded_original(pipeline=voting_ensemble_pipeline, ts=example_tsds) diff --git a/tests/test_pipeline/test_mixins.py b/tests/test_pipeline/test_mixins.py index 5cb4f3148..284314ca2 100644 --- a/tests/test_pipeline/test_mixins.py +++ b/tests/test_pipeline/test_mixins.py @@ -237,14 +237,13 @@ def test_save_mixin_save(example_tsds, tmp_path): dir_path = pathlib.Path(tmp_path) path = dir_path / "dummy.zip" - initial_ts = deepcopy(example_tsds) - initial_model = deepcopy(model) + initial_dummy = deepcopy(dummy) initial_transforms = deepcopy(transforms) dummy.save(path) with zipfile.ZipFile(path, "r") as archive: files = archive.namelist() - assert sorted(files) == sorted(["metadata.json", "object.pkl", "model.zip", "transforms/0.zip"]) + assert sorted(files) == sorted(["metadata.json", "object.pkl", "model.zip", "transforms/00000000.zip"]) with archive.open("metadata.json", "r") as input_file: metadata_bytes = input_file.read() @@ -259,8 +258,9 @@ def test_save_mixin_save(example_tsds, tmp_path): assert loaded_obj.b == dummy.b # check that we didn't break dummy object itself - assert pickle.dumps(dummy.ts) == pickle.dumps(initial_ts) - assert pickle.dumps(dummy.model) == pickle.dumps(initial_model) + assert dummy.a == initial_dummy.a + assert pickle.dumps(dummy.ts) == pickle.dumps(initial_dummy.ts) + assert pickle.dumps(dummy.model) == pickle.dumps(initial_dummy.model) assert pickle.dumps(dummy.transforms) == pickle.dumps(initial_transforms) @@ -303,6 +303,7 @@ def test_save_mixin_load_ok_with_ts(example_tsds, recwarn, tmp_path): assert loaded_dummy.a == dummy.a assert loaded_dummy.b == dummy.b assert loaded_dummy.ts is not example_tsds + assert loaded_dummy.ts.transforms is loaded_dummy.transforms pd.testing.assert_frame_equal(loaded_dummy.ts.to_pandas(), dummy.ts.to_pandas()) assert isinstance(loaded_dummy.model, NaiveModel) assert [transform.value for transform in loaded_dummy.transforms] == transform_values diff --git a/tests/test_pipeline/utils.py b/tests/test_pipeline/utils.py index 5613e1352..506c286d2 100644 --- a/tests/test_pipeline/utils.py +++ b/tests/test_pipeline/utils.py @@ -1,5 +1,6 @@ import pathlib import tempfile +from copy import deepcopy from typing import Tuple import pandas as pd @@ -8,13 +9,13 @@ from etna.pipeline.base import AbstractPipeline -def get_loaded_pipeline(pipeline: AbstractPipeline) -> AbstractPipeline: +def get_loaded_pipeline(pipeline: AbstractPipeline, ts: TSDataset) -> AbstractPipeline: with tempfile.TemporaryDirectory() as dir_path_str: dir_path = pathlib.Path(dir_path_str) path = dir_path.joinpath("dummy.zip") pipeline.save(path) - loaded_model = pipeline.load(path, ts=pipeline.ts) - return loaded_model + loaded_pipeline = pipeline.load(path, ts=ts) + return loaded_pipeline def assert_pipeline_equals_loaded_original( @@ -22,11 +23,13 @@ def assert_pipeline_equals_loaded_original( ) -> Tuple[AbstractPipeline, AbstractPipeline]: import torch # TODO: remove after fix at issue-802 + initial_ts = deepcopy(ts) + pipeline.fit(ts) torch.manual_seed(11) forecast_ts_1 = pipeline.forecast() - loaded_pipeline = get_loaded_pipeline(pipeline) + loaded_pipeline = get_loaded_pipeline(pipeline, ts=initial_ts) torch.manual_seed(11) forecast_ts_2 = loaded_pipeline.forecast() From 9d5b45df758b71a404248477b6078b4687194bee Mon Sep 17 00:00:00 2001 From: Mr-Geekman <36005824+Mr-Geekman@users.noreply.github.com> Date: Thu, 12 Jan 2023 11:45:16 +0300 Subject: [PATCH 09/12] Notebook with inference demo (#1065) --- CHANGELOG.md | 2 +- examples/README.md | 8 + examples/inference.ipynb | 855 +++++++++++++++++++++++++++++++++++++++ 3 files changed, 864 insertions(+), 1 deletion(-) create mode 100644 examples/inference.ipynb diff --git a/CHANGELOG.md b/CHANGELOG.md index aff2112d5..62bf5d24a 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -22,7 +22,7 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0 - - - Change returned model in `get_model` of `HoltWintersModel`, `HoltModel`, `SimpleExpSmoothingModel` ([#986](https://github.com/tinkoff-ai/etna/pull/986)) -- +- Notebook with inference demo ([#1065](https://github.com/tinkoff-ai/etna/pull/1065)) - - Add `SaveNNMixin` to fix saving/loading of NNs ([#1011](https://github.com/tinkoff-ai/etna/issues/1011)) - diff --git a/examples/README.md b/examples/README.md index d9ead8e33..67662d41d 100644 --- a/examples/README.md +++ b/examples/README.md @@ -7,10 +7,12 @@ We have prepared a set of tutorials for an easy introduction: - Forecast single time series - Simple forecast, Prophet, Catboost - Forecast multiple time series - Pipeline + #### 02. [Backtest](https://github.com/tinkoff-ai/etna/tree/master/examples/backtest.ipynb) - What is backtest and how it works - How to run a validation - Validation visualisation + #### 03. [EDA](https://github.com/tinkoff-ai/etna/tree/master/examples/EDA.ipynb) - Visualization - Plot @@ -24,6 +26,7 @@ We have prepared a set of tutorials for an easy introduction: - Change Points - Change points plot - Interactive change points plot + #### 04. [Outliers](https://github.com/tinkoff-ai/etna/tree/master/examples/outliers.ipynb) - Point outliers - Median method @@ -33,6 +36,7 @@ We have prepared a set of tutorials for an easy introduction: - Sequence outliers - Interactive visualization - Outliers imputation + #### 05. [Clustering](https://github.com/tinkoff-ai/etna/tree/master/examples/clustering.ipynb) - Clustering pipeline - Custom Distance @@ -56,3 +60,7 @@ We have prepared a set of tutorials for an easy introduction: #### 09. Hyperparameter search - [Optuna](https://github.com/tinkoff-ai/etna/tree/master/examples/optuna) - [WandB sweeps](https://github.com/tinkoff-ai/etna/tree/master/examples/wandb/sweeps) example based on [Hydra](https://hydra.cc/) + +#### 10. [Inference: using saved pipeline on a new data](https://github.com/tinkoff-ai/etna/tree/master/examples/inference.ipynb) +- Fitting and saving pipeline +- Using saved pipeline on a new data diff --git a/examples/inference.ipynb b/examples/inference.ipynb new file mode 100644 index 000000000..9bd3934bf --- /dev/null +++ b/examples/inference.ipynb @@ -0,0 +1,855 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "c5046cdf", + "metadata": {}, + "source": [ + "# Inference: using saved pipeline on a new data\n", + "\n", + "\n", + " \n", + "" + ] + }, + { + "cell_type": "markdown", + "id": "b74c7dff", + "metadata": {}, + "source": [ + "This notebook contains the example of usage already fitted and saved pipeline on a new data.\n", + "\n", + "**Table of Contents**\n", + "\n", + "* [Preparing data](#chapter1)\n", + "* [Fitting and saving pipeline](#chapter2)\n", + " * [Fitting pipeline](#section_2_1)\n", + " * [Saving pipeline](#section_2_2)\n", + " * [Method `to_dict`](#section_2_2)\n", + "* [Using saved pipeline on a new data](#chapter3)\n", + " * [Loading pipeline](#section_3_1)\n", + " * [Forecast on a new data](#section_3_2)" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "c1053781", + "metadata": {}, + "outputs": [], + "source": [ + "import warnings\n", + "\n", + "warnings.filterwarnings(action=\"ignore\", message=\"Torchmetrics v0.9\")\n", + "warnings.filterwarnings(action=\"ignore\", message=\"`tsfresh` is not available\")" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "fc24b98c", + "metadata": {}, + "outputs": [], + "source": [ + "import pathlib\n", + "\n", + "HORIZON = 30\n", + "SAVE_DIR = pathlib.Path(\"tmp\")\n", + "SAVE_DIR.mkdir(exist_ok=True)" + ] + }, + { + "cell_type": "markdown", + "id": "81e670c8", + "metadata": {}, + "source": [ + "## 1. Preparing data " + ] + }, + { + "cell_type": "markdown", + "id": "ed4a8e77", + "metadata": {}, + "source": [ + "Let's load data and prepare it for our pipeline." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "f4455ad2", + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "9e8659fc", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
timestampsegmenttarget
02019-01-01segment_a170
12019-01-02segment_a243
22019-01-03segment_a267
32019-01-04segment_a287
42019-01-05segment_a279
\n", + "
" + ], + "text/plain": [ + " timestamp segment target\n", + "0 2019-01-01 segment_a 170\n", + "1 2019-01-02 segment_a 243\n", + "2 2019-01-03 segment_a 267\n", + "3 2019-01-04 segment_a 287\n", + "4 2019-01-05 segment_a 279" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df = pd.read_csv(\"data/example_dataset.csv\")\n", + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "a1cfd8d1", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABkYAAANECAYAAADlu5NRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d5gc1ZX3/62Ok2c0I41GORNEzohkTEbYXrzYu+tEcFpjsX4xu/a+vD8nwIbXNsYRh3UA+8UYB4IRFiCBACGUc84aTc65ezrX74+qe+tW9a3QMz2aoPN5Hh403V1d1RXPved8v0dRVVUFQRAEQRAEQRAEQRAEQRAEQRDEKYBvtDeAIAiCIAiCIAiCIAiCIAiCIAjiZEGJEYIgCIIgCIIgCIIgCIIgCIIgThkoMUIQBEEQBEEQBEEQBEEQBEEQxCkDJUYIgiAIgiAIgiAIgiAIgiAIgjhloMQIQRAEQRAEQRAEQRAEQRAEQRCnDJQYIQiCIAiCIAiCIAiCIAiCIAjilIESIwRBEARBEARBEARBEARBEARBnDJQYoQgCIIgCIIgCIIgCIIgCIIgiFMGSowQBEEQBEEQBEEQBEEQBEEQBHHKQIkRgiAIgiAIgiAIgiAIgpjA1NbWQlEUPP7446O9KQRBEGMCSowQBEEQY4ZHH30UL7300mhvBkEQBEEQBEEQxJiExkwEQRD5gRIjBEEQxJiBgnyCIAiCIAiCIAh7aMxEEASRHygxQhAEQRAEQRAEQRAEQRAEQRDEKQMlRgiCIMYA/f39uP/++zF37lyEw2FUV1fjxhtvxLZt2/hnNm7ciFtuuQXl5eUoKirC+973Prz33ntZ3/X222/j4osvRkFBARYsWIBf/epX+Na3vgVFUUyfUxQF9913H/76179i8eLFKCwsxJIlS7B7924AwK9+9SssXLgQBQUFuPbaa1FbW5u1Li/bxNZ95MgR3H333aioqEB5eTnuueceRKNR0/ZEIhH8/ve/h6IoUBQFd999t+d9+Pjjj+OKK65AVVUVCgsLcdFFF+Fvf/ub5+UJgiAIgiAIghi70Jhp+GMmxg9/+EPMmTMHhYWFeN/73oc9e/bk/B0EQRDjHUVVVXW0N4IgCOJU5xOf+AT+9re/4b777sPixYvR2dmJtWvX4l//9V/xiU98AqtXr8att96Kiy66CB/5yEfg8/nw1FNP4cCBA3j33Xdx6aWXAgC2b9+OJUuWYNq0afjCF76AdDqNJ598ElOmTMHOnTsh3vIVRcG5556L7u5uLFu2DADw2GOPoby8HF/96lfx85//HJ/5zGfQ3d2N733ve7jyyiuxevVqvrzXbfrWt76Fhx56CBdccAHmzZuHG264Adu2bcNvfvMbfPWrX8V3v/tdAMAzzzyDz372s7j00kvx+c9/HgCwYMECLFmyxNM+nDVrFj70oQ9h8eLFSCQSeO6557Bp0ya88soruO2224Z/kAiCIAiCIAiCGDVozDS8MVNtbS3mzZuHc845B/39/bj33nsRi8Xw4x//GH6/H7t378bUqVPzc7AIgiDGAypBEAQx6pSXl6vLli2TvpfJZNRFixapN998s5rJZPjr0WhUnTdvnnrjjTfy1z74wQ+qRUVFamNjI3/t8OHDaiAQUK23fABqOBxWjx8/zl/71a9+pQJQa2pq1L6+Pv76gw8+qALgn81lm775zW+qANRPf/rTpvV/+MMfVquqqkyvFRcXq3fddZfNXnImGo2a/k4kEurZZ5+tXnfddUP6PoIgCIIgCIIgxg40ZtIY6pjp+PHjKgC1sLBQbWho4K9v3LhRBaB++ctfzvk7CYIgxjNkpUUQBDEGqKiowMaNG9HU1JT13o4dO3D48GF8/OMfR2dnJzo6OtDR0YFIJILrr78ea9asQSaTQTqdxhtvvIHbb78d06dP58svXLgQt956q3S9119/PebOncv/vuyyywAAd9xxB0pLS7NeP3bsWE7bJPKFL3zB9PfVV1+Nzs5O9PX15bCn7CksLOT/7u7uRm9vL66++mqTtJ4gCIIgCIIgiPEJjZnyw+23344ZM2bwvy+99FJcdtllWLFiRd7WQRAEMR4IjPYGEARBEMD3vvc93HXXXZg1axYuuugiLF26FHfeeSfmz5+Pw4cPAwDuuusu2+V7e3sRi8UwODiIhQsXZr0vew0AZs+ebfq7vLwcgGZLJXu9u7sbADxv06RJk2zXxd7r7u5GWVmZ7fd45ZVXXsG3v/1t7NixA/F4nL9u9QkmCIIgCIIgCGL8QWOm4Y+ZAGDRokVZr5122mn4y1/+kpfvJwiCGC9QYoQgCGIM8C//8i+4+uqr8eKLL2LlypX4/ve/j+9+97t44YUXeBXR97//fZx//vnS5UtKShCLxXJer9/vz+l1Vffb9bpNuXzncHj33XfxoQ99CNdccw1+/vOfY9q0aQgGg3jqqafw7LPPDvv7CYIgCIIgCIIYXWjMRBAEQeQTSowQBEGMEaZNm4YvfvGL+OIXv4i2tjZceOGF+M53voMf/vCHAICysjLccMMNtstXV1ejoKAAR44cyXpP9tpwWLBggadtypWhqjuef/55FBQU4PXXX0c4HOavP/XUU/naNIIgCIIgCIIgRhkaMw1fEc+ULCKHDh0y2YURBEGcClCPEYIgiFEmnU6jt7fX9Fp1dTWmT5+OeDyOiy66CAsWLMDjjz+OgYGBrOXb29sBaNVFN9xwA1566SWT7+6RI0fw6quv5nWbvW5TrhQXF6Onpyfn5fx+PxRFQTqd5q/V1tbipZdeGtJ2EARBEARBEAQxdqAxk8FQx0yMl156CY2NjfzvTZs2YePGjbY9VgiCICYqpBghCIIYZfr7+zFz5kx85CMfwXnnnYeSkhK88cYb2Lx5M37wgx/A5/PhN7/5DW699VacddZZuOeeezBjxgw0NjbirbfeQllZGZYvXw4A+Na3voWVK1fiyiuvxL333ot0Oo2f/exnOPvss7Fjx468bXMu25QLF110Ed544w088cQTmD59OubNm8ebGDpx22234YknnsAtt9yCj3/842hra8OTTz6JhQsXYteuXUP5iQRBEARBEARBjBFozGQw1DETY+HChbjqqqtw7733Ih6P40c/+hGqqqrw1a9+NedtIQiCGM9QYoQgCGKUKSoqwhe/+EWsXLmS++MuXLgQP//5z3HvvfcCAK699lqsX78ejzzyCH72s59hYGAANTU1uOyyy/Dv//7v/LsuuugivPrqq/iv//ovfP3rX8esWbPw8MMPY//+/Thw4EBet9vrNuXCE088gc9//vP42te+hsHBQdx1112egvzrrrsOv/3tb/F//+//xf3334958+bhu9/9LmpraykxQhAEQRAEQRDjHBozGQx1zMS488474fP58KMf/QhtbW249NJL8bOf/QzTpk0b0vYQBEGMVxSVOjgRBEFMeG6//Xbs3btX6idLEARBEARBEARxqkNjJoIgiFML6jFCEAQxwRgcHDT9ffjwYaxYsQLXXnvt6GwQQRAEQRAEQRDEGILGTARBEAQpRgiCICYY06ZNw91334358+fjxIkT+MUvfoF4PI7t27dj0aJFo715OZFOp12bEpaUlKCkpOQkbRFBEARBEARBEOMdGjMRBEEQ1GOEIAhignHLLbfgT3/6E1paWhAOh7FkyRI8+uij4y7AB4D6+nrMmzfP8TPf/OY38a1vfevkbBBBEARBEARBEOMeGjMRBEEQpBghCIIgxiyxWAxr1651/Mz8+fMxf/78k7RFBEEQBEEQBEEQYwcaMxEEQQwNSowQBEEQBEEQBEEQBEEQBEEQBHHKQM3XCYIgCIIgCIIgCIIgCIIgCII4ZRiXPUYymQyamppQWloKRVFGe3MIgiAIgiAIYsRRVRX9/f2YPn06fD6qbyLcoXETQRAEQRAEcSqRy5hpXCZGmpqaMGvWrNHeDIIgCIIgCII46dTX12PmzJmjvRnEOIDGTQRBEARBEMSpiJcx07hMjJSWlgLQfmBZWdlJX38ymcTKlStx0003IRgMnvT1E/mBjuPEg47pxIOO6cSGju/Eg47pyNLX14dZs2bxWJgg3KBxEzFc6BhOPOiYTkzouE5c6NhOPOiYjiy5jJnGZWKEycDLyspGLcAvKipCWVkZncDjGDqOEw86phMPOqYTGzq+Ew86picHskQivELjJmK40DGceNAxnZjQcZ240LGdeNAxPTl4GTOROTFBEARBEARBEARBEARBEARBEKcMlBghCIIgCIIgCIIgCIIgCIIgCOKUgRIjBEEQBEEQBEEQBEEQBEEQBEGcMlBihCAIgiAIgiAIgiAIgiAIgiCIUwZKjBAEQRAEQRAEQRAEQRAEQRAEccpAiRGCIAiCIAiCIAiCIAiCIAiCIE4ZKDFCEARBEARBEARBEARBEARBEMQpAyVGCIIgCIIgCIIgCIIgCIIgCII4ZaDECEEQBEEQBEEQBEEQBEEQBEEQpwyUGCEIgiAIgiAIgsgjjz32GC655BKUlpaiuroat99+Ow4ePMjfr62thaIo0v/++te/8s/J3n/uuedG4ycRBEEQBEEQxISCEiMEQRAEQRAEQRB55J133sGyZcuwYcMGrFq1CslkEjfddBMikQgAYNasWWhubjb999BDD6GkpAS33nqr6bueeuop0+duv/32UfhFBEEQBEEQBDGxCIz2BhAEQRAEQRAEQUwkXnvtNdPfTz/9NKqrq7F161Zcc8018Pv9qKmpMX3mxRdfxL/8y7+gpKTE9HpFRUXWZwmCIAiCIAiCGB6UGCEIgiAIgiAInXgqjWV/3IaL5lTi3msXjPbmEBOE3t5eAEBlZaX0/a1bt2LHjh148skns95btmwZPvvZz2L+/Pn4whe+gHvuuQeKoki/Jx6PIx6P87/7+voAAMlkEslkcrg/I2fYOkdj3UR+oGM48aBjOjGh4zpxoWM78RgLx/Rrf9+HgE/BNz9whm1cOV7JZb/mnBhpbGzEf//3f+PVV19FNBrFwoUL8dRTT+Hiiy8GAKiqim9+85v49a9/jZ6eHlx55ZX4xS9+gUWLFvHv6Orqwn/8x39g+fLl8Pl8uOOOO/DjH/84qzqKIAiCIAiCIE4mm4534Y39bdjZ0EuJESIvZDIZ3H///bjyyitx9tlnSz/z29/+FmeeeSauuOIK0+sPP/wwrrvuOhQVFWHlypX44he/iIGBAXzpS1+Sfs9jjz2Ghx56KOv1lStXoqioaPg/ZoisWrVq1NZN5Ac6hhMPOqYTEzquExc6thOP0TqmsRTw5y1aSuCM9HGUhUZlM0aMaDTq+bM5JUa6u7tx5ZVX4v3vfz9effVVTJkyBYcPH8akSZP4Z773ve/hJz/5CX7/+99j3rx5+PrXv46bb74Z+/btQ0FBAQDgE5/4BJqbm7nf7j333IPPf/7zePbZZ3PZHIIgCIIgCILIKwdb+gEAA7HUKG8JMVFYtmwZ9uzZg7Vr10rfHxwcxLPPPouvf/3rWe+Jr11wwQWIRCL4/ve/b5sYefDBB/HAAw/wv/v6+jBr1izcdNNNKCsrG+YvyZ1kMolVq1bhxhtvRDAYPOnrJ4YPHcOJBx3TiQkd14kLHduJx2gf065IAtj8NgBg/vmX49K5ckXzeIUppr2QU2Lku9/9LmbNmoWnnnqKvzZv3jz+b1VV8aMf/Qhf+9rX8E//9E8AgD/84Q+YOnUqXnrpJfzbv/0b9u/fj9deew2bN2/mKpOf/vSnWLp0KR5//HFMnz49l00iCIIgCIIgiLxxQE+MDCbTSGdU+H0TS1pOnFzuu+8+vPLKK1izZg1mzpwp/czf/vY3RKNR3Hnnna7fd9lll+GRRx5BPB5HOBzOej8cDktfDwaDozqZMtrrJ4YPHcOJBx3TiQkd14kLHduJRz6Pqaqq6IokUFWSHQdaUfxp/u/67jiuXDSxzqtc9qkvly9++eWXcfHFF+OjH/0oqqurccEFF+DXv/41f//48eNoaWnBDTfcwF8rLy/HZZddhvXr1wMA1q9fj4qKCp4UAYAbbrgBPp8PGzduzGVzCIIgCIIgCCKvMMUIAEQSpBohhoaqqrjvvvvw4osvYvXq1aZiMiu//e1v8aEPfQhTpkxx/d4dO3Zg0qRJ0uQHQRAEQRAEcWry1Hu1uOjbb2D5zibXz6YzKv/38Y7ISG7WmCcnxcixY8fwi1/8Ag888AD+z//5P9i8eTO+9KUvIRQK4a677kJLSwsAYOrUqablpk6dyt9raWlBdXW1eSMCAVRWVvLPWKEmgsRIQMdx4kHHdOJBx3RiQ8d34jHej2k6o+JQq5EY6RmIodA/ihtkYbzu11ORZcuW4dlnn8Xf//53lJaW8nFOeXk5CgsL+eeOHDmCNWvWYMWKFVnfsXz5crS2tuLyyy9HQUEBVq1ahUcffRT/9V//ddJ+B0EQBEEQBDH22VHfA0Drl/jB86ajdzCJE50RnDuzIuuzqbSRGDlGiRHvZDIZXHzxxXj00UcBaD63e/bswS9/+UvcddddI7KBADURJEYWOo4TDzqmEw86phMbOr4Tj/F6TNsGgXjKCI9fXbUaNaMXamaRSyNBYnT5xS9+AQC49tprTa8/9dRTuPvuu/nfv/vd7zBz5kzcdNNNWd8RDAbx5JNP4stf/jJUVcXChQvxxBNP4HOf+9xIbjpBEARBEAQxzuiOJgAAdV3aeOFrL+3B8p1N+PG/nY9/On+G6bMpUoxwckqMTJs2DYsXLza9duaZZ+L5558HANTU1AAAWltbMW3aNP6Z1tZWnH/++fwzbW1tpu9IpVLo6uriy1uhJoLESEDHceJBx3TiQcd0YkPHd+Ix3o/pa3tbgR07+d8XXnYFzp9VMXobZCGXRoLE6KKqqvuHADz66KO86MzKLbfcgltuuSWfm0UQBEGME/Y29eJI20DWhCZBEISMzgEtMVLfrSVGtp3oBgB8//WDuPXsaQgFjG4a6UyG//tEZwSpdAYBf07dNiYMOSVGrrzyShw8eND02qFDhzBnzhwAWiP2mpoavPnmmzwR0tfXh40bN+Lee+8FACxZsgQ9PT3YunUrLrroIgDA6tWrkclkcNlll0nXS00EiZGEjuPEg47pxIOO6cSGju/EY7we0yPtZkVGLJ1b876RZixtC0EQBEEQI8d//mUnDrT0Y1F1KRZPP/kFwQRBjC+YYqShaxDRRApNvYPa392D+POWenzq8jn8s0nBSiuZVtHYM4g5VcUnd4PHCDmlg7785S9jw4YNePTRR3HkyBE8++yz+J//+R8sW7YMAKAoCu6//358+9vfxssvv4zdu3fjzjvvxPTp03H77bcD0BQmt9xyCz73uc9h06ZNeO+993Dffffh3/7t3zB9+vS8/0CCIAiCIAiC8ILYeB0AInFqvk4QBEEQxMmnvV/rs3u4rd/lkwRBnOqoqorOiJYYSaQz2HS8C6J4+advHsZgIs3/FpuvA8Dh1gE8+dYRvHXA7PB0KpCTYuSSSy7Biy++iAcffBAPP/ww5s2bhx/96Ef4xCc+wT/z1a9+FZFIBJ///OfR09ODq666Cq+99hoKCgr4Z/74xz/ivvvuw/XXXw+fz4c77rgDP/nJT/L3qwiCIAiCIAgiRw7qjdfDAR/iqQwG4mmXJQiCIAiCIPJPVJ/ErO+i/mIEQTgTSaSRSBn2WGsOdQAAFk8rQ/tAHG39ceyo78GSBVUAgGQ6Y1r+8ZUHcaClH7Mri/D+M6pP3oaPAXJKjADABz7wAXzgAx+wfV9RFDz88MN4+OGHbT9TWVmJZ599NtdVEwRBEARBEIQrrGpqckm2FasdsWQatZ1a88HzZlZgU20XKUYIgiAIgjjpZDIqBpMsMTI4yltDEMRYp1tXizDeOaQpP86oKYWvTVOgxVL2ipEDumqe2XGdSpyanVUIgiAIgiCICcvT62px8bffwN93NHpeprk3BlUFikN+zKkqAgAMUGKEIAiCIIiTDEuKAEAdKUYIgnCh05IYOdquFXvNm1yMoN5UPSkoSlKWxAgjEk9BVeXvTVQoMUIQBEEQBEFMKDYc6wQA7Kjv8bxM32ASAFBeGERJgSaqpsQIQRAEQRAnm6jQC6C+mxIjBEE4Y1WMMOZNERIjQsP1VFqe/MioQDyVkb43UaHECEEQBEEQBDGhONGpTSKwxqVe6ItpiZGywiBKwlpihKy0CIIgCII42YhNkpt7Y0imM0ikMoglqfcZQRDZWBUjjPmTSxDiiRFRMaL9e/6UYsycVIgLZ1fw9061wjBKjBAEQRAEQRATBlVVeWKkLYfESH9MGwSUFgRQHCbFCEEQBEEQo0M0acQf6YyK+q4obvnRGtz4w3eQSp9a1dwEQbjDFCPzJhebXp87uQhBvwIASIiJEV0xUloQxJqvvB9/+fclKAr5AZx6hWGUGCEIgiAIgiAmDO39ce7N3ZGLYkS30iorCBqJkdipNTAgCIIgCGL0Ea20AGDF7mYc64igvmsQPXq8QhAEwWCKkfNmlvPXppUXoCgU4FZaon0W6zES8Cnw+RQE/L5TtjCMEiMEQRAEQRATgNa+GPY09o72Zow6tZ2GF/dQrbRKmZVW4tQaGBAEQRAEMfoMWhIjf95Sb/seQRBEV0Qb8yysLuHKD6YeCUqstNJCYoRRrC9nTcxOdCgxQhAEQRAEMQG463eb8E9PvoemnsHR3pRR5URnhP+7P57yPIEgt9JKI5ZM44erDlHSiSAIgiCIk4LVyqa+y4jtqM8IQQyPWDKN57c2oGPAewHVWKcrohV4VRaHMbuyCICYGNGSH7IeIwG/kBghxQhBEARBEAQxHlFVFUfbB5DOqDjU2j/amzOqnBAUIwA8D3rMVlqGx+6qfa348ZuH8YOVB/O7oQRBEARBEBIGHZIfTu8RBOHO89sa8J9/3Ykfrjo02puSN5hipLI4iLlVWkJkYXUJAEMxIusx4vcZaQGWGKEeIwRBEARBEMS4oj+eQlIPcJt7Y6O8NaPLiS5zYsRrA/Y+XTFSVhhAidBjpKF70PQ+QRAEQRDESMKsbPyCzQ2DrLQIwp7nNtXhxe0Njp850jYAAKizjBnGM91RQzHywE2n4YvXLsAdF80EAAQDupVWSuwxoiVJgsI9pmQIiZGd9T14/PWD4/q+FBjtDSAIgiAIgiCGR9dAgv+7may0TH977TPSr/cYKS0ImgYGrX1aoomsKwiCIAiCOBmwxMi8ycV8EpcRS2VkixDEKU9fLIkHX9wNv6Jg6TnTEA74pZ9r7tFi+7a+iWOl1TlgKEYWVpfiq7ecwd8LsebrGdFKiylGjMQI600SiXsf8zy0fC+21fXgrOlluPWcaUP/AaMIKUYIIo809QwinqKJE4IgCOLk0hkxEiONPRNXMRJNpPCRX6zDh3/+Hv7fhhPSiiZmpTW3SvPXbfdspaUrRsTESCKFtn5tf8ZpIoIgCIIgiJPAYEKLSU6fWip5j+YbCEJGbzQJVdUm/Xt1BYWMpl6tiMzrGGGsk0xnuLK9sjic9T7rMZKQNF9nNltA7oqRRCqDPY19AICeQfv9PdahxAhB5IkjbQO48rur8eU/7xjtTSEIgiBOMbqExEhz78RVjGyp7caWE93YXteDr7+0B/dbnrk90QR69cD8wjmTAHhXjPTpipGyQqP5ekYFaju0RAspRgiCIAiCOBkwxUh1WRinTS1BSTiA06Zq/QIoHiEIOZGEMaHvNFHfpKvruyIJU0Py8Up3VBsH+hSgvDCY9X7An22llUxnK0Z48/WEt8TIgZY+nmwZz31JKDFCEHniaPsAVBU42HJqN70lCIIgTj6s4R5gBPsTkeMdmk1WYVCTetdZGq3X6n9Xl4Yxp1JrPNje701B069XWpUWBFEU8kPRxwnHOjQLC1KMEARBEARxMmCJkaKQH3/63OV47f6rMVuPa6j5OkHIGRD6AfbYKEZiyTQ6BAvijgmgGmEFchVFIWlfIqYKSZoUI9q/A5LEiNckx86GXv7vXOy3xhqUGCGIPMEqN8bzDYEgCIIYn3SaFCMxqKrq8OnxC0uMnF6jWUtYq7xYf5G5VcWYUqpJyT0rRvTKsrKCABRFQUlIGxzEkhn9//R8JwiCIAhi5InqFdtFoQCqSsKYOakIhbr/P1lpEUNBVdUJH8sOxMXESEL6meZec8GU13HCWIYlRiqLQ9L3Q7qVljhuYj1GAn4hMaLfY6Iuc5rse3bW9/DXoh5VJmMRSowQRJ5gAcp4lpARBEEQ4xOx+Xo8lTFZa00keGJE99xOZsyJkfouTTEyq7Iop8RIOqOiX39+l+kSdFY1xYgnSTFCEARBEMTIwxQjTCGr/VubviPFCDEUHnllP857aCWOtg+M9qaMGGJipNfGSqvZoqyfUImRInlihClGxB4jKW6lZaQFuJWWw5zm81sbcNY3XsfLO5uwq6GHvx6hxAhBECxAGUikJmylLkEQBDE2sSZCmiZoA/ZaXRGySPfZFr1yAWMioawwkFNiRBwAlBZog4LisN/0mUQ6g0yGnu8EQRAEQQwdVVVxqLWfNz+WMShYaTEK9CSJU9W/qgKH2waQIPtPwsLG452IpzLYeKxrtDdlxIh4SIw0WhIjbRMpMWKjGGGJEZYMAQzFSFBQjPDm6w5Jjt+sPY5EOoMv/Wk7DrcZSTY3lclYhhIjBJEnWGJEVY2JGYIgzKiqincOtU+IygyCGEt0WhMjE7ABeyKV4YoQOystI8j3GYmRgbhrwQKz0QoHfAgHtImHEotiBKA+IwRBEARBDI/ntzXiph+uwS/ePmL7Gd5jRIhFmHrEyUprf4+CpT9dh0dX7M/T1hITBZYoqOuKunxy/DIgTM7b9RixFo9NhHkJlhiZZJsYkVhp6f+WNl93SHKcrhenAdrcJ4MUIwRBICYEKGSnRRByNh7vwl2/24T/78Xdo70pBDGhYAExGzRbZeITgfruKDKqVj05o6IQgFkSDoBXSAb9CiaXaIODZFq1rRpj9MX0/iK6jRYAlBTIEiNU+EAQBEEQxNDZ39wHADjeYT9BHdWLLouC2YoRJyutDn3Od7vg/Z8Le5t6TfY4xMSBxcL13RM4MSI2Xx+U2wo36WOkkK6imAiJEVa4JVrvicibr+s9RnyyHiP285mi9Zb2t7b8eO61TIkRgsgTYoDi5MlHEKcyLBCp7554k7YEMZqwxMji6WUAgKbeiWeldbzdaKwuC/ABIKX3HAn4NOVHRZGW6HAb9PTrA6kyIRlSHMpOjMSozwhBEARBEMOgc0CLSZwssdjEpGilxZuvOyzHwpSGIagCkukMPv7rjfjnn6/DkbaJ24fiVCSdUXmsWz+BFSOiasFWMaKr6s+cpqnP2/rH/5gpLWmkLmL0GMm20gr4s3uMOBV6py39Hc+bWa4tQ4oRgiDEAGU8Z0sJYiRhsvD+mHP1NkEQ3lFVFR36IPtslhiZgIoR1l9k3pRihAIsMWK2yGI9R5hkfEqJtz4jzEqrtEBQjEittOj5ThAEQRDE0GH2p04JDt58XUyM6NXgcYciDdZ6rTOSyNnFojuSQO9gEqmMih+uOpTTssTYRlRSTOTEiJfm62yMdN6sCgATQzFiNFK3SYywcVMq20orILXSsr93sITKxy6dhc9cNQ+fv2Y+AOoxQhAEgMGEcZPpj9OkL0HIYJVR/bHxW1FAEGONaCLNJdRnzdCqdponomKkQ0+MCIqRdEY1NS9NZpiVlva+2GfEiT6mGBGstIoliRFSjBAEQRAEMRzYRKxTrxCWNCkKSXqMOCRUUhljkjNXyyQxVvrH7mbsaezNaXli7CImCbqjyQlbpCgmgGSJEVVVeY+R82ZWAHAfI4wH0pnsJIdISC8YSwlqD5bgEJMpRvP1tG1/RjbuWjytDF//wGJUlxXoy4zf+R1KjBBEnoiRYoQgXGHVTwPxlGszZIIYaR5dsR/X/+Bt9ETlHrTjBWajFQr4sKhaa4g3ERUjPDEyuZgrQgBrI0GzLHxaudaL5Khuw2UHGyCarLRIMUIQBEEQRJ7xphjJttIqCLk3XxcKwlHflVss2Dlgjod/sPKg9HPt/XHc/9x2bDzWmdP3E6OHNUmQ67kxXhBVUjIrrZ5okl93583Sisna+uLjfl5CluQQkVpppVXTewBQFNbuMemMyovurKT5urTlWDIl6nBfGutQYoQg8oTZSmv8ZksJYiRhD8x0Rh3XD09i/BNLpvH7dbU42h7BpuNdo705w4INsKuKQ5iuNyVv7YtxifREoVZPjMydXGwK4lOiYkT/zawy6sI5FQCAzS7HuG9Qe26LVlqlkubrpBghCIIgCGKoZDIqL2ix6zGSyag83pBZaTn2GBHmd+tytEzqjGiV8zMnabHk24fapbHkm/tb8dKOJvxm7fGcvp8YPayJkVzPjfHCgCkxkl341qgXjk0uCWNGRREArXF5/zifv2PJCnF8JMIKxkxWWpJkithf0W5O09q0nSVvx/McKCVGCCJPRAXpGDVfJwg5g8J1QnZaxGiy7UQ3r4QZSXXFc5vqsOzZbSOqNOjSB7KVxSFMKQkj6FeQUSeGnVZ3JIEH/rwDN/9wDW8oP9+SGBGD/KRFMXLp3EoAwPb6biRsKp8AoI8pRgrF5uvGZARr4k6KEYIgCIIghkrPYJJPLNolOMTXiySJEaem7WbFSG6T3x392kQy672gqvLxWkJPltj1cCDGHn0W66yGHG3WxgviPFxfLGWy2wWMsdGMigIUhvwo1dUOY63PiKqquO/Zbfjyn3d4UrO4K0a010WVvcx+y+9T+H3GzgXHui6WTImnMuO2KI8SIwSRJwaFKtLxnC0liJFEVIlMVG9TYnyw9kgH//dIJRD6Y0l8a/le/GNX84iqUpj1QVVJGD6fgnmTiwEAR9oHRmydJ4Md9T247Sfv4oXtjTjY2g9As9GaVByC36fwgFwM8pOWRoILq0tQWRxCLJnBbgevbMNKK7vHiKIY1ZOkGCEIgiAIwoqqqlmTsDI6hX4GdgkO5tWvKEBBQEiMhLTpO+ceI8a/c06M6IU2NWUFfMK4R5L8YBY8VOQ2fjhVFCPWebg+y+/u1lUklcUhAMCUMq0XYVvf2EqM9MVSeGVXM17c3sidAZywqjishJhiRBwz2Szj1oA9bUmMMPstQOtNMh6hxAhB5ImYcBMgxQhByIkKgXwfBdPEKPLeUcMXuWmEEiMrdjfzifSRrKrrEqy0AGBRdSkA4LCeTBivfOlP29HUG8O8ycX49Z0X49nPXoYXv3gFf58F8gmxx4he/RQKaCGuoii4eM4kAMDmWvvkFLPSEnuMMM/cquIQr4ZyqtIkCIIgCOLUI5NRcfvP1+EDP12LjEtypEPo42HXK4S9Xhj0wydMWhYEPfQYEVafa/N1o9AmhHJdKSuzI8qoLDFCRW7jBTYOYadTrkmz8YJ1Hs46/rL2IpxSoiVGxloDdlF54eVYee0xkhR6jKT1f/st9lvFeqIjatNM3ZoYCfl9fExmt8xYhxIjBJEnxMoNSowQhJxBUowQY4DewSR2N/Twv0fKSutvWxv4v9nE+0jAEiOs+mnRVK0B++HW8a0YYTL/P3z6Uty4eCquWDgZFUUh/n5IEuRzKy2fEeJeOk+z03LqM2JYaRmKkWl6v5Z5k4v5ZIRdI0KCIAiCIE5NOiMJ7Kzvwf7mvizLIisdJsWIPKZgCnvRRgvw1mPE2nw9l6bSbNsmF4dRrsdDUsVIhhQj4w2WIFhYrY0R6rsnZvN1Ng/H8gPW89dqHzWlVE+MjDErLVF95kXdI7PFEglKFCPsOg5aFSMhb4oRti5FUYQ+I+OzgIwSIwSRJ6j5OkG4E6UeI8QYYMOxTmRUI6BrHoHESG1HBJtru/nfbgPl4dBpTYwwxUjb+E2MZDIq2JiASbqtBAMSWbj+b+alCwCX6H1GNtd22VZysvuRaKV13sxy/PKTF+Hxj56HsL4uUowQBEEQBCHS2mcoj536mQFmK61EWu7JzxIjhdbESMi9x4iYaxlMpk0KFTeYYmRyaYj3VuuNZsevbGJ0IJ7KKfFCjB7MUurs6eUANBXCRDt2qXSGJxtrygoAZCuerMoKlhhp6R1biaKkMF5p8JDEYkoYv08+xR8KZNsPM5W9VWXCFPP2PUayl2PLkGKEIE4Saw6148EXdo25anPRSmu8ZkoJYqQxK0bG54OTGP+8p/cXuf7MagBAS18s783iRLUIkO1xm0+yrLR0xciRtoFxO+hJZozjEfA7NxIUJyHYwEBszn7W9DIUhfzoi6V4rxIrLHFVKlhpKYqCW86uwZwqUowQBEHkk+beQawTen0RxHimRbBkTbjEk9Z+ATFJXMHGS0VBc2EI6zeSTKumCU6RlCXsy8VOiyVtqorDqCjUYkqZlRZLjKQzqqN6ZbwSTaTwzqF2V1u08QRTjJwxrRQ+RYtnx5pKYriIc3Az9N6AVistdu6yccKZ08oAAFtPdMOJE50RR0vefJMW1PBerLTceowwJb3JSiuTPWYCDCstu2Jvq5UWABS5JFPGOpQYIcYdj7yyD3/aVI81h8ZWMC0GBf2kGCEIKdR8nRgL7GzQmnDfdu50BHwKMirQlufBwZYTWvA8Q7djGopiZFdDDy5/9E386p2jjp+zKkbmVhXD71MwEE+hpW9k+qeMNCkhcA/aVD/JZOG8+bqQTAn4fTh3plYht6+pT/pdLHElWmmJkGKEIAgif3z5zzvw8d9sxP5m+T2ZIMYTrf1GrCVOPMqwKjhk/UJY1bWdYgSwj0dSGfPEqNdeEqqq8m0z9RhxsNICJmah2+OvH8Jdv9uEP22uG+1NyRssQVBVHMa0cm1skmsPmrHOgH7dhPw+rgTpsSiekmnzpP4VC6oAaGNDp7mJz/5+C/71V+tR2xHJ+3bLEAvEvFhpufYY0ccxCcmYyboMT3LYqD9k6yoOOSdTxjqUGCHGFa19MW4NMpK2JLmSTGdMAcJ4vSEQxEhjSiBOwECaGB+wniLzqopRU65JrZvzLKFmKoZZlXpiZAg9Rt7Y34aWvhgee/UA/rK53vZz7JlTqttAhQI+zK0qAjB++4yIiRE7xQjrMSI+fw0rLXOIW12qHeduSeWjqqpSKy0RUowQBEHkj6aemP7/sWVfQhBDobXXu5VWh6XJsyzBYddjhBVpaMs5K0bYxLDXxEh/PMUnTSeXhFGhF4pYK+4BmJQUE7HQjSnL1x3pBKAV1fx27XFblY6Iqqp4fmsDdutFWGMFVgBUXhjEpOKg/trYGovHkmn85t1jONo+tLELGw+VFARQzhVPzj1GZk4qwpyqIqQzKjY59CJsH4gjowKbTpJqROwx4iWBxeyt3FT24jlspzIpCTH1h1uPEeN+VBRyTqaMdSgxQowr1h01VCLDST40dEfx789sx5E8Pa+sElJKjBCEHGq+Tow2iVSGD0qnVRRgul411diTX2UFCxqZikM2sHSjUfCUffDF3XjnULv0cylJXw3WZ+SQjXXUWMdkpeXWSFC00uKycPMyk/TKR1liJJY0ihtKCuT9TAqC2rripBghPPLYY4/hkksuQWlpKaqrq3H77bfj4MGDps9ce+21UBTF9N8XvvAF02fq6upw2223oaioCNXV1fjKV76CVIriTGJ8w8ZOUUm1PEGMN0R1rtvkeaclMSKzorJLjCiKwhuw2ylGWL5k/uRiAECjx+Qj6y9SEg6gIOh37DEiFqT0TbBCt0g8hcNtWuy8s6EHAPCVv+3EI6/s4wkTJ9Yf7cR//nUnvvr8rpHczJxhx6msMMj7QYw1l5PX97bg2//Yj++9dmBIy7Mip+KwcP5axl8ytcMVCyYDAN7TE2EyWMHWLv2cGGnE+0hTj7vlcyrtrBhhxWSqaoxR2b4IZFlpsebr8nuMzEqL2W+N12c6JUaIccXaw8bNamAYN/LlO5ux+mA71rXl5xKIWW4Aw9k2gpjIRKnHCDHKtPbFoKqaqqKqOITpFbpiJM9VqyzYnFSkJUaGonJs7NEqhGZOKkQ6o+KLz2zFnsbsjL4syD9N6DMyHmEBfsCnTRbLCOqNBE2y8JRcMTJJT1B1RbKPg7h8yC+PC8IBUowQufHOO+9g2bJl2LBhA1atWoVkMombbroJkYjZhuFzn/scmpub+X/f+973+HvpdBq33XYbEokE1q1bh9///vd4+umn8Y1vfONk/xyCyCts7CSzESKI8UZLn7mhuhPWHiNOVlqsCluE2WnZ9fZgYcp03cq1K+Kt+TrvL1KixUvlhfZWWhl14lpp7WnsBcv7NHQP4nBrP/bqNqytHuxp3zmsFTHVdZ4cyyWv9AqKkZKwdmwHxtixY716xJ49ucCKk4tDAeH8NZ//sr4aVy7U7LTEImwrLFGxs/7kKIFExUg6o6JZ3yfRRAoPL9+XVSzn1mNE/L3st4hjLRGvPUZEdUqRi8pkrEOJEWLcoKpq3hQjrFrYxQLUM6QYIQh3MpYGfROtwog4+aiqij+sr8Uf1tei2+PAj1XOTS8vgKIomKYPHPNt58GCTaYYGUrzdWY18r07zsUVC6oQSaTx6ac3Zw3MZA3HF07VFCOHx2liRNYrxIqskWBSIu8GjOMgO0/EKiyr0oTBFCPUY4TwymuvvYa7774bZ511Fs477zw8/fTTqKurw9atW02fKyoqQk1NDf+vrKyMv7dy5Urs27cPzzzzDM4//3zceuuteOSRR/Dkk08ikfB2zyOIsYaqqohyxQjFgsT4JycrLb2nHYs3ZAmOQRvFCACuGLFLKrLVTy1jFqLe4k82PzK5RLPgKndovi7anU40B4CdFkXAL4Q+f172JbPfiiTSY2ZOSFVVU2KktIApAsbWsWP71+s5a2WAWwsHDCs4lx4jALBkvpYYOdDSn2V1x2DJgAMtfSdlLGDtVcT6jNz/3A787r3juPcZcyxpFMk592UEjORtSpLgAAzFiFuPEZ+iZC0zXhUjcr8AghiDHOuI8EwpYC/t8gK74WVGKDFCihGCyCaWMl8nEy2QJk4+exr78I2/7wUAfPuV/fjvW8/AZ66a57gM6yXCGg9O13uMNPXG8I2/70EknsbjHz3XVqXgFeb1yhMjOSYCMxmVb+vcycX45acuwj//fB2OtA3gxe2N+ML7Fgjryg7yF1VripHDrf1QVXXYv+dkwy2xbAJ8wFB3yJqvZ1tp6YoR2QBf2H92+4kpRigxQgyV3l6tyrCystL0+h//+Ec888wzqKmpwQc/+EF8/etfR1GR1iNo/fr1OOecczB16lT++Ztvvhn33nsv9u7diwsuuCBrPfF4HPG4MbDv69MqXZPJJJLJk//cZescjXUT+SHfxzCRyvBJpv7BBJ0bo8DJvC7/vqMJf9rcgB//67l8sn6iIRasDMbt77WDiTQi+sTh9PJCnOiKYmAwnvX5AX2MFA4oWe+xPiP9kuWSyaTRY6REmxjuGsj+nPQ36DFnZVEQyWQSJSEtHuqJZl+jybQRC/VEvH3/eGFHXTcAwKdoc0Uv72ji73X2xxx/a080iT1NhqKguSeCOZVFedkup2u2sWcQD/x1N+66fDaWnlOT9X4knuL33KIAUKQX+/RKju1o0jWgXUfdQ9yu3qgW+xQF/SgJ+aTfldStSBWo/PWysA9n1JTiQEs/3j3Yig+cO830vaqq8rFCMq1id30Xzp9VkfP2WXE6pvGE+bXa9n4sqCrAyn2tALQEhLgcL/JS0/J9J6i8orEECv1Aks3NZDKmZQp0RX7/oPxexvq0IGOsq5AvM3bOqVy2gxIjxLhhncXTcTgZeOahmbfEiB7glBUE0BdLIZlWEU+l+UQKQRDZFQQTTXpNnHzYQNSnaNUv//fV/bhp8VTMchiEMBUGsxhg/19zqJ3bJH31ltOHPXi39hjJVTHS1h9HMq3C71NQXRpGwO/DlQuqcKRtIOv5x5IwYjJg3uRiKIqWkOmMJHgF4HjBi2KEWWmJiRGZegZwVoyw6k47+Tkg9BghKy1iCGQyGdx///248sorcfbZZ/PXP/7xj2POnDmYPn06du3ahf/+7//GwYMH8cILLwAAWlpaTEkRAPzvlpYW6boee+wxPPTQQ1mvr1y5kidcRoNVq1aN2rqJ/JCvYxhNAWwaYvf+Q1gRGZqfPDF8TsZ1+dPdfpwYUPDzF97CZdV5GnyPIRJpoGfQmFZbt3ET+g5l/05VBboTABBAQFHhS0YAKFi3cQsiR8yf33/cB8CHprparFhxzLy+QT8ABe+u24jO/dnrSWW0+YfGw3sB+NHaM4AVK1a4/o4N9QoAPyKdLVixYgWaItq2tvVEspY/pm8fAGzesRulbWOrn8Zw2HBY279nVWSwu9tn6qey+9AxrEgfsV12Z6cCVTXmf15e+TYWlNl+fEjIrtm1LQq21fnR290N1G/Ler87DgAB+BUVq1e9jtZG7fjtOXAEK+KH8ruBw+CAfl71x1JY/o8VcBgCSNncrJ3DfV1tOLCrFYAfje3dpvP3iL6O2uPHsGKFcSynwIcD8GH5ezvha9hu+l5tmGFc48+tXI+mafm7l8mO6aFe7bcw3tqyB6s2Aey6qy5QTb+ru0c7b7dt2YLoEfm2+RQ/MqqC11e+gYow0NevLbN50wZ0CY/hI+3auk80tUjvHQNRbbkN699Dg9bKCI312n7df9j5GjmZRKPuTesZlBghxg1bTmjZ+xkVhWjsGRyTVlqTS8O8KjgSp8QIMb5p6Y3hJ6sP4+4r5uI03ZbHiee3NuBEVxRfvmGRtOraKvnuH2PyXWL8wRppX7VoCjIZFWuPdOCHbxzCE/9yvu0yzDKL9RZhyhFxwtvNBsELTALNlArxVAaxZBoFQW/PBWb5VVNWwJvi8WbjlodXOp0tny4I+jG1tAAtfTHUd0XHcWLEXjHC9od4vOwSKuw4yOT5KYnfsBVSjBDDYdmyZdizZw/Wrl1rev3zn/88//c555yDadOm4frrr8fRo0exYMEC69d44sEHH8QDDzzA/+7r68OsWbNw0003mWy6ThbJZBKrVq3CjTfeiGAweNLXTwyffB/Dlr4YsHkNAGD67LlYuvSMYX8nkRsn87p8aNdbAJKYe9piLL1izoiuazQ40RUFNhn39vPOvxA3n2VOaNd2RvDRX23CginFAHowpawQM6YU43h/Jxafcx6Wnj/d9Pk1L+4BWppwzpmnYen75pve+39Nm9AQ6cHZ51+IWyzrSSaTSG5YDQC45dol+N2hTRhM+3DrrTe5Koc3Ld8PNNTjgsULsfT6hWjpi+G7u9ZgMJO9/Lq/7wVaGwEAM+YuwtIbFnrbWWOczkgCXevfBgB8+UMX49O/NycZSqtqsHTp+bbLb1q+H0A9/3vh2Rfi1rOzFRxDwemaPfbWUeD4UUR9hVi69JqsZQ+09APb1qOiKIzbbrsWDWuO443Gw5g8fSaWLj076/OjxTPNm4Eubc7vivddj6ocxy7H3z4G1B7BormzcPPls/GzfeuR8oWxdOm1/DObX9kPtNTjjEXaec5oXXcC7756EKFJ07B06Xmm7x1MpIGNb/K/0+UzsXTpOUP4hWacjmnpkQ5gn3H+NWXKcaQ9AkAb54QKi7B06dX8/Z8dfQ+IRrDk8ku5NZiV/73lDQwmM7j62msxa1IRHj/wLhAbxFVXXoELBAVMcF8bnjmyA4Wlk7B06WVZ3/PI7reBRALvu/pqnF6jzRE1rj2O1xsOY3LNjLzsm3zAFNNeoMQIMW7o0SczFk0tQWPP4LDsqjryrBhhEyUl4QAKg34MJjVPSVahSowsPdEEVBVc8kvkh+e3NeDZjXXwKwoeud05aEqlM/g/L+5GPJXB7edPx/wpJVmfIcUIkW+YX+6koiA+feU8rD3SwW2m7JJ5zJKRW2lVZCtDUnl4OKSF5uuKolUK9sdSOSdGZuiKFsBIEiQtjT2TGbniYXZlEVr6YqjriuKC2ZOy1tHcO4gpJWHH5MNowZUfDioOlsgQjxfbN9Ym6lwxEk1kWYulPKhTwqQYIYbIfffdh1deeQVr1qzBzJkzHT972WXaAPTIkSNYsGABampqsGnTJtNnWls1G4WaGvlkSzgcRjicPZkQDAZHNTEx2usnhk++jmFKNZR78bRK58UoMtLXZSSeQldEi9WiycyEPNadEfN4JqP4sn7nmiPd6BlMYmtdDwCtj0eh3qw4kVGyPh/T/bBKCkJZ77HlkhlkvZfOqMioWiwzs1Ibi6UyKuIZBaUFzvu+W4+pq8sKEQwGMaXMx78zofpQIjSCV2HESxPpuO5v0Sbl508pxhULqxH0K6ZipN7BlONvXX+8C4A2JzQQT6Erav95VVXR3h9HdY4Kddk126dbzLf0xaAqfoQC5hg4ktR+Q3mRtmy5XiwUiTsfu65IAqUFAcfCoXzSK6jrB5IqanI8rwb1GL2sMITyIm2/DibTpt+Y0c/dUDBgen3eFH2CvyeWfT1aaqJ2N/Xl9ZyXHVNFMY8X9zX3AwAml4TQMZBAyvLsZKdp2OGeHvT7MJjMAIofwWCQj1ULQuZlpupjz46BhPS72HJhYbnSQi3uHEyNnftBLtsx9kbCBGEDa85XXapddHbNgNzIZFR0RfLcYySh3YQLg37eeIgmfU8OyXQGN/9oDW760RpTA11i+LBme16aaB3viPAJw5bemPQz7Bpmdj/9sRRUNX8yVMKZtw62Yd3RDvcPjiNYwryiMIjzZlXg5rOmQlWBX7591HYZq2KkvDCY1dzSmngYClyFEFBQoj8X+nLoq9PYrSdGJhmJkZA/2zoKMJII1ol9ZinW0J3dWH5nfQ+WPLYa//7/tma9NxZg9mBOSRtrjxFtQgDS5SqKgvwz1n4vSRv7LRFSjBC5oqoq7rvvPrz44otYvXo15s1z7n8EADt27AAATJum+VsvWbIEu3fvRltbG//MqlWrUFZWhsWLF4/IdhPESCMqiMdro1bCG/XdhpVJ3+DEHBu39JnHPTLV8aGWftPfVSUho4n6UJuvS5YT111eGOT9SHo8NLNmhaNVJdqkeUHQLyxvtiEVC1Im0pzH7katP8h5MytQEPTjjBpNZXnxHK24SNanjnG8I4Jj7RH4FODGxZqSp92mkTcA/GrNMVz66Jt4aPleZIY5KcWOr6oahVUizM63TE+OlfDm6/bHrrUvhssffRM3/2gNHzuNNCyJav23V5ijTHE4wMdEKYvKns0X+X3WMZM23mJNzs3LmL/jaHtkxHulsrFNoVBQd+XCKvz6zou1bcqY7zMsWeE4bgqYnQdkPSoBYNYkbfzY3DsoHROnJcsV6/eq8fpMp8QIMW6I6JnwKSwxMsTm693RBJ84YRUVw4VN+BaG/CgJazeFoSZuiNyo7YigtS+O9v64NEAkhg4LlqwPXhkHW42Av61fHgSy41Ndqk1IpzMqHbOTRF8sic/9fgs++/stEyqB2DOoDVBY5dMnL9csGrbpjRNlGIkRLQBWFAX/cd0i3HbuNJTqA4X8JEYMFQcbiOTSZ6TJUTFiBOhiQ8CApVH5bD0xUteZHeSv1ft2vXmgTfr+aJO0SfaIsCQrmwgQj5t1uYKgn08wWPuM8B4t1GOEyCPLli3DM888g2effRalpaVoaWlBS0sLBge1a/vo0aN45JFHsHXrVtTW1uLll1/GnXfeiWuuuQbnnnsuAOCmm27C4sWL8alPfQo7d+7E66+/jq997WtYtmyZVBVCEOOBwaQxRhqvkyiEN+q7jAnVXIpDxhNtfeZxjyyGPKCPk+6+Yi7On1WBf714Fp/wlBVcsLmFonC2wUuhHstYLYoBrd8eIxTwCTai9hP6DGY1Llqvlhdq8as1sZIxJUYmznFligXWZ/Deaxfg0rmVuPdazdrSmiAS+cmbhwEA15w2RbdMA9ptxsQAcEg/J556rxYPvrCbTzYPBfH41ksm9tnvYsezJKz9v98hMXKiM4pEOoNj7RF89JfrcaIzMuTt84Kqqqb96+WctTKgJ+lKwobKJZHOmAoxjTGTPBnQO5g0KVcAQ5mvKJpiA9D2z0jCzoczp5XihjOn4qMXzcRv77oEZfoxtCZgeZGcB6U9u0fZWQlPKQ0jHPAho0KaFEtLxp2sODwST6GpZxA763u8/dAxAiVGiHGDdVJ1qFZancKESL56jLCARlSMDMfqi/DO4bYB/u982N8QBqwCyFolIeNgi5gYkStGWABfVRICe2afjCqjTEbFtrruU7rSu6M/jlRGRTSRzgr2xjPdgmIEABZP0yq7ajuj0ntwJJ7iaoFp5YZ0/d5rF+DJj1/IExheznk30mkjaGRBrFWp4ESjJYEDZAe0AEwDqWCWYsS++okNlgHgqXXHPW9X50Ach1v73T+YA/2xJHY39JoHLtxKyz5UtSaKxGeA1UoLMH6zteLPSMLYr6vAYQKDIGT84he/QG9vL6699lpMmzaN//fnP/8ZABAKhfDGG2/gpptuwhlnnIH//M//xB133IHly5fz7/D7/XjllVfg9/uxZMkSfPKTn8Sdd96Jhx9+eLR+FkEMG6a01/5N99SJjBh/5FIcMp6wKkasiZFMRuVx0ycvn42Xll2JW8+Z5pjgYK8VSuxXnRIqrHhDUbQJUqaWlfVXs9LRzxIjRnzIlreOHSaqYiRtmTRfes40/OULS3DW9HIAWoJI5nZwqLUfL+3Qeq78542n8/kqu2JBcV0A8Oct9Vi1r2XI2y0eX1nMn50Y0eerHJJaYiFdY88gvvny3iFvnxcG4inTeeWUhLL/Dt3eviBgGgeI+9pOWVEcDqBKt921JpfEMQlT48sSUPkkyeyqAn785q6L8f2PnoeCoF9Qy1v6TdqoP0RY0RhLoNqpZxRF4b9TqqBh6/KLihHtnIom0rjrd5tw+8/fO2lKo3xAiRFi3MCkcdxKa4iJhw7hAZU3Ky0hMVIiZEuJkedwq5AYyVemiwBgnMMJD9XzB8TESJ88CIwKsvASbjk38oOkv21rwD//fB2eWHVoxNc1VhEHNF4GR+OFXv23TCrWAv2qkjBq9Cqv/c3ZDdeae7UArbQgIPVa5rJrDyopN0R5cpmuRMllUkBmpRXksnBj+8RBhDWwne0Y1Brf8dctDZ6vxbuf2oxbfvyurWXeUPjq33bhgz9bi426NzMg9E1xVIxYKp9ExYhkYMD6jGRZQnjpMRIgxQiRG6qqSv+7++67AQCzZs3CO++8g87OTsRiMRw+fBjf+973shqkz5kzBytWrEA0GkV7ezsef/xxBALUJpIYv4hqYVLYT2zEycOJNIEu4mal1dA9iGgijVDAh7lVxfz1AgdLLDbpae0VIS4XS2bHI2zd4YAPiqLYxj1WxMKhqULPi4pCtrxFMSIkB/rjE2dcwWJjazzNEkSpjCpVWfxg5UGoKnDr2TU4Z2Y5dzhxUoxYCzr3NXlvFG1FVEKL9nWMPktipNSDlVa+tm/riW78XU8aOWE9x3IZr+6o78GK3c0Y0M9F0UoLMCcR7BQjADCTWxDLEyMBv8KVJbL9nE/SNuMgo7+iRTGSUaWfly2bTBkWxIC8CG2WPv4UVX/GtuljXKFfY5HumtPQPYjDbQNQVefE4FiDEiPEuIFNqrIHTTSRHpIfY4fw4MjX9AarfCoQJnwHJmjwN9Y43GZMyJNiJL9wKy0PiRGzYsTGSosnRoxJ6Vwq6IfK0XYtebZqX+uIr2usIiZGhlKBM1ZhVlps4AYAi6drk4qyAL6pRxu8Ti8vzHoPMALGRCp/zdcDfkVQjAzFSssYoAYlVUIpk2JEbqUl84gVv2MgnsJftjR42q7Dbf1IZ1Qc6xhw/7AHookU3jyg9U8QK4tSHlQc1p4rLImrKPKKqUn6BIHVtzjlMDBgOE1EEARBEN6JCskQUoxMbMTEyES10mrVC0WYXae1oOxAixaPLpxSYoppnHqFWJULIk4JFVa8warKuZVWxDn2tyscKtcTAizeZojFiBMp4cUOnXW/FwT9/Hj1WGLIvlgSr+/VxpgP3HgaAHhKjDBlObPMrZf0A/SKm5UWG2+XFWrzVF7mq9g5yLavrT8+JNX0l/60Hf/ruR2uVlxW6yyvVlqqquJzf9iCL/5xG7bV9QAASsPmhvHiNWmnkgDsC8rEhJlT0Vk+SdpYYwX52Ec1qZfSgoWzHSGeVNGWS0qUHwzn4jpZj5HsZJus39JYhRIjxLhAVVWh+boxSTSUKiNRMZIvgcEgWWmNGkcEK63heHMS2XArLZf9GomnTA9NOystsRcPq1Q5GcE0C2CPd0TGlaQzn4iJkS6XwdF4glUXsYEbAJzlmBgxN163woLJfChGkkIQbfQY8Xa+9w4meUWaq5WW8CCzBvlOHrHWhOfaw+2u2zWYSPPEQL7Oo/eOdEp7hLDtc+r7IfoHa8sYCQ5FkShGmKWEZdsTuShGyEqLIAhiWIiTa9RjZGJjar7ukhj5+dtH8Nct9SO9SVm098fxrZf3YpOgWs0FphhhE4nWyUDWS+L0mlLT64UhLa6ISa4BO+UC4K35OotZvFppNeqFQ2JfO8CwqrVW84tj7omVGNH3uyQenMT3pTmGZMldnwIsmqodY+Zw0jEQt52fYOPr+Xo/kqFaM6XSGdMxkFX4Z1lp6ePwSCLtun2TS8M8kdKQY/ImnVHRpCfdZE3hRaznqDUBZceJzihPQLHzvzgcMNkLpyQWxLIEgp1KQuzFwWyKZfs5n9hZfol/ywrl/A5FXtZxk+O+qJQrY8TCdHE5lhgWyUfPzpMFJUaIcUE8leG2VxXFQR4kDKUBe2ck/1Zash4jQ20OT3gnpTcEY1BiJL+w5J7bQ+2Qpd+AnWIkql8nRUE/nyiu64zgkVf2obZj5Bq6if0E3tMbTp9qmBUjE6dir8fSYwQw+ozsk1hpNelVfdMqnBUjw7Xly2RUsCKeoM/HByJeqyWZjVZlcQhFIcMyJ2BRSABGAgbIDmydPGJZAD2nSnv/mIdrUBwM5isxslpXiwDmyYSkoLixIxhgknC98sklwcEVI1lWWt57jJCVFkEQxPAQVSKUGJm4qKpqbr7uUBzS1h/D9147iK+9tEfaw2GkaO4dxL/+z3o8va4WPxyi5S6Lh1jvOuu4idkNZyVGhqgYcUqosAlPZsHltfl6s6SvHWAkVqxWsGnRSism77sxHuGTy5LimgqbfZmSTGBXFoegKNpck128zJIwzF5tqAqEHsuxkX1PP29Kbu4xAtgXGosFSjN5wiC3bewdTPLxUMeA8zlodTTwqhjZ2dCT9VpJOABFUfj1I7XSksT8s22SAXx84VNOWo+RlLBOkZApMeIt4cPgapOU1pDeU2LEZvwIWHqMhLMtXkkxQhB5Rgyai0MBFOsZyaGoMjr6BSutfClGWIO0kB8lur8eeeaOPCe6omZpJCVG8kqEW2k571dmo8WqjNpteowMCj1GmGLke68dxG/XHseP3hi5/h89lBjhvTgA74HmWCeZzvBngNhInFlpHWzpzxqc8oFfuY1iRJJ4GArWoJFJ1732GLFTtsga7onN9mQqCTspNPuNp+vVbfVdUcRTzhNU4rnT6TLA8YKqqnj7oJAYEQcubEDmkKyw+uyy/WK3TKWNpYQXdQqrvkykM5SEJwiCGAaDgiXhII2XJiwdAwnTpL/TBHpULyiMpzLSHg5uvLanGXf9blNOdrH9sST+9VcbeJGdneLdDRZPsYlBa1NkO8WIkyWWzKqG4ZRQYXFcrooRFndOs8TH5R4UI8m0OmGKRpwaWLN+htZ9IZvADvh9vJG33XnFjvG8ycX654ZmVcXO+YKgdsx7B5OmgjhtXSymVvTPGk287ey0xHPQLmHgRpdQkNw54NxvgsXmbD96LeTbWd8LwOibAhiJH9m4zksyIKuYTBhfsB4jDd2Drrb+tR0RfPzXG/CuB1W+FbsEjlkJI1OMeOnNqJrGqgFpjxF5YkS89sUEYnE4WzHipU/tWIESI8S4gE3QhgM++H3KsBqcj4RihAUmBUE/z8R7Tdocax/Aq7ubJ0ylxclEbLwOGJUXxPBRVdWzYoRVQl29aDIAoD+eknpGswRngWilpa9jzzAazrkhDgbeO9p5Sl5rJiutCZIYEX9TmaAYmTWpCCXhABLpDO8vw2DnQmVxWPqdsh4eQyFlUXGU5dhTh9ky1JSZK/ekihGbiiIGH8xYZeH6b5xWXoDSggAyqiZHd0IcpORDMbK/uR/NQhN3sbIoZeOtK2LtMWId+FlhihFrcpCpU5ySMGwCw7qdBEEQRG6IyZBoMn1KxmWnAmxykTUAz6iadY8McQLNq4UOI5NR8dDyfXjnUDte39viebk1hzpQ1xXlE8pDiWtUVeUxI/PYF2OERMpwNzgjy0qL9S5zUozYN1+XW2npTdstPUbcEkbMSsuqGClny1t6jFgLRCZK/xinxtxMMWI9T+yWmaLbv9v1GWH7sKokJFhV5a5CYGObmrICnoyxm8wW49wSlwbs4jI8YeAyTrAi9vRzK6jq0n/HbF3J7nW8uktXjHz1ljMwo6IQlcUhVJeF+bYD8nGTLIFgl/QQkw7Tygvg9ylIpDNodUmmrtrXinVHO/Hc5twtAu3GQeJ2y3qnOCtGjP0hXsMypT2zDOuOJtEvXN/iGFfclpDfl7Xu8TReosQIMS5gE6qsEqNoGImRduGmPDI9RnQ1i8cJsK/8bRfu/eM2/H5dbX425hTiSJvZwulkKUaS6QweXbEfL2731qx4PBJPZXig7zZJzBQjF86ZxKuYZNUx7DouCpob+wFagnCkGnCKg4H2/jgOt+WnafR4QpRZ5zrgHKuwSfqygoApMPP5FJw5TRt8WvuMuE2cs9fdeoy4TeJYq3BY4sZawWUHG0Sx5o3G9mUH+G4JBDv5O7PgCvh9WDClBABw1OXayLeV1luCWgSQW4Q52Vux99hEALPUsktwGE1Ibar9PPQYAeSTGARBEIQ3xAldVQXvXUVMLNgk78LqEj5Rb6ecFSfQclU2bznRzYss3Ox6RA7qTdGvXKAVdvUMJnNWhIqfLwpnN18/1jGAVEZFaUEANWVmNYah/Mg+/x0VI3pCRTZuYoqRkJ7sYSoHt33KFCNee4xYx9wTpc8Imwz3S+JI1mPEmmSys2N1a8CeEpJfs2yKmOzojiRwy4/W4LEV+7nSoqIoxL/HmmCRJQNYMsbu2OVbMdLhohhh+3W+rqDxov5KpjPY06QpRq5YUIUVX7oabz7wPp48dFLay8ZN0yr0pEcqY7IGF8cJAb+PXydux4vNfXh1DBCxuwcoiiL8Lm27MhmVF3w7K0a09xLpjGnMJVumtCDIz3nxd4pDZHEfKoqS1WeEeowQRJ5hTZvZxTacBueijC/vPUZCvpzVLMd1X/fvvnYw5yz8WOZ/Pbcd//zz90Z0Ask6wX2y7E1e39uC/1lzDN/5x/6Tsr7RQLy23CaJ2XE4fWopr9CQ9RkZFK5jUe4KaNfiQUuvknygqiqvpDltqjb5eyraaYkT8hPFSosFzBWCjRbjrOnlAIC91sSIi9USq8xzSgYebu3Hxd9+A/+z5qjtZ8SG6JpiJDcrLTZ4mFJi/m1G4sabVy5gb6VlDOQU3vjRqrCxIlpQuQ1wvLC9rgeAMXCRKUbskljae+aBgZFMsVOMaAG+XY8RJ8VIQKiEmiiWEQRBEKOBtdI9SnZaExI2rp1dWWRYitooC8QJtFyVzX/f0cj/nUtswsYdl82vBKAl6XKx4gLM8Ribp0gKMQKbFJ9RUZhld8omb2W9QozGy/ZWWrIxNoujWFxVYVMQYqW517nHiLWwx2oh5LUgdCwQiadsJ2ydeowY/VrkNlXWyWXWgN2u96Zo28WafnvtM7JyXwsOtPTjT5vq+LhuUlHQ1grKUH/IEiNJxFPprPuwqEBg6oG6HBuOd5rGDc7XFtuv83hixL13zaHWfsSSGZQWBDCvqhjlRUGuDgfkSnuncVPQ7+N2cmISiDdf18eJxv5wPl4xPVHp1TFAJO1QzMfHg/r4Rez5I1OZGcsZvTRNihE31wHTvrBPqFj7jJBihCDyTFToTQBgyH08VFU1BUx57zES9Atenu6BVTyV5lW3g8k0/vv5XRNCTh5LpvH3HU3YVteDDcc6PS/XE03gF28fRWufN49Xq5XWyVKM/G2rphTpjCQmrNe8mNhz6jHSG03ya2pBdQkPAmXHkCurQn6TYmRhtZawsFb354O+WIofo6sWTgHgbhc0EZmIzdfZ72DVLCJMJWEdILs155YpMqys2t+KzkgCL+9ssv0Mm6BXFE3BUpZj83WeGLFRjJgSCC4qmFk2VV5GXw1BMdLu3IC9O89WWmwgzgYYcosw+1A1y0orbR64WGF2HtYeIzyh4lBlBQiTGKQYIQiCGDLWhuvUgH1iwuKOWZOKuKWoXXW6GNfkkpxIpjNYsbuZ/51L/zOmeF88rZz30si1eEiMW4qYlZbwGvtdouqU4dhjxMHux6nHCE+M6Our9GCllcmoaNIVN9YeIxWFbPmJoRhp6hnExd9+A59+erN0zsVJTWDXfJ0nHbKstLwqRnJv6P3eEW1+pS+W4rH7pKIQZttM2LOCL78QHzMrrf5YCh/4yVq8//G3LeMLIznHJsgbuqI5zVWJ8bZoZy+DnaNz9cRIKqO69hva1aCpRc6dWQ6f5JjJxnVuTcpnS2zDrOPH2R6PFxsv9A9BMWIcs+zt5Ip5fbtMfT+cCsoCxv4w9cO0cx2Q/E6n3pZsrpZ9HSlGCCLPsElaFnAwD8+BeG6BdDSRNsm1R6LHCH8IeqhYYQ/KgE9BQdCH9cc6sVO/wY9F3BrzMtqE5tvrjnpPjPxh/Ql897UDePKtI54+f6JTCwTYzfxkJCla+2JYc0hroDWUyqLxghjgJh0UI0c7tORUTVkBSsIBVOt+qm2SBuxigpM1lb58fiVuOHMqAGBfc/7PfXZ8ikLGtTlegvd8IjZfnyg9Rpg9WLlEMSJWxIiIsnUZRgWO/TnPBtLH2iO2g4O0pbKI9xgZ9HbusaqqySXyxIhJMeIQOANG48yo5XmZFAY8LDFyTFeM2P3+fFtptegD8TlV2iAobjMgsyNLMeLSsL1SGNRmJPvQSTECGBMbpBghCIIYOtbksmyC91Qimc5gS22X53HWeKGR2TNNKuRKcTvlrKjUdVM3iKw93GEq2vCqGBlMpHFCn+w7vaaU92bIJbECmONMrhiRFHmEJIkRpwSH0+RtQcghMZI2J2KYyiGSSNtWb3dGEkikMlAUoMaSGCkMad8Ts5yb1jF3/zjpMbLhWCcGk2m8e7gDb+5vy3rfycKs0qb5Op/AtsSrU0qc54SYIsAvJB7quqLoiSb4WEOGqqqm+ZVtJ7oBaIkblsiKxOXHSzyfSvXq/hOdERxuG0BrX9w0ryH2uZmp997oj6dyKrDrzEFpzsYY08oLeN8fN/vnnfU9AIDzZlZI35eNm5wSDoBxzQxIikRZQmKmpDH53qberN/I5h2HphixH7Naxz8pD+oPACYLLtGK2ZrgYMgSQE6qqo9ePAvnzCjHVYu0YtTxNF6ixAgxLmAPfta/Y6jN1603q3yFn2KPkSklRqMtt4x6qz55XFNewP1N2cNtrLFybwvO+sbreG5TnetnWRUwoAWsXmGWTAccggERFvwV6YHlyUiMvLi90ZRQy8fk4FhEDAaYb78M1pNgQbU2sTnFQTY8KCRGlp4zDY/cfjZ+/G8XYPH0MgDZtkf5oJurCkLGoGycBO/5xKwYmRjnLLfSKsxWjAQtlTQMY+JcHgAGJF60VthgJZpI8ybpVqzJCjcLCSssaT45SzHiIAm3TfYY+0J8JqWEJMICbqUVwdPvHceir72KN/a1Zn2XOBiyJhdyJZZM8wETC7zNvVMMRYsdxm9j/ZCcFUGs2i+jWpK/HnqMAKQYIQiCyAfW3ginumLkmQ0n8JFfrsev3jk22puSV5r0ht4zKgpdlbPi8z+XOHWlHquwOMZrYuNwWz9UFagqDmFKaZjb7+Q6rhMVwixGEBMQ8ZRDYiRkb6Xl2GOExyLZk45xi5VWaUGAV2/b7VfWX2RqaUFWgQifgLVMcFon2sdL0ZmYcHh85cGsODbjUJTjrhgx7ztmL832rxVxYpopp493RPAvv1qPW3+8hheAWjncNmCa09rVqBUWTioKSq2jxL/F38UUI/ubjX2SkIwv/D4FBUE/d4XIpc+ISTHiZqWlJ0EqikKCbZnzMmzu4NyZ5dL3+bhJOH/TLipx3odDVqzlsyhG9H1xpK0fH/zpWnzuD1tM3xVPMiutIShGHLYzZLXSEsatTj1G2Hcl0hlbCzgR1oy+vts4h9MO96YvvG8Blv/HVfxcsY7DxzKUGCHGBSzrXRjUFSNDToxoN1d2Ieetxwif8A1gcql2I48lM649UNr0SbWpZQW4YHYFAGC7nvkea6w72olURsXfd9jbxzDEycJ9zX2eg8w6PQA45uJzD2jVEmzyMqwHiCNtpaWqKv66pd70WudETYzEvPUYOab3yJk/Was4N3qM2DdfLwwFEPT78KnL52BqWQEWT9MSIwea+/Oe3DIa0gX5oGy8VDXlE3OPEXfP1vEAm6SvkFhpyRII2t/O/TiYDF485zMZFT958zDePtiGZDpj6sNxtE0+aLEOGNm5l0hlPE2qGz1GbJqvywJ8m0l9cTAuJnzEAdnsqiL4fQoG4ik89uoBqCrwJ0kSXLyXZ1RDtTMUmKosHPDxhKo4CEmm7QenDCYJT3HFiLPyIxTw8Qo5UTnF1+WQhGHbClBihCAIYjhkW2mNj0nVkWJLrVYUt6dx7LoG5IqqqqaG3m7K2bip+br32KJ3UHuWXzpP6xPiZtfDYEV4p00tBWBYbeaqqhYtPEOWYg3AiGtkcYmTYsSp6KXQoTeJYd2lW9r4FD6hX9sZxV+31GfFMKygcVqFWS0CCAVDlvEZi3NZDD5eis7EfpYHWvrximDDBhjxv8+hx0iWrZiN7Rnvd9jYl5UMBswTzGyi/XDbAA61DiCjGn1oraw71mX6mx3zScUhfrysinnZZDYrNN7fbBQmpkzjBPPEvF3/EifEeZJoIruPiQhL3FUWhWyTUFbYXFuVZbzEkBXKufVmZOMm8zLyfcGakq8+0IaMCjR0m5NgTGnldfwnknYYswYt22jq+2Gj/hCXS6ZUT2p5VlQqHjc3KzLA2IdOxbVjDUqMEOMCdjEyxchQm6+zySaWxcy3lVZhyIeiUIA/aOw8JRmtPDESxoWzJwEYu4oRNtG9vb7btZFSc695UnzdUW+qkVrdy7FjIGGy/pEhHjs2WTXSipHGnkEcbY8g6FdwRo0WSE9UxYjYv8epep4rRvRKLWalJTv32XXCpOaMeZOLURD0YTCZRq1NdcxQYQFVZbGhGBmJqqY9jb249cfv4q0D2bLs0SaeSpsGXemM6lnSa+3LNJboGbRvvh4SPFRFDBWCW48R45zf19yHJ1Ydwv1/3oHDrQOm9451yJO4KUEeDwAloQBYnOo2eIwmUnzSyKoY4c3hJZJwuwBV9LUWg/ykMDAIB/x8UMYmJ9472pEVxFurDbs8TkDI4APx8gK+jUnJIMQpYM/uMeKsCAIgrQr1shxgJOHHkzScIAhirJFlpXWKK0bYZG0uE45jna5Igj8rp5aHhRjcXTGSS58PFgNNLSvg6/UyHjykJ0ZO18dzzEqra4hWWgG/Ikw6Cj1GmJWWQ2IklVFNv19VVceqbKZMiXroMQIYyYsvPLMVX/nbLrxsKXJs1JU91sbrgFAwZImnWbPn8kLn3jFjDaYYed9pmtXPnzebi4CcJn0n2fSRtVP3zK0qwvTyAiTSGWyuNSczzOsyrKpE7Pbp+qPad82wHK9JRSFpgZe4jWJMzRQjx4Wxt7xJubWvhvcG7NZ5EjvVSDyVRkR/DkwqCvF97WbblbQkb6zIEkVO1xYgJEZExYgliTBH3xctfTF0DsR5zxdrsjIuqLpyTR5aVSoi7DX2+9lv8um9Le0IcWuxjKMqjSEbF/PlHMZMRpJ4/DzbKTFCjAtsm6/nmBip1TPvLMs7Ej1GAPdmW4zWfpaoKcC5syqgKNrke5vH5uMnE2b7FUtmsNuloon5xrP7LHtYONETTZiq2o/aTDgyxAc386EcacVIM29MV8jPoYmaGBGDMad+C6x6foHeQJ0lHeU9RrTvZAMBht+n4IwaTTWS7wbs3VFDlls2glZaL25vxP7mPvx9R2Pev3u4sOtKk/nrnq0eB52/WnMMF3/7DbxqqagaC3DFiIOVlrVShQ8MJJYGAKQSdPac6YkmswZQLDFoxVrp5/MpXKlg56/N6OjXjk1B0IdiSxIxFMjePicPWsA8CDIH+eZkwHy92aG2Hh9iyQzWHzPfu61VnLl6cYswZWFNeYG8OosPQtwDdm6l5bIvALmtWVIyYJRBihGCIIjhw8ZNrGAgMkETI6qq4ndrj5uag1uJp9K8Mryhe3DEFb0nOiP4zj/28eK8kYLZaE0pDSMc8AtWWl6ar3uP01ksU11aAEXRxvZeEissGcUK3VjRhBcngA3HOvH46weRSGV43BLwKbxYw1SE4mClVRAyXrMWMDGkNjpCQaA1CRTnihHju5nSgY1ZrT0vRGWPFRYXZVTzdhmKEe27x2Ji5PmtDfjNu8e4PVZvNMnH8h++YAYAs0MC4Gxhxn6r1rM2+3hZY0hFUXDFQs0q/T1JkaidVRVDtk/TKrBJV5h97NJZpvc0Ky25JbDMNomNS8RbTlKaQNC+c9YkeWN3J7ot15NdsR275n2KplKwnrN2uKkerAVU4jJ2yZSQX7fEk/QKYuPEScUhnDNDUwT9fUcTNh3XklXRZNp0Dxd78+R6jaQcHAHseozYqWCM5Yx7lHHe2o+zwpIkET8vHJQpRoEiKUYIIq+w6nXefJ1baeUWSDMPxgtmVQAAVCjDVhlkMir3+Cy0JEZkfRZEWgUrrZJwAKfrct6xaKclWiPJqh5EWCXwNXo1xntH3BUjJzrND1m7CUeGeNyYXDg9wjdfFjjWlBcYlUUTNDFi6jFic40k0xl+3OZPycVKy5/13pm6ndZhQeKcD1hANqkoyGX8boHJc5vq8MTKgzkNTllCZywODNhEfGk4gKpi7fh4tSlg1+7G487X/GjAEj5yKy3nHiP2vrLZlUViwvW5zZqVHlMFHm2XK5xkQTeTeXe4JBPaB7RrZ3JJOKsZHpvwF7fPrT+G36fwgZC5Iag5ibBIf/5cOrcSd1w4EwCyFFCiAgsY3v1PTDTz45USf5d7kM8HgHrAzv5vl/gCjOeFLEnk3mOEmq8TBEEMl6hQGQwAgxPUSmvlvlY8/Mo+3P/nHbaN1Y+2RfiYZiCeyslGaij85t3j+PW7x/HCdndr5OHQpI8FmQqhzLX5+tAUIyxGKwj6+PnkpWiDKQdOsyhGvKz72//Yh5+9dQSbjneZ1K0ytbKTYiTk9/EiQrHS3NRIWRKXmC1SzfEIX58pMWKOk60xDBvfTi+XWWkZ65cV5bBm7Ztru8aUTW86o+LBF3bj2//Yj//8606k0hkcatOO+YyKQp4Is07c8mIjyX4vKwjweFpM3rH9IkumXLmwCgCwTlIkalWnsLFwmYO6qjOm3ScKg3588LzppvcqikJ8kjtLMSJYvjHYWEZE3sPQaqXlzd1BVVWeaGTjBrtrk113FUUh3f6NKUZcEiMOx0vb9mylvVtvjWAgu8eITEn0T+dr+/8nqw/zxGY6o5rOKbEPkFthnBWnBE4oYB4PerG3AsyFg07nbdbnJYp+5+Wy9+FYhxIjxLiASaxZ9exQrbR2N+iJEb2fBzB8lYGYCWYTvl4VI6yqfqo+mcy2a1vd2LLTUlWVK0YA8Ky4HWzCiz0w6rqiWRUDVk5Yqg/sJhwZ4sSgoRgZ2ZtvC5/IKxhyk77xwoAHxUh9VxSpjIrCoB/TdAk7s9LqjiazHoaDFuWXCKvizncDThZoac3XjcSIXfB+oKUPD764Gz9ZfQR7Gr2pV1RVxd4m7d4yFj12ewTVDAs03a5HxjH9OrTzuR1NhtJjxK2yiEuTM9mDWsAYTN5wZjUA+35Isoozrwnzdl0xMqU02y/X6ikLuFc+AYKkOZUd2LLBxKevmot/v2Y+nvjX83DdGdrvW32gjV8ryXSGJ/54k9PhJEaERHNIksjikw0eAm+jYsp9GVb9FJc0VXRTjFDzdYIgiOHD7qFssmwiNl9PZ1T8YOVBANqzV2xwLHKw1Rxr1o+wnRar9h7pfW6oELRxQS7N173GqIARA/l9Ck9udLpYwHZHEjwWYz1GvFaoA0CdXhQWSaTMVlqSWEtmbcVQFEXaSN2sGJH0FxAmga0FQDLFiNVy1jo+a2LjWwfFCCBPjNxx4QwUhfzY3diL1/e2Zi1v5VfvHMUDf97hapk9XFIZQ83z4vZGPPCXnbyvzOk1pbbjBKtKQkRRFK5SFxNoTpX3VyzQFCN7mnqzJvmtE8yP/fM5+O1dF3M1i6zYjh264rAfMycVmRNgxUEjEWCjmDcpRgqyx0/iXIq1d8p8Pfav7fB2jxpMpvn5uEh3lrDrAWQ0Xte2iV2Pf9xYh4/+ch2fw7PbXlvVvMTezk7hwwhLkgEyRfoHzp0ORclWuInqL3G84NXGmuGkAhGbqIufdUpWAOZEh5vjgPb5bBUcO0Wcx53ZqpuxDiVGiHEBb76uK0ZKhtB8vSea4MHgebpiBDAa1w4V0Re3QK9EZQ1zrVJVK6JiBAAumKX1Gdle1zOsbco3vYPmSe4ttV040taPp987Lm2ixRIji6pLMblEe7A19jj7UZ7QJ17ZDd2tAbv44GYVwCfTSqsqB8n1eERMOlrl0wyWvJo/pZj7WZYLtkbidyRShpdlUTC7QoVVsOT7GLJgZVJRkPsbpzOq7YDw8dcPcUkxS3a40dgzyIOdsagYYcqK8sIgn4TwUhEXTaT4dXsiz71f8oFYXWQlJFF+AM6yZMDclI4vI1Gi3XrONADaYFL2HErzCkJjPYbNnLN9BZOZT5Y0EuSVYDk0ERSXi0v9chV9+wrw4NIzMXNSEa5cWIVQwIeG7kEc0dV77FpSFK0vEJAvxUiBdODiRTESsgxeEi6JL0BIjAiDFTclUday46gCiiAIYqzBxk4TOTHy8s5GHGo1xjI7bdwA2GQtY6T7jLCExUiPmdh6ppVrk+1uff6G2nxdVGxU6WNOt/E3U7NMLgnzOYXKEm+JkYF4isf8yXRGiB98UrUyi0tkiRHAKKoUJ1PFYyOb6BTVJ9YkB0/ECJ9ZrCsR2KSzdZlOx7jT+B6zmtqwMPvMVfMAAD9YedDVieNnbx3BC9sb8bFfb3BNYA2HtGUfvryzCc+sPwFAS4ZxhbhNU3k7m6AySU8Vp0npqWUFWFhdAlXVLNhk62JjkukVhbj+zKlCIV/2dcCOHFODz60yepNMKgoZlsBZipHscQnrMSIiKretCZ95k7XkRmPPoKe+UEwdEg74eH8SO9U8mzNgv50puTojCWyu7cYfN56QLudmuxuSKGjckgjyHiPZ48ea8gJcOrcya3lx35gSIzkrRuzHJlYlRzrjbRwjJgTd1DaAzb6w9NGUrkeiuhnrUGKEGBO4PUQHk8Nvvs76YsytKuKBuJd1u8ECmXDAxyeHPfcYEZqvA8CFcyoAALsaehz7OpxsmFqkrCCA4pAffbEUbv3xu/jW8n14ZafZNzeRyvCJvZryAu5X6poY0QcCF83RkkNHXRMjxkON3dBHuvm6qBjhE8wOAfSuhh7c/dQmHGjJb9+MoSA28vOC9dqyVtQAxjFiNlqAdjzYM1k8h8WAX2alZWd9NFy4YqQ4hKKQnwdBsoHZ1hPdeGO/Ue20r9nbcRP7ouQa9JwMxMQISyJ4GXSKKpH67kHpOTCa9Dr0GAlIqn20v136cUiaFsp+9+XzqnhyVKamESsYGUxN5fZccEyM+LK9nlMeguGQnjw2W2nZV1kVhQK4fL4m/1+t22mxSrfywiDftlwTI4da+3HPU5uwo76H9xiZVl4oV4x4sLeyNgX0sgxLpMuSRG7evKQYIQiCGB6qqvKYkBVPTbTm66qq4kdvHAZgjPF2NvRIP8uagLNneH33yCVGVFU1EiMjHNM1WRp6MztbeystY4wymEx7fs4mBdUsi03crLTYMqKqotKjYqRZGM+m0qqgOFXkVlrM4tMmvmBxRS49RhRFsVU8xCUKlTuXzMHr91+DO5fM1bbJ0hCZfUdYkrzx+xTeC0icbGer9fsUfPbq+SgvDOJw2wBe2eVs0cbWta+5D3f+bhPv/5FvxIQH68Uh9pWRqXvE5WxtlqQFSs6qhSsXaPG0teeqXXNtpyQiWy1bFytUKgj6UBD0C9vnQTEisdKSJxC0dU0qCvICyFoPBXNdgo3W5FJmJywfA7HzgiUyPnjuNLy07Eose/8CAMAxG+cCNzsotp8SYlLPRWkvOzfsHAc+dL5hZ8auE7NixPiO3HuM2J+LVist67GyQ5xvsSqCnD4vU4s59hixGYePZSgxQow6jT2DuODhlfj2K/tsP8MUI0VcMaI3X8/Bk3aXLsE7Z2aF6cE1bCutZHbfBC+JkcFEmlecVOuKkfmTS1AQ1JreNnQ7JxJOJiyBM72iEBfqiQsWVPYMmgPItv4YVFW7IVYWhTBDb9TV6PJ7WEU6s3A50Rl1vJmaEiN8MnOEFSNCs+BKD4qRF7Y14u2D7fjVO8dGdLu88Jnfb8H7H3/b80DDrhmdCFP1MFsdRkAyyckGvQGfIq2aCkgCzXzAgrKKohAURRGCzeyB2c9WmwexXhvBiwmUXGWyJwOeGCkKcp9hL83XRTu7dEZ1vYZPJsl0Bv168k6mGJFJfwF5xZSIrGmh9T5UU1aA8qIgl5TLkrjW5uuA2H/HzUpLe9/JSkvcLic/ZIaseV7KUglm5brTtR5RLDHSzdVXIX7/sxvg2PHYiv1462A7bn/yPZNiRNZUnm+fo8TbfK9xs0oDgLCkT4gXCy6AFCMEQRDDJZ7KgIWUE1Ux0hVJ8B58X//AYgD2ihHW6+LSeVrl8UhaafXFUrzR/UgXkzFVRraVlnvzdcB7A3ZRMcITIzZ2PXwZSSwojuucemWIhX4JUTHi90ltS52stAAhMWLqMaItoyjgRZdWZOuyW1/A78PpNaXSWBBwj51YHGZuzG0U5ZQXBrlq5M96Lz47xPNub1PfiM13iH1Hv3TdIpON82lTS4W5A7mVVk49K9LOyyyeril2GixJz3RaPpnNVBOya4VtbcCi4mCJPb59HqyEZYoR2QQ421eKovCxj5vFciKVQZfQl7DKpcdIMm1cx2xd58+qwM1n1Tiuz80KV6ZId+uREZLYFidtitBuO2cappcX4NJ5lfz+I17LYm+pXO22nYq2sqy0PNgqA+ZemmkP4yxZE3Uvtl1295qxDCVGiFFne103+mIpvHvYvkF3lDdfNytGcmm+vkdXjJw7oxzidTxsxUhCu+CZjRbgLTHCmlMXBv08Y+8Tq13GkEUTS4xUlxXgoxfPQnlhkDdoiyfNNzymqphaHobPp2C6LqFuclOM6AOIy+dXoTDoRyqjOg4OeFDrU3hAMfKKESYLLxCaD9sfY2ax8/bBthHfNidUVcU7h9pR1xX1HIBaFSOyhMXhtmzFCCC3MWLXsEwtIi5jbYI3XNjAigWMLDEiCzaP6BPc/+v60wAA+5v7PFUyiQmUgXhqVI+1DLYPRMWIl0r/o23mCf/jY8hOS6w4LJME9rIKF+1vZ2VAQFKBx5Y5fWop5lQV4V8v0SrPFujnvawfkkyezK20+r1ZaU0pyU74iAEv20Y3FQwgTxQZEm35ctedMRUAsOVEN3oHk0KSceiKETHBKioLuRetyUrLXf3BEirstyRcEl+AmNww4gdmHeBVMRInxQhBEMSQEAt0Kou1Z4nMlnc80y0oLJn68lhHJGtirC+W5P0drj9Te+bWd41cEYo4FkuOdGKENfT2rBgxx2teG7CLk9Js8rWj35tiRJzYYzZciVTGMVHHlDBsm8UJSdkkolEJb2OlJVGiemmkHJSoUwC5YoRhN1npFm/JVBJsG1nihvXFWH+s09YyVlWNxtRMeTBS1nFivDmlNIxPX6klbvw+BQuqi6XHChB7jDjvi6Sk0MjueNlZfrsrRrKvFUMxYu77wcZ3vNDQziJMWJe8+Xr2uSsuwxQqTomRx1bsxwUPr8S7h7S5vcriEB832BVU2SUB2Pra++NZ+0N0w7BVf0gSYG49RmT2UWmb5FdFUQjvfPX9eO5zl/Nr2U4xkrOVlsNvy7bS8thjRLhvJD0sI0vAZjJexp2kGCGInGFVqE62WFFL0+biUO5WWoZipByKkj+VAZuIEQMQLz1GWNXw1LIwFEUMzJgMeOR8N3OFb2tpGB86bzp2fONG3KRn8K2Vs7wKuEwLhLlixCExEk2k+DrmVRULldj2D92TrRhJpjN8G2tMiRH7yiL2YOyOJrHDplLsZNAXMybrvWbus620zL8xkcpgr54QOFuvhGEYQZmxLus1bEU2IZ0PjD4UWgDOB2aSYJMFZWdO06qqIom0p4DdarllVduMNkwxUlEYRCVXjLgHZ1YlxIkx1ICdJbZKwgHpZLbdgCfpogwwknrZE/SzKovwzlfejy/fqCXOWLAu678i83plVlptfW5WWto56+b1zH6bF1/ZkKRiKulS4Ta7qggLphQjnVHx7uF2rjKqFBQjuSZGFlYbSVRRWShP3LgnK7KttNyX4VZaSXFQ655Q0ZbVvjc2jiqgCIIgxhIsNg76FV7YMNEUI91Cf7vJJWHMqCiEqgJ7LA2EmY3WtPICnDOjHMDI9hgREyMjWcSTSBljJlmPEdm4aaiJEdEWlNn1uCpGBJUJozDo5894p9imKctKy/guHpPkoBiRTabK7FitsHjVOg5ncZTMFktWCQ+4K3RlamrrhPSsyiJcOLsCqgos39Wc/SUAxFOOxdBerONUVcXept6cqs/F7VMUBZ+7Zj4umTsJn7xsNsIBP99u2+brNjZBRm8SWWLERrVgo+6xm8xm14psniutKqZ1XXvaFMyfUox/0i2dgpJxjLi94lhBphhJSY6xGBvP14/bMYc5ml+tOYZIIo3fvXccgDkxYqcYsVNulxYEecGxNRkjno92cb91nKCtyy35JVOM2B/joF+z02dzHLY9RiRzD4OJNJptLgGn8Z1VCeOlXwhgWJVpzdc9WBZL7hleFCOhcaiwzykx8q1vfQuKopj+O+OMM/j7sVgMy5YtQ1VVFUpKSnDHHXegtbXV9B11dXW47bbbUFRUhOrqanzlK19BKjW2JpGIkwvr0eAlMcKUIizDnUhlPE2kdg7E+cT8WfokLruYhxsYyjLVrDK4cyBu+/2iCkNk8hAnnEYSa5N4RVGMqhPL/ud9OHTptJceI2wQUF4Y1C1qtMmzAw49HsRs/8noMdLeH4eq6h62xWFU6VVuybRqe+6KVQJv6XY0o4Fom+S1h4dbj5F9zX1IpDKoKAry4JZhBIDG8WABPxsAWBmJyoLBRJo/kCcVmxUjMp9P9qAPB/w4Q2/6ttfFTqs3muQqHHYPyFUqO9L0CT1GJgn3l7cOtDk2VWdBL5vMru0c2YaguZCUJKRFZIPTdEYFG4vbKkbYQMkkkZdPmteU2/cMkfYY8WilxRUjEistWQ8ftwQHIASoEk9kJ9spZm24+kAbn+ipEBIjuSobrfdopix0au7nZG9lte1zq8wE5HZYXiXopBghCIIYHmxMVxj0c4vkCZcYEWxcAeD8WRUAgJ2WxAhTXi+aWopZlYbCfqT6f5gm9UdwzNTap9sqB3xcxcGstBLpjHSyzPqaVystcfKWK0ZceozIrI8UxVjeMTHSK6hu0hlTDMbiRDHWSrjEJQWSydR0ThXZlgIgSfN1hp39llfFiMlmSQ+ofUIC4Z/O11QjL++U9xkRkwlsgt1LIvDF7Y247Sdr8bO3jrh+1rouFoeXFwbx1y9cgYf+6WwA9uNON5slo5BPSCAwZYWtTa88CWPXI9Bovi6x0uLjGG2Z6rICrP7Pa/Hv71tg+i5x+zIZVVjOOC9Kw9k9GmWWtqLVF7PuOtbh3AtWpLI4xBVZdknLhMNYxk6lIp5P9hbJ5n1vGgvaKnxkPUbckwjWfkEpocE5ID+eX/v7PvzfnQFsr+vJes8p2cEL+Vi/SQ/9QgAx6aN6GvuI9wyW0PZi4XxKKEbOOussNDc38//Wrl3L3/vyl7+M5cuX469//SveeecdNDU14Z//+Z/5++l0GrfddhsSiQTWrVuH3//+93j66afxjW98Iz+/hhiXsOAjEpdXkLD3AGNStViQ/kU8qEY213YB0OSG7GGTL5WB7EZZWRyComgPL7sHAGtoPtWSGDEeHGMxMWJM1PHJJcsEEVOMsElDJqF2stKq7dCCorlVRQCAJbrs/K9bG2yTHaK8M5CnJJcT7HdNLSuAz6egMOTn56NdAC1WCawe1cSIMbjwOqGX1WPEEnhvr+sGAFwwq8KkeALkslUWXBTYJkaYTDt/x5B5m4b8PhTrAw8j2JTJk43BFfOD3dfcm/U5EaYWmTmpkE8W946xBuw9kubr64914p6nN+M//rRdukwmo/Kg93p9ctxLo72ThVEh6DyIM1X7pL0E0NmVVixYtyYQuDJQlhiR9RjREx29g0nHXj/s+2SKEXE7EkKQb12X7TI5JgPerx/7dw62c9vASUVB/pzqdvHitmIdwDNloSyAdrM905YzBjyqqtp6AIsYPUaMY8C9jW0SbXxZphhJjp9AnyAIYizBJoALQ36jwjY5sYokewTFCACcO1NTg1j7jLBYu7IoiKmlBQj5fUhlVD7myDdNwveOZPN1bqNVXsCtlopDfl7YIbOUsU6geS0QFGOFKhe7HoZdhf8kL4kRS48R3rvB5zM1X2exkbtiRHvdpBgZhoc/SzA5KUbEJJRob2Xbp0FikSybHF16zjT4FO08lxVeictzxYiHxAgrQGO26F5wtViS/CbTcrZJoux41c1KyzqJDZiTFXaKEelY1WVS30nRYl1XQdDH/2ZDeaceI4A3K63Tp5aa/q4sCpkseGXzNUYRWvY5aKdSEX+Xm1qH/S5xv9glsmSNw916mQDZ6i+rulx23zukJ8frJVbnxjjNvceIF/s9QFB/pTKuSifAnGDlSRhmo+fUfP1U6DESCARQU1PD/5s8eTIAoLe3F7/97W/xxBNP4LrrrsNFF12Ep556CuvWrcOGDRsAACtXrsS+ffvwzDPP4Pzzz8ett96KRx55BE8++SQSibEzCUyMPO39cZ7QYFLZVEa1lVsNWhQjoYDR4MyLndbz2xoBADfq/q2AoBgZ5kSsLJse8Pu4ouCVnc247gdvY62lhwrz35xqqQpmfru5NrUdSVgSR1S32EnkWvr0Phz6Z2fqVlodAwnbyUCxuTug+ZSWFwZR1xXFm/tbpcuIDwC2760N1PJJi9AomOFWNS0Gufua+/h3nGy686EYsexbVtlwwexJWcvKfG8TLpUWMtnqcOkWeiKw5I3hcZx93xCTbYun6YkRF8UIC/wXVpfwajhZRchowq20hObrjFqbwLapdxCxZAZBv4KrFmnP+RNjSDHi1ijSKaj1tly2YsR67k4ptVeAyKp8yguD/L5p138qmkjxytnJEsWIuI1sH3jqxSFJjPAkgkOQf8ncSpSEA+iMJPDmfi25O6nYUIykMipXknQMxF2fx9aJGJZAlzeHd7e3Yr9LVbVnQk5WWrJG9A6DA0BQjKQmVnUzQRDEySImKIhZ37kJpxjR4+5JejHKOXpiZH+LOaZMCspNn0/hYyYv9kJD4WRZaTFVBRvXAZoio9TBztaaGOnx2mNEKIiY4mLXw5exUQJ7UcOKPUZEK62AX8mKSQC55bbIkHuM2DVfd1iftHeCKTZ2qbqXTLaLE+1TSsO4cqE2ZvjPv+zMOs5iHD5vivfECDtebv1KZety6xWSyqimAh+3JIcsoTIUK620aj+p72Q7xxMjLr0SzdsnLwxTFIXfo2ZXasWpbj1G5k7WPtcTTfJxtpWMZZsrS0KYVBTkRcOyxKPTuI4lY45ZFSOilZZLI3XDflg433M4Xl7s7QwrLW0sZJ33kvU3Zfc52fyHnaIIEK20zMkKv8s4JsTP+4ynBGwwYLxn7WfiRWmS796xI0nOiZHDhw9j+vTpmD9/Pj7xiU+grq4OALB161Ykk0nccMMN/LNnnHEGZs+ejfXr1wMA1q9fj3POOQdTpxqT0zfffDP6+vqwd+/e4f4WYpzQF0vi2u+/hTt+sQ6A+eYom1RRVRURS/N1ACgOa/92a8DeMRDnNkYfuWgmfz1fVlp2kzds0uy7rx3AsfYIXttr9tu02lMxJjPFiEtQdzJpk2yrbHIJEBUjWjBcXhjk1fp2dloJS3VLYciPj182GwC4P6UVsUIokKcklxPNepBfI0mMdNkcK/ZAZOfamkPtI7Z9ToiKES+Z+0zGsAdjxQBZipF6XTEyuyJreZmMl0m77SakA5JAc7gYFXtGE2vnhnZGUGYoRpwTIyxIKAz6hcbuY0sxwhIjZYWaTV1VcQjT9fO4L5aSnhOsv8+cqmJupVXfFR3RCsNcSLn4orLzKSMMTsVttwvm5M3X5bYEUwQFiHWiPC2R4iuKMWi3s9NiDUMLg35+33TbRk8VP5JkpTEIcR5433bONADGgKSiKIhwwM8HKs9trsORtn5c+/238RH9uW6HVaHJEs0ySwhvTeWN95JpVThW7lWWYo8RL8klAAjzCYyxcR0QBEGMN7iVVigg9WR3IpZM44mVB7FNVy2PVUTrScAYL1hdDqzJ/Fn65KSXyeKhYGq+PoJjJpY8EBMjAFBWyOLk7PF+ImUeT3d7tNIyNV/Xx9CDyTSiCftCDbt+Aew47W3qxQ9WHsw6DpmMaipyM1tp+UwxCZvoTLiMfwol14CbnRMgj+sAI7aRKkYkRWimqns7xYjPbE+bEeyIrL04/vuWM1BWEMCWE934xK83mo6DOOcyt4r1GNHOyec21WUVkTLY8XKy5bZiKD+cx52AvHeKXTW8YbkrsVlya9guUWMA2coFlkBMZdSseNNOZWKsy7kwzLrcdz58Nv73rWdwq3l5k3JjmaJQgI8hrYkK2W8DNMVIwO/jqhE2BybipPhmFuvHLfZdbL/7FHBlmhVrLxmnfcGQFf96sfe12uJlJUYkihHm6iCznEo5nMOGCik3xYjZSst7YR1g3Mu8NHofj4qR7I47Dlx22WV4+umncfrpp6O5uRkPPfQQrr76auzZswctLS0IhUKoqKgwLTN16lS0tLQAAFpaWkxJEfY+e8+OeDyOeNyYROjr0yaqkskkksmTPwHF1jka654IHGvtQySRxoGWfgwMxrk9BwD0RGIoD5sv/ngyzR8CQUXl+7045Ed3NIneSAzJpDm5IPLC1nqkMirOnVmGuZUFfHl2MccSwzuPYnqQ61fM58TkYu2hxm6qsUTa9D5LNkwqCpheryjQbqodA7ExcY5lMiqfxKss9PNtCvi0gxJLpKS/q6rI+Oz0igIcbougrmMAsyuyq6DjuoTeJ+zDj108A79ecwwbjnVhZ10nr+DnyyT046gAisLkytoDaCT2W6NevTW1NMS/f1KRdgtt7x+UrpNVDCyqLsGBln4cbu07Kcc0k1FNAUJHvxFIRuPu57uYoCwrCKB3MIXBeIIv1zEQR33XIBQFOKumOOv7WNAwKKwrlmDnjSJdv6KyAYT5OhnO/Zb97grhGisOafeX3mgi6ztZUKJm0lhQVQhF0dRS9Z39qCmT32Niwrlbqidru8fItctg1SjFQQVhn4q3//NqBHwKznroDWRUoK03kpWgPdyiydXnVRWhskBrSBlPZVDb0Y85+sA9Hwz1+A7G2fUvP5+QMYLRwVgc4aAfg/GE8HYKyUx2QMfOw6RwHhr3J9W0rqKANlhIplW0dEdMEwCxRPY9DQCmlIbQ2DOI5u4IktONRuSMlh5tkFFVErLtv8aC2qh+TSZstk+EjY/Fa5IH4ZmM4/5/8JZF2NPUg71NWpPYsrB2b7/3mnn46gt78Mu3j+LV3c0YiKdwoKUf3QPadSf7zoQ+SPjAOTVoH4jjw+dPQzKZhA/atsSF/Z7U7+eK6rB9wgAuGotzq0AF7vtCfHZ5WheApYun4Mr5V6EkHBi1a3ws3VsIgiByxeg55+OJEa+KkZe2N+Inq4/gl2uO4ZefvBDXnTHVfaFRoIcrRrSxIG+UbZnktCoXWNX28Y6RSowYE5Ij3ZcRMFswA1qxXD0GpZXmbHJ6SkkYTb2xITVfLwr5URD0IZbMoKM/gdlV8qkuuwlBlhh56r1aAFrF/rc+dBZ/vyMSNyUVNCstY8JUVGkkUyoQcrfSYoWGgzkrRrT37Jqve1WMJDwUDRn2THrVvYPa4ewZ5fjT5y/HJ3+zEbsbe/HG/jZ86DytMbg4kT1bt8/uiiTw3pEO/O8XdqO6NIxN/98NsML2R38shf5YkicOnHCr8Bcn+5PpDN83bva01qbXgHvj66BFtSAuo63LvByzncuoWiFfoVAoxb7Crqgp6DMfK8BcdGhVSdx8Vg0A4H89tx2AVbktVyHMm1KMpt4YjrUP4KI52c4RVpcJdqynloXR3h9Ha18MZ88oNy+Tsk8CcPuu9ghUVeUuEEmX5BcgsdLKSWWSm72vYaWlz/1Z7vdWR4lYMs0/I0tUO1keW620vKg/AHMPTjd1FPs+RdFUcMa63BMq47HHSE6JkVtvvZX/+9xzz8Vll12GOXPm4C9/+QsKCwsdlhwejz32GB566KGs11euXImiovxN0OTKqlWrRm3d45mDPQoA7cbx1+WvoanDD0C7sF5/823MNPdxxkASYKfqO2+u5P6k6YS23Ftr16O5Qh7cqSrw1C7tc6cHu7FixQr+Xkpfft369ajfPfTfs6NT+z19PT2m74/3+iCKso7X1WPFihP87+Z2bf37d+9AsHE7f/2ovn9qmztN3yejfgD45X4/Pjgng8urRybA7U8CqUwAClRseXc12PPgYKu2nfVNzVixopF/vi+i/a4tG9ahSd+vgYS2L15/dxP6DmVv574G7btaGhuwYkUdf/2cST5s7/Thpy+twwfnmG+sh3q1ZQajETTWDQDw4dCRo1g4a2Suze2HtN/Q1XgMK1YcBQAMdmuvrd+6C0UtO7OW6erT9kVRsheAD1v2H8OKtHvjuK64lvApD7l+NIs3GhW80ejDbbMzuGqqCkUBttQb5+KmLduQOeF8rvTEASAAn6LCn0kCUPDOu2txQrcM3d2l7fupBSreXZ29ryMD2u9ev9E43lvatWV6u+Xn9R79Ozu6uqXvD+WYvlSr/e5Mv7HOxiZtPQeOncCKFWY1Uiqtbffbb61GeQiYWeRHfUTBr158C5dMke+zPfr3tTY36QlcHzZu34VCyfkwGqgq0K1fk9s2rEWtMEYtDvjRn1Tw99dXZ913153Q9l2ypwWvvdaEyqAfzSkFf3v1HZw5Kf/3mlyPL3uODEYHpOeLFmdqz41/vPo6CgLGee1XVLz66qvS792l38/bOrr49+6v0/ZFY10dVqyoNX2+xO9Hd1rB319/C3MES90d+v2xq73NtH2ZiPZdb2/chrTkOtzbrS2nJKK29/9kXDue77y7FrUlwL56bZmmBvMzRqSrXVvv9l27UdK2CwAQjenX6Xvv4rhLKPVv04AfdvrRFVfQtH8rVpwAgipQU+hHy2AKuxsNZdXzr76F6cXyY1rfpG1H4UAjPl6j4uDmd3AQQF8CAAJIplX84x8roChAR5e2fTu2b0Wy1v4Zz47zqytX4bh+3h47cggrBg9KlzmkH5u6xiasWNEAAGjT45BdO3fA17BdutxYIRodO5Z2BEEQucKttEJ+FAZZ83VvFqTMxjWRyuDf/99WPH3Ppdy6ZyzB3BAq9In2cFCusrcqF06bqhVMHG7tz/s2pTMqWoRK7ZG0Hzb6XJiVrzVlhdjT2CftocKWqS4rQFNvzHPz9ZRQ1a4oCiaXhNHQPYiOSJxPyGYtY2Pbw5qvM6wV3mJiiX1PMmN8lzjBGE+nAQRtVccMuZWoPsnpVMltpxjx0GNEZhHEfoMMWQNrhix/cNb0clwytxIr97WaelaKCueygiAqioLoiSbx7CZt7N/WH0cyncnaDvE3NvfGPCVGvPYYAeS2WHb73uijma0ycesxYlKMCOu0TmYrioKScAB9sRT6YilUC7WhvIm6TeLGyUpLcVRWZCdU7H7XvMnFeO9IJ370xmG8vLMJ/99tZ+KMGmMj2bp/+rELUBj046zpWhKkpqwAexr7uEW7CNtGmeJ7dmURfAoQSaTR1h/nxXxiUtIOaw9TL/uCXycmlb17MoAnRvTnmdVNwOooISZ/nRUj7lZaaQfFjWk54Vx0U1UB2rkY9PuQSBnqODdVFWBvuT+WySkxYqWiogKnnXYajhw5ghtvvBGJRAI9PT0m1UhraytqarRMZE1NDTZt2mT6jtbWVv6eHQ8++CAeeOAB/ndfXx9mzZqFm266CWVlZbbLjRTJZBKrVq3CjTfeiGDQ/cZMmFF3twD7tYmZsy66AvE9WwFoN47zL7kcl86tNH2+oXsQ2PIuwgEfPnDbUv76Uw0b0RztxTnnX4QbF1dL13W0PYLmDe8hFPDhvz/2fpQXGsfr+/vXoCcRw0WXXIqL5w09qE7vagYO7Ub1lCosXXoxf33vykPY1F7L/54ydRqWLj2P//0/J9YD/f1YcunFeN9pU/jrc5r68Iv9G5D0hbF06bWO637kHwcwkKpDHarx8NKLhvwbnNjX3Ads2YCqkjA++AFje5I7mvDcsT0or5yCpcK6v7FjNZBM4bpr34f5un/ohtQ+7N/cgKrZi7D0+oVZ6zj05hGg/hjmz5uDpUvP5K8npjdh+/N70KZUYOnSy03LlB7pAPZtQ0V5GebPm4R3W+swZ+48IH10RK7Npxs2Ap29uO7yC3HLWVqF2s5XD2JzxwlMmTUfS285PWuZb+18C0gkcfV5i7Bt9VGkC7XfsauhFxtru/DpK+ZmBUPRRAqXPvY24qkM9nzzBmlg68Qffr0Jg+ke/O24H7GSGvzgI+dgy4oDQEM9AODMs8/F0otmmJZRVRVPrTuBC2ZV4ILZFTjSNgBsW4fSgiDKikLoikdx6eVLcLFeFbJv5WHg4HFcvXgmli49K2sbnm7YiPpIL86/wLg2B7c1Akf2Ylp1NZYuvTBrmZLDHfj1wW0oKinD0qVL+OtDvd8m0xk8/P01ABL47C0X4brTtWsssrUBL53Yh9JK83ZkMirU9dpE7s033oDK4hD2Bg7hf96tRaR0FpYuPVu6nvo1x4EThzFn9kwE/T5s62zArHmnYel1Czxv60iSSmdw/4Y3AAC33XyDyVbs58fW4WDrAM684FJcbZlY2LbiANBUhzMWLcDSGxfhlZ4daN7fhuoFZ2Hp5bPztn1DPb7Fh9qB/dtRWWE+XxjpjIr/2qgdz2uv145nfXcU2LYWoYAfS5feLP3e8IE2PHVoB0rKy/k9Z9drB4HGE1i4YF7Wdf7b+g3obujDaedejOvPNJ5D3ZvqgWP7MX1aDZYuPZ+/vim9H7s21WPK7IVYesOirPUH97UBB3ZgStUkLF16qXQbnzi4Ft1dUVx62RJcNGcSDr5xBGg4hvlzzfdPkTciu7CzqwWnnbEYS6+YAwD4P9veBFJpXPf+93FLAyduuyWJhu4YzpxmZIDC89rwxT/t0LZdV8/MPvMCpOq2S4/p37u2A13tOP/cc7D0YsPasncwia9vfQsAcOPNtyAU8OEXx9YBkQFcftklWeenyFc2r0IyreJ9778Om14/DLQ34+zFZ2LplXOln0/saMKfj+1BRZXx7Ppd/UagvxeXXXyR6TiORZhqmiAIYjzCrbSC/pwVIzsbegBoE2V1XVE8u6luTCZG2KR+pR5zhYWJNlHVnbTYR52mNy0+0JL/xEhbf8w0oW21tswnMjtRAJhRoU1oynpFsIlBpjLxqhix2pFNKdUSI60OfR2TNtu3sFrb/yyeiVkmNq3bnRQUIwE9MRMKmCcRDQWH9+p0N9WCtpx27WT1GEnZJ2LCDhO+PsWLPZN5YtRpG2VNwK2NzWdXFqEn2ouVew3nmK5IIkvFLq6vsWeQXydOuNmRiRPISdk22lru2lu/2vV3kNn0mpqASyaYSwuC6NMVMiJuzdel/WBYItDxfDLfk8Ttte7D82dNwjMb6tDYM4jGnkE8v7UB/99ti4Xfpq1vYXUJzhQcP9hxbZFZaTkoMkIBH2ZVFuFEZxTH2g2XAy8qDmsPU24P5qHhuCxZ6bQct4Zkzdd1NUhpQQD9Ma2HpJj46444W52nbPa/+LvYeeRVMcKPs3jvclkmrCdG2DZ6UZqwZ1o+e8eONMNKjAwMDODo0aP41Kc+hYsuugjBYBBvvvkm7rjjDgDAwYMHUVdXhyVLtEmLJUuW4Dvf+Q7a2tpQXa0NPFetWoWysjIsXrzYdj3hcBjhcLb9TjAYHNXExGivf7zSnzAukMa+uCkYjqWQtU+TqnbzLA4HTO+VhLV/JzLZyzBOdGvLnjmtDJPLzFUj7Caq+PzZkzc7GvHcpnr89OMXcD9EWxQf/z7xe+ZP0R7aAZ+CVEZFMq2a3mc386KCkOn1mgptgqormoTfH7DNZgPATr1Kt6FncMTOxa6odnymlhWY1lFUoAX7yYz775qlT7o198Wl25nRFUOhgPkYX3P6VAB7sLupD9EkUC42jtb3eyjg48Ghqn/PSFybrLphZmUx/+6qUu3B3DOYlq6PPRDPmKZVSjT1xBAMBvHNV/ZjT2Mfzp1ZyRtbM/r6kzy7vvlEL95/RvYk3WAibZLVinQJFVav7G7BRy+Zjd6YIM+GkrWtG4914rHXDuGcGeVY/h9XgX28JBzkD15VMc7vw3r/ifNmTZL+7iA7HsIyKjtewezrDQAKQ9praVWVf2eOx/Ttw63ojCQwuSSM68+s4dd7RbF2zCIJ8zETA5KCsHbuXn1aNf7n3VqsP9qFQCDApbsi4rnLEq8DicyYeTakYRz7wrD5XlNVEgZaB9AXy95eFniHgto1OX9KCbC/DXXdsRH5bbkeX1XRzrGgX34+BaEFh+mMCuj3eLaM9V4tUsDOQ+G5klYV/b1A1nLVpYUA+tBluQfwe1HAvH2s91JXJCXdBnadBB22kVUJqYr23fwcDGZvHyOsV+WmVON3sYFSQSjkad9XBoOoLDU/R289dzr+vbEPUIATHVG8trcFLQNJTIb8mLLzKhwyv1esCgMNnx/BYAB6ERQKQs7nRsDnQzKdBhQ/P9vDDvuiKKw9uxLCM5kF+eHw2I/rxvr2EQRBODEo9hgJGxNJokWKjGgihUO6kuLOJXPw7X/sR+eAvF/XaNNtsdISi5wS6QwKfNrvtlYEs6rrxp5Bz5ZBXrFO6uezp58Vux5mzHLUKTFSrY+t7Bo7Zy1n8f6fOakI2+t6HBvY223fTYun4qVlV2JXQw++8fe9Wb1v5IkRs/okxKqrU+YeIyG/fNwm7fvhodFzSDLZDhgV2lIrLX92MsWbHRGrutcnlwUrLbt5Yj4x6jDRPmtSEXY19JqSDB0D8azEiPi+1wbsbgkOrRJeMfWnU1XVtX+CzCIobdNvNnuZbDWGXX8M1rfS2n/XaL7ubKWlqto6+FjI4TcBRoIrKVOMWNb14QtmYEZFIf648QRe2dWcpQqwm3BnttSypKWbImP+5GItMdIxgCULqrRlXPa79p5533u6thysz5yWKwiaEyPM3ndKaZjbaPXHUtyyr8dFMeKUIGX3u6yG6C69EvlxTqve7bcCPiBurCvjodF72EbRNpbJqRT5v/7rv/DOO++gtrYW69atw4c//GH4/X587GMfQ3l5OT7zmc/ggQcewFtvvYWtW7finnvuwZIlS3D55VrV5U033YTFixfjU5/6FHbu3InXX38dX/va17Bs2TJp4oOYmPQIgY61IkbWfJ01qiuyTASzieGIg/yaNU2bOSnb6o3dBGQVM0+vq8X6Y51Yvb/N9rsZdnLcD184A49++Bw8qFfwWjOmdlJXdrNMZ1TeNFlGLJnGvqZeAEBj9+CIecXaNYnnfrlWWbjkwTZDD4Qbu+XBjNVjlzG1rAALq0ugqsD6Y52WZYybObsxj9Q+SGdUtOp+uWLzdSa5llU1qapRabRIl8Z3DCTQH0viUIvWPKytXxIYCL9hxe7mrPffO9KBxd98DU++Jbfk6tC3c5HeMPtEZ8S0fbKKhBOd2nXCJJ6RuLbdpQUBaVN0ZnkgKrBEZJLhpM0xZsgqcIbDX7doCpl/vnCGKdgv0weZfYOWBphCZQ3bxkvmViIU8KGlL2bbYE4M/lhTSVlj99FCPAZZlgF60rdDMrFgVBdp+2KOntw80SnfDycbL1Uu1kGZ3b3avEz2+c69VCUBIGvA3m5ppm40LDQvU13Gmq/LKxmH4tvqRT4ttU+w2cZcUBQFDy49Ew/eeiZmVTrf58Vttt4HxL+N48U+67x9YlUSr751UNqFJfJuL9V0BEEQxPAx9xjR4iZVzfZjt7KnsQ8ZVVMUsASCWHE7lrA2XxctpeKSiWIWX5QXBfnk4aFWc6Ph4dJosYEayR4jds3NeWJEMjHKnv0L2filK2pqdC5DbALOYv3ZeixS32Ufi6Rsts/nU3D+rAo+vrGek8xKy88nJdWsptHWSmm3HiMyyxkvPUZkdj/i316ttHjclMOkuWgDZW/pZJ8MYL9rlqRnYedA9pg6JfzG5h7nc4Ivk0MygMWA4iUhU3EA2UkiL+uSjYvtzkEGS4xY+1J4tdIS1yebm7Hi1LTdui6/T8GSBVU4o0YrArbOLVhVXAxnxQg7D+W/i82/dPQb54fRg8N7Us+L2kGqGHGZxwCMuclBvQiczQOVhAN8HlOcI+gWilll8x9JhzFhkF/L5oSP077Qtt84zl7Gxdr7lvG0J8VI9j4c6+Q0AmxoaMDHPvYxnH766fiXf/kXVFVVYcOGDZgyRbMo+eEPf4gPfOADuOOOO3DNNdegpqYGL7zwAl/e7/fjlVdegd/vx5IlS/DJT34Sd955Jx5++OH8/ipiTCPeBA40uydGmKLEmhjhcjUH+XWDPkEjS4ywi1kWGLKHclOve1WC3c0hHPDj45fNxjT9Rm5tuGdXQRIK+FCmPww7Hapl9jYZFRapjIpmD9s6FNik6eQSs+9qOKgHckKzOFVV+TaJN9kZPBCWb6Mhhcy+wV6pVwW8d6TD9LooaQw4JLnyQTyV5ueJmAxgSSzZcYqnMjxYry4rQGlYO6brj3byoFXmnysGWiv3tWZl2j/xm41QVeD7r2f758eSafTr19A5Mw2Viphgs/pdApriCDCC4wG9sXVJOGAEFELiwMm/FpBLhtn5bvfwDdpUPg2FzoE4Vh/Qkpp3XDjT9J4RaJr3vXjusMC2IOjn9mHrLOefdbmAX+GVfVYP0dHEyTu4yuH85dexfoznTtYGL7WdY6O/QTJjf89gWIP8pIdkCntPlKAz/1bZoJYnRgYsvtM2gyRWCdnWL69yTXoIbEOWa9Lp/mksY94XYlWcW3WRV2ZO0s6RBodqPrsgPOD38f5hxvFyD7wBsw2FF6k7f3aZKibdBzwEQRDE8OE9RoJ+7skOuPcZ2VnfAwA4b2aFY/w92qiqajRfL9biQq3/hfa+GIezZ6IYX5ymTzYezLOdFqu0Z+MRa4PkfJK2mdCb7sFKa1ZlIS6eMwmqCryyq8lxPeJvYOuapccidV1OihHniWJW+W1npcXGteLkIpsEtiYfnJqhyz4P5FYkIy6nqqpjIkaWhOFV9w4FJdaG4+KYyS5EMwqNJBPt+nusoEZEVqwlztXkrhhxnzS3NpUG7HuMsO9LiAVULvGqXGXinExhY0pbKy0XdQpg7G8viTZZwseresaanLMmCxlT9TmxVllixKVYi41jxGPk1vRe/D5rMZlT/56gLIHowbbLsNLSnmUssVoQ8EsLM916jKQdzqvs3+V1zCRYaXm235LbkXlT3UzQxMhzzz2HpqYmxONxNDQ04LnnnsOCBYaPekFBAZ588kl0dXUhEonghRdeyOodMmfOHKxYsQLRaBTt7e14/PHHEQgMy9GLGGeIsrEDLX2m9yKOiRHzeeLFl9ZIjGRXJPgdEyPaQ9lLVYJb8MKrU60VHWxyOZh9GbJKbieJOGtAyHAKAIdDh54kslqKseqnhCTgAcwPttl6RUhj9yB6ZckAh4rsK3Tv4PeOyhMjmmLE/ljmA9mkOQBU6cmirkj2cYoJCaPCoB8z9X3w1sF2/nqPRBEk7s/ewSTWHTWUMhlhOwok5w0bIIb8Ppyu+6829w66KkZYhTdbN6tOKQ4H+AOWVSRov42du3JZuEwy7FadLgsaRZLpDG9m6caWE91IZVScPrUUp9eYfWjtKnDE6idxUpV5V691SYwE/UZC06pGGU1YcKoo2QEMS3bK7jMpS1DLelDUd0VNQfNo4UVNYATRqun/jooRSSBnF+AD7ooR6zLs83aJETc5PmAE5YmUecDjRdLMrv+kzfk+HFgBQqPDoNVpX7LjEucDb6+KETZgN+wQgjZe3oDx7JJNTjkNeAiCIIjhExWstPw+hT+f3PqMsP4i580yEiPd0YQpNh4LDMRTPN5gfd0UxfidYqGc7JnIqrAP5bkBO5tgZWOXEVWM2BR5MMVIS28sa/0JoXDiQ+dPBwAs3+mcGEmZlAvaPmRjTkcrLZciCp4YsRQ1sgJOFj+LPv0sbrOOZ4zCMBs1gUNDdKe4TmbBJf7bs2LES9U9L0DUlsuoxhjczv5OZvVlTSDMFhQjbFwrU4yI9k5OMaaIl0lfq0rc3DvFJhkQsFeM2MWQRvGfClU1j0ns1uOmGPHSO4VtYy69OExjd5eCMtkygL2tU42DYsQtWSlTIHlxD7Au56bUAczXlnG83NfFrbQSrMeI9v9w0MddJcTiSdEuMJHOvh/bKe+0bTRfk55tsYT94WXMaVom5X1d4nrG2jPaDhoBEicdcTKY9W1gDMRkiRE2SWtVjAT0950SI1pQNMtBMWJVGcSSaUT07/SiGHELKGRBCCB4gEoeUnaV3KqqYvnOJhzviGQlRupHKDHCtoENQhghWYBvsu0xbpbVuiVWRgXWHDYSAww7r1cAuHx+FXwKcKw9YlLFiA/QgCVgyzcpm0lENuDpkgRxLJgO+BQE/T4+afj2QcOerUdiwWUNLl4V7LR2Nfbyf18wa1LWsmyCu6okZPLx7XFp7tXYEzW9x2wOikJ+afM8NqFopxiRqUysDSazlzEHp1aW/WkHrvruauxr6pO+L8ICkSqLygkQKnDiKVMALCYQRK9XlhhZf7RT+mAXVQhlhWNXMSIb/LEErCzhZK3srykrQDjgQyqjeh6UjCRu1VmAEVxnWzM5BHK+7PNQpoJjTCmRJ0bsGhYyK63Ogbh0UsLTANUy2OQJhBwkzSlJleVw4YoRBystJ9m2tbrISFZ4C9gT6UyWLYkM2eSUl3ODIAiCGD6DgmIEMArdnKyRASExMrOCKzHSGTVr4nC0YWrwgqCPT5QBYlJeMlEsPBONBuzu8W4usPEu26aR7TEin0SsLi2AX++9aY2bEvrYIuj3Yek50+D3KdjZ0ItaGytbbT3iRDZTIRixiN2EnJu1EDs3RVcEcTlmmZNIqVmTl1YbHidrK0Bede/JqoarOIzfKI7xZPML0glfhzE4IyBM7Ivb52hTxSZGhWNgbYguJkauP2MqAKBDUmyYFmLWZhd7NesyuagJ7AohTcuwcYL4uxyaZANmNY7RwN5ZucASI33WQj7VvB1WxG1IWhI+XsZMUistu7G7RUkEmN1DrLE4S4z0RJOmAlLA/TyUFVB6S/hYxkwexo8h6fFyH5MUWnqM8EJSk2JEbqUlm59xWmd2kZz7+Q5Yx0weFSOWe1TGw/lk2ocjqE7MJ5QYIU46sn4MjIF4dpKDVxYF7RQj8oBYVVVeCZ+LYkRMRniRa7r5u8uqUwE3xYi8kntHfQ/+40/b8U8/W8t7bjAv1pFSjHRyKy2rYkRiR+Jg23Od3kT8rQPZfVsSPEDN3hflhUGcPaMcALDtRA9/XQwa/XwifqQUI/JJ86pibZ9EEumsBzx7KLIBCEuMiAGdm5UWoNlpsQfQamHfyQp0OiSJkbquKLfXAuQPXuaZK/PDlSUs4kmPQb7ER9mu+lsWkInsauhDNJHG918/IH1fxKnxIAs0AbN1H+8JYQnizp5ehqKQH32xFI62Z/s9i8FmGZc9j51ButPkMkt2dkgSewnLoNHnUzCnypudlqqqeHj5Pvy/DSeGvuEuuFVnATIrLfdlrIM/wHnS3E4BYtdjpKo4DL9PQUbNTqaI6/IykMu20nKofuIyaNW0jNu6coHd43oHU7ATTTlNRlgDby9JDsA86PEywGf3ZPGZ7FSVRRAEQeSPGFeMaPdbbosliUUYnQNx3jPinJnlCAf83BKqUzKRmg8SqQxe29MiLWJywmi8blNQJj57JPHFGYKVlqrmb1zDno88MTKCVbx2E6p+n8InR63FhywuCQV8mFwSxhW6lfLLDqoRccKN7cNp5VryJZHK2Kpz3bz1mXph0DK2Y7FdId+HmazCL2vj5iQvhJSr7K2KXnE9zs3XWcxkbKM4Jney0tKWMyduckkg8ObLNmoR0zKS38Xem11ZhHuunIsvXbcQZ80oA2DuIcEQY9bm3kFEEymsPtCaNfYW8dJk2zr2FBNpdr+NF11JLKdsJ/WF2NJa4W+vGHG20rJLqLCm8uK6kpaElHQbHey+7GLjsCSpJ86rWfdHWWGAn+9tluLohEvML+/t4q7isM5jeEnqiUnFXMYkhTaKkYKgjxdPinMEbs3XnRQxdkk9J5WZdTkvdnOApHAt1304TvqM0AiQOOnIJoMZrLeBCLPXsipGCl2stPoGU3xCOJfm62Iyork35hqUuvm7yxQjmYxqeI7KFCPMSstSyc0GDX2xFLoiCfgU4LZzpgFwbjI3HFg1ubX63gjksgN8IPsm/v7TtcTI24fas5JRbtl7VpUtWq2JVVa8X8wIVT/ZVd2XFRpWU9aEH3soGomR7OSck5XWvMnFKAr50RVJYL9eNSYmlWSVXmyCu6o4zH18raqsuOXhlBH607BzWTw3ZQkL9h0FNlZaAUk1jVfvUFnzMVUF75Py1sF2bK7tkn4HI+GgxioI+vk1KQabdgF0wO/DuXq/lm113VnfJ05KcyutUVKM/HDVIVz13dWmxt5O1kXcSksyqcCTAcI5z+y0nKr3AGB3Yy9+995xPPqP/cMa1PfHktJkFCDaLLkHZUaFm5cAOvt8d0rqVQtWWuJvtQsa/T6FP49qJY3sc2lol7RYaeXSfF0cWOTLSqs4HOATXF0281ROEvaQpfox5TLQZIiDHrcELECKEYIgiNFEtNICjKa6To22D+j9NuZWFfFef5MEO62R4KUdjfjCM1ulPf2cYOOmiiL5uElWUCY+ExdWl8CnaNXE7Q6WyrnCnnNs8m4krbSc7Cnt+oxYY/d/On8GAC0xYhdLirE7s3QK+H18HXZ2Wm4TxYaVlqWqnSVG9HNX9Oln46UsKy0Xi09po2cP8ao1ASN+h19RpRZXYkFbtpravdDIOrnsqWdFxj42VhQF3/zgWXjgptMxuZjNfdiPSQDt937yNxvx6ae34J6nNktt2AGPsbGNzZK4jdm/i+2LbGWF3aS0GFsmLc2y7XuM2Flp6eeZh6by1nGC8zFmiQf3sQxfJpA9ZhL3ofX6VxTFuN9b7LT4XIurskrNXsbDuWv0x3BPBIak14n7mMToMaInRlLGXFCpZI7ArceI05jJmvzy2mOELaeqYjLKo8okB3WKOAcjm9sZi1BihDjpyAJYdrOIOChGspqvW7KyVlgwNLkkLJ3AtWu+LlYsRRNp134BhszNecJXDIRNHqCSbauyqZ6y3jRPm1qKM6dplUUj3WOEqSMYsgZuYuWTNSC7eO4klBYE0BVJcDk8w81LXlZlJSp1/JKJ+HxiV3WvKAofmFmPFXsYsoo4WXKu18FKqzDox2XzKgEA6450oq0vht2ClZbMNqxDUPcwuboVa9a+rT9ukommM+bGfbIkh5uVFm/sJZ4bKeeHaMDygBeJp83r/95rBxwn3J0aDwLgCQwx2HQK8i+YPQlAdl8fwFzhL1aD5LPKzwttfTH8/O0jaOgexNZaI4HjFDSya1pWpcknpYWB3NzJemJEMqEvsle3OxtMpnlCayjc+8w2XP+Dd3BckojxZjllqXDJIYC2DsLslmOKkXgqY1JmOVX5zNP3o+PvclK1WBrEu1lCiNuesFT7+CwquOHC7nNdcfl3OiUgjG1M65913xeAuZLJy/6TNV+nHiMEQUxE0hkV/7PmKHY39Lp/+CRhtdKaqisIWvvtEyNs8lNMNnhRmgyHA81aMuZAjk3QWQHgpKKg6XVpUl4ywVQQ9PNClHw2YGcFSkwNMZL94pwm6USrX9P2WZqU33zWVIQCPhxpG8D+Zvl+SNrEWsyiqc5G4exm1VkQkPcYYcerMGhMPFsrycXxcSZj2ArJirXEz+fSmFv8PnFcx+IaiRlF1jYY1qry4j8R3m/S0nzZKX6UWoQ5FEIabhn2YxLGNn08tv5YJz71240mBwDrMl4UIynL73LqnSJPIDhPMGvfp/3bug/txjGuihGn4+U3jxO8qGfkx8t5fCFziDAlRiTrm2rTZ8TNFth6rACv4x9z8saLlZbYv5a7DnhQVxRYEyOs+XrQx10llu9qxvdfP4DuSMJkpSVLHjhZmVmL5HLtMQIYrjtOjeiBbEW/MYa0X87nM6zuSTFC5IV0Rh0TjW7zRSajSifKZunV9P25NF8Psx4j8sQF6y8im5AGYDuZ3mGpznHz03dr/MQmYWSBC+DWY0QuM5w/pRg3Lp6KL994GlcijESPkUxG5Y3FsxUjhldutk+pLLPtwzWLpgDIttNyU904VlmJipERttKSPWwqWZ8Ri7qHWQWw4Fp2HnY7WGkF/Yqp8fcru5rNn5P8VhZMTi4JmeTqIgnL/cR6fifTGYuVlr1ixK75Oq9UERUjDgopwNyky5pUiKTYZxSEAj5sru22VRKY1mWbGMn2+XQK/i6YVQHAJjEisdJKZ1TXJqL55v9tOJGl+AGcg0Z2TUcT6awEs0wyzAbqJ1ystMQ+MMymbSjsb9a+55jkWHuynAqYB3JeAmiZJ7LTcmIVkGiN5RTMOilvPPVBsXj65qIYYcsYvym/YaCRGJG/75S4MFQt2meSLoMkhjhgl9mSWGHPrkQ6w20TvFZNEUQuPPbYY7jkkktQWlqK6upq3H777Th40Kg+7+rqwn/8x3/g9NNPR2FhIWbPno0vfelL6O01T2IripL133PPPXeyfw4xDllzqB2PrjiAR17ZN9qbwhHtRQDDd77VQTEiUxByhaKkT1o+YAVnuRaecSutYvm4STZRbH1mLZqq2SQfbbOPdXOFqepPhpWWk1rZSIyYjzdXVujxQWlBENfpbgN/39koXY9dJTybV7BTjMhU0SIFelFbLJU2q4GF4jVA+53WYyiOm0SrL7sxiazQMBf1sKnwkhWh2SxmmqzMITZmcae1SbmnnhUSJYxsPM3cMqzzMOJ6Ra5aOBnlhUFsq+vBz1YfyXrfi02QXdFQ7gkE53kMzd4qNzsiWREfYDRfdxwnZCl83GPcgGUZcRvdm69nJ1PslrO737sVNoVk6/KQ1LPuC6/2UWz/WpVVnnqMJLTPsh5FBQE/V8rsrO/Bk28dxR/WnzBZacmSB16stPi5m6P6Q9xO12UsY0gvPUbEddnZpI81KDEyxvnoL9fhhifeGTeZNjf6Ykmw+GJGhTFRzCo7ZHJIlvjIUozwZn3yCcgG3l9EnhgxJtPN+9YaYDe7NGB3yyAbihFjO8XjKXuwGcGBeVvYTX3mpCL8+s6LcfNZNZit+/53RhK2ctKh0jOY5A9gq1eu2BvFOiFrV5H9fr3PyNsHzQ3Y3QJUWcNCMSizs0XLFymbwBswBmZZVlqsIi6UbaXFzl1583VjH7LEyKbjXXhq3XEAwC1n1WjbJLXSMveDmVYuSYxY7iXWxEg8ZU2MmGXGqmooSuwUIzL7LTcrLbP/qvm3RfXTuqo4jHP1fjN7Gvtgh9v2yeTJTjJophg51NafZZMlylwLgkaSLlc7rSNtA7aVbW7Ekmn8cWMd/zspDWqzf1dJOMDvT9YkrGywPpf1GHGx0trXbByblr6hWfwl0xl06deHtBdPDsGwkQzwsAy7l0iSS3ZJvSml2Q3Y0w7n0/wpWmLkmCwx4iFgt0r/PakksgJoti/ymwhg9zlbxYjD4EwM8tMZlccKbskbMfB2ulczTFYSlgGq03IEkSvvvPMOli1bhg0bNmDVqlVIJpO46aabEIlo135TUxOamprw+OOPY8+ePXj66afx2muv4TOf+UzWdz311FNobm7m/91+++0n+dcQ4xFWRNI1QnZTQ8FqeWhXQey0DCAkRhx+2xv7WvHw8n2OvQjsYAV27f1xW3cCGd12ihGmVkxmWxBbnz1sn8h6wFlJZ1R8//UD+OPGE46fY5P0J6XHiEOhnJ1ihMXuYtz5ofOnAwBe2dmMo+0DeOAvO7D1hKCKtrF0YQ3Y7ZJabk2l2T5SVXnCglWGi8kPFquIVfTm8b7zPIGsT4OTKkCmNGFzDTbDH9NyCUts7Nizj4+zM6b/e1G0iOeZk8vGZEExYi2QY+tj3xny+/Ddj5yLH3z0PADA0+uOoy1LgeBFMWKeNPfSO2UoCQRx29nxcksulegFwFY1jKEYcbLSsqgkXM53bfuyx+5uSQSZnZubHdnUMm3MZL3fuxU2WecjxGVy6Y+T9HBeANmOL14SKtxKS5+7jAn9Zj952Rw8eOsZvOfu3qZei2LEPD+Tyah8Dk52vWQpYTwrRoz3B5Mp198EGOdGdgLRZTlJ0ncsQyPAMUw8lca2uh7UdkZxwsW6ZLzAbgDFIT9mCAmLWZXavwckTYvjSXMgxzBuPm6JkezeDoC35usA0ORQwSQub6t2kChG2I0lHPBJpZqsktuapDEm6IxlygqCqNCDb7vKmKHC1CLlhcGsShdxkpAFYm4PtbOmlwEwNyAH3B/YUusT4QHA1jdSihE7qTYAVNpIf2OW87a8MMirPy6YXQFA6xVj3WbRtuf0qaWoKg5hMJlGfdcgyguD+OjFMwHILafYNrDzZ3pFdlJQTNABQGO3RDEi6THCJorFY2BrpSWzI3Kx0hItm6zBQTSlvVdRFOTnkDj5bsWpfw8gyJOFnkZOjfOmlIYxq7IQqgrsqjdX8ooV/opi2Gm5WfC9daANf1hfC1VV0d4fx4d+thYf+eU6U+M/r7y0vdF0r5A3vc/+XYqi2ErXZQlfZqVV3x21VTKmMypXegDZ17pXuiIJPjEu68WTWzBsqZjysExGNc4Jt0Ej64EkJkYMq68cFSMettFqpZX2MEDl6hlunTC6ihGnpqDJVMZ0D3BrDm+20nKvfhLvW/Gkpnh0e44TxFB47bXXcPfdd+Oss87Ceeedh6effhp1dXXYunUrAODss8/G888/jw9+8INYsGABrrvuOnznO9/B8uXLkUqZnyEVFRWoqanh/xUUZBc+EIQVNhaK5rlwajhYJwSNxIh9Pw2Z3SFT13c5JA8++4ct+N17x3PuE6KqqmlSvSGH8VWPTfN1mfrdrhhicol9vwUry3c24cm3juJbL+91dJkwmq9r6xrRHiMOk3TTy+2ar2erva87oxol4QAaewbxoZ+uxQvbGvHUe8eFZeSxFkuMNNj033Rtvh4w5hxE6zNr8/VkSs2y5gkLMYkYj7tZacnsiLz08EjIFCM5JEZSkrkFKwFL8oYNQXNVVjjFxszeN5HOZDmIsP3Bej7euWQOZlQU4vozq3HB7ArEkhn87C2zaiTtQSURtEsgeFhGHId7KWqyFg26JZcMKy25YsQxkWVJShnnqMP2Sdwe3Cbbpf1xhGMsm+Pi1ol2PUZsfpes6NKL5ZzVVsxLfwwACAWM5Kf4f0+KkaSmNBOttMqLgvj39y3AZ66aB0CbxxCLKK1zH24JJnsljPPv0tRL2mfYHKrbMtYkrNcx03hTjATcP0KMFuKNsL47ikVTS0dxa/IDq6qvKArxGyNgKEZkHpF21bqFQW9WWizpYsVOZcCq7hVFqxSxVrTYbZ+tlZZfu0lmVC34CPh9vFrITlZreP+bA2K7yqJZk4rQE+1FXWcUZ9SUOW5vLnRYJtpFTJNLqQxK4f5QMwYFctueXJYTJ6RZxnqkgnynh02VjZR/UKgSYMycVIR9zX24eE4l3jvSCUCzcxLl9uKD1+dTcMXCyVi+swkA8PHLZvNAyZNipMK4xtj5bM3aN/aYB3sJYVIy5Pfx6np2nZgTIzZWWjx4ya7qsBsYiMGa1WeTWWmVFwaxmCVGBLsmK649Rgr1BmhC8oJtn11wdcGsSajvGsT2um5ctWhy1rayc7BM76Nj9YS1cs/Tm/lv6oulEE2kEU2k0RGJo7rU+4SXqqr4nT5I9PsUpDOqKQBxs0yqKgmhuTeWNfiWJbJqygoQCviQSGXQ1BPjajWRE50Rk42YUzNVJ8Qkg8x+0Vu/EPPgxVP/DrFBYjoDv8/vmvCVK0bsA2jWY+REZxTpjGo65zz9riE0KQ/5zRYeRgI234oR5x4jTs9LsSJJfC7b3TMYos+ul+brAb+PXyvxVBrJtHEfI8UIMZIwi6zKykrHz5SVlSEQMA/Rli1bhs9+9rOYP38+vvCFL+Cee+6x9UCPx+OIx437UV+f9rxMJpNIJofe92mosHWOxrpPdWo7NMVINJEe1v7P5zFkMZqiZpBMJjG5WDvXW3sHbb8/ltBe9ysq/0xZgXbv7uiPuW7XH9bX4n/fvMjzNnZGEqZY5nh7P+ZWeovN2NitNOw3bRd7xkXjCWN/6uMaBRnTZysKtd/W3uf825LpDH6w8qD+bxX1nQO2TgkJfV3WyeCRuC7571IzWd9fXaKNYxq7jeOdSmf4hK+SMZbxA7jxzCl4cUczd4iIxI37WEwvcPL7FNN6ppdp46oTXRHp70voiWfrfueoKnyKNnbvH4yBiX+MsQz7O833qw/aucnCqlgiiUhMGxsG/QrS6RTSklpORc3o22RsS0Kv5PYJ57uVgKKPy5Ip/hm2voBif1xZTBWJaeehcW3ZL+PX15VIpvVlEq7LKMiYltH+ndR/V/ZyAUUrnI0k0mjtiaBQLyICjDHJ3Utm48s3LMBFsyfx5R+4fiE+9dQW/GlTHT575RzulhDn+9B+G9kwMZbQzqlYXP9dlvNJxAe2343flWLzE5LzncGuu0H9/I2z/g4226cPVdE3aJzvyWSSK0bY+SaDhbIx/V4T93CM2fFKptKm6xIAkJE/P4xz13h/UN+HAb98H04p1i6mFsv9nvUXlN0z2O8FtLkgfv277EMA8FmuL7f9zuD3a/06Yde+3fYBQEDRE4eqdn1F9f0e9BnrWlClnZ8N3dmKOfF7Y2LhdyYF6yqt+z6RZM8S+/OCEfT7kEyn+Ryq2zLGPU271yQ8nO9A9j4cDXJZLyVGxjBiYsR68YxXepm8uDiIqaVGM++ZDomRuM2k1HAVI2xixjrBzCqn508uxtH2CJpdEiNuGdqQJYEQ8PsExYh8YpklIrqjSZ5MAcxqApHZlUXY3dib9wbsXIFQnJ0YURSFT5KyQY6blRbrSWG1c7Lz2OXLMSstU8NCo0ogYJPkyhdOE6qsIsyqNIrx5pLGMpfOq8S+5j5cc9oU/G7tcfTHU+iOJqSJERa4XrWwCst3NiHgU3Dnkjnck1f2W62JrOnlxuBockkY7f3xrH1v9fhNpjM8+REK+LIqNFhST1G8yF2FCXo3Ky3LhLQIs9KqKApi8TStWmhfcx9UVZVODMVdEiOsX1FESKra+RQzLpxdgZd3NmF7fY/pdesEOEtcebXS+v26WlPyrKU3llNiZO2RDhxqHUBxyI8lC6rwxv42i9er8/2JJWGzbPsy2deyz6dgTmURDrcN4GjHgDQxYlXyDFUxYkqMyCznvFSCWSqZvFTFib/XWmlld26wxEibrMeIjb92SH8ONPUM8spGQEy0ea9WM5J67pYLxr5wrx4bCuzc7bc5/Z32pViR5OZRLBIUEyoeEkuAlmyPJtKIpzKmqr98J4oIgpHJZHD//ffjyiuvxNlnny39TEdHBx555BF8/vOfN73+8MMP47rrrkNRURFWrlyJL37xixgYGMCXvvQl6fc89thjeOihh7JeX7lyJYqK5DHxyWDVqlWjtu5TlQP1fgAK+mMJrFixYtjfl49j2NOrbdOWLZvRf1hFTxwAAmjri+GVf6yA7Ja/o0UB4Ednexv/HQ1t2msHTzRixYp66boU+KFCQTKt4k8vrUB59nBGSm2/tk2M19duweBRb2OMI3U+AD7UHd6HFT17+evdHdrrW3fsQkHzTgBAZ7e2L7Zv3YKY8P21ndpvO9LQ5njc3mtVUN9txJB/e+1tnFYu387GJm39jXW1AHx88n0krsvefu13bd60AV0HzO9pMX0A3dEkXlq+AiE/oA3ltf391purEBaGx7OT2nEM+4FYWkFTi7FP2HFKxmOm/TSQ1F5v64vh76+syGpGfqJe2xeHDx7Air790t8QUPxIqApef2M1Juth+UBE+13HDh0A4EdvfwSN6QEAPhzYvxcruvagvVX77h279yLduAdAAIqasT2OLVFtWwcGjd+wu0k7/q0tzVixQt5f5UCr9pmG5ha+3N5u7bWgz/64phLab3jn3bU4UQpsbdeW6enqtN3GWv2cPnLsOFasOIrj+n6PDQ7aLrNfvz4bhe3b2qG91tstX1eh4kcECpavegcLhDrP7h5tm/fu3IYzKlS8bmmZNL3Ij6bo/8/en4fZcZznofjbZ599sG8EuG/gTkokIUqURIqLhvImxfkl17JjX8W/xKYcW3ri68j7Em9yYsU3ppfYiiRbsa04lmxLhiVSoiiKO8UNBEGAJEgQIIAZ7LPPWfv+0f1Vf1Vd3fXVIQYcQOd7Hj7EzJw6Xb1Vfdv7vsDnvvxNXLk8ev63xWvG4YnxzDmeOBa/k888i8Ibz+DAbHRerVb2erk9PofxQ4fVZyYOR/N7/rlnUdr/jHUcXfcHHvw2Xh0EdsT3amZm2nqsY/G6ODlX1/7eCaOH+ZWXd2Hr3M7UOACoz0fHeuiRxzDxQoin6bqfOJZ5Xs/Ha87E4eTeLNSj73n4oQfxsqXeSu/f5MysGnN4PvodOm3rsV6div7+2vhx7e9Hj8Vr4dNPofFaeg17IX5OxyeS9//ZifS+YNqB+P2anYver2fj85w6cSJ3bW3E5/6thx7GG8PA9Ez08+OPPYLx7fYxUegSrWP/+E9fxetvxO/NrhexdTJ5aAfLRcw09Y3uyDF9PvOt5Lu+fu+9KRSYee1f3hPvO3v2YOvWVzPPCwDCdnQu44ePAQjw8ks7sXXGvg4CwKGD0XdveyHa03a/Fv2859VXsXVrWt+HjK7hg/E1fCtsbk6eG+0VRpaw8Y7jM6UwohAjfRWsHk4KIySSNltvpZKd1CVQNlaEgdhrmrPwxoZhqMTIs8XX7cl06vy/YsMIdh+edVJpOcWiOJ95q4OBapLgz6IiIl5JIEIeDBmJ5iwuVZcosq9RFzklT02rFqPCCCWiXXRJnK+R32enTosVft5RYxJatMWB6uUiRqiIlVEY4UnvX/7AZvzULRdgxWAVI/1lTNdbKZogs/h15+Xr8HdP78fNF67EupE+lTA24fLtTqioz4jah1NprRmOCyPGOJNKixe6dI0RnUoriwaOz10rjDiejSCIClytTpgqVqrCSF8FF64ZRLEQ4NhsAxNTdSVmpp2Do0Bnwk+jueYnpK+KBdi375/Ufm9269vQKHn29N4TWhLg4OQCrjxLNBQA8OmHIrTID75toyoS296TrGuRRduXlWC+8qxRvHxoBo+8cgTvjUUxuRGSZ6hawnS9dVIQIzYqLRuthmkmlZZrnYn+xtEbeuEh6xpSMYxrPLUMJBG3YiHA2SuiAtNrR2a1woi6Xx70BKqo50G50BRCyX2N1uosOtk8qjAuJMpRY26+3DSVlqvAkRRG2tqxTnahqGc9I7v77ruxfft2PPTQQ9a/T01N4a677sLmzZvxq7/6q9rffumXfkn9+5prrsHs7Cx+7/d+L7Mw8olPfAIf//jHte/euHEjbr/9dgwPn/rotNls4r777sNtt92GcrnsHtCzk2JhGOLnvvMNAB20wwC33XFn16i4k3kP/+Dlh4D5Ody05QZcf85ytNod/NozX0cnDHD9zbdi9VA65jj86OvAa7uwcf16jI1dCQCo7jyEv979LEoDoxgbu9F6rN/Z8aBq0KivuQxjW84WzfEr2w4C259XPw+vPw9j779YNPZP9zwKTE7j3VvehvdctEr9/t6ZbXj++DguvGSzmsd/f+VhYG4W77jxemw5b4X67Nq9J/A/X3oC7XI/xsbeZT3OQrON3/rUQwDqKBej4s+Gi67A2HV2J/JLR58Gjh/BZZdciG8c2I0OCgDaonvaaHXwg//jcawaquLPPnxNpv9P9ns7vw0szOOdN70D18T+M1kYhvjP2+7HbL2NK298N85bNYCp+SbwxDcBAB8YSz+n/3K6jif3HMfP/O9tGF62AmNjbwcAPLnnOLD9SQwPDmBs7J3aMX5r2/2YbbRxxQ3vVtpuZP889RxwdAJXXn4Zxm7YZD2HX9v2TRybbeLGm96Fi2LWjv/8/ANAo4Hrrr4S/+e1F1Cq1rB81RBw/AiuvvJKjF23Ad9a2I6njx7ABRddgndcsgp45hH0VysYG3uv9TivH5vDbz/3EFAoYWzsDgDA/odeA15/GZvO2oCxsSus4xrPHsDfvLody1aswtjYdQCA0o4JYOdzKBWQeV//4OWHcKw+h+uuvxE3nLscs0+9AbyyA2vXrMbY2LXWY+3+5m7cu3831p+1CWNjm/HEnmPA9u9geEi/7tyazx7AX+/W51d/5gDw8nasWZX8jttn33gcR/ZN4qIrrsMdl61Rv6f3ZIvxnpD9r4NP4sCe47jiqmswdkWkxXkoXjM2bEjWDNP+/tjT2Dl5BJsvj96bHQengG2PYaBWw9jYu61jgu3j+IuXt2Fk2XKMjV0PAPjc/ieA6RN4+9uuxe2b11jH/f6uh3D82Byuv/EduHbTKKo7DwE7n8XyZSPW9Wtqvolfe/qbaIUBbr39TlRLBTSbTfzly98AAFy++VKM3XSO9Vh/9OojmJifwXVvvx7vvGAFms8dBF5+HqtXrcTY2NusY6ovHsJnXnoWQyOjGBu7AQDwiae+AbTbuOW971HsLtx2HJzCp7Y/hnIluV6vHJoBnn0EtYr9md93fA5/8MJDmG4X8f73367Wkj969RFgdgZbbojmnLLnx/H5V7ZhhL3/Rx/bC7y6E2etX4exsaus5/Xq4Vn87nMPo1AqY2zsDnS2HQReeh6rVi5X32OzP9z9MI4szOJt19+ALeetwG9t/xbQqOPmd75T0Xrb7Oe+cx+a7RDvfM8t+NrkDuDYEVx39ZUYu3aD+szfTHwHj756TBvXNziIsbGb1M/H5xrAkw8AAO4ae38qFnrhQHztq9G1f2brTuDgXlx4wfkYuz0fHfnr2x7A/GwDlf5BYGYWl1+2OXdvfPQfd+Dxw2/gvAsuwth7z8cTX34RGN+Hiy+6AGO3XJA5jq7hdfE1fCuMENMS6xVGlrDpiJGTm/B+q4w0Rkb7y4pKq1IsKCGmVidEvdXRkslZSam+uOt7rp4ujJyYayrI7QaLzgKQJMBSGiMxBPqKs0bx988ecFJptTKKFWSEaKBzA5gGgkOjAbDrBZjUIhesHgQA7JqYzp2rr5maFaZVywVM1xOKK0oSZ1GfcMH2RrujkCCua2il0mLFisVGjOTNb3kWlVaDECPJs1woBFgRFy1G+8t44/i8QlGRmcWvkb4y/ve/26L+nlXQOzHXUDB0QqBw8fU1QzVsx5SGugnDMCW+3mibhREdWUX3wNT84WaO4eeVT31UQKvTTiFGZkljZKCMWrmIC1YNYtfENF44MGkvjDgQI1WDKxNwI78IGTRnINTMbv1hxQmbjxghKh8g4YsF0pyrefbKoRk8sOswggD4sZvOwZ99+1VtTtG/83lACQ2Wou3LSGDfcslq/N3Tb+D+nYfwC3dtTn3fC3Fh5OaLVuGfnj+Ig5PdFfUPs/lYxdcFWhKm0KFrnQGi+0K0c4p2ylFEqJXT65PreTpn5YAqjNzMEicyui+9sCcZY/LDSpEVvqb0hSxLcRiGjF/aghjRRNSTAocrAVNh1yMLVWlatPc0sdDU0Sk9xEjPFsM++tGP4itf+QoefPBBnHVWOmk5PT2NO++8E0NDQ/jSl77kTFLecMMN+I3f+A3U63VUq+kkcrVatf6+XC6/pYWJt/r43212aHpBcZwDQDMsoP9NXv+TcQ/JNaxVyvH3RajmQ9N1HJ1rYcPywdSYMJZFrZSL6virR6JE3fG5ZuacuK/8D88dxNvOWYFzVgxoSG2bHZiKfHqiU3rjxII6RrsTYnxqITO+nIwbY1YO9WnzqsUU0K1OkHyXuhYV7bNr4nM7NtvIPLfPPbYPE9N1bBjtwzsvWIkvfGcf9k/WMz9Pxxqo0rHj/VJwT187No0dB6eBg9M4ON3E2SsGcj+vtDiM8yJb1l/BbH0ec60Q5XIZnYXkOe2rVlL7/oblZewYj3TZmu0w+c4gei7KxULqOBuX92Pn+DQOTjdw8fpRfX7xtaiUS5nnHlF2N9EMC6n7NVirqPPsqHsYfVc1vs8dBOjE86uU0vMjG4i/q9HqqM/Q814uFTPH1Srl1PVohdF1KwVh5n0l7YQOojl14mNVy3nHis8pjJ6XoBB9R7GQfV419pyl7lfGea0cqgGYxImFtvb3rPeEjBgpOgjY3+naZ5+XeS2S8wqyn4tqdL9aHaSei2rOu0R+OB0LQXSsctE+v9FikqZdaAODsYYlPW+VUvazq5qJg+hYIQJ1vq771eqw5yk+WK1qv+798bVotJNnF/E1LFneSQBYNRytbY1WB52gqPIJdKy+qv0aVivJtaa/d+i8cp7d/vj9Uu9Jwf1uAckz1Y7vVzI/+7Ugq5WLaLZbaIWBYr3pr+ljLlk3nCqMNNvQv7eQMHTUqun9Sj2H8XmFgmtBNtxXxtHZBo7NNuM5Zz9L9HcA6IRBvGbQ85Q/zny/3grzOW6vNW4J25mIGOGCdFQYWTZQxkAlWfxNOi1KdJjoin6iZTJoN4Ckw3iwWspM4BYtgt1hGOIIQ4wAUaIyTxBZInZUNWhMXIiRQiHQ0BVkWUmfS9ZGnSy7xqcRhtlz9bUEMZJRGCnp1FhOKi0DPUMm1yaxUAQVOWJkkai0cjrNqTBiajQsOAoIo33RuBPzhui1Q4vDFFQjIyqkZf1l9RmOGFkdv28cMTK10FLvG93jRquj3UeTxm3B8ewCyXXix3IVzQC7sBqgI0YAOHVGVGHEQdulCQI6kt82cUQg3a0/VIsRIwvZiBEu9kxG19OHeuoLT+4FALzv0jU4e8WAFamj3q2MTngq1Jni61nj3nXRSpQKAXYfnsVeC0KNqLRuuWS1Op9u1iSXxoh6J3NpsfTnSVIMCIIg0dWhwkPLUfCN18EFjeov/3k6L9YZec0QYJeIAlaM8/Lag8wikQON4Wt5iBH+zNsKEGX2jvlQfZXY+ywRrweSIn1EpZWgxVxFmJ71zMfCMMRHP/pRfOlLX8L999+Pc889N/WZqakp3H777ahUKvjHf/xHkaj6s88+i2XLllmLHz3rGdk+g143S5PxVJttfacml4kMAfaGZc/K0vjTj5VsRtv3T+EH/ugRvON37seDLx3OnSNduyvPGtV+BoBPfm0nbvqd+/HArkPW41E8kBJfL6f9yCyUIzWkzTbaVsro6YUm7onFpn/61gtx/uqBeJ7Z+QK67n0xFXUY6o05eXaENauQRmKeuUSbzbiOC69n7cO54vUW/4zQuOZ7ADCdyhwfg+7XAmOmoHn2MWpoU8uPx/wUO2U1agGsuaMTqnxDIiotb3jhc61k966lchItY/42M/UmJaLXJmqbj8/yPUkj84jRrOXy7awi4F5z7OhjcoXodTpbQNZ4ZR7LdQ2LhUAxiPBmabqceY08SkjdI06wsSm4YgXrPRbSowP2dzlrXKWUzhH4iN7T/XJRTJOZdMwS8XUgWRvmGu1EfN14/y9mutHDcd7AzH247pmZy5A872TUkE408HnrDMByIOp5iv5fEIq2m7mTpWq9wsgStqkzUGOEOn+X9Zdx7aZluPOytfiJd5+PAlv8Z4yEYlayvY/t+iadFnewssyGMpipt9TLe+m6oUiwqx2mNmjtWIJFOVlQ2tr/cx0ly2KStShfsDqiF5qcb2o892/WEsSIPfg2Ka6kVFp8DODWC6CqPUc78A2jZClynUzLS1ZmI0bizTCrMBIr+R2ftVNpZV3DRBtH32So45/fq2X9ZdXNTtQE/Hk6FKMTRvvLGOlLOo/oOauWCik9g4RKKwcxUko7Vw3HswHwjvEMKq34mhGE1dSzIOPzt86PiTWTtXOojwDdKeCJfrNbf3lMO7ftjRPW7wHsyKYfuCaC2E54FEZ2TUSiqrddGsG27YFBvH6W8hEjR2btBTrzfg3XynjbOcsAAPfvnND+NrXQVAWNd18coSDmGm1MW7SjXHZoOrkOdvF1GQIJsCA/HI6ccqLje+sKyLpFjADpwoirkAWkgyuJs55y8HOSCW/G6D1ph0GqIMafe9txqxZKLAnVFz83OWIkuWd5gvA969mbsbvvvhuf//zn8Vd/9VcYGhrC+Pg4xsfHMT8f+fRUFJmdncWnP/1pTE1Nqc+0Yz/xy1/+Mv78z/8c27dvxyuvvII//uM/xm/91m/hp37qp97KU+vZaWBmknzWgrB3f8ccnnr9+MmaEgD7nkrNcuNTC3jl0DRePTyjj7EgIwn1ESWg7OdG4z5w5TpsXN6HlYNVzDfb+Lef+w7ufWE8c477YqaGm2JKl33H5tSe9vArRwBEFC2mPfrqUSw0O1jWX8YGg8rZin7P2LMGqyX1eVsM+j8f2oPjc02ct3IAH7x2g6KkztOapOteY/67vDCS+IgP7z7i/Hwro+BDVjEa61xNYdEY2us5e0D2ceia7LPkUFqC5pqaanpJ+3aUg2i2Q+a3BdpcmhyBLzgvIJ3klKCieZMXFdEqOS6Qamo0jpVHx1rKSMJKmpNa7XRMkjVu5SCh2O3NWi49V50JwO3bmcWAtiCnQ/65FkNKxpkJesH8rPFFfNjcopnRRCnJVZmxRYehoTKT86X0M0jnlZWgj5Dg0b9ta2HWHM04JhqTv87wcc12qDUmOosBpk5lxx2fAYkG8kKzbaVVB4CL1yaFEdKpNAsj0uuRfnbdsczaYb0BxxVrmXTMkvWJz9HM6yxV6xVGlrDx6vCx2YbGX366GmmMjPRXUCkV8Cc/fB1+9Kaog440Q0zECL2EptNYLSVIAbObJhmTT5kC6LoUlNzurxQxVEvovky6IW6iDt8SdZ10tPnldd3bOmOyHMdauYhzYiHkneMnj07LSaVFc2wam0aGA0iC7UA2+iPvOFqHP0ucFY1OlpNtzRyHjAojJ+abWmFmvpmm0uJGSf60xkh+wreUca5EPbSS3asgCHD5+hEUgqjQB+gOBd2DvnJRczi4I28iRsiJyXt2ybluWu5XXsIyCzGiqLTi4s3mdfmFEReVlhVZ4dB24PPWu590x/YHrtmAIAC+9sIEnn9j0vpdvGD0Rz90Lf7kw9fixph70wcxQl1wJIKeBAaWwk2GYzUadzSaxYdmTscPoUHu36V3XJIDGARRwYWe8W50RjSNEYv4usQpI4edgheJLgn/TlpvsvYgMhtipOkotJ0bF0b2HNUTK01Bx4/5Tko699JUWu49shvTA3x9jeLvm+2+8TXItZfYxvHkhStwoXtW9yim9KxnvvbHf/zHmJycxHve8x6sW7dO/feFL3wBAPD000/j8ccfx/PPP48LLrhA+8y+fZGYdLlcxj333IMtW7bg6quvxp/+6Z/i93//9/Erv/Irb+Wp9ew0MDNJbkMeuOxHP/MEfvBPHnHSCvuYFTESx1s7Dkzh+/7wYfzLP33UmlCtsD1rqFpSe1gWaoT2kp+78xJ8+/+5BY/8p1vw/svXotHu4GNfeDbzmtC123LeSgARcuP4XOTnvxw3pZi+KgD847MHAABjV6yzxK3JvmOelxlDBkGguuePWs7tLx/bAwD42G0XoVQsKHREHvU2XQtOayzNV3G61Ud3H81lUgC4zlo++kMxDgjidrNrGciPzzYtjwpTdsSI2x/sq1jQwAbqptXppBpNuF6aKx4x/2Z2ZIv8uhaPPSmWyRyWarxUaCxBo1GLJc0BoJiDsk2ak9JogizfeEUGC4MLGcCvuTkmHzFiFHwczy0f0+ykY1wJOqXR6gJ1w+6xKlYIUC0KMULzk4yJz6vNmpsyNWBZPE2FY0kuyMwfAfw5zGoMTec/fFBB9PmmMKmfRUHsKiJQEWS+2VbPo1kYuYghRlTjqlkYcSJGjPl5NLytMQsjUvSM+f47xiX5O3/f462wXhS4hM3kqD8TUCMcMWKaQoykqLTszlIQBIpOyywaSZKwtmT6EaMQQBoNeclKV+IRSHdn1D0cJR0xkr3ZXLI2ShbvGrcni7sxp/i6seBJOn5MZ5iPc8Eu65auHa4xsliIkTwHmqDyYagncGmufRltO0QLNTmXQWGUVRhRHSf6uWahez79b96O+z7+bpy3KuJs5t0ZHI3FHQDuyJvOlUKM5HjdarO2OC95z4atYAEkiJGReN24NC6MvH50zqrl4dTwsXQWSWH//PuBtKN08dohfP/VEfrjk1/baf0uDr++9dLVuPPydYxGQlZEaHdCFQBTQGw6LtH8XF176fdRH5e+hlQYeezVoxo1B0c7BEGgEh0+xR4yk0rLDMIlQW3SMaV3JLqKAQkdlKxLKA8xknUsKozsOzanJ39E3U/6OykpIpjUjHnJhDdjWfpYgF4QtM01SXokqDXJ/Ggc1/9xUmmxoExCgdCznnVjYRha//vRH/1RAMB73vOezM+cc845AIA777wTzzzzDKanpzEzM4Nnn30W/+7f/TsUBDRzPfvuNjMhPOtJpTVbb2H34Vl0QuDVIydP69LWbU4+0JeeeQOzjTaOzDSwYIl/+J4fBIHywbMLI/r6XikV8N//9TVYOVjFbKONHQfTDSytdgcHTkR+y4VrBhXtyN5jc3j96GyK/olsodnGV7dHKJTvvWp96nttiJG8GHKF6p5PI0ZIs/P6c5cDSPzAIzPZjZS0B/MknbwwklzfY7MNZxOeyy8xm+RcfjuQgYrOuX50TWwoGlczFJD4drzpgsZR01uzHSq2hDJ7xqK/JehXyXnxc3PRCkV/S/v8NFefwoiEZtbUjpQkpE06JyBNP2zayjhJfGTajI1lsQxvDJN00JuafZ3QXfAxx/BjyZAL8q77JJ5m19CB4rDN0QeB1DQKN0B2QYXGhGHyeYn/bqOLbzlySFYqLY9nl8ZKikR8Hsk7KYtLqGg63+CIEX1+A9USNsaF21WDhBjRF2NX43WZ5YM6ndALMWIWRlwFjqQI2x1ipEel1bM3bdMGpdSZIMB+nGmMmEaFkawih22hpMXHFEQW6RlYkunkfBIdzrpYoyGvU0qSVKkYlfF6K3/xB7Ic6OxkJcHy8pzVdif0Qh5Rl1IWYsQ8Lwldkm9goI+xB0lZguQny/I2w3KxoGioeGA2nwGfJHMjRrI6JtLQZCCB2q8yCiMj/WWcv2rQGlBwZ56OV291tMJdImwcP7tKYySbSksVU9ixJM9Gln7KbPzI0rqxbKCC9XEQ/eLB9POevF/2OZqQUIA7tfndSIB+XrYupo+97yKUCgG+/fIRPPHasdR3cWeaxvEigkSTY2JqIRKSKyYFiKSziN1jR5dV8lwYdIQ5nSfnrxrEupEaGq2OElsH0pROqrDcRacpL4x0QqTouPLoE8hM5IekiM3/noibx8fKoCPL0xjJcjaHa4mIorX7UdS5RwGPT6ea4eCfbCotHuAbaxRdx0Jgn6uGGPFAcdAzwJN+TiotVszqIUZ61rOenYlmJoR9NUY41aO0aUNiNt566prl+6iESjiLzhaICpO2fb9ULODqjSMAgOf2pQsjBycX0O6EqJQKWDVYTSiZjs1hF4uxTFTkA7sOY7rewrqRGt5+zvLU96p9p5k+L5svk6W3wOlg6BqO9CWUuFmNlHQsHpd0ozECAI846LRclElmY50LmQvwJpS0r2U7Tp7GiMTXMqm0OLUQZwMgTUmaO0+A1wXnFQRBKi5x0fsC9sYmpTGSVxihpLQHgribjnFKZPN4tenwV9X7nNE0mDXOdi2S4o27KJXSGJEUEDya6wCGYk9pjLiT+jyuSxAjOeMMGuxutDhcKG9Aj4saxnnlzU9RpNuotFyMGZwVwYMuDYiKPhLqOEBHqGm0Yo5YoY8hRrKotADg8vXRHkQFErPQ7mIeKLNia7PTET2DZNSIoL7LcU7mMy9BO/Fx5l65VK0XBS5hO5MRI6M2xEgtCzESFzks3RbE4zdvaowIkrA2wW4qBKyMN+YNqjCSHRBIqqYmFZREp8FHYwRICiO7cgojP/bZJ3HDb30jVzOFH4vul0t8vW5UkPMW2AT9kXZsXZ0gdS2RnWyGSbHg1CNGAC7AnjhyeZshABXAUNcXmUvAnubQCaF10SvESMa9skHQ+f3SECNsDnRtKVEuodIyO/Xpe/POK/pb2gEMwzClMQJwAfZ0UCul0rIlpPNE8IpGoh2wF0Y3rejHB65cByDhouZGjlzAEsTkpMw327nC7WSU8DhrWb/6Dus9dhRubWP4OJvjGASBen51UUp9LVw7khSWv/HiBP7i0T34q8f3WrsfgQhx9Y0XJzBbb2E2LnbTuU1lUH3l8uWmqLTcwR+gQ9CzEivcrF2FQj5kwK4JI3HyTeh/roiooZHjEkfs1gqFdIBP5tI14WuQVEQdSK4Hp0RxnRffuySdoz3rWc96droZxY20/ptNZC57VSuMZMcNC802fvkftlvFyG1m2wvMRA2QwSVv7HPUuGUrjPD4ztwTropF1Z+z6MHtU/5VHwqFAJsY8mDXRBJjmYmsLz8X0Wh94Mp1VlFaK5VWTnyhNOAMvQXeWczHUYItS2eENw3S9KRhE82BaJttvi0Z95uc4utNvXElV4ujqOuS8HFW8fW4oDW10MKkEWtJfAyK38i3401bXOeUfA/y23gjmkLCCBOPPhz+No2RbhAjEv2JLASCDDHCkBUOOqKaJWHOj5eJQLIUK5IEvbuBStFHCZ6LJEZgrAiCBpsKiy0AT8QIv4Zh4BxnztElos6PpYpzXBdQQjNt0hZL8mIeerN2VgR3EYZ/X7PTkWuMsDlyxI4rLunXECNxMdqS7/vE+y/FL951KX7g6ghdmEaM5MdpfC9stUORpg5Zt4iRtNC7/BqeDtYrjCxhI8QIJV3OBMQIUQ2NWhAjAxV7YSSvi6Q/HmM6+67kMsA679nCf2w2i0orDzHiXpQTZIXeGZMHrbU50HmO4yVxYeTlQzMpNAEQJdEf230UM/UWvrPneOZxyY7H16IQ2O9XNMek6zaanxwJ47OxWVEmzKGw6cWcTHNBf6kwctyCGMnSGCH0QxaVVta14JsXf3bn4uMNxMgr06qlxLmiggp/T6waI6UCc4Z1xEhWwYfPXeOVFRTNlBPNzmu20UYndgKJfgzI1xnpRmOkLUAg2MXN7Q4giWsfmk4nE2xw11q56KXJsZcF7sn8/GHGNue0LeiMqZbS11BxgMd/o/XzMw/vwUc+9x388j+8gJ//0vP4zX960fqdv/D32/GRz30Hf/Kt3QCid4cQUCfMoFaA1MuCrbs6Y3ggwt+xrHWtWkoH667urGIhUIkJH+RS9De9C8+VgACSe0Jw9wTqfvLdQFuwzuebtY5WWEHFh+qLrtUcS04EOTQIgI5ClHSO9qxnPevZ6WSNVgcH4tiF+MznPMXXX2Pi4jZfhuyR3UfwF4++jk9+dZfoe20+kCkGC+j+RTNjbyRf2qbDwfdvc32/cuMoAOC5fSdS4yamIx+MfBiivnxm7wmt+axpJHtIpP72y9amvhPIimWy90Wixk0JUbNYh/usm3IQEoDuN9HeL0WMELXyHfG55bET8O/MatgwKaZFlFM2VECOX9FXKSrUzT4jhyJJ3qrCiCVRzGMg5XvEzxindZLE+9q5eXRkEyKDXw+KPSvF7BubKowI9F1MBIKXPoalIc+NYjf8RwfSxN4Y5oHiMJL6Eo0R/h76FIooNpZQOtmuoYrPRFRaRhEm9x4XtM/y9TPrvPgczHdZxh6SznFl0++lEUiShjeOyIoar2TxBS/EaFTAjriJ1oa5RluhyUwqLSBqovy37zoPw31R3qbN6LBorkC+iD3/rEu/hxvRQ9q+y34sei+jY3Q8r6FNj2spWi8KXMJGhRHSjjidECOfuu8l3PGpBzVB30aro7qArRojtXwqLXthJF58MlAm+RojacQIISnIGV1HHc85iUoJp59ZDJCIr9tQEnmQ643L+tFfKaLR6mDP0bRTPDG9oI6fhyohoyBj+UBFDF2V0CWZ9FuAm49SQS7ZGAUzLhYyBcnzrBNrNNiKSKZJob9HtcJIfgHBRaVVyeoQYL/XEBnk2Dp0NQBLp3kx0BLdvMBl8sqKxNeLaedF5HgbHJZAIgpeKRU0x0IhRmyFERcXraUDxye5bHO8zbVm9VAUUB+eTq8dWZzIlBgYF1BWKOH1OBDmc2gwkT5XB06e5g+Qx21qC1D186IOUKLBomLWhOWa1Jtt3P9i1G3610/sBQCsHq6y98RMDLgRD2ahSOKs8+9sGc5wdodbdL4LFg2kvIAnb42XFXzi4EpQ1OPPZ6PdEV2/bi2rQ8hVgNAQI11QaamuTcE5Jd2q7Z7GSM961rMzzg6cmEcYRvsT+Qn+VFoz6t95VFpEfZnXREZmo4ECgDUWxIiNf95cp1dYGpPUmJyO56vOGgEA7Dk6p+kDAjxGi/x3KnQ8+NJhPLP3hPqcmewh/5gQtaaZe367E4KYU2173cpBQozoRSkuxMz9SEJIuBAjpUKgrqMcMRLNgeip8hJdEh8yi4o5t+O+lMR6Ss/AkfDdlIGikTSHmL4d7xrnMRAVI8gX4QlVCVqen5sfYoR0TjhihApF/sfKb8gxkvoSmiqLJoSroGKLSTTktiM21huNBCgJo+Aj0Rix0RaL0N70/HohRuLz4tdQNa5Jzku/X/nz0+8Xv1dZzUZBEKR0O5NmUnnzL98XsqnELbG7AO3E/95qJ4h5p8YIexYlRSIyaoidWmiq9b2a00yqoW4s70rWexndl+jfjXZHdI/JKEeRfJe0YVB/dsVIkx5ipGdv1ohKi4SGT6fCyN9+Zx92TUxjG4Mo84LHoKWrXYmvGzQyiSCbvRsEsGiMCJALNsSISUe0QaAxIuE3rBgdxeQ85yNGLJ1FKjBIjysUAly4JptOay8rluyaSCeTTaNrsTyDmkmfo9y5sp2Xa5wVZcK6rGxFLpf9ryf24p2/+02843fuxye/ulOjYTHNlaRbYeE4rjsQIyrh60mllYUYcRVU+LNmCkeWOGKk3dEKd0mHS0cbm18YSXcINASJTtNBBRj9Xl9Zc8wui7k5XxqfSQVorsKj6fwB3GkUBAYCfmPiy7Z1WWZ17lAhYVyQXLAVRvIKN65ktA3tAGSvoWaQxI9raowAwH+8/SL8h1svAKAXOMke33NcBZdE2bBqsKoSDOZ7IglqMymnHAEqRy7xa5m9PtnQfYJ9wdZNJ+hizDovCWoRIA0P9/Xr1lwdf5mwcDau2QWV1lwz8h1c3VyASaXlDuJ61rOe9ex0sv1x3LJhtA8D1Wi9m30zVFo5iBFqCjo+10xR4JimFyuSNXeoWsLFa4awcrCCgUo2ZZK5f6yOG0oOWPwm3pxj7qmj/RVFC7XtjUntbyZi8eK1Q7h4zRAa7Y7WuGLyprv2bzPp6yogENqB0BpqfhmIESpaZDFMcB+IYgkxYiT2y6iBJ68RrZ1xj7mZyFKJ+HrV8GOApOs+y//J0hmRiGXXmFZAdCzWNV4spHwdOlfuV0saIbUxyq+LG/Jym8lyECN5hRF17XW2Bwl9FM1LJGzehSaErWFIgkBSNGsWdEouiqOLhK8awybWFvjhHLUA+KFu+DVMECM5OS6jgUqCjOaFh6gY5Y5jgLTP3xScV6K3RM9gNrqPrGyNcf0a3qICQpI/yjMeo7Xa9jXXZtS0zYv1NsRI8n3pxtXouPnXMULCsIKPh8ZIpVRQhXdAcI+NvUtCUwfYmSyWsvWiwCVshBjZvC5Kdp8uVFrtTqgcaE1EL34pCoF90VOFEQPq3czpIlGIEUNjxEzQ2cwmvk4OBVF0rRulru96prMvWRyU0JmBrPDXGAm17zPtotWDAIDdh2dSf+PdMnkQaDISPluWQaMFpBOCeffKHNOwdAm4RPrqzXQxpcg6n3wQIwSfPzRdxx89sBt//+z+zM+6Nhub+KOi0srwTkdiWqiphab2DLqSnCanJJlUZBtIB2WVYsHqyFdKBdbhQogR97Nrc+SSpKi8IwlIEDWjRgfeWcv6MFQtodHu4JVD+vOu5p8pvm57t9xrhh1dYQ8OVscw1UMWXu4srtd1qjDi1gCi93mjBTHStJyXS7/H5mja5miO0zqmjMLD289ZjvdevAr/4dYLcfd7L0hEyi1r6QO7Dqd+t2ooKYxMzptUWu6g1kRWSIrY/DtbQmc4DzGSF7hUSulATsb1rAeokq6zktFZ5Oq+ezNmC16AbKQUGX8WXZ/VjkeFkdh3yELNcasyEVcpkqhnPetZz04XI4TH2pEaox2WI0bCMNSotPI0Ro4xqiebz8MtC4UZBAG++JPvwH0fe7ei79WTRPZi/jkrIporLhSfjMnv8r2SdEYMOq2EniU51vfGPPD69+t7XNPh52bpMmaNIVrnFJUWS5jxhiHyB189PIswTMdDvJGHjidBjMw1WqoBkbjp2zkDJUhbMzGaIEbcKFv+eZeQMteH4SYSX1dz1I9F+oDmXBPESJIMFFNpZeg7SJprWp2EIlmiMWLGMpKmITOua8fPVyEPWWHxBV0FhDx9VSC7UGQrEolQEikEtts3Vk18VoowSTNUKB9joS0WIUZSRRh5sxbNTYpAMI8lKVakG2vdsZb1ugtpd3UNQzfaic+RI0by0DNkNSqMxA19QeDSTkq+r+n7/BaSa++jzQjoOiPu4pdxjzuU0+0hRnp2iowEeIky5vhcM5UcWop2eLquXmaeKHI5BwOqMGIX2bWNI12S+UYXVFqWZLo5xxUDFfXviYxkpUQEmBzABDEi74yxUmlZ0DMAMBwnEW0Ci7xbZs+RWe3e2EwhHiru4o2JQJA4tsmY/MAAYFRatg2j2B1ixITOE0LLZq5N3loYaRDlVD5iJAx1YWkX8qPAtAl8qLQ43DXhAU2uoYYYYUGhieKg56Ka43XTddKCWkHQYyZ8ASjBxBGDfi8IAlyqBNintL+5uIrzRPp8qbSyEuAEUz0yU1cBSzI/e2CwRlFp2REj7U6I59+YRLsTYu+x6DM2Ki2Nl9uVjGaOOs3TlUzgx7IVVOge18pFfObHrsfHb7sIQRCwQFh3kMIQ+OZLkZAn10xZNZRQaZl7n6SAYFKzSZAV/NyabV3rIssZrjnWpyzjmhpkkoAiHVy5x/DOogYXHF8EXY0sxIirAKHNT7CXmMebMwRQ84wjF3saIz3rWc/ONCNkw5rhWtJE5oEYOTLTUDSY0c/1zCT6MeZPu6hAud9q+hcD1RKWDVSsTSgqeWv4daT/YSuMcJSibf++inRGDMSIDdX7PVemCyMpVKRL062c7DvR5/ObUFYMRA02KSqtjOaay9YPo1Is4NUjs3jIIo7O/UEfxAgVZiqlgvLJOGoldZxO/nkBrGHQoDp1aYPSbay39U7zTMRITC+2z2DdkFAfkWByIr6ujzGPqTRGmC/jovYlM5klJMlb/i7QcboSXxcgA7KodKRJWzLXOFuxh8f22YiRdPwjuoZmo5FAp4GuRSdM5ibxw7PEzfOORdeJx1oixIhC66Tj/cwxnKrbA4GQQrGL2EPMxlo3ysx+3WX+u0alJUQ7aCh2IXoGSJhCjsf7YrVUyC2mBEGAYpCOvyXI+TIv+AgowblphRHhtTDRTj46LaeD9aLAJWyUqF0zXFMiOa9akABLzTjHrFYYcdBbDSmNkWRMGIZaktY0StrPmigTkYMVd8toOgO6AxMEAdaPZMO0AWFlXCFG5OLrppOkz88+rmY43dx4t0wnRKrL3jTX/QIs4utdUGlJugR4kYi6oHj3GDlKfoWR6P0ajp+7PLSJi2rFVhhZcBSWysWCQkmd0Aoj7mtohSfTs5EHXaXnUEFXk+eJ8/3yYqQJx5VQaSnH1qLhkcsfbHFssxAjQLYAu1N8vaSfE+C+x9HcYydfgDRZOVhBEETfe8wowmU5FIQYOZihabT1+YP4nj98CP/6fzyW4nsGmBBjTrHCNKv2jCOZANjF113FChvlFABMzEdUkZViAT97x8Xq96sGq6pz1CxkSmgGqPBA5+OiciKje9lsh6K9hK5FqxOmUByiQlsO6iZ/fvJjAcn77ytu7mu2AiLgDpZ4R5eUN5iPI59JUuxRz2KTFWEW4Vr0rGc969lbYROxH7F2uKYaz3zE1yne3DDah2IhQCcEptMyHgB033c8R5MR0P3CrLU6j7bUXKepMHJirpnSGXEhD6/eOAIAeH7/Ce33toaSTSv6cXVcSLF1cYehO+FWZX42oO+Rtv175VASW2jI8oy9dOVgFR++8WwAwO99bVcKNcJ9T8WaIAibyN9cNVhNtEkEVFp53dVmwyBdy7zYIgiCVONFFgKbLItKS+JrUfymCiNG4tEcS3Pgz4e3+HoXiBE6FsD0TvIKIwaLhSR2V34naXF40EDZCggu7VIgTRfL55E17qQhRnKptFiHv4cf3lVxydbIJ0CMJPdLPy9JwQcwNCscPnXFiKklCfpKKn/kzgXZr7ssriuz+FhaQLCh2CXxhVkYydKa5UbT155fjyJdoyVH+JDxwogLPWPTx4rG9RAjPTsF1mh11MM3VCvj/FVEkZTuiFlqxp3iBfYiOBEjMfqDdyi5YMbUBTXftBdGbLokZDaUQdNSDCAB9ixRQQllShox4hawtiNGuks8Akm3DPmoLjotBWvOm6PRAS6i0ko5w+4uAZujxDcAG/rHZZRwJw5fCSw8KwlroykgGrksjREAVpqgPB0ZMltgInFs04iR5HlPuq5b2udLRnJZQqVljgnD0EkxwMfxZ4KujU3McnMGYqTezl9r8rQdRGLZ1u4nI0AqFpT2jEktkdUFsjZea7ISCw/HHYBP7DkGILom/Loojl2LXogrmADYc9ESoDFy0A7uAqe+Xu84EX3+hvOW47bNa9ScOJWWqTGinFRBxxRRszUE5xXNnwodMpol7vTWhcE6kEFjJhFwZM+vJt4qdGybTHxwMVASFQulQXRcR5GOdRb5CKJvjMVViT9fgjLh+6tk7exZz3rWs9PJOGKE/NBZDyotQmCcv3pQaaZNZhRGeEEiT6Qd0P30rG0u2Rt5c519z+qrFFUD26sGasSVeCSfK+1f2Peqn73jYly+YRj/+u0bAdjRuUD2Xpyi0mKUoLYCwvK4MaQT6s0hefvjT773fPRXitj2xiS+9sKE9jfuz9BYH8TIisGKip3z4i2Zxpp+LSTi64CFdcDh45J/sP/4vDXez21qNDRGzAYqE9lPc+e0wEmTYX5yVCGIjYRvbnLZQpFMsWeuxkiKSsudXKZzpvhApsWRTmS7krdWPUwPBJIdMSIoIND8JBRhBuVUh/nhkrgpEUR332MT+R7NkY7lnmPLeJ7yGoD4/W+15SgJ89pLihVZdG556HybSLmEtQVInt9WO5RrjKg5+ul3UG6S9pVaTr6EjNKVWVq6WcZZPaQUYWRrPai0MhEjnkiTpW69KHCJGqf1GayWVGFEghhptTt4YNchJ1XSYhnvduaaELaiAzdKLtnot7LG9WXw5koWyiJbTMzj8Y2ZdEYOnLA7+xKoW7bGiCCJbelOzyr4mN1I3Agxcu2mZQCAXeNTqc9wU907uR3+Oke+iErLuBYSDv+qzVFiQZJNL8ZltGERh28+YiR/c0o0BpINg65JXqeAybELyK4hPbtaUCYoZKXh08nGRn/jGj+VYiHlDNP7KRFf551PKnkr0oRIzovu00hfKfV5G2IkDEOmMeLoRtQosdwOiNmp5tLHoaLboWl97WgbwRXZWkWlZV9reHcHkAR8ZCbPK/+3l/aMDyTcdiwnok1fn8bnouO8/Zzl6K+U8IEr1qEQRDQXWRojXhBjg8PW5cjRetJshU5dJ/NvC0YAna8xkl7jJRDvpHAT6rQkTqqG5HjSLqtuLJtKK/+aJLo1oVd31sVrh8HjKEmxh1Oa+BRhetaznvXsdLDxuCFjzXBNia/Pe1BpUWHkvJUDyvc40bCvkUe9CiPJ3pOVALOjKbP3rHNXRagRM0Z2re02nwnITrbfdMFKfOWn3qW0SbgeHt+LnYiRlo5AyNoTS8UClsXUVUeYzkgeAnvlYBX/903nAgA++8hr2t840kSxJkgKI7H4+4qBivJbwzA75pJ0LptNcg3hnm/qVLYcPu66kT6UCgEa7Q4OTydNShKUeK1kxnZxIju+v2kqLR1J0mi1lf+5GIiRAkP+0DNB73ilkH1jzSYvCZ0oddzTcy5K6hsFBMBNaWuLSSQIpLKRW+BzlPjT3aA4gCi+aArefT7OpEvz0SUBpFRa+nMhaf4LAv158qZLShU5sueXotIS+OHa86TOS+a/8/ssLSDwONcnZqK8jyqM5MG3YqNT8y3scSotf8RIVf3bKaJuNPLR3FwaIzZazKVsvcLIEjUSXh+oFFEsBDgvdvpsotqm/emDr+JHP/MkPv3Qa87PLobxpJ6PxogtadZ0JM0HMnhzpVylgO7Y2RyzDaNR8vHAiQzEiICSxHR4aGGRIUZ40jzfcaQxprjxfKOtHMLbNq8BIEeM5OqgGIgRiWObJT6Y5/DkOUqlQqB1MFn0BlMWhqHqviIOXx7UmObisFRFvfi68+c+DzHCO6TVsXxE8DRovTuxb25Q/D2h92uWIbYq7Pfk+NF9yyv4qM4Mi2aFj7gfkCB7lsWdc9xIj2JyvpniUQVyqLRsBQQPmLHpQAP24Gp1nEw4NG3nhzadnbVx1+OJuaa1sG0+o1xfBIBV6NAlUm6nJhAUAzyE6MmqpXTxGwCIWpa6bH7rg1fg0U/cikvXDSs+6xNGYUQVlwRUWokgoHtM9Pf4PgsRI4VCkOpiFAk42uhCBAEFp3TTaEnETn7bWaR4M5Y40Ppi7OpKVIFtOwk0JQ7+YLWkBHj59+QZ34d8ijA961nPenY62CGL+LoPYoTQF+etGlAJlKkMKT6NSksovi7phNcKDznrdJbOiCvhS3smp/oBuFBxxjhLF7eGfs/Y48w4tylItlGDzdEZntTP9/dvumAlAL2YojXysIR6J3TvsfQ9KwerWmI1K26SJNpTdE4OpDdZqtPc4QsWCwEGa2kNU0mi2GzYNBPZKfF1QpIwdG6CGJF13ac1RvyS0pQzONkaI/QuJJRTcM7PLCAA7mKAFpMYTZcSaiYrE4AAJaFQHAKa3iLTuml2Otra4UOL1RY8g2YMDkiptCgOlxdh+HdqBQQPmip+TElhVDGOKErb7Ae3yDRWzTi8GyotcTGg1RbFZmREwTcT51MkVFol47wAHue68xK+qBYAWDPCESOOwi09uy16/4VIHUthbylbLwpcokaFkaFalBTyodL65s5DAIBn951YnMk5jCNGFhhywQWTVQK2Fl2SQmB3sBSVllkYUUl9d9c9T27aCioJlVYWYsS/Mk4bQb7GiC3xmO+sK5FyAzGy73iEFhmqlXD9ucsBALukVFq5RQ6z+0kwxgwMBA5ZEAQpajENEs7GSpbe2UZb3Xfi8M1FjDjmWDOuO6d2ExW/+HsiuIbq2bVpeAieKROtUy4WFPqHNvJyMYi6kYxihaKBy/G6yQFRUFeNO9Sd8OWJ/TwqLe5sLBhFRyD72peNDR4QimVnQH8Bu+NI9BOHjcJIVsfUcK2kCmk2Oq2W4VhcunZYn5/lvCQUZplBkie6h5zhrHWNv/uc+5q+gsbVykXVoTraF72fkxlUWvkFBH2OkoI5/3tLqDECsKK0od8jS/5Y1ngRWifUn0EfWLgAmdatOREjWZ2CLNkkoWXkRrR60Rj3OfG116cI07Oe9axnS93anVA1ZKxl4utSxMj9OyfwrZcOAwAuWD2o0Kw2xMhCs601p024NEYEnfrW+CdnnT5vZRQjm4URVwGB+8u2hGo27WO6uUZDv2cidPVYQVKUJw1Djspx7aXVsu6PAHqMw8XXfTRGVgxWteufhRiRJEZ50jH6v2zPT3UuC4owfarAkfZX85rJ1LiMTviUxkj8XHBqIV+NEUJxSKlqzOuhECM5udh0EcY9R7OhrC24x3mJbB/9vQRl79do5KMx4oPi4OMiLUL93cocY8TGXhojLK5LECM544w8gQTFHo1LGhulye8k9tQbFHNp6lJ6s+4cBpBmK3Dlxchs4utSXUauNylBli83GjmrEo2RePq2ZsNcKjjGfiN5J7mdDCotadxpo/hfitYrjCxRIyotEiQ/f3Xk9L1+dFZzvkxbaLax7Y1JAGkH8VTZuEt8PStpZiSWADdCok91QZ0cxIiNqiqh0soXX8/tXDYWBte1AOx6IS4qrSzxdRKd27S8HxetGQIQdbGbQoXcqFPLp3jjR6VFCURZt26SyIrG8UWZL8wSNi1Ci1RLBQxWo4R7nsaIa5M3N3hON1XIRXDoVGTRsdzXkHNKkkmCijRyKQn+yGFLCiMF9Tcgec4poMsr+PDOojAMta66vPMyizAAL4ykqbSqpYLq2qFgoKEdKz8Ba01IeyBuNOoEyzgqjByaslNpmWOCIFAC7DY6LXoOP/LOc/EnH74WH3nXudbzsgX4uZ17GRDZ/GJvugtEihgJQ30c+fs2hEqCGNHXKt8CAiAPDGwdU671SRVHU4Gc+7rboNOSAmLEKSt7twBDw0MYdHdj2eLr+e8YL4z6zo9o9aLvcbu2OpVWDzHSs5717MyxozN1tDshCgGwcrDCECPuwsj9Oyfw//+Lp9BodXD75jW48dwVqrPUpjFyzIgjJqbzCyMSepu8xjArYmSVHTHi6njme6ZNLyQTaWJtDInGFAJk+v2KPspM6uVci/5KGmnroo+pWeJHU8CazkFEpaUQIxXNf8rqApZ0ZGc1u0mRFaq4JChw1AytkE4nTJLLOfu+2bBpJlQzCyPs+ZUXRqJjNY0ijJjuJ244oiKOH2JE3mhE86JHPy/G5eMSEXB5ziRN++wXk0gok0qsEAAAnbhpq+igCEoKD3LEiEmL5SOIbhVfzzsv41hiyikWl0g1RkxUgCTuzKTSEh6rZRxLGv9ElFPCYzG9RB+aqhvOW4GbL1qlfq453n0AVo0Rn3dFpwjzL4z4iqj3NEZ6dkptSiFGImd23XANtXIBzXaoRLRt9ty+E+ql2nt0zktz4WSZhhhhCXo3lVa6o0MhPzIW16QLytAYESSXbOLriTZBUt11UWlJFiIzoZokl3P0J2yBgSP5nSW+vpcVRgarJbUY0u9tJkOMmBub+7qb8EnpZl01Eo82rlxA5uQT7+Nof5lV27MHupwX89mlAKYvr2UHvGDGAx7Bs1tMz1nUoZUBXY8QI9HfiEqL5qaKHJ1QG5v37PL3tdUJtYR5Fl0aYC/4mOg5bkEQqACQrjk9t2bBTDuO0d0C+HUWmdRM/G/cVGEkg0rL9swTUsKKGImvS3+liDsvX6eSHeYcrOJtgmKlT4HT1p3l0hjRtYJ4J2M8D8vekKUxIisgmPfLfV6AXthL1lzH+mQU9iUQdNsaLxFt58+vhIpQjWPHk3ZZdWNZnLKuta2qBWRy2DqgI0YkgQvfu3w6wXrWs571bKkbNVasHKyiVCwojZG5uptK61P3vYxWJ8QHrlyHe37oWhQKAdYMuQsjtP2MTy5oiFDTmoKEr4kmAPKT7ecxKq0O94tpz8mixGK/b7XT/nQm0sRC9SVpyKM9rt0JDXFjd5y1wP0ER+NFzYIYMXUQyD+WpAkIMbJSjBhx79+pRi1hASEpLunNdZICh0L0CjUh6DrOq4Y83R/MotLiTR4SFgAgjSCWJmJNvylpynGPaRi+cT41U9ww1OnEtGyeSXMjT5D7/mcgWnyQH4DsGlYyUByuRDEvPND8gpyiqDZHL8RIGp0modLiDVT6sRyNYUzD1BcVQO+kRLMzS2/JjejXr4eEBhuwN7y5ReUTPSPJOkNWLAT4sx+5DrfH1PVrR2qOEQDdSluzoYSurtHK1zy12Wh/OdKNKgYY6U/nWPTjJGsaINcYsTU5LGXrFUaWqCWIkehBLRQCBRXefShbZ+SJ146pfzfancxkvs0OnJh3iua5rNMJte9Y8KAIUo5cK40yyYLW9WVpjLQEm3welRZHjMQL2tRCS3XTc5Ms5mYCnKCyeRz+Vo0RRzLQRFWQUQFkY6xJQNoMb+QU2SR8r+YcZYGBKdgu26zN7iLa7LtDjMSFkb6KtUBmmlx8PboO843o87Wc4gGQUfwSXMMyg4Qm49wIH/Pac2eYxqnCiIEYoXkpKq08xAjnIPagI7Il9qnDcSCjyERrwLxRGMl7t2yUXSJOZLPDjQVXtkcjS2Mkz1nPQ4y4HNt83Q/5+uQqcGjH8qCf4M+MRmkQ6l123MhZW2h2DDShoBBoUroJHVsa12p3RFSJQLo46gORt4mv56IdWQeeT4dQAgvviLusurEsR9hVgODXw5fq6zJfxAh7lxdTb6VnPetZz061TcQ6H5SQoSayOYt2GbeFZhsvHpwCAHxi7FK1lq5ViJH0ekyFkXNjnad6q5NqZOAm2XvyaCZt6/uG0T6UiwHqrQ4OMNYCV8K3wOIHH8SIDe0pagxjMUG9xRGp7uR83eb/ZPlaFlplU4+MjumDGFkxWEGB6StkaYxIEu1mY513AcEUX5cUOBp6EhbIR/WmCipGopLPlSOFuC/jS6VlFgPcGiNJPMPzJ5Wcw2UhMvKZCqIxYRjFMO1Qlhg1E/SyYoWeaJcgkOwIbPc1TGmnCPUnyjZ/Wpicp2fWR8Cer4USKi2V4zIRIx7oDyly26T7khQrUk2yAiRh9HfjfgnHaeeltF2E72S7IyrOcauWivijH7oW/+OHr8MvfWCz8/O0PFgbNqUMAp6xTBAE+F8/fgP++sdvxLCl+ZQbR9xoc3MWl9L761K2XhT4Ftn45AL++IHdmc7jtIEYARI6rTwB9if2HNN+ltJpLTTbuPO/PYgP/PeH3tTDe3S2oVU7bYmsrISqTZg3QS3YX7yBuGM6pTEiKDzkIUa4szNUK2OoGh2H04SRSSrqWZ0xeToNeXQ/2YlHO2JkX2ZhxI0YyUuAd6NNoJKwJgxayKOqIM3MESn5FkZiWp4RDTGS/dy7giQqgLTiLjByTqWIERuPcj7lVHrOqhgoeA7rhpNfYYiRGQMxYsJW64Jnl78/jba8I9tGpUWFGup4NI04gBWVlqCgZ27wgMxBzeroKhft3foJYkQvcuQl24mywq4x4kospx0QSdCY1p6RozF8inq6VlAaMWIbN1QtqXvC90vJHEtGAVFCucDHNTsMMSIUBK232imR0yyzca/6iEVGAZnsnPjxGi2mq7EI9FFZGiOuwh4PNJuenU+rhqpYOViJv8cDMdJsL6reSs961rOenWqjxgpCoBK6dK6eXxh54cAUWp0QKwerWM+6XOl7bIiR4zE17dqRGpbFjQwTOQLskmSlbQ/JKyKUigVsiuMbHvdKGhtoj254+E1WKi0PXwsw0YruYorNT8iOSRJflRA0ND9K4PsgRo7OxhojA5FPa2vO4iZpDDEbw6Ti6yl/VXCsPoNKy6QVyzKz4cXUXOBz5fdiIM4Z1FsdzDb0ZrMsM6+HOPHIxi3EcVAhSDrQrWNYJzwgbMhj59piTTnSRHujRX64vMiRvsfuBHHdllj2YQIQNhslNNOhGFmRopzymB89s51OiBDR5/PWjVLGebkLCEnxRonDCzVGzKZLGa065cVkiBEzfpcWpfh5yZ/deG9odUQxp2mlYgG3X7YWKwer7s8qxEg6ppY+v9LnkNsla4fxtnOWOz9H72Qn1Onj5GiiXmGkZzn2iS9uw+9+dSd+9m+fs0KObfQx58ccqq9mCLC32h08/fpxALA6iHm279gcphZaODxdz/x+iR00Cgc28fUs54A7IHRNXI4SdUHNGlRaDcECZhNfV0lVY9xgjQow6Re7KahWm536lBQUIUYs1GIu1I1ZGDlwIgqSzoppwc5aFj0feYiRhmBjS3PEJol29xgTBp2/uJrBAXdeeAeTF5VWXzmhpcoZ6HKuuAh4vdVRSfqaQ3DLlhhtCpyDog0x4iOy3U53aNE4szBSMpLtEho4/sy0GC2OKzCwdRYQGsykjSIz0TqS7iw6106Y3FtJ557iXiUH39GdsTqmnzg0VdfW+bwAel1uYSR/jpUuzysLtp5PpWUpwnhok2hBfnxpbPcsCAIMx+uvVhgRrLsp2LoQMVLSHGhZ4YHvXzrfsKRAl36Pc4PGeFwY6tRxLrM5+YshOJ6pMeLYU/h6mHS3yTufLo1RI5Jij6LjaPkXYXrWs571bCkbCaCvHdYRI7xRxWbP7TsBALjqrBGt2WPNcJTYWWgHqlmFjNAEywcqCRVoDvuABBVpbRpq5e8J562Kmgd5DOuToNOptPKTbabYMCBD5xYLAUvgtkX7cNWCGHGj2PWYJBqjz0+qMdLuhAoVtHKoos6D/mYzSRLRLAT4iq+ntQmyx9UMBI1GpZWrTaLHF2aTFx/L78Wy/rK6z/vjONtV8MmiqnH5M9zPpZxLrVxEHpCjG11Bfq5NLWkuR1YAyTvpUxj1KTraYhJJo1GC4pB13XNqMWnzX1bXvaSx1qSOco1LkAR6vCq9Xw2P+KdszFFShCFUmw9dWjQ/vTFUeu31AoIsbuLvyWJT7hYLoToWmeT54GidxdSO5OuyD5rILMIudesVRt4Ce+XQNL656zAA4N4dE/jytoOpzxCV1jBDjJDTl4UYefHgNGYbbQzVSorXTloYeYNRbr1wYFI0xmYHjWRe3aIx4krqR+P0RHu2+LqdSitxht2bvC6+HidwDQcmEQ/TX+x2JwTlOyUiu+SUSZK3VsSIk0pLF4ojI6eOulhEiBER3ZddPEtEpWU4PK5qf0r42gh46H5Kup8owbqsv6KOm0el5YStaxRBbdWVVMsjeYU9SSzq3CnKn13b8WzOJo0jxzqh0oqDxvhYhIbJO7cgCBhPqZxKyyYWR9cmCzFiiipKnlve+WR2nYh4b9tGkJThtKyOkwn1VkfpRgH5XUKUyDhoE18XUmkBFhSXB9ezS0QdcGkguZ1hjeIh/mc14571G8jAMAxFSYgUlZY35LojKrIDesGXF9vzNEZsYnaS/YQHyrT3SbqYbLDwxRAcz0KMuPZzt0q4ywABAABJREFUHjRKCnqmkc6IDDGSLsL0xNd71rOenQmWIEYiH4Q3lpjxErdtb5wAAFy1cVT7/VAtQVdzXwZIqLRWsMLIhKWxg0ySoEv2Kt40kJ+IId/pKBODlyRGzeYf/u9MxAiJ8tp0SaRNXs1kH87z22vlNGLE1VBm03Mz6YikiJG5Rkt9huhWXNqMIlRQRpOcL7JCQs2WhRhx6R7ya9/ppJHA3GfgflkQBKoxan+cX3E2hp0ExIg09kzRdgkKiGZilKi0xMgKD62LNK2YR0xiSSzna6focaecIiwpjkrvlYm0l5yXiWhrszyU5H6ZRRhpHN5qy6l6zUY5STzdrcZISV1DefMf/94GOy+pdiRHYyxGMxmQILysKEkBUqrRlovKd2NmfkGuMaQ/v0vdelHgW2CfeXgPACh6pl/5h+04OqPDjm1UWiQu92pGsePZfRFa5LqzlynaLWlhZD9DDuw4MCUaYzPqcqZFVKPFciRutQ4X6upwJDkT8XU7lVbeoqe67uOFp82cHnNhVo5zihok+VkksqsQI+6ue+48A5QMdCTolU6LPs/keNHfRYgRAYXMm6LSMh0D4QZlQ4zw/0sQI8fjwGm0v2xFDpnm4nksFAL1jC60Ei2Evm4QI4JraHIi2xz2vOOZCfAKQ4yYn+UFxDAMRYgRPv+mR6eF6cjNsvc6CzHSZ3AAiyjgDKovQBaEZELdM86rVi6qNfwwo9PKQy6sVYiR9LvpCl5MCjN+rNyOyZQQo7tTzUYlIem8t1Fp0TubtdakBTCTd1UUGNDz3nI7mfw7Iy5a2bPLOxL5WiLSGDEKba7j8XOmayJBjFRYUVqK1OvGMhEjjsKURvUloBgx7QNXrMfqoSpuuWSN87OculPSwdyznvWsZ6eLTRhUWpVSoikx18gWYH/ujagxziyM0HcAaa7wYzGV1rKBiipO5CNG3AkVG2Kk5YgH7WN8fBmO6s0flyQ4OV20fyzj04SyYEOMZMyvVEwohhcMlAT9nhLTrpiJX0+69qZWgmmS6242ycm1OMxOc8GxMpAfLr/JRN6Yx+I+q+mLki8vaVoDks7qrBg3y7gvPi+NPQ0aI4n+XrEQKC1FHyodM5EtKVZkxiS5CWLd3+fj8hL0ZlJfKmBdZjmk5F5JY4v4WAKtixT9FqeBEzRQmVTCTpQEm6P0WmSyDgjWtRTyyzNPINXV0JgAxBRhLGYSIom6tYRKK70P5eUXk/vcET+HXc2P3csGO1ZPfL1nb8qOzzbwd0+/AQD4ow9fiwtWD+L4XBPfePGQ9rnpui6+DiRd/sdmG1pSiYy6eNYM1XBuXETZc1RWGOEi7TsOTmGm3sKPfuYJ/Om3dktPDUCCGKG5Wqm0MpyDcrGgFmw6PxfKhJKlrU5oFRyWIEbIsePOvjlHG+VJNJYl6DzEjUWIEXJc2GZN3cRZgUGW+LoSzC5TYSQRX7dRuQEynZYsWiy/Me6O9mju5DTauwtovExjJHq/RvrLarPMR4wIghfmeEsLI2ZgwI+Vi3gwinocyZRXyDIdkYa69kGqkJAEQHqXkER8HdCdF2knmAlpJsqGYhBmHi9TfD2XSiu5j00Pp8x0UCXBhNIZYZzbeZ0WFEwdnq6ngk7X8UyoO/+/hN4qzTfs19Ep6bw3OZuBBDGS9XyY91grPPgEFFJxP/V+dUTrIMBpDNsq2Im+y7/QxuduM77X0DWRJPV5544UqdeNOREjDo2RTpisUT7FiivOGsETv/A+/IvrznJ+Vk9OLV6XVc961rOenWqjwshaphNC/mgWYmRyrqma6a7cMJL6O28Y4HZshiFG4uNNCKi0JHSR1DQAuJPt1sKIiBY0XfBxJfZsMaEUecjnKSsg6H47P24+DZTeNJSOmWSIER4nkLi42Vhomk/xq2vxdUXb4z6WiRiRds/XWByx0GzDRDvx58P8LioSqnkLtVN8ESPcj6R77WpcS46lx+GuDnqFruj462qkESNy31jiu9sacnw0Rnwpp3jzn6QBzXosyfwUhbN+/ZzjDP1UKUqCI2ikBQSOxgD8CqNShpjkWPp5dUNjJkb4EDKQ0/suEpUWLQ8++xCg70WLiWoJgiDjGspzQaeD9Qojp9i+9Mx+LDQ72LxuGO+8YCUuXjsEIK2RYUOMjPSV1cJ/yCJsl3T4B6owsu/YnKhKt98ojHz5uQN4YNdh/M+HX/M5PdXlfM6K6Ph2IXW3A0hJM5fORT8Tt+ZdUBIHy+RI5ZupeTzOJclNo0zx2OQlyWWTV5Y74E4qLRMxYnT5rxutIQgiJ5HDzrlJEsympomMSstweGgzdDiNZnBgOmUKFp77LZElGiOVFPrCZhLHm3eMc57XPLPyKHs8u6owwp6NvARuFm9ruZSNGOHf12TUVi7HmzuA0oDRTGTTO13NGaaotBq0ZrS1+dssCIJUkN+NWLbEaVE6I9PJmp1X4Fg5UEWpEKATAocNJKHrOeSOS4oWy0NjREbnpgdW0fzcjq1VfJ0KvlnFLwrwGxZkhQiR0dHot8SOdzsUXT+AIxASegxAyh2c7gTLG8eFU+maSBAjVRZgLSYXbVaHkCuA4fefUKASUflurMYK7VLtmZ71rGc9Ox1s3NAYARIq3SwB9m37TwAAzl7Rj2UDldTfsxIcHDFC1F02jTQySYevbQ9pOArYtmKKhHLTTLRp4xyIEZuegZQWuN5qixLSNiqtbgoqZsc4dSG7ECOEtNWExl0aI10h2GXJeZOaWkLB02c05IibZIoJ0mqh1U754DqVlv5da4zCiLRg1mzb71fmOBtipCJ7Bk2NEadvTPGyF32UHmN3pzHih/yihk/JNTSRJnKKIFZAEN4rk0pLonVRMdanpFMfqlBpszQ1tT+qRaoxkn525c2kqtlVSEWYXEOzuJR/XiUW8/u+W92Kr/tYHpWWBPHEURw+4us+xtdslYMTIiR7iJGeWY2QGe+6cCWCIFCc6uYDM2URXw+CQDmdh6Yt/POqs7WI1UNV9FeK6ITAvhwdCTJOpXViron/+dBr6t8+RgUWKswsaDBjSqjmJdqL2jiX+Hq5yOHh6WPlLbAmRyqHX5qOrQ2iCegwYkn3g+qM8aD7IcdFQwVkLMxUqODJaCC5nnS8aqmINXHCNotOSxVGchPtOuKhOyotv4233tQ3UVMET0KlNTkfB3L9ZZHGiAROqop6La4xIoUzJ9oJkoSlCWMXP4ckdqbQBMlGb74rpvh6dJwwKYw4OGwVL2qrkwS0ziBEd6Bn4gA+Q14EQDaVlhudojtyEphsFhVZnmNAxe2ZOtcYyX7mC4UgETA1kgsSxywruBIJnaacWlkQQkbXxWctBAB6fLPXNTs/tOtY/BnQC3RCx5vRwDk7C5mTz53TPP7qFJ2BUBCU/52uiaTAUbGc12IUA7LF1/OfX35fCC22WMWKKitKqaaNHmKkZz3r2Wlu8412wiDAESNxI5nZiEdGwutXnjVq/XtmYWQ2EV8/e7mbrUCSeLQlU1zJ2zz6LQlihBJt0bHyx3Fh447RXCdtotDRipKGQRuVVveIEdrv3IiRNCrV1VDmI75uxsUuZEWS1LcLotvMvBaSgpkay5tejAS9RqVlfNfakar2szdiRDhHnmyn+LgmRowYsbuzg55yDEliNC85z+dnNqH5xSTu+WkaCB4UyUoPMz6GXGMkicO7LhJ5IFoSNIYsqV9KFVRkfi5H+HjTuXnkghKGE6OJz1XgMJAw3Ymvy9Azui7j4hYdVGGk7bd/aZowi4x+58+vr66OiTRdqtYrjJxiMxP9WZ2VJL7OESMAVDJ7woIYUQmcUpSMIdTGa4fddFpUsKEH/OVDkcB7nUEzXdbphNh5cBoAcOVZEQxbo9JyFDmABLZq8oBKOkF4YUTilGUhRjhcmMykLlLHEVbueQGh1e4oRzRXY8QQKdYKN5mCe8n3cceAFiSeqHcJsLuKUtEcjcSeyBm2wyd9eHk7nVBdQ9pEpUKCAHB8LqHSkmiMSIIX7nhTt7NTfL1sT7QD+dfQLOrRvQ4Cvy4cXkA077MJtweiog+9L1IqrVbHp1NfD7zn4uRoXmHE1J+oC4MrnvwGWLDejZidoJhi6yzMuldZXZcyui+zO8u/c0/ijNkTF+5kuw3V1lLroX1cSjhTiNQjGDQQoz8EXNT87y0GJXcLgnLEiBSmbV73ZFxeQYXPR1FpCQJ8HkCrPXIRHOhMKi1HcMuvcUIRtjgOPi/szjQWtwjTs571rGenyg7H6NRauaC0LAFgIKYeNjUZyXaOR/HbFRuGrX/PpNJS4utVnLsqijv3HpvL1J+Q+PymfxaGoTOZlVdMyRdfT/toriQdT4jTviZFHlYtTRT5vlbaZ0qaUOQFFbOZjLqQXfkqm09N881qKJNoePCkI9fQ9BZfFzTy9Bl6pFLqIyCJxecb7VQykPtPLsSI87xSFGGyRCyntZU25dE17IS65oJT+LqQJDnfbDHAh2VDhEBiczfH+SC3vRO+HY4sd8SdGcfyQbTI0T1JHMPHyYscoagpFEhQLamClA+izRMx5hOHR3NMxqmmRuGYBkfPnFIqLcHzyxpsaTlerOJNuZjcs57GSM9OijWMjT+rs9JGpQUkG62Nv9XslCYHdffhmdw5NdsdJZS35fwVqb9LUSNvHJ/HdL2FSrGAy9ZTYcRGpSXp6qBigDspRQ6PLvTuLqiYhREbXJiMEmxmd4xE9A3QE+DcuZVojJjd/XlJM/59io6MHY8nHjcuzxdglySY6fvacTe2SxwRSBcDJB3t0bFYccmSGJXy5QI6lZZEY0TiRKuO8WZHUUANVu2C4WRmx3hLQwXJOgQAnbs/t0M9Q98lQowUrJ8NgkBdW456cFNpJe+M5LngY+j+zggKIyZipNsijKRbJauAIOK99aBBWDcSFS1NAVMfJIeJQshbo7oRYrRSSQiS7aYIJoBEY8SlI9PQA/xyMb+AwK+Trqsh7ATryNFOVYvGiCuwSq/xsmMBSYA170Glxf0NaZGoG6uU9CCJzPXcc4o7hRhZLEg4m8NM7G8tVsDTs571rGenysi/6ysXtf2x34EYoT15pK9s/bttz293QpxQVFplrBuuoVoqoNkONYpmbhJu8ix0LpC9f5hodID7aHn+j96BrI9zF/ETqhqZf8E7pSU0syblTDRXAYq9nNGEpmigZDGTTSPQ1VAm6cjm8Wij3VEd8b7ICkmXNEf0A9wvdu/5FNstsEKWlUrLeJ5ThRFXsxbTMwA8RMBZI0pC4yy7hoAfMpoLc0sTo2mxbDn6I0may4up0bHMIkf2eXFauE6H6WpItTg8aMUq5rUQxXT2ZjcfDRQ+zq2xmCBofDVG0vG0u+DrQ+GsH4vWXeF5scK++H7Fz2EYJvvj4ouv6/sr4IrFo4G8EX2x5mjbY6UFRCqAL3XrFUZOsRFUl5IaWZ2V9Yyq/+q4k9iGGGkYzsvlcXHimb0ncuc0MbWAThiNe/dFq1J/Pz5n16AwbcfBSQDARWsHMRgXdOo2xEjRjZJQtDiChdL2onZDpZV3LN4lwU3qCPPEY0NYGElrjMiKPXTO5ERzZ5o7oi7EiM+1p883BBuUSR8l2UD53KNKdbqAQBuHy8kPw1BRaY1qiJHsaraE57GmurramI2Tlf2V/MKIorYix4BB+fP1HciR667TwobwMbv1q9zhN5KVgJ/4ujS5bPKvEgqsWsy+qTUjaS6F4ysHvyXv3DE7upqC58K2xru6n7KptNz3OUu3QiSkbjqoHigTfsw8vaCa0f3Y7oToIB1kcjOLXxKO8uj7kvnzbhonYqRA5xaKO+k4YoSCbmmnX6oTTODUKiqthhxZoYu+yhMDvpbl14ie33gsvfuLheIoFQvqGi52EaZnPetZz06VZfnuVBjJ0hhxoiQM/wcAJuebal9d1l9BoZBoXL6awVYgotxNNWu4m4byfK08X6ZUTPZ7c1zWnqAlYVu6P+hHpSXprNYbBgEee+b4WkYTiklhpJoDw/z52qifS0Y3umlNgT/NfXQeG0vF131YBzIRIwJfi/ufJupGo9Iyjp8SX3eelz1RLPYj2x3GViCjcabjSTXnuG4FUU75UulIGkpTxS9BAaHItPd8ECMm+kuMGGG5A2mhLYt1QIQY8aAHi8YlhQB9nKtAl8QlvlTnie6HvFiZygU54zO94NPNtRdrjLBnY7Yupy3uxui0eZ5Rkh+j85pnzYauol63RuvGgsex+DU8Hei0eoWRU2xZiBFTLNvWoQEkCbNDOYgRWtSuP3cZAODJPcdyq3SkL7JutKaQHgAwEDsSUsTIjgNTAIDN64YVJVaD8dD5iHmbegF5iTaz6gxwWrH8TRRgiJGcQkAWt64UmmhDjJTYJm6zbruJldMdO9F0vGIh0DacpDBi7+qSUGnx57PelHWdmILtbwZ+DqQRI651d67RVu/XaH85KZDlDJQI9XG0E1FAUSCaZdWi7hjwgDNvIywahTrJ8w7YhO+TRGUWYiT6e/Rv6qyuFAtOXlnuQEtRHCrYMhEjOcNMmiUSA3d3Z9H7pdMz5XJRG8ixtgBaa0MFupLS62JecBMxInEczY4kLySM0cUkKc5p5yVxhjMKvnwepqWQhMK1kCMQOH2I24FmAY+wi4nvXRIOZSB93SV0bskcdWdYghixU2mdfDeQUztwa0qeq5JeGFlMFAeth7TOuNbPnvWsZz1b6pblb/WT+HoGYsTVoV4xEm1AQqM10ldWxzsvZit49Yi9MOIjzG12O0fj7Ou0zdeSoV/TzVGucTwJa3bCu5soeCzjTjzWLIgRSTEgQUnYE+00T6fGiKVgYeoXmNYWIXX05LzU1+qGdUDphBixj8RvqjFaa7ODXr8m+vHXjvghRlQ+yDMBrmiMWh2FiHEhRkrFAuhrOQ25yx/kKIR2W5b/MBPZkvNSRaLUu+WHyJCgbvg5t9qhNxKm0Q7ZtZBeP6NI5KEx4qKkVcdSxUu/QltS8AnFOa40Ksjt65sUgWINFFa4aXdCUHrT9ewqeu+2m5bRHAP40RZ3Y4QY4blMSUxI606dFSsWDWlvxGeSY+noyuwG5KVivSjwFFvTSPTb+Of5z+aiQtzzE7ni69GYKzaMoloq4OhsA7tzdEYI7rxhtA/XbBrFFRtGcNcV63DJumEAiVC1y3YcZIUR1q2gkr4SKi3DeZFwjpoFBEDWDZI4dnrhxtYJz0W2uEm7ifkcqejjFJhjBYSIf9VeLDPNLDxQgcQ8r7OW5VNpSUSseddtvSWk0sqET8q7rHiQRPc40RjJ/x5CQFVKBfSVi6lkvM0kzxPn86VNoz+PAwq2hHRyLfIogninCiBLfmvHI7FD9vyaz6OtMDJNhQpBArHC3hlpwFgxCg8UwOdrjOhJc7qWVcexTMFNSaBEznoWNYF9jH7NAbczTAHVQRMxInCI03y0VOD0R4xIKMJ0Xm73fc4S3ASy142U+Lqw8MA/4xP8cQe6KSh+Afb1ydmNVDSvuyy44vNJxNfdY6psvfGhkvC1LE5ZEfWciRhZpCAESBB7RC2zWAFPz3rWs56dKstKIg4oKq0sxAj5F/mFB653OBXrYQ73JehoQoy8dsRO4yzp/k75JAKaWVujoUTo3U4L6k7Smc0hYnQpi9FkBQ4LYkRSDFAJfQNpm0KM5E7X2iTH6YdsJkHqBEGg3TM52lsvIEiSy4pyu6H7kBK/iesYmslbTWPEOH6tXNRo6cSNMh5oBz6u2e6o8+tzIEb4OM4E4NaSYMnlUOavKsF2g/pZgiZSGqviBH2Sj4iO6Y7r+HrSbHfESJgSj3G7pNKi9Smv6z6JR8xij7AI09ERI1KqqgYrfjmbyVLPrtvXz9KodR6LFW74mi1tePPRGImo66N/03uyWGiMYhDnIi25zPwcgx4LAouvMcKPJdUYAU4PnZFeFHiKLUn0Rw+SLYHQYVVa0wHME1830RWVUgHXbBoFEKFGsoyE19eP9qFWLuLLP/VO3PND12I03tBdiBHqtnwhRoxctmFEK4yYXb55SVUTMZI4ZPKkHsCh5Hld9+TYuRP0ZsWerBs43owwuVyNk7BhqG8AckoXnUorXRhJqLQ4LI5MFWI8+F59uphMiLwrAabx8sbXPQgS0Xup+HqiL1JGEARqk8vVGBE4ZVx8nZJ6Ay4qLTP4a8kcF5Pf11xXsiyLnqBUsGiM8E4og3Km6uhGAjhipCMufpmUdQRd9dEYkQZX2fBkebAuoXSyI0byHdvVQ1EB/Mi0vs77CKnX2/I5Vov288ql0bMUfHyCfB+KDBMVlDy3cpQE75KVc9F21DvpCkL43iUpYAHZz5MEJUHnlfDeusfwANrnWL6WTaXlLjCb92uxYOtA8lwdn20u+rF61rOe9exUWDaVVj5ixOXn2qi0qEjC/cVzVw4CyKbS8tJmS/kxORqLXfokXGxYzVHE7a77qw2hX8LnmTSh5PhnNo0Rie6hiZIwkvpKX9ERM9n0JhO0jH2wNPFYtVwLJ+WU0VwnYR3gOiGA3oTmsppGpaW/IzqVVvr41MwazVtW8CHUu5j6iMV1UvF1fjxeKHWi+lWy3Z9yqjukfXwtBO9JNK5oHMs9R77eNTn6Q1hAiFAmsnc/C1mRH9MF1jFSFIcvYqSknZe0ycs+RwmVFmnU+mqMNNq63qz0PWl25BojQRCo90TRFi9S0YFOmzceSGjcrVRajmJFt6b0TDwQI8VCoNBpPcRIz1KmqLRMjRHuaPLOGGMjXZ0jvq4KD2xRuf6c5QCAJ17LLoxwxAi3kf6oMHI8pzDy2YdfwxW/+jX80QOvqO7mS9YOaVoXPglLM2nWkCToDJ5CQEYtZCIFcjVG3iRihAtVTxMdkRAxAlBnEZ2Tq3NZT37T/02x7PWjfVg5WMFCs4OPfeHZVGFAghjhx1totb10SZRgu5iXN7nPtgQbjXcVRibn48JI/HybWjM2k8B4efcDdSC7qLTMDjfJ9QN0xwWQU2lliRZWSkHqebQ5/Kow4hBej8YkgZPkPeZ/p/OZ9RBfn/csjJiOnAQloToEPbpirOLrDshwzRDNTMbJaSGaZvHLR2PEq8uSJRN8qPSUjlQS4GclPPoq8Rpj8kN3iRiRQtCbHs66hhghZ1ZYqEw0a9z3Ss3RcNYlnY86lZasIN2N2YqB/GdJ4Tyh0lo8N/XsFRFqkpoVFkvPpGc961nPTpVlUmmRxkgGYsRFJ2qKAOtjeGGEECP2wogkKWU2a3Tjx0Tzc+9zZZbsJfPRQfGn0kqjS3OptAx65OiYbl8wTVuqx1p0/Z1UWpb4h46b1VAmSX5rc2y1xTFuWpjbfSyFOm74aVvysQvNdAe9jV6MGxdgdzVDcn3AMPRISnPECImvS1D9JdIcSgql4uY1JjjuolU2C6qSZG+K9lmAQAJ0WjH9WNnjePKbi8pLNTw4ZbwctRDdY4nGiNkwKL0WJk24lD6Kx8aS9RNI+/xNQVGP5xG0tdCVJ2AIJJ6TE+vj8BhN0lBmotgXKU6wia9LCrg0H8q1FgL3O9mt0X32RadkyUYsRetFgafYTK5Oc/EH9ERTWmMk6j6YXmilun4aFqfi7ee6CyNEpbRhmV4YWdZfAQCcyKHSuu/FCYQh8Mmv7gIQJRqGalHCuWYgF8yikM3MpJkPNYt2DVtu2ikTCpyXUDUdYDJJYjSaf/L36Rh6Lu0eobk1LcUA6zijULSgOkiMxHexgP/+r69FpVjAP28fxye/tlP7u0TfBUg2Nx5sSai0gLjiryDrsgJMnTlkfEEmJ8se8iWWIEYq2neYRS9ufoiRjhK3HKi6ECNG55MwmDCLOXIBe523lQfQ5j2rWBz+GUJwCJxuTehM3Ami3wvqZKp5iK8TUsLddaa/0yLe2wzea0lXoY1KKyswyHIiJAFgltChpFipngsBSsKehHA73qnit6CQZRa/pOsuwGDGTLMij6Yumkvyfkl5b60aI57Udj66H3ReCeWU3MGvtzpiodhuzIUYyU/m6FXQxRREP3/VoPbzYnWC9axnPevZqbIsP8Elvp4gOezrs60ZwtbMc36sMXJwcsGKThHpfmTQe+btjXnoXEliSevU9UA3pgSipcWAZps1Q7gLHBzZL9ImMXwtE4FA/3dSaSkfLdmbkxjEHjdJaXG4r6CQKcJmPEJWSJKwKTpWobYlH7vQbKeOpRWLLMfnAuxS7ZlGq6MVq6QohIYnYoSOR3FWMQeNRaaotDy67k0qLRk9kPn+yxBI2XFd/rik+TVM6K08kBVSOmtN6L0diuaXLizJ5pcgJPRihfS8mgwx4ouEkWhj8JgvikncDXmAjkDSESPygo+0cMvnObvIKHa6HLb9K5/iO45xm4vX7EZm07Z0rRkA8NWfvhkP/dx7lX7qUrZeYeQUW5b4up7UZ4gRYyMdrJaUc3vIoNOyCaRdu2kZioUA+0/MK2SIaQcyECNEpTWZgRgJw1AJrpNdtn5Y/btqcP/XLfMzrZZBi+NbGJHwr3LqpU4nXyDaFhAAckhjEARqnoQYcXXdFxjqRuumcVK62MXXbcfbcv4K/M6HrgAA/OWjr6vfh2GYelazjJ5hEuYGPDbDpox+i89fh59zp1TW/UQaIyMKMRIHBxKNEcFzuNBqd40YkVJpmQgmeVe7PdgsFWQaIzN1WVGPj4mcRpkTYr5nhBip5ByuW8RIStBOkrTN0ISRwIV9xNfNwI9MEgByCDrvSPIJQiQFOu6sh6FeXM7vEtILtxJkmhnU+nT7lQxHTuI08g4t0qCRFoh9NEZSAY+gS9UcO981lZZszejGshAjkmTOdWePaj8vJmKERILJeoiRnvWsZ0vRFppt7D5s1+wwLcsfVFRaFupcwJ2wtGtxpP330f4KlsX+9Z4jc6nvkeh+pH0S9z6c12goEQHnSTZJ8wU1IZqNRmJaYGGXtMkCoB1LgM41qam7RYxwHy1pKLMPlnaaVxk6WhrHZCHf8+5Vn5GP8KLSYl3SZtKcz9X2XaQXWCwEYuRHg3XqA27kMY8xshoh845HcZbMn06jCZyIkRSVliDZa/iQ0kQ2LxL5oG7o3BvtjioUuuiIuNanZE2LxiT3pdWRIRdSVFqeGiNpxIhsXLPdYbRifrG7hMK5WAiYRm1bXKzUqLQEFItkKq7rhCxGk78nPk1o3Rhd4oaF0lFSoF9QiJbFa/AyacWkWibnrBzAWcv6T4sYa+nP8Awzk/LGlkCgzxSC9EMXBIGCZpp0WjZ+zoFqCZfHxYonM1AjB05E37PeLIz052uMjE8t4PhcE8VCoJyOzeuSwojJ6SnhDzWFlG2ib6bZrqFK0OV1CbFr2w7D3PnxjYKbZNEy56kQI4IFwsZFK6XSouuuNEYyHKWbL1oFIFr0KcGZh1rKOt6MBseVboYdURGLz58jRvg9lGqMKCqtuPCnnIdcjRH382TVGHEiRoxChbAT3kQ7+QYUdfOdLAUaDySfGz+e0vwQdCNxR1NKpWW+Z9RtWMsVX9eDP2+NkVQ3naAYYHYIShx8Szdi1rg3gxhR6LZWqL3H+egPu6i8BGUCJNdBhBhR3ZIxYkSwL/QZqCA/Ki0DWSGiqUoKj1LuYJvGiDgQTsH+BcUbg6rSh1as0eqIuva6tSzEiCSZM3bFOu3nxXTyTcRIT2OkZz3r2VK0T351F279r9/CF59+w/nZLH9rIOYk5WLL3Fx7HaeBIcvyPYlO61WLALukGSqFYm279+FKUUdgA1Lxdb3AwecoQud6UDoBZhOFewynVqUYTVIMqBqUrKbovaLDchVGWkmcQEbn7hJf99FboeNIKads+jNZZmoRSotYgC5ib/q4OpVW+rsoXyOJ97l/1vbohOcFSzo/kfi6anhriefI0QRUu5HPj+IEOZogjRiRF5d8UDc0TitySIswbTk1kyb03pI1rvEmQ/5/Ke1ZqxOi05HRdgGsUOxBK5ZG+MiuIc+BSLVSdaSORzNZKVmvpecF2Aoji5M6t1Npue+ZootutpyffbNmUmktlpbJW2m9wsgpNrXxE2KkmOaSd+kMkDDvhCHMm1Bp6ePeTjojFgH2didUD/hInCgmG4mptKjD3jRCi1y4ehC/94NX4vpzluP7r9mg/p6F/sjVGMkSXxckAm38q3kbPV882p2wSyot2UYDII0YEXR06N00smRg1USMNPOdTf57MwgB5Foosx48pXwzlCboeKe5LcEm7X6iZ4vQHGaRwWaSTTShjuuohL7LOU0jRmQFjpLhaEqCOMCGGNGfKX6v7YiRuFAhQYwo+LS8O918z2Y8NEbMNcNXz0RCg5BFpSURKbc5O1kJYu7cUyDMjyei7jK6zmRCh/IOPJPqj4/L734kQVCdYjGvEzR1jz2otEyNEUkBgd8zSXEeSPa7BnO6pQiu5BmUdzHaIM0u452FTWFBuhtzIkZyzu/6c5ZjxUBF/byYsPDzV5tUWj2XuGc969nSs21vnAAA/N7XdmmUSi9PTOOhl49onyU/0twfTZ0F01w+kI0WNAsNTALsr1kE2CX0MVmJUR9KUECGsjU1+8RzNP1wz32/3kpTM+V9PhpjIGjy6KOoSU7RR+n3SowYsaB6FWIkqzAi7DSn+HG+0VbzcF4/I+aX+DJmPkJaxIrGJnGa2WnOx9uQsKowItL8YHGxh6g0H0dNpZLmtSThK6cIolwMbxoquDr1mT/d6YTqPkveLZMGTizM3fJD3agiQpujCeQJemmzVkQ9FP2bx2iSxHeCnvEvwvAco8vP1ZAVnhojJirIrTGUznG5UAW6Boq8OVlH+MhzdyrWit8TyZrRjdFp64hMd6y7bCDK3R6Oc8KLST+cXIvFRc+8ldaLAk+xKefORIxYILJZSX3aaA+ZiJEYflU1xuXpjPDjmhs3QaGpw960F+LCyOZ1w/jAlevxv//9Fpy1rF/9vWZ2BksoU8ykmYBayNRNAGTJUf5CtzohK0ilX/Skk113An2cK5qnT3eGFTHiAdPm/8+i7jIFsOh4ag5CLZQZBsd1QRqTzdBe5MibpwsxIu9+KmjjsrhyARkstFZONk9yTl2IkTSCw13QA5INnjpbuoWgJ90W5OSniyHR3wkxQkU9gfh6IXlnpFRaZoBKyey8wohJsyTvOtPRKRJkgOms01gJJJw7pq4EcTUumIehHniKRNF5B05LFlwlzwVpeEjgu6zzyaSSENA7+OwLKY2RLmDQ5NT60G81PbiDqywJ0RYGVlnJH8kcUw6qB1dusxXCRoFysszm1wCyLs1SsYDbL1urfl6sIAQA1g3XNMqJHmKkZz3r2VK08TjeOzi5gP/1+F71+x//i+/gw59+HAcnE6pk8i/MPZWotOadVFr29dlGpZVVsDh3ZRQLvn4sTaUl8WMqRjJQ1KxhRefKmzyalhgyl0rLbK6RdkkzHyiriKV93hKjSeZXNYsBRkOOOGayNIeUjBjENLHOWjyX6XqSZ3DSlpbtiWIJlVarE2oJVV/hYDP2dImvnxVrtw44aJUB/ZnnRTqxxkg7aXTt86LSkotK86Q5TdFH24HHMyIqLZNNQehTc/0OyThOiyfVTtGLRLLnKQgCbd2QPLucSSFk7Cau+fH7yYvpTlosio0zci3WMcZ6LdWEUfmqZke8fmoaKF3QDzfarOAjKgbG78lbIr7ujpkoJ0x5J0lc3K2lECNnYMzUK4ycYjOTQPbCSH4HLQmwm1RaLsTIK4dmcGxWR3/w45qJRBKnzqLSIsTIZqYrws0UX5d03mZRaUm6hMhh5LySeUkVDTGiJW/Tx7IFBNHPsqQ+n+dUjBiRdJAk9FFMY0RIpVU3qbQyjqd1FRj0NjY6t/Tx9IKPT0c2p9JywSf5BmrrGC95Ovk0T94pkmU+VFrH2Pvi0hjplkqryJxTPndxYaRtvl+BNh9AD6opuFEIDg+NkWZHjnYyKQ3U8QrZ98akWbIFcXnzI9qJtsCRMzsmJU5tHpVW1rvF524bJ0WoNKWIkS5g0KViQVGvpQVS3UG+SduV9/7XKnphRPENexQQfBAjXFhUWtTjdBdS+q0UNZvHfpKiCPMI8Dn0fzEQGfQ8dcIkWQTIGwnGrkgKIxJhv26tUAhw3soENbKYeiY961nPFt8OTS3gU/e9lIqPlrotNNv4b19/CbvGp1N/C8NQ05S855uvYKbeQqPVwZ6jUeHh6EwS22VRaZnIS9Ncfm6S4OQoVntH8WDcFGRDp0h4613oZuv8cnytXPH1gu53ApwW1N0ckvan5U1ekli1XExobuse4uFmk5yJzqdjShEjNtoos1mQTEpxQ/fsyHT0/BYLgbOIwCnTokSxAHXDCgULzTZLqAri8BLvatfPy0WldcnaIfzH2y/Cr3zvZc7jcL+ffN0gcGt48MamRGNEXoihhjeJP62S9K2EcsqJxmDPCi9W+KHYZQikpLjUFhdhgCTGbTHBcSkSpuGZoOcxmoiOOf58GEYxp5QGiv99gelVSnVQWlyLw0kr5t9oCOj5Kin6g+fjpAUYIMmN1pttEWqJTCGrPLR4ujFaPnwL+1QYITsliBEPbcvTzXpR4Ck2MylrdsUA3AmxP3AKMWJSaWV03i4fqODCmDLiSYNOq95ONl/zAVcaI/MZVFoH48II0xXhpoocpshubmEk+ltKfF2iMWI40EC+08M3ylYn6dyxHcvkeCTzgeMlVFrN+Ge54+JDpVUzeGUVYiSjg4QLw6cEkQUJ8MFaFACdiCnXROiZcvq8nPBJNkcbzJ02RpeTbwYvIo0RieMdz+/YbD2eTyBALSTXIQxDDyqtpFMFQC7aSTseg6C3GaSZHBF+XI1KKy7GKRo4wXOhnOFWftGRm3rP4onN1d2IEVNUUYJA4MdSaAcPIXWTfksijGYNujPG2QojvOCbX4hh3VmsAJOXYDYF4k0kUZalxMMFooCptUZQyFKIkYaJTJEURowCgkdnUdMDIs8RI5L7BLD3vwsqrVUxpSb5AZIAn5oVOAp0MRAZnIvcN9kEAFvOW6H+PdKXj7p7s8bptBYTndKz70777d/+bbz97W/H0NAQVq9eje///u/Hrl27tM8sLCzg7rvvxooVKzA4OIgPfehDmJiY0D6zd+9e3HXXXejv78fq1avxsz/7s2i17FoR3832uUf34A++8TL+50OvvdVT8bIvPr0f/+3rL+NT972U+tux2YZaR89a1odjsw08+NJhHJ5JYkANMZ8Ry/RV9CYB07pDjNj3rIoFya+OI/CbaG+k4roPopdTkEqoqhLa1+izYSjj/jfpY6SIT+73J93f2fOLYjRTL8TdHGLSR5k+LsVMbw4xkk+lJU2MUiFzpK/sbIbgMb800V4tFRSF0TzXCvGI3fXYUy8uZX1XEAT46C0X4g6GgnUdB/BDOPOC5bwqjAj8wfgziu3Bo6kxoiOKfucUKdcKAcl64IMYESOQGCq640FHxufYCWX+u65F6IP2TmI0n4a8aAxbm4TxGaAXqN0NW/7omaymQZ8isTSPUdauuzxmoveTszdIcnfU4Dq3yMUACpsabEGWXP/l/RXt/BdVY4S0LePnyVU8PB2tVxg5xcbFjqP/pztcXEnE1Rni63naJFl0WjyJaDojI3FhZKHZSXUYTS00sTeGSF+aWRihRJGZvM1LmtkRIyY9mD5GT7Rp+hg544IgQAFxtzij0rIdy6yGk/ksyon4ujy5rBcQ3A40/166Z/T/vEKM2Z0lEUQmG65Fzwl1rEm6brUuASn8vJR0Cdmcbm++3HgOLgdfmpCmIOT4bJR07K8U3ZRi7J5w2h43B6hezJEmshWFWbujPcsmtZ/5b3rmFJWWqKiX7rqXitm1Y7G4WYHGiNJ2iJ24urColym+LuhiomBdUWl5IkZcFFzFQpDqYuSFO1EhRlsz5IEmkAS1LhRXNjVbToBq7guC+9XHxC8Bvu6615oEMSIPNPl6L9m3AL0gLeEnB/TOMWnnIxnRVkoDl2hMROvAkaOLAQu36c8A8oJWqVjAP9x9E/7gX12NC1YPnfT5cTsvFgkGFgc907PvbvvWt76Fu+++G4899hjuu+8+NJtN3H777ZidTbQXPvaxj+HLX/4y/vZv/xbf+ta3cODAAXzwgx9Uf2+327jrrrvQaDTwyCOP4HOf+xw++9nP4pd/+ZffilNa0kbIitePpimclrI9vfc4gCRJyY1otFYOVnDtpmUAgDeOz2F8MokBtS7TjKR5X9lBpSXUGJFQaWXFTHx+El59INbE8mAPoDEAE1/PQ2QU9LlKm+vSOnVCP1yLf9yIEUBnD+BzlDShkK9lokzomjibySw+mlNjRJi8pe+kBo9RQ+s0bwxH3LiOFQRBwmLRkDfk8eNx7Q8b/fCb9aW430RNQD5UX41WR7E+SMTXh+NrfWRG3tTIacXbYmQ0S2RrFGE5z24XKHaANf8ZtF2uy8jpqqRUvUmRiAubu58BjQrKQ3wdoLVQ1pDL9UwWmAavXDulIyosAzqFGf+/k3GkzNdCv4Y8jepYUhhRtMryIhEAXLI2ynGS3OdiUWnRKfjokQIRomz1UIIaWUxKYJNKq4cY6dmbtqQQEW1aZkIacOsMrDY6RZNxetGF2w1xYcREjOQlpYaqJbWomXRaOw9GcO/1IzUsY0Kp3Ex+Ux/EiNlNnEcflZWcA9wbPb3TEe9odoWb82py8+G6TyNG5N0ZPMlpu7/6cQzESLwh5nWQVA2UiVRwGACG447eI7PywojNsXVqp3ABPEtgVZQ6+cb75dIYaQsT0nR9Kek4UHF3Ouuiiu0koHXcY1OLo+VYM8hszxOQvCeZiJGUxojc+eOOnGt+fENvtDuYbcjF14ForZGinSjp3/BISpuBd9LFlFMIMBx8wK8IUzeCWuc4Du8Wdu2k+Xx9E/vy57Cm1ie9kJ03xz6DSstHi4PmMt/0L6a0PCDy9C63OqHa86QaI6QlIw00gaTIQSZJ6o/2lzFU09elxXBsS8UCgrjpwFYQlMz1qo2j+L6rN5z0uZnWQ4z0bDHtq1/9Kn70R38Ul112Ga666ip89rOfxd69e/HUU08BACYnJ/HpT38av//7v49bbrkF1113HT7zmc/gkUcewWOPPQYAuPfee7Fjxw58/vOfx9VXX433v//9+I3f+A3cc889aDTsiO7vVjsRo+G45sbpYCSubkNYULFnzXAN60ejdf/AiQWtOU5SrKB9dCETMUIFFfv6XGE8/OZxzf0xS2cqOo67GGCiZiUJsKoxJpqfADFi+jGeFKSk5abOS0g/zGMZZ+OF0TQoacqrlXVfq2vxdUujHE9220xOpRPNUSFG+t2FEZ434c+961jq+WdJWB990Eh8XT8vl8aIjxVYQ1TSyCP3V5vtToIYETSvjarCSF37njzjQuqKckqIJuCFgCAQIkZUgVOIXFCIER3t4GpS5HOUHos3r/k8T7whSsI6wr+zJYw7k7HpRLYTkaVdC7+CFBVRpddD1xiRFYk5U4EUSQQkuQLOgiN5Z6/aOGIcf5EQIwW90RWQI+/WjiSFkcVEjJjP05moMbK4HAU9S5mpE2GjWXElioi7lWhm1Dij6MKNdEZeODCFmXpLfUcizJ0+VhAEGO0r4+hsAyfmG9qLt+PAJIBsfREg7chJUAjKketCY8REO7g2XiAujIQxYqSl3xtufLPlJoEzm/Oc9tEY0bhNhdBEQ9zYJb4O6JRdgJyOCEgQI0Qh5Urq87loXe3SDVTr2kkjRnzF18nxzISEc55SgdAhbRj9edn82MzOahuXr81MlItUB0HjsGXBMTkVfD7833SNutEYaXmIr/NjztRbKmCr5VxKDX7ebIvRTnzt5bde2rkTUYS5uzlMugVAqBVSKmCu0UajrdMgRMfLmSM7njSpb2qMiMelqCTkiBGftaZmCmd6dPvRXBQ1gUdXXKsjL+pxTueZuqybxnz/fbqfCDFizjnPgiDAOSsG8Pz+SfW7xdLVKBWAZkeHrfsEj6fKzl/FECOLdC161jOyycno3Vu+PPLJn3rqKTSbTbzvfe9Tn7nkkkuwadMmPProo7jxxhvx6KOP4oorrsCaNWvUZ+644w78xE/8BF544QVcc801qePU63XU60nz1NTUFACg2Wyi2bTrBi6m0TEX+9hE6br/xPxbcp7d2Ey9hZcPzQCIdALMee8/HqGLVg1WsHaoHP9uDvtHq+ozc/Xkvi40ov8XC6H2XaUgWn/nm+ljAElDRNhpWf9OCPs6G19vxvtqoN/bgiqMp49FiXqEYeY9CsMQQRA1DcwuNFCPz6lUCDLHBMyRm11ooFaMjg8AATqZ4woBnVd03vMLyefCdhvNpj02oO1ivhFd+7o6VvZ5AUAxvg8LzRZqcbyUNz8gKUrNLjTQbDaV3xSE2ePK8XnNN9rxGH1+QRgnncP893Ih9p2K7B4njQ/2Z6XRlF0Lct8PxYWR4VrJ+d4WwqRxcm4hSXKG7RaasBdqANacOFdXz20B7jWpFF/HhUYLFfLp4usehEkcVXCcq8QqpQJajTam54mS2T2/AqgJsp34ufEzljd2KI5Rj0wviI9Frlu92VI0UOjY15NkfslasBAX8vPeY/OcfN6tEnsnF+qJbo3zHsfjFhpNFceEjvNS70CznXq38o8VxyT1psohuY5VLgZotkPM1Ruox58rBO77VS4EaACYXUgovl1jAlBs1lb3GznrDAD1HjTa0edU3sR1XlQIrLP1KWdfMOdHz5Pk2V0zmLDgkIXtNpph9poBAJetHdR+ds2vG2s2m4pKi++v0mdx1WDSoF4UPBfdWpH2lDrtCe7naSmYzxx7hZFTaB2GSsgTX3ehJGpGAlYybv1oHzaM9mH/iXk8u/cE3nnhSu24WUmfkf64MGIgRg7GEO6zVwzYhsXzjL6zG8TIggEXlogNmwJz5UKaHsw0WvRbjErLVliixdtEFUjhgnyePlRaFUtnjJTrXiq+DvBiilzbhYzguIpKywM9o4vZuc4r6X6ycSHTPZB2P9F1pHHNdhgHY/q9lHYkmdfXJbwORJ025PD4CCJz2C8/JymEHwCmaWMrBKrjh99vjUqLECMNubAfp1KQ3mN+ffmakwdQKRQC1MoFLDQ7mG/IESNJsTPU77FDpJOC9XpbRgNnFQQVUElkrWuAjEqLC9NJYdCm0KFUE8ZEmuVr8ejFbx+NEYD4oeUJ9u7E15OOKem6y/dQJdLnUahs8G5EwRzTiBFZsWHTin5VGJE0D3RrpQBoQi+M+NBXnCo7l1FpLaWCTc/OPOt0OviZn/kZ3HTTTbj88ssBAOPj46hUKhgdHdU+u2bNGoyPj6vP8KII/Z3+ZrPf/u3fxq/92q+lfn/vvfeiv7/fMuLU2H333beo3//GRBFAgCMzDfzDV7bm+g5LxV6ZBMIwRl4fO4GtW7dqf39oXwFAAY0Th7D/lQkARby4dwKdyXEQ8cPjT3wHC7uj9XXn3ujzb+zdi61b96jvmWsBQAmtToh//MpWmFtuqxVdu2898E2MWIgA9hwIABSxd99+bN26DwCwY1/0u/1v7MPWra+rz24/Fv3+8NHjqfPZG5/PKy/txNaZFzOvSwlFNBHga/d9A69NR983efxo6vu4FYMi2mGAr937dYxWgfGJ6FgvPL8N/ePPWce8HJ/X6/vewNatezHTjI4OAPd97avICiOPxN/93PPbMXrkefF57ZqMjnfo6CQWKiGAArZv24baQfv8AKA5H92bBx9+FOPbQxw+Ev383LPPINxrD3p2noiOQ8/US3ui+e3bswdbt76KbUejv3fCIPe9fC1+nl59eRe2zu0EALwR/27XS69g60JaF2f/wejvO3e8gK3Htmd+98SB6HMHTswCCDB77FDu/QWA+fg5BoCt935d/ftrX82+VwDQrkfX7IGHHsbOE/SOvI6tW1/LPd4LR6LrdPDQYUyWAKCAXS/uwNbjL2DfTDKXPbtfwdbGy7nf5bR2NMeHH/8OgCLazabzeuyZjuYwOTOLqKYX4PFHHsJwJX+93X8wOq+JyXkAAWamppzH2vd6dN1eenk3pmeD6FiPPYqJF7LH7DgUrxEHx3Hf1w8AKAFhJ/dYB2ajc5qZW8DWrVvVu/Xyrp3YOp39bo3vj9/3F3eidvjF6FidtvO8Jo9H45586mlMzxQABHji8cdwNPtQ2MnOqz0J8Hcrz+rsXe6EUWzzwP3fwGAOWCoIozH3ff1+vHA8fq8PTTjPK4yfp28/+gSAIhC6r8X2+HkfP3Q4ZmsoYMf27dh6+PnMMVMNACih0Yq+v+nYS8hOHIuu+3eeeRbjhwNEa/VzqB58NnPMjsPx+zhxCI88Fu2HczMz7msRAn3FIubbySLx1X/+59w1g8b1F4uYi8c9vy1/ft0ahR8z8wvqXKamo+v4nSfyn8X5o9F1BCC6Ft3aa/vjZ+/ENIAA83Ozi3ask2lzc3Jq1V5h5BQa7/g1Of01uglH17hZcACgUcFkFTnOWdmP/SfmcXQ2LdiXlZQiqCV1YZFRsiOPx5KLr3OhZwnNihKLE3R/U6e+SaUlSXJQTqitia9bECOMnoabVGAKSBKC1HUvQ4wkRY7kucg/r5ohRp2HCjLn1jAS7TLESLSM+GiMJDRBbQ/4eZKspHvNk4GULM6v/aefD349O2GyOZFxJEle8tEsFvQLqLSA6Bo3223Um3K6NBMx4iMQTYl9KtDx8+f6Ojb0CB3PBzHCBaxdz1ORFR4m54mSrIhCkC8yWysXlRaSuDBigTMD+Un9IAhQKRYiobiWTHAvV3zdo6BCSfNCkA9d5zQDVECQaoUoFIdQm8TkEZecV1oTyj2mXAxQLARod0IsNNpeWhwVszAiKdyybBq9J64iR6EQoFIqoNHqYEZIg1AsJOfFqQkkCMQVAxX0lYsJRF5YbDhnRZIUlVyLbq1UANC2FwSXEi9tf6WEj7zzXOw7Nof1I33uAT3rWZd29913Y/v27XjooYcW/Vif+MQn8PGPf1z9PDU1hY0bN+L222/H8HA20nuxrNls4r777sNtt92GctlNl9Ot/db2bwGIYpyrt7wHZ69464pANptvtPF9f/Qozl05gD/9cIT0+bOHXgN2RAnV/oEhjI29Qxvz8N+/ALyxH2+7/EK875LV+LOdj2I2rGBg5UrgwEEAwOVXXY2xK9cBALZ9dRew/3VceP65GLvzYvU9jVYHn3jy6wCA99x6m2pqAqIY8qcfjZKot9/2PqywUCSPP/Qa/uH1l7FyzVqMjV0NANh538vAG6/hgvPOwdjYJeqzQ68cwZ/tehp9g8MYG9uifc/XvvAccGQCl1+2GWNbzs68Vr/4zP1oLrTwzpvfjf69J4BXXsDa1aswNnZd5piff+obmG20cdO734Ozl/fjr8efBCaP47prkutj2rHH9+LvX9+J1WvWYWzsqojW6TsPolgIcNddY5nHemD+eTx99CAuvPhSjL3zHHz1b6LzuvLyyzB246bMcZv2T+GPdjyGsFzD8GgfMHkCb7/uGrz/8myB7j/f+xgO7p/CVde+De+9eBX+fO9jwMwUbnh79LPNVu05jj9+8UlU+gYwNvZOPL11J3BwLy668HyM3XYhKi8ewmdeehbtELnv5b1f2AYcHseVlyf367l/3oUHx1/H2eeeh7E7LkqN+ftjTwPHjuDqK6/A2NvOyjyvp7fuxMMTe1GPk46bL9CfI5vVm238pye/AQC44R03A08/gnIx/14BwJ+89igOjU/j6uuux/yrx4D9e3CB8Y7YrPLiIXzu5WcxOLIsei+OHcZV8Xm9NDGN//L8o9HcL7kYY+8+L/e7XPafn38AczMNXHL5lcBLL6C/r4axsXfnjnnhwBQ+tf0xtIIyQkS+5x3vey8effCbufe18ewBfGnPdjTD6NqvWrEMY2PX5x/r3pfwwME92Hj2OdgxewioL+Bd77wJV2wYyRzTfO4g/nr38xhdsRI3v3sz8MxDqJbLGBu7I3PMa0dm8bvbHgaK0edozbjC8W595ysv4tFD+3DOeRfiXVevA555GNVK/rEA4P8cfgovTx3F5VdchfuP7AYW5vHOm96BazaOZo5pPHsAf717O5avXIVNqwaAA3tx4QXnY+z2C3OP9SevPYrx+Wlcde3bgB3PAADuuP02jOTo6/zSM/ejsdDCTe96N+Z2jAN7dmPD+mi9yrNf3/YA5mYbuOKqa4Cd21ATXIviCxP43MvPYWR0edTgefworr36Koxdsz5zzIm5Jn7pqW8iRIDb7rgTnUejfSZrLyHbOvksdpw4hIsvvQwvt8aBqRN423XX4s7L1mSOwfPj+MtXtmF02Qpcc905wIvPYMWyEYyN3Zh7XgDwp3sexYvjkRRAybG+c/s/R57CQ68cBQDnWt2NNZtNfP4fo/23UEzu0SdffBCoL+CdN92Eq87Kfsf2P/QavjUe+RDLRmXXohs7+PAefGXvSyhUakC9jpGhtL+yFI0Q0xLrFUZOoXFBN4UYYUkz6lZ3oST6mB5EpxOiUAi0pFtWlz+N4xQ6riTiaH+0oJmIEQkKocYonXhyJC9hWTWS+pIkZ9VIPCZ0Ze6kj64xkl0MUNQqBp+qlAYKSM7BqzDCij5NYREmhRiJr2U1p4jFeR7peNI5UnAl0YMxj9fg4l5CHQSA8a+y6y7VGDHPjXdMtzodFAv6deLvbV53tcnpOiBAjADRfZltRBRQciqtOKlvUGm5EuBBEKCvXMRco42pmIubJ0f5vbMhRtScBfy1HNUifTaCIEC5UECj3VFrjgR501cu4gSaWGDFJVfxJim0mQKObvojorZLEr3ZxzKLDoBMm8jUn5LqflCBgWu7ON8tk0qrI1tDKyW9KC0p0FVNikUBlVYknFnAbKMdIUY81l3FidqgAoJ7zFC1hMFqCTP1luKqlxW/o8LILENjuaxSLGC+09boEiVFjiAIcNayPkXBIi02nL2cU0ctXoGCXnWtICgs4J5q+6UPbH6rp9CzM9w++tGP4itf+QoefPBBnHVWkihcu3YtGo0GTpw4oaFGJiYmsHbtWvWZJ554Qvu+iYkJ9TebVatVVKvV1O/L5fKiFiZcttjHJ40RADg028QFa9+6c7XZ8wdn8NrRObx2dA5H5lpYN9KHFw7MqL83O2Hq+hyKm442LOvH2SuHAADH55rYezzRUemgoMa140RnrVLSvqtUClUhvsU+D+jI6L5qxXqPanGzT6sD9fcOomNVy/qx+iqV+LPp8+nE86tW8p+FaqmAaQCdoIAwoGbCYu6YSuwnhPH5kfteyzlWNf59K4zPq5DQduXOLxaz7yD6XCw1gqpx3U1bHgvlTi+01Pxc14Iar9phdCzyFfLOa7Avugf1Vgflclld90p8r6rx/WyH+e8l+Z78WOV4PiHs10h6j/sq+t+WDVSd60OplKSuGvFxSoWCc1x/TCHe7ASpa5E7rhZdx0aLNXjG4/qqSdLXdd8lpnzqOE3jegYB4NxVwygVAkwtJA1kg33R2p93X1cwwWY6tutYNfbMq0Y54T1udwDE8XWpmH9e6pq3O9p7bK4zptE72Q6BQB3L/WxQfqSDAB3L824dw84rBD1P7mtIMWErTPzvWrWCcjk7Jav0CAsFgNZCwbFUY14nUD+7xvRV4/WwE6pGU9ezPdCXnEszTPz7rL1E/Z32lDAAhciu615j8wtjlITkHgMRy40qjDieQW7XbFqmCiOu571bo5ip2U72zJbwWdywTKcEXiwfa/lgtGaQlu5iHutkms8cl1Z0eoYbLw7QYmWK+QJulATvTE8oTNJFl6xxc16FkRgxMm8URpoCWiyG/rCdu32OOhrGpD2yWUpjpCVPvqjCSDvMRUlwsSxuEuEsMjNRK0kuczodOZWWIb4uKGKlOsaFCXog0Rghk3RxczodX5EuIHmG+bESjZH87zHfL/4dNp2RNuuCz6NmM8XtyQl3mbrHTX8qLRJG80moUqFhkgojnD6Lo0S0woj+vVfmdC6Y39XiVFoiIcHo3KgwMiC4jn2MXlD67PICAi94Fl3CdByRIRERNYoOgEybqGKguKTFAB2pIxtDCAkq0HM6wjyrsOJXGIYKFZl3PFUwb7URhqG4CMsF2BNkheB5ir3NOeJCFxYdNi2POo1pSZAgEGmPna3LizC251Ba5OB0WtIiB++gXkzkBt1Oq/h6j7KqZ98lFoYhPvrRj+JLX/oS7r//fpx77rna36+77jqUy2V84xvfUL/btWsX9u7diy1bok77LVu24Pnnn8ehQ4fUZ+677z4MDw9j8+ZeUY9sodnWGhAOnFjI+fRbYwdOJMWMh+NEy7P7Tqjf2cTKJ2Lx9dXDNQz3lVTTzY4DU9ZxWf5WEATot8SBgEHVmbE+ly1xUCPDfyfUsxkzAXJtRu47tYTxjxnLSHxjU0i8WypRl3g9GcVMc422ahARMwGQkLpFZ9E0MxY0Ean0fLiayRIkezreamUMltKdmn7fqEB8nZDbgJy2FNDzC176oKz50kRFa+LrJwGBS3EuvZ8SceOR/jJuvihBDZUKgSh2NxEKMs2+JL7ohLL8B2+Sk6KGeZzFYxLxOHavJPkZ3mwoHcfjH2njGpBu1orGyeI6rtkp8d+VxiKJZYvG8BhSdi3488bZbNx5nWSNankKvbc6rDlR2Gy1cTmLmTze1yvPGlX/Xjzx9ej/vJmsLVjnAWA1K3IuZlxHqHrJ/nO6Wq8wcgqNFjOizwD0ZK8pHp718vHCiKnfEY2z39Z+llgiqzu6dUf7shAj7q7shNKprSNacpNmdiotCeVMXTmMcoeHvjYSX48dHss58WQjN58E3fJBHU4oQ4wkzgFRafmIlPP/51Np6ddQ0bIJ5mg6VxL6LR682PRCbFYqFtR7M2NxhuUaI3rQoyNG0oP5e5tnJpWWFDGSOHIJXZqbSkt/HqVFMz7PqYWkK46Mj+f3kb9L/+GWC3DTBSudx6HvbXZCr05xcnCoGCtBjHDdJYlmBZ9Lsx0q58NFU8W/l4tlS5AfNvH1XI0RA8Uloe3S5ycvIFRjXaUw1NFzUo2MRiuiIwupiCDQGOkYx3I9GzWGePRJsJtBiGRfACLqSdv35Bnda0KMSBxUjrrxdTa5ALsYMbKCa2osnguoECNaQVBGqdeznp0pdvfdd+Pzn/88/uqv/gpDQ0MYHx/H+Pg45uejBPnIyAg+8pGP4OMf/zi++c1v4qmnnsKP/diPYcuWLbjxxogO4fbbb8fmzZvxwz/8w3juuefwta99Db/4i7+Iu+++24oK+W41M07hRYilYgdZseaRV47gyEwd+9k8bYWEiViYeu1wDUEQYP1olJzgcRUJ1wKJf2HzgWqVZB/lxqmes/ySJBGY+MlZ/jtpNdoKPdLEY9nia0mR5aqhRJBsM+M7aYLOLBRJ9++hWtLsc3xWRkFsovqpCJNLTW00GtIYSrYnzWS5h1bXsqoVRig5mb6/gFx/04xLJYURIM3AIPFleAOVTzNZlTXzmGhvftyTkTCtGIURafL2e69KaI4kGpAAMNKn5yQkvjF/5sUxCU9kC+P9KtN6jdD5svulEBKthCLZp4DQbHXkBR9WTGm35b67iklYLk5aeGi0+XnJizALHs8Tp0iWHotfY150d77/TN+22ZLFB3SNpc2J3DYuT2ImH31FTmN1MgqgNuP5SLruUtrotSNJYWSxdCMBYP2ojjJbzGO9VdaLTk+h2ShD+L/TGhn221MsJN0S80YBgRddTOszig4Ad3jsG6lCjKQ0RmIUQq7GCDllHS1Zmdd1T07SAl0LAfojRTnjQ6UV/9+VoDPFrsmahqOZZx+56VxsXjesfhYVEFRHUpIMdI0zi0v0/zyEStWgxGm02+I5DvfpHf1eVFqtjqjL3BynqLTYs16SFkaMDnX+HS1LhCBOLqfE12WIER7wSJEVJrWbj65OCjGSgRLh/z4nFij+F9edhY/dluYTtlkibi7XTuHzmYzXHBFihAX7rmKveZxmS07nxsdFDqq8cNsJWUei4HgmRaBvFyMXDvcWARdohfBj8e4s1/G4fke91REXsnhQ61Noo+fAB8UBAJsY5VR0LA/ESIOotOTFFL2bTuaaaYgR4ZjVQ1W1Ny8qlVY8HdpLAJZEOwO7jHrWM5v98R//MSYnJ/Ge97wH69atU/994QtfUJ/51Kc+hQ984AP40Ic+hJtvvhlr167FF7/4RfX3YrGIr3zlKygWi9iyZQs+/OEP40d+5Efw67/+62/FKS1Zm5xf+oURXgR5ePcRfHNnhAKqWBoogMj3J9qKtcNRUoIKI9x4sSLPH+T7KLc2G5/l69oQIzY0AZDEAVbEiHD/5ogRdU4eKBPtWDn7o3le0mSUOkcj9nT5kaViQfnhipLEGV/o6A9JYj9BmZiIEdr/E980z2wobFPn0DRpQjVVGOnLUWpmli4gyP2zBU86Vh6jmY2X/B2Tdq3nGZ2XT4c/ANy2eY3y66SFEbMIJfGnObqK1oyCA2XPE9lSlg2TTcUXacILN1JKWyAq9EkLPhTjtjyKRHwcz8W5mAp44cangYrms9CUxz8KndIJGRImf5yG4moklG7SvEmd54KERaKmJxsFoBdGfJAVq4drWB8XH6Tvl6/x9Aidl7S4R74BsLjxlel7uJ7b09F6GiOn0GxIkEIhQKkQoNVJqJwSEfCcpFk54uE3ESN5yUDi8uuKSqsLxEiVQX8l8wOSBacR66dkOd3c0jRQ3VBpddgc0y96QgukO4GKZkmwwK4eruGLP/kO/NbWF3HvCxO44bzlzjEaYsRbY8RAjJTznyf+WVW599AYIfOi0mq1vSr+1VIBc412kuRkx6IkpKv7ySyAFQoBCgF1sKeDuLawcJMWX/dDjNTb8ntsBiUuXSJutA5Mzae1brKKtv9myzl414Urcf6qwdzCJrdyIXGuGsJAE2BUWl6IkcTRlFIzcXo81e0j6vBPv5MS8XUg2gNKxYKIPs6kCBQXOXhHl2eXJR1P2tWVBCGhlgDJpT40INfSvYGKXwvNttiBBqJ1F8CbEikHpGis6DMz8fokWdN8qdm4aYgR4ZhCIaIJe2liZtE6n4A0lZZGtbaIx+1Zz5aShaHDIQFQq9Vwzz334J577sn8zNlnn42tW7eezKmdcWY2cB2YXNpUWhNTdfzW1hcBAB+8ZgP+5sl9KVT6oZhGq1IqqHjM7NoEDPRITpOXTWsSSBAjQQ5q1l4YsftAnAbYNPKzpcnRelueDEzpngmSo7xDGoB4H64a10MhdQR78XCtjLlG28kQoY5loj8EPhDFgu1OqFPaxseia+JGjKQ7uYsqQZ5BpSWk+zH99BEhYkShcxtyxAhHlvuwPXBNTPN54nmak0FhYyaXpd85UC3hfZeuwVe2HUzROmdZmkpLnmhvtkO0Q2EBUUOZdNmsJWyq4YXRtkeckDS/JugPV2NTuZCsG9I1LZpj9Blag0VMBbaGNw9aLBX/eKCC+DWUNP9WSlFe0ue8NCotYbyqinMMWSFGjHQRM5H9xvdfjkd3H8U1m0a9xkmNn3az3UGtXBTH/X2VIoZrJUwttEQNed1arVzEioEKjsYF/R5ipGdvypIkv57oSyfA3HCypPNBRr8F2DuFxOLr8yZiJB9pos+xLSpw8DF0DEnSjPN/An60QvROtx1FmJIlIIh+lneaA9H5/fr3XY7Hfv5WXLZ+xPn5KgsuVMHMVRhh0EQaCzgQIwyZAkSBCCBDjAxWSuC5clEXN+8S8Kj40zkocWPerSNEjNjQC3RsW/eThC4JsFBpCTVGNPSMKoq6ukcSJyn6v/yZJ45p6q7kjlIWYqRQCHDB6iFxUQTQOwal/ND8M1SMHRQgb/q6odKK59doyztVAINvWCHG3IVbwC9YN/cFqf4M572W0gpypGGj3clNrNiOxQMX17hCIdDe/4blfbRZQqWVFLIkzrqphyOl0tpkFEZElAvm+iQKQpJuOt/9pFu+XKLTWiyuXAAoBdG50P6jUa31ECM961nPTrJRMwW5KUsRMXJgMpoT7YHH55pYOVjFv33XeQD0AgcAjMc0WmuGq8r/Ip5vbhplYc4+0mehVOZjcpEVyqezoVP0cbYiSupYHlSdUh835TcJYmOTSkuKYk8QszRO3gBkIu1de35KL0TQDKXRbnNqoXgMXRNnYcSSJ3BrjMgS2WnEiB+V1lxdjqzoY3kTHzpWrolpcv7z9+VkUJOaSBifxOMPXLMBALBqSEavWC4WMMjiVFF8ZkFkuB53nsiWaoUU46ZhwKCZ9WjWkupjRHNMn5drjvQetTjVl8exkmKFPC72obeKxhFiRJ5nSd7tjvh+8WP50MDptOqyIrGV7WERUfZkt166Br/4gc2LRkHMT7vZDrXmcMkx18RNgNIYt1tbN3pq0Clvlb2pu/s7v/M7CIIAP/MzP6N+t7CwgLvvvhsrVqzA4OAgPvShD2FiYkIbt3fvXtx1113o7+/H6tWr8bM/+7NotVo40y0LkZASD++iyJFVdNHGVOLFWEOMtLU5mEZcqNRdTibSGFFwQVmBg4+JjsG6aSSIEcXFn438MI0+whE7tgWIC+Ry8+lI6MaqDEEjpUsyabES2rPsa5gUUwh1477uZIVCgCHmXEnokngxwAcWSvNUXULsuos1RtSzmLwrNNZKpSUM4oqFQPuMN2JEowvIv+5pxIjs2eDzmrJQaWXRanVjiQ6KH5UWPQcKMVKVa4zMLLRU8pVz1NrM6mj6BAYs0MxzREqFQCVqzCKHhCKQipRSp5FDyZvCLitA77QSH8sCaQ4COa90nXE9uxy/vi67/TavGwafjhwx0g2VVrw+eWmMJPdZShdA1o3GCACcHcPJTwb1Q5aZiBGdaq3Xk9OznvXs5Npk3ExBa/eBE/MixM6pNNIYuX3zGvW7n7rlAtW93Wx3tDlzfREyG5UWj00S2t30npBJpSXwwyuWYkeWyDZPUJqWNIY4kpwW9KuzMSzVKOf27VJaIWIqLXOcPNlOAuxkrv07rQPpPhaPz7mvRceSx0yEgOWFkTgpnFUYkdKlpTRGhFRa8ffa9CazTBNf99EYYdfepFnTqbTefB7A1MTz8etuuWQ1/uBfXY3f/uAV4jEcNSJKfrP73vFs1uIxk0/SnMckUpqluuexuLi50px0HisuFHfY/ATPE32GihU+DVS+FGF0vXyo2Wz6mz7XUBVGfGjqWm0xswTXdvFZc4EoV7BmOCocLjW0QyFI7lej1cHkfFOtzcsE6yLpjCz2efHGjMVEp7xV1vUZPfnkk/jTP/1TXHnlldrvP/axj+HLX/4y/vZv/xbf+ta3cODAAXzwgx9Uf2+327jrrrvQaDTwyCOP4HOf+xw++9nP4pd/+Ze7P4vTxLIQCd0gHmoGKiCPBoqMKHR4YUQVODKO1W/oVahxTXeynSNG6irR7q7AJ5yIsmKAKgS0dSotyQZlQ4zYCyPJpsnNJ/HYjXE4etdUWk13Ecu8hlI9E7JhzbkSOJqamJ38WKZeAF+UfREjZQ0xohcauPlAZDkqZ0CsMcKKX55UWtTZ5qO5QB2DJL7O3y1am4LAzyG3ma514eEMx+OUxoigwNRnoGAAAWKkS2gyD7wlQTfnXjXfL5n4OgXCfjBjXqzwRXH5UnBpz64XlV7HiVok67MgECXr7kC1hAtWD6qfpd0+a4dr2px8zmumLtcYqbCg0ec9AYBl/WVV6PTZg86ONYMWq6APIBFfN575xT5uz3rWs+9OI2T7JWuHAEQJGlN35K20hWZbUVB8+MazEQTApuX9+FfXb1T7QBjqfuj4JCFG8gsjhDYGHFRaSo9Nb3aT+CQcIaqOlRFv0flwIVkyXzod3hgmpWZKCvLucaaGpG8StukRu5NxAXbJGJMlQtIcEgQJOnehlW68UEh5J5WWBTFCaJMs8XVh3GQyGQzXZHFTgqygJjlB7MM1Rjw6/LlOIBWmeHGJGp9OBkVoSjvFo4kkCAJ839UbcMnaYfEYrjMiaYQsdZGgV+9JJ/RK6qt3ud0WN1B2qzGiCY6HsmcjKfiEYi0Ifqxu6K10IXpJo6EeR0oavGxFGB9tkgWP8+L5KtXU7MgTVjQ2Cvl1J9tEjWFLMA7h1/7obESjOVwriRpVyUdYbBQH9z/OQMBId4WRmZkZ/NAP/RD+7M/+DMuWLVO/n5ycxKc//Wn8/u//Pm655RZcd911+MxnPoNHHnkEjz32GADg3nvvxY4dO/D5z38eV199Nd7//vfjN37jN3DPPfeg0WhkHfKMMFUcMB3ILPFwCZVWy0SMZI/phkqr36JLwsdJqLR4J7wk+c0FbMmfzqXSyrx+7jdWaYx0wtxrkQULT4TEFqdqqmmMCKm0TPF1EZVWSqdF3uEP6N1PPoLIdU/6mLykPtHqiGHhvPtJQX0tsH9hsQKAxu0qQToAPCHd9qDS0gs5UuojQIYYKRcLXrRZNuMifT4BYwoxIqHSMp4LwFNjpIsgqWEJNCVjAK5NlLOuGcUU8bEs9Fb+2inSxECCpOtKzFJIlwjoGiM+hUAAuHxDQqclpXEiLQ41TuCYmogRL42RdkesZ0QWBIGChvsE0JevjwJnnmw72ZZCjAip1nrWs571rBsj+s01wzWsGIg6LPcvITotovYaqBRxw7nL8fc/eRP+9t9vQbVU1Hw+jrKwI0byNUZEVFoNO2Ikb202tTgAjhjRx/H90oybpH6JRjPr2axBCWyJr8DFhgFGieU6VoY2icTfSmkzCimnzPNyah8yoWfzWtBYZzNZXPzizXWUbLYhggCIuf+53zdULYn9mGqqgCDwO5m+jg86l8fORN1F8wyCQPnxJ4MiVImvd0Gl1Y1xxIiEgocjMsjchRGeaJf7uPRsLDTliDFOTStBwZGVitwPlxVUeN6gJVwzAH5e8T32iBN8iwGKSqvVDWLETzsl/U4KmskoT9jsyJF6rFE5oT2UxxSkM7IUaaDK7Dk8MhPlxFcOyqjxyEdYbBQH9z96iJHY7r77btx111143/vep/3+qaeeQrPZ1H5/ySWXYNOmTXj00UcBAI8++iiuuOIKrFmTwIjvuOMOTE1N4YUXXuhmOqeNZVGGpDlRQ+33NuN860B20YVbv8UhdvHxkxM91+iCSssqiCwXUp5eSI4poZzxKSyRJYiRxPG2JejMjiIyKYd/t5YUEORd0mnx9bb2e+txUt3pvogRTyotRhHm46ASnJAEKflmLUWM2IoIxRxYuI8T0g1iRE+0y7ruFYw9nptPUpoKDZOWwgjNJQtB5mOcf9mLSis+N0pyDHhQaVGxh2tmOOfHrrvEQdWLAX48yg0zgPYQX/elJmh6Oo26dorfsXjiQrLuciFR6XpdY0GtjyYMAFzJCiNeWhzL/aiq6P2nZcQnCOlGfB0A3nPxatTKBVwad0lL7JpNy/DXP34j/ssPXiUe42sKMUL7MhP3XWoQ9p71rGenv1EzxUhfWfFgE3XVUrAD8VzWjfYhCAJctXE04QVn+x8vcpAftGwgodIgygwAihZEF0SXUGnpsUyWiDo3U4uDH8vcs/jPJgWxr15agyXoXBTJvDGEHysXnctQm4CctjTZu6mgIve3TCotJ820gRiR6qDwxKMZQ76ZmIliFBvKHkj8VSddGotLpcLrfJxPElajY/XwV/kcicaZP0/0nJwMitABo8lrsbvaOWJERCUcn2udNdiKESPdNmt5JOirvIDghRhJijBkcsSYXDuFj/OhS1MUS54NVLTGznu8JxqtWBfnRflCP8SIPMdVssaq8vfkrDiuW4pJfV6UOupZGCFR+PNXDeR/8E0aR4wsRdTNmzVZ5o7Z3/zN3+Dpp5/Gk08+mfrb+Pg4KpUKRkdHtd+vWbMG4+Pj6jO8KEJ/p7/ZrF6vo16vq5+npqYAAM1mE83mqYdJ0zF9jz2/ED3k5WKgja3ED9ZcPTqfhWa88SLMPEY1XgRmFxrRmHqyiWaNKReiBWSu0VKfITh1KbCfTyUeM99sa39XlW50Mo9XQqg+O1ePz73gvm60UB6fSQKaIGyj2bQ7YEFIyIhojgsNuhb5x2o2mwoGVm+0FI9qYDknOkazrf+NnIMg5169GSMB24VmG50Y3llwHKuApCASPU+CexVfh/n42VDPheB+AdA0Rgpwj6Hzmm+0Em2CsO0ctywuwByajp6NAn9u4+vTDh33Pd5I+fHIV1iop9cUep6KGe8IN158qhRlz0Qs/YP5RhP1+N0vBI6xIXWNRfeUil+uZyOaV/T/yfnk3NV1iN/Zcil7HZFaEMYBHNMKQif7GSSjS0jzq1FRMmccXcPjMf1WpeiefwCiIWwn62fgHqc4W+tN9uzmnxeNmYvXa3Lyw072M0/XYSF+J9Vz6Hgn6bo3Wm3UKYgTPLsVtafUkwJhp5U7Tq2fzRbm4zU+bw8io8Lb3EIjWZ+C/GtI9bHZehMNz3V389qESsv5bjHbuIx15nbaaBrJJNP6DWrJIHQfq8yep3rLfz/52dsuwH9473molgpe7+zbNkWokcXYt5rNpnp+aU+hd6xc9Jtnz9LWu34961nayGcY7S9j/Ugftu+fWlqIkVh43UaFxRMMvMhBvhP3LaulIlYNVXF4uo5Ny/sxMVXXOrjzmg2yNEYkDUomijU6VkbDHy/0tIzCiDABZmu8kCNG5EWOkmp2iQscwmRgljaJJEmXFl+XN7y1O6HS0nM1UakGxVY7pRdA17Ib8XWly5hRGJFSn/HnetSrMKLTlkqaE2tdiq+TEHirEzJhaVYYKRWARvukNEhSAfTwdLr5bzFspC8puPok2nkBwY2siN+Tjp9mhbVpUFqs5AUEkXZKuuDj1BhhOpo+yApTfN0XxeFDuZsWX5egZ5J3W6r7ASRMF1SEETXJMVplKTuHhkBS64y8yLGUqbT4M39kJloDVgzKdJduvXQNHvvErapZYrFMo9JagqibN2tehZF9+/bhp3/6p3HfffehVls8CgbTfvu3fxu/9mu/lvr9vffei/7+fsuIU2P33Xef1+efPRoAKGJm8gS2bt2qfj83UwQQ4JHHn8DUSyFeebUAoIDXXn0FW7e+bP2uyWPRZ5585jlUDz6L549F3z03M6V9N7eXJ6PPHD4+qT7z0mvR9+x9/TVs3bo7NWa2CQAlNNshvvyVrSqBPLsQzfnRh7+N3WkfHwBwZCEaO7vQwONPPhWd+9Rk5vzImvF3f+vRJwBEi+a9X/0qsph9aI6dEPjyP23FMxPReR49fMh5rEJQABDgO08/g+OT0b+ffvJxTO7SP3eiHh2j0Wpr37l3X3T9Xn5pJ7bOvJh7rG5se/zMHJw4Ep9/gO3bnkV5/zOZY2bYPfvKP23FXD2+Vw89iJcyXttXD0THee31fdi69XX1XLy+x/5cmDZ5JPo8ALyx73Vs3fpa7ud3HI6Od2DiEOYXAgABHn7o23gl41kiO3EoOg45Bvte34OtW18FAOw6GH1nB9nvZicE2p1o2Xvwm/djIPbDm/E1evChh/D6oD7mhePR987OTDufp8Z89D0A8MwTj+HIjvzzAYDxA9E5bd+xE/tmAgAF7NzxArYe25455sAcAJQwO7+ArVu3YuJQdNztz+U/GwDwxhvR+UQaHgGOHz2szoueg06z4TxXl+2eiuZ4YnoGEUtigG8/+ABecOzZk8eTZwkA9u9+EStX5K+3r++P5v36gcMAAqDTds5/z3Q0v8npWTzy6GMAipifm3WOOxo/g88+vx1HjkZrxrNPP43WnuzoshU/X9/69sN4fQjohNEz+MD938BgRiz4xuvRcXa+vBtbmy+r/WP6xIncOe6fjc5renYe27a/AKCIQ+MHsXXr/tzzWoif3Qcffhy07n7z/m+gP8dL2BfPcdfLuzF4/GUAJbSadec1nFd73pOYOBw987t2vICth7Kf+f17o2O9+NJuTDYAoICXdu7A1hNupGmjDRRQRAcBXn/tVWzd+opzDABMx2tKgBBf++o/Oz8/Mh19nmz3y7uwdW5n7phjh6Pzembb83hjMr4WL+7A1uOnN4KWApUdO1/C1rmdyh8IBO9mz/Jtbm7urZ5Cz3q25IzE10f7y1gRd1kuJY0RotLaYKHCIi2yBqMeBbJpkt9/+Vr88/ZxXH/ucjy557iG4mjkFBH6MzRGJFQwZcXtnhwrS48jCIKoCZAhhlPHEtKCcjpmcTGFdD8k56WotAzaUleCzhBf90HNDqXE1/PHVJmuqKbX5aTSYtpsxnX3RYzYNEZaxr0lk1Czmd852idLAALJs6G60wUJur5KglSWopbIqqUCWo22lZ4poSZ78x3oy2NWBNIiOpWIEQlDBD3zRM0ESAqISSK76YHisNECSxFIGhOApPDQxXkl70Aopo6LjkXFCiqyya+7LmDvgRhpyhEjQ7USgiDqNaVmQx+NkTl1LDliZKHZFq8ZVJAKw6QA7kOL9Y7zV2D5QAXvvHCleMypMk1jxLMwAuho0sWyDZrGyHd5YeSpp57CoUOHcO2116rftdttPPjgg/jDP/xDfO1rX0Oj0cCJEyc01MjExATWrl0LAFi7di2eeOIJ7XsnJibU32z2iU98Ah//+MfVz1NTU9i4cSNuv/12DA/LRaZOljWbTdx333247bbbUC7LOxxazx0EXnoea1avwNjY29Tv//LAE9g7ewJXXn0t7rxsDR76+xeAif247JKLMfbu86zf9fXZbdh2bBwXXrIZY+84G8H2cWDXNqxasQxjY9dbx2x7YxJ/uONxFCt9GBu7GQDw6D/uAMbfwOaLLsTYLeenxtRbHfz8d74OAHj3rbcpXtT/+MR9AELc8b5bsC7jRTw0XcdvPPMtNMMAl195NfDS81i7Sj93m/3Ja4/i0Pg0Lrz0CuClHSgXA9x111jm5+caLfz8d+4HANx62+049tR+4LVd2Lh+PcbGrswc12w28cc7vgEAuOLKq/DNI68ACwt4103vwNUbR7XPHp2p41ee/hbaYYD3v//9Sn/h3i9sA46M44rLNmNsy9m559WNVXcewmdfehaDI6MR7dfUJG5423V436WrM8fM1lv4hfh63HLb7Wg9Hv37zttuxaohe1b62ON78Q+v78TKNeswNnYVHnM8F6Y9s3Unnji8FwBw0fnnYeyOi3I/X3xhAn/5ynMYHl0OzE0B7Q5ufe97NE5/m+178DU8cDApFl7AjnXiiX34uz0vohMi891caLaBx6J7/v47b8dgjHT5r7u+jWP1edxw4ztwbQxHJKu+eAjY+SxWLB/F2NgNufP77BuP443ZSQDAbe99N84TQBq/80878eihvTj7vAswd3AaOH4E11x1Jcau25A55tXDs/jd5x5GoVTG2Ngd+OwbjwPTk7j+bdfhts3ZzwYAjD+8B1v3vYROXMDZsG4txsauBgAcfvR1/MPruzA82I+xsXc5555nz70xif/3hcdRrfWhXY8QPne8L/sZJPu7I0/h5amjAIDBagl3f+hmPPTA/bnr7ZHH9uLLe3eiUBsEZmYx0FfF2Nh7co/zwoEpfGr7YyhVa7j27ZcBO57G6Mgwxsa25I57YP55PH30IC646BLsqo8Ds9O48Ya34+YcJ+u/v/IwjhyexduuvzGCuz4Wral33n5bimua7OVvvIJvHHgVZ206G2Njl6K9Ldo/VjvW0N2HZ/HJbQ+jUKrgwovPAV5/GWdv3ICxsStyz+vP9z6Gg3NTuOyqa4Cd2wAAY3fenqvxsuvrr+D+eI7XX7UOeP4JDPUn+0uW/dX4k9gzcxyXX3UNnp57HZiaxLVXX4WxK9dnjtnzwKu4b/8rWHvWRpRnGsCxw7jqiisw9vazco9F9unXH8HOiRlcctEFGLvlAtGYwZeP4O/2PI1KqYixsTucn39/GOLrf/goXjo0AwC4bPOlGLvpnNwxX5/dhmePjeOiSzbj+GvHvM9rKVqz2cTf/1m0zm46N1qjXz08CzzzMGrVsuha9izbCDXds571LDESXx/tq2QiI95Ko8LI+hF7B1C5GKDRtoubm8miX/++y/Gr33MZ/tcTe+PPJeeZh5KoZSFGvKi0LIgRC1VvpVhAs922IEZkSWktyUnn5DEmOpab7lglo0wNOCdtV5LEArjeigAxYhRGXGNUgYMlfKNxwoJKK60DpwojCBCG9upIGCb6m3yOpRz6YSC5Jj7i6z5UWpRQna3Lu9N5kUhKl0ZWKRUw2+BJc84OUPD6rjxbPqAnQReb7meUxR+iBD0hnNm1KDiSozyR3fBIZFe1IoenxqKmHek+L/peHyQMR6c0hYUbILkeCx6IkUoxed98Cj4lhRjxEUQvYu1wDQcnF8R6K0CaIkykS2LoMvI5Zx6H7TW0j/noFq4f7cN3fuF9TkTQW2Fcw+fIrB+V1qmylYNVhaBbiqibN2tehZFbb70Vzz//vPa7H/uxH8Mll1yCn/u5n8PGjRtRLpfxjW98Ax/60IcAALt27cLevXuxZUuUbNqyZQt+8zd/E4cOHcLq1VEC77777sPw8DA2b95sPW61WkW1mn4wyuWyV2HiZJvv8dtxIrJaKmrjiAO0gwDlchnkc1Yrpczv769Ev292onl04g7rWjl7zFB/dA0XWh31GfJX+6r2cymVQhSCqKOkGRaiY3VCtQkM1CqZxxuMff8wBBZIv6NcdF4zpWvSTDQ/8sYMFBLHKgyKKuFbFRxLvdNBQXUy9FXT59THaj9BsaQWL9pCqznX/c1YfzVykhrtZAGqVfKfu0F2PertQEGuB/qqmeP61PMUolwuq+eiVpWd1+hA8n5KrsVALTmvVs51N231sB5Q8ntcLUfLWSfMfjfnWSzYX6ugHDvKalMN0s9aGBTUZ9zPbrKkjgzURNeOxrQ6CaS9z3Hda9Xob23jfmW9x9wGja6sCluP+uLvrZTc747LavEzVW+FqiNNco+5DtH3XLUOw/0xB3fOejsQz3sq1iUy11ib9cfPYKsdIgiS58A1rlah5yxQa7XrnaQ1vo0AhWJyfn21Cspl+zZM96LZjs49jNf4suPcaM1otjsI1VroficpQF1g70hftZorOk7XohUGQHwNJc9OLT7nZgds3c2/hgO15Hmi9yRvjzTtunOWY+fEDFYMyt5LALhk/SiCIApWpWM+8q5z8XN/F/lJxaL8WrTCpHPT57yWqtFj04p9FBTk71jP8q13/XrWs7SRHsdIf1lRCJki4yfD6q02Hn/1GK4/d7kqNEjs4GSiMWIzouSxUWnZurkLhUDRUtp0P2xjEvF1f3ore2Eku2BhOx+Ao1Pk6I+muFiRJFM7nVCk96XOi8TXPUWATR04SSI2TaUlR4xwlIYrMUXFgLpNfJ3Ns9UJYetL5s9VlfmudD2zNEbExSUNMeJfGJmzaH5kWa2SFAUpLpaLvRcBJOgz/uz+0I2b8Ojuo9i8/s036pqFkVOrMeI+FhWvjsVJW0CAGLEksr01RqTi6xaRclHhoZTeL9zvf/K9PsgFk0rLR0Sd662I0CmG0Lv0edq4rF/tV9JxSbGS6O3c7xat11TglIzj5+2j08JtKRZFAGDFQAW7D8/i8HQdR6YJMbK0CiPFQoC1IzW8cXz+jNSL9CqMDA0N4fLLL9d+NzAwgBUrVqjff+QjH8HHP/5xLF++HMPDw/ipn/opbNmyBTfeeCMA4Pbbb8fmzZvxwz/8w/jkJz+J8fFx/OIv/iLuvvtua/HjTLIsSDSHCwN2oTPT+gwh9Yag+4E6qLiQuo07lFsQBOivlDBTb6lFnPPLVnOCghrjW5+aj44pgWpSoDEdi4/lJeaAyLEpFgK0O2EMuZbDmelytTph7rXg17XZ7qRECE8GhNZmScdEG6HqSnFfD6rmkoAb/y7rccr2Z1Asvs66nyTXfSBGakzNN9k1dC+wed00ylHPgYXzzjV+buQA2Zz8pkfXCQ+S+wWi4XwejVYn6aZxia+nAjm5U0ZUCubxgeTeSe97niWOZrLeuN5lABpX9r+4TtY1T+shia9nrWfc9G4f+fXjHUlSEXAbVzYgEwRtGN2I7iAkobvwebcqhlMLyIPahgfVBZDsDXX2zLvuWR8LaqV8w9w+fttFuOqsUdx15TrxmA2jffjzH3mbl2P6fVdvUIURHjxmWTc8yqeDkY6UojTpggu4Zz3rWc+kpqi0+soq3llYBMTIXzzyOn5z64v46VsvxMduy0dHcyO9k/UWKi0gLeYNJCiGLN+J9nvu2+bFJYpKq5lBpZWzPtO+FFHShigWgkzx9azziY4lS+zR3tjU0A6OAoJlP3WNI58l0QrxFF9v63udxAcyESNuLY6Ei1/qQwK6robpQ/J5tjICJ17U0qi0SGMkg0pLSpnE49IRj8JI4q/K6Yj4mqB0VoSJvaqhH8fH/eR7LsBPvkeGQnZZKsZdZF+Qa4xI/M61w9HaRe9WEAi0ONj3Lig0gSBpbokvXM8Tj6d9KKdMGiiANc46xgB+hQdas+nZlSE/aC0MvQo+JhJGSjm1cXk/nthzLHX8PEsVfCSooPid9EKMsGfHp7h0OthZy/rwxJ7j2Ht0TtHprRyQU2mdKls/2oc3js97UZidLnbSI9RPfepT+MAHPoAPfehDuPnmm7F27Vp88YtfVH8vFov4yle+gmKxiC1btuDDH/4wfuRHfgS//uu/frKnsuQsgaMahRED+psnnEdGmzQtxllFF26UWFpoRp00/JiScVRQqTOoYV6yvVIsKF0QKnJIEpbkyFH3tyRJyzdDL1G1+CPtTuJs2o7H74XGr+shuNWNcSHBvADENLovk/Ot1O/sn0+cbkD2PHHjDi1t+nlG4lAHWEeCpLtgucG1yOHxJRa0ZRm/hgGD/+YJCSoBN4+ELwD0CzsJuaiiVHyMnIC2URiRFKX6ytmijzQX6X2XzJHDzyXP7rdfPqL+fe2mZaJj0ZpBgenmde7OLc7l2Y0DzXlvnY6cBd4N5D/z6X3Bj5dbK/h4BCFzDAYduCDymiCg/Fh6kC9b1xJqFL9jka0YrOJfvn2jKspK7dZL16SoFfOsVi7iv/3/rsbFa4bwr96+yfl5lfzxvIZL3WgJMf2aM9GR7lnPevbWWrPdwXScXBntr2iFdIl9dftBPPjSYdFnqZP2/p2HrH/fvn8SX3hyr0ZPFIYh0xixI0YqbD8lS9Af9nWzUtR9Hz4ml0rLQNK0BH6uHgdRw0Z2EcYm1g4AbSHtTFXzZfwQCLyz2jWO5hnGBR9pMxTfuwFeUHHv30M13Q9xjamxmJ8Xllw+WhJftFP3isetWZRYWjOZTWMkY5z0WnQvvk7+atydLorPmPi6hzA3kM4LLFbMv2JAb8JZ7ISvFrsLntvlAxXtWks0BmyJbMn9shU5xMXUth/lFL2PJ2JNDUn8w9dKH/qoFXGi+3CMCPCh0tLjVff9KpnFCmFssXG5vkf5oFp8UBz0/k/zwohjXKEQqGumjrVIzcmn2jYui677vuNzTGNk6YEG1scSCi4avdPR/DIEFnvggQe0n2u1Gu655x7cc889mWPOPvvs70rxzUzESJwkMhNgeQWBhG+0rY3NRZmwRG291UFfpagc1mrOuH4DnVKPj1kI8hewIAhQKxUx32wr5IIMMRIvlAvk8MiSevPNtpFoc4+j6bc6YYK6sSSF+XnyoMVHcKsbq7JngxYgyQZQLRcx22hrHfR5mzxPztPxADlvI9dJkBQ41sRdJ9zpliTMVuR009CGn1sYyeBrpmNbESPChDSQ3K9qqSDeqG1dMa7niRdGwjCED0rKRIzwMauHovtCXUFvxmxzkTwbH3nnufj0Q6/hh2882+mYkvUZRagfdeg6ANzRDEXdkmocC7ylDqrWxRjf44Kj06pivJPSQNPOvyp3vBUM2gNlwotEPoXbeivhH3ftDSqobbTRCZc2suL7r9mA778mWyOIm01gcqmel4+ZhRFp0bdnPetZz3xtiomsD9dKmQUA08IwxO99bRf+6IHd6CsX8fyv3u703chP235gEifmGhjt1/3Sn/6bZ7D78Cw2rxvBFWeNRPNbaKmu3TUZ/pWZaAfswtfcFMVKK10YsVJpnQSNEZpXrVxUiBbbsWznA0CclOZNKNKmAb1JjiFGcpEwesFHQivGxzXbOm2XJFbgMVMhkGtxaA05Hij2hWYndY/5efMiErcG81f5HPNQ9j7XgmuMdCO+PuuRGOXPPp2LmErLQIwslh+zbEAvDi02VY1OpeU+pyAIsHqoptBvkvlRIrvdCdW640NvVWdUeq456sUUeTPOsngNP+JRrODxLOXiJM+Fyn94NAvZBOxlcR0hRvyQFabeq4/GyJzHOzlQMQvE7oIUEJ1HuxOyY53+MROQFEb2HpvDkRnSGFl6iJFzVkb6uUO1M4/W900XRnomt6wEEOcOBFi3T07nvckTm+cIqzEseTjXaKGvUlRFjlzEiKLgosJIXEwpFZ0LWK0cFSwIuSBCjJR0Ki3JmApLtKnCkmCcKoy0w9ykdBAEKBeDKIlq4fJdrA5fnhyljUlUXIrHUUEqDy2iHUfRpbmLc9yGWfeTtHNntL+sOKGjcbJuFW7cMVFCgmH28Rtt+/NO19YM4AAWMHoU9Xy60qvc+RMWOExuYB8hwb6cwsiN5y3HZ3/s7bhs/Yhs8jlmu8YSXs+fed+FePdFq/CuHDFz0/g5XXnWCN52thtpQufdZjR6PpRTPug03u0j7kZMUWkJebnZ/fTppjERIzJ+2OS9SboYJYVb6n7sJGuNi0rLFtSeAcgK7XlSHW6n/3mR+5JCjJwhkPee9axnS8cm48LIULWEUrEgFl//L/dGRRH67NRCK+VnmkZrWhgCj716FHdentAzHp9tYPfhWQDAsbmESpESU4UAmbokZizIj5W1r5rIUgC5fqTZ6EaWh/xQx+KUwrSu5/glpqg5WVvqy9gaL4SxDG9CAfL3HT4PHz0D5de1EgSCZI6ATqUlanYrkc/UFvudAKdJTo/jlyRLKySLVSI3ZurIClLm93qJr5f1574s8Cs46oZiZGkTCi/gAItXsBisllApFpKk+SksjEiuIQCsHfErjABJItsHTcCbhqWo/jJ//z38aboOsx7z0wo+HoiRtSN6YVwk2M4b+YS0YkCytvhooAARlZb2PR6FrDmPIszG5X3YtLwfe4/NxWOEDaXFAuqtTtL8dwbETEBy3V85NIuZuElxKSJG/s2Wc1ArF/FBYQPg6WRnxpN0mlgjw9mqGo6tpFufNnUTMZKXXCoUAnUspRciGNdfMQsj7mIKGVXhJ2LouWRMNYUYkXcgc50GyThat+utRIyNC8xxowXbhhhZLOeFC0iq8xJQVRFvIwWLplOX+ryBWmp43GPAQIwIx5ioBMk1JKeRjDsGMo0R+ztYzul+antAruk6mgiGPKsocUQ52snkBs5aW2xmzo2/J0EQ4D0Xr8aqoTe/Ea8equLiNUPW4+TZUK2Mmy9aJUaLAEkxFQD+75vOFY21ISt8umK44y0N/hqtjqKRcDmoSeAXzU16LP4MJEUOuVNLiBEfEUFOdSEK1hWVVlu03wG88zGhklhs/uVTYbwAJu1UPR1MIUYUzcji6nH1rGc9++61E/OJ8DrAqYOzCyOdToj/8eCr+vfMuXWheOHi4VeOan/btn9S/bvOji2JtUztQn6szMJIDv2WbR/JKhhJCtdBEKCYoR1lmx/v+CbjCGep31TnjRdCPbc6Q/S60Lk8qdZqh3JEC+m7GA1zkiQdp9KSJfUT+lHyBSWNa+RrRRojepxADX+A/sxxy9KbpHG2mImjT6TFL8BPfD2l0SJpCmPPvo92JJA+/8WK+YMg0FAji90kw1E6Ut+Mx+7SwghdP4Vc8KBIr7fa4lyL7k/L8zPL+k39UnnBJ5ojrU/u8+om98HRaW0hegZIN2lKn6eNy4zCiKgxNG5qjvdiyTsZBAG+56qksUAa+9Dn5s8wxMhZMWLkSEyjVSkWtMbjpWLLBir49+8+H6tPArvIUrNehHoKzSW+7qMxopz+ht7h70oumd1CEhqT/hjqRmJ9BAd3oRAAYHWsJbHv+JzzOGTkyE3XY/F1j27nKFkp71ymtZQHCVmFB1s312KLr68ZrqFYCNBod5QQk6gjmxAj8QZVK+ePOalUWsIxJp2AxBEJgkDr5uPJdh+NkSy+WBtfrs89JsdgQCi8DujUTGIqLd651/HTn8mj0jqZFgQBPvkvrlQ/LzBtopNt60drqJYK2LS8H2NXyMS1+bVKupjk75YP5YKmFSTUJUqCApNKK39ckfGvEv+yT0eiDwzaTgMneU/ic2PFQC/xddrvzoAuoeQahgk14xlwXiZihPblLK78nvWsZz3r1pTwOhVGGIVQljWZtiCNO8EoubJMK4zsPqL97bl9J9S/FxhSIivBzE0lv2y0WBn7I/cfU2Msx6plaK9Ik220fBMtbR79o+18uIvtTHLyhjehH25DYLrGcM76Jk+oumhLi9wX5ELvskIHzdXHP6uz5j8f3cOFZjvxV20NZV0iRmwxky567/ZXaT4mJV2e3Xrpau1nKcU0ECG95jwoY6OxRmFkERs8ljOdkcVGjNTKBXVvpddiTReFEXoOfCidaF4c3SZF2vNjSebYbWHEjHck40b6ytr75EMr1uRNaIJxJnuC9HlaPVTVNYUE41bHDZWEJpIWHb/3qgR14KK+JEsLvZ/+MRMArBqsaLnVFYMVrybRnr15OzOepNPEnOLrqgNHoDFCTr8HYgRIdwvVBeP6UoiRuDDiSLYDyQY6PhUhRiRoAlV19tEY4Z3LGagAm9FaT5RkeePo99wBbnkKuPlauVhIcT1KkmaqMBJfQ1cRK4Fb68+gpPgF+FNpAXrXRKWYr4HCjRdGePcD/Tsv/Z7F15ynMZIkK+VBSH+lCyotnvD1oNJqt0Ox/oRtbovJ+X/VxlF839XrF+37yVYMVvHVn7kZf/cT7xCjnGyCgD7OeiTuKUtk28TXnTQNWeLrHny0PvyrtIYSfFfyvNsSAz7IqnqrI0oYATzR5UclsdRNR92cOeeVFl/vIUZ61rOe+RsXMc+yE/NR4xB1QNcEVFqcfmpVTFcxOScojLBxrx6exXiMiAeAbW+cUP/2RYxY0R+t/HhQJczi728zfQebj9GXob0i3b9VwTueY8KTnz4W13FT58PprYS0oJwWy4m01bQ45DRLnMNf2oSiU6TKaLu4EepBxIqgia/7a4xwpElJi5uowGGPnLKKbPQdLQvSRCsSCeZ43qoBDFZL2LCsz/lZsgtWD+HSdcPqZ8k9HqgkxSgfbRIgHQsvZsFihRbjLq4vGASBQupIY8G1I/6FG1N/QnJedM1n66ww4oFA8onr+ipF7R5Lz2uFof8gRUnw/IfkWPQZXdvSPe7t5yzX3l1pbFEoBAq9AAgpwuJzUugZ4bEuXpswS9gKrTYzCyNSGrilbkEQaDRm5vPVs8W3XoR6Ci1bfN1MgLmTnBweKx0DsG4hhTQRFEbKdpSJi54JSAojFNd0I74uot9SyWW/7nlVGInRMEGQvdmULUFLyyNZ2a2ds8IojEiotOJ7Q0Ge615xyCrgjxgZqJTUtRQjRhjPps/14xsFH6cEyXPF1+3PRi5iRNjhDyTXuVvEiIs2gc+X6ki861FEpZVCjCyuQ/G7H7oS/9cNm/CbP3D5oh7n3JUDXhRgBdap5lNA0Ki04uvuonSy6pJ4dEsCvAjrvsc0x1kfvRCDSktSxNbQTp3sBIlptKfM1ltiTSi+DyWUEKe/M5zc5zPrvGibIhoVn8JZz3rWs54BEd3Vv/iTR/Fjn3kit0BCenUmlVZeBypP2JPvQAWWPOOFEQD44jNvAIgKOM/um1S/X7AhP/IQI6Uk+aWO5RRfNxvr8gsPWRojUvoomn5TrevZ8VbiHyTH6kZ/gjdeuGJI3deSF+PLiio5FNMs8ZiQ+3XSJq/hvpLoOEBCF9vqhKrg5kMzvcAar/hzUc4pcADZBT36DjtiJBoTBLK46e9+4h345n98DwY9tBkB4HuvSpquJBRBpWIBm1kxBZD7IxUjhl5MP2YZK4ycCn+J0HLSY3WDGEklsj0Q6ZSfAdwxGn8nfIowgNl0KRtz52VrtZ+l19CXjkzTGPHISfRVirhm06j3/ABdgF0yrhsWELI7Llsj/iyQ3OcFz3t8Ohi/7isGlp6+yJluvcLIKbSEtkp/gSvFpKMD4Jyy2S+66fRL6UiUXkgXGiPzhsaIiErLSFSKxNfjBBjRQPnQb/kklwGOGEk26yyntsQ6ish8One6tXNXDmo/+4gbK/F1F5VWWX8Gpc8TWaEQYKjm2XXi2TFBtjzDaaSNMa/hoJ5xXkn3U7prqhvx9b6yP2JEpyOSd5BEGiPyTvNTRaVFVisX8Vs/cAV+6IazF/U43VgC1Y4ppySIEZWICOW8110gK6qs6ADkU1ZkjZ3z0AtJddJ5XItmKxQnLoCkuMk7bV0US7VKElgl1/D0d2FsArNnwnmRlBE9gz4Ulz3rWc96BgBHZut46vXj+Oauw2pvmlpoptC9lAQbqOg6b3kaIzyZTVQqJwSIERp39cZRAMAnv7oLn3n4NRycXFDc4MDJ0RhpOpqUshrrssZw1gBeaJIiWRWVVty5rNAplj2rzPwDdRwPyinNNxYWbjSNgY7cny5rRRjZOK7PQefo0+RFiBEfEXUAmPWgSK0xSrmkeSUdN7motMznQjWiWZAmvk0QQ7VyV7qGXJvg2Gw955OJXXXWiPaz9H6Z+Y7FTMRqiJFT0CTzrgtXYahWwub1w+4PwyiMCIuA9K7Um/KkPr3LGmLE4RuXigWV1/Gh7QJ0KjepD/49V+mMCNJxWmOopDBSSnIUplaQy266YGVyLA//m3RGisJir1kY8TnWr3/f5Vg/UsO/vn6T6PMKgeRRaDtdbCND6qxcgsLrZ7qdOU/SaWBZnT+ZiJEcBzpTfN2xiapgIYX+yEGMGMWUumAMmblQSpJmhJDw6Z7tluueUsTUxZA3PxssPOHlXTzn5dyV3VBpxcUlKoy4qLTY9QvDUESxZhp1P4mptBgc12dT0wojHCIqKIxkBZmqyJDDlys5r5suWIlNy/vx/svXOj9LxvUnpFRa0ZyTceq7JJ1xxYKhzfLduw2Y8G4fXY2FZls9a65x/P1SxVTnmIQSAvCjIurqvIpEmSinMOyWBmqVwUUbHV+GGOmEPDFw+ncJJZo1obqGZ0L300Apel4n4wYHHyq4nvWsZz0DdHTGoakFjE8u4O3/+ev4ic8/pX3ObObJEhm3fXe5WFBIE0lhhMb9u5vPw4+/61wAwK99eQd+7u+2aZ/jvpkEhW1Dpbsa5XghIBrLRMBzNEY6oV0v0bX3EBKQoyQAe7yqkOj8OB6UU3b/wsPXEp5TdKyk8U26V/FzTihd5P40CbD7NP8BwExdnvDliJHQUsTKQ34A2c1kRdaYZdqpavA4iwlEkwany66Ki5lk0jnyGFqaKO7WuN7FqdCb+6UPbMYzv3Sbdj3zTEM7CP25lCaEB20xxTFSBFKatkt2DZf1J1qp0st+2fphnL9qQP0svR5rWCFQMr8KW5981jUAeMf5K5JjeTy3hFyQHmftiJ7v86G3WjNcw8P/6Rb89gevEH2e9oFTkYM71captFb2qLROuX33ZsTeAhNrjDg4ZQHGG9o0USb5t5TGzRlUWnmJ8zRixJ9Ki0ySaL/pgpVaEOAtvu7RWU3rNl2PvPkpB9IicriYcNcUYkRApTUYUzkdmoq6aFz3it9/HXUjP6+zRqPFXFrh5s+GF5WWAzGSS6WVUXggZ8bWNdXySFZetGYID/4/78WHrjvL+VkyngD3QX7QuWvCdMIiByUNgO9uMeRunHU1hl13p5C6tj75UWkp8XUhOkWbowf/akKl5aFLYqOtEDj5VBgh7Sk+5yyrsWfWR39qqZtGzebZCbaUrS++XUlhRE4F17Oe9axngF5cODxdx/P7J1FvdbDj4JT2OXN94QjDLAou3qxGPPuThvj6iwenUr9TcVO5gJ8fuxQ/feuFAIBvv6wLsXO0ioS2mGtqABE1l2tchRXWo/9Hny9kJBG578d9mLYFTWAz2poardCgxUqPUygMdg/Jx5Ykl7uJ6yq2JhQJzRKj0pLSlvIYXTWUeDWTyREjxUKgzn3Gw/8hv4m048zj5TWFAcm9M58/pbmZQ6V1KpKVf/3jN+LyDcP4uTsvEX3+yrNGtZ+lMa6vEPWbseWDp05jhMynQY4nwKWJ9pIZa3nEF+rdEvqOCQWX/FiAXpCS+qlBEGji4dJiwFpfxAhjKvDRGAH0YuDLh6ZFYwBg4/I+r+Ms6y8beiZ+vr5PsdHMW1y0Zijjk6ef9TRG3lrrRain0LKQDJxjPO9z3BSVlgclFsCKHOa4YnbinMSaaXMieLhMfN2fSmuoVsbbz1mufhZx3TONDB8qrWox2mCOzjTiMdkLs8nlC5yazphzTMSI4LyomLL78AwAN2KE35c6Q91IxdcB4Pd+8Ep8+t+8DVdsGHF/GCaVlg9ixC78Rt+RhxghruMsIb18xMji3GOlj9Nqq6S5pIOMnD3eESl18rnOyJmQhO3WyLmiBIaPICCth4BcpFMTzvMQHgX8ECPEGXx8riEeY2qMyLRMeBeTvJhKQrd0LQpBiIKge5TQYr6BwVI23lUrFZg9HWwgZhOstzoxv7l/sb1nPevZd7dpiJHpuiqmmzofplYVJYTDUC+u6GOSWIH2TF4EeeSVIxj7f7+NX/jS89Y5EfXux267CP/p/UliljqPF7yptJL9FIj2OZc+I/lv7U6UMHPFjxwxzH3HppD+SEOMsOtqO555PvzfPlQ6vPHC5a/yRkOfPYfGtdryIgyfy7wHBSmZotISoxYSbTZA5ickmp3Jc82Pl0cjDGQ3XeZRcLVOoX+25fwV+MpPvQuXC+PO81YOYIhpmcjF15OYabHPK6v5b6lYrVzESFzUkxZuKNYialUZSiKOSTx1JGjcvOe4UYYY8SlIfe/VCZ2WlGVjjSfqhp7TpgetIBl/dyUNzWSblkdIGOk5BUGA1cP2/MzJNv7eXrJ26IwqjGzSECM9Kq1Tbd+9GbG3wLJEZqtGAkzSrV9T4uvyYgqQ5t2VOOt9BsrEh0pr9ZABrRM6Ibdcslr9uyopcJST7mofKq3ReM3Ze2zOOUZ1yDBIQusUwPjWj/R5d6tcuCYqjJDPWi3nb4Y86Ko3O97i60AEa7710jXiqv/ygYo6rk+yTKfSSiNG8qm0MhAjAr7cxercSXQuEmomEQ1c7Fjy4FvaUUPFTuC7nErLgGp7CQJypI5LpJOhP6TCninxdY+k+YWrIydRUSd4JAYktIJkXAel6VFAXNZf0d4nAQgOALDlvBXaz2dCUc/W4Xoq6BMW26rFZM08MddUfsOZcM961rOenRprGIiRiViXyix2JD5rtOZwZESWzginIB7tI42RhJLnC9/ZhzAEdh+e1cdZGlj+/bvPx3/9wavwfVevxw9cc1ZqjpKGrbSQej4tFqDHbpwGSsI4wH0YqZYe1xihBF0WOqVq+DAA0zLxQLHWW3K9EFsxReLjUlzVaMvHFQuBOu9ZDx+SzJd+WBU56vIOeuqCn5hKNDhscVMWYiSLbpuuV9MSM0lpz94KKxQCXMF0RqTJW37+i31eHLlwKjRGujFqepXGxSviBO+h6eg59KHSmvekzk0hRsSIh+4KUueuHMAvjF2Kn73jYk2nJM/WeGqsciqtpLlO/hz+/d034a4r1+Fn77hYPObSdUP40Xecg4/fdpF4zNoumUB8ja+Zps7L6W46YqRXGDnVtvR2rTPYEic8AzGinGG3A00w8YUYJi5FjPQp9Ecb7U4ChfYTX5dTafVVihiuJUlYaeX5vawwIkpWaly0Hgm6eA8jmHFeMGHrfmp5Vu67sUIhwLkrBtQcJIWHi9bo9Fs1x3UPgkBPcnqKr3djvLvAZ4NfocGMubPqptLKKjqWGYzeNB8Ko26MrvvUAnXSBBqiI8tU1x/rinF13ZPxpMF3cwe3STklcfJpPTzGEihSQdBmOxQXOPi+EIahV9L8krV694ysWFHWfpY4tYm4qp/GSKEQaNyp0mXmHRfohZEzAVmRUKEw8fUz4LyCABiJEz+T803F3T9qPGc961nPepZlHKF9eCZBjNRberHDjJvKxUJCN5pRGOF+rtIYiREj84027tsxASBdWMmKtz503Vn4g391jfJRFzREhruhLKGeCrXj2I6lxrC9oi7ch8mHmbNQabn8XHIlmoJYy6aZItUyAXQfiNAp0oaSeqvjhSzljW8+cR1d/7kudM8S8fXFQ4zYaEv5edH8M6m0MlDsdP/CEOgYY5c6opdTC0kLWaeSSmvF4NJGjABJYl+q37F+NPq8TzNpit7Xs4g1W09iaol1ixgBgB+/+Tzc/d4LxJ/XdFo81qdu44SrN47inv/rWi3p7rIgCPCr33sZfmTLOeIxuqj84uWPuBbY955hhZHBagmr43V7naHb0rPFt15h5BSaXHzdXayoMSHahrBLCNAFCSVON8DE11VhxE5HlGW8Mi7pQgYiuOvZsQi7RFPDxuEvSfguq+oOXT7MPd6YmBPY9uhIejNGdFpSJ+7sFQOaEyGhPeOd8NLn6c0aOQc+zh9HjPAgToIYSQJavfCQqzHSRXeGj5nP3NvOXqbpKWQZOUVzpCPh4ST1s8LLYt/jpWymXojE0Tw7LlIuNJNuSVdBitMlSmkG+HPhK25+sVEYkbxf77xgpU5N56PtpNFWyJ6nVUx8UIoYeecFK7WfzwS9Cq4x4guRX+o2UiNB44YSR+Xrd8961rOe5Zkuvl7HBKPS4tohLUuSvs+CjODGUWxKYyROuHz9xQkV83DaTD6nrL2uppD5afH1PH+rYhQSeFEoa0/g38cF0XOpmA3mACCJa1yJzlIQF21Yk0cmmoXx4pO1PZClHHHSFCZUua/V9NC6KFsaFCRzNIWe/ai0Sl5jzISvxEcjP4sXK3hzXR4lFpD9rPNjm0UVqXj9W2VXxYgRqZg3kBZfX0zTECNL1Mddqwojss+vH+3TfpY88yZtsTQGJ9TGYQ90CmBe98W9x76UU0lhJDylVHW+ttYTCdOt7RxPtFJ8ij2ni/3Xf3kVfuV7NuPC1YPuD/fspNrSXHHPUMsUX2eJEeKJtX2OW63EYeIdD8RIkgjUCiMCJ5q6rkjwXZJsB4zCiDADFgQB3nfpGgBJV02eUSdNvdVRTriISsvI0eSN4RyPZKcqkUWaIdKkY7lYwLkrB9TPEnSP2Y0E+AkJdmPUXeADP+f8qxodj4RKK6Nolqsx4sGJ3I2Z94bTyOUZJYUXuoDwc0TKUoS7nyojeLIP5HpZf1nx6wKeBQQmIupK6vNATB/nnmM3iJHR/gpuYoUHH5H3ZjsUc5STrRrkgYFoCDYt78cGFmCdCWgnus8R+jP63ZnyTvIu7GOzUZDag4b3rGc9k5pGpTWTFEY6oe6v2Trba5V0gYIbRzyYiJF/fO6A+txcw45OyWoO47px5nnkiq+z5DygU3ZlIcWDIBHllmpx1IyYDoC4oYym39Boi+1jykbTH4D/j70/j3Orrvv//2cyk8nsM522s3XfoKylFC1lUZbSDVmkXl4oahEExaIX8HO5en2RpagV3EFE/VwI6iUuXBdWxQIddpBSoLTKUrFIaQvtTOkynT2TSc7vj+ScnGSynEwnk2Ue99uNG53knJx38p7lvM/rvF6vtG7wMEu+dvsGEmYuxLJXD0inB6R5vmMPLqXTByWdcqymCWNC5zLjqpz9TTTnrSPcL8TJOdrYCq/sm8W+J3Me7Fk9dr4E37f287zYoEogx0uCnjh5jIrdrqi1ZCreqCz7zL4ve/Z2Ll78liLNw50GbibEBEac7FcR/vk3qyk4rdpgZqObN+M4HWNdgmsLmVDqKbLm2cn4ojJGcjgwYu8rnMl1zIeOb5IkffaD0zN2jGw6fdZ4ffrUaWk1pMfwKE69CYZLovJEkbtujaiTk+SNwEO1TQNBQ31+5w3HzRPN3v6AfAFnTZvt+0jpldKSoiPjyZq8x/rCWTPVWF2qC+dOSLmt/cJjOj1Git2hC+3mH9Bkn0OJlXI8uF5upu+MmWZljDg/zqyGSm3b66z5un2bLltgJNPZBA3hHjTppp+b3/v2P7zWnU8OAiOJ0sKT9RjJ1EXY2N8HZzoOjERf1E/nZL28hFJaUry7/VJ/hi6XS1PHVehvu9rD+zi/86k/EKmV7bT5uhRdY9vpXYJjyj06GL771enP17LjGvXUP99zvE+85qOZzBhxuVw6beY4/e6lXeEx5ubCOx0lxdHfg1Lu3mmZrhrbXdgHwn9j07kYAWB0s/fpeK/Tp9ZDfVHPxfblsP/ujL2pK5bfdtHX7DFyqNevQz1+PfXGe9Z2sRknqYIc8TJGnPRYsgIcZlllhze8lRS55Q8Eoi7qOymPbP+b47TETVSPkRQZ8/FKaUUyF1L/7W6sLlV5SVHM30ZnN5SkWz0g3h3Z6eyXbh8ESfrgEfX6ySdO1ImTxzja3iz1s6+z3/Gxitwuja30WnfPD8r8CM9DooyRRBUs7BeO/cGgyhRZU2T6ZrLDVV9dql9/Zr4qvM4vgXnjrDUzpbjIrZoyjw71+nP2M2xIs9pDU036GSMzwnfLm9+bTvutxDasdjrG2hEOSDVUl+pgj99hv5XI34ZcLlVnvxE6k9cWbj7/GF14wgSdfZSz6yWAU/l/VSGPJLq7Jir1Nyowknh6XC6X1Teizx9IeeeOqTROKa2S4sR3I0m2Ulr+0InfYZXSSiMDoba8RFd8YHrUBbRE4gVGnGanmLUvU43PPIE0M1IMw36XdGZ/lKaPD50gOCmxZJpZH7lr3FHGiNnYry9SuzHjpbRqQnObzp1F9v4E9u/ByvBJ7oDhGtSY05RoQWtljMTtMZLZObZ/xhNqyxynThYNCoykU0orsiAYzc2Qzffel2YZhOm2bKx00qDtmR+pFjwulyt+I1EHx3O5XFHltJx+755zdKP173fbe1Nub//56w5fGHD6fVhfZauxm8b586mzIlktubgwSJdVHsNWriVX77RMl1WeptdPKS0AabOXk3rnQI9197AUPxMhXimthM3XbTfKmBfFAkFDz7z5nvoDQes8cyAYfdNaorLIJrNJtj1jxEmJ5NhAgtN1nT0zI9KLI/Wari8qY8RpKS1ZY0uVxRGv+brTG0Ok0Ln+rIaYsqAOS2kFjUgwysn5jz1zwspqcXInd/gDGUrGSJHbpSXHNqm+2lkdebPUz3td4RJBTm9CsWfnJsqWT3BHWaI1k/19BmL29We4/PBwmD99rI6dUJN6wzB7hYyRuHHFvIEkV89xj2muliRNHFOWYssQ+3UWydlnOLmu3PpdKjk/L7b3aJGcB7JGspSWZO/TkvpY5u+i3jSCxNmQbu+UoRpb6dXCoxvIqMCwy72fqgLWb2VaJMoYiVz8klKfYNnvSnJaSst+p1Ci8STaZ6gZIw22wEamIsjRdwmldyG7MSrCnWTREj6GeTeM/Q6bTJ+8nDh5jC49Zaq+tOhIx/vYL7A76jESfu/mwrM4jWbeQzUjHPBJ92LZfy07SpeeMlVHN1Vbj9WUeax5MO9OjpWozJp5ghG3lFYaC7mh8BS5ZP5tP2t2veM/9IP6Y6RxMbWsZOTSwnOZ+TNtldJy+FlMHRsJjDj5/OwBDvP7ydF+tt9r6dTmlqTZjZGfDae/d+0/h6++25Fye/tYrKyboWSMpPEteMqMsfIUuVTpLS6I793m2jJ5i92ylcsvuIyR9t5+MkYApM1+Ub3TF93rI27gIU4prUQ9RqzAQ7FLpZ4iax2xeWe7JGnOxFprW/PvWzAYuSEq0d8fc20Ut8eIk8BIuPl6ojJGscz37LP14nDSY6Q3TsaI0+brUTdrJCqlFadMk9MbQ0yzYwIjqS6OlsS5WcNRo2d78/U0emTEZh1n8qYGM3i3N1xOzmlpoeh+BgluCkvUYyRcWSI2+GU/dOy+gaCzgF4+sV8nGYlghXkunqsZI3Mnj9Gj131Aty4/3tH2DdWlUd8zTj7DIrdLs2w3eDr9LMZWxGSMOPw+HOnASDo9Vq31vi2YnYvfG401zq6nAbmK79oRlOhkOvqu4EgKaqpfevbsD6f1V+13UJl3PTkNjFjN1w+rx0hmvuXsNX2dlhUzNdU4aw5vr0ErRZ8MZvpCVpHbpZvOP8ZRWTHTrAZbYMRJKa3w90ZXODCSqbmyO+PIet3+sbm68fyj09rvghMm6Kbzj4kK3LhckZqx+7viB0YSlRkwT0zipZNnOivI5XJZ8+O0v4gUOSky7/pLZ77KPJTSkqS68EIz3Zqt08bbMkacLLpt5RLTOVZ00Dy9AJ29z0g6dxZ9+yOhhc6XF6cOwtr/TlkNEp32GBliYGRcpVf/c/l83fvp9+XkwiBdniK3jp8Yfedirt4lmK6aslBm2v6ufrWHy7qRMQLAqf4E2b9SZC0iRQc5TGWewReTovaPaYhuXnjevPOgJOmIxqpIydLw+sdvK7eaKmPEnpGR6AKzXWzzdadlge2ZJmbGSLL+gObaMaqUlrn2dFxKy7BlViQKjETOX6zjpNl/4ohB/dKclyDtTSMT2Dyvspc7TeemF+tYGTyfNv92dqd7E0pl4psTi6zASPI+PLHf6y6XyxZUCcbdpxDOz0z29z8SDdEXzBirkmK3jrLd/JdrZtZXOa5i4SlyR10LcvoZHjmEdUxszx6n34dVpcVW8GYk5viUmWNV5Hbp+Em1Kbc1K6DY/6Y4DYyOpIYRar4OZAo9RkZQohqz9myHSIP21L9Q7CffTjNG4pbSShVMKYnsYxhG2qW07GnCTvdJV7wLiMNdSsteg1aKDozkYmR82rgKqxeHs+brofdg9hgZifdU5Hbp/DnNw/Z6YytL1Nbp075wo99Y/Ql+BpMtDkainudHT5qk7fu6dcrMsY73MX9HRFL40ymlRcaIJM2ZVKu1WyJNVp2eQE8bay+llU7mRyCtuxGjM03SC9BFl9Jy/r3xbydN0geOGK96hw1BPUWh3zHplpKwB0aKXEkaA8Uxf7rzn5N8MHfyGL34duhiXJHbVTDp4WbGyPZ93ZIklytUIhMAnOgfiB/UkKIvuCcrpZWwx0jMPrVlJWrr8OnV3aFsyWnjKlTmKVKnb8B6DXugJtHayVxnRZf6clJKK6bHSJwsmHjsa0jrPSX5m19eMvhzcRqwsJfSGkiROWPPeDWl09hcir7Bw8l+xUVuuV2hUlrmWsbJBdWhNjc294tkp2QyYyT6b6fTc/6oc60EzdcT9RhJdp2guMilgaAxqAyX9X1RICVBpegKGSNxM9n/b9GRWnnmzLTKZ+e6pppS7Qn3iHL6GR5pyxhzus+4mJtvnK5/3G6XastLdKC7f0Qu6l9wwgQtPqbR0RzHXn+ScjPwWOopsvrj5GKpLyAVvmtHUMrm62k2Di+Nyv5wVmYlXimt1OW3QvEzwwilhjtN7zY1VNvvVslQYMSedeOgyaFdk8NSWsUxaeGBHP8D5S0u0pSxoabtpQ6ye2IDIyORMTLcHGeMJKizGz9jJLOltCRp9QXH6leXz3dcnk4a3GOEUlrpmxvT9NLpiffUceXWv9PLGEkvwOG1apWn10hUko6IWlCkN8cN1aWOL86bv3u70wyoRtW9zr1fnyNqru2OsUK6y8rsMfJWODAyprwkJ/9WAshN9uBHrOiMkcF/V+P10rCLbW5uBnLNtdH0cRWRHovhC99OAiPmuXRUxoiDG9E8MYEEp2s083l/wEirlFZfnMBIyubr4Ze19+JIdKxkzdeHdh7j7KYB8/NI56aheKW0nJzLmK/da5XSytzftzG25tChYzu8ObEq8Rrc/HlJVEor0Q2d9n1j103mDWaF9LfeG5UxMjLvq5CCIlKobKzJ6Wdov8HLcSmtytiMEefrHzNrMNfmOPbnb5zXyNnAQzolwoBck5s/VQUq0YlxvB4jTppeR5XFGnBWTse+UHB60m0vu9PTP5B2jxH73SrpXPhNh/kefLa6t0MppZW0x0hsmrstuyBX/wCcc3SDSj1uHd2cOh3XPPEzm69nuvF6JpjNMvclCIwkbL4e524MUyBHGwnG1hxNVjohVjmltCRJRzdVDylFvqrUo3Hhk29HJbGimq+nbo4au59vIGCr5+1sjBXeYp0+a5zGV3kdN0gciuoys+612RA0s6W0CpE9QFdIgcqa8CLzvc7Q9wZltACkI1kpLbM8laS4meKlcXppRO8fvSaribnwPG1cxaAei5EATOIefNZNa7axJ7vAbErcfN1ZKa3+QMBZKa04vVecnpeYf977owIj8ffxFg8+r063zNL4Kq+tEbWzv42xN2uk03w93bKl5vljOv1MhmpMeeyd8E6zcxOXtzG/jrf2CT2e+DpBokz7dLKi84X9/efqej/XTbAFRpx+hvaMMacZSOMqh5YxIkV+xnJtjmN/lk4cl16W/Ugy+4zk4821AKW0RlDCjBHbRVmzTFV6GSPOAyr2pntOMz+K3KEeCL6BoHr9Afn86ZXS8hYXaeWZM7S3wxeVPTKczIBLqPlgenf4N0WV0kq8j3nyb5702ZsI5mrpk1VLj9K1C49wdFeC+Rl2jmCPkeFmXnhL3Hw9/kIzWcbIQMB5Wv1Iiq19HZsFk4yZBSYV1oXYdJUUu3XchBpt2hEqY5TOQm7auHLt6/KlWUor6PjOzMH7pS6REeuXl71f/YFgxgLSkjRpTLneOdhrNcZ1Gmir8BarvKRIPf2BUR8YaawpVXNNqXYf6iuoiwk1pdEXGgmMAEiH0x4j8cqklqYspRV9E5WZ4SaFskfqKkoG9eNwckOZ1fPQHy9wk3i/kpgbdPodZolGzhMifT+SltLyhM7/eqLG5+zGC6uU1oCRch+P7YYQ01BuNDqysUrP/Wu/43OLkuIiSQPWnKVTEmsgqg9c6jHWloX+pu0NB/8zeT5dOyhjZAg3ocSMb0xF6DUTZdkn+3631sSDmq+nd3NiPrCfQ2eq32Sha44KjDgN6nlVW+5Re4/f8blxbXmJVU5PSi/7wwyMJAp6Z0vstb0TxyX+u5htnzl9mrzF7rR6pgK5gt/uIyQYjJxsxZ4s2O/s6faZd3876TEyuPl6qhMRe1p4bONBJ/v19jtv2m735cWz9e1/m5OxAIJ50tbbH5AR/mPoNONhfKXXOnFOmuYe00gwVePBXOE0VXNQKa08PKk17+JPlDGS6OckcudTnFJawdycZzO7IdJgklJaQzHUMkbTxoX6jKTTK8RvK9Pg5MJAVGAkzYwRKdQgM5NBEUmaXFce9XU634fmgr2AYgFDZmaNFNKiu6Ys+kLOWAIjANLgS1ZKK07vinR6jMRe9LVfeJ42rkIul2tQPw4zSyXZeVO8jBEnAZXYNYbTrH57bxJHpbRKos8dJSngsPyRvZSWebNGorVC/Obr6Z9Pm+W0nJ6rmmuZnjSyOKJ6jKRRttQ8h9nd3pvWGIdiUMaIwxOn+qjsXFfMc6EbA83ATqxIpYvBx7LWTTHZJv4CL6VVSDevjKSoUloOP0OXy2X1GXH6/VTkdkXdhJNexogn7X1Ggv33ypS6cjWVJ9k4y06fNV4/+9RJUY3YgXxROCvwHGc/MUyUMSKlV6fd7BvR0x+wLug6LYvV5w9G0sgdBDjKbXdNmXdpeXOo/qWVzhz+/CTnJ6hFbpf1C9xJmrt5Evjme12SImmD+c7sZ/DOwdAJfuzdSfnA6jGSKGMkUSktK2MkcfP1XAsgWLWNh1JKyxYYGe0n+fYyRukEHaZagZF0M0bSL6UVuuCR+V43QzF5bPQZejo/J2afkdHeY0SS5k6ulZR7C7LDEVuahowRAOkwz9kq7Ocs4d+R9sBIvBvPzPWOPbMk6rVjm6/bLjxPD/99N7Nre62MkdRrrdLwzQiBYCSDI9kFZpN5TpduKa2S8PH89h6LSTNaBjeHH3DY+6PYZVhj86comRTpfWI7zhBu8DDL6Tg994ntMeKs+Xr4sw8GHWfPSJGgQ58/8zdQDb2Ulj1jJHp8ZhWHto6+uPsmu06QqD9JpEdL4ZzLUErr8NnLlqfzGZo//+msLcZWRL7n08oYCZ+j5lpQz/7elxzTkMWRAIUtt670FTD7iWHsyUJUYKTf+d365l1JZk+IeK8dy7wg2h8Iqtc8loM7istsTdvNcl/pZIxkmvl5vdcVuuvF5UqvFFRzuJxWssVE7KLlxe0HJEnvm1qX/oBzkPkZbg83yp06tiKbwxkSs7bo/q74dz8lKjlnZl/E3vlk3yfXTpTM8ZgNNNMpsUTGSIR5QVpK72T9qKZQ357YhpjxxOsj5az5euQChrXYzLGMgkl1sYER55+huWDPoT8lWfP+aaG/I/kYkE6kpjS6WisZIxhtnn76aZ133nlqbm6Wy+XS2rVro553uVxx//v2t79tbTN16tRBz3/rW98a4XeSHebF+4ljIn9nzJ5Z5lpEsjVStwdG4vTSsIsEEUJ/s+wZbmZGqH3tIw3uSxKPeZNRaIzRQY6kGSMxgQTzvadaa5XYM0YcZDtYpb4G7D1GnJ2XmEPpH3DSfN0V9T6koWWMHDexRtLgwEAisT1GnJwbW30GB4y0xmgPOthfJxOqSotlH1K6ZUulweePkcBIojVTksBIUfwbysxASTpNr3NddPP1wnlfI2nCEEppSdLxE2slpXduPK7KljGSxprE/Nvi9HfNSLH/rH94bnMWRwIUNnqMjBD7iWHsiYnb7ZKnyCV/wLDKGDm5WGneDdXRG8mSSBUMsJdVOtTrvMm2ddeU3958PXdODsyFiNkfY+b4yrQu+DbVlEk66KiUlnlh84VwYMS8oJXvzIuwZobElHE5nKuZQF2qjJFEPUZstXJbD/Vp+75uLZgxNvRYGo0YR9Kg5utpfL+X2X4P5GPJtOHUVFOqhmqv2jp8aQW/PjhrvL77b3N00tQxKbe1/142A1nplOAKXYTIzYaWk2Iau6dzYcAKjOTWW8qK4yfW6s6Pn6jp4/MvIJ1IcZFbld5i67xmbGVmeowBuaq7u1tz5szRZZddposuumjQ83v27In6+qGHHtLll1+u5cuXRz2+evVqXXHFFdbXVVVVGg3MtdOEMWV6o61TUigY//b+nqiMkf44fx9T9RixygJbGSORC2/Tx1dKGlyOy0mwwhvz977SW+woQ7/EdnFeSidjxFYGKpj6BooSKzCSfsDC3nw9VcmpSAnRwZkp6QRGjmmu0U8+caKVpZvK0DJG7KW0nGeJxwZGMpkl4Xa7NKa8xFrfpHOuVV/l1dv7ewadPzaGS2m1dcbPGDG/R+J9FolKaVnfFzl2M9nhsFfIIGNkaGrLPSrzFKnXH0hrHXP+Cc0yJJ0+a5zjfaIzRpz/nPzbvEkqLynOuf4YLpdLf7r6VPkGgpoxvkJvZHtAQIEiMDJC/LbU0nhNnUqK3PIHArZSWk56jIR+2XfYM0ZS/AHwFrutplRmYMR+d1Mi0Rkj5sIgh0ppxZy0mXcYOXXBCc16dfchnXHk+ITbFNtOnPv8Af39nUOSpPcXSMZI7EJvSl3+XaAzM0YO9PgVDBqDftZSldIaCBr6zwf+riffeE/3XPo+nTm7PtIsMsfuEjIXJebdkOmV0or86s+1C+0jzeVy6fLTpumBl9+Nyh5Jxe12afm8iY62jVcu0cniymu7gGE1X8+x+YrtMZLOYnjZcU16dtt7Orauc7iHlZfOPb4p20MYdjVlHiswQiktjDZLly7V0qVLEz7f2NgY9fUf//hHnXnmmZo+fXrU41VVVYO2HQ3MgMLsxio9u22fpowtV0X4/MV+w9lQeozE7hMvY8TqMRLOsI/X5D1WqLeXW76BoLVeivR0TLxuii091e/wAr29yXl/TBZMPObaLbpHi7PyUebphz8QTDk+ewlR08AQb/BYcqzzv43e2MCIo7Kl5hogkgnjZIxmjw5TptcJteWeSGAkjXOt8VZgJHp89eGMkUO9A+rzBwb1pOyPk4llsq+b7KzgV46dqx4O+/svpPc1klwul46dUK0X3z6oxjT6T3iK3PqIw7WWaWzl0HqMlJUUpX2skWJmzvj9/uQbAhgyAiMjJNXJdEmxW939AXX5nN/9XWpljPjD+8QPuti5XC6VeYrU3R+IBEYcZYzYe4yES2k5CKiMlNiL+sdPSC8wcvZRDTr7qOR1G+0nzn/b1a7+QFDjq7yaMjb/MiviGRQYycP3ZV54CwQNtff6B12IS1RmwAwyBIJBvdMeunPqNy/s1Jmz63O2t8OgHiNpnPyVx6nXPZpd+YEZuvIDMzL2+vZFVY8/jcV6nObruZbGX1dRooqS0N8UKb0A3cnTx+qR/zhN69aty9TwkGW15R69G25MSyktILG2tjb95S9/0S9+8YtBz33rW9/SLbfcosmTJ+vjH/+4rr32WhUXJ17C+Xw++XyR8jgdHR2SQhdVsnFhxTxmusfuCwck6is9+tPKBaopK9Y3HwrdL9vji7wX89zOZQSsx0rcRni7gbjHNbM33S5Dfr9flbY1zYQaj/x+v7zhAENXX+hYvf2hi9KeIlfS92IGRrp6fPJXFKs/XLbKrWDC/VyGWUIr9B56faHtit3JPzfzT25f/4B8/tDnVeRKvE+RKxh+/5HPZSDO5xfL7/dbx/L5A/KFt3MnOJb1fgKR92yOz63MXeAzz43Nm1DcMlIey6XQ90qfP9KzU8HEn4WptiymAoQr9bEOR60teOfkfZnMv72x+5QVGfK4DfmDLr1zoEtTYm50Mb9vi+K8ryJXuNdPf/TvlH3h7BOXCugirmHI5ZIMI7Pfu8NlqL9vM+3Oj83Rvs5+NVZ5Mjq2urLI30bDwc9xPsnVucXQMaeZlc7nSmBkhKRKo45tHp5WYKTPDIw4uyBVFr6I1d7jTzomu3Jbrd5cLKUV+x6OC0fWh1OxdVeWESmjNbVOLldhXFiO/QxjmyrnA0+RW+XFhnoGXNrf5UsYGBmcMRLpMWLe3fz4P/Zqf5dPgRzt7TCox0g6afXVXjXXlGp8lbdgvn9zmdvtUrHbpYGgYWX4OGrabm++bt7FmGOBLJfLpUl15fpHayjrI9fGh+yyl6epqyQwAiTyi1/8QlVVVYNKbn3xi1/UiSeeqLq6Oj333HNatWqV9uzZo+9973sJX2vNmjW6+eabBz2+fv16lZdn79yupaUlre3f2eOW5NY/Xn9NY/aHzsX2hh/7+2uva137a5Ikn79IkkvPPvWkasNVVF7f75JUpN1798UNvu/YGXqdN//5D63r3Kq+AamiuEj1ZdKTj66XJL0b3mbrP/+ldf5t+lv4Nbs7DyUP6AdC43n0yac0sULadyD09d9e3qT+7YN72UnSO92SVKzO7l6tW7dOr78TOlbru+9o3bqdCQ+1593QGF/d+g/5Ai5Jbu16+22tW/dW3O3/0R563f0HIu/hQHtofJteekndb8YfnxS5GL6nba9e621LOr623tD76en1Wcd59d3Qsdtad2vduncSHudwtB8IfR6dvT5JLm1/619at25b0n3e3BMa185d78jnd0ly6ZmnntSYFNUfA0HJpSIZCn0uO7e/pXXr3hyOtxGXrzP03iTpH1tf07oDrzrar2d/aL/97+0d9H1bU1KkfX3SH9c/qZnV0fuZ3xcvv/SiurZFf190dYaee/6FF9UZfu65Npd+/5ZbkkuB/Tu0bt3bab/HXFXsKpLfcKl1z7tat25XtofjSLq/b0dK8p/Gw/duW+jnWZJe3Pi89m/N8AGzIFfnFkPHnGZGT0+P420JjIyQVLViBwdGnJTSMpuvOw+mSJGyWFaPEQcBjjJP6FslV0tp2cdS5Hbp6KbqJFsPjfn5DgSDeuHtwuovIkV/hnUVJaouzc8mwFUeqWdAeq/Lp1kN0XW4E6WFRzJGDCv9fiBoaO2W3fJbjQRz64KvGcwZSu8Jb3GRHv/SGVzEHkElxW4N9EfKJTrqMRJVSst53euRNtkWGMnF8SF77OVpKKUFJPbzn/9cl1xyiUpLo8uMXHfddda/jz/+eJWUlOizn/2s1qxZI683/pXbVatWRe3X0dGhSZMmadGiRaquHv7z41T8fr9aWlp0zjnnyONxfm75+72bpIP7ddLcOVp2Qqjp7MY/v66N772j6TOO0LKzZsgwDP3HhtAFhcXnnG31Mqrctk8//+fLKqus1rJlCwa99l8ObZH279Wc447VsvdPCu2/eEDeYrd148LbT76lR999Uw0TJmnZsmMU/Pse6Z+vqH5cnZYte1/CcX/7H8+o42Cv3nfyKZo7qVZ3vPlXqbtbpy6Yr5Onx183bNvbpW///Tm5PSVatuxMvfHom9KutzRj2hQtW3ZUwmNt+ss/9FzbTk2bPjOUublnp46cNUPLzpkVd/txbx/QXVtfkre8QsuWnSZJofH1hMY3P8G6xu/3a/NvHpUk1YwZq+nTxki73tL0qfHHt+tgj7655VkZ7iItW7ZYkrTzqbeknW9qyqTQ55kJD7Zv0db2veoPhs6xjjryCC07Y3rSfQ5s3Kk/vP0PjW9oUnB/myRp0cKzB/UQiefrrz6hA92h9fTsI2Zp2VmZyz5+2veqXj24W5J0wvHHa9m8CY722/HUW3q69U1NbG7SsmVzrMf9fr/ueO1x7euTph09V8tiynl+941npN5enX7KyZo3Jbqf3j3vbNSu7kM6Ye48nXN0ve7dsEO/2xDK5vr4+yfqxnOPSlnFIp98bfPj8vcNaOrkzH3vDpeh/r4tFN5/7NVv39oiSTrt1FN0wqTarI5nOI32uS1EzGlmmRnTThAYGSHJ6nTaHx9S8/U+5wEOSaryeiT1am+HL+mYoo5VEtrGDKZIuVVKy/7eZ9VXWsGf4WQGq/r8Ab0S7i/yvgLpLyJFZwDlYxktU5UndKfa/q7BDdj9CWoim3PrDwTVHS7dIEn3v7QrZYPJbIkdT7oXpGNrCSOzSord6ukPWKXP0usxEoj0usmx70Mp1AzXlIvjQ/bUlEWCIWPKCYwA8TzzzDN644039Lvf/S7ltvPnz9fAwIDefvttHXnkkXG38Xq9cYMmHo8nqwvvdI9v3phS5i2x9isrCf3fb4Rez97cu8zrtbarLA39vukbCMY9prlbeUlkTLUx21WWma9hyOPxKBi+W9/rKU76Psz12YDhCo3Reh+J33+5N3SsgUDoWGZP69KS5McqDfdcGTBk7eNNsk9Faej7oj98HMm+X/L5MU8zB4KGAkbob32JpyjuPuXh7z+/7Tjm55don+EwMaYcVEmKuZKkUvN7KmDICH8W9u+5ZOqrSq3ASLLPfTiMrYwETVN9X9iddVSjfvPiO1p4dOOgfWpKDEku7ev2D3rOLOFaXjr4s7D65bjd+tmzO/TtR0JBkSs/MF2rls4uuGx0r6dI6huQpzhz37vDLdu/77OlsTbSI7W0xNnPcb4ZrXNbyJjTzEjnM82dK9sFLlEJH1NJ+G59K2PEQZDDar7eG9rHSYBDkibVlUmStu/rTjomO7NZc3tP5GJzrpbSOi7N/iJOmRee3znYq+7+gDxFLh3ZWJVir/xhD3TF1pnNJ5We0In8vi7foOd8CZqvm9kgnX0D1qKo2O3SP1o7dTBccs5J6aORFNtrwmlgFNlh/v6INF93UEorPKdm+S0p90q6SdEN2DPdfBT5xSylVVPmIZsISODuu+/WvHnzNGfOnJTbbtmyRW63W/X19SMwsuyKd85mZVL6Q8/ZAyP2puPmDVJ9/fGbr5sljpM1KjcDHGYmsVUWOcXvMvPGE2uMCc497cx1ny8Q6c0hpb7pxSq5ORBMWZ3Avr0vTvP6VDdsRJqvG1YWa8Ib/orNLHtDwfC2A8HMlwQ9Zca4qK+d3NRkfl49tu8Vpzd52LNKMp2FbS9Nmc6a5NgJNdqw6mwtj9NYuib8km0dg9dMycqAm+umjW/tt4Ii/3H2rIIMikiRax6cx+Q+ez+7XKv2ACB3kTEyQlJmjFiltAJJt7OL7THi9MLo1LGhSHqqvid25uLgoC0w4jQQMxLsQZrjJ2YmMGKe8O4ON5JtrCktqD+41t0/kqaMrUiyZW6rCp/kx88Yib9oNC/mmhlRLpd04/nH6NaH/mFlcVV6c+vXZexijzI1uc38fRnpMeK8lJb5d8HpfiPNHhjJpb8LyD6zWSyN1zEadXV16c03Iz0Htm/fri1btqiurk6TJ0+WFErzv//++/Xd73530P4bNmzQxo0bdeaZZ6qqqkobNmzQtddeq0984hMaM2bMoO0LTX+cgIJ5vt8fCP1d9A9Eeh/Yz+3MNVKfLQAQ77WTXeg0+yuavdwi40n+d9ie7Rkaq4PAiC1z2TCMlDfUmUqsz8Ow7vBPFgwwb4Ly+SPnFQGHpTqLrcBI0PosEp2T2MfQHwiq1F1kBVMyeQPF/Ol1crukoO0mp1TMsfbaPhOnF8CjAiMZPv+ps2VdeoZp/VnjDX1QrR19g57zJfkZMef99T2hMiWnzxqna885YljGlIvMn7NCWvcXqnGV9p9J5guAM7l1pa+ApbozqdIbOvne1x26Y8PJHS4N1aFf/OYd7k5L/cQ21U6n+bp597y32J1Td4QUu11yuUKfRSYar0uRu7nMk+2mmrKMHCdbCqeUVuKMEX+Cu/3ME10zMFJRUqxPnjxFHzlxota/3qpit9tRreGRZD85nz+tTh97/+QsjgapmD9fPVYpLecZIz228m65eJJPKS0kYt7hSuAWo9FLL72kM8880/ra7PuxYsUK3XvvvZKk3/72tzIMQx/72McG7e/1evXb3/5WN910k3w+n6ZNm6Zrr702qn9IIesfGHyzWGzGSL8tY8R+Edy8oas3RcZIsmC+mXVi/g1OdZObyQrKhMeY7AKzyXxNwwgFKpwEbuzP9w8EHWWZWBkmAXvGiLNeekVuw9rXzP5IdCz74/5AUKWeIqs0bSbPE6pLPTp+Yq227GoPHyv1uZYn5sYVyXn2h31tkOmSu7W2wMhwBWFqwi/ZdihxYCTe97v5+Zg3oTVWlw7appCYfTjpzZj7ykqKVF1arI6+AevvAACkQmBkhKQ6wW0OX2R/50Bv0u3s5k4aowm1ZXo3nMGQbsaIyckdvmZgxCyllUtltCTJ5XLpQ8c3q62jT8c0Z6axZGwJm+aawjoJjCqllccZI5XhjJF9cTJG4t19KEUWM+bdbBXhQGVZSZEuOMFZc8ORdvqscfrfTe/ow3Mn6D/OnpVzpb4QzQpy+NLIGDHLb+V4Ka2JY8pU5HYpEDToXYMoC6aP05Sx5TpvTnO2hwKMuDPOOEOGYSTd5sorr9SVV14Z97kTTzxRzz//fCaGlhfiZVqYFyjNi7bmBfqSougbtsy/Rb3+gAzDGHQzl5VBnGQ9U16SoJRWijWQWerYzDRJdFOOXXQgwbCCFanWaOZY/IFIKa1k54NWxshA0PpcIkGO5Ocl9owRM1Mn0XrVPu5+a67MjJHMXlw+deZYKzDiJFhhjseeMeI0M2B8pT0wktnzszFRpbSG5zOsLYmfMdLtG7DmLd6NDWY5X/MmtJqywq6Nb1734Oaf/PCNDx+nt/d1R924BQDJEBgZIalOcCeMCQVGnNaUlSS326Xl8ybq9se2Od5Hii57IjkLclSHT3j2tIdOnLw5ePHrjo/Nzejrx55cN9cWWsaIvZRW/p5IVFmBkeiMkWAwUhM5di5jF0AVOVY2K555U+r07FfPyvYw4FCk3IXzGttWlkm4nJvbFfq9n2tKPUW6+fxjdKjXT2YAokweW66nvnxm6g0BIIZ5YdYbr5TWgNm/I/55nZntIYWCALFBe3O/pBkjnkSltJKvm2KDN/HeRyz7Gq7fVqoqZSmt8PvuHwhapbRKkpXSCo/NMEJr05JilwJWxkiKUlrhp/sHgvKnCKa43S4Vu10aCEaCPOb4Mh8YGac7n/iXpNTvSYoEx8wAmKfI5bgqQr0tUyLT72tMhb2U1vBmjOzt8EUFEM1MkFKP2woQ2pnvtaMvdH5q739SiCKltHLv5iQMxs04ANLFb/cRkqpW7ISYi+xOsz+Wnxi5m91pbffm2rKoE1n7BfFEjmkO9e3oDF+gy7WMkZEQe1dZU8EFRkLvr6KkKK/rwZultFoP9UXdqWku4qTBcxlb1qiiJPcDI8gv9TGl2Jxk+Ji/m80+N7mcFfSJk6do5Zkzsz0MAECBiBccsEppxfTviP37WGrbJ145LSfZH2UJMkZS3YjmtWWMDASCVgneZPvZ12X+gLOyWPbxO93Hvn4zt/c7bIoe1Xw9kLpfiH1ski1jJMPnMidOjvTf2bG/O+X2ZpChN1wyLZ0+EiOZMWIPPgxX2a7q8Ev2B4JWuWwpUtp7bIU3bpCoKOb4NeX5u250wmq+noM3JwEADl/uXmUpMKnq0sYGRpye8EwZW6H3T6sLvbbDYEWR26VJY2zNch3sN31cRVSarNNjFZJCL6U1u6lKp80cpys/MCOn+sekq6ksdIdTa0ef/vbOIevxflsDzkQ9RkxmKS1guHzwiPFRXzu5s7Ak9i5GFmQAgFEi3trJG5N96U8QDCguclv72Uskxb528ubroZtkzMCK32EWh5md4hsIWtkSqfZzuVxRDdgj7yv5332rx0jUPql7jEiRBuxOm69bgZGBoKNSZObrWWXPwvtkuoF1qadIk+pC6+r508am3D62+Xo62RjRzdcz3GOkbPh7jBS7pbqK0Pq+1dZnxMwYGVcZP+ARez5aW/CltEI/07EBIQBAYRh9V7ezJNVdPGYpLVM6d5188uQpkpRWHUV7qSQnQQ6326UTJtVaXzvJMik0nuLok6FCLKX1P5+Zr/9YOCvbQzkspcXSoqMaJEn3v7TLejxqcTpoAR09t5V5UEoL+eXM2fVRX6cTGOnOg4wRAACGU9IeI/7owEi88lFmr4+4gREHgQezlFZPuE+JuY83VcZIcSRjJOqmnBTrLXPt5x8wnJfSspUWM89zk70nt9tlnQObfUacNl+3SmkFbMdKso/1fsKfWyBBOdtM+PPVp+n/rlqgU2c6CIyE35iZ2ZNOgKO+2hYYyXCZpZJit7U+Gc7PsKEqdKNfm63PiFmOeFylN+4+sSWlCr2UltVjhBuUAKAgcZVlhKQ6wW2MyT5IJzBy3pxmrV15qlYtne14H3tzbacluOZOrrX+PRpLacWe8DbXFFZgpJAsPzFUW/RPf9s9qPllsds1qE9D7IluPvQYQX6ZOKZcRzRUWl87+R0/Jlya4EBPf3gfFmQAgMIXtPWmiNdjxMxCSJa5YJbCildKy9wv2XrG3D8QHouTLBMpkjHS5w/KFwgd2+VKfVHV3ovMScN2+1j6A0ErI8Np+a3+gaAVrAjt57SUlrPsFG9MKS1/0Fkvk+FQW16ieVPqHGXAj69Mv9SpqcpbHCmzNALnaHMm1ajMU6SJY4avF6R5s+Trezqsx/aHAyNjE2SMxH4v27NZCtFRTVWSpFkNVVkeCQAgE0bf1e0s8aUIjHiLi6Jq0DsNVphOmFSrqlLnd2ukmzEiRddsHY2BEfuclJcUqbqMi+e56uRpdWquKVVn34DWv94mKXnZhNigVzk9RpABZx4ZyRpxUkpiVjiQYrbKyfTdiAAA5AIzO0OKzRiJab4eSFwGKrZ5up3fUSmtSHZ8b3/AUV8S+xh9A4Go8aW6SG/PsOg3G6k7zBix75OyB4otuDRgC4ykCgiYifNBI/KZJsuu8Ngaw0v2zzy3bvKYVFeu4ybUWF+nU7bU5XJZ5bRGIqv33k+/X8+vOlt1w9gLcv600Pr+r2/usx7bFy6lNTZBxkjsvNcUeCmtlWfO1KbrF0adxwMACgdXWUZIly/U0KyqNPEFV3s5rUyfNA4lMDLHXkrLM/pKadlPAptry/K6D0ehc7tdWj5voiTpgZffkZS8bEJszdhKeowgA+zltNwOfn+MrSjRGFt5gkzXrwYAIBckDIx4opuv27OBY5mZG8lKaSVbA3mK3Nbr9vgHHJe3smeMmPukKr8lRW7A8geCjrNTzH36bX0/Up0r2AM3UYGRFAEB+6mxWWop2Y18sdksL+04IEmanEbp55Fy/pxm69/pBjiWHdekxupSHdNcPdzDGsRT5FbNMJetWjA9VG7spR0HrYBXqlJasd8rwz2mXONyuRIGiQAA+Y/AyAjp6A3ViK9OktVh71mRrJndcIgqpeXwWDVlHs2sD93BPBozRuyLk6YCa7xeiBYd3ShJ2rKrPVQb2lrQDg56UEoLI2HelEjWXcAwkmwZ4nK5NKs+krZPbWMAwGgQ1ZvDdv5dUhRpbC7ZeowkKaXV5w9GPW7vq5Eq8GAvx+U4MGL2GBlwvk9oLPGarzvNGDGsUlqpqg7YS2kN2AJQqc4xit2hGzYk6Z2DvaHHkjV6t41tw1v7ta+rX2PKPTp15rikx8mGD81psv79XqcvrX3/a9lR2rDqrIRBhFw3fVy5Gqq96h8IatOOg5JSN1+3l0Nzu0IlxQAAyFej7+p2lhzqDWWMVCdJNZ1oD4xkOB134pgymTcsp1O268Rwn5HRGRiJLBgmFFjj9UI0s75SLpfU3uPX/u7+pA06Y8sa0XwdmeApcuv2j83VJ06erFNmpG4IKkXKaUk0XwcAjA5WQCGmBJWZMWI+3z+QupRWbMaIGRRJtJ+dWU6rx1ZKK2WpKk+kQbzTzA/7Nj5b9ofThu3RzddTldKKBJfsGSNOSnw2hJuNm4Gp5KW0ImP705bdkqSlxzVlfI07FE22vpHxMoxSyecqAi6XS6fOCAWrzHJa+7vDPUYq4gd77GvimjLPoN6NAADkk9w7MylQHX3hwIjDUlrp9hhJl7e4SPMmj1FFSZEmpdHAbeFRDZKk2Y2jr/lYdMYIgZFcV2b73t7W1pW0QaeHHiMYIefPadbXLzzO8YWBWfW2wAgLTwDAKJAo0yJh8/U4F+jNoEZH+OY067VtWRKpbvQyzwd7/QFHDdslqdRW7stpXxLJ3mPEiAoMJVNiK1fV77SUlm18A+FgSrHb5ejivr0fZqrxme+52zegh19rlSRdYCtZlWsuPWVqtoeQNaeEs3j++q/9kiI9RsZVJcoYiXyv1JYXduN1AEDh4+rfCOlwkDHSXDNyGSOSdN8VJ6u3P5BWXdBFxzTqhf/vbI3P03Thw2FfaDTVUkorH8yqr9TOAz16c2+nZoQvMMdbxMX2GKmgxwhyxKyGSBA6F++yBABguCUKKJTY+mNI0kAwcUbGjPGVenTrXm3d0xH1uN9WpivV31WzX0iPvZRWqn2KI03f0yqlZZaesmWMeIqTBytKiiMNzt0OKwHY+5KYn5/THmYN1dHrn2Q3bJjHaXm9TZ19A2qqKdX7ptY5Ok42rFo2W6WeIp2Wg6W+Mu3UmaEs5lfeadfB7n4d7Ak3X0+QMWKf90JvvA4AKHxcZRkhHX2pe4yMZPN1KXSSPpRmafVVpXmdMjxU9qwCSmnlB/Oi8j/bupKWGIhd2FFKC7kiKmOE5usAgFEgURDCLAPlDxgKBg35w6W04gUDjp9YK0n6+zuHol87HHRwu1KXjyqP02MkdSmtSFaL0/JbUqTUqz8QtDJiUgc5QuNLq5SWbXyRjBFnlwTMUlqmZD0xzbVsy9Y2SdK5xzXldMklb3GR/nPpbJ02a/QFRppqyjR9XIWChrT+9VYZhuRySWMSXCewl3YlMAIAyHcERkZIJGPEWSmtTDdfR/rcbpd1kk/z9fxgXlTetrfTukMw3s9W7MKY5uvIFeOrvNaiM7bkGwAAhciXopSWlLp81JxJNZKkrXs61GfrG5FOFocVGPEPqD8cREjdfD2SMeJPq/l6pCxW+s3XnZfSKrH1Mkk3Y6QxNjCS5LzE3uRdks6aXe/oGMiOuZPHSJIe27pXklRXXpKwt110KS0CIwCA/MZVlhES6TGS+OShutSjqvAF2Uz3GMHQfPYDM/SReRM1bVxFtocCB8zG1W/u7bIWjF4HGSMV9BhBjnC5XFaAj4wRAMBokCh4Yf/a508eQJhQW6axFSUaCBpR5bScBh2k2FJagbhjimU1X7dljMQ794xl7zFiZn+k6mdi3rA1EHTelyRe83WnPcxie4wkK/Vl/3xLit06ccoYR8dAdpwQDiQ+G27APrYyce8Q+/dLLRkjAIA8x9X3EeAbCKjPHzpZTdZjRJKOmxg6KaFUU2760uIj9Z1/mzMqS4nloxnjQxeU93X1q62jT1L8RZzL5Yq6+4keI8glZoAv0Z17AAAUEqvHSMzfvWK3y+ql4QtEGqLHCwa4XC7NmVQrSfrbrvZBr50q6CDFlNJyGFAxX9feYyRVrxD76/b5AwoEnZXFihekcVxKyx8YQimt2B4jSTJGbOM4acoYK8iE3GSWnuvpDwUAE/UXkWJKadF8HQCQ57jKMgI6w/1FXC5ZGSGJ3PWJeXr0ug9oKhkJwGGr8BZbQcbXd4fuFkx0J509MEKPEeSSWfWhXjlOLuIAAJDvEmWMuFyuSAN2f+q+GseHbziz9xkx+5I4yRiJ12Mk1d9iMwDQ5w8mDPDEYzZS7+kfsB5LVVo53ntItU9JnJJdzpuvR18sT/a+7HN36ihsaJ5vZjdVRc0nGSMAgNGCqywjwOwvUuktTtl0rqbMo5nhi2AADp95t/2mnQclJV4IF0dljBAYQe64cO4Efej4Jn36lKnZHgoAABmXrA+IvRSUVRYrQUaGmTGy5Z32yGsHQnfEp1VKyx+wgjApS2mZgZuBQFr9TMzxdPsi/VBSN19PXR520Pg8kcBSIM1SWrVlnqj3kiygYv98T5kx1tHrI3u8xUU6qilyDWJcZeKMEXqMAAAKCYGREdARzhip4Y4KYMQd0RA6yX/rvW5J0uym6rjb2U/yy0j3Rw6pqyjRjz5+ok7hjksAwChgBi/iZWd4bU29rYyHBCWd5oTLA731XrcOhW9U6x9wFuCQ4meMpApW2DNGIk3kU59XlliBEVvGSIpMDrfbpdNs5wbvmzomZUZLdGApHBhxWKrT5XJFZY0kCy6Zz1V5i3XchBpHr4/sMgOJkjQuScaI/fuSwAgAIN9xW/QIMDNGkjVeB5AZZmBEklYsmKKVZ86Iu525gKsoKUqZ2QUAAIDMSBaEKLFlZKTK4qirKNGkujLtOtCrV989pFNnjkur+Xp5SWipbA+MpCpVVeqJPG8GOVIFOOyv291vZrS4HPU0/NXl71dn+DhV3uKU+5TYAkvpZoxIUmN1qXYd6LXGmIiZmTJ/+lh6pOWJUJ+RHZKksUkzRmw9RrjxEwCQ5wiMjICOvnBgpIyPGxhpy45r1KvvHtKCGWO1+JjGhNuZGSOU0QIAAMie5KW0Ihf2rWBFkgv0M8ZXateBXu060BP92g6CFfZSWk77hXht2SGd4TWgkx5hsRkjTvqSSKEsjnRuvrOX+vIH0+sxIkU3YE8WXDrn6AY9/c/3dNmpUx2/NrLrhEmRzJ5kpbTsgbSaMpqvAwDyG1cAR0BHb+gEl4wRYOSVlxTrpvOPSbmdeZJP43UAAIDs8aXbYyTJBfrG8IX81o4+SbL2cVJKqyJcSqu9p996LNV+niKX3C4paEidfc6DHGZwx8oycTC+obB/fgNmKa0EpcjiabQFRpIFVE6cPEZ/+eLpQxwlsmH6uEpVeYvV6RvQ+KokgRFKaQEACghXAEdAJGOEEwcgV5kZI+Ve+osAAABki89RKa3Ihf1kgREzw6EtHBjpT6OUlnlx+J2DvZHjp9jP5XKp1FOknv6AtQZ0ciyr+Xp/ehkj6YoupWX2aBlixkgaARXkPrfbpRvPP0Z/29WetC9MdMYI1zcAAPmNwMgIOESPESDnmSf5FSX8WgQAAMgWp6W0IhkjiS/sRwIjvqjXdhKsaK4tkySrDFeiMcUqCwdG2nv8jvexAiO+QNTXw80bp0dLWqW0akKfZ5HbRU++AvSReRP1kXkTk25j9hip9BZn7PsUAICRwl+yEWA1X6fHCJCzzMaQlNICAADInv4k5a68HrMUVMBR9kdjTSjro/WQWUorecN2u+aaUGBkINykvMjtsjKMk6kPB2N27O9xfKyS4piMkYyV0rJl3ASdB4lMZimtdLJMUFjMuSdbBABQCAiMjICOPnqMALmu2CqlRWAEAAAgW5JljJglppz2GBlUSmsgEPU6yVSXFVt9RpzuI0kTakPH3H2oN+X4TGXhgM++Tl9ax0qXvZSWWYrMSbDHNHVcuYrcrqQ9KFDYzLmfVFeW5ZEAAHD4uAI4AiIZIwRGgFxVZDVfp8cIAABAtpiBEW+c4IDXYy+lFc7+cNB8fX93f1T5KCcZGS6XS821Zdq2t0tS8pJddk3hTBPDCI/ZwbFm1ldKitxQ5ynOTEZGVPP1YPrN1+urSvWbK07WGJpuj1rHNFfr3k+/T7MaqrI9FAAADhuBkRFgNV8v5eMGchU9RgAAALLPSY+RUJAjnDGSJIgwprxEniKX/AFD73X6bOW3nAUe7IGRkmJnN8+YvUlMToIwRzZGX2QeiR4jkcBIekGY90+rG/ZxIX+4XC6dcWR9tocBAMCwoJTWCCBjBMh9ZsZIBaW0AAAAsiZpjxHzwr7fWSktt9ul+qpIOa10mq9L0UEOJ5kfoX1Ko752cqz6Kq9qbVkYmSql5Y0qpRX6LNJpvg4AAFBI0jrjuuuuu3T88cerurpa1dXVWrBggR566CHr+b6+Pq1cuVJjx45VZWWlli9frra2tqjX2Llzp84991yVl5ervr5eX/7ylzUwMDA87yZH0WMEyH1m8/UKSmkBAABkjZUxEq+UVjhroz8QKaWVqhRUY00oUNF6yGcFU5w2N2+uiQQ5nGaZTIjNGHEQ5HC5XDrSVpooY83XPbbm6+HPL1PZKQAAALkurbOgiRMn6lvf+pY2bdqkl156SWeddZYuuOACvfbaa5Kka6+9Vn/+8591//3366mnntLu3bt10UUXWfsHAgGde+656u/v13PPPadf/OIXuvfee3XDDTcM77vKMZGMEe5EB3JVMRkjAAAAWeezSmkNvlklUgoqaAtyJA9YmH1GWjv6IvsMIWPEabCiaQiltKToclqZClaUFIV7jPgjPUbSab4OAABQSNK6AnjeeedFff2Nb3xDd911l55//nlNnDhRd999t+677z6dddZZkqR77rlHRx11lJ5//nmdfPLJWr9+vV5//XU9+uijamho0AknnKBbbrlFX/3qV3XTTTeppKRk+N5ZjujzB6yTe0ppAbnLvJtwcl15lkcCAAAweiUrpVVildIKOC6L1RAOjOw9zFJaTgMcDVVeuV1SOO4wpMBIxkppmc3rA5FSWk4zYQAAAArNkG+NDgQCuv/++9Xd3a0FCxZo06ZN8vv9WrhwobXN7NmzNXnyZG3YsEEnn3yyNmzYoOOOO04NDQ3WNosXL9ZVV12l1157TXPnzo17LJ/PJ5/PZ33d0dEhSfL7/fL7/UN9C0NmHtPJsQ92hcbtcklel5GV8SK+dOYR+eFw5vT6pUfoI3ObddKUGr4ncgg/p4WN+S08zGlm8bliNOgfCEhK3mMkVErLaWDEKymUMVJeUpzwteOxl8VyGkwpLnKrsbpUuw/1hY7lcL/Z9oyRTJXSsgWW/EFnpcgAAAAKVdqBkVdeeUULFixQX1+fKisr9Yc//EFHH320tmzZopKSEtXW1kZt39DQoNbWVklSa2trVFDEfN58LpE1a9bo5ptvHvT4+vXrVV6evbu7W1paUm7T1itJxSpzG3r44YdSbY4scDKPyC+HM6cPvT6MA8Gw4ee0sDG/hYc5zYyenp5sDwHIuGQ9RkpszdfNUlCpAhaRHiN9mjim3NE+poYab+TYaWRxNNeWRQIjDoMcsxoynzFSYgssBYKhz5lSWgAAYLRKOzBy5JFHasuWLTp06JD+93//VytWrNBTTz2VibFZVq1apeuuu876uqOjQ5MmTdKiRYtUXV2d0WPH4/f71dLSonPOOUceT/LyWFt2tUtbXlBddbmWLTt9ZAYIR9KZR+QH5rTwMKeFjfktPMxpZplZ00AhM0tpeeNmjIR7ZAwE5R9wVgrKLKXV1tFn/dtp+ShvcZHGV3n1XqcvrYboTbVl0o6DkpwHRqpLPZpQW6Z323tT9k0ZKvPz8wcMW1kxAiMAAGB0SjswUlJSopkzZ0qS5s2bpxdffFE//OEP9e///u/q7+9Xe3t7VNZIW1ubGhsbJUmNjY164YUXol6vra3Nei4Rr9crr9c76HGPx5PVRbeT4/cMhP5fU5bdsSKxbH8fYfgxp4WHOS1szG/hYU4zg88Uo4GVMZKklJZvIKj+gMOMESsw4rNeO17QJZHm2jK91+lLc59S69/pNFI/srFK77b3Zqz5uv09dPeHSpYVUUoLAACMUod9FhQMBuXz+TRv3jx5PB499thj1nNvvPGGdu7cqQULFkiSFixYoFdeeUV79+61tmlpaVF1dbWOPvrowx1KTuroDdWCri5lIQsAAACMBk8//bTOO+88NTc3y+Vyae3atVHPX3rppXK5XFH/LVmyJGqbAwcO6JJLLlF1dbVqa2t1+eWXq6urawTfRXYkC4xYpbQGAmn0GAkFKXr9AR3o7ne0j92EWjPLJJ19bE3b09jv+Ik1kqSxFYNvChwO9s+0xxe6g4+MEQAAMFqllTGyatUqLV26VJMnT1ZnZ6fuu+8+Pfnkk3rkkUdUU1Ojyy+/XNddd53q6upUXV2tL3zhC1qwYIFOPvlkSdKiRYt09NFH65Of/KRuu+02tba26vrrr9fKlSvjZoQUAvPku7acwAgAAAAwGnR3d2vOnDm67LLLdNFFF8XdZsmSJbrnnnusr2PXQ5dccon27NmjlpYW+f1+ffrTn9aVV16p++67L6Njz7ZkWR1mKaj+gUjz9VSBh7KSIlWXFqujb0A7D4T69KRTFqu5pmzI+6S732dOn66pYyt09lH1jvdJR7HbJbdLChpSly8QfoyMEQAAMDqlFRjZu3evPvWpT2nPnj2qqanR8ccfr0ceeUTnnHOOJOn73/++3G63li9fLp/Pp8WLF+vHP/6xtX9RUZEefPBBXXXVVVqwYIEqKiq0YsUKrV69enjfVQ7Z2xlquldfVZiBHwAAAADRli5dqqVLlybdxuv1JiwnvHXrVj388MN68cUXddJJJ0mS7rjjDi1btkzf+c531NzcPOxjzhVmj5F4AYVybygw0tk3EMkYcdCPY/LYcr36bodaO0Jrs3SyP44LZ3FMCjdud6J5iBkjld5iXTh3guPt0+VyueQtLlKvP6D93T5JUlkJgREAADA6pRUYufvuu5M+X1paqjvvvFN33nlnwm2mTJmidevWpXPYvLa3I3TCWV9dmmJLAAAAAKPFk08+qfr6eo0ZM0ZnnXWWvv71r2vs2LGSpA0bNqi2ttYKikjSwoUL5Xa7tXHjRn34wx+O+5o+n08+n8/6uqOjQ5Lk9/vl9/sz+G7iM4+ZzrF94YwRtxEctN/YstDytbWjV/5wjxFXMJDy9d83ZYxefbfD+tqtwa+dyJKjxmvtVSfriIZKx/uMr4gss11KPb6RVFLsUq9f+tfeUFm2pmpv0vENZQ6R25jTwsS8Fi7mtvAwp5mVzueadvN1pGdvZ2hhMp6MEQAAAAAKldG66KKLNG3aNP3rX//Sf/3Xf2np0qXasGGDioqK1Nraqvr66HJKxcXFqqurU2tra8LXXbNmjW6++eZBj69fv17l5c4zHoZbS0uL4237fEWSXPrrM09pa8wSqssvScU60B1Z8D7x+GMqT7Gq9Rx0SSqyvv7b5pc18LbheEyStCONbQ1DmlhRpJ4B6YWnH1ca1bQyzhgIfb4dfaEeIzte26R1Dt5cOnOI/MCcFibmtXAxt4WHOc2Mnp4ex9sSGMkwMzBCKS0AAAAAknTxxRdb/z7uuON0/PHHa8aMGXryySd19tlnD/l1V61apeuuu876uqOjQ5MmTdKiRYtUXV19WGMeCr/fr5aWFp1zzjnyeFL3XDQMQ9c8H7pIsHjh2YNuLjMMQzdtftTKFpGkZUsWqbwk+bL2A74B/fybT2ggGNrvlJPfr1NnjE337aRl8ZKgAkFDXk9R6o1H0Le3Pq2O9j7r64vPO0c1ZYnnJt05RO5jTgsT81q4mNvCw5xmlpkx7QSBkWHS2x/Q+T96VlPHVej/fSqS8v5euMcIGSMAAAAA4pk+fbrGjRunN998U2effbYaGxu1d+/eqG0GBgZ04MCBhH1JpFDfktgm7pLk8XiyuvB2evzOPr+McMxjTGWZPHGCCg3VpXrnYK/1dXmpN2XPkDEej+ZMqtWmHQclSWUlmf88cvU6hz1QU11arHHVzjKJsv09hOHHnBYm5rVwMbeFhznNjHQ+0xxK6s1vr+0+pG17u9Tyepve3NspSRoIBLW/u1+SVF9FjxEAAAAAg73zzjvav3+/mpqaJEkLFixQe3u7Nm3aZG3z+OOPKxgMav78+dkaZsYdDJfIKvW4VVYSP9OiMaZ3Y7E7dfN1SVEZIvEau48W3uLI5zqpLnvl1QAAALJt9J4RDrNdByP1y9a9Eqr7u6+rX4YhFbldGltRkq2hAQAAABhBXV1d2rJli7Zs2SJJ2r59u7Zs2aKdO3eqq6tLX/7yl/X888/r7bff1mOPPaYLLrhAM2fO1OLFiyVJRx11lJYsWaIrrrhCL7zwgv7617/q6quv1sUXX6zm5uYsvrPM2t8dKkM8tiJxtn1DTSQwUlLklsvlLDByysxx1r9TZZgUMntQaDKBEQAAMIqN3jPCYbZzfySde90reyRJe8NltMZVlsjt8E4mAAAAAPntpZde0ty5czV37lxJ0nXXXae5c+fqhhtuUFFRkf7+97/r/PPP1xFHHKHLL79c8+bN0zPPPBNVBuvXv/61Zs+erbPPPlvLli3Taaedpp/97GfZeksj4mBPKNu+LslNZQ22TPziIudrrLmTa1UWLiNV4R29FaW9tsAIGSMAAGA0G71nhMNs54FIxsg/Wjv11ntd2tthNl6njBYAAAAwWpxxxhkyDCPh84888kjK16irq9N99903nMPKefu7QoGRMUkCI401keBROpkf3uIiff/f5+hf73Vr6tjRGxCw9xghMAIAAEYzAiPDZFc4MFJS5FZ/IKiHXm3VmPLQCX09jdcBAAAAIKkD4f6MycoQN9h6jKRbEmvJsU1DG1gBKbF9ZpPGlGVxJAAAANlFKa1hYvYYuejECZKkh17dY5XSqq8mMAIAAAAAyRwIl9IybzCLxx4YKUmjlBZCvB5KaQEAAEgERoZFnz+g1o5QEGTFKVMlSa/t7tC/3uuWJI2nlBYAAAAAJHUgXEprbGWSUlr2jJFilrPpMnuMuFzShFoyRgAAwOjFmeQweLe9V4YhVZQUaXZjlaaOLZdhSI9vbZNEKS0AAAAASMVJ8/XGmqGX0kIkMNJQVapSW78RAACA0YYzyWFgNl6fVFcul8ul902tkyR19wckERgBAAAAgFT2d6cupVXqKVJNmUeSVOymlFa6vMWhYMhkymgBAIBRjsDIMHjHFhiRpPdNq4t6vr6aUloAAAAAkMzB7tSltCSpIdzDsYRSWmkzM0Ym1lFGCwAAjG6cSQ4DM2PEvOtmfmxghIwRAAAAAEjKScaIFGnATimt9J06c5zGVXq19NimbA8FAAAgq4qzPYBCYJXSGhO662ZyXbnqq7za2+mTJI2rJDACAAAAAIn0DwTV2TcgSRqbpMeIFGnA7imilFa6PnDEeL10/cJsDwMAACDruMVmGOw80CtJmjw2lDHicrmsclp1FSWkeAMAAABAEu3hxutul6weIomYDdjJGAEAAMBQcSZ5mAzDsHqM2BvYmeW0KKMFAAAAAMnZy2i5UzRVb64NZeqXlxRlfFwAAAAoTJTSOkyHev3q9IVSvieOiQRGlh3XpAdeflfLT5yQraEBAAAAQF4wG6/XpSijJYXWWlv3dOjDc1lrAQAAYGgIjBym3e19kkJ1cEs9kTuWxlV6tXblqdkaFgAAAADkDStjxEFgpKbMo9UXHJvpIQEAAKCAUUrrMLV2hPqLmHVuAQAAAADpORjuMZKq8ToAAAAwHAiMHKY9h0IZI00ERgAAAABgSPZ3OS+lBQAAABwuAiOHqTUcGCFjBAAAAACS+/PfduvCO/+qTTsORD1+II0eIwAAAMDhIjBymCIZI2VZHgkAAAAA5LZfPb9DW3a16xP//YL++uY+6/EDPQRGAAAAMHIIjBymPYfCPUaqyRgBAAAAgGTeOdAjSer1B/Tpe1/Um3s7JUkHKKUFAACAEURg5DDRYwQAAAAAUvMNBLSnI7R+Oqa5Wv0DQf32hV2SIs3XCYwAAABgJBAYOQyGYVg9RppqKaUFAAAAAInsbu+TYUhlniJ94axZkqQH/74nFDAJr6sIjAAAAGAkEBg5DJ19A+rpD0iilBYAAAAAJLMzXEZrUl2Zzpw9XlWlxWrt6NOX7/+7DvX6Na7SqxnjK7M8SgAAAIwGBEYOQ2s4Dby23KOykqIsjwYAAAAActcuMzAyplze4iItPbZRkvSnv+2WJH3hrJkq9bCuAgAAQOYRGDkMrR0+SWSLAAAAAEAquw6aGSPlkqTz50ywnptQW6aL3z8pK+MCAADA6ENg5DC00ngdAAAAAByxMkbCgZEFM8aqvsorSfqPhbPkLSZbBAAAACOjONsDyGdmKa3GGhqvAwAAAEAyuw70SpImhwMjRW6XfvrJefpHa6c+cuLEbA4NAAAAowyBkcOw51ColBYZIwAAAACQnL35umnu5DGaO3lMtoYEAACAUYpSWochkjFCYAQAAAAAEjnU69ehXr+kUPN1AAAAIJsIjBwGeowAAAAAQGpmf5GxFSWq8FK4AAAAANlFYOQwtHaYpbToMQIAAAAAibxzMLrxOgAAAJBNBEaGKGBIXb4BSVJdRUmWRwMAAAAAuSvSX4TACAAAALKPwMgQ+QORf5d5irI3EAAAAADIcbsO9EqSJteRbQ8AAIDsIzAyRP3ByL+9xXyMAAAAAJDI2/u7JUlT6iqyPBIAAACAwMiQ+cOBEW+xW263K7uDAQAAAIAc9tZ7ocDI9PEERgAAAJB9BEaGyAyMlFJGCwAAAAAS6vMHtPtQqJTWtHEERgAAAJB9BEaGKBIY4SMEAAAAgER27O+RYUjVpcWqqyjJ9nAAAAAAAiNDZfYYofE6AAAAACS2fX+PJGn6+Eq5XJQhBgAAQPYRGBkifzB0Qk8pLQAAAAB2Tz/9tM477zw1NzfL5XJp7dq11nN+v19f/epXddxxx6miokLNzc361Kc+pd27d0e9xtSpU+VyuaL++9a3vjXC72R4vL0v3F+EMloAAADIEQRGhshqvk5gBAAAAIBNd3e35syZozvvvHPQcz09PXr55Zf1ta99TS+//LIeeOABvfHGGzr//PMHbbt69Wrt2bPH+u8LX/jCSAx/2L0VzhihvwgAAAByRXG2B5CvrB4jxcSWAAAAAEQsXbpUS5cujftcTU2NWlpaoh770Y9+pPe///3auXOnJk+ebD1eVVWlxsbGjI51JJgZI9PGExgBAABAbiAwMkRWj5ESMkYAAAAADN2hQ4fkcrlUW1sb9fi3vvUt3XLLLZo8ebI+/vGP69prr1VxceIlnM/nk8/ns77u6OiQFCrf5ff7MzL2ZMxjbt8XyhiZVOvNyjgwdOZ8MW+FgzktTMxr4WJuCw9zmlnpfK4ERoYokjFCYAQAAADA0PT19emrX/2qPvaxj6m6utp6/Itf/KJOPPFE1dXV6bnnntOqVau0Z88efe9730v4WmvWrNHNN9886PH169ervLw8I+NPpdsvtfeGFqhvvPSs3mb5lJdis5yQ/5jTwsS8Fi7mtvAwp5nR09PjeFsCI0NkBUY8lNICAAAAkD6/36+PfvSjMgxDd911V9Rz1113nfXv448/XiUlJfrsZz+rNWvWyOv1xn29VatWRe3X0dGhSZMmadGiRVFBl5Hi9/v1swdCi/7Gaq8+fN6iER8DDo/f71dLS4vOOecceTyebA8Hw4A5LUzMa+FibgsPc5pZZsa0EwRGhigSGOGWJwAAAADpMYMiO3bs0OOPP54ycDF//nwNDAzo7bff1pFHHhl3G6/XGzdo4vF4srbwfq/XJUmaPr6SxX8ey+b3EDKDOS1MzGvhYm4LD3OaGel8pgRGhqg/GDrBJzACAAAAIB1mUGTbtm164oknNHbs2JT7bNmyRW63W/X19SMwwuHzXl9o3TR1HI3XAQAAkDsIjAwRGSMAAAAA4unq6tKbb75pfb19+3Zt2bJFdXV1ampq0kc+8hG9/PLLevDBBxUIBNTa2ipJqqurU0lJiTZs2KCNGzfqzDPPVFVVlTZs2KBrr71Wn/jEJzRmzJhsva0h6RkI/X9cRUl2BwIAAADYEBgZInqMAAAAAIjnpZde0plnnml9bfb9WLFihW666Sb96U9/kiSdcMIJUfs98cQTOuOMM+T1evXb3/5WN910k3w+n6ZNm6Zrr702qn9IvvAFQv+v8LL0BAAAQO7g7HSIyBgBAAAAEM8ZZ5whwzASPp/sOUk68cQT9fzzzw/3sLKij8AIAAAAchDpDkPkD5/glxEYAQAAAIC4fOEbyioJjAAAACCHEBgZon5KaQEAAABAUr5AqPl6eQk3lAEAACB3cFV/iCilBQAAAADJmT1GyBgBAABALiEwMkT+YOjOJ28xgREAAAAAiIceIwAAAMhFBEaGyMwYKSMlHAAAAADi6icwAgAAgBxEYGSIrFJaxXyEAAAAABDLMAz1hddNFV5uKAMAAEDu4Kr+EPXTYwQAAAAAEuofCCpohEoQkzECAACAXEJgZIhovg4AAAAAiXWZdbQkVZQQGAEAAEDuIDAyRFaPEQIjAAAAADBIT/+AJKnM41aR25Xl0QAAAAARaQVG1qxZo/e9732qqqpSfX29LrzwQr3xxhtR2/T19WnlypUaO3asKisrtXz5crW1tUVts3PnTp177rkqLy9XfX29vvzlL2tgYODw380IMQzDljFCbAkAAAAAYnX7Qhkj5WSLAAAAIMekdVX/qaee0sqVK/X888+rpaVFfr9fixYtUnd3t7XNtddeqz//+c+6//779dRTT2n37t266KKLrOcDgYDOPfdc9ff367nnntMvfvEL3XvvvbrhhhuG711lWH/AkKHQHU9eMkYAAAAAYJBuX+jmNxqvAwAAINekdevOww8/HPX1vffeq/r6em3atEkf+MAHdOjQId1999267777dNZZZ0mS7rnnHh111FF6/vnndfLJJ2v9+vV6/fXX9eijj6qhoUEnnHCCbrnlFn31q1/VTTfdpJKSkuF7dxni80dq5ZIxAgAAAACDdYd7jNBfBAAAALnmsM5QDx06JEmqq6uTJG3atEl+v18LFy60tpk9e7YmT56sDRs26OSTT9aGDRt03HHHqaGhwdpm8eLFuuqqq/Taa69p7ty5g47j8/nk8/msrzs6OiRJfr9ffr//cN7CkHT1hsbidkmuYEB+s64W8or5vZON7yFkBnNaeJjTwsb8Fh7mNLP4XJFvyBgBAABArhpyYCQYDOqaa67RqaeeqmOPPVaS1NraqpKSEtXW1kZt29DQoNbWVmsbe1DEfN58Lp41a9bo5ptvHvT4+vXrVV5ePtS3MGT7+iSpWMUuQw899NCIHx/Dq6WlJdtDwDBjTgsPc1rYmN/Cw5xmRk9PT7aHAKSFjBEAAADkqiGfoa5cuVKvvvqqnn322eEcT1yrVq3SddddZ33d0dGhSZMmadGiRaqurs748WO9/u5BafOLqigt0bJlZ4748TE8/H6/WlpadM4558jj8WR7OBgGzGnhYU4LG/NbeJjTzDKzpoF8QcYIAAAActWQAiNXX321HnzwQT399NOaOHGi9XhjY6P6+/vV3t4elTXS1tamxsZGa5sXXngh6vXa2tqs5+Lxer3yer2DHvd4PFlZdA8Yob4ipZ4iFv0FIFvfR8gc5rTwMKeFjfktPMxpZvCZIt90+8IZI14yRgAAAJBb0uocbhiGrr76av3hD3/Q448/rmnTpkU9P2/ePHk8Hj322GPWY2+88YZ27typBQsWSJIWLFigV155RXv37rW2aWlpUXV1tY4++ujDeS8jpm8gdIJfRuN1AAAAAIiruz+cMVJCxggAAAByS1q37qxcuVL33Xef/vjHP6qqqsrqCVJTU6OysjLV1NTo8ssv13XXXae6ujpVV1frC1/4ghYsWKCTTz5ZkrRo0SIdffTR+uQnP6nbbrtNra2tuv7667Vy5cq4WSG5qC/cbN1bzAk+AAAAAMTTE+4xUk6PEQAAAOSYtM5Q77rrLknSGWecEfX4Pffco0svvVSS9P3vf19ut1vLly+Xz+fT4sWL9eMf/9jatqioSA8++KCuuuoqLViwQBUVFVqxYoVWr159eO9kBPX5Qyf4pWSMAAAAAEBc9BgBAABArkorMGIYRsptSktLdeedd+rOO+9MuM2UKVO0bt26dA6dU8yMkVIPJ/gAAAAAEE8XPUYAAACQo0h5GALfABkjAAAAAJCM2WOkkh4jAAAAyDFc2R+CXjNjhB4jAAAAABAXPUYAAACQqwiMDAE9RgAAAAAgOXqMAAAAIFdxZX8IfOGMES89RgAAAAAgrm56jAAAACBHERgZgr5wj5EyAiMAAAAAEJfZY6SCHiMAAADIMQRGhqDP6jHCxwcAAAAA8Zg9RsgYAQAAQK7hyv4QmD1GKKUFAAAAAIP5BgLyBwxJZIwAAAAg9xAYGQIrY4Tm6wAAAAAwiNlfRJLKCYwAAAAgx3BlfwjMHiOlZIwAAAAAwCDdvlB/EY/bUHERy04AAADkFs5Qh8BHjxEAAAAASMhsvO5lyQQAAIAcxGnqEPT6yRgBAAAAgETMjBEvSyYAAADkIAIjQ2CV0iJjBAAAAAAG6Qr3GCklMAIAAIAcxJX9IbBKadFEEAAAAAAGIWMEAAAAuYzAyBD00WMEAAAAABKKBEaMLI8EAAAAGIwr+0PQR48RAAAAAEiIjBEAAADkMgIjQ2D2GPGSMQIAAAAgxtNPP63zzjtPzc3NcrlcWrt2bdTzhmHohhtuUFNTk8rKyrRw4UJt27YtapsDBw7okksuUXV1tWpra3X55Zerq6trBN/F4enuD6+ZWDIBAAAgB3GaOgT/tfRILZ8aUH2VN9tDAQAAAJBjuru7NWfOHN15551xn7/tttt0++236yc/+Yk2btyoiooKLV68WH19fdY2l1xyiV577TW1tLTowQcf1NNPP60rr7xypN7CYTvjyPG6+byjdNJ4SmkBAAAg9xRnewD56KK5E1S652+qLvNkeygAAAAAcszSpUu1dOnSuM8ZhqEf/OAHuv7663XBBRdIkn75y1+qoaFBa9eu1cUXX6ytW7fq4Ycf1osvvqiTTjpJknTHHXdo2bJl+s53vqPm5uYRey9DdUxzjY4YX651+17J9lAAAACAQQiMAAAAAMAI2b59u1pbW7Vw4ULrsZqaGs2fP18bNmzQxRdfrA0bNqi2ttYKikjSwoUL5Xa7tXHjRn34wx+O+9o+n08+n8/6uqOjQ5Lk9/vl9/sz9I4SM4+ZjWNjeDCHhYc5LUzMa+FibgsPc5pZ6XyuBEYAAAAAYIS0trZKkhoaGqIeb2hosJ5rbW1VfX191PPFxcWqq6uztolnzZo1uvnmmwc9vn79epWXlx/u0IespaUla8fG8GAOCw9zWpiY18LF3BYe5jQzenp6HG9LYAQAAAAACsCqVat03XXXWV93dHRo0qRJWrRokaqrq0d8PH6/Xy0tLTrnnHPk8VCGOB8xh4WHOS1MzGvhYm4LD3OaWWbGtBMERgAAAABghDQ2NkqS2tra1NTUZD3e1tamE044wdpm7969UfsNDAzowIED1v7xeL1eeb3eQY97PJ6sLryzfXwcPuaw8DCnhYl5LVzMbeFhTjMjnc/UncFxAAAAAABspk2bpsbGRj322GPWYx0dHdq4caMWLFggSVqwYIHa29u1adMma5vHH39cwWBQ8+fPH/ExAwAAAIWGjBEAAAAAGEZdXV168803ra+3b9+uLVu2qK6uTpMnT9Y111yjr3/965o1a5amTZumr33ta2pubtaFF14oSTrqqKO0ZMkSXXHFFfrJT34iv9+vq6++WhdffLGam5uz9K4AAACAwkFgBAAAAACG0UsvvaQzzzzT+trs+7FixQrde++9+spXvqLu7m5deeWVam9v12mnnaaHH35YpaWl1j6//vWvdfXVV+vss8+W2+3W8uXLdfvtt4/4ewEAAAAKEYERAAAAABhGZ5xxhgzDSPi8y+XS6tWrtXr16oTb1NXV6b777svE8AAAAIBRjx4jAAAAAAAAAABg1CAwAgAAAAAAAAAARg0CIwAAAAAAAAAAYNQgMAIAAAAAAAAAAEaNvGy+bjYy7OjoyMrx/X6/enp61NHRIY/Hk5Ux4PAxj4WHOS08zGlhY34LD3OaWea5b7Km3oAd6yYcLuaw8DCnhYl5LVzMbeFhTjMrnTVTXgZGOjs7JUmTJk3K8kgAAACAkdXZ2amamppsDwN5gHUTAAAARiMnayaXkYe3nAWDQe3evVtVVVVyuVwjfvyOjg5NmjRJu3btUnV19YgfH8ODeSw8zGnhYU4LG/NbeJjTzDIMQ52dnWpubpbbTUVcpMa6CYeLOSw8zGlhYl4LF3NbeJjTzEpnzZSXGSNut1sTJ07M9jBUXV3NN3ABYB4LD3NaeJjTwsb8Fh7mNHPIFEE6WDdhuDCHhYc5LUzMa+FibgsPc5o5TtdM3GoGAAAAAAAAAABGDQIjAAAAAAAAAABg1CAwMgRer1c33nijvF5vtoeCw8A8Fh7mtPAwp4WN+S08zCkAO34n5D/msPAwp4WJeS1czG3hYU5zR142XwcAAAAAAAAAABgKMkYAAAAAAAAAAMCoQWAEAAAAAAAAAACMGgRGAAAAAAAAAADAqEFgBAAAAAAAAAAAjBoFExhZs2aN3ve+96mqqkr19fW68MIL9cYbb0Rt09fXp5UrV2rs2LGqrKzU8uXL1dbWFrXNF7/4Rc2bN09er1cnnHBC3GP9/ve/1wknnKDy8nJNmTJF3/72tx2N8f7779fs2bNVWlqq4447TuvWrYt6/oEHHtCiRYs0duxYuVwubdmyxfH7LxSFMI833XSTZs+erYqKCo0ZM0YLFy7Uxo0bnX8IBaYQ5vTSSy+Vy+WK+m/JkiXOP4QCUwhzGjuf5n9OX7+QFcL8trW16dJLL1Vzc7PKy8u1ZMkSbdu2zfmHUGByfU5fe+01LV++XFOnTpXL5dIPfvCDQds8/fTTOu+889Tc3CyXy6W1a9c6ffsAYuT67wSJdVMqhTCHrJkGK4R5Zd0UrRDmlHVTfIUwt6yZouX6nLJmyoyCCYw89dRTWrlypZ5//nm1tLTI7/dr0aJF6u7utra59tpr9ec//1n333+/nnrqKe3evVsXXXTRoNe67LLL9O///u9xj/PQQw/pkksu0ec+9zm9+uqr+vGPf6zvf//7+tGPfpR0fM8995w+9rGP6fLLL9fmzZt14YUX6sILL9Srr75qbdPd3a3TTjtNt9566xA/hfxXCPN4xBFH6Ec/+pFeeeUVPfvss5o6daoWLVqk9957b4ifSn4rhDmVpCVLlmjPnj3Wf7/5zW+G8GkUhkKYU/tc7tmzRz//+c/lcrm0fPnyIX4qhSPf59cwDF144YV666239Mc//lGbN2/WlClTtHDhwqj3MJrk+pz29PRo+vTp+ta3vqXGxsa423R3d2vOnDm6884703jnAOLJ9d8JrJtSK4Q5ZM00WCHMq8S6ya4Q5pR1U3z5PresmQbL9TllzZQhRoHau3evIcl46qmnDMMwjPb2dsPj8Rj333+/tc3WrVsNScaGDRsG7X/jjTcac+bMGfT4xz72MeMjH/lI1GO33367MXHiRCMYDCYcz0c/+lHj3HPPjXps/vz5xmc/+9lB227fvt2QZGzevDnZWxwV8nkeTYcOHTIkGY8++mjCbUaTfJzTFStWGBdccIGTtzcq5eOcxrrggguMs846K+Hzo1m+ze8bb7xhSDJeffVV6/lAIGCMHz/e+H//7/+lfsOjQK7Nqd2UKVOM73//+0m3kWT84Q9/cPR6AFLLtd8JrJvSl89zaGLNNFg+zivrpuTycU5jsW6KL9/mljVTark2p3asmYZPwWSMxDp06JAkqa6uTpK0adMm+f1+LVy40Npm9uzZmjx5sjZs2OD4dX0+n0pLS6MeKysr0zvvvKMdO3Yk3G/Dhg1Rx5akxYsXp3Xs0Sjf57G/v18/+9nPVFNTozlz5jgeXyHL1zl98sknVV9fryOPPFJXXXWV9u/f73hshS5f59TU1tamv/zlL7r88ssdj200ybf59fl8khT12m63W16vV88++6zj8RWyXJtTANmVa78TWDelL9/nkDVTfPk6r6ybEsvXOTWxbkos3+aWNVNquTanyIyCDIwEg0Fdc801OvXUU3XsscdKklpbW1VSUqLa2tqobRsaGtTa2ur4tRcvXqwHHnhAjz32mILBoP75z3/qu9/9rqRQimEira2tamhoOKxjjzb5PI8PPvigKisrVVpaqu9///tqaWnRuHHjHI+vUOXrnC5ZskS//OUv9dhjj+nWW2/VU089paVLlyoQCDgeX6HK1zm1+8UvfqGqqqq4KbCjXT7Or3lyumrVKh08eFD9/f269dZb9c477yR93dEiF+cUQPbk4u8E1k3pyec5ZM2UWL7OK+umxPJ1Tu1YN8WXj3PLmim5XJxTZEZBBkZWrlypV199Vb/97W+H/bWvuOIKXX311frQhz6kkpISnXzyybr44oslhaKrO3fuVGVlpfXfN7/5zWEfw2iRz/N45plnasuWLXruuee0ZMkSffSjH9XevXuH/X3km3yd04svvljnn3++jjvuOF144YV68MEH9eKLL+rJJ58c9veRb/J1Tu1+/vOf65JLLhl01wbyc349Ho8eeOAB/fOf/1RdXZ3Ky8v1xBNPaOnSpXK7C/K0Jy35OKcAMoffCfkvn+eQNVNi+TqvrJsSy9c5tWPdFF8+zi1rpuTycU4xNMXZHsBwu/rqq/Xggw/q6aef1sSJE63HGxsb1d/fr/b29qjoXltbW8KmNfG4XC7deuut+uY3v6nW1laNHz9ejz32mCRp+vTpGjNmjLZs2WJtb6ZcNTY2qq2tLeq10j32aJLv81hRUaGZM2dq5syZOvnkkzVr1izdfffdWrVqleMxFpp8n1O76dOna9y4cXrzzTd19tlnOx5joSmEOX3mmWf0xhtv6He/+53jcY0W+Ty/8+bN05YtW3To0CH19/dr/Pjxmj9/vk466aR0PoKCk6tzCiA7cvV3Ausm5/J9DlkzxZfv82rHuimkEOaUdVN8+Ty3rJniy9U5RWYUTBjQMAxdffXV+sMf/qDHH39c06ZNi3p+3rx58ng81jebJL3xxhvauXOnFixYkPbxioqKNGHCBJWUlOg3v/mNFixYoPHjx6u4uNg6uZs5c6b1DbxgwYKoY0tSS0vLkI5dyAp1HoPBoFXDcbQpxDl95513tH//fjU1NaU9vkJQSHN69913a968edSztimk+a2pqdH48eO1bds2vfTSS7rgggvSHl8hyPU5BTCycv13Auum1Ap1DkfzmkkqzHll3VQ4c8q6KVohzS1rppBcn1NkSHZ6vg+/q666yqipqTGefPJJY8+ePdZ/PT091jaf+9znjMmTJxuPP/648dJLLxkLFiwwFixYEPU627ZtMzZv3mx89rOfNY444ghj8+bNxubNmw2fz2cYhmG89957xl133WVs3brV2Lx5s/HFL37RKC0tNTZu3Jh0fH/961+N4uJi4zvf+Y6xdetW48YbbzQ8Ho/xyiuvWNvs37/f2Lx5s/GXv/zFkGT89re/NTZv3mzs2bNnGD+p3Jbv89jV1WWsWrXK2LBhg/H2228bL730kvHpT3/a8Hq9xquvvjrMn1Z+yPc57ezsNL70pS8ZGzZsMLZv3248+uijxoknnmjMmjXL6OvrG+ZPKz/k+5yaDh06ZJSXlxt33XXXMH0yhaEQ5vf3v/+98cQTTxj/+te/jLVr1xpTpkwxLrroomH8lPJLrs+pz+ezXqupqcn40pe+ZGzevNnYtm2btU1nZ6e1jSTje9/7nrF582Zjx44dw/hJAaNDrv9OYN2UWr7PIWum+PJ9Xlk3DZbvc2pi3TRYIcwta6ZouT6nrJkyo2ACI5Li/nfPPfdY2/T29hqf//znjTFjxhjl5eXGhz/84UEnzx/84Afjvs727dsNwwh9A5988slGRUWFUV5ebpx99tnG888/72iMv//9740jjjjCKCkpMY455hjjL3/5S9Tz99xzT9xj33jjjYfz0eSVfJ/H3t5e48Mf/rDR3NxslJSUGE1NTcb5559vvPDCC4f92eSrfJ/Tnp4eY9GiRcb48eMNj8djTJkyxbjiiiuM1tbWw/5s8lW+z6nppz/9qVFWVma0t7cP+bMoRIUwvz/84Q+NiRMnGh6Px5g8ebJx/fXXWyeio1Guz+n27dvjvu4HP/hBa5snnngi7jYrVqwYhk8IGF1y/XeCYbBuSiXf55A1U3z5Pq+smwbL9zk1sW4arBDmljVTtFyfU9ZMmeEyDMMQAAAAAAAAAADAKFAwPUYAAAAAAAAAAABSITACAAAAAAAAAABGDQIjAAAAAAAAAABg1CAwAgAAAAAAAAAARg0CIwAAAAAAAAAAYNQgMAIAAAAAAAAAAEYNAiMAAAAAAAAAAGDUIDACAAAAAAAAAABGDQIjAAAAAAAAAABg1CAwAgAAAAAAAAAARg0CIwAAAAAAAAAAYNQgMAIAAAAAAAAAAEYNAiMAAAAAAAAAAGDUIDACAAAAAAAAAABGDQIjAAAAAAAAAABg1CAwAgAAAAAAAAAARg0CIwAAAAAAAAAAYNQgMAIAAAAAAAAAAEYNAiMAAAAAAAAAAGDUIDACAAAAAAAAAABGDQIjAAAAAAAAAABg1CAwAgAAAAAAAAAARg0CIwAAAAAAAAAAYNQgMAIAAAAAAAAAAEYNAiMAAAAAAAAAAGDUIDACAAAAAAAAAABGDQIjAAAAAAAAwCj09ttvy+Vy6d577832UABgRBEYAQDkjG9+85tau3ZttocBAAAAADmJNRMADA8CIwCAnMFJPgAAAAAkxpoJAIYHgREAAAAAAAAAADBqEBgBgBzQ2dmpa665RlOnTpXX61V9fb3OOeccvfzyy9Y2Gzdu1JIlS1RTU6Py8nJ98IMf1F//+tdBr/Xkk0/qpJNOUmlpqWbMmKGf/vSnuummm+RyuaK2c7lcuvrqq3X//ffr6KOPVllZmRYsWKBXXnlFkvTTn/5UM2fOVGlpqc444wy9/fbbg47lZEzmsd98801deumlqq2tVU1NjT796U+rp6cnajzd3d36xS9+IZfLJZfLpUsvvdTxZxgMBvXDH/5Qxx13nEpLSzV+/HgtWbJEL730kuPXAAAAAJCbWDMd/pqpvb1dl156qWpqalRbW6sVK1aovb3d8f4AUEiKsz0AAID0uc99Tv/7v/+rq6++WkcffbT279+vZ599Vlu3btWJJ56oxx9/XEuXLtW8efN04403yu1265577tFZZ52lZ555Ru9///slSZs3b9aSJUvU1NSkm2++WZYxSUwAAQAASURBVIFAQKtXr9b48ePjHveZZ57Rn/70J61cuVKStGbNGn3oQx/SV77yFf34xz/W5z//eR08eFC33XabLrvsMj3++OPWvk7HZProRz+qadOmac2aNXr55Zf13//936qvr9ett94qSfrVr36lz3zmM3r/+9+vK6+8UpI0Y8YMx5/h5ZdfrnvvvVdLly7VZz7zGQ0MDOiZZ57R888/r5NOOsn5ZAAAAADIOayZDm/NZBiGLrjgAj377LP63Oc+p6OOOkp/+MMftGLFivQmAgAKhQEAyLqamhpj5cqVcZ8LBoPGrFmzjMWLFxvBYNB6vKenx5g2bZpxzjnnWI+dd955Rnl5ufHuu+9aj23bts0oLi42Yn/lSzK8Xq+xfft267Gf/vSnhiSjsbHR6OjosB5ftWqVIcnaNp0x3XjjjYYk47LLLos6/oc//GFj7NixUY9VVFQYK1asSPApJfb4448bkowvfvGLg56zjw8AAABAfmLNFDLUNdPatWsNScZtt91mPTYwMGCcfvrphiTjnnvuSfs1ASCfUUoLAHJAbW2tNm7cqN27dw96bsuWLdq2bZs+/vGPa//+/dq3b5/27dun7u5unX322Xr66acVDAYVCAT06KOP6sILL1Rzc7O1/8yZM7V06dK4xz377LM1depU6+v58+dLkpYvX66qqqpBj7/11ltpjcnuc5/7XNTXp59+uvbv36+Ojo40Pqn4/u///k8ul0s33njjoOdi0+EBAAAA5B/WTIdn3bp1Ki4u1lVXXWU9VlRUpC984QuH/doAkI8opQUAOeC2227TihUrNGnSJM2bN0/Lli3Tpz71KU2fPl3btm2TpKQpzocOHVJfX596e3s1c+bMQc/He0ySJk+eHPV1TU2NJGnSpElxHz948KAkOR7TmDFjEh7LfO7gwYOqrq5O+DpO/Otf/1Jzc7Pq6uoO63UAAAAA5CbWTIe3ZtqxY4eamppUWVkZ9fiRRx55WK8LAPmKwAgA5ICPfvSjOv300/WHP/xB69ev17e//W3deuuteuCBB6y7iL797W/rhBNOiLt/ZWWl+vr60j5uUVFRWo8bhiFJjseUzmsCAAAAQCKsmQAAw4nACADkiKamJn3+85/X5z//ee3du1cnnniivvGNb+j73/++JKm6uloLFy5MuH99fb1KS0v15ptvDnou3mOHw2zwl2pM6Rpq2asZM2bokUce0YEDB8gaAQAAAAoUa6ahr5mmTJmixx57TF1dXVEBmTfeeGO4hgYAeYUeIwCQZYFAQIcOHYp6rL6+Xs3NzfL5fJo3b55mzJih73znO+rq6hq0/3vvvScpdHfRwoULtXbt2qi6u2+++aYeeuihYR2z0zGlq6KiQu3t7Wnvt3z5chmGoZtvvnnQc9xdBQAAAOQ31kwRQ10zLVu2TAMDA7rrrrusxwKBgO64444hjQMA8h0ZIwCQZZ2dnZo4caI+8pGPaM6cOaqsrNSjjz6qF198Ud/97nfldrv13//931q6dKmOOeYYffrTn9aECRP07rvv6oknnlB1dbX+/Oc/S5JuuukmrV+/XqeeeqquuuoqBQIB/ehHP9Kxxx6rLVu2DNuY0xlTOubNm6dHH31U3/ve99Tc3Kxp06ZZTQyTOfPMM/XJT35St99+u7Zt26YlS5YoGAzqmWee0Zlnnqmrr756KG8TAAAAQA5gzRQx1DXTeeedp1NPPVX/+Z//qbfffltHH320HnjggUEBJwAYLQiMAECWlZeX6/Of/7zWr19v1cedOXOmfvzjH+uqq66SJJ1xxhnasGGDbrnlFv3oRz9SV1eXGhsbNX/+fH32s5+1XmvevHl66KGH9KUvfUlf+9rXNGnSJK1evVpbt27VP/7xj2Edt9MxpeN73/uerrzySl1//fXq7e3VihUrHJ3kS9I999yj448/Xnfffbe+/OUvq6amRieddJJOOeWUIY0FAAAAQG5gzRQx1DWT2+3Wn/70J11zzTX6n//5H7lcLp1//vn67ne/q7lz5w5pLACQz1wGNUYAoOBdeOGFeu2117Rt27ZsDwUAAAAAcg5rJgAYXegxAgAFpre3N+rrbdu2ad26dTrjjDOyMyAAAAAAyCGsmQAAZIwAQIFpamrSpZdequnTp2vHjh2666675PP5tHnzZs2aNSvbw0tLIBBI2ZSwsrJSlZWVIzQiAAAAAPmONRMAgB4jAFBglixZot/85jdqbW2V1+vVggUL9M1vfjPvTvAladeuXZo2bVrSbW688UbddNNNIzMgAAAAAHmPNRMAgIwRAEDO6uvr07PPPpt0m+nTp2v69OkjNCIAAAAAyB2smQBgaAiMAAAAAAAAAACAUYPm6wAAAAAAAAAAYNTIyx4jwWBQu3fvVlVVlVwuV7aHAwAAAGScYRjq7OxUc3Oz3G7ub0JqrJsAAAAwmqSzZsrLwMju3bs1adKkbA8DAAAAGHG7du3SxIkTsz0M5AHWTQAAABiNnKyZ8jIwUlVVJSn0Bqurq0f8+H6/X+vXr9eiRYvk8XhG/PgYHsxj4WFOCw9zWtiY38LDnGZWR0eHJk2aZJ0LA6mwbsLhYg4LD3NamJjXwsXcFh7mNLPSWTPlZWDETAOvrq7O2gl+eXm5qqur+QbOY8xj4WFOCw9zWtiY38LDnI4MSiLBKdZNOFzMYeFhTgsT81q4mNvCw5yODCdrJooTAwAAAAAAAACAUYPACAAAAAAAAAAAGDUIjAAAAAAAAAAAgFGDwAgAAAAAAAAAABg1CIwAAAAAAAAAAIBRI63ASCAQ0Ne+9jVNmzZNZWVlmjFjhm655RYZhmFtYxiGbrjhBjU1NamsrEwLFy7Utm3bol7nwIEDuuSSS1RdXa3a2lpdfvnl6urqGp53BAAAAAAAAAAAkEBagZFbb71Vd911l370ox9p69atuvXWW3XbbbfpjjvusLa57bbbdPvtt+snP/mJNm7cqIqKCi1evFh9fX3WNpdccolee+01tbS06MEHH9TTTz+tK6+8cvjeFQAAAAAAAAAAQBzF6Wz83HPP6YILLtC5554rSZo6dap+85vf6IUXXpAUyhb5wQ9+oOuvv14XXHCBJOmXv/ylGhoatHbtWl188cXaunWrHn74Yb344os66aSTJEl33HGHli1bpu985ztqbm4ezvcHAAAAAAAAAABgSStj5JRTTtFjjz2mf/7zn5Kkv/3tb3r22We1dOlSSdL27dvV2tqqhQsXWvvU1NRo/vz52rBhgyRpw4YNqq2ttYIikrRw4UK53W5t3LjxsN8QAAAAAAAAAABAImlljPznf/6nOjo6NHv2bBUVFSkQCOgb3/iGLrnkEklSa2urJKmhoSFqv4aGBuu51tZW1dfXRw+iuFh1dXXWNrF8Pp98Pp/1dUdHhyTJ7/fL7/en8xaGhXnMbBwbw4d5LDzMaeFhTgsb81t4mNPM4nMFAAAAgOGRVmDk97//vX7961/rvvvu0zHHHKMtW7bommuuUXNzs1asWJGpMWrNmjW6+eabBz2+fv16lZeXZ+y4qbS0tGTt2Bg+zGPhYU4LD3Na2JjfwsOcZkZPT0+2hwAAAAAABSGtwMiXv/xl/ed//qcuvvhiSdJxxx2nHTt2aM2aNVqxYoUaGxslSW1tbWpqarL2a2tr0wknnCBJamxs1N69e6Ned2BgQAcOHLD2j7Vq1Spdd9111tcdHR2aNGmSFi1apOrq6nTewrDw+/1qaWnROeecI4/HM+LHx/BgHgsPc1p4mNPCxvwWHuY0s8ysaQAAAADA4UkrMNLT0yO3O7otSVFRkYLBoCRp2rRpamxs1GOPPWYFQjo6OrRx40ZdddVVkqQFCxaovb1dmzZt0rx58yRJjz/+uILBoObPnx/3uF6vV16vd9DjHo8nq4vubB8fw4N5LDzMaeH4v5ff1c9fd+u0M6Xycua0UPEzW3iY08zgMwUAAEChaT3Up//47WatOGWqlh3XlHoHYJikFRg577zz9I1vfEOTJ0/WMccco82bN+t73/ueLrvsMkmSy+XSNddco69//euaNWuWpk2bpq997Wtqbm7WhRdeKEk66qijtGTJEl1xxRX6yU9+Ir/fr6uvvloXX3yxmpubh/0NAgDy129efEf/POTWSzvbtfjY7JVOBAAAAAAAw+/RrW3auP2AiotcBEYwotIKjNxxxx362te+ps9//vPau3evmpub9dnPflY33HCDtc1XvvIVdXd368orr1R7e7tOO+00PfzwwyotLbW2+fWvf62rr75aZ599ttxut5YvX67bb799+N4VAKAgBA0j9P+gkeWRAAAAAACA4ba/q1+S1N7jz/JIMNqkFRipqqrSD37wA/3gBz9IuI3L5dLq1au1evXqhNvU1dXpvvvuS+fQAIBRKBwXsQIkAAAAAACgcOzv9kkiMIKR5069CQAA2WEGRIiLAAAAAABQePZ3hzJGDvUSGMHIIjACAMhZQTJGAAAAAAAoWPu7QhkjXb4B+QPBLI8GowmBEQBA7iJjBAAAAACAgmX2GJEop4WRRWAEAJCzzIwR4iIAAAAAABSeA92RwMih3v4kWwLDi8AIACBnGeGQCKW0AAAAAAAoLIGgoQM9ZIwgOwiMAAByVqTHSHbHAQAAAAAAhtfBnv6o0tkERjCSCIwAAHKWYZ4hkTECAAAAAEBBsfcXkaT2XgIjGDkERgAAOcsgYwQAkGOefvppnXfeeWpubpbL5dLatWujnjcMQzfccIOamppUVlamhQsXatu2bVHbHDhwQJdccomqq6tVW1uryy+/XF1dXVHb/P3vf9fpp5+u0tJSTZo0Sbfddlum3xoAAMCI2t/ti/q6vYceIxg5BEYAADkrUkqLyAgAIDd0d3drzpw5uvPOO+M+f9ttt+n222/XT37yE23cuFEVFRVavHix+vr6rG0uueQSvfbaa2ppadGDDz6op59+WldeeaX1fEdHhxYtWqQpU6Zo06ZN+va3v62bbrpJP/vZzzL+/gAAAEbKoIwRSmlhBBVnewAAACRiNl8nLAIAyBVLly7V0qVL4z5nGIZ+8IMf6Prrr9cFF1wgSfrlL3+phoYGrV27VhdffLG2bt2qhx9+WC+++KJOOukkSdIdd9yhZcuW6Tvf+Y6am5v161//Wv39/fr5z3+ukpISHXPMMdqyZYu+973vRQVQAAAA8tn+rpiMkV4yRjByyBgBAOSsoNVihNAIACD3bd++Xa2trVq4cKH1WE1NjebPn68NGzZIkjZs2KDa2lorKCJJCxculNvt1saNG61tPvCBD6ikpMTaZvHixXrjjTd08ODBEXo3AAAAmXWgOxQIcbtCX5MxgpFExggAIGeZARF6jAAA8kFra6skqaGhIerxhoYG67nW1lbV19dHPV9cXKy6urqobaZNmzboNcznxowZE/f4Pp9PPl/kzsuOjg5Jkt/vl98/8hcazGNm49gYHsxh4WFOCxPzWrgKfW73doZKjU4cU6adB3p1sLu/YN+rqdDnNNvS+VwJjAAAcpZhRP8fAAAktmbNGt18882DHl+/fr3Ky8uzMKKQlpaWrB0bw4M5LDzMaWFiXgtXoc7t6/9yS3KrMtgtya2drfu0bt26bA9rRBTqnGZbT0+P420JjAAAclbQyhghMgIAyH2NjY2SpLa2NjU1NVmPt7W16YQTTrC22bt3b9R+AwMDOnDggLV/Y2Oj2traorYxvza3iWfVqlW67rrrrK87Ojo0adIkLVq0SNXV1UN/Y0Pk9/vV0tKic845Rx6PZ8SPj8PHHBYe5rQwMa+Fq9Dn9le7X5AOtOvko6fp9ed2yPCUadmyD2R7WBlV6HOabWbGtBMERgAAOcsMh9BjBACQD6ZNm6bGxkY99thjViCko6NDGzdu1FVXXSVJWrBggdrb27Vp0ybNmzdPkvT4448rGAxq/vz51jb/3//3/8nv91sL5paWFh155JEJy2hJktfrldfrHfS4x+PJ6sI728fH4WMOCw9zWpiY18JVqHN7oDtU9mhWY+gGjkO9AwX5PuMp1DnNtnQ+U5qvAwByllVKK7vDAADA0tXVpS1btmjLli2SQg3Xt2zZop07d8rlcumaa67R17/+df3pT3/SK6+8ok996lNqbm7WhRdeKEk66qijtGTJEl1xxRV64YUX9Ne//lVXX321Lr74YjU3N0uSPv7xj6ukpESXX365XnvtNf3ud7/TD3/4w6hsEAAAgHy3ryvUG23G+EpJUqdvQP5AMJtDwihCxggAIGcFab4OAMgxL730ks4880zrazNYsWLFCt177736yle+ou7ubl155ZVqb2/XaaedpocfflilpaXWPr/+9a919dVX6+yzz5bb7dby5ct1++23W8/X1NRo/fr1WrlypebNm6dx48bphhtu0JVXXjlybxQAACCD+geC6ugbkCRNH19hPd7R69fYysEZsMBwIzACAMhZZsYIPUYAALnijDPOSFri0eVyafXq1Vq9enXCberq6nTfffclPc7xxx+vZ555ZsjjBAAAyGUHe/olSUVul+rKS1RdWqyOvgG1ExjBCKGUFgAgZ5kBEeIiAAAAAAAUDrOM1pjyErndLtWWl0iS2sMBEyDTCIwAAHIezdcBAAAAACgcB7pDAZCxFaGASG15qGl2e48/a2PC6EJgBACQs+gxAgAAAABA4entD0iSKrxFkqSaMgIjGFkERgAAOcsMiBgiMgIAAAAAQKEYCC/4i92hy9NWKa1eAiMYGTRfBwDkLKv5ejC74wAAAAAAAMPHDIwUuV2SpDHhUlqH6DGSNsMw9Oq7Hdq866A6+wZ02anTVFZSlO1h5TwCIwCAnGVYzdfJGAEAAAAAoFAEwndAFheFAiO1ZiktMkbSdvez2/X1v2y1vq4u8+iTJ0/J4ojyA6W0AAA5ywyH0GMEAAAAAIDC4Q+YpbTCGSPhJuzvdfqyNqZ89druDkmSJxxk2tbWmc3h5A0CIwCAnGU2XycuAgAAAABA4QhYpbRCl6eba8skSbvbe7M2pnzVEc6yOaa5RpL09v6ebA4nbxAYAQDkLDNTJEgpLQAAAAAACkak+Xooy2FCODDyLoGRtHX0hQIjcyaGAyP7urM5nLxBYAQAkLPoMQIAAAAAQOEJBKJ7jEwcEwqM7OvqV58/kLVx5aND4YyROZNqJUnvHOxR/0AwiyPKDwRGAAA5y4yHEBcBAAAAAKBwxGaM1JR5VFFSJImskXR19A5IkmbWV6q8pEhBQ9p1kHJaqRAYAQDkLJqvAwAAAABQeAZieoy4XC5NCGeNvHuQwEg6zFJaNWUeTRlbIYlyWk4QGAEA5KwgpbQAAAAAACg4ZvN1T7iUlhRpwE7GiHP+QFA9/aHSY9WlHk0bVy5J2k5gJCUCIwCAnGWV0sruMAAAAAAAwDDyh3uMFLkjgRGrATsZI451hPuLSFJVaXEkY2R/ZgMjD/59tz7zixet/ib5iMAIACAn2bNEgmSMAAAAAABQMAIxPUYkWaW0dpMx4lhHX6i/SKW3WMVFbk2zSmllrsfIOwd79KX7/6ZHt+5Vy+ttGTtOphEYAQDkJHtfEXqMAAAAAABQOGJ7jEiRjJF3CIw4ZmaMVJcWS5KmjgsFRjJZSmv1n19Xnz+U8fNepy9jx8k0AiMAgJxkzxihxwgAAAAAAIUjXo+RiTRfT5vZeL26zCNJmhruMbL7UK/6/IFhP94Tb+zVeluWyL6uURIYmTp1qlwu16D/Vq5cKUnq6+vTypUrNXbsWFVWVmr58uVqa4tOp9m5c6fOPfdclZeXq76+Xl/+8pc1MDAwfO8IAFAQ7FkixEUAAAAAACgc8XuMhC7qt3b0aSD8PJIze3yYgZHxlV5VlBTJMKRdB4a/nNb9L+2SJNWWh443agIjL774ovbs2WP919LSIkn6t3/7N0nStddeqz//+c+6//779dRTT2n37t266KKLrP0DgYDOPfdc9ff367nnntMvfvEL3XvvvbrhhhuG8S0BAApBkB4jAAAAAAAUpHg9RuqrvPIUuRQIGmrL4xJNI6mjN5RwUF0aClS4XC6rnNbb+5MHRn7+7Hb95e970jre3o7QvLx/ap2kUVRKa/z48WpsbLT+e/DBBzVjxgx98IMf1KFDh3T33Xfre9/7ns466yzNmzdP99xzj5577jk9//zzkqT169fr9ddf1//8z//ohBNO0NKlS3XLLbfozjvvVH9/f0beIAAg/xEWAQAAAACgcMTrMeJ2u9RYUyopvXJahmHov/7wilb/+fXhHWQeiJTSKrYeswIjSfqMvHOwR6sffF1f/b+/p3U8M0NkdlN11Nf5qDj1JvH19/frf/7nf3TdddfJ5XJp06ZN8vv9WrhwobXN7NmzNXnyZG3YsEEnn3yyNmzYoOOOO04NDQ3WNosXL9ZVV12l1157TXPnzo17LJ/PJ58v8iF3dHRIkvx+v/x+/1DfwpCZx8zGsTF8mMfCw5wWFl9/pMziQCDAvBYgfmYLD3OaWXyuAAAAKBSBQDhjxNZjRAo1YN91oFfvtvdIqnP0Wns7fbpv405J0rXnzFJVOHsi1oHufv3kqX/p3+ZN1KyGqqEPPoN+vXGHPEVuffSkSY62jzRfj7znaWPDDdj3Jw6MtB7qkyR1+QbU2x9QWUmRo+Pt7wolNxzVGPr89nXlb7LDkAMja9euVXt7uy699FJJUmtrq0pKSlRbWxu1XUNDg1pbW61t7EER83nzuUTWrFmjm2++edDj69evV3l5+VDfwmEzS4khvzGPhYc5LQy+gGT+mdq5Y5fWrduR1fEgc/iZLTzMaWb09Ax/jWAAAAAgG/zBUA8ReyktyewzciCtjJG2jj7r33s7fQkDI3/Y/K5+9vRbaj3Up9s/Fv8G/Wzq6R/Q19a+Kkk697gmVXhTX7o3e4zUlEXes5OMEXumx4Gefk0oKUt5rD5/QJ2+0E2sZsbIge5++QNBeYrSKkyVE4YcGLn77ru1dOlSNTc3D+d44lq1apWuu+466+uOjg5NmjRJixYtUnV1dcaPH8vv96ulpUXnnHOOPJ74P2jIfcxj4WFOC0tn34D0wuOSpImTJmnZsmOyPCIMN35mCw9zmllm1jQAAACQ7wJWKa3owEhzbaiU1p5DfYP2ScTse2H+e8b4yrjbmcGAt/Z1pTXWkdLnDyr8saito0/TE7wPu46+cI8RW2Bk2rhQIkGywMh7tkyPg939mlCbOjCyvzu0j6fIpcl15Spyh/rBHOjuV0N1acr9c82QAiM7duzQo48+qgceeMB6rLGxUf39/Wpvb4/KGmlra1NjY6O1zQsvvBD1Wm1tbdZziXi9Xnm93kGPezyerC66s318DA/msfAwp4WhaMD2hcvFnBYwfmYLD3OaGXymAAAAyAf/bOvUvk6fTpk5LuE2Zo+R2EyDcZWha8D70yjR1NZpzxhJHFAxsyve3tcjwzDkcrkSbpsNA+EsGklqdRoYsUpp2XqMhEtp7T7Upz5/QKWewWWy9tmaprf3OCvZuz8cWBpb4VWR26W6ihK91+nTe52+vAyMDCnH5Z577lF9fb3OPfdc67F58+bJ4/Hosccesx574403tHPnTi1YsECStGDBAr3yyivau3evtU1LS4uqq6t19NFHD/U9AAAKka3jepDu6wAAAAAA5IUrfvmSLrl7o7buSZzxPBAIBQFiM0aswEi386bebTEZI4mYgZEu34CV/ZBLBgKRix/28mDJRJqvR26iqqsoUVW4DNeO/fHL8caW0nLC3GdcVYkkaXx4rt7L0wbsaQdGgsGg7rnnHq1YsULFxZFIVE1NjS6//HJdd911euKJJ7Rp0yZ9+tOf1oIFC3TyySdLkhYtWqSjjz5an/zkJ/W3v/1NjzzyiK6//nqtXLkybkYIAGD0Chr2aAiREQAAAAAAcl1vf0A79vfIMKS//H1Pwu3MUlqxPUbGVoYuuqfT1Htvh7OMETO7QpJ2JGlMni0B212hrYecBRvi9RhxuVxWn5HtCcpp2QMj7Y4DI6HtxlaEruOPqwr93559kk/SDow8+uij2rlzpy677LJBz33/+9/Xhz70IS1fvlwf+MAH1NjYGFVuq6ioSA8++KCKioq0YMECfeITn9CnPvUprV69+vDeBQCg4NhDIWSMAAAAAACQ+95tjzRNf/i11oTbDSToMWJmjOxLIwthr+3C/N4kF+ntJaO274ufSZFNA8EhZIz0hnuMxDSctxqwJwgA7YvqMeKslJaVMRKeo3FDCGLlkrR7jCxatEiGEf8KVWlpqe68807deeedCfefMmWK1q1bl+5hAQCjjD1jJJjg7w4AAAAAAMgd9sDIm3u79ObeTs2srxq0XSBhj5HQxfbOvoGE/TFi2YMITkppSbmZMWKWF5OkVofN5yOltKIv808bm7wBuz3wdNBhxojZ98WcI6uU1mjJGAEAYCTYgyHERQAAAAAAyH3vHuyN+vrhV+NnjfgT9BipKfNY5bUOOOwDYu8x0uag+bqUuMRUNtkzRlodZIz0+QPqHwh9jvZSWpJSl9LqTD8wEpsxMr4q/eyeXEJgBACQm2zBkESZigAA5KLOzk5dc801mjJlisrKynTKKafoxRdftJ43DEM33HCDmpqaVFZWpoULF2rbtm1Rr3HgwAFdcsklqq6uVm1trS6//HJ1dXWN9FsBAACwHOr163cv7tShnsSll95tD5WoMi/UP5QgMJKox4jL5bL1GUl9wX0gEIxq1P5egoyRYNCwsiukxE3JnerzB/SJ/96oO59487Bexy7d5utmzxS3S6ooic4YSVZKq7c/oO7+gPX1wSTzaWdmjJjzM5SyZ7mEwAgAICfZ+4rQYwQAkE8+85nPqKWlRb/61a/0yiuvaNGiRVq4cKHeffddSdJtt92m22+/XT/5yU+0ceNGVVRUaPHixerriyyAL7nkEr322mtqaWnRgw8+qKefflpXXnlltt4SAACAfrXhbX31/17Rvc+9nXAbM2Pk3983SS6X9NrujrillszsiOKiwZenzQvu+x30rtjX1S/DkFzh+Eqnb0C9tov+pk7fQFQ1irf3dR/WTZh/29WuZ9/cp/95fseQXyPWQDBSSmtvp0/BFBdDzEBPValH7pgA07SxocBIW4dPPf0DUc/FBjIOOszMGdxjJFJK61CPX7sO5F7flmQIjAAAcpIhSmkBAPJPb2+v/u///k+33XabPvCBD2jmzJm66aabNHPmTN11110yDEM/+MEPdP311+uCCy7Q8ccfr1/+8pfavXu31q5dK0naunWrHn74Yf33f/+35s+fr9NOO0133HGHfvvb32r37t3ZfYMAAGDU2hPue5Gs9JLZY+TYCTWaUFsmKX7WQqKMEUkaa15wd5CJYGZWNFSVqizcj2RvnHJaZnaFp8gllysUKHFaqiue/eF9e+IEYYbKXkorEDS0rzv5+z9kNl4vG9xGfExFiZW1E5sdMygw4riUVnTGiFlKq62jTx/+8V919nefyqt+IwRGAAA5KTpjhMgIACA/DAwMKBAIqLS0NOrxsrIyPfvss9q+fbtaW1u1cOFC67mamhrNnz9fGzZskCRt2LBBtbW1Oumkk6xtFi5cKLfbrY0bN47MGwEAAIjR5QtdiLdnNsTa3R4KSkyoLdPUsYn7XPjDZaNie4xIkebeTjJGrMBITanqq80L9YMvzpv9ReoqStRUHTpPe9thOa22jj7tjNl2fzi40OsfxsBIIPraR9uh5EEGM2Mktr+Iqakm9D5jgxVmgKO6NBRQaXdQSisQNHQgHKgZb2WMlITHMaC39nWrPxC0AmP5YHA4CQCAHGBPGSUuAgDIF1VVVVqwYIFuueUWHXXUUWpoaNBvfvMbbdiwQTNnzlRra6jOdkNDQ9R+DQ0N1nOtra2qr6+Per64uFh1dXXWNvH4fD75fJGFb0dHhyTJ7/fL73dWO3o4mcfMxrExPJjDwsOcFibmtXDl2tweCmcW9PsDccc0EAhaTcMbKos1uS50YX773s5B2w8EwgEFY/BrjQlnQOzt6E353veEe5qMr/DI4w5lR+w52C3/xKqo7fZ1hi7YV5cWa1ylV7sP9elfbR06vrky6esbhqEL7/yrOnr9evYrH1SlNzS298Lvs38gqD5ff9wATzzJ5tQX89i7B7o0u6E84WsdCGfGVHmL476epyg0pr7+6HPBtkOhz2xWfaU27WxXl29A3b0+lRQnzqHY391v3cBaWeKS3+9XpcelIrfLyv6RpJ6+/qx+v6ZzbAIjAICcZy+rBQBArvvVr36lyy67TBMmTFBRUZFOPPFEfexjH9OmTZsyetw1a9bo5ptvHvT4+vXrVV6eeFGdaS0tLVk7NoYHc1h4mNPCxLwWrlyZ2117iiS59PbOXVq3bnBvjQM+KRAsVpHL0IvPPK6eNpekIj3/2r+0zr8tattDHaHXeumFjTr4j+jX2bc7tN/f/7ld64x/JR3TczvdktzqPdimwIAkufXkC5ulXdHXETbvD71moLdLLnVKcqtl49/l3bMl6et3+aU9h0KX0O/703pNrAi/3luh40rSHx98SKVpXmWPN6evHwyN0fTYhk3ybU98PWRDa2j77vZ9Wrdu3eCxhz/j5194Sb3/irzOc++E9ivuPSCXXDLk0v89+LBqShKPd3ePJBWrothQyyMPW49XFBWpIxgJCj274Xm993r2ruH09Djvc0JgBACQk+zls2i+DgDIJzNmzNBTTz2l7u5udXR0qKmpSf/+7/+u6dOnq7GxUZLU1tampqYma5+2tjadcMIJkqTGxkbt3bs36jUHBgZ04MABa/94Vq1apeuuu876uqOjQ5MmTdKiRYtUXV09jO/QGb/fr5aWFp1zzjnyeOKXeEBuYw4LD3NamJjXwpVrc3vXW89JnV1qbJqgZcuOG/T8C28fkF5+SRPGlOtD556usq17tXbHFvlKarRs2YKobb/zj2ekvl6ddsopmju5Nuo53+bd+uOOV+WtGadly05SMs+ufU16912979gjdLCnX5s37NT4STO0bNERUdt1vPiO9M/XNbW5XmfNHq/n/vi6WlWrZctOTvr6r77bIb30vCRpxrEn6eyjQlm9D//2b1JbmyTp9DPPtvptpJJsTr3/2Cv9Y4v19bjJM7Vs4ayEr7Xjqbek7W/qiKmTtGzZMYOev6/1RW3vPKjjT5irZcdFziFfenCrtGuX5h41Q//sfkcHe/yat+B0HdFQNeg1TBve2i/9bZMax1Rq2bJTrcd/t/clPfevAyopdqt/IKi5807SGUeMd/JRZISZMe0EgREAQE4y6DECAMhzFRUVqqio0MGDB/XII4/otttu07Rp09TY2KjHHnvMCoR0dHRo48aNuuqqqyRJCxYsUHt7uzZt2qR58+ZJkh5//HEFg0HNnz8/4fG8Xq+83sGLco/Hk9WLKdk+Pg4fc1h4mNPCxLwWrlyZ265wo/GAFHc8bZ2hMkYTx5TL4/FoZmPoxoydB3pVXFwslyuSWWDeAOktGfzeGmpDma4Huv0p3/d74X4ZzbXl8npCl7r3xdmvqz/UF6W2okRLjmvW1/70ul55t0NtXX5NHJM4s7atK1Kaaa/tdQ/2Rh73G6605yfunLqiS1m915X8/fcNhD7EytL43x8lxaHsk6Cix3egJ9Qrpr66TGMqSnSwx68On5H0WAd7Q3M/vsobtd0P/n2udh3s1Tf+8rpe3tmugOHO+nmnUzRfBwDkJHswhLgIACCfPPLII3r44Ye1fft2tbS06Mwzz9Ts2bP16U9/Wi6XS9dcc42+/vWv609/+pNeeeUVfepTn1Jzc7MuvPBCSdJRRx2lJUuW6IorrtALL7ygv/71r7r66qt18cUXq7m5ObtvDgAAjFpW8/VA/Obr7x4M9fGYUFsmKRQgcblC++3vjm6kbjZwj9ebY2xFqKbTPgfN1/eGG63XV3vVEG6+vjdJ8/WaMo/GVXr1vql1kqRHXmtL+vq7bc3E9xzqs/59wPZ+evqdN2B/671uPdvqkj/OZzgQUy7DbCyfiNnbw+wlEqukKHTpP/ZY74Ubx4+r8qquPPRZt/ck/6z3h+dibGX0TTj11aWaN2WM1Z+kP8H3Ri4iMAIAyEn28wGDyAgAII8cOnRIK1eu1OzZs/WpT31Kp512mh555BHrDravfOUr+sIXvqArr7xS73vf+9TV1aWHH35YpaWl1mv8+te/1uzZs3X22Wdr2bJlOu200/Szn/0sW28JAACMcoZhqLPPDIzEX6O/Gw4iTBgTCoyUeorUXBP699v7uqO2jVzUH3x52ixLdaDbp2CK2tp7ww3IG6pLVV9VGvWYnRkYqS0LBQKWHhsqLfXIq61JX/9de2DE9m97YKTX7zwwcsu6f+j+7UV67l/7Bz1nfq5msChVYMQf3r44zmcoRT7b/pj52mcGRipLVBsOjBzsSd603NxnfGX8kmFmdop/IH8CI5TSAgDkKHqMAADy00c/+lF99KMfTfi8y+XS6tWrtXr16oTb1NXV6b777svE8AAAANLW5w9awYzYzAaTFRgJZ4xI0tRx5Xq3vVdv7+/RSeEsDSlyUT9exkhdOGMkaEgHe/oHZSmYHvz7bu3r6lex26UJY8qs13qvc3DGSIeVMRK6HL74mEbd/OfX9eKOA9rb2WcFVWLZM0Z2hzNGgkEjOjBiyxj5R2uH/uM3W3TtObO05NhIPznTm3u7JEntvQODnjM/18bqUr3b3qv/P3vvHSZXeZ/932f69ibtrlZdIEAIgaiSDDY2nQW3EOeHjW3exIEEQxKbxHHwazs2tsH260LAjokTG8eFuMQdC5CooqghQKh3abWStvednZkzc87vj3Oe5zynP7Pa1RZ9P9fFhbQzz5w2s9r93ue+7xN9Gei6bosgsz/fECHiHucQAOKmi8MpVnQNWiJHTakZDRbiGBEdN14kouQYIQiCIIgxQaOOEYIgCIIgCIIgCIKYFAxmLUcBG8g7YSJCkyCMzK8rAwAc6fZ2jMQ8hvrxaATV5sDeGcHFaB/I4P/+djsA4OPvPAOVqThKE4ZrwcvB0TdivE6V+bpN1SW4YG41dB14dleH5zbEYwKAE/0j5muptpmFGKX1wp5O7GkfxG9eP+Z6rWy+gHZTlPCK0iqY53XRzDLEIgoGs3mbY8WJJS75OUYU17ZyeQ0DpvNnRnmSi1C9PufZ2pbxGiwyy0kipvDXnyqQMEIQBEFMSkQthGQRgiAIgiAIgiAIgpg4WIwWYA3knbA4phmCw2OhKYwcckRpMXEl5tOPwXtGPNwfAPD5329H/4iKZbOr8HdXLwZgRUd5RX15OR5WLjQcLHvbBz23AQDH+qw4q/b+rOkWse+TKMQw90iHx34f6x3hsw4vYYSd19JEFGc1VAAAth8b8N23Qsg5ZC4O0eEjulvKUzHpKK18gJAlbsvruCYrJIwQBEEQkxJ7+TpJIwRBEARBEARBEAQxUQwJwohX+XpB03mBd02ZJT7MrysFABzpTrueDwAxH7cDE1e6PJwMmqbj+T2dAIAH3r+MCyJxQQhwdpN4CSNzzC6U1l5vV0ZGLfBuDcCIieoezrlK4UdyedsawDvO66iwHS9xSTwnS5sqAQA7j/d77htgCUB+5eu8Y0RwcaiC2ycWUaSjtPIhfSbMSZIlxwhBEARBnByiMEIdIwRBEARBEARBEAQxcYiOkYLHL+kDQrxUjelCAIAFMwzHyOGuYX7To67rgR0jgCCMeAgMXUNZ5PIaIgpwzqwK/nVRIFAdcV/9aS9hxBBt/ISRNrNTpCQeRb1ZCH+if8TWLwLYo7REYcR5k2dLjyUOeTtGLAfIebOrAADbj/s7RtQQcSnu4eLg24goUBQFNSxKK0QYCYo+AyxhhKK0CIIgCOIksUVpkTBCEARBEARBEARBEBPGkNAx4uV26DEH6xWpGB/IA0BDpVFqPpjNczeBqKv4DdorTQFDFGQYR3sNgWFWVYltW+KfxX3UNB2DWeN1qkos0YY5Ro712t0sDKszJYVZZm/K8b6Mq/fEFqVl/jlX0LhLhdEqCiMeAgITH6IRhTtGdgQ4RsKitOIxd8eI5TIxzhUTsZxijxNRtPHcFpWvEwRBEMTYYBdGSBkhCIIgCIIgCIIgiIlCFCi8ytdZeTcr82YkhbJuNjQX1/v3Yyi+22IODyZsMGzCiCA8DGbyfMYgOkZmm+sHMnmXiAEArUKZfFOVIfC09Y+ge8jRMZIThRFru844LbtjxD3nEHs8lsyqhKIA7QNZz1gu8TX8HCNW74curLELHAtNR09LT5q7arxg+xb325Z5nb0En8kKCSMEQRDEpESHGKVFwghBEARBEARBEARBTBQ2YcTLMWIKI2KMFuAQRsyhubg+LAbKy4Fw1BQY5taW2r4ejShgBhQxSouJHiXxKB/gA0BpIsaFnGMecVrMMTK7ugSzqgwR5UR/JjBKSxRJnAXsR3uDo7TEHo+yZIyLFn6ukfwoXBxc4DAfm1mRxKIZZdB14LUjPZ6vI67ziz5LkmOEIAiCIMYG0VpLsghBEARBEARBEARBTBxDWUsYcfZ3AFZHhdMxoiiKq5g7L/zC7zdoj3MHgnsi4OcYAcReDWtd34ixb6JbhMHjtPqChZGmasMxcrzfitKqNovLxSitjCoKIxnb67UIBfReAgKPxjLPydImo2dkh0/PSD6k94OfC8HFwcQpcc1lC2sBAJsOBQgjsiIMOUYIgiAI4uSg8nWCIAiCIAiCIAiCmBg0Tcf+jiE8u6sd/WnVJowUPB0jhivD6RgBLDdB1hQNxPL20KG+l2PEdF7MrSl1PZbwEAOYY8RLGJltdoe0evSMHO8zhI0m0THSZ0VpMVHFHqUlCCMDlmOkP61iQHDdeEVpOcvUzwvpGREdJl6wMno1wDECCMLI4SBhJCS2Kzb1HCOxid4BgiAIgvCCOkYIgiAIgiAIgiAI4tRzrG8Ef/bvr6DdHOz/+cVz+JAdsAb4IpZjxC0+JOMRDGbdHSMRBYj4CCMJj6E+I9AxEosAWfu6IGGEvUZrQJRWU3UJH/yf6M+gLBkFYAgz248NIJ2zBA9RJBG7QY46hBev42KCEXNlMMfItmM+woh5HuN+5zDmds8w54d4PZkwsq21H+lcHqUJt2SQDyl658IIOUYIgiAI4uQQxRDSRQiCIAiCIAiCIAji1PDCng60D2ShmDPw7cf6HR0j7uE37xgp83CMxAwhIavaO0b83AeAf8dIQdO5YOHsGDHWKa51rAOECRoic0zXiVfHSJ8pqNSWJXiUVttAhjtJmNtELFy3R2kJwkiPUxjxcIwU7DFXy+ZUmWtH0DXkLmAP6/3wOoeqh8tkTk0pZleXIK/peKOlz/O1LKcJCSMEQRAEMa6IPyJQ+TpBEARBEARBEARBnBp2mp0W1yxpAGCIBmHl672mMFLrEaXljFkqhAz0AWuo79xW+0AGakFHPKqgoTLlWsfEFnEdFxw8Iqd4lFafO0pLFdwVjZUpnD+nCgVN57FiVpSW4Bjx6RgpyjFinpeqkjjOrC8HALzpIViwY4z7Rmm548jymrtjBAAuXVADANjo0zPCthX1EbP8hKzJDAkjBEEQxKRE06hjhCAIgiAIgiAIgiBONbtOGMLItecawshgNm/r4Mh7/JLekw5yjLCOEXv5ul8sEyCUrzsG7cx50VRd4imsJDzWWQKC+/lzav2jtEThQVEUfPdDF6Gm1Irjmm26TdI57/J1MUqrxdzv8mTM87iMr7nFh4vmVQMA3jja6/H8sEJ0dxyZJfbYZYHLFtYBADb7CSMhsV1Jn+s1mSFhhCAIgpiUiD9n6SBlhCAIgiAIgiAIgiBGyxf+sAPv+sYLONA5FPg8TdOxu20QgDGUn1mRBAAc6hrmz2FDchHuGPEQRphYkc2z8nVv14IIG8A7B+1B/SKAd5SWnxgAWI6RPkfBvLiOCQ9za0vx3Q9dhFhEwRkzy1CZMkQO0SUy4hOldbDTOH9nzCwzX9s95yh49HhcOM9wcnhFXIVFaVlF9KJ7xluUumCuEdu1u23As+c1rOidbYuitAiCIAjiJBHFEErSIgiCIAiCIAiCIIjR0TGQwY/XH8ahrmHc8ePXMJBRfZ97pCeNdK6AZCyCBXVlmGsKEOLNi2pBdw3PeceIR5RW0tE/4eWMcGJFM9m3wyKp5ta4+0XEdbbCcR5R5d5eRSrOS9nFnhFd1z3Xve3MGXjuH9+JX/zNKpQkjM4SVriuaToyQt/IYCaPjFqAruvYabpwzp9daR6XW0DIO6K0AOBC0zGy9Wgfj9piFDS5KK2cp3vGvuaMmeWIKEBvWkXXUM5330L7TEgYIQiCIIiTQ/wZizpGCIIgCIIgCIIgCGJ0/O7NY1zYONg5jHt/8aanKwCw+kXOaaxALBrh5eROxCG9WtAwYHaQeDlGePl63t4xEugYYdFM+WIdI+51eaErxAv2Wn5xYc518+pKMaM8iVImjJgukaywTXZoHQNZtA1k0JdWEY0oWDKrwtg/L2HEw5WxuL4CZYkohnMF7OsYtD3fWdbuxCuOjEdiOY4pFY9inllm79yOsW/B59DqkZk68xsSRgiCIIhJifgzGukiBEEQBEEQBEEQBFE8uq7j11uOAQA+tGIeErEIntnVgbda+z2fz/pFlswynA1za70FCFE46EsbDhRFAXdfiDijtGQ6RhIe/RiA1TEyt9bPMeJel/OJj2LMqjKOsW3AKksXy9v9HBklCSNKi3WMiDFa7DU7hzL8nJ45sxxl5hqvAnsvwSgaUXDB3GoAwOtH+mzP50KKbyG6V8eI/5oz6w3RZl+7O25NDYvt4q6ggufjkxESRgiCIIhJiegSofJ1giAIgiAIgiBOd/rTKoYdHQgEEcaO4wPY0z6IRCyCT99wDq48ayYA4NUD3Z7PZ5FP5zYZwoifY0QURnrN4vXqkrjn4NwZpZUPcToAYiSWXRjpGjJ6O1j3ie86Yf/yAR0jAHgkVlaIwVKFHhU/QaUkbqzL5TUUNJ0LI4lYBI1VKQCGY4S5cJbMqvA9LvFrzu1dxHtG7AXsYQJTwiNWTA1wfpzVUA4A2NvudoyExXZZjhGK0iIIgiCIk0IURvwsvgRBEARBEARBEKcD6Vwe7/zG83jPd16e6F0hphi/fr0VAHDduQ2oKolj1aI6AMD6g97CCHM3nMscI4Iwogiz9LwwAOf9Ih4xWoAljLCoqbC+CsC/Y4QN+Vk8l986W5RWaBeH21lhc4z4ODJYlBZguEVY10hJPIp6U7jpGMxi1wlDaDi3qRLxGNuWnGMEAM6bbRSj73EIFn6xWNZxuXs/gkSixaYwsq/DwzESImZR+TpBEARBjBHijwikixAEQRAEQRAEcTpzqGsYvWkVBzqH6cYxoiheO2y4DJqXzQIArDqjzvx6j8u10Ducw4l+I07qnFnMMWJFaVWmrJgscbDfawojtR7F64AYpWXvGPETKsTHnPvI/p4IKRy3x0cFD/WdjhbAEhAiChAJWMfEonTOKFoHgFQ8woWR4/0j3IWzZFZlsGOEC0b2Y6tMGfFbGdUeUxUepeV1Ltw9JozFPEpr0PV9phBQYA9Y19hL8JmskDBCEARBTEp0W5TW1PmHlSAIgiAIgiAIYqw5ZhZOAxQ1TBRH56ARPTW72hA4zm6oQE1pHOlcAW+19tmee7BrmD+3PGkM45uqS/jwvyIV4+4EsXy9Jx3mGLGXr8s4RhKmsyLvEkZC4qNi/u4PLzEA8BEQtOA1AKAoCo/TGskVeJRWSTzKXR6/eq0Vh7uN82oII97dKQBQ8HGAJDyEG8ByjPj3fnicC7YNjzVn1pdDUYDetIquoZx9W2HnnRwjBEEQBDE2iFoI/eBPEARBEARBEMTpzLE+SxjxGqgShBe6rqN72N7JEYkoWMnitBw9I6wcvUSIiErEImisNPoyypMx7hgQ34fyjhGzfL2ojhFnlFZwXwjbv5xXr0ZIDFS24BE5FbCPgBWnNaIWBMdIFO+7cDYW1JWiZzgHXQfqK5KYUZ70jQgztuktGDFhySWMFMIiwrw6RvwFjlQ8inlmqf2+DntsF+tc8RNG4j7izWSmaGHk2LFj+PCHP4y6ujqUlJRg2bJleO211/jjuq7j85//PGbNmoWSkhJcc8012Ldvn+01enp6cNttt6GyshLV1dX42Mc+hqEhd3YZQRAEcfpiF0NIGSEIgiAIgiAI4vRFdIwU6M4xQpL+EZUPwuvKLdGCxWk5e0asaCb78Jv1jFSm4vwxsXy9Z1gFAFSXxeGFq3xdwjFiCRyji9LKe8RHseG9aw2Lgcq7xZQgxwhgiAkAkM4JHSOJKOLRCP7p+rP585aY0WSJgCitvE9clTOKDDBm8GHl65YI4xEr5nNcVpyWNavXNJ3fvOobpSVsa6rE/RUljPT29uLyyy9HPB7Hk08+iZ07d+Kb3/wmampq+HO+/vWv4+GHH8ajjz6KjRs3oqysDNdffz0ymQx/zm233YYdO3Zg7dq1eOKJJ7Bu3TrceeedY3dUBEEQxJRHs0VpTeCOEARBEARBEARBTDCiYyQ/hTL8iYmFxWhVpmK2svK38Z6RXnuvhubtxmA9I+WpGB/Ci8JDbzrYMeKM0ipIxFR5xUAZ2x1FlJYW7FCxBASrw4OLKT7bYXDHiCNKCwCaz5uF8+cYkVrnza60vV6wMBIepSUKpGHHpQpiBTt/fsISK2DfKxS9M7cIEHTerdebKj0jsWKe/LWvfQ1z587FY489xr+2cOFC/mdd1/HQQw/hs5/9LN773vcCAH784x+joaEBv/vd73Drrbdi165deOqpp7B582ZccsklAIBHHnkEzc3N+MY3voGmpqaxOC6CIAhiimOP0poa/6gSBEEQBEEQBEGMBzZhRJs6UTXExNI5ZI/RYpwxsxwRxRAq+tI51JtRWX4xS3PMeKWKVIyLGaJjpDekY4Q7HlS7Y0QqSsvhksiFRGl5RVWFRU4lPRwjYcXmjJKEMV4fyVlRWkwYiUQUPHzrhfjJhiP4y8sX2o/LM0rLO66Knz+b2CMII77nwngdXTeElFhUsSKxfM79ohllAICWnrSwX+EiTFIQRnIFzSaUTFaKEkb+8Ic/4Prrr8cHPvABvPjii5g9ezY+/vGP44477gAAHDp0CG1tbbjmmmv4mqqqKqxYsQLr16/HrbfeivXr16O6upqLIgBwzTXXIBKJYOPGjXj/+9/v2m42m0U2m+V/HxgYAACoqgpVVYs74jGAbXMitk2MHXQdpx90TacXaj7P/6xpOl3XaQh9ZqcfdE3HFzqvBEEQBHH6IkZp5clST0jCCrRnlNuFEUVREI9GkM1rtpglPwHhvcubsPFgNz5w8VxsPtRjey4ADGaM398rUyFRWua2mAAQFKXlJSCI7/2wKC3VMz7Kz1mh2PYPsFwS8ViwY6QkbmwvrVpRWimho2XBjDJ87uZzA/ePUfCJ0hKjyHRdh6IotvVhjhFjezpi0fAi+lJT6GEiFuAQYXyEInFbubwGJD2fNqkoShg5ePAgvve97+Hee+/FZz7zGWzevBl///d/j0Qigdtvvx1tbW0AgIaGBtu6hoYG/lhbWxvq6+vtOxGLoba2lj/HyYMPPogvfvGLrq+vWbMGpaWlxRzCmLJ27doJ2zYxdtB1nH7QNZ0evNmtADCzOkdGsHr16ondIWLcoM/s9IOu6fiQTqfDn0QQBEEQxLRjJFdAt1luDZAwQsjDorRmVLin1AlTGMnbhAfmxrAP2s+YWY5f/M0qAECURUFpbuEh4SMiJOPMMWKWrxfhGGGdFYqi2J0LPiIH+7roNLHK18P7MRhcJApxjJRyx0geI6aYwBwjXlhRWu7PseojGCUcboxkLCrl4rCJFQUNJYgK5fXBkVheRfRB24pGFEQjCgqa7in6TEaKEkY0TcMll1yCBx54AABw4YUXYvv27Xj00Udx++23j8sOAsB9992He++9l/99YGAAc+fOxXXXXYfKyspx264fqqpi7dq1uPbaaxGPeyuhxOSHruP0g67pNGNbG7D3LQBAMpVCc/OVE7xDxFhDn9npB13T8YW5pgmCIAiCOL0QY7QAoDBF8vuJiaeLRWmVu4WReCwCZJ3OivD4KCYUiIN51n3hF1XFhIeiOkaEx/KajnhUsQkXYdsSBUT2Zz/3h1W+7hYD/AQYRklAx4jntsz9K2g6CppuE0HYeXGKFgmHGyMZi9qOz895I74Ou85h1ziozySiGPFgfiSiEYxoBdvayUxRwsisWbNw7rnn2r62ZMkS/PrXvwYANDY2AgDa29sxa9Ys/pz29nYsX76cP6ejo8P2Gvl8Hj09PXy9k2QyiWTS4wMcj0/oL90TvX1ibKDrOP2gazo9UKLWDxK6Drqm0xj6zE4/6JqOD3ROCYKYDvxkwxGs3dmORz98Eb/LliCIYJzCiEodI4QkXYPeHSOAd3xUPsRNAFhCgdh1k/eJgGIkTaGADcy56BDkGBFEjHxBRzxqF3H89jHu4f7gUVpFOEbUkGNiMBEkrVodI6l4gLBki7fSEI1Ysw92Hl2OEWdMFezuHkXxPhdGZJoCtWC5OPg19hGJ+LnIC0X0EkIWYIgqI2qBC2CTnaJaUC6//HLs2bPH9rW9e/di/vz5AIwi9sbGRjz77LP88YGBAWzcuBGrVhl2q1WrVqGvrw9btmzhz3nuueegaRpWrFgx6gMhCIIgphe6ULhO90MRBEEQU4VCoYDPfe5zWLhwIUpKSnDGGWfgS1/6kv3fNV3H5z//ecyaNQslJSW45pprsG/fPtvr9PT04LbbbkNlZSWqq6vxsY99DENDQ6f6cAhizPnJ+sNYt7cTb7T0TfSuEMSUQewXAay7twkiDFa+PqPcXYru1eERJiCIj+U91vlGabF4prw9SkumYwQQu0msCC4/McCrtN3qTgmOj1KLFIkAoFR0jOTCHSMJDxeHez/t5z8SUVyuG/bcoHMovhYrlufuGV8RyytWjEWRyW1rqjhGihJGPvnJT2LDhg144IEHsH//fjz++OP4/ve/j7vvvhuAoUJ94hOfwJe//GX84Q9/wLZt2/DRj34UTU1NeN/73gfAcJjccMMNuOOOO7Bp0ya88soruOeee3DrrbeiqalpzA+QIAiCmJoI8yPbnwmCIAhiMvO1r30N3/ve9/Cd73wHu3btwte+9jV8/etfxyOPPMKf8/Wvfx0PP/wwHn30UWzcuBFlZWW4/vrrkclk+HNuu+027NixA2vXrsUTTzyBdevW4c4775yIQyKIMYUNS7LCnagEQQRzrM/eMzZV8vuJiaeLCyPeHSOAT5RWkY4RJkKExTM5o7T84rCM1/KKgQqO7DIeU2zPBcLdHwmPgb4aUlLOYCLISE5wjCT8hZGYzTFiH3YECUbOiKswgYPhdNCEFdF7nQsZIQuwBLCp8j2qKN/qpZdeit/+9re47777cP/992PhwoV46KGHcNttt/Hn/PM//zOGh4dx5513oq+vD1dccQWeeuoppFIp/pyf/exnuOeee3D11VcjEonglltuwcMPPzx2R0UQBEFMeXTBJ6KRMkIQBEFMEV599VW8973vxU033QQAWLBgAf7nf/4HmzZtAmC4RR566CF89rOfxXvf+14AwI9//GM0NDTgd7/7HW699Vbs2rULTz31FDZv3oxLLrkEAPDII4+gubkZ3/jGN+iGMmJKw4ZAuTz9fEcQspBjhBgtXYM5AH5RWh7OCi1ceGCChc1pEiJ0JH2G+kGDdq8YqJyEi8PTCZMPFgMs8cDLPSPXMZJW5TpGohEFEejQoLgdI5r/8SXMTpicIxIrrAMl7hDALGEk+FplPR034VFagN1tMpkpyjECADfffDO2bduGTCaDXbt24Y477rA9rigK7r//frS1tSGTyeCZZ57BWWedZXtObW0tHn/8cQwODqK/vx8//OEPUV5efnJHQhAEQUwrxNhc0kUIgiCIqcLb3vY2PPvss9i7dy8AYOvWrXj55Zdx4403AgAOHTqEtrY2XHPNNXxNVVUVVqxYgfXr1wMA1q9fj+rqai6KAMA111yDSCSCjRs3nsKjIYixJ+cYbhEE4eZ7LxzAR36wkd997uoYofJ1wiToznxN09E97O8YYR0TOS/HSIAYEBPKw537ER6lJd8xAnjEQEkM6L06RpjgkPBZ51U4LiMSAfYorYyEMAIA7CWdkVMFHo/l3qZTXJJ1tCQcDhp2DhMhsWJ294ysCKO41k5mqOmMIAiCmJSILhFyjBAEQRBThX/5l3/BwMAAzjnnHESjURQKBXzlK1/hLvu2tjYAQENDg21dQ0MDf6ytrQ319fW2x2OxGGpra/lzvMhms8hms/zvAwMDAABVVaGq6skfXJGwbU7EtomxYTyuIbtrN5OdmPfl6Q59LqcGP1l/GMf7M3h1fwfefuYMtDocI9mc/fND13X6EnRtdxwfwAf/axP+9h2L8PF3LnI93pvO8eF5ZTLieg0mSojfj7NqHoAxuPd7PzHtIyO8D7lAo2me66JmIkRWLUBVVeRMAUGBHvi+ZYP2dDYHVY1jJGs4YGJRxXddBKYAny9Y+8cG9br3/nmtyeTMc6EEf7YSpi4xnFWRzhpr4gHnT1VVxBRABZDJGcfFHzPFGF3Lu9azczGcyUFVVWRzqtT+MTFjxLzOrFRd0b3PvaKzc2GdK2tb/udd3MeRbG7Cvh8Vs10SRgiCIIhJiSiFkC5CEARBTBV++ctf4mc/+xkef/xxLF26FG+++SY+8YlPoKmpCbfffvu4bvvBBx/EF7/4RdfX16xZg9LS0nHddhBr166dsG0TY8NYXsORbBSAgi1vbkXyxJtj9rpEcdDncnLTP2x8Tlav24y+3Tra+o2/l0Z1pAsKXlm/AZ073b8k0XWdvnhd2+ePKxhRo/jtxn1YkN7terwtDQAxlEZ1PLvmKdfjg33G+2rja1uQPWS8n3a3RABEcOxoC1avPuy5Lz3dxnO2vPEmoq1vAACyOeO1Xlr3Ana4zSl8X4ZGMli9erXUdgBAyxuv+9wLL2JPGXB40HidfNZ4HS92dCoAojjR3sGfMzBkvM7mjevRudO95pD5un0DQ3zNm+3G63R3dfhuCwD2dRjPaznWhkxBAaBg57Y3ETv2hu+aqGI4Sp59/kXMEn5EU83jfemFF1DtOI+5EfOxV9ajbbvOz4UacC4AIOtY19ZhnPvt27z/HR5SjdfNazqe+NNqRBTr/OQyI4HbGh4wtrV+02sY3j8xg5x0Oh3+JBMSRgiCIIhJiS6oITpIGSEIgiCmBp/61KfwL//yL7j11lsBAMuWLcORI0fw4IMP4vbbb0djYyMAoL29HbNmzeLr2tvbsXz5cgBAY2MjOjo6bK+bz+fR09PD13tx33334d577+V/HxgYwNy5c3HdddehsrJyrA5RGlVVsXbtWlx77bWIx+PhC4hJx3hcw3/atBaAjnPOXYrmFfPG5DUJeehzOTX4zJZnARRQ2rAQ51w6B/rGV1GWiGJuTQl2tw/h4ksvxdvPnMGfT9d1+hJ0bXes2QscOYwRJYXm5itdazcc7AG2vobGmnI0N1/uevwXHa/hwGAPzjt/OZovmGW95rHDOHPRQjTfeLbnPv2u53Xs7u/C0vOWofniOQCAT25YAwC47pqrUe/RZ3KkJ40Ht74MPRJDc/P12LlmH3DsEM4I2A4AfHXnOgz2Z7DybZdj2ewqbD7cC2zfjMryMjQ3X+G5Rtnehp/sfwtVNXVobr4UAPDgjheBbBbvuOIKnDfb/TPR9mMDeGj7BsST1rns2dgCHNyNOU2z0Nx8ge8+Ktvb8LMDb6G8uhbIFoChQVy+0v4ZFVFVFZ9/7TkAwMq3XYGlTdb+fMI8j9dec7WrF+Y/Dq9H28ggLrzkUrxj8QypcwEA3zu0Hu0jg7jI/L7xk+ObgIE+XHLRhbjxPPfPlYOZPP6vuX/XXHc9UvEoNh3uAba/hsqK4G093rYZh4d6seyCC9G8zP9n1vGEOaZlIGGEIAiCmJSILhHqFiQIgiCmCul0GhFHLnQ0GoVmRiMsXLgQjY2NePbZZ7kQMjAwgI0bN+Kuu+4CAKxatQp9fX3YsmULLr74YgDAc889B03TsGLFCt9tJ5NJJJMeGeLx+IQOyiZ6+8TJM1bXUNd1HutS0BV6X0wg9Lmc3GTM2J8jPSM43JMBAJzZUMFvHlOUqOf1O5nr+un/fQsjagH/dutyKEpwjwBx6vG6tt3DRmxT+2AWmhJBMmbvtegZMR6fWZH0fF+w52uwvh9runHtE3Hv9xgAJMx1uhJBPB5HQdP57+ylyYTnuvKU8fNJLq8hHo9DE14r6D3L+i7YtnQlEroulTC+ntd0/hxW9p5Ken9GSlMJAEZvBz8XCN8WANSUpwAA/SN5vp2KEu9zzmC1IOy4AKOzhc1BSjzOY8rsLeH/fpo/b8aikcBtsW4SmNtiqWKphPe5KFOsn2M19r3GdLjEo2HXy7GPE0Ax2yVhhCAIgpiUaDZhhJQRgiAIYmrw7ne/G1/5ylcwb948LF26FG+88Qa+9a1v4a/+6q8AAIqi4BOf+AS+/OUvY/HixVi4cCE+97nPoampCe973/sAAEuWLMENN9yAO+64A48++ihUVcU999yDW2+9FU1NTRN4dARxcuSFH/CyU6SYlSBONWpB46XWh7uHsbd9EABwVn059ncO8eeMJf0jKn7x2lEAwH3N52BWVcmYvj4xPnQOWb1ix/syWDijzPZ415DRx+F0HjB4sXnBXaIe9yj/ZrCyb1biLb4f/cq52XA+r+nIFzT+70FUtnzd3BYrVI/7lLwbj7E17lJ5vyJ1XhouFrZLFo7PqzWysFp60qgqMYbyqVhw+TrbffHcs7J3AIh6bDPhKrCXK1/nZfSswJ6Vyse814kF9VbRu9y5SHqc+8kMCSMEQRDEpMQmhpAuQhAEQUwRHnnkEXzuc5/Dxz/+cXR0dKCpqQl/8zd/g89//vP8Of/8z/+M4eFh3Hnnnejr68MVV1yBp556CqlUij/nZz/7Ge655x5cffXViEQiuOWWW/Dwww9PxCERxJhhH1JNjaEJQZxqMmYpNQAc7Ulj53EjFmZxQzkOdw8DABdOxoqOgYzw5ywJI1OEzkFLGGntTXsII8bjM8p9hBEvAUFjw3b/ATgrbWfrxPV+wkNCGMLnBPFPdqjPtsHFgADhJuEQbow/m2KAz3Gx/csJoj0Tb4JEIgCYXV2CWERBNq+hw7wmJYngNVEujIhCjLW/Xttkbgy2j1zgCBEr/M6h33EpioJELIJcXuNCEb9eIUIWP49T5N94EkYIgiCISYn4oz45RgiCIIipQkVFBR566CE89NBDvs9RFAX3338/7r//ft/n1NbW4vHHHx+HPSSIiUPNWz/T5cgxQhCeiG4qTQde2d8FAFjcUIHnd3cCsIbXY0X7gDVg7xCG7cTkpktwjBzrHXE9zoQTP8dIIuoWRiwBIcAxErHcH8Z6YaDvsy4Zs7sQ1ILcoJ0N/Z0iTCJg/7hDwlPwCXZJeAn4YS6JWDSCOTUlONxtlX6z2Cs/2G7YHCrC59rLSZN0iA7sHIa6bhwCmMxxJaOmMJK3b0venTI1/o0PPhqCIAiCmCDE8nXqGCEIgiAIgpj6qBo5RggiDNExAgDDOePvi+vL+SCzoI3t56dNdIwMZgKeSUwWCpqO7iHRMeIWRvrSKgCgpjTh+Rre8VG67bGgdcxFwMSUiOI/pI9FI/yxbF7j72HZKC0WA6XKRGk5xBRxH+M+22Pb0XTruaqESMRY4HDrlIQIIzxKK+/eR8BbMOJRWub3iIKkoyXhOB/cCRNwja3YroK5RvPdL/u2ppZjhIQRgiAIYlJCSVoEQRAEQRDTC3FINVXuJiWIU01GdX82yhJRHtcD2O/QHwvaHVFaxOSnZzhnu4GwtTfteg53V/h0SfCIJcHNx50VgR0j9kF7TlJAYEPzrKpJDefFx1WHSyJo/5zHJZbD+zpGhHPEtpGXdLUAwII6hzCSCHGMeHSMMKEjogARL8dI1OkYkXO0WA4aU1zKM5EjII7MES1WkIhY81o32SFhhCAIgpiUiPFZOkVpEQRBEARBTHlsUVpjPNgliOmC0zECAGc2VEBRFETNQaZfx8hIzr1WBlvHCEVpTQk6HdfJyzES1kHh7J4Awrs4ACFKyyEghAkjyTgb0Bf4ezga4nZw7qOMi8NvjfFY8LkAUHR8FADMryu1/T2sfD0acRfX50NEKafokJeN0uJCkXlcWvj1cm5LRpDyWjfZIWGEIAiCmJSIP+tTlBZBEARBEMTUJ0eOEYIIJevx2VhcXw7AGurmPWJqDg4AF33lOfzbM/uK3qatY2SAorSmAqxfhM3Ej/W5hZGwYXbCq3xdQgzgziXNKVbIxSxlVE3ajeHs/rBcMPJRWmJ3h58YIO57jq+TOy7AHqWVjEU8HR8ibPe9Ysz8XBlJHxdHmCDlLl8PP65E1LmtIqO0psi/8SSMEARBEJMSnRwjBEEQBEEQ0wpblNYUyR8niFNN1sMxclaDIYywO8PzHneOtQwryGs6XtrXWfQ228gxMuVgjpGzGysBGNfQOYzOh0QteXaMSAzAmWhSYNFMks4K5hjJ5jW+HemOEee2ZKK0uKMluLsDABRFcfVjqJJOGMAepRUWowWIUVruc+93TqzeD+b8kBQrYg6hSOJ68W05I8wko7SmSo8YCSMEQRDEpEQnxwhBEARBEMS0wnZX8hS5m5QgTjUZs+x4Tk0J/9ri+goA1oA27xFFx6pJjnp0TYTRQeXrU45O0zFyTmMFUvEIdB040W93jaghRerOSCzxz8FRVXaBjrs4woQRM14ql9cEt0OIMMIG7TzSKTxKyzmcF4WfICEm4dhWmLAkMqemhL92WPE6ALBKE1v5eogDxCmMyEaYOcUldj6CBBV3bBc7F3I9MlPl5gcSRgiCIIhJie6oXCfXCEEQBEEQxNSGHCPEdCSX1zx7QUZL1lQ4ZlWlMLu6BPGogqWzDVdAkGMkVzAeax/IFrU/mqbbXCJdQznfDhNi8sAcI/UVScyuNkQ0Z88IL+cuIkorJyEGsPehu/dDLmYpmy/w93B4xwh7z5vbyodHacWEz4mm6YKAoEBRio/giofso7E2wsXMlIQw4lW+HtYZkoiawpJj/6Q7RhzrxMJ597YcwgjvP5ETsrwiAScjJIwQBEEQkxLnz+KkixAEQRAEQUxtckL5+lSJ2SCIIDRNR/PDL+H6h9aNmZjAHCOpeBQ/v3Mlfvvxy1FfkQJgDSVZ3r9IVviSVxG3H93DOeQ1HYoCKIrRW9AznDuJIyBOBaxjZEZ5EnNqjOLvY47rzofZxURphYgpxjq706TYKK1cfjQdI3Z3SqCjRRj4q5om7axwRVUV4RgBgPlmnFYxwohXjFnc55yI5w+Qd7SI5eu6rvPvVUU5RkKK4fk6x/Wa7JAwQhAEQUxKNIcS4vw7QRAEQRAEMbUQxZCpcjcpQQTRk85hf8cQjnSnMZhRx+Q1M6ZjJBmLYG5tKc6bXcUfi/E72r0cI9afi4nTajdjtOrKkqgrSwKYPHFaA2N0TqcjzDEysyKJ2TXMMWK/7vkQEcHZxQGIbgI5R4axPlysAKzycLFjJGyozx7P8V6N8AG9GOmVL+jSXRzuknI5wYexoM4QqEri4c/nUVo2YcR0gPicE8txU5yjJSE4YcRrHXRcPPasiMJ2QBRUxs5FN56QMEIQBEFMSpw6CLm5CYIgCIIgpjZ54S53Z0kwQUxFuocsZ8VYxcOxGKykx13nbBjs5U7JCZs/2iMvjDARpLEqifoKUxgZmPgC9md3teOCL67BD14+NNG7MikRhZGmKsNRdKLfLmipIa4M0UngXuM/MmYDdfY9nTsdQofmxns6K3SMFCtWsH2NBwg3okCjFop3jOScfSYh+8hgBeyjLV8vhIg+TtGBR29JOkZyBd3273DQ9Ur6OEbCYruc53CyQ8IIQRAEMSlxdoo4O0cIgiAIgiCIqQVFaRHTje4hS0AYq+gYdjd4KuYljJh3fntEadkcI0UII239xjE0VKRQXzl5HCM7jw9A14GNB7snelcmDbqu4382teCNll5evj6zIomSRAwAkHEMoy3BwmfQ7hAdALl4Jt77wcq883LCgzhsV3mfhmw0k12sCCp6j0YURISoKtlILFdsl1acY+TacxuwuL4c77mgKfS5TNcRi++tThifKC2XWCEn3MSFLhlV+Hc40HXD3T12ESZUXJpi5euxid4BgiAIgvDC6RihJC2CIAiCIIipja3gd4rcTUoQQXQJXRzqGL2nmWMk5RHHw+4ML3hFaQmbbylCGGFRWvWVKWjmIHgyOEbYULpt4NSJNMPZPN5o6cOKRbWhA+CJ4PWWPtz3m20oT8YwlM0DAGaWJ33ji8KG2cx1kfOIcwo6fmf5el4yqkocthfvGHGIFSGCSiwa4QJMWAm9c/9yBSYGyDlhGHNrS7H23iulnstOb87DMeJbvu7qQJETbkTXjSrpGPErX5d1jIgCzGRm8n3KCYIgCALu6CzqGCEIgiAIgpjaiMIIOUaI6YDdMTJWwgjrGHE7RliXQN4zSssaWB7tkS9f51FalaJjZOKFEVYw74yHGk8eemYvPvyDjfj1ltZTts1i2N02AABcFIlFFFSVxJH0KbwOc0o4Y6psawIG4HFHpBt3ccSCx8z2jpHgYnjnPuaKiNICBPeHsK2w/ePbMof6eYlYsdESVeznTtyenyjlcoxIXCvA3jEilt4rShHl60W6brJT5N94EkYIgiCISYm7fH2CdoQgCIIgCIIYE8gxQkw3xqNjhEXXeDpGeOl1eJSWM5rYj3bTHdJQKXSMTIIoLTbA7RrKnrLvF3vahwAAbx3rPyXbK5YDHcO2v88oTyISUXx7HcLKuT3L1yUik9hwnLk3VOkorSjfTyZ8hTkQmACiOno/gqK0jH0RC8dlBQSHCCPZnTIaePm64KwIc2VYjha7i0NaXMrr8rFiMbvAIV30Th0jBEEQBHHyOH+Ml/3BniAIgiAIgpic5IThW26M+hgIYiLpHh77jhHmGEl5lK87ux1ExCitwWwe/SOq1PbaTEdGQ1UKMyuMEu/2SRClxQaxun7qhJp281wc6hwOeaad/hH1lAyCD3Qawg0TsBpMh0886iOMFIIH514dIzKDc16+7hAQwoSHpBClJevGYPvI3g/qKCK48rKRUzHLZQLI92qMBq/y9bDoLlFYAsQIM/kordEKHHlZIcvjPTWZoY4RgiAIYlLiFELIMUIQBEEQBDG1ETsYnFn4BDEV6RIcI2M1CMyaHSNJj9ifaFCUluMjdbRnBNWlicBt6brOOzzqK5K8u6BzEkRp5YXz2dafwZya0nHfJjsXh7vlhZH+tIorvv4cFteX4zcfv3y8dg2AJYw88P5leHl/F65eUg/AfXc/YFxbLliERGmJgopMHwcTJZhwYMVbSUZpqZp0Z4V/lFYRvRqSXSEux4iku2I0sJf06neR7RgRY7GCsJWvFxmJlXOJRHJOk6niGCFhhCAIgpiUuMvXSRkhCIIgCIKYytiitKbI3aQEEYStY2Ssytd5lJbbMWINpD2itMwvVZfG0ZdW0dKTxrI5VYHbOtQ1jJ7hHBLRCBbNKEdP2hB62gcyGMyoqEjFfdd2DGYwszwZ2FNwMojiz6noGcmoBe6yOdGfwUiugJKE+xo42dcxiMFMHq+39CGjFjyv21gwkivgWJ/RHbN8XjWuObeBP5ZwOB0Ao/+D/QrtH6VlL1EHrPMeFFUVc0S6WS4EOcdIrqDxfpKwQXs8aj82S+QoJkpLTkBIxOznIy9Z9D4avBwjhZDt+RWihzlhEh6xYmHnzylwyBa9O3tQJjsUpUUQBEFMSpwdI6SLEARBEARBTG3scS30wx0x9ekeHoeOER6l5R7Zsbu8vcvXjf+f1VABADjamw7d1sv7uwAAlyyoQUkiiqaqFM6YWYa8puP3bx73XffEW8dx2VeexaMvHgzdxmgpCMfYdgqEkfYB+zZkXSNi7FgxTpNiOdydhq4DVSVx1JXZnUBOpwNgf4/4Oka4k8DdMRLkKIg74q1yRQ7bDceIXDRTLOotVsgKKrmCta3Q/Ys6xYBT0DEinPswN0cy7nSMyO2fdS506XiwpKPPpCAZl+Z0+Ex2SBghCIIgJiXOn/WdQglBEARBEAQxtRB7RQqabht8EsRUpNsWpTVGHSN5FqXl7xhxfnbUgoaCbjx2TqMhjLx+pDd0Wy/tM4SRy8+cAQBQFAUfWjEfAPD4xhZf1/4r+7vN/3eFbkNkOJvHYEau+0Q8n6fCMeIUXw53yYkcbYKgIrtmNBw0X/uMmWUulw5zOnhFYgH+Q3DPjpGQ+C3xMXaNZDs8eEdGQSu6Y4Rtix1juGPE3TEiu4aXm0se12gIdowEd8KwKEq1yDgyNW+JRGFRWk7nh2y3i5d7aTJDwghBEAQxKdEd9ev0ezNBEARBEMTUxhn/M1XKWQnCi4xawFA2z/8+Vu/nTKBjxH2HP2DELDH+/OI5UBRgzc52vNXa57udfEHDhgOGwPH2xTP412+5aDYSsQh2nhjA1tZ+z7UHOoyuiz3tgxJHZKBpOm78t5dw1TdfRFaiY4jdoQ4AbQMj0tsZLW0Ox8hBSZGjQ1gnu2Y0WMJIueuxRNReyg1YQ33Af5jtLMqWid8CrEE8L183/58IG7Zzx0NBiIEqsmNENkorZhXEy/ZqxF3xUXIuidEQYx0jopgVFqXl6BgpyJbK2/pWihM4nNuKyrqCpsi/7ySMEARBEJMSV8cISBkhCIIgCIKYyjgHx9kpckcpcXqw8WA3LvvKM3hy2wmp53cN2QvKx6x8nTlGPLoqotwxYt9W2ixsj0YULJtdhfcvnw0A+NpTu323s7W1H4PZPKpL41jaZHWRVJcmcPOyWQCAxzce8Vy7r8MQRDoHs+gR4sSC6BrOoqUnjc7BLI72hAsdqnBn3PG+CYjSkhQ52k+VY6TTFEbqPYSRmL/zA/B3FLAIJqcQAMhFaRUcUVrhXRdWlFaYO8K5j8VGaSU8O0Zk3SnObY2DY4RHaQmOEfPPUZ9jSwjxVrquWxFhRXSnjLZjRHpbQhzZVOiJJWGEIAiCmJQ4/xGdAv+mEgRBEARBEAE473InxwgxmXhpXxc6BrN4dneH1PPFGC1g7MqGuWPEI0or7tMxkjGFkZJ4FIqi4JPXnoVENIJX9nfjpX2dntt5mcVonTHDNTj/80vmAABe2ONe2z2URW/aisPaK+kaEaOqWIl4EAXh+8Wp6Bhp6zeErllVKQBGMb0MYseI7JrREOgY8Si8tuKjFFf0FiPucCCJ76ugwTkTM5j4It1bEbcG++z7f2gMlEP0kY3SYiJIriAICGFiip9jZBw6RqwoLaHfJaTEnkWR6brxXNlC9NHEijldSLLbSgiPe3UhTTZIGCEIgiAmJdQxQhAEQRAEMb1wlrGO1SCZIMaCtBlHNZTJhzzToHvY6RgZo44RlTlG3CO7aITFA9m3xfa9NGEMM+fWluJDK+YBAL73wgHP7bB+ENYvItJYaYgDI6o78mq/GaPFkBVGxJ6QY73hwkhecDx0DGZcUXxjDXN+rFpUB6CY8nXruA51hRfejwZNt0SXM2aWuR5nA38xvkimw8PpNBF7IYKcHLx83dyGbJQWG7bbHSOSLo68fVuyUVpq3nKMyJavO7tTEuPgGIlxYUS4ZrwzxHt7rPcDMByX8q4btyAVJvY4I7Fkt5UQ9nEq/BtPwghBEAQxKXEKIaSLEARBEARBTG2cZaxTYWhCnD6kc4YgIvaGBNHlcIyMeceIl2OEdTs4orRYx4jYS3LHOxYhGlHw6oFu7Dox4Hot5tpYMqvCvZ2otwADAPs77cLI7rbROEbCBQTxbnNNBzod0WVjDRM4VprCSNdQDgMSRfGiMNI1lJUuly+G/hwwomqIRRTMrS11PS46HVjygirhkuDXWdOh6zpfoyjBTg72mMqFEdny9dF3jHB3yiiitPKSYgDbVtYRHzUujpGIPYYMsDpbwsrXAeNaS3enCBFhliuluCitYgUVce1khoQRgiAIYlLiFELIMUIQBEEQBDG1cQ6OKUqLmEww18WgpDDijNIa644Rr/J1XnrtsNezjpFSoZdkdnUJbljaCAD44cuHXK/F9jfpGdnl7qxgMMdIQ2USALBXUhgp1jFScBzjCck4rXQuj/508eIEK18/o74MM8qNYwvrDBnK5jFsvm8qkjFzzdi7RkZM405VSdzT9ZCMWteQvTdkIpPEIbctZikS8Y3fMl7T3nUj6+JgLijRiVRsx4gqGaVlCSp60WKAanZ4yHaTjIYgx4if+BCJKPx85fKWyCHvuinCMcK7Qgr2fQvZVjSigF1Sp0t0MkLCCEEQBDEpoY4RgiAIgiCI6YUzaojK14nJBHeMSN7x3+1wMIzVEDBrOka8ytfZMNPp5MjkjDUlCfuav7piIQDg928e9y2LZ8XMntsxnQQiTBi58TyjoH1P+6BUyXJbvyWGyHSMOEUZmZ4RXddx8yMvY9VXn5UuhWfrOsyukIbKFBbNMOKq9rYPBS3j+1SRjOEc03lzSDKCqxjYqfATA7zu0pcZgIsOBMNZIefiiDki3fJcGJEbtg9nLWEktGPEEaWVk4zFigtiADsn4c4KS4Qp2PpWxrFjJG9tRyauKik4OcIcJow4L1/X5WPFhKJ3QBRGws+FV+fNZIWEEYIgCGJS4vzRmoQRgiAIgiCIqY1zcEyOEWIywTtGZB0jjsG7OOAcLQVN55+TVMw9suMDaR/HiFMYuWheNS6YU4VcQcOT207Y9zdgQBq3Dcy9hZHrlzYiFlEwmMlzt0UQo3WMsKH0f750EP/y67fw2CuHsON4v+eaXEHDwc5hpHMF/HTDkdBtMHqGc/y811ekcNnCWgDAn946Hriuwzzu+sokFppiyqHOsRdG2Fsr4fGeAOyD+1zeOcj2H/3GHcIIi6sKG34zgUHljhHZ8nXj/Tmcsz5j0gIHH9DLiTAxMUpLk3S0CAN98X0fFhE2GthLiv8OykSSJU4ijiwnxIqFnb+kQ9yQjSMDgFf/5Wps+8J1mF1dEvrciaaoK/uFL3wBiqLY/jvnnHP445lMBnfffTfq6upQXl6OW265Be3t7bbXaGlpwU033YTS0lLU19fjU5/6FPJ5uX90CIIgiNMHZ3QWRWkRBEEQBEFMbZxCyFS4m5Q4fRgusnydOTAqUkaEkozQl1ELWL3tBPpHvF0p4mci5eUYYVFajm2xjpESxxpFUXBuUyUAoNcRL5ULiD8Sh6Zin8lQNs8FjnNnVXIxYI9EnJYonrQNZELPFxsSn1lvODHeaOnDzzcfxRf/uBM3PfwyXtrX6VojOml++dpRKSeLuG91ZQkkYhG8/6LZAIB1+7rQMegv+rSbjzVWpbDAPBdPbj+Bj/5wE37/5jGpbYv47a/lGPEeSseiEVd8kSoxAHfGHsnEbwFux0hOcmjOhu1MhGT7EATbf35cklFaCbFXo2AX2fy3Za1Rhfe9jEuiWLyitAoSwpQljMhfL/FxFmMWFonlFEYsoTJcSqgtS6AiFUdkHM7bWFO05LV06VKcOHGC//fyyy/zxz75yU/ij3/8I371q1/hxRdfxPHjx/Fnf/Zn/PFCoYCbbroJuVwOr776Kv77v/8bP/rRj/D5z39+bI6GIAiCmDY4boIiYYQgCIIgCGKK44z/cd6JThATSdp0igznCq5+Cy9Yx8isqhSAcGFE03Tc8/gb+PjPXse/v7Df8zkZoXsh6eUYMYeSzv1jw06nMAIApQlDuBHv0jf6E4KEEcFJIDhhDphukRnlSVSVxnFWoyFa7DjuLncX0XXd5hjRdHtpuRfsGP/2ykX40vvOw303noO/v+pMHnP1Rkufa434Paa1dwSvHekN3AaD7UtDpXEtz5hZjgvnVaOg6fj9G/6ukXYWv1VhxW/tbhvEur2d+PbavVLbZtz3m7dw+Vefw8FOd3xXXjcGzAmPPhiGf1m2rCNDl+6fcEat5QPeSyJM7BMFwGhAl4l9/4pzp1guCV3KiQF4iw4y2xoNPEpL2I4qEWXGOoFygngTJi6JkWlMlJItUc863k9h25pqFH1lY7EYGhsb+X8zZswAAPT39+MHP/gBvvWtb+Gqq67CxRdfjMceewyvvvoqNmzYAABYs2YNdu7ciZ/+9KdYvnw5brzxRnzpS1/Cd7/7XeRy8tl/BEEQxPTHqYPQr80EQRDEVGHBggUup72iKLj77rsBkNOeOH1xRmnlCgWfZxLEqUe8i10UEfzoHjaG4o1VRlxMWMfIvz27D8/sMr7XH/SJW8rk2d3ciucQ1698nTlGShNewkjU9hzAEB3Y71sJj+2Id6yLd84f7DKG9mfWGyLASjNy6uebW1wuFpGe4RwfhjeZQlJYnBYbxNaUJvCRlfPxN1eegXuvOxu3XDwHAHDYo8tD3FcAeHxjS+A2GEzgaDT3DQD+3NzOr19v9XVysI6RhqoUViysw9zaEiyaWWbuXxoDAX01HYMZ/P7NYyhoOnqGc/jla6043p/BJ3+51XUueZSWRF8I74TgxeFyQ3O1iDJvscS8oFnCg9d7SWRuTYntPRpREOoqsArRDRGGx30V4f7gUVqyfSZC5JSijI8YwHRPu2PEOI/RgPMvCmDOuDk/xMfZ9wHpjhFHNNt49K1MJEULI/v27UNTUxMWLVqE2267DS0txjeZLVu2QFVVXHPNNfy555xzDubNm4f169cDANavX49ly5ahoaGBP+f666/HwMAAduzYcbLHQhAEQUwj3OXrJI0QBEEQU4PNmzfbXPZr164FAHzgAx8AQE574vSForSIyUxaEENk4rRYHNbM8iSAYMfIa4d78G/P7uN/7xjMej4vYxave8VoAdZQ0hWl5dMxIn5NFH7Eu9TjHuXriqLYiqgZg+Z5qSszjvnPL56LurIEjvaM4A9b/Z0VzC0yozzJI6fCCtgLPv0J8+tKAQCHu9zCiNOV9sRbx7HrhOFmaelO+/bHcIGj0hJGbj6/CYlYBLvbBrHrhHdUGIvZaqhIoqYsgZf++So894/vxJwaQyzbfsy7C6V/RMX/9x8b8A8/fxP//ephPLOznR/v1qN9+O7zB+zHFVK+DngNsuVcHPGYJQbIxG8B9muS14pxmkSwfG617e9hxAWXVK6gBQp6tnUx67Mi654Rz6HKhIAQkWi0sFOV13Ro5rbyMlFaUberJUzIikYUMGNOmgsjcoIZ2z+2rSDRZioSK+bJK1aswI9+9COcffbZOHHiBL74xS/i7W9/O7Zv3462tjYkEglUV1fb1jQ0NKCtrQ0A0NbWZhNF2OPsMT+y2SyyWesfjYEB45uaqqpQVX/1dbxg25yIbRNjB13H6Qdd0+lFwXG3Ty6Xp2s7zaDP7PSDrun4Qud16jBz5kzb37/61a/ijDPOwJVXXsmd9o8//jiuuuoqAMBjjz2GJUuWYMOGDVi5ciV32j/zzDNoaGjA8uXL8aUvfQmf/vSn8YUvfAGJRGIiDosgThqXMEJRWsQkQhQOZArYmbhQnjSEh6Dy9Rf3Gn0Yi2aU4WDXMDp9YqSypmPEK0YL8HeMpH06RgCgzIzSEoUf0d3iNziPRSJQCwWb2OCM+ilJRPGxty/E15/ag+8+vx/vXT7b8+56JjzMqkrxQuYwx4ife2FBnSGsHOlOu9aw7zGpeARXnDkTz+xqxyd/8SZuPG8Wvv3MXly2oBa//NtVrnVM8KkqifOvVZXEcdmCWry8vwvbj/fzrhYRHqUlCCoAsGx2FVp7R7CttR9vO2OG7bGCpuMffv4GDpnCzmOvHsKiGeUAgOVzq/Hm0T488tw+fGTVfNSWGf/es0vgV74OCI4RHn0kW8xtdXgExauJiNdYLWIdAFw8vwavHug29k3CiSEO8DO58PctfzwiRoTJnYuEECtWTNn4aBD1SFXTkIxELaEjyBlkK4iXi7cyhM4IcnkNI2re3IacSASY/TMSos1UpChh5MYbb+R/Pv/887FixQrMnz8fv/zlL1FSMn5N8w8++CC++MUvur6+Zs0alJaWjtt2w2B3fhFTG7qO0w+6ptODlpYIRGPjiy+tw76J+5ZPjCP0mZ1+0DUdH9Jp9wCAmPzkcjn89Kc/xb333gtFUUKd9itXrvR12t91113YsWMHLrzwQs9t0Q1lxFgz1tcwp1p3I6sFHSPZHL0/TjH0ufSmoOk8Sx8A+oYyUGtTgc9nd/inWBa/6n8j167jhnPgXWfPMISRoSxyuRwUR7/C0IgRM5+MRTxfS9GsvH/x8eGs8edE1H1tmYlkOGPt30jG+rdCL+Shau5hZzyqYEQF0pkcVNUQDDI5Y31EsbZz68Wz8egLB3Cgcxh/fLMVNy1rdL1Wa68hAjRUJDCr0nCbHO0ZDnwfciFVL9ie11RpiAXdwzn0DKZRkbLEjIwZ0x+LRPCl95yD11t6sLttELvNcvhNh3twsKMfc2vsv1jmzKjKqKLbtjW72ngPHO0e8tzXtn5D3Kkri9keXzqrAk9ub8NbR/tc636yoQUv7OlEMhZBMhbB0Z4RHO0xXueB952Lj/zwNXQP53CsZwgViQqoqsrL12MR/88uEwrY99Wsea2iSvDnncVLjWRVfn2jESX4e4QgzI1kc/xaKboW+r1l+RxLYArdDgBFswTL/rQlKOpaAarqL0ZGFOOxjJpHznRURaEHbi8C4ziyagEj5mcqHg3fx2JRVRWiLpHO5BBJxqCawqii++8ni1Mbyea4WKE4PiNexKMKcnlgyIx3CzsXim59PxweyQrXOHxbE00x+1eUMOKkuroaZ511Fvbv349rr70WuVwOfX19NtdIe3s7GhuNb4qNjY3YtGmT7TVYli57jhf33Xcf7r33Xv73gYEBzJ07F9dddx0qK92K7XijqirWrl2La6+9FvF4PHwBMSmh6zj9oGs6vXjhN9uBTsuOfcUVb8c5ZrkfMT2gz+z0g67p+MKG3MTU4ne/+x36+vrwf/7P/wGAcXXa0w1lxHgxVtewbyAKQEEcGlQoeP3Nt5A6sXVMXpsoDvpc2jEMA9aI7LmX1+NEtf/Q1dD4jOe3Ht4PIIojrcewevVRz+e/ech478e6DwKIQi3o+N8/PIkyx49L+/uN181nR7B69WrX67SPGI9nsjnb44fMm8qOHtqP1av32dbs6VIARNHa1snX9GaN14kqOp588knPfdbyxj4/9+KL2G3+E7Kz1XittmOtWL3a6u+4fIaCJ1uj+MoftkI78jqcN6O/Yu5ftq8dXWobgCi27j+K1auPeG4bAIaGje1vXP8qTmyzP1Yej2JIVfD4H9Zibrn19ba0cVx6QcWmdc/i/XMU/GBPFBFFR2Uc6MspePjXL+JdTfZre+CQsX+HDuzD6qxVmj7cYRzvxu37sTpjL1PXdaCt39jHHa/Z93G4z1y37wRWr261rXtyn7GtdzbkoQFYe8w4WQ0lOva9tg6aarzm8y++hIPmr7+sfL23q9PzfQEA2RFj3UuvbkD7Dh2vdRr70N/b47sGAHIZY926l19BpmCsGR4cCFwDAAqi0KHg6TXPoLvXeI03tryGkQPBTsAR4bM2mMmHbsfQYIznP/XMc/zPa59+CkHmhYPHjGM5dLgFhtEkgr27d2F1/07fNQcGjG31DQzi+RdeBBBDIa+G7uNoEE0hTz61BmVxoKXVeG/s3bMLqwe893Og13jOpi1vYCQTAaDglZdfwv4wv0LBuEaHjx4HEMHRliNYvfqQ79N14byvfnotMub7RGpbE0wxN5OdlDAyNDSEAwcO4CMf+QguvvhixONxPPvss7jlllsAAHv27EFLSwtWrTJsaqtWrcJXvvIVdHR0oL6+HoDxj3FlZSXOPfdc3+0kk0kkk0nX1+Px+IT+0j3R2yfGBrqO0w+6ptMD591TkWiUrus0hT6z0w+6puMDndOpyQ9+8APceOONaGpqGvdt0Q1lxFgz1tfw/+1aB2QyqC4vQbo/g7OXLEXzynljsKeELPS59KZ9IANsXsf/fu75F+LG8/xv4B3M5IGNzwEAli87F386ugcz6hvR3Lzc9dx0Lo9PbDCe+5fvvQq/OPIq+kZUXLDy7TirwX7j10v7uoCdr6OuuhLNze7IpyM9aTzw5stQojE0N1/Pv/677teB7i4sP+9cNK+Yb1tTurcTP9r3BlIV1mse6UkDr7+MVNz+OiIP7HgRQwNZrHrbFVhqxkjte3Y/cPQgFi2Yj+bmJfy578jmsfHbL6FzWMVQwzJ88NK5ttd64dfbgGMnsGLZ2bhgThUeP/AacrFyNDdf4bltAPjytheAXA7vePsVOHeW/d+wHx/bhC0tfZiz5CI0Cw6VXScGga3rUZpKorn5nWgG8K5DPagtTWDDoR7c/6fdaNHr0Nx8mX3/frMd6DiOpUvOQfPbF/Kv57eewBMt24CyOjQ3X2pb05dWUdjwPADgL959gy166G1pFd/b9Ty6sgouf9e1toiuNb98C+hqw6UXLMH1Sxvw/DdfQl7T8WeXLkLztYvx0N6X0dudxiUrVuHSBTVQVRXrfvwMAGBO0yw0N1/geb6+f2Q92kYGceHFl+DKs2Yi88YxYP8OzGqYiebmi33P83cPvIqOzBAuuWwFhjIFYPebmFFbjebmFb5rAOCfNq2FWtBx5buuwmNHtgDpYVy+agVWLKwNXAcA/7J5Df9zc3Nz6PP/ceMaaDpwycrLgTc3IhZRcPNNwevaXjmMJ1r2omHWbKODp7sD5y87D82XzfVds7W1Hw/v2Ih4qgSrLl8OvLUBZSUpNDdfGbqPxcC+D0cUQ/i58qqrUV+RxJMDW4Hudpx/3lI0r/D+t/H3PW9gd38nlixdBqVlD1Ao4Op3vRPzaoNvgHlg+4sYHsyitLoO6O3FWWcuQvN1ZwWu+dRm4xq/453vwle3vQoUCrjqXe/E/JBtTTTF3ExWlDDyT//0T3j3u9+N+fPn4/jx4/jXf/1XRKNRfPCDH0RVVRU+9rGP4d5770VtbS0qKyvxd3/3d1i1ahVWrlwJALjuuutw7rnn4iMf+Qi+/vWvo62tDZ/97Gdx9913ewofBEEQxOmLs2udutcJgiCIqcaRI0fwzDPP4De/+Q3/WmNj47g57emGMmK8GKtryMpsy5LGKEKDQu+NCYI+l3Zymr0MfSSvB5+fnPXLSWWJ1QPhteZI+zB0HZhRnkBjTTnqK5PoG1HRM1JwPV81nQGphPdNYSVJY1t5zb5/LAasLJVwrasoMf5dGFE16zHFGOLHYxHf42TRTLpiPUeDsX/JeMy2riYex99ftRhf+ONOPPL8Qfz5JfNQmrBGju2DRsTVnNoyzJ9hiEGHutO446dv4FPXn42lTVWu7bNejZKk+5gWzCjHlpY+tPZl7I+ZvRLxqLXPV5xlOC5rK0pw/5924/WWPvSOFFAv9IKwZCjncS2YadhRjjm3A0BTjNijWERBWYn9396ZVXHMrS3B0Z4R7OlI4/IzrZ4RFouVSsQxt64Cd7xjEX77+jF8cMUCxONxJM2emILw/THP98//ZsFEjK0zjl03Y6kTseAbDBNx43kaItDN+Kl4yBrjuI0OGiUSRcH8Zb0kKfd95YK51dh6tM/YlsTz49EIsnkNOTPyLRYN/7cjlTAeL8B6L6USscB1JUnjMbWgQ1Pc76Wxhh0X+4wV+HX2P48l5ueqAIX38KQ8PiNOasoSaB/MotP8LDrf616kYlGohTw0Jcr//fb6PE42itm/oqrkW1tb8cEPfhBnn302/uIv/gJ1dXXYsGEDLxf89re/jZtvvhm33HIL3vGOd6CxsdH2S0A0GsUTTzyBaDSKVatW4cMf/jA++tGP4v777y9mNwiCIIjTAN2hhJAwQhAEQUw1HnvsMdTX1+Omm27iXxOd9gwvp/22bdvQ0dHBnyPjtCeIyQ4rwGXCiNjpQBATiVi8Dlhl3H6wgutYREHSHEirBe/38x6z34K5Q+orjIF852DW9dyM2YWQirlL1Nn2APBiaL7/5rpSj/L1UrNkZEQ4xpw5aQ8qsBaLqBlWybY7w+hDK+ZjTk0JOgezeHZXh+0xVr7eWJXC3NoSvPsCw0X5wp5O/OVjm6Fp7l/2goqlF84w7lg/1JV2rGHl1e7jaqxK4cJ51QCAp3e2e27LWW4+x+wiaRvIuM45ew/4ncPzZxvb2nas33tb5rpP33AONnzmasyrM7aVFMq1GaMqX/cpr3cSFwvHNf/r64QVhKsFDWrIuXBykXkdZGHHls7lpbfD908oKQ87F/wcFjRehC57TKMh7viMFfg1kytfZ+/JuEQh+swKQ7w7bvbihJ0L57Zk9m0qUpRj5Oc//3ng46lUCt/97nfx3e9+1/c58+fPH5dsNoIgCGJ64fzZWCNlhCAIgphCaJqGxx57DLfffjtiMevXLnLaE6czbHhWljQGtTkSRohJglMYGcoGCyOWQBDhw02/97NbGDG+j3d4CCNZo7wEqbj30JINJTUd0DQdEfPvGXP/SxJewojxb9CwcEzO4bzntqJuEUYNGBYnYhEsmVWJ1t4R1/nrHDKOdWZFEoqi4JEPXoh/vPYs3PTwS+gYzGJX24DLNcIGsXGPAe78ujIAwJHuYdvX2b7GfAb7NyxtxBstfXhuVzs+stKKHOOCimNbM8uTSEQjyBU0tA1kuFBirAkWEc6bXYU/bTuBHcftsT65kH1MeAgj7I+BQlaMDdmNJ4edC4Y1nNd8z0PQuoKmS4swjL+/ajGe2dWOd51dL/X8eCwCZIHhrPE+D3rfOvdPFUWOAGEJEM6hIDqMpxAQF8Ql8f9B14wd+0iuwGcmXkKgk5nlxvedjCr3vgCs85FRCySMEARBEMSpxCmEkCxCEARBTCWeeeYZtLS04K/+6q9cj337299GJBLBLbfcgmw2i+uvvx7//u//zh9nTvu77roLq1atQllZGW6//XZy2hNTHtW8G7nMHNT63WFPEKcadic6YyjMMSIMxZ3DTSd72g1h5OxGQxhhd253DHgII3lj8Jv0dYxYA9CCriNiRltxx4inMGI6RlRL/Akb6huPWXfPO9cVM9QX1yWFwfSCGWW4dGEtXtjTifUHul3CCBtmRz22tcAURg532x0j+QAxBQDOrDeisXqGc5775zwfkYiCpuoUDnen0do7YhNG+LZ8htLsOg+MqD7b8l7Hrr3oqGPl60GOEafTRNbxkLAJI/LODzYgVwu64LiRG5rXlCWw7lPvcvWK+sGuC3M9SQ31vZwwIUN98T3PxZ5xdIw4XT5MfPBySfE15nVOC5/noOcz2PuRIeMK4tsShGNZ8WuqQMIIQRAEMSlxCiHkGCEIgiCmEtddd50rFpJBTnvidIXdjVxuRmmRY4SYLIzWMZKIRfhd6GLklMjedrtjhA0omYtCJBPmGBGGmfmCDpacxQbGXuuYMKIWdOTyGhKxiCDsBDlGInw74jaD1olDdhE/p8mqRXV4YU8nNhzsxl+/fZHtsaBh9nwzSqtrKIvBjIqKFOuGCBZuvEQHcZ2X8DCnppQLIyJhUVp+IlHoOfSK0jL/GOSUcApZOUnHAxuQ26KZZKK0WKybZjkyihmay4oixv4YrztcRJSWTeQIiFgTSQifZSse7NQ5RvISzhsmgKWF71Ey++gWRiSitJg7RbW2JSNKTSWml8xDEARBTBvcHSMkjBAEQRAEQUxVCprO74YtTQZ3MhDEqcbVMRImjAgdHX5iAAD0pXNoN50hZzUYbgVW+t0xkHE9n3eMeHSFAPY7w5lwAIQ5Rqx7opmAEhSJxUh4OGHUkA4KPmQX1mjCZ98ljJxRBwDYeKiHP4etYX/1uhu+MhVHXZlRRH9EcI2EDcD9HS3+A+k5NSUAgGMOYYS7K3xcEv4iUbC7gg2+mXsIsMrXZaK0nI6RMDFA7LmQFRDE56gF3RLaQqKqRovVMVJMlJYVBScTUWWssV6XOazGN0rLLqrKxJ+x6zxcpIvDKYzIXGO+raywLRJGCIIgCGL8ceogpIsQBEEQBEFMXcThICtfz5EwQkwSRhullYhFXHfqi+xtHwIAzK4u4a4G1jHiVb7OnAxJnwGzOLhlg29d17nTpMRDUEnEIny4mzbv/OZ3wwcMstmwVRUEizBBhQ9688IaQcBxDlWXNlWhIhXDYCaPHcetkvK8sE2/AS4TLE70WwJTWBm1JTp4ixVegs/samM7rb3eRe/+zg+3SGT8Xc4xkvVyjMiUr3P3gZzjIS50k8hGTgHWtSxoVpSWzLrRwM5VMVFatlJ585yHCSri566YovfRkhQ6PIDiytfF71ky4s2McodjRGKN97aml5QwvY6GIAiCmDY4o7OcZewEQRAEQRDE1MEmjCRYlBb9gEdMDtgd0RWmaFdc+bp/x8jWo30AgCWzKvnXZgaUr4c5RsRZJhMPcgXNcmN5OEYAq5Q9zR0jrHw9oGNEKKLm2+R3tIcIIwVxjfU5dw6moxEFKxbWAgDWH+jmXxfdI35DX3aORGeF1QsR3IHiFEaC4q3m1DJhZMSxhokBfrFixv759a34DZjZObJ3jMB3//g6h2NEtkjd3jESfP5E2HFn8wV+E+N4iQjMlTOaKC21oHFxLjxWTBRGCtLbGi3lKeP7zaApxMo4dpwujohidOGEMSrHiMOpoyhyfSZTCRJGCIIgiEmJUwihjhGCIAiCIIipi9i/wIa35Bg5dbyyvws3PfwS3mrtD3/yaciIOXCtrzSGh6GOkbwojLhdEoyNh3oAAJctrOFfY46RoWze5VTJsPJ1H2FEURRbt4Ox75Yw4CeoMDEybQ5TZTpG4o7tAOGCSiIWLIx4DaZXLjLitNYftIQR0WXiN4jlIofqFm78i83dMVXi/noKI2bhemuf3TFixUeFFNEXG6UVd8d9sT8GOUa4c4lHack5RsQSddn4LcC6LuL7b7yitJi4w96/csKI5diRPa5oROHHlS7CnTJaqkoMF9lARgUg5xhhPTnse4dsOfxMp2NkFOXrfiLgVGb6HRFBEAQxLXDqICSMEARBEARBTF3YMDAaUfjQN+cYThLjx/9uacWO4wN4dnfnRO/KpGLXiQEMZfM8r7++wuj/kC5fjyqeYgBg9GRsPsyEkTr+9fJkjEdeOeO0wsrXAWtQy4a9bGgZVXTfgXFpwj5MlekYsSLC3FFaYW4HUQwQ/+wlcpw3uwoA0CJ0hRSEbfqLHG6B1SoBDxErHC6OXICIwKK0TvRlbE6W8Fgxq9RcJLzA3l0Qz05HkMMn6ewYCXHP8P0cZZQWOz7WxQGMXx8Hdy6oTBiRH+pn1eJK5dlzhs3vAeMZHVVpOkb6RwxhRMbZ4nSMyJ7zqpK47fhlxKUk35ZxLqabWwQgYYQgCIKYpLjK1kkXIQiCIAiCmLJYd9grSDoKZ4nxp6XHGDpT4b3Fb15vxY3/9hI++9ttXFxoMB0j7A5uP+xRWt7OgL0dg+gfUVESj2JpkxWlpSgKd6Y447SsjhFv5wdgDWrZ4JsNphMBE77SpCmMqPYoraDhaEwor2ZYhePBUVp2twMTkSJQFPdg1YrEcpe8A/b4MBGnECCuCxNTsnnN9vtmkKOgoTKFWERBXtPRPmD1mahhUVqhIozPPno5RpgwEtQx4hDowiK7+DrPKC358nWbY2Sco7TSWfkorboy4zPWPZzl4p6MyOGMj5IRU0YL6x0aGHE4RoIEML5/TLiR279IROHnRHad5U4Zf/fMREHCCEEQBDEpcf6aTB0jBEEQBEEQUxdxEOs3MCTGj6MkjNjoT6v4yp92AQC2Hx/gQ8b6Sssx4rpRS0As0PbrGNlsxmhdPL/GNchlsTZuxwjrGAkXLAqOKC2fehEAQGncHqUVFudkvJ5/LJafo4ANsMU1LGLMt/fDYztsQByPKp5iirHv7lisUDeGICyoNieMJd44iUYUNFYZ7wux6N0SiYKL3p3vizBRyuoYsY6LvURgx4izfJ0VjofEW4mRUzKCGYMN1pkwFxnH/gm2P8V0jLBOjYyqoX8kByD4/c5wFo7LRlWNBuYYYUIsu2bRAAGnssRY0zVkHFMxYpTYMyKzznUuyDFCEARBEKcGd/k6KSMEQRAEQRBTFXZ3eyLgDntifMioBe5MIJeOwTfX7kH3sDFYbO/P8DuiWf+Hrlt3SXvBCsnjsYgw2LefW6tfpNa1njtGBAcCIAgjgY4RqxMCsPYzGTDhK3FEaYkdKb7bidq3A4S7HbzORZiLgw2rvSKxggbtXAgQHSO8HD5YrAAcpe0h68qTxjA6q4prwqK0vAVgVXDPee6jp2NECdwWYLl4mPOm2MJxNa8XFTnFztWpKCnnwkhW3sVRkoiiwrxuskX0gIdjZBzFgErWMTJifC7zEteMdd4MjSLeShRGZNwfCS5IMcfI9JMRpt8REQRBENMCp0OEfoUjCIIgCIKYuoiDWHKMeDOSK2DLkV5oY2yVbu21uhvIMQIc6hrGTzcc4X8fzOa5cDSjPMmjm4J6RkSHARvaFjSdOx10XcemAGGEOUbYXd8MViSeDHKMRKztAZbYEbAEZWaU1giP0pLvGLE5RrRgAcFL9LRcHH6OEdY5JG6HOVP898+7pFyuA8W5Lux8JByig7EmTPDxK18P6xjxOIcS5etOoUi2cFy8zmrI+RNhz8mo4y+MzDA/L8f7RoraligEAHJiQNxROD6e8VHOjhGZKK05NSW2vxflGCkfpWOERZiRY4QgCIIgTg1O6zo5RgiCIAiCIKYuYuyMXynx6c7XntqNW773Kp7a0Tamr3u0Z4T/mYQRYMPBbmg6sGJhLb+j/FDnEACjpJy5AwYzEsJITLH1bbCvH+lOo2Mwi3hUwfK51a71Vq+G3ZXC/h7kGGF3iPOOEYkorRIzSms4K98xwh7Li+6PvJxLQi1CQPCK32IxYdGAAbEVOSWKMMGOh0hE8VwXFKUFWE4TL5eJv+BjuWc0QTAL7UFh7w3Vq3xdvmOEF6mHDPbFdfkQ54wIL18/BV0cs6uNKDPm8pIVA2Y4hBEpMcDZ4TGuUVqmY8SM0pJxtlSVxPn3LWP/5M/7jIoE/3MxBfbMMRL0eZyqkDBCEARBTEpc3eskjBAEQRAEQUxZxLuknQM8wuCAOZw/1DU8pq/LitcBitICgO3H+gEAy+dV8+6IAVMEKUvGeCGy0zHy/O4O/Ovvt0MtaHyoLnaMANZ7el+HcS3PbqzgIoiIfzF3eC8E2x4bYvekjWFxWcz/2paaqsmIOey1hAD/QadXd0rYUN9zTciw3UtAsAbEAcKIp4sj/I57r3OfD1knlrY7t+Uv+AiCmXneCprOf8/1FWFG6xhxHFcuL+f+EDtGwtw9Iux1R06BY6Sp2u6SkBUDXI4RCcdDnAsjTHAcR2HE7Atxla8H7KeiKJgtuEaK6f0QHSNSsWLme4qLXxJrphrT74gIgiCIaYHuCM8iXYQgCIIgCGLqIt6R7RUVQwC95oCb3T08VhztoSgtkR3HBwAAS5uquDDCKBEcI0OCY6Sg6fjU/76F/15/BOsPdNuG4uKwkH29zewOmVVlH+gy/D4DuXz4kNnpGOkaNN43FXHfJShNso6Rgm27wR0jHn0hYSKHR3wUP1d+8VY+AgIQPLxlYoVdQGAdDUHr7IKKruuh54OvUd2CT1gkFmCJFeK59Ctt9yqVZ8uKKl8PiT3j+yFc52KitKIux8ipE0ZkxYp6p2MkpIgeEAvHzSit8ewY4Y4Ru2AZds3m1pbyP8tcK8bMCuv7XXEdI8w9Q44RgiAIgjglaI7f2cY4apkgCIIgCII4heSEgQ93jFCUlo3eYUMQCYpwGg1He8kxwsgXNOw6wYSRSjRW2oWRskQM5Wbu/1DWEqheb+lF15DRQzKczduG4pGIIhSiG19v7zeEkYZK+2CW4eV2MNYzx0iQk8MeccX2K1AYYVFa5rCXR2IFOlM8OkbY/oWVr+d1YU2Yy8RLQDCjtGQcI6p7/4IcD05nRV74RTOsEN0WpRVSYO8ljIgijt9AO+nlaOHCSBHHJen+EOPPiilfZ30TlmNkPKO0Rter4XSMyDgeUua17ksbn/9xjdIqsTpGNE0PjXRjiD0jxYgV4vkormPEjNIixwhBEARBnBqcnSLUMUIQBEEQBDF1Ub3K18m9YKPHzM9nsSpjRQt1jHAOdg0jm9dQlohiYV2ZyzFSmoiiIuXuGHlqu9X7ks1rrigqXjpuvs+ZY8QpvDD8orRkuj8sx4jxXEsYKT5KK7BjxLEdcV0x5es5ySgtwDofzDEiJQR4uFOChtnOvhCxQ8XfMeIRpRWyj3bBjEWEWet9u0k8RLOiytcd2wpzFCQEAUzm/DHYc5gwMp4CQmNVCopwuqSjtMqLL19n7hT2uRpPwYeVr+fyGk4MZKDpgKIANWWJwHVzawTHSDHl60UKI+yzwmIFx/NcTBQkjBAEQRCTEueP9aSLEARBEARBTF1s0UNR76Hw6UxGLfAB41g6RnRdRytFaXF2HDf6RZbMqkQkongKIzxKyxwG6rpuE0YyasEVveTs1mgfYI6RsRdG2LDd5RgJmKU6o7SkOkb4PopRWnK9Gl4uE781XgICc3EEOUYsZ4VHIbqE08TLxREapVVEqbzXtkQXh6L4uFNYRJiwrWLK151OmFDHSEzoGAnpkBEpM8W2niIL0UdDPBpBgxADJRulNZqOkQV1ZY4143dcZYkY2C7tax8EANSVJULP5ZxRdozMKLe+ScisY9th3wvHM1ZsoiBhhCAIgpiUOMvWqXydIAiCIAhi6kIdI8GwfhFgbDtG+tIqBoUS8ekWpVXQdFdJehDbjxkxWufNrgLgdnQY5ev2jpHtxwZwrM9y3WTzGo+KYsNoHg/HOkbMKC2n8MLw7xjRbK/nBbtDnHeMDLGOkXDHSFEdIwGOEb9IIq/ydWvYPpoYqHAhwO6sYO6U8G6SLN9WuIvD6hiRj9IS9zFXsAtSxR+X/TEvLMGZOWHkHCNxm2NEPkqr3vzsHDc/G+PtJmiqtj5Lo4nSikX8xSiR+XWltr+PZ69GJKKgwuwZ2d8xBACor/D+niFi7xiR37/yZAxNVSmk4pFQVwoAnFlfYfv7eIpEE8X0OyKCIAhiWuDUQahjhCAIgiAI4tRwvG8EO82C6rEiJwzc/O6WP51hd10DYxulJfaLANPPMfKlJ3bigi+uwVutfQCAE/0j/M9eMMfIuU2VAOzChaIYA/BU3BQRzCH4UztO2F4jmy+4BtzOPo7RR2kFd3gAHlFag+EdIyVmx0iaR2nJCw+e7g+/4nCPwvacxLacEVzs2OQcI15RWhLdJI5C9KDBeTLuEaUlISJYYoWxDRlBKrhjREaEcRxXMeXr/FyEj4uZ6MCEufF0jAD2AnZZsUIUGWT3b16tXRgZb8GH9YzsazeEEb9eIhHRMVLMeVcUBb+662144u+u4M64IObXldqEFypfJwiCIIhThLNTRHeFaxEEQRAEQRDjwf95bBPe/Z2XsWMMxRHxDnA2PNV0q0vgdIcV/QLBUVq6ruPux1/HnT9+TercHRX6RQBrSD2ZeHLbCbyyv6vodf0jKh7f1IKCpuPpHUbU1V8+thnv+c4rWLOjzfV8Xdf5e/q8JrdjpCwRg6Io/P3J7rh/q9UQU9jgOaNqLmeHONhP5/L8Gjb4OEa8ht+AZPeHOZwsaDoyaoE7goKEkTJnlBZzOwQ5UyJ2kUPXdasvxNcx4jHU5x0jxUdOyXSFeG0rqGTb2TES1ptiX+PVMSLT+2EvlZdxz7Bt6bqOgm7vsgnaR+Zmko3FEjtG8hLnglE/ipiqk0EsYJcVA2rLEjyqSnaofyqjtACg0nSM7OsworT84vdEKlJxVJca64LEQy9mV5e4nCB+xKMRLJhhnY9itzUVIGGEIAiCmJQ4f8+j35kJgiAIgiDGn/4RFXvbh1DQdPzo1SNj9rp8IBiL2Iax5BoxsDlGAqK0+tIq/vTWCazZ2Y5XD4SLCcwxMssc0E82x0j3UBZ3P/46/vJHm9GfLs4p86e3TvD3zxstfTjRP4LdbcZw8b7fbOPdG4zW3hEMZvJIRCNY3FAOwBicssFwiRk3FXe4Htg2qkqMQaTdMaLY/q/mNbQPGNstTURR4XNXtldxuKbpUr0QUUGwEAuiS6K+S1xRWlIdI45YLFGI83O0eBeiS/R+OBw37DwEDdu9IqeYWCHjGMnlnWKFvJgCyEVpOcUbJloUsy3RfRNYvu449zJxZOLjubwm3UsCuAf4Qfs2FoiOEdmOkWhEQZ1ZwC4rplSXxnmcnrFufMUA9n1lH4/SCneMAJZrZLz378yZ5fzP4+0Kmgim3xERBEEQ0wJ3+TopIwRBEARBEOMNK4AFgD9tb0N/LuDJReDVMQJQzwhD7BgRHQlORDfJr7e0hr4ui+VifQCnUhjZ3zGI/3rpYOA2e9M5aLoxlH3aw+URxK9ft45/69E+bDjYzf/ePZzDZ36zzbUtwCggZgM+RVHQUGUMIlmZdMwhCLBhMRM5MqrmUb5uiRW8X6Qy5RvNlIi6C7ZVocsjyMnBBIaCpvEYo7qyBILqE6woLfmOkTh3ztgL0QF/4cEZKWb8WT62q5goLa9zKONOcbo/ZOLLeC+JOrooLfZcVcLF4SfchO2j062j8r6VsCgt6/1eTJSWc4A/3kPz2aOI0gKAmaYwIutoURTF1jMS9F4aC5hjhH1vr5dwjADA3BpjH8fb0XJmvSWMUPk6QRAEQZwi3OXrE7QjBEEQBEEQpxHsrlXAGBi+3DY2YwOxY0QcJE43x8jXntqNb67ZU/S63mG7W2LQxzUymLW+/tSOttDicTZUZUP/U1m+/o+/3Iov/2kXfrH5qO9zhrPWHfh/fOu49Gsf6hrGliO9iChAKh7BcK6An21oAQC8ffEMRBRgzc52LlIA1nvNKTrMqjQGriUJQzxwDbPN/5ebd5F7dYyIfRztZr9IUCSOV8eIzRkg1TGi836RGeXBd5mzKK0R3jEiL4ywz64oYvqt484Pjy6OQBeHY6hfkHAuJONud0qeixxBjhG7oCIVpRX3cKcUI/hwx0hxUVpifJn4mMy2uGMkrHydv3f1oqK0akoT9v6JcR6aN40iSgsA6iuLc4wAwPxaKz5qvAUf1jHCkInSAizHSHS8HSOiMEIdIwRBEARxanCXr5MyQhAEQRAEMd7sNR0jC8w7Zl9pV8bEZSBGyIg9DjKv3dqbxlXffAE/2TC6aK+RXAEjuUL4E0+S/rSK771wAI88tx8n+kfCFwiIjhEAGPDpGREdIxlVw+ptJzyfx2BD0jLT7XCqHCOtvWlsNbs51u5s931eWrgur+zvQudg1ve5Ir994xgA4B1nzcRF82oAAK8d6QUAfHjlfFSa8TRDgpCUE1xLIqwHpIxHaZnCgyNKi5UVZ1XrznqvjhFevO7TLyKusw3a8+HCg/hYXojSqitP+D4fsGLC0moBuq5LDfVj/DzYB+3GOh/HSIy5D6zn5iUcGWydMwYqGjDUd4opgBClJdUxIh+lxbblXb4eLlY43SnBUVpWJppYiB5Rwhw01nvQuMZyIofYqcNcQTJRVZGIwgvYgWCX01gwexRRWoDlGCkmckp0jJyqKC2GTPk6AJw/pxqA/byMB3bHyPSTEabfEREEQRDTAiaEKGaoFnWMEARBEARBjD/7TcfIne84A/GoguG8wuN6Tga/O+xlHCNrdrTjYOcw/vvVw0VvV9d1/Pmjr+Jd33gB6Vywu+Jk6RQ6LbYe7S9qrdgxAlgRWE6cxez/+1pwnBYrW7ccI6dGGHl6hyWGrD/QjWEfZ4t4TTQdeHJ7sNDDOGC+T9++eCYunFdte+zSBbWeg2xnYTqj0RxEOjtGrFgnM0rLdIxk8potGs5YY8URMZdKoGPEsQ3xz2EDcNEx0j1sxYMFUWq6YXTdENT4/sdkej908/+seF3xjQiLO4bzgFykk1Pk4MXhUh0jlrgm43hwR1VJiBVx97bkorTsgk8xfSZse9zpFFaiLqwTBZWwwb51zUQxRW5cLMZpBV2rsaCyJOaKu5OBiTfFRGLZorROUfk6Q9YxctOyWfj93ZfjH687azx2i3PGzHIe00eOEYIgCII4RTAhhP0jTB0jBEEQBEEQ40O+oPHBPHOMnDOrgt+5PBZxV35l1TIdIy09RoH4gc4h34gpP/a2D2HH8QG0DWS46DNeiOLG1ta+otY6HSNOAYTBHBBn1pcjFlGw6XAPnt/TgYxawH+8eACvt/Tans/Oeyl3jJyan6mfEgSOXEHDS/u8i+LTDifP79+Ui9NigkdJPIoL59bwr5/VUI7asoRn9JHfgJndcc1cJjHBkQEIcWTcMeIeVovxWyxKqzHgzm8vYVB2AM4ii/IFjTtsZpQF32VeErdcCOlcXmpbzq4VGQeC+HpMUJIpHHfGl7G1QQKR0/kByBWOO8vN8xICB+8YKTpKyxQk8/Y4ssAoLbGDSRThQhwZzu4mLhKFDPbF6yyKXzKIfRjjHTmlKAqP0ypmW1wYKUK4mSdEaY23GFApOEYUxegLkiESUXDB3Gqbw2g8KElE+fdI6hghCIIgiFMEE0Ki/O8Tty8EQRAEQRDTmc/9fgdWPPAMntnZjvYBY9B6Zn25a4B4MjjLntmQWUboOGoKI7oObDtWnBPj1QPWQJ4JLONFt80x0lfUWneUVrBjZHF9Of7y8gUAgH/9/Q7c9dMtePDJ3fjSEzttz3fGQJ0Kx0jHYIbHWt2wtBEA8Owu7zgt5hg5b3YlohEFW470Ysfxfui6jnV7O32jtcRhsegYuXRBLQC/smx7/BXjPctn40Mr5uFv3rHIeNwpCJjnkJev5zXXgNvq1tB5lFbQnd9Jz44R76gvJzziSpOP0opGFKRMsSidc3ekeOHuWpEXHQAP90cRXRwyAodnT4sWPth3rpMpovcSYWTWOZ1BMscViVg9TFlBGAlzfiQc557HiklGaakFTWr/RETHyHiXlAPAu86pR2kiinObKqXX1FcYn8MwYUlkwYxTF6UldozMKE+ekvNYLCxOazLu28ky/Y6IIAiCmBboDscIdYwQBEEQBEGMD+v2dkIt6Pjs77YDAGZVpVCZinv2IIwW5yCWlUV3DobHdB0RBI1iI6rWH+jmfx53YURwjGxr7YcWkgWr6zo6BjPQdZ2Xr7O7hX3L101hpDwZwz9ccxYaKpNo6Unj+T2dAIB+RwQXO+/MMaAW9HG/4WjNjnboOnDB3Gp8dNV8AMBzuzt4obYIc4wsqCtD87JZAIAfvnwYj754EB/94SZ85rfbPLchxmLVlSd5J85lCw1hxDuqqmB7jFFblsAD71/GM/u5IMAcDzxKy7izO6sKwoJHx0g7i9KS6BgR989PuHHCejfEjpGwKC3AitMyhBEZF4clwBjbkxdTAOu9l5NwITiFIhnHiLOk3NhH+Q6PrEOECRr6WkKbO7YruEjddMY5+kzCrrHo1svl5Xo/ohGFny9VcIyEiRyiACbbS8JgooOxf+PvJvhM8xK8+fnrcMbM8vAnm1x+Zh0unl+DD1wyV3pNQ0WKX6PxjtISO0Zk+0VONWc1VACwO8+mCySMEARBEJMSHVbJnPF3giAIgiAIYqwZzuZxrM8oCmd3ui82hyBed7WPlrxj6MviTbqGgsu2NU3njhGgOCeGpunYeKiH/72le3yFETFKazCbx8Gu4cDn//GtE7jsK8/ix+uPcMfIPHPAPzDiHaXFnCQVqTjKkzF89qZzbY+LDglAjIGyBlrjnab169eN3pMbljbi0oW1qEjF0D2c83T7MGGkLBHDx65YCAD4w9Zj+NbaPQCALUd6PSN1rSJ145eFr7x/Ge565xlcXOFRWsIg269jxEmMuz/sw2wepZXXeDwU7xgRhvQdpsulUaJjpKDpXDCScXEYjyvmWo33/8gJI2YBey4v5U6JO86DjMARjSj89zeXSyLgvLuitKTEFHtJubg+aLDv/L6mOt5LnmviXg6f8ONKOI5LxmUC2IUz2feFuL2MWuDR1GHxR1Y/jm7tn6QYUC8M8sc7SotRjPMDAKpLE/j1XW/DR1bOl14TiSg42/x3sKZULtpqtIgdIw0Vcv0ip5rb37YAt62Yhw+tmDfRuzLmkDBCEARBTErYD3IR/neSRgiCIAiCIMaag53u4f1iMzbDKz5mtDijhyzHSLAw0jmUtW2/mO6OnScGbA6KUxmlBYSLOC/vM1we/7ullQsE82tNYcTHMTJkOkZYEfjN58/CD26/BA9/8EIAxkBUhJ07NtQHxlcYeb2lF2+09CERjeDPL56DeDSCC0wnhlfHC4vSKklEsXxuNS6aV20rju4ZzvF4NxHnnfeXnzkDn77hHD6c9SxfL8jdee8XpVXOytdVdxQVe1+39Y8gr+lQFEv889yGR+QU/4wEFKIDlotCFaK0wjpGAFEYER0v/ttid8qrmrwbQ3ycXUPuXJB0fwCWY0RG4AAEEYatCxjsOyMCLcGnuCgtVUJEcB6XbIcH356qSYspxnOM1xW7e8Lij6pLE/y9kVGLc4yIDofpFrP0rb+4AP9263KcN1s+tms0iB0j9ZLF66ea2dUl+Mr7lxXl1JkqTK93LUEQBDFtYEII+5kxJImAIAiCIAiCGAX7O42ydTHO46yGsRdGnNE9M8073MMcI0dMl8eM8iQiCnCiP4MO09kSxoaDRowWi6eSFUa8HAoysCgt1uXwVoiIc7jL2B/mpIhGFMyuMUpu/crXBx3CiKIouHpJAy6YUwXALYxwt0PCEkbG4HL68sOXDwEA3rO8iQsDc2uNY/I6/8NZ0zFiOlr++u1Gz0ddWYIX/u484XaacPdH1DvaJRmP2p4n/jnoDn/ALQiw/1ea5zwndIywwTcTW1p7R8z9T0r1Y4j7xQQYWeEhoxbQlzYEtFoJx0iJEKUlU74e9ylfD+26cDlNiilfN55b4FFa4W4MwHIGyeyjM8ZMxtFixW9Zny+ZbfGINec1DitS5/tYcL3XgtdZriBrH8KFtqWOzo7JGqV1KlncUIH3Lp8NRRnf4xL/7a0PEFOJ8YGEEYIgCGJywhwj7OcQcowQBEEQU4Rjx47hwx/+MOrq6lBSUoJly5bhtdde44/ruo7Pf/7zmDVrFkpKSnDNNddg3759ttfo6enBbbfdhsrKSlRXV+NjH/sYhobcd1sThIiu6/j+ugP41tq9eHZXu2tI7gW7i/+m82fh4vk1iEUUXGIWWI9px4hjECsbpcWG6ec0VmBxvRFtsrVVrmeE9Yv82UWzAQDH+0ZCY8Feb+nFRV9ai//Z1CK1DREWpXX5GTMAAG+G7Ofhbrtbp6Y0zodkAyN+HSMsSitm+3oqbu9NYLDjTcWjvLtvvBwjx/tG8OT2NgDgxfAAMNd0wbR6CCNsgMv6L248rxGPfPBC/OJvVuLi+TUAgF0nBl3rnA4kJ55l2VxMCREeYj5RWgkhSsuxffa+Pm72iwS5RQDDMcCuR7bAhvryXRIA0GE6aaIRBTXCcNWPMluUVvi22DHleUyVpGOEnT9nLFZR5evhokMkonDnhVPkCO4LsdwY4n4GRmk51hjrJKK0nOdCk7vGNsdIPnz/nOuY4AjIOU2Wza627/ckLV+fjtiitCapY2Q6Q+9agiAIYlLCHCMKOUYIgiCIKURvby8uv/xyxONxPPnkk9i5cye++c1voqamhj/n61//Oh5++GE8+uij2LhxI8rKynD99dcjk7Hugr/tttuwY8cOrF27Fk888QTWrVuHO++8cyIOiZhCbG3txwOrd+PhZ/fhY//9Gu795Zuha5gwcubMcvz3X12G5//pnTwuI0wYeXlfF070j0jtm7PTgEVpsY4EP5gwMre2FBfMNVwRsj0jr7f0AgBuPr8JqXgEmm4M74NYs6MdvWkVq7edkNqGSLd5LFctqQcA7Dze7ytOpXN53kXBqClN8IJv3yitLHOM2AfhbCCa13Q+VAas4W0yFuED0mKEkS1HerG33S1MePG/W1pR0HSsXFSLpU1V/OtzawxhxMsxwiJ/WJSPoih49wVNOLO+Auead7HvPD7gWhfWF5JwxCUB8sXXLPIpr2koaFZZvT1Ky9ExYv6/zfw8hHV+KIpiFcQ7BJhQ4cHcP/bZqy1LIBISzQRY4tNw1h0F5gVzDeQcjpGwAXjcZ12gi8PZMSJRvg7494UERVU5HSOqTPxW3P29UKanxSn4hAl6znXZgma916QcI8ZzbFFaEu+NZXOcjhG5cXGd6eQDTl3HyHQjFY/w98NkLV+fztC7liAIgpiUsN/XolwYIWWEIAiCmPx87Wtfw9y5c/HYY4/hsssuw8KFC3HdddfhjDPOAGDc0f/QQw/hs5/9LN773vfi/PPPx49//GMcP34cv/vd7wAAu3btwlNPPYX/+q//wooVK3DFFVfgkUcewc9//nMcP358Ao+OmOy09hqDZzYs3HKkN3TNPlMYWdxQjvJkjN/dL76Ol8ti48FufPgHG/HJX7wptW/O/oQZFXIdIy2mq2J+XSnON7sqZHpGeodz6DVjhs5qqMC8Wv/hvMieNmMIf2QURe0sSmv53GrMKE9ALeieheOAFaMlUlOW4HcPD0hGaTGYYwQAMl49CNGIVfgt+WN1x2AGt35/Pd77nVdwLERQAoA2M+Js1aIZtq+zc3+0N1wYETl3ljGs3XWieGHE670re+e95XjQ+fkDrHOezWuuKCr2vmZi18zy8AHnaIfmLF6qjblTJLYl7v9ARuXCg4xYkedihdz5cx6XqoU7TVzxVhJrxHXObpKgdTwWizlGJOKt2JpcQYPGItYkit65+MX7aiSPi3XkqMWVr7PrOWwKqIYzSUIYcThGZMQUwBCu6sz3X9j7lvBGURTUmnGPs6pKJnhvTj9i4U8hCIIgiFMPd4zwv0/cvhAEQRCELH/4wx9w/fXX4wMf+ABefPFFzJ49Gx//+Mdxxx13AAAOHTqEtrY2XHPNNXxNVVUVVqxYgfXr1+PWW2/F+vXrUV1djUsuuYQ/55prrkEkEsHGjRvx/ve/33Pb2WwW2aw1ZB4YMIaJqqpCVb3vPh9P2DYnYtunK8fNwfOlC2rw8v5utA9k0T88wu8Ud5LLa1wAmF+Tcl0rdmf6SNb9Hnplv1EcvuVIL4ZGsrYiZO9tGQNwRdehqipqUsagsWsoi1wuh/v/tBuxiIL/23yObd0RUxhpqkzwAfvWo33I5XKBA7+9bYYgMasqhZiiYU51Cfa2D+Fg5yBWLaz2XbenzXBHHOsbQTqTlb4LWtN09KYNYaQyGcGFc6uxdlcHNh3swvLZFa7nH+gwPp/VJXH0mbFZVakYSuPGMQ2kc56fHRaxlYraP1sR4SaioXQGyYgxrGTdCxFofHCZ1+Q+l9uO9priQAFf/MN2fPeDywOfnzFjsaKKbnv9xgpD7GkfyGIwnbGJOMNZ43nJqOLap8UzjSHhoe5h1/uYDYsVXfM8FvbeTQvv3ZGc8f9YJPj4FZ0NsQtIZ6zvqeZbFhm1wB0ail6AqqpgR8QuQ01pLPQcs+F3OmNc60yW7Z/7XNj2D8b+MSGqviIh9f22LGFsr3vQciey/fdC14z3jqYDmWwOI+b+RUP2z/l9I2e+BxV4XyvAeM8AwEgub67Jm/unB27LeQ65kKX5H1fEPH+ZvLGtjPm8mOK/rYhuOTCGM1mk4lHrPagFHZfx/6xq31ZECb5WTHwaEc572PsWsMSJwRHjfRvz+Fx5MbcqgbJEFMPMaaIVoKpuQdyL+ooEOgeziCD4WhEWzs/r5286B3vah3DmDPe/w0TxFHMOT0oY+epXv4r77rsP//AP/4CHHnoIAJDJZPCP//iP+PnPf45sNovrr78e//7v/46Ghga+rqWlBXfddReef/55lJeX4/bbb8eDDz6IWIx0GoIgCMLAvCGJW3NHW4JJEARBEKeSgwcP4nvf+x7uvfdefOYzn8HmzZvx93//90gkErj99tvR1mbk74u/H7G/s8fa2tpQX19vezwWi6G2tpY/x4sHH3wQX/ziF11fX7NmDUpLSz1WnBrWrl07Yds+3dhwOAIggthwJ0pjCtJ5BT/7/RrMLvN+flsaKGgxJKM6Xn/5OTh1hp5O4/W27dyF1X07bY89t9t4TC3o+OFvnsL88uB96+iKAlCwbesbUI7qyBQAIIZ0roDHfv0kfrrVmAcsLRyEaB7Y32asa9n5OvKlQEyJYiCTx3//5knUB9xcu6FDARBFBdJYvXo1CgPG/q57bQdqurZ5rsnkgeP9xn4UNB3/8/unMEMy8n1YNc4lAGxa9xxK08b2n9y8B3MGd7mev/aY8fgZZVnsUo1rNdTdhm1bjgOIoaNvEKtXr3at6x0yzscbm17FccdhxJUoVF3Bk2ufRa1pIug3n79543oUVOPPBV3uc/n8cWMfAWDNzg5882dPYkmN/8/kR44a53j/3t1YPWQds64DyUgUWU3B//zhaTQI1+14h7FPO94y3hdOKuNRDKgKfvTbNVgg6EvpjLFu/cvrsM/jGp1oNfZl1559WD2yBwCw75DxtZbDh7B69QHf42gdBoAYBodH8OTTa8FGZxteegFAzHAlmHdtrXvheVQmgMOt1rkCgK7Wg4HbAMCvx/PrXsKBcmBzp/Ea/b3dnteesd9877Abx3J9Hfx6Bl3XNvOcvLXnIFiAzLNr18LDrAPA+DywY39i9ZPY3mNsd6CvJ3D/RtLGcb28fgM6d+o4dsK8Fju2Y3Wn92fv8FHjtQ8cOozVqw/iwEFjzeGDB7B69T7PNQCQzxnbeuGll3GkAsiaf3/5pRex2+ezu7vP2FZXTz9Wr16NHea1O3H8GFavPuq5xnBZmefiyadRGgNGssa2XgnY1kHzWh08chSrVx/BniPGcbUeMY7Tj/5e43mbX3/T3HYUfd1dgecdAIYHjH16/a0dAKKAVghdw2hMRnEgp0CBjqefelJqDQBERszP/e4dWN2zXXodYf+8ngHgySf3TNzOTCPSaXnH56iViM2bN+M//uM/cP7559u+/slPfhJ/+tOf8Ktf/QpVVVW455578Gd/9md45ZVXAACFQgE33XQTGhsb8eqrr+LEiRP46Ec/ing8jgceeGC0u0MQBEFMUyxhZGL3gyAIgiBk0DQNl1xyCf/d5sILL8T27dvx6KOP4vbbbx/Xbd9333249957+d8HBgYwd+5cXHfddaisrAxYOT6oqoq1a9fi2muvRTweXgxMnDzP/Oot4EQbVl5wDnq2t+Gt1gHMO/diXL+0wfP5T+1oB7ZuxdmzqnDTTStdj6/7zTa81nUC8xediearFtsee2D7iwCMu5Ir5p+H5hXzAvftP49sAAYHsPKyS/DOs2ZC13X86xvPIqNqSM49D9i6GwDwzquvRXWp8X4ZzuYxuP45AMCH3nMtKlJx/OT4RrxxtB81Z16I5gtm+W5v55p9wIFDuOyc+WhuXoKuDS148U+7EatpRHPzcs81b7T0AZs38b8vXHYZ3r54hudznRzoHAZeewUVqRjec/N1mHu0D7///iYcyyZx443vdLlbXv7dDqDlGC5fthg1JwbwzO5OXHDOGbjhwiZ8a/srUJU4mpuvt63RdR2f3GAM0m667mpb8TEAfO6N56Bm8njbFVdi0UxDDXtg+4tANosr334Fftn6Jgb6MsjrkPpcvvTbHcCRY6gqiaF/JI9XBmvwj7e53yeM1f/zJtDVgeXLlrreD48eehW724ewcNmleOdZM/nXH97/CjA8jCvftgIrFta6XvN/O7fgpf3dqF64DM2XzeVf/6dNawHouPbqqzCryj2V3vb0XqxrO4y5Cxai+YazAQDr/7ATaGvFkrMWo/mqM3yPY1/7EP7fW68iEk/gynetAl5bh2hEwc03Xof/+9pztufecJ3xfj267hBWH7UG+FdccgGalzf5bgMAvrXnZfT1pHHpilW4eH4Nhre0Avt3YlZDPZqbL/Jd1/7qEfyhxRqgXnLeYlx7xbzQ77dH1x3CM8f2obyuAeg0HF/vvulG3x6PjFrApzc/CwC46prrgN0dwL7taJg5E83NF/vu338e2YAT6QFcdPEluPKsmfhV5xagrxsXL/c/J0fXHcKTrfvQ2DQHzc3nGdeqvRVnn70Yze/yv1YP738F3Z3DuPjSlVi5qDb0fQEAMw734Hu7XkOqtAzNzVdg/3P7gaMHsWjBPDQ3n+u7rU9tWouCpuMd7zI+e2xb1wRsq2O9ca3qG5rQ3Hw+3li9GzjegrMXn4Hmaxd7rgGAJ/rexK6+Dpyz9DzDiXVwH5pmNaC5+ULfNQDweNtmHB7qxbxFi4GWgyhJJtDc/K7ANYw3lT048OoRxKIR1/eeIOYvH8Af3zqBj1+5CJUl9G+9DPTz0fjCHNMyjEoYGRoawm233Yb//M//xJe//GX+9f7+fvzgBz/A448/jquuugoA8Nhjj2HJkiXYsGEDVq5ciTVr1mDnzp145pln0NDQgOXLl+NLX/oSPv3pT+MLX/gCEonggiqCIAji9IBFaUUcfycIgiCIycysWbNw7rn2wcqSJUvw61//GgDQ2NgIAGhvb8esWdZQt729HcuXL+fP6ejosL1GPp9HT08PX+9FMplEMunOmo/H4xP6i/dEb/90otMs/55VXYpFM8rxVusAWvuzvuf/cLfRG7G4vtLzOSVmdFFBV2yPdwxk0C50g2w7Phh6jVn2f0kiwZ87syKJoz0j2HzE6uEoIMIfbzP3r7o0jtoKw/W0fF4N3jjaj+3HB/Hnl/iLMYfNLpEz6isQj8ex0CyUP9qb8d3XA932Ho1jAefOyUDWsDvXlRnHt3xeHZKxCHrTKo7253ihPaOlx9jWovoKXL54JgayBbxn+RzUmmLHUDaPaDRmK9Ueyua5S6C2vATxuP1W/1TccNPkYV0v1m1QlkogYfYkFDS5z+X+TiPG7CMrF+A7z+/HiZDzwbpLUgn3a8+tK8Pu9iGcGMjZHhsxo3sqS5Oer710djVe2t+NvR3D/HFd13khdWkqEfjeVc1jBYwIMQBIJWOBx5FKsufr0BXjnMWjCspL3MPvspIE4vEYUo64uvqq0tDzywq9NfM9XzB/80nFg/cvGbdvq6na2lbQda0qNeZtfSNGTFVEAVJJ/xlcJGptR4lEoSkRc/vRwP1jvR/suNhnP5X037cU/15jHIOuK/xYA88Fe09DQSwW4++LoG2VmseczeuIx+PQzPDmRCx4W4loBCNaARoitm35vQcBoCRhvpd0Y1sF2eMyP9sFXeH7F/a+YK8LABmzyyQWjYSuYSyfVwO8egTxItYAwPL5dVg+v076+YQF/Xw0PhRzTkcljNx999246aabcM0119iEkS1btkBVVVte7jnnnIN58+Zh/fr1WLlyJdavX49ly5bZrOPXX3897rrrLuzYsQMXXuhWPykrlxgP6DpOP+iaTi+4MGL+Lpgv+OfEElMT+sxOP+iaji90XqcGl19+OfbssUch7N27F/PnzwcALFy4EI2NjXj22We5EDIwMICNGzfirrvuAgCsWrUKfX192LJlCy6+2Lgr97nnnoOmaVixYsWpOxhiytE+YPze3FCZwvw6wzFwuGvY9/kHOo3i9TPrvXOwko5iYwYrFFcUw9W79Whf6L55lWXPKDeEkQ0Hu/nXMqqV5X+iz+hCmF1tZS9dYBawvxVSwH7IPO5FpiAxr9Y4Hy3dw9B13bOfhPWLMIopYO8ZNs49KyJOxCK4YE41Nh3uwZbDvS5h5LBQKn/hvBr88m9WAQCyZheLrgNDuTwvYweAwYzV8ZCKu7tPWHdHRugGYMPbeDTC+wfYcDYIXdexv8N4fyxtqjRfK7hzIBtQiM76YVoc5zSt+pevA8DcWuPadwpCXE7Yj2LK19n+J0J6Y1ivjFrQbGXe0YiCeFTh51R8rnM/ZpSH3/TLi8N5MXd4CTgAl8Ojwcet4KTcLF/vHTYE1LD+nGhE4Z9xtWCVgIcVc1vnzzhPefP/sUhQubmzsF1uW0xcyuU1FIRSyqBrLBapi/vp914StzWiFpDNW+8LQLJUnh1Xwf8z4rWP2bxmvS8k+o5YNwnrColLlqgDwEXzahBRgDqJ9y5BTBeKFkZ+/vOf4/XXX8fmzZtdj7W1tSGRSKC6utr2dWderleeLnvMC8rKJcYTuo7TD7qm04ORESMflf3Oumv3bqz2yGcmpj70mZ1+0DUdH4rJyyUmjk9+8pN429vehgceeAB/8Rd/gU2bNuH73/8+vv/97wMAFEXBJz7xCXz5y1/G4sWLsXDhQnzuc59DU1MT3ve+9wEwHCY33HAD7rjjDjz66KNQVRX33HMPbr31VjQ1BUezEKcvuq6j3SxjbqhMYcEM43dlNoD3YtAoEUBtmffdlYkQYeTKs2bihT2dONA5jIGMahviO2FDSDacBwxhBAC6zUGtc1tDWWP/KlLW6OKCudUAgO3HB6AWNM9hYUHTcdgcwC+aYQgic2tLkIhFMJwr4EDnEM6sdxeiM2HkgjlV2NrajyM98t93u0y3Tm2ZNVS8eEENNh3uwWtHevAXl1oxUOlcnotYC+rsBTDJWBTJWATZvIaBEfs5HcpY58NL2GFiSVYQl3LCsJ2dq7yEEftEfwZD2TxiEQWLG4xzlQ8RRtSC/wB3bo0hcBztdQgjWSaMeI+nSkyxZ8TjmAD/Abg4WHauCxtK8/NU0F3HlIxFoRby/LlscO885pnlbveeE7bvzqG5+Bnx3j/7442VksKI6YTpSeds2w/eVgS5vAZV07nAESbccDGgYFwzmeMSxSgAXOTwi/ni24pa36NEsSImIVawzwn/jIScd0soLthEwqDzyK+x+fycpLgkCiqWmBIucrB16ZzxHg06D07m1pbiJx9bYfseRhDTnaKEkaNHj+If/uEfsHbtWqRSkg1kYwBl5RLjAV3H6Qdd0+nFl7a9AKg5HqV11llno/nKRRO4R8RYQ5/Z6Qdd0/GlmLxcYuK49NJL8dvf/hb33Xcf7r//fixcuBAPPfQQbrvtNv6cf/7nf8bw8DDuvPNO9PX14YorrsBTTz1l+x3rZz/7Ge655x5cffXViEQiuOWWW/Dwww9PxCERU4ShbB5p8y7hhsokH7gf7vIf7udC7l4Wh44i21otYWR/xxBae0ewvbUfbzvTv4/Dayg9s8I9PBYdIyxmqUwYmi+oK0VlKoaBTB572gZx3uwq12sc6x1BLq8hEYugyXSbJGNRrFhYi5f2deGFPZ2ewsjedkMYuW5poyGMBIhKTnpMcadOGCpeMr8GgNldIsCcKFUlcdR4DCErS+LoHMxiYCQP1FhfH8i4hSIR5hhh10vXdesaRy1hJETfAADsM90iC2aUoSxpvK7olPAiSHiYV2cIdUd7rLgytaDx/fNzjDBhJOvhggH8h9IJYYgtbi9oDYMNyPOa7hqaJ2MRDGWtbTOBShRGFAVSw2VfN0Gok8P+uLwwYrxv+kcM51GYwAEYjoMcDDcLFzgkxQrVVOBE15LvGocIm5dYI64TBQQgWHjg7hTz+XnuTinGxSGKMP7bcl9jueMSRZiC5BrAOvfDpuAYtG9eXB7wPZwgpiNFCSNbtmxBR0cHLrrIKoEqFApYt24dvvOd7+Dpp59GLpdDX1+fzTXS3t7Os3AbGxuxadMm2+u2t7fzx7ygrFxiPKHrOP2gazq9YD/TRiLFZZ0SUwf6zE4/6JqOD3ROpw4333wzbr75Zt/HFUXB/fffj/vvv9/3ObW1tXj88cfHY/emHZqmY1/HEBbXl9v6GE43mFukIhVDaSLGhZG2gQxGcgWUeAye+SA76j2UtmJqCravM8fI+XOqcMHcarT2juDN1r5AYcRr6DvD4656UYQZNu96Lk0KXQeKggvmVuOlfV1482ifpzBysMsY6i+sK7PdcX7lWTPx0r4uvLi3E3/9dvsNN11DWXQP56AowFXn1OP/Pb0HLT1p39gtJ1wYEWJoZpsuiR7BEQOACy4L6rwTMCpSMXQOZnl0FoP9nd3574QNU5m4lHdECyWKcIzsM0WixfXlfCCbK2iB54NHEnk6RpgwYp1TJuQB/o6RVIBjJBZRfD/zXlFaQVFfIqJgwPaRnYOU0OsiOgzEP9eUJqTu1GedL2wfc5IDcHFbiVgE1aVx5PP5gBUGTFBj1Y1hDgnAPBe5AvKaJj3UjztcEjyCqwgBgYkVYY4RMRYr7xFx5r3GEmF0XeciR3i8FXOaaLY4tyARxnKMsFgxubg08f1bCHBiubZnrhtRjfdDPETsIYjTnaI+IVdffTW2bduGN998k/93ySWX4LbbbuN/jsfjePbZZ/maPXv2oKWlBatWGXmZq1atwrZt22xlgmvXrkVlZaWrpJAgCII4fWG/x7GfMzWJX+AIgiAIgjj9+PH6w7j+oXX40auHJ3pXJhSxXwQAasoSqCoxBugtPpFQYY4RPnQUJuntAxl0DGYRUYBzZ1Vhudn58abDFeHalpdjxCPLXnSMpLljxC7cXDjPsFE8v7sDXhzsZP0i9piqd55dDwDYeLCHR80w9poxWvNrS3FmfTmiEQUZVUOH0G0RRJdpI6gts8SeUrMIWRQAAOC42Z0yp8ZbGGHxWcwhwvCKFhPhHSN5e0QQYJz3GO8YCTsaYF+7IS4tbqiwDWTzAT+UBzlG2LEOZvPcscDjfiKK73swSBgJHH7HreF3MesA+zCZ7aMVpWU9Jg637YKfXBSRM2YpKIpMRBQLGitTUsIdYDlGGDKDduaiyOV1PtQPE33YeVG5I8NfMHPuC1/DRRi5eCsj7stYqyjBggr7vqbrxr4V22eSzRe4cCO6hrzwdwXJRWllxSgtyegzYPSOEYI43ShKGKmoqMB5551n+6+srAx1dXU477zzUFVVhY997GO499578fzzz2PLli34y7/8S6xatQorV64EAFx33XU499xz8ZGPfARbt27F008/jc9+9rO4++67PV0hBEEQxOmJ7ihfZ2XsBEEQBEEQItuOGTFzO09Mr7i5bL6AXScG+M9EYTDHiBirwxwJh3wK2MOy9cU4F8ZRU2SZXVOCkkQUF5lxUa8d6Q3cV6+7zcOitIZNIcDpdnnPBUbXzvN7OnC8bwRO2PEunGEXRs6YWYY5NSXIFTRb4TsAHO83zt/c2lLEoxFe+B5UXg8YsURHuoc9o7TYfo+oBWiCoMCECy8XD2AJH0NZp2PEOB+VPsIIG/iy8nUxWigeVYqK0trbYQhFZzWU2wayQQXsQYP9kkSUCwatvcY1Y4KRX4wWWwdYsWpAuKAHWC4oewSXbMeI9XkY4Y4RM0pLcIyI5yVuE0bkZluuwnHeBxM8zI45hBFZyh3vG5lBe4LHimnSQ312rlSXYyQ8SivnEFOcsWF+67L5giWmSK4x1sk7YbyitMKEB+6eYWJlkVFaubwmrCm+Y0RG/CKI05kx/4R8+9vfxs0334xbbrkF73jHO9DY2Ijf/OY3/PFoNIonnngC0WgUq1atwoc//GF89KMfDbSREwRBEKcf7HdHBcYfSBchCIIgCMILJgiw/08XvvKnXbjx317CM7u8XRFO2szjr6+0hrLzzTgtv66MsDJqMXKGwYbuzA2xbHYVUvEIeoZzONA55Pk6tq6LWPAAWdxW2qNjBADOrC/HykW10HTgF5uPul6DRWktmllu+7qiKHjn2TMBAC/s6XRs19gWcyjMN0WlsAL223+4Ce/8xgu8R0SM0hIH/l7OhWSISyKj2kUIFqVV4VNy7yxfZ+ec3UEvW76u6zr2M8dIfYVtIKsGLA6LqmJOGHZdWfF6WdI/5Z13jOTdjpEggYO/dwUhR0ZQAexuA2eUls0xIgojIe9rL0bbMSJ2YTRUFSGMjMYxIjg5VE23fc0P3jFSYB0j4eXmzl4SVr4e6uLw6BgJEyvE65/La4IgJdv7YUVpyXag8HORDxeJxHXitsLet4D1Pac3bfbIkGOEIAI5aWHkhRdewEMPPcT/nkql8N3vfhc9PT0YHh7Gb37zG1d3yPz587F69Wqk02l0dnbiG9/4BmKxoupOCIIgiGkOc4iwn+Vk75YkCIIgCGLq0zGQQadkhNGJfuPu8+kmjLAej1f2d0k9v8MRpQUYxdkAcNhPGCkED+i9ytdZpBEbwidiEVxkRlttPNTj+TqqT/a/1wDZHqXFOkbcjoIPrZgPwBBG8g4XAzsXTR5D4yvPMuK01u21CyNOsYIJI/s7vMUexpHuYei6dV7E0m2xj0KM7srybQUXjo84IriGTMeIc8DN4I4R1lmRtwbtiqIgEZOL0hrOFTBounXm1pYgGlHA0oJyUo4R72GsMxaLnRM/54yxxuxM8HKMyERpeURwhQkPiqLw56RVFknkFkYSNpHEOmZpYcQRpSXrJohGRceIfPJKMhax96KEOFOMfWHuD10Y6su6JOSL1J2OkWJFjpzg/AgTU6IRhT9HjMUKK5W3OkaENUU4PwD5KK2k0D/DhRsJIavJdLqxfz/DCuUJ4nSHPiEEQRDE5IQ5RqhjhCAIgiBOKzJqATf820tofvglDDjKp71g3Rpt/dNLGDlh9lC81don9XyvKK15tazw2h03BVh3L/uWrzuGlYAlXIhD/0sX1AIANvkII+J6cbAsRmnVm3/OCCLMsI9jBACuX9qA2rIE2gYyHu4P4zVSHgP3pU2VAKyeD+caNmi9bGEdAODnm1rQn/Z/H4o9HvGowiO4AGMAm+TRNtaAnsU7seG9kxKPXg3A6hzx7xgxXo9dI2cZOneMhERpiceUjEWhKAqPJ2IDYc91IUKbMxbLzxFkWyOcC3ajlEwkVsIxnDfWyZVsA5YgMGKKN2yQ7Ve+LootdbIdIw5HlmzHiBgV1VBElJaiKDZRTWbQLnZ/yHSFAG6Rg/0/SLBwiimyjhFRvJUVKwC/qKrio7TCY8Ucgo8mty1Px4iE+4N9z2dQxwhBBEPCCEEQBDEp0RwdIzpIGSEIgiCI04G+tIqe4Rw6B7P4yfojgc8dzKi8kHogk3fdYT9VUQsa2geNwf3OEwMuR4QXLEqrodItNrBicCdhES0Jftd9sDCyYqEljHi5fFWbeGBtqywZw5n15agpjeOCudXmtgTHiHltvTookrEorl3SAAB4y3TXMFjsktcAl71WrqDZzqvTMXLTslk4u6ECA5k8/v3F/a7XsbZlrPvRX16Kn9+5CtWl9qF4acItcuQK/vsHWAJCxiGMDHJhxC9Kyx7BxTtkYnZhJMwxwtZFIwqPleLOgYAorbBy85K4/biYMBLoGDEf03Rh0C7h/EjGrSG27P6JMIcIL7GOhERpid05JxulVUTUVzHCCGDvGSlGGMkXdEHgCOtoYbFYRThGfASEsG1Zhega346MGCAKD3lJd4q4LX4uZKO0nD0ykk6TbL4g/b4AgLk1dmGEOkYIIhj6hBAEQRCTEvYrF/uHihwjBEEQBHF6IHYJ/NdLB20RRE6c8Vkdg9PDNdI+kOH9ahlVw4HO4AJwwIqPqhcGpSzSx08YyfIhXVj5uiCMMDeG4Ha4cF4NYhEFJ/ozvFhbhA0RxUE74w/3XI4X/uldqDUFhayHY6TUx1HAnBPiewawBs0pD0eGKOhkPIbm7K7waETBp288GwDwo1cO46ntJ1znsaDp/C76C+ZU42KziF6E7ftIEY6RlE+UFusYcZZoW+ucjhG7gFCsMGIrF/dwDzkJG+A6o7SGzc92WVD5uni9mODDnBUBUVBeMXBZCUGFwc4V21d2/EmbY8RbGJlRUZxjhJ1v67zLlZsDQGMRHSMAUJ60RDWZ88DEAlFIDIvgSjjK12WcHM5zUTDXRMOitKKW0KlKCjeAI6pKstvFS6wI6/DgAowjIkzWMSJGhMlGaYnfYsMcNwRxukPCCEEQBDEpcTpGNOoYIQiCIIjTArFwujet4vGNLb7PbevPOv4+PYSRE47jCIvT0jSdi0LiHeQsqqp7OOfpOgkrsbbiiKwBfSbndoyUJKI4f04VAO84rVyAAFOaiKGqNO4qDgeCO0YAsUfCfmxBHR7JWIRHtdrECuYyEc7Fu86ux2ULapHNa/jbn76OVQ8+azs+MabJXwzwiNKS7RhxOEaYO6rSRxgRo34At4DABtZ5LXhYyh0tHu4I1UcY0TQ9dIDrjNIaCRG+2GsxMY0JPnKOEfd7t5g779l7Ne2M0hI7RoTtJwSxoPiOEbuQFdoxIgy7G4t0jFTYHCMyHSOWY4RfX0nHSK6gQ9fF94VE+ToTUyS3xYUH1Yr6kjmuhCByFB2lpWpSLhhxX3J5zTwXcoKK+FmW7cYBjOOaVWXF+ZFjhCCCoU8IQRAEMSlhDhH+cz/pIgRBEARxWuC8+/9Hrx72fS4rXme0Sxa2T3aO99mPa7sjKspJTzrHh4/1Qm9HbVkCEQXQdeM5Irquh0ZpOQftgDWcFu/kB4BLzTitLS29rteRuSOb3YkvujjCOihSfP/s7xlnX4iIoiiuSCfAHaXFnvvIhy7ErZfORV1ZAmpBt4lU4nb9ejW4Y0QVy9fdwoNIScLuVmAMSnaMZH0EBFnHiNf5cw6unahauEhUErcfF3OMeEWl2dfZBZUwQQ/wdjsVM2Bm5yrtjNISXD5ewhFQhDDidIxID9utx+uLKF8HgIqiO0Ys94fsUJ+5a8ReEiA4dsp5Ltg6p8PMd53oGCmiY6SYKC0xfktWZEsK/U15CfHQuS3R0SIrcsypsYQR6hghiGBIGCEIgiAmJw5hhBwjBEEQBHF6wBwjM8wC49beER4h5MQVpTUwPRwjrBicDYydHRpO+kzRozIVsw3PohEFtWXGeewatAsjBU3ncV3JYsrX827HCABeOt7nEGDE9UFDRHYnfsbWMcIcBfKOkXxB48XNviXgHo4Mv5ilhsoUvnrL+bhuaYNr/9iaaETxHcYyl4ToGPESYbz2z90xYnwOQjtG8t4OBDawHlWUliMeyW+Nc52IU+Bg17cs6e8YAdwRXDKDYnGIzXpvZN6HjBh3jDiitGJilJYi/Nl6Tdny9aRDDOD9EyH7xwrUGyqTvq4j37WiY0TKOWOJHLLCg9ca4+tB5evMzaRD03SrfD3UWWE5g3jHiER8lKfIIRmllRM7RiSFG7ZOOkqLR8EVpKLjRMQCdplYMYI4nQn+14cgCIIgJggepcX/PnH7QhAEQRDEqYPdTW/cda2gayiLg53DvJxbxBk5NV2itJhj5J1nz8TqbW3YedwoYPcbSDIxyavEekZ5El1DOXQ6+jFEscPXMSKUDTu35ezHYO6NjOoenLPCbqmybGF9mKOADYUzgnNDPC6/obFXh0eYC4GtSXt0hQQdV2nCva1siDDi1zHCorTKfYQE5zVw3tXOHSP+NSHmOrewxN57OZ/ydVVQW/yGvilHEb1M+brxuF00CxOWjMes11QLOqIR8GG7jDDCrmmadYywKC3hfS8eZ0NlCpctqEV9EWJFwiE8WgP64AH4ghll+NL7zsOiGWVS2xER3ztSHSMRJnLoXHgIW5cQHCMy7wtxDeDsC5F3cch0mTBEkcMqbZeM0rJ1jMhFabFtWZ9JuaL3XEFDVGFReHIix1xBGJGJFSOI0xmSDgmCIIhJCfsRmmVAk2GEIAiCIE4PrGLqKBbNNAZ/h7q8y8eZY4Q9b7pEabGIsFVnzEB5MoZsXsPv3jzOB7tORnzirQCrZ6TLcW7EO/xlytfZXfdsOJ1yDH/ZIM85zAesDoWgO9TZtpjIoeu6FaXlJwR4OEbEP4f1ftgcI4XgYXtpwu0yYcflV6IOBLtTfDtGPLYFWFFafsKIJWR5R2nxjhFZx4hHVFRe81ZVcoJ7xi/+yHku0hLl64D1XmPrchJDafE6ioNsY518t8aIuY+s68LmGBG2EY0o+OXfrsJ3PnRR6GszrA6f4oq5AeAjK+fj8jNnSG+LUV5kxwgb4Oc1wSURWohu9WqI5z1I5BCPOSe4vsIcD6LAoRbkXCaAXVCx3k9yYkVWEFPCRLZYNMITEHIF+SJ17hhRNan3u4jNMULCCEEEQsIIQRAEMSmh8nWCIAiCOD1hg/FkLMLviD7YOeT5XOYYWT6nGoA7WmuqwqK05lSX4OL5NQCAf/rVVrzj68/ju8/vR7fD/cHFCg9hhPUddDkdI+YwNqL43ynNhnO6bjkCuAjjGGY7Y5zs2wofBqYc8VHZvDUcHY1jJBY0oE+4o6q4+yOsEF0Qfrh7JmA4ejJRWiOCyKPrOhdU/BwWSYdjxNlZIdsx4lW+ngiJ0pKJI+IRYTmnYyQ4zMR5vWQ6RsT9yOY1m+upmCit4SwT9dyOEdk7+H330dGDItsxcjIU2zHChAnRWSHbgZITXCbxqAJF8R/Si+dSLULk8HJ+yDlGonydrCCV9BBTiontskVwhWwrJThGZPtMGHNrqXydIGShTwhBEAQxKWE6SIT/nYQRgiAIgjgdYAPqlOAYORDiGGExW9NGGDEdI03VJfh/Hzgfd75jEapL4zjWN4L/9/QeXPXNF9GftnpX2LDeWxgx+g46HY6RoIJyhvOue0C4Po51lrDhHpznJIbmzrJsUYAo9StfD3CMBB2XZ/l6iGOkhJeoyzs/jH33iOASxL/A/fOI3wpax86HU0BgzgbL9eG7u/Z1to6R4CitLF/jPyh2um6kHSNclGICQvj7KRJRbI4MUdAppnx9hEdpeThGTvJufGfheLEl26OhvOjydfae0eXL11nHSF6MxAreViSicJHBcIycTJRWMY6RgrSgwqO0VPkoLfE5osgRto+JqBUtqArikgxza8QoLRr7EkQQ9AkhCIIgJh2iCMJ+FiZZhCAIgiBOD8T+hUUzygEAhzrdwkg2X0DXkFH0ff6cKgCGMDJZbqbQdR0f/9kW/O1PtrhKtINI5/LoM0WPWdUp1Fek8JnmJdhw39X4xgcuQFkiiv4RFS09ab4mk2dikvtXfB6l5XCMyNzh7ywOBvzdKUwoyXocq0yptNMxwvpFUvGIr/PDyvy3ht483kpiWzaRQ3W7JERKPDpGZJwLTNTxKm33i+BydnGIa4Dw7pSMo6ScXWPZ8nWvInqxUNsL6652f5HDed6lO0bi3o6RsPJwW1ySINwEORcYcV6+bkZpcWHEfU5GS0IYmAOQ7p84GcpTcWv7UuXrZpRWQYOqFecYUYsQAsT9UfO6dO8HExBsUVoSheNeReqhUVpiYbvke1BcN5Ir8Jv/QoveBceIl1AZxMyKJN+mjKOFIE5nSBghCIIgJh1ifDZFaREEQRDE6QUbfiZjEVvHiObo1+gYMAb9iVgE5zRWmms1DJg9DBNNz3AOq7e14akdbfjs77ZLCzYsRqs8GUOlMMRMxaP484vnoKEqBcASDgDrnHl1jFhRWjnb13MSg2xFURBTjP1mw3IWW+UURrziqZzbSkpFaRnPZUNzP7cIIPSSCNu04q38j6vE4UCw7aOvY8S9rTDnByCWtlvXKxuyj969JMafFcV/gMu2lc17D9pZHFZolJZXx0gsWBix+kz8B7EljiL6YdYhExKl5eyEkRH1AHGQXZBew2BDaPY+tMrXrWsmG23kh8sxUuQAfDTYHSPyXSu5gs73L1SsiFmxa3lJMcVYx7ZV4OvCBvuigJAfhQgj9oWEOkaEDh+2fzLvp4TjvSSzLbamoOn8fS/7flMUhRewh10rgjjdoU8IQRAEMenwcoz4dI0SBEEQBDHNyHL3QxRza0sRiygYUQtoH7THZLHYrMbKFEoSUVSVxPnXBzIqJhrxDv//3dKKH68/IrXuBI/RSnk+zobI9q6L0XeMBA2yAYDN4rgwIkSdiVgdI+7BOb9rPOBOeGeU1nDWEBL8+kUAIBl3O0ZkIsK8ys3D3B8lceO8pz3irYKEEa8oLUuUKiJKS+gz8XM8WEKRZj+mKLt7XDJKy2P/pDtGiogwY8XmpcnROUaCzrv4eE5wjMgOl9m5GuHCiNsxMlYdI2zfcpKF3idDRarIjhHBMSIbVSWKKTkupsiLMGK/UHjRu+VUk43tAkbbMWJ9vymmY4SJiux7mtS2BDeZl4MrDFbAHifHCEEEQsIIQRAEMemwOUbM/5NhhCAIgiBOD8S78OPRCB/wHHTEabHi9cZKQ0BoqDQEgL/+79dwwRfXYNOhnlO1y57kHNPnrz212+Ya8OOE6RiZVVXi+Tgb6ns5RryEERal5ewYkR0UW8IIG2azbdnXpWL+jhGZwR53OzhiloLcBF6OEZmhuVfHSJig4nQ7iGtkOkZs69Rgp4mncFMI35bzHOYcA1/ZKC2v9wYv4fZZLBP343TCsGLzIFcQ4D73stFCoisgK7nGWmsKAg7HgziwPllnB7v+qiNKazJ1jLDPrBGLJeessLpdCsU5Rvi2dKimCOMXo8fXcJeJfGE7YP/eYe2jZJSWqkE1u3ZkorTYcQ3ZhBE5wcf+NXmR421n1EFRgHObKqXXEMTpCAkjBEEQxKRDjM1iN8RNlrxwgiAIgiDGF2cUEovTOtg5ZHsec4ywaKkGUyBp6UlD14Hndneckv31gw2la0rjmFdbinSugGd3he/TsT6reN2LMg8HAouECnKM9KRzPGoGkBdG4or9+X5RWmLckfPnNpmBLy9SzzuitALcBM7oKOPPpujg098hrhvx6AvxEx6cxeHiGhmXRDGl7Wz/xMJr0THiBy9fN8+Bc3jLBqt5PXjAqnpEn7HXyPtFaUk4RpzdKez/YeXr7Dyx45J1Vni5AmTdGM73Ko/SspWvn2zHiLV/4v9P1okSRLngGJHZTow7hXRp4caKXZNfA1jXJqNaXRxh7g/RaWY5WuR7P8Tvo2GxU2I0G9uWVJQW35YhjMQi4T03sWgEF8+vsX2tmPfbX799Ed761+tw9ZIG6TUEcTpCwghBEAQxqYnyKC0SRgiCIAjidCCbtzsSFs4whZEuu2OE3W3OomF4dIj5w8O2Y33jvq9BiD0S775gFgDgj1uPh67rGLQ7YZywu+vTwt3Hmby3iwMAassSiCiG+7YnbfWMyAyyAYC9JBvmZ32itFisla5br823JSEgJB2OEzZEDIzSEgaVjGLcKV4ih6+Lw0NMkekYKXEIWQVNt/oJfNaJ15Hto5TgY55DtaCjoOm8iJ6Xr/PeAt+XAODTMRISpVWUYyRnj0sLLV9P2NfJinpiJ8Roo7Scf7c5Rk6yJF10OwCnxjFSMcqOEbFIPSw+KuGxRqr3I2qPLwMkorSEODKrfF2+Y0R0cYQXoo8ySivKorTssWxhfO2WZfbotiIj1iqEjiqCILwhYYQgCIKYdHg5RqhjhCAIgiBOD5x30y+aWQ7AHaWVcQyl/+6qxfjsTUvwX7dfCgDY1to/oY5TPpSORfDuC5oAAC/s6UT/SHD/CY+Q8nFK8M4KVXSM+JevRyMKasvccVqyd6fzKC2VdYz4RGkJf2euH4ZM8TV3OxQRsyQWtrNrHeb8AILLzcPirTxL1D3OO8MZpSVGrPltKxGN8J491jMiE9tl7yUo8EExG6hyYUQySksc4IoxR144t+WFGGFW0HR+TGHl687r5YwI88Pqn7AG2bJujIRD9GAuCPH8j1XHSDavQRMEMxkRYbSIjhGZGCh2jvMFnZeUh4qpgjCS52KFxLbMc25zcUhGaYkl6jKF4+yzJ/Z+hIkwojulqCgtx7Zkr++Z9RX49A3nAAAi0MdVMCOI0xX6VBEEQRCTDnGGEYHu+hpBEARBENMX5+B9QZ3hGDnak/Z5njGobKxK4a/fvgirFtUhEY1gIJNHi2PNyZLO5fHqgS5oEndsiJ0V5zRW4qyGcuQKGtbsaAtcx47Lb9helmSOEfdQ3ytKCwBmlCcAAF1DbsdI2LCNzYfZNtj+OUUYcZifdfSMFOMYsaK0jCFiUMySKASw4+ECQoCzoiRhF2Fk9rFEEGEYMu4Uq7Q9b66xtuknjCiK4hIDZIrexZinjKoJAodi/t8ccoe8fbMebiJeqO3T3O50p3ghdqcMZayBdFlSThhh10st0jGSKxQfpeUc5LMYstQYdozY3A6adV5lhu2jpSQe5b0dMvsvOoVkHSNsja3YvIguDlF8DI/Sst7z7LMi5U7xcIyEHZfVMVIoyt3DRZicJZbL8n/etgD3vHMR3rdAC+1bIQiieEgYIQiCICYdomOE/fxHHSMEQRAEcXrgHABXlhhDU3GAJT4v5biDPhGLYMmsCgDAW639Y7pvjzy3Hx/6z4342tO7Q5/rjGZ69/mGa+SPb50IXMcG76lQ50LBtcbLMQJYBexdXo6RIqK0dF3nw0enCKMois3BIZKTKG1mA+e8piNf0CzHSMDQXBQJ2DaZ8BAsVhRfvs6cH7mCxns2chIiDFtn7Z9VKh10Z7uzgD2ssB0AIhGFH3dGLQguiah5bMYP1qOL0rJcAF6wO+gDO0bM817QdHQNG+/Fkng09D3odBPxIvrQTghWRq8V3d/hfK/yKC3RMXKSAgYvKS9oNsFpPDtGFEXhBexSHSPmcauaLl2+HhfcRXxNEfFWopNLVqwALEeGjDuFXUf270oiGgnt/bC5U3jHSDFRWvL7x4hEFPzD1Wfiyln0uzBBjAckjBAEQRCTDvEmTCtKi34YJAiCIIjTAWc8EYtSEnPnAf9IJwBYNqcKALD9mLcwous6HnpmL/5z3cGi9m2bKbT84KVD2Ns+GPhc53D5xmWNAIANB7ttrgEnTieMkzKPSCd2brzOBQDMNAvYO4fcwkjQoB0AYhErokot6PznNKcgJe5zJl+8Y0Q83kxeQ1oNd4wYw0zjz+ycWmJFeGk7O29ijFFYITrg0fsRcFyljuslO6B37qNMlBZgiTQZtcCdFSyiSNYx4rWP7DX8hJGsRJeEKNy19xtdOkz4DMLZCWO5EOS6LrL5Aj9/si4P52vzKK1xcIzoul0MGO/IJCaMSDlGWJF6EeXm7PNgc5kUISAw0TeiGMJAEOJ7dDgnH1XF3oss2lBm/9hnL1fQ+PtJJraL7SPfv5PspiEIYuwgYYQgCIKYfAi/rLGfUUkWIQiCIIjTA2f5OhuMD+fyNgepXwk4ACybbQgjfo6Rw91pPPTMPnxl9S6XEyWIo71GNFde0/H5328PdLQ6Y5bOmFmOGeUJ5PJaoJMlkw92f5Sw8nXRMcKLuX2itDwcI7LRQpZjpGATPLxcEszlknFEacnEzogDzqxa4FFhJQH9E4qiCPE2dkeGbKQTYC+L9zsfyZgVFVaMWMHen+mcQ0wJcJkA7l4NmYgwcXtiQbSrfF1WGBEdI8w54Ncxwtf4n4t4VOFxQG0DhjBSVRJeEF2S8BaJmBPGD6t8XZPqQLHtq0+UlnitT7YLxDbUz1piwHhHJlWkmDAiIVZExCgt1uERFqVlub+8+mr8YJ9l9lmRcVZEIgo/DvY9Q0bkaKxKAQBae0bk9y8uCFk5+SJ1d8cIjWIJYrJAn0aCIAhi0mErX+dfm5h9IQiCIAji1MIdI+YAkg1FNd0aiAIhjpHZ1QCA7cf7PftAth7t439u6ZbrISloOo71GkO0WETBhoM9eHpHu+/zncNlRVFw2cJaAMCmQz2+67In4RjxE1PqyoyOkZ5hq2NE9g56Xr6e1/g5VxRvl4TT5cCQcYxEIgp/PJPX+N3VQY4RcZtux0h4lNYIE1OE6K9iej9kjos5RrJ5DQVN55FaYU6dEh7BJe9OER/PCD0IrvL1kCgttk7cVliUVk7CMSKew6KEEe5EskeYhQ32LceIVtSA3ut5VpSW9fWxKl8HTu3Q/LKFtSiJR3FOY2Xoc9n+FONoEftE0qq8gMC3ZX72ZQUipyNDRlCZXVMCQO59yxCvvRXBVbwTZjyj0giCKA76NBIEQRCTDnF8wX4epigtgiAIgjg9cA6ASwXHgJdLwktAWNxQjkQsgsFMHkc8CtjfFIURyYL2E/0jyGs6EtEIPvb2hQCAn2w47Pv8nMdw+bIF4cJIkOADWAPz4ax4LvzdM4BVbj0siClON4EfvHxd1ZDJWb0uXnn8SccAm8EH9CFDRNFxkpboGAFEIcDeMRIkIPBBO3MgFCzBJ6jTwOnWkYvSsvY/oxakI7Eskcku3siuM8rX7Z0QCVnHiFf5ekiUlpqXE3zY/nUMGO4lGWEk5bhesm4n0TGSkxSWGE7XAY/S8hCLRks0Yjlo+KB9HIvXGV98z1K88flrMa+uNPS57DyI33vDRATx8XRWPt4q4XSMSDpy3I6M8HWzq0tsf5dyfkTdwkgxjpFi1hAEcWqgTyNBEAQx6fAqX6csLYIgCII4Pcg4IrKiEUWIWMm7nuc1KI5HIzi7wShg3+fRBbK1tY//+aikMHLUjFyZXVOCj6ycD0UBXtnfjcNdw/jphiP4xM/fsBUo5zwG4JeajpEtR3pxtCeNu3/2Otbt7bRtx3n8TsrYcF64gzsT4hgp9ShsL7Z8PVfQBDHKe42zJNu5rdBuAub+UOUdI7xgO89KyiX6TFzF5pZIFFTAXJKw3z2f/f/ZO+84ucqy/V9netneszWbtpveSTaBEFJJAlIiTSAIKIrBQhT94YsKKKKo8KLmBQsSFJEiRYFAEhJISE82vdfNZrO9zu7MTj+/P855njkzO+VM2JbN/f18lN2Zc+Y8p2b2vp7rvlSIAcpj5XD7VB/3iK201AaVe31dW2nJ4sbFZIwYuGMk/MpuFe3SgMAxrGUZIyb1wkg8Th1AkQlxEa20QgVDVmxXtm/Td4OIwd0OihDwnkYQhIjPl1AM3MURh2NEE3zNA+qyOPQh24oVvM7H2EVQib0tk16LTLnFoHLb0VCe+w6nV/W2jCHCjVrBhyCInid2yhVBEARB9DJMGBEEZSstUkYIgiAI4nIg3Cx8i0ELl9cf7BiJ4axgM9EdYdo6Ha628d/PNdtVjYsJKPmpZuSnWnD1iEx8drwB331jH2/NdfsVhZg+JJ1vBwguxJbmJCHRpEO704uv/HU7zjd3wu72YtaIzMB+xRAfuMihyEZRvc5FCCO8lZbHFzMYnjsxQoURlTP8lUV9Vhy1xGylJbsCZHEj4NSJkvuhC58xEkt0sOilEgrPumDiXJQiM2sf1emR9kltS6yuwoi6bBK2by6PXxG+HtJKSxRU5eMoi8XsZ3eMVlqxCvuhrbSS4milFXq+Ym2LXW8uhUikNheki2NEsS2jTgOX198tIoZBp0Gnx9dv3QSs8O/wBJ43sQQLjUaATiPA6xe5mK1XIXJcjMABBJ5HNjlIXe0xzEsxo0HOXVIrVpj00r9FrXxbalppScswl19/O8cEcTlDdyNBEATR/5D/TtMoZuyRMEIQBEFcKjz++OMQBCHof6Wlpfx9p9OJ5cuXIz09HQkJCVi6dCnq6oKzKiorK7FkyRJYLBZkZWXhkUcegderPiT8UiacE8QSLnDc4+uynJJI7oUTde1Bzo5K2QkSCxa8XpgmtZ/5yhWFAILzStgsYiB88VarETBVbqfFHCjKdZTjjbRfrLVUeJEokmOk6zqqw9dZKy2vn5+bSM4Uk8LxoURN+DoQXNS3c2EkVist1r4rRKyI1kqL5Xe4Qx0IMUSYkBBwLqjE2C8uTHm8qp0foWNU24Ir0D5K6RiRTqLy+HujBPiFDV9njhFvBGEkRISJBLt26i4ifJ1d5x7VjhENH5tL5TqM0GtV+Tu7zg26Lz7zP9AGSi6ad8NndiesqB8IGxeiuqoC6wWLHPG0qmJuOLWOkewkKUidiW1qxa/81EA7LbUiF2vBxQQVNesFBJ/ecwURBKEOuhsJgiCIfgf7O01AoJUW6SIEQRDEpcTo0aNRU1PD/7d582b+3sMPP4z3338fb731FjZu3Ijq6mrcfPPN/H2fz4clS5bA7XZj69ateOWVV7Bq1Sr89Kc/7Ytd6XVcYdwPljCB44GWU5HaOgXPMmewfJEEWWCobFLnGGFZJAWyMDKnNAs5ckGOoczwYCHqoYVYFsDO6FA4P0RRjNlKK9yxYEXLWOt0KjNGwrRLCke48PVIDgml40OJ6tZHivXZ/lmN8TlG4skYibdNlUXPBI74XBxmhaCi9liEXr9qBB8gIC6FC19XnutIWSFAhIwRbYyMEZUuDp4xIheW1ThGQkVOtQ6kQJs1v2J88bWQYiiL9EXpFmgEIDckp+JiCG2l1d/cBKECh5pgc+Di3B9sHfacUuviYGI1+xtS7RjzUwMZK2q3NSwrIeh3VfulDc6FUivcEATR8/SvJy5BEARBABARrpVW342HIAiCIOJFp9MhJyeH/y8jIwMA0NbWhpdeegnPPvss5syZg8mTJ+Pll1/G1q1bsX37dgDA2rVrceTIEbz66quYMGECFi1ahJ///OdYuXIl3G53X+5WrxBuZjx3SSgCx11RwteVrztD3AvM4bFgdDYAoKqlEz4VXzRYKy1WhNNpNfjtLePx1RmDeai6sg+/K0Lx9trRObAatBidmyTtk3IdxWz8eNpisbBzc4S2UzywXdlKS234ukaUx+bjRfqIYpQueGY/g+c7qHaM+HgRUa1jhB07NW2xmDDi9Yvw+PyKPJg4XRwqxQqLQhhR6/yI2EorrvD1YKeOsvgbKSsEiOEYiZQxojY7RT4W7J5T5RiR98njk85XuFZf4Qi00lIcC5WOjNBCuXK//nrPVKz//mwMSv7iwgi7dtp7MWMkHlgOh8MdX1FfHyL4GNSEr1+kCMOeyQy1IkeewjGiVpAKFUbUHA8m7qrN4SEIovegjBGCIAii38EdIwqbdrQ+yARBEATR3zh58iRyc3NhMplQVlaGp59+GoWFhSgvL4fH48G8efP4sqWlpSgsLMS2bdswffp0bNu2DWPHjkV2djZfZuHChXjwwQdx+PBhTJw4Mew2XS4XXC4X/91mk3I0PB4PPB5PD+1pZNg249m25JiQimIa+Pi6ZrmY2d7p4q8xwUMn+MNuw8j6ujvdQe/vO98CAJhXkon391fD4xNxvqmdt0ipb3chzaLvMhOYOUYGJRr4500bnIxpg5Px8JsHAAC2zsC2nLy3fvAxyEs2YPePr8GpBjuuX7kNdpeXv9/RGVhOi/D7pReYUOGH0yUJZazoG2kdgyxuONzeLuPTasSI58jj8fDwdafbC7tT2p5RK4Qfm3zMO5zB15xTzifQRBgfHyc/Zx4+a9wQZXzB60jHnq2nFSJfe1ohIEC1O1x8v/QR9othYtehvK3AtRp9jCa5+G3rdMEhnzNDjG0xo4xdPpZ8Fn3M4yGv53LD7WXjk4678vu0w+mGJ4IowdxOyutJA1l48vrCbp+vI6g7FowEffTjAAA6BJ8v5v7QiNGvJ518rzjdXrg8Wvk1dc8kDYL/9hDEwH5bdIAl2aDqc2LB7pn2Tum60GliH49wXMzzVg2FKUZYjVouVOpiXLeMQK6GfO+rOO4a+Xyx/KRo97CSvGRj0O+xrgvGoMTA9a/2uBenB4thsZ5pADClMDnod7X7xeipc0v0HXROe5Z4jisJIwRBEES/g/3RphEk1wgAkCxCEARBXCpMmzYNq1atQklJCWpqavDEE0/gqquuwqFDh1BbWwuDwYCUlJSgdbKzs1FbWwsAqK2tDRJF2PvsvUg8/fTTeOKJJ7q8vnbtWlgsljBr9A7r1q1TvazPD/hF6c/Uzz/bAIv8F2tHqwaABjvK90FTtRcA0OnWAhCwddNGHDF2/azq89I6R06cwmrXCQDS5ItT9dJ69cd3I1WvRb1PwFsffYYRySK21gl484wGUzJE3DU8UIx1+4DGDmkwR3dvRuX+4G011Unb2nfoCFa3HgYAnDojvVZx5hRWrz7ZZXxNTgDQob3ThdWrVwMA2tzSaxqIWLfm47DHSNKDpLH854OP5O9K0u+bNnyCcJ2n2Oc6XF58+OFqCAJQIR+fU8ePYbXtaNhtAYBO/jJWcf4CTO1VALSwtTTxMSuprZKP+bGTWN15nL/e0CQd8wP79kKsjPytrq1FWn/Xnn1wuDWQzu9nOGSIuAqaG6V19uw/iIT6A6iulX4/eugAVtftD7uOKAICtBAh4MOP16LSLgDQorOjPex+MRrZeT54GBnNh9DUIu3Xvj270Xk68n452qX1tu0sh80DAFo01ddG3VZllTSmk2cqsHr1GVRUSp9x+sQxrG6PfL7qaqTlDh05hrZ26Rju3rEdjUek97WCFj5RwIbPNiI1zH0DAK3t0n6V79yBlmPSawebpfHUNzaHHfc5+dyfPHYUq9uORBxfU720HOPw/t1wnY24OICu50sSOQR8vvFTJEe5No7VS2OuqqlFRxMAaFBx+iR/HkTjQJO0LuPzjRtxxBR5+YvF0SHty7FTZwFo0GFri3pdxCKe561a8kwanHBJ58zncasan8cp7deFukYAAiorzmL16tNR1zl7QTrmze12AAIc9g5V26pqB5TlzYMH9kNfvS/merWOwHptEZ5p0dYBgN2KeyQSogikGLRodUvP0vq6GqxefSHmtkLpiXNL9C10TnsGh8OhelkSRgiCIIh+B5vMphEE/mcTha8TBEEQlwqLFi3iP48bNw7Tpk1DUVER3nzzTZjNX7z1SiQeffRRrFixgv9us9lQUFCABQsWICkpqce2GwmPx4N169Zh/vz50Otjt8sB5LyNHRsAANctWsjbAq3tOIBDLbUYWjoKi8uK4POL8G2TCgqLFs5DqqVrdfT4J6fwac0Z5BYUYfHikQCkVkbi9vUAgBsXL8Cn7QdQf7IRucPHwqXV4M3thyAC6NAlYfHiMv5ZJ+s7gJ1bkWjS4ctfmt8lfHjfR8exrf4c8gcPxeIFIwAAm949BNRVY8zIUiyeVdxlfM12N57c+xncfgELr10ErUbAuWYHUL4ZZoMOixcvDHuMRFHEj3Z9Ap9fxMzZcyRny87PAABfWiJ9TijtTi9+Wr4BIgTMW7AQRr0WH7TuA5rqMWHcGCyeWhB2Wx6PB9te/QQAkJaZjRHD0oHTx1CYNwiLF4/vsvyRtSexsfYs8ooGY/HiUv76i2e3AR3tmDFtKq4anhF2WwDwsW0/DrfUIX9oKcQzkpj0pcULorbT+tRxEPuaajC0pBSLryzGP6p3Am2tuGLKJFw7Ojviev+zZz3sbh9mzJqNlJp24Nh+ZGWkYvHiKyKus+uDo9jZcB6FQ4Zj8dxhePb4ZqDTgVkzpmNyUWrE9d5t2oNTtkaUjB6HFocbqDiJosJ8LF48JuI6dVvP4cPzx5GRk4vFi8fx8zVx3Fgsnpofcb09q49ha10lCouHobytGnC5cPVVV/LWbY+Wr4fD7cP0GVdiaHb458KvjmwCnE5cfdVMjM2TZrtbTzTgr8f3IiEpGYsXT++yzvste4GmBkyIMb7t/z2CXQ1V/PeFs69CSU5ixOUZj5Z/gk6PH9Ovuhpi+RYAwLULwt/7DN+BGvzr9EEkp6ZLAd31NRg9SrpOYmE63oC/ndjLf18wbw4P+e5O/n5hJ87bW5GWlQvU1yIrIw2LF0+N+3Mu5nmrlmOGkzixUVKvEi1mLF48K+Y6vz+1BY0NdpisiUBHB0qGD8PiecOirlO39RzerzwOUaMH4EVqSvBzOBJNdjeeO/QZ/33q5ElYGOXeZzjcXjy9X/r3ZlBWFhYvnhRzHbfXj2cOruet4K6aOQMTClJirrfDdwT/2iVd94Nj3Puh9OS5JfoGOqc9C3NMq4GEEYIgCKLfwUQQgf8fZYwQBEEQly4pKSkYMWIETp06hfnz58PtdqO1tTXINVJXV4ecnBwAQE5ODnbu3Bn0GXV1dfy9SBiNRhiNXaeA6/X6Pv3DO57t+1wBl4bVZIRGLvInmqT1XV4Rer0ebkVgeaLZBH2YnBGrvI7bJ/Ltt7sDXygSLSYUZViBk43474Fa7Kpo5pMznF5/0JhrbFKbm4JUCwyGroVYNj6nN7AtFrNhMujC7n+yVRGELQow6fXwidJrJr026jGz6LVod3nhETVg00gMWg1MxvBF4mRt4E9/t6hBgl4Pr/zlymSIfn5Y5yO3TwSLa7FE2KfAMUfQ+3xbxujbMssCiE1u2yMI0vnVhBF7+DpGvbwNAXq9nmdgWGJuSwu72wevqIFPlD7fpA+/X3z/jMHXFMsMsJqM0ddTXItev8D3Vc06/JpXuV8WY+Ac8GNhMvB1DFoNHPBBFDQRP4e1qlKuZ5avLa9fDLseuzYiXe98v4zB76UnmVU9H8wGHTo9bjgUHVKk4x65rGWRx+zxA16RfY6655HJELyMJcY5vliM8rPLIT8wjDHu/Vj0xPN+yuB0QBZGDDp14zPo2H7JmTox7i0gcP+zXB29Vt22spN1sMr3MxD7mcZI1uuRbjWgye6GQeVx1+uBonQLzjTYpTEbDarWWzB6EBdG1ByL8Nvu23/Lie6HzmnPEM8xpcQfgiAIot/BihKCIPDwdcoYIQiCIC5VOjo6cPr0aQwaNAiTJ0+GXq/H+vXr+fvHjx9HZWUlysqkmbFlZWU4ePAg6uvr+TLr1q1DUlISRo0a1evj701cigBnZTHcHBI4rgz3jhR8HS58na1n0Gqg1Qg8tHfH2Wb4RWB8vjQ73q4QXoCuweuh8HB4Zbh5jEBvo07D3R2h+xUpUD6wPS0fpzNGIDoAaDUCD492yFkVakLKAYUw4vWj082KnJEC7+Ww65DwdbXbYp/bbJeEKIteG1UUUX4mCydXG25uUoSbxxsczs6X6vUUxe9AiLq6dbqEr0c5z0AgwN7p9cETJqScZT9EC18PF27OfmbnMhQmpqg9howkk7oCFjseNmdAGYm1LeW1ofZcMUJDtdUGescLGw/L8Ohv4esAghwRao8DO/bsfKkJvWfHgl2buhj3PkMQBBQons3xnKt8OYBdbag8AAzLDASwq72eyoam82u4P55jgrhcobuRIAiC6Hdwx4gAhTDSd+MhCIIgiHj4wQ9+gI0bN6KiogJbt27FTTfdBK1WizvuuAPJycm4//77sWLFCnz66acoLy/Hvffei7KyMkyfLrWnWbBgAUaNGoW7774b+/fvx5o1a/DYY49h+fLlYR0hAwlWUA8tGlsNwcKDM4KAoiS0sKz8mRXwlUJHfqoZT900VlrOHVzYr2lzAgByU8K3QrPwgnlAUHHHKBQLgsDXY0KM06Ou+G1RHA821lhiilXeVmdoUT9GkU4vH16X1w+nN7oIw8Uob/DxC1egD7++9H6LLIyYo7TQ6rJNDwsHZ+JNrG0FjofLp+5YdBUr1Ak+FsWxVyvcmPl+xSv4MHHKz/dLWfRl58ATQeAAwl8bOi6ohF9P7fWkvE51msA9EAu2X22dAWEkVuGcCyMeP78fY12DjND96KliNvvcDvkZoHZ8vUl6ghGD06VnpdrxMaGiVbb46DWx1wv97HgEjqL0wLM8nmOYx4UR9esMzw4II2rFG5Ney9sIxiPCEATRs8T1xH3hhRcwbtw4JCUlISkpCWVlZfjoo4/4+06nE8uXL0d6ejoSEhKwdOlSbvlmVFZWYsmSJbBYLMjKysIjjzwCr9cbuimCIAjiMoZpIMrwdcoYIQiCIC4VqqqqcMcdd6CkpAS33nor0tPTsX37dmRmZgIAnnvuOVx33XVYunQpZs2ahZycHLzzzjt8fa1Wiw8++ABarRZlZWW46667sGzZMjz55JN9tUu9BituhxZ/zSHCA3dJRClIs0Kq0l3CRAH2eUMyrQCk7xu/u2U8shIl4cnu9ga5VZkgk2AKX6hnQgWb9Q0oHSORC78JIU4TLtzEKH4rhRjmJAidiR9pjPG6HdjbLq+fH0tzJMeILlikYMQSiRjsWFW1dAIAUiyx3QSRHCNqRQ6nxxcQ5GIKUsHikloXh1mxntrjbjKEiDAedSIMe9/p9YV1ccQSRkRRDOvwYcfT4w3/nVy1Y0Rx7SSb9V3yeiLBBBVbp5dvJ9a67Ly4fX4+vljHj6ELuX56SrBgx4sLIyrH19tMLJQydEKPSySGZyUE/a5GDAi9dnQqxBSGUuRWK1YAQH6qJe5tDVPsWzzXxTeuHoopRalYPHaQ6nUIguhZ4soYyc/Px69+9SsMHz4coijilVdewQ033IC9e/di9OjRePjhh/Hhhx/irbfeQnJyMh566CHcfPPN2LJFCsby+XxYsmQJcnJysHXrVtTU1GDZsmXQ6/X45S9/2SM7SBAEQVx6sEKEJqiVVt+NhyAIgiDi4fXXX4/6vslkwsqVK7Fy5cqIyxQVFWH16tXdPbR+jyuCI8ESoZVWpJZOQNcZ98GfL703LCsR/7N4JLKTTZg2JB3tctsXvygV2NlybLuRBAFrOMeIigI4268O7hjxy+NTV6B3uH28oBdLTGHFebs8RpdqYUSUl/cpxhd+W6wQHeq4ccfpGDlZ3w4AGCoLV9EwcgHML49TnWNE6f5wq3SMKNtv+f0ib/kTy8VhkXMwHB4fvCoL9GZ9BBEmlqCiD7iQ2PdnQxyttLx+MbBeGEHF6w8vqIRrvxUOpYCXZFbfB54dD+YYMaooSBu00jouj1+1o4WhLOQLAnjbu+4mI0ESY2vaOrtstz8xsTAF7+69oOq4A8CI7GBhRI2gMi4vBQatht+P8ThGCtMDzwq14g0AzC7JxGs7KlE2NF31OsMyE/nPaltpAcDkolT8+8EZqpcnCKLniUsYuf7664N+f+qpp/DCCy9g+/btyM/Px0svvYTXXnsNc+bMAQC8/PLLGDlyJLZv347p06dj7dq1OHLkCD755BNkZ2djwoQJ+PnPf44f/ehHePzxx8OG2BEEQRCXH8qgdXKMEARBEMTlQ6TWRF1aaakQEMJljLCMDKXA8fVZQ/jPFkXrJofbpyiEe+X3wxfAw2WMsEJ2tEKsla/nDVonZsaI4niwz1crprBCu0dlayHeSsvj586KeFtpxSs8sO+Cw7MSoywtryOLEuzaCQgIMVpOGZSOEZViikKQUmZtxM7VCAhG7DutWmGkq+CjTgBrdYTP4ojlGPFE2C9WsGcCQ6T14nGMxCWMGIIzRtQ4K9j5VGaMqJ3hHy5fpSdg7gMmVPXX/InrxuVizeFa3DK5QNXyw7OD7101+1WYbsEfvzIR3/rnHnj9YlzOD6VjJB5xacbQDBz42YKYWUZKhmZZodUI8PnFmM9qgiD6Nxf9xPX5fHj99ddht9tRVlaG8vJyeDwezJs3jy9TWlqKwsJCbNu2DQCwbds2jB07FtnZ2XyZhQsXwmaz4fDhw19gNwiCIIiBBNNAyDFCEARBEJcXkcLHQ1tpuVS0nOLuBYVjJJbTRKsReMFa6f4IbcEVSqijBVDnyAhkjMQZvq44Hp0q1zGHuF/Utrfi4es+f8xthRbzGbzoq7INFGNYSDuesOuEBL6rdcKYFddHQLhRd9yVYkq4cXfZliEggLlV5pKYQ1tpqVwvO8kEAKhsdvDXgor8cgh2pBB1pfBhCCMORHKaqM3wMIW00lJLoJWWp8vYIsGOldvrh1vlNchQ7kdPihVdW071T2EkzWrAP782HTdOzFO1fFGaJWxGTSwWjM7B87dPRIpFjyuHZageX3ArrfiOYTyiCCAJ07/58jg8ecPouK5hgiD6H3E5RgDg4MGDKCsrg9PpREJCAt59912MGjUK+/btg8FgQEpKStDy2dnZqK2tBQDU1tYGiSLsffZeJFwuF1wuF//dZrMBADweDzweT6TVegy2zb7YNtF90HkceNA5HTi4FeeQfU31i346twMMumcHHnROexY6rsTlQETHiDG4qM+WiyYGhGul1ckzMqKLFS6vP0jkiNVKKzREHVAnPCSEOEbUt9IKOEbMepXh6/K24g5fZxkjHl9M4Ya97lIcc59fhM+vbjZ86OeqEUZ4ronXL+VjqBUeFK2qVOd+KAPbZWeKRoidaWDhziM/X1Zt+DpvpcVEvRhjzJfDpJvlAHsgeHyGWAKHfCw0QnBLInZsYoWvqxV8gIsTRlgrLSbwRION2eX1w80cXGozRhTHLJ6WTvEyIsRZ0V+FkXjRaTUYkmnFsdp2/rtalowbhMVjc1TnzwBAXooZGkFym/VGO7KbJ+X3+DYIguh54hZGSkpKsG/fPrS1teHf//437rnnHmzcuLEnxsZ5+umn8cQTT3R5fe3atbBYLGHW6B3WrVvXZ9smug86jwMPOqeXPhfsAKCDx+3irbSamlsuy17rlwN0zw486Jz2DA6HI/ZCBHGJExBGQhwj+tBWWtFbOknvRRZGookIFoMOLQ5PkDDC1ovUSiu01RegrlDMBI6OUMeI2vB1l5cLHpFEG0ZoxojaQnZw+Hp0QSpc4L2ykB6r/VHoWIbEkTHi8sTb3krh/lCZ36EUpJTOlFgF3EAbMy8fV6y2Xco8E1EUVbfSykky8TY/4cYXq5VWpKyQQMaICL9f7DLLXq0rKKiVlkl9SYqJmTanHL6uyjGi5WNm165a4SFc+7GeINVqQEaCEY0d0mRgNYLPpcLw7EQujBjiFCviEUUA6XwtGjMIR2tsKEjruzohQRCXFnELIwaDAcOGDQMATJ48Gbt27cLzzz+P2267DW63G62trUGukbq6OuTk5AAAcnJysHPnzqDPq6ur4+9F4tFHH8WKFSv47zabDQUFBViwYAGSkpLi3YUvjMfjwbp16zB//nzo9WSbu1Sh8zjwoHM6cDhcbQMObIfZZIIAqRCYnJKCxYun9fHIiO6E7tmBB53TnoW5pgliIBNJ8OCOERZSriKLI1xbJ5cnuvMDCG5TxYjZSssYEB1EUYQgCKpcCF32y6Ou+G1ROGic7tgiERBwLThCHSOxhBGWMeJVtNKKsE4gY0RxzBU/x5rJrTyfeSnmoMyXSBgVjhFlGyi1IeWdHvWOEaULKZKIF3Y9+brpcPlgFdWNT3mtOT1+1a20dFoNcpJMuNAqhXmHCgiB8PUIzo8ITiela8Lj98OoCd5vtRke5otspWUObaWl4rgr96FdziaJdfwYQe3Heih4nTE8K4ELI/01Y+RiULYJi7e91cWw8s5J/PlLEAShhriFkVD8fj9cLhcmT54MvV6P9evXY+nSpQCA48ePo7KyEmVlZQCAsrIyPPXUU6ivr0dWVhYAaUZhUlISRo0aFXEbRqMRRqOxy+t6vb5P/+ju6+0T3QOdx4EHndNLH61W+udJEAKttACBzusAhe7ZgQed056BjilxORCp2MzFCk9w+Hq0onQ0x0hUYYS1t3Kpb6XFHCOiKO2DSa/lBWY1jhE7c8J41YocgfXY/kUSbQLbCg1flyr0sQrZRsXH1rY55fFFcIzogrchbSd8ZkXY9RX7raaNlnIdl0KsULOtQKsq9aKDMktGrcsEADISpHpGY4cL+mQpAyRm2y7F+yxwXO328lPNXBgJFaO48yNGK63Q7SiPp8cnwhhSTVKbWcOC6IE4W2kZQoQRFQ4Eq0GLZLMebZ0e7jRR6/5QCkFqgt6/CCOyE7DtTJO0rQEkjIzIDtzDPX0MGSSKEAQRD3EJI48++igWLVqEwsJCtLe347XXXsNnn32GNWvWIDk5Gffffz9WrFiBtLQ0JCUl4dvf/jbKysowffp0AMCCBQswatQo3H333XjmmWdQW1uLxx57DMuXLw8rfBAEQRCXJyKkP9Q0gsBbaYmUvk4QBEEQAx6eoxAiDFgM8bfSYoVvr1+Ex+eHXqtR5cjgzoowgkokB4NSMLG7vDDptTycO1qgt7VLxojavJCu4euxnAtc8HFLrZnUFrKNWmBwugUVTQ47itOiAACNhUlEQVTU2iRhJJIIw1tpeX1dnDN6rRCzaKnch9BQ6ljruL3+uNpbhXOMxOMyCVxLsQu+WUlSvaOpw8XFgFjnS6fVQK8V4PGJaHUohZHYTom8VDNwVvo59Pyywnus8PWuTpPA796QdZXZLvG4gpLiEEaYGMidFSoK7YIgYOrgVHxytJ6/pjZjJFzwfE8xXJEzonZ8lwLK/epp1w1BEMTFEJcwUl9fj2XLlqGmpgbJyckYN24c1qxZg/nz5wMAnnvuOWg0GixduhQulwsLFy7E//3f//H1tVotPvjgAzz44IMoKyuD1WrFPffcgyeffLJ794ogCIK4pJFbIgc5RvykixAEQRDEgIeHqkdwjLi9fnh9sbMugOCCtdPjg16rUeUYCW1vBQQcEJEyRjQaAWa9Fp0eHxxuH9Khbga9lbdYCglfj5kxEhA52DoxHSP6gJgSTxYHAIzLS0ZFUyDnKNL4mOAkitL+G3Va7hhR0yLoizhGnHEIHEBwWyy3yrZYyvPPXBxq9ivdauTB0NWyk0PNGE16LTw+L1odUpC6IKgLls5PDWQshBb1MxMMAIDK5s6w63oiXLdajcD3IVRU8Sq+qBujCIHAxbfSYtcDzxhRKSBcUZx2UcJIUPh6L7TSYgwkx0hRmgUGrQZunz+u8HWCIIjeIi5h5KWXXor6vslkwsqVK7Fy5cqIyxQVFVF4LkEQBBEV5g4RBIELI8xFQhAEQRDEwCWWYwSQnBxOT+w2RkadBoIgFek7PT4kmvTqnCYh7hS/X1QV2m41SsKI3e2Fzy/y8OuorbRC2na5VIwPCM5BCeR+qAtfd7h9QVkcagr74/KT8N8DNfz3SONTFr2dHkkY4U4CFQVppTChVhhh67i8fkV7q9iuCpOitZhLZcaI8vy3OVhmRextaTUCMhKMqG938etKVTaJXot2pxetnQERRk2roPxUM/85dJ9G50o5rYeqw+dWRctb0Ws1cHn9vA1b6DpA7PBwpYAXjzAyLj+5y1jUcEVxesh66kQOrUbgz4+ednGMUDpG4gwp78/otBpMG5KG7WeaUEiB6ARB9EO+cMYIQRAEQXQ3bNKZRgBvpeUP7/YnCIIgCGIA4YyUb6DTQKcR4PWLcLh8qsLXBUGASSeJFaytlVONYyQkfJ1tC4jsGJHe0wFwdxUeVDhG7G71ofLKcTjcvjjElIDgE78wElyUjjQ+vTbgKnB5fIBZH3DO9IJjxOWJ3zEST/i6ViPAqJPEgRbZxaGmlRYgtdOqb3fx39UU25mIEBBh1G0rP0UhjIQc97F5kjBypNoGv1+EJsQN4YridDIwYcQb/MU8rhwZhSCUZFIvjOSnmnleiJrtMEbnJnE3FxDb0cIQBAF6rQZur7/HXRypVgMyEoxSBs0Ac1b89Z4psHV6kZlI7fMJguh/DKwnLkEQBDEg4I4RCIpWWuQYIQiCIIiBjiuKM8OsECxcvJWWujBvVhRlLbGiCQ9KZ4VyHSBGaDtbzxWHMGIMzU5Rt19c5FCIRLFaabEWYZ0eL5/xr9MIXQrj4RiVkxjUTiiSGCAIgiL0XtqXQPZE7PJDTrIZiSYdRg5KQorFEHN5INgxoibwnqFspRVPkDo7zq1xihXZiaaQcasfYzMXYdQV9aO10hqSYYVBI8Lu9uFMo73LupEyRoCA68cT0kqLrSMIkngUDY1GQJJJun4zEtWdY+mzhSCBTq2LQ6/VYHJRatzrAYFcjJ5upQUAIwdJrpEE08Cav2zUaUkUIQii30LCCEEQBNHvYBKIRgAPGSFdhCAIgiAGPq4oGRHWoFwNle2jFMVv6b+y8BDV+REsjARaH2miiggWhfuDFdoFIXpRle2T3RVf+LqF5aB4vAGxR+WxsLvUOyQYRr0WpYMC7X6iCURcGJGPARNh1AgBCUYdPv/hNXj3WzNUjUv5uV6/yI+jOjeGwmkSx/FgWS3cuaCiJRYQCGDn41bhNEmVxaHaNin0Xq0Ik5NsArvsQvdJp9Ugzyr9fPBCa5d1owlZ7FoOzRhRuoLUtPp69tYJ+OVNYzEo2RxzWSVj8hTCSBzOiiuK0/jPaltpAQEhqDcC0f9nyUh8f/4IzC3N7vFtEQRBEBIDS4omCIIgBgR+P8sYCSj4lDFCEARBEAOfQHZI12JzUPsoFtIeQ0Bg7zPxQE34eqDllDdonWhttACl+8MbKLTHKBQzgYO30oqy/8FjDLhT1Ig90jrS+DrdPrh90nbiKfiOz0/BoQtSLkW0426SP5Mdc+YuUNsiSK1ThG9PMZZ2OZhbbbA5IJ1fL8+DUZ9NwgLR1YoVmV0cI7G3lS4HpccT2A5I5zU7yYSaNmdYIaDAKuJsu4CDVTbcNDH4vVgZIwAiZoyoFSvmjbq44v+4vPgdI0BAGNEIiCsEXKeRlu2N9lalOUkozUnq8e0QBEEQAcgxQhAEQfQ72J9aUvi69JufdBGCIAiCGPAEBI+uf6pyl4TbqypEXXqfuReCM0airRfqGGEFfmUAfLT17C5fYAZ9jOKt1RAcvq62lZbSPRMIX4++Dm8R5gkWbtQyviAFgNQqKVqh2BTi0onXnRIvSrHA5lQfiK500LDWbKocI0wY6YyvlVZWSDshNdvKSJDWqW5jwog6dwoQCGAPd64KEqQv1mEdI1HakbExV7U48KU/bsYbuyoBBISSnnZWjLlIYWRiYQomFabg2jE5cW2PBaH3RistgiAIovchxwhBEATR72B5IspWWpQxQhAEQRADn0ArrTCOEX3XVlqxMheUwdzK/0YPXw/O/XC41YkwQY6MKPsRtK1Qx4jK8HUmcnR6fFy4UZ0x4o6/lRYATCqUchpSzNEDs0PFKDd3jPRMcVmjEWDQauD2+WHrVN9KKztJcnDU2ZxIkvdJjVDErp0WB2uldXHCiBpBJd3KHCNyKy2VQe+AlDOyq6Il7HYKrdL36sPVNvj8YlAuSHTHiLTchqP1OFDVBqASt00tjCtH5ouQn2pGqkWPFocnrm0ZdVq8862ZcW+PuUv0vdBKiyAIguh96OlOEARB9DuYBqIMX6dOWgRBEAQx8AkIHtEcI4r2USpbaXXJGFEVvs5aaUn/Ve0YcXsVwog654fT44fPLypC5WOIHIqxsGDumLkkepZn4gvM8I+juDwsKwG/XjoWv71lfNTlQsWonnaMAIHjHHCMqAh6TzLBoNPA6xfRbGfh5rHXy5JbYp1p6JC3pc7FwYQYQG7ppMKFkCa30uLji+MY5qVEdoxkmaXr1eH28f1geHyR3UTss+raJaHmQovkZFHrkPqiCILAXSO9kfvBhCA9OUYIgiAGJCSMEARBEP0OJoxoBPDgSHKMEARBEMTAJ6pjRCFYcGdFrPZRIcJIp4pwc6sxtJWWNKbYjoyA00RtmDcTewBJUFHfIkzDi7ZNHS7ptVjh6wqXCQuHj7e4fNvUQlxTmhVjbMHHPN6MkYuBCRo21t5KhcCh0QgoTLMEvaZGKBqenQAgvjwTIDh83aBTF1Kebg11mahvpcVyNUYO6ppboRGAkTmJAICDF9qC3ot27XJhxCZdc012NxwKIbCnXEFK5o2U8klK5fH3JGx/eyNjhCAIguh9qJUWQRAE0e/gIojiD0bKGCEIgiCIgQ8r2Id1jBiUrbR6LnzdrA9tpeWNuY40PpZZ4VUdRm3QaqDTCPD6RTlInQk+0bclCAKuKcnC2iN1/DuS2RCr1VfgM+NpORUv7Jgz94ta98wXgQkGNlmsUOuEKUqz4FR9wDGhRlAZnhVckFfb3iojwQhBkCYAqRU4MhKCg+jjOYazRmRiz0/mI9USvvXZyEGJKK9sxbHa9qDX1bTSqrM5+WvVrZ0Bl0kcws3FsqysCNeNG4T0BGPshb8gemqlRRAEMaChpztBEATR72AaiEbgESMQqZcWQRAEQQx4mOARrgDMHSMuL1ys5VaMguXFhK9zx4iLtdJi4evq2lt1un1w+9Q5MgRB4E4Tu9vLxxlL8AGAr0wrDPo9VrFdKey0yO234mmlpRbeSsvbh44RlQX6wvRgx4hRG3u9EbJjJLCOuv3SazVIsxjk8albJ80aIoyouC5C14/kTGGOi6M1tqDXeVusMMeCnUPmlgGA8y2dCiGw5x0jgiD0iigCUCstgiCIgQ4JIwRBEES/IxC+LnDTiN/fhwMiCIIgCKJXcEUJHw92jKgLKWdFeuYY4eHrUUQOLsCw9lsqw83NF5ExAgBWeb22Tg98sv0jVistAJg1PBP5qeYu24+ERiNwcaStM77g8Hhgbhd23Fy9EMzNttkWRystQHKMKFFzPIrSrUH5IPGIFVlyzoja8YUKAN3puokojLDzpesqBoQ7h1UtSsfIwCox6aiVFkEQxICGnu4EQRBEv0OUhRFB6RihjBGCIAiCGPC4VDhG7G6famcFzxjx+uD1+XnoeLRWVVyAcbFWWrHbbwHB2SRqM0YAwCI7Rpo73Pw1NY4RjUbAHVcEXCNq1mHHsFV2jPREwdfIM0akY8CD3nuylRZzjMjh66pbaWVYg35XM0aDToNixXrxiBVZica4xpdk0gXldnSnMDI8ywpBABo73Ghod/HXuagXJXxdSVWLg7tMBpqAYKBWWgRBEAMaeroTBEEQ/Q5lxEiglRZBEARBEAOdaE4QVtTvjCukXC7SK8QUQJ1jxO3zw+Pzq26lxQSVoIyROBwjTfZAcVptAfzWKQWwGrTISjTGFG6AwH73pGNEKUYBCgdCLzhGeCD6RThGdBoBWpUtk0ZkB3JGLkYYUdvqSxCEoHZa8YSvx8Ji0KE4XRJ4lK6RaNeuIYyL5IKyldYAExB01EqLIAhiQEPh6wRBEES/g4WIClC00iLHCEEQBEEMeFxRWlBx4eEiWmk5PX7e2inS5zOUoonD7VO00or+57NV0erLpTJ8HQDPGGmUHSNGnSZiLkQomYlGfPCdq1QX9dkYWxw9J4ww5wwTX1ibpR4NX5fPc1ucGSP5qRZoBOm7ZzzjG5YVyBmJ5xhmJcnCiErhBgDSrUbU2Vxxr6eGkYOScKbRjqM1NswakQkAUdtiRWqlNVAdI3pqpUUQBDGgoac7QRBED7PxRANu/dM2nG209/VQLhlEnjEScIz4SRchCIIgiAGN3y8qhJHIjhFbp4d/L4jWEgtQhq/7glwm0YQHg1bDMyQ63T7VrbSYoOJw++KaQc8En2a7O2jMainOsKIgJCsj1hjbZGFEbXB4PDDR4JjsQggUzXtu1j07N/E6Fww6DXJTzHGtA4Q6RuLIGEmUM0bi2FZ6gtIx0r3ni+WMHKtt56+5fJFFvYgZIwPUMUKttAiCIAY29HQnCILoYd7afR47zzZj7eHavh7KJQN3jAiCImOkz4ZDEARBEEQvwNogAUCSuas7I0F2VtS0OflrsWbQM5GhU+EyiSVwCIKgEDm86PRI44rVSiuQMeLlYoCaojlbLyCM9Nyf6TxjpLPnMkZG5yYDAI7WtMPnF3ulzdJVwzODfo9HQChKl0SleMY3PDvgGIlnW5OLUqHTCBifn6J6nfQeaqUFSI4RIFIrra7bUopb7OfGDhe/d9Vmp1wqJFv00n/N+j4eCUEQBNETUCstgiCIHobNMuxweWMsSTCCHCNC8GsEQRAEQQxMWLHeYtCGLQCXyLPbK5sdAKTvCLGK0oG8Cz8PA1fjyLAadGh3ekNaacUQRnjGyMU5RppkYURNVsjFEghf77lWWsUZVlgMWjjcPpxt7OiVNktLJ+fh9+tPotYmiWbx7FdhmhVb0BSX6DA43QqdRoDXL8bV3mpMXjL2/WwBz5VRQ3qCkf/c3Y6RkbmSMHKqvgMurw9GnTbqtas8h7kpZjS2u2B3+3C2SXLGDzRh5KFrhmF4VgK+ND63r4dCEARB9AAD618tgiCIfohdFkSUsyCJ6DAJROkYoYwRgiAIghjYsGJ9SoTZ2fmp5qCZ22qyOJTh650qHSNAQEBwxNFKi4fDewLuFDWF7ATZMdLU4Qoac0/AclJaezB8XasRuBPh0AVbr7RZMuq0eGDWkKDf1TL4IhwjBp2Gt9NKsRhiLB1MglGnOkMGCGml1c1uotxkE5JMOnj9Ik7VdwCI3o5MKYykWQ3IT5WO3eaTjQCABNPAmnubm2LGvTOLeQ4QQRAEMbAgYYQgCKKHYX+Ek2NEPUwEEaBwjPTdcAiCIAiC6AVaHJJjIlKhWRAEjMtP5r+rKX6bDXL4uiJjxKhGGJHFCrvby7/LxW6lFSiexiM8hGaMqBnfxcKcCj3d3mq07EQ4XN3GHSM97Sa444pC3nYqHkfG4AwrgNjnN5Tf3jIeT988FhPiaIt1MWRYlY6R7r02BEFAqSxiHauRckYC56ureBMkjFgMyE+V8lnq213QaQTcNrWgW8dHEARBED0JCSMEQRA9DHOM2EkYUQ0zhwSFr1P6OkEQBHEJ8qtf/QqCIOB73/sef83pdGL58uVIT09HQkICli5dirq6uqD1KisrsWTJElgsFmRlZeGRRx6B1zuwv0u0yWJCiiVyP/8xeQFhRE0WBwtn7wxyjKgQK/S6wHoqW2lJDhbp51ZZ5FEjBjAXTEO77BjpQWdF6D70lFgxRs4ZOXTBxs9rTwdzmw1a/OErE/GVaYW4pjRL9XqzSzJxxxWF+M6c4XFtb1RuEu64ohAaTc+FygOSM4PR3a20AGBUSM5INNFMKZakWg3Ik4URALjvyuKgUHqCIAiC6O+QH5AgCKKH6aSMkbjhjhFFmwHqpEUQBEFcauzatQt/+tOfMG7cuKDXH374YXz44Yd46623kJycjIceegg333wztmzZAgDw+XxYsmQJcnJysHXrVtTU1GDZsmXQ6/X45S9/2Re70iu02JljJLIwMi5IGIk9e97IM0YCjhE163HHiMurupWWIAiwGnTocHnRYlcvBlw1PAMA4JUngfRkK63B6dag35WF7e5klOwY2Xu+hRfaJxak9si2lMwYmoEZQzPiWseo0+Lpm8f20Ii+OEGttHpAGBk5SBIzjtaGCCPacOHrwa20shIlN0tOkgnfnRufsEQQBEEQfQ0JIwRBED2MQ/4jnDJG1MNEEEGQXCMAtdIiCIIgLi06Ojpw55134i9/+Qt+8Ytf8Nfb2trw0ksv4bXXXsOcOXMAAC+//DJGjhyJ7du3Y/r06Vi7di2OHDmCTz75BNnZ2ZgwYQJ+/vOf40c/+hEef/xxGAzxZRpcKrRyx0jk/QtyjKhppaVnjhE/F0biyRjp9PgUrbRi//mcatWjw+XFhdZOAOoK2cOzE1Gak4hjtVIrIzVOmIvlzmmFGJaVgA6XF0kmPa4oTuuR7YzIToReK/DA+2tH52Csog0aoZ4MZfh6D4hmpTnMMdIOURTh8UXJGFG8lmoxYOmkfJys68Ad0woph4MgCIK45KBWWgRBED2Mw0WOkXgRZRlEQ+HrBEEQxCXK8uXLsWTJEsybNy/o9fLycng8nqDXS0tLUVhYiG3btgEAtm3bhrFjxyI7O5svs3DhQthsNhw+fLh3dqAPiBW+DkgB7Kmyo0RVKy15GZcn0BLLpCJLgokgdldgPTUZFMyRUdnsAKC+fdT143MVY+45x4hOq8HMYRlYODoHZUPToe2hNlDKcHKNAPxgYUmPbOdyoKdbaZXkJEIjSBk3De0uuKK00tIprpc0qx6pVgN+/eVxmFCQ0u3jIgiCIIiehiR9giCIHsTj8/MAQ8oYUY9fOmRQ/qlOwghBEARxqfD6669jz5492LVrV5f3amtrYTAYkJKSEvR6dnY2amtr+TJKUYS9z96LhMvlgsvl4r/bbFJrHI/HA4/Hc1H78kVg21S77eYOaexJJm3UdcbkJuHzU00w6DQxP1snSN8fnF4f7C65vZVWiLmeSSd9C2nvdHPHiE7wx1yvMKQ1lVYQVe3/taMy8Zs1x1WPr7eI9xwqmZCfjMPVNnx5Uh6KUo39Zp8uNfSCCJNeA6fHDy1iX4OxCD2nWkiC3plGOw5WtcDtla53jdh1W1oh8H08yRj9PiV6ly9yrxL9Gzq3Aw86pz1LPMeVhBGCIIgehPWkBoAOaqWlGvYnl0YQeIgp6SIEQRDEpcD58+fx3e9+F+vWrYPJZOrVbT/99NN44oknury+du1aWCyWXh2LknXr1qla7mSlBoAG504exeq2IxGXM3VKy7W3NGH16tVRP1OK+tDB4xOx//BxABrUV1dh9erKqOvVnJe2se/YKbBGC59/uh7GGGYOe50AqdQscezwIaxuOBh9JZmiBC3OdQiovXAeq1efU7VOb6H2HCoZ5QduGyJgivZcv9ufS41soxbnPcDR8q2oVnc5xUR5TpNF6Xr/z2e7YO/UABCwfevnOBsSQXNMcX0f278b7rPdMxai+7iYe5W4NKBzO/Cgc9ozOBwO1cuSMEIQBNGDdCqFEbcXoigGBYoT4eHuECHQ85GEEYIgCOJSoLy8HPX19Zg0aRJ/zefzYdOmTfjjH/+INWvWwO12o7W1Ncg1UldXh5ycHABATk4Odu7cGfS5dXV1/L1IPProo1ixYgX/3WazoaCgAAsWLEBSUlJ37F5ceDwerFu3DvPnz4deH7k9FuOl89uBVhuunjYZc0dmRVwuv6oNn/11JxZNGYHFs4dE/Uynx4cf714PAMjIKwQuVKFkaDEWL4re2unMp6exvvo0rGk5QF09AOCGJYugidF6ynisHu+d28d/nzJpAhaPGxR1HYamqA7f//dB3DZ7PBaOzo69Qi8Q7zkM5dYeGNPlSNlsN1rsHgzJtH7hzwp3Ts9Zz2DvJ6fQZsqGB00ARMybMxsFqcGCqnPvBbxxRmrnt3ju1d0yHqJ7+KL3KtF/oXM78KBz2rMwx7QaSBghCILoQRzugEtEFCUHCQUTxkYUWcZI4DVqpUUQBEFcCsydOxcHDwZP6b733ntRWlqKH/3oRygoKIBer8f69euxdOlSAMDx48dRWVmJsrIyAEBZWRmeeuop1NfXIytLEgjWrVuHpKQkjBo1KuK2jUYjjEZjl9f1en2f/uGtdvu2Tul7U3qSOeryk4szcPiJa1Xld+h0ge9dbZ3ShBWrKfZ4Es1SrkOLnHti1GlgNMYOvR+WHRwwbjEaVB/76yfkY8m4vJjiS1/Q19fQ5U5Wsh5Z3ZxdrzynY/JTAAAbTzQCAIozrCjKSOqSQWMyBK6BzGQLXRP9ELpXBy50bgcedE57hniOKVXnCIIgehBlKy1ACmAnYSQ2TAMJaqXVd8MhCIIgCNUkJiZizJgxQa9ZrVakp6fz1++//36sWLECaWlpSEpKwre//W2UlZVh+vTpAIAFCxZg1KhRuPvuu/HMM8+gtrYWjz32GJYvXx5W+BgoMBGChatHQ22ouSAIMOo0cHn9aHG4AagLN2fh63XtTvl3dYHoBWlmaATAL39xiTcsuz+KIsTApzQn4CjTCMDvbh3fRRQBAINWup4FAUg2UzGPIAiCuLSJ71saQRAEERehwkg75Yyowh/opMUD2MkxQhAEQQwUnnvuOVx33XVYunQpZs2ahZycHLzzzjv8fa1Wiw8++ABarRZlZWW46667sGzZMjz55JN9OOruwePz42yjHS5v8Hckn1+EzSkJI8nm2M6MeDDLogYTXtQII8OzEwAA55s7AQSEklgYdVrkpgSCGdQKOATRlwxKNnFBcvk1wzCpMDXscnpZGEkx68MKJwRBEARxKUHTlgmCIHoQuztYCOlwkTCiBlH2hwiCwNtpiSIoo4UgCIK4JPnss8+CfjeZTFi5ciVWrlwZcZ2ioqKYweKXIk99eBSrtlbAoNVgUlEKXrhzMlKtBtg6PdwxmqLCMRIPJp0WgAetsmPErEIYmViQgkSTjk9qMenVCxyD062oapEEFRJGiEsBQRDw9M3jcKS6DQ/NGR5xOXY9p1q7V7wkCIIgiL6AvqURBEH0IJ0hjhE7CSOq4I6REA2ETCMEQRAEcekiiiI+PFgDAHD7/Nh+phkbjknB5q2dkpsjwajjs9K7C4tREkKaOlgrLRXZJFoNrhqeEfgMlY4RAChKDwRWG7p5Xwiip7h2TA5WLCiJKuZNKkpF2ZB03DtjcO8NjCAIgiB6CPqWRhAE0YNQK62LIxC+LkCpjZAuQhAEQRCXLqcb7Ghod8Gg0+CmiXnyax0AwPM/utstAgBlQ9IBSGIMoM4xAgBXj8jkP5tVZowAUnA1wxiH04Qg+jsJRh3+9cB03F02uK+HQhAEQRBfGPqWRhAE0YM4qJXWRREIXw92jVDOCEEQBEFcumw70wQAmFyYirF5yQACwkibnP/RE8LI0sn5Qb+ryRgBgKtHZPGf1YopAFCUHhBGyDFCEARBEATRP6FvaQRBED1IqGOEWmmpgwkgAoIdIySMEARBEMSly/bTkjBSNjQdQ7OkcPMzDXYACsdINwevA1JeyBCFi0OtMJKTbEJpTiIAwBKXY0TRSosyRgiCIAiCIPol9C2NIAiiB3G4yDFyMYiKjBGlY4R0EYIgCIK4NBFFEdvPKISRTEmoqGiyw+vzo7UHHSOCIAS5RuIJUp9dIrlGkkzqx5WfaoFOI32BscaRTUIQBEEQBEH0HnEJI08//TSmTp2KxMREZGVl4cYbb8Tx48eDlnE6nVi+fDnS09ORkJCApUuXoq6uLmiZyspKLFmyBBaLBVlZWXjkkUfg9VKxkCCIgQdljFwc3DEiIDhjhIQRgiB6ifp2J25YuQX/99mpvh4KQQwITtR1oMnuhlmvxfj8FOQmm2HSa+DxiTjf0snD13tCGAGAmybm8ckW8QSpf/2qYtw7czC+dlWx6nVMei2e+fI4/PS6UUi1dr8DhiAIgiAIgvjixCWMbNy4EcuXL8f27duxbt06eDweLFiwAHa7nS/z8MMP4/3338dbb72FjRs3orq6GjfffDN/3+fzYcmSJXC73di6dSteeeUVrFq1Cj/96U+7b68IgiB6GYfbywPDg173SMKIPGmQWmmpJJAxQq20CILoG/65vRL7z7fipc/Phn2+EwQRH9tONwIApgxOhUGngUYjYEiG1E7rdH0HWuVWWqmWnhESclPM+MGCEiydlI/hchsvNaQnGPGz60djeHZiXNu7eVI+7rtSvZhCEARBEARB9C5x+Xo//vjjoN9XrVqFrKwslJeXY9asWWhra8NLL72E1157DXPmzAEAvPzyyxg5ciS2b9+O6dOnY+3atThy5Ag++eQTZGdnY8KECfj5z3+OH/3oR3j88cdhMNCMGoIgLi2O17bj+j9sxrKyIjx23aig91grrYwEI+rbXdRKSyUipCJkaPg6lSYJgugNfH4R/y6vAgA02d2obnMiL8Xcx6MiiEsXt9ePf2w/BwCYMTSDvz40KwFHamw43dDBW2klm3vGMQIAy68Z1mOfTRAEQRAEQVxafKGGp21tbQCAtLQ0AEB5eTk8Hg/mzZvHlyktLUVhYSG2bduG6dOnY9u2bRg7diyys7P5MgsXLsSDDz6Iw4cPY+LEiV2243K54HK5+O82mw0A4PF44PF4vsguXBRsm32xbaL7oPM48Oirc1pe0Qi3z4/yc81dts0cIpmJBtS3u2DrdNM1pwKPV3LaiKIY5Bhxu93waEgeGSjQc3jgMVDO6eenGnGhtZP/vu9cE7Ks2VHW6B0u9eNKXL6s2nYOpxvsSLca8JVphfx1ljNyuqGDh6/3lGOEIAiCIAiCIJRctDDi9/vxve99DzNnzsSYMWMAALW1tTAYDEhJSQlaNjs7G7W1tXwZpSjC3mfvhePpp5/GE0880eX1tWvXwmKxXOwufGHWrVvXZ9tWw8k2AR+d1+DLQ3zI7bvD1O/p7+eRiJ/ePqfbLwgAtKhtasXq1auD3jtXrQGggehoA6DBueq6LssQXTkmH9Oa6moIQwKvr1m7DhbKMB1w0HN44HGpn9NVJ6RntwARIgS8t2kvvBX+vh4WHA5HXw+BIOKmxQX8cfdpAMCji0cGOUKGZEotrc402OH2SfdYT2WMEARBEARBEISSiy4vLV++HIcOHcLmzZu7czxhefTRR7FixQr+u81mQ0FBARYsWICkpKQe334oHo8H69atw/z586HX998v7j98+yBOt9egM60Ei+cM7evh9DsulfNIqKc3zumnxxuQaNJhSlEqf+3QmhNAZQW0RgsWL74qaPlVVTuAtjaMHVaAI7svwJSQgsWLp/fI2AYSlRvPAJWnkJeXB0E4z1+fN28+FUwGEPQcHnj0p3Pq8vjw3PpT+PR4A564fhSmD0mLurzb68dXXynHkRob7C7JtXbrlAK8sbsKTnMmFi+e3BvDjgpzTRPEpcT2eg06PX5MKUrF0kl5Qe8xx8iphg6Y9VoAQAo5RgiCIAiCIIhe4KKEkYceeggffPABNm3ahPz8fP56Tk4O3G43Wltbg1wjdXV1yMnJ4cvs3Lkz6PPq6ur4e+EwGo0wGo1dXtfr9X36R3dfbz8WbU7pj3q7x9+vx9nX9PfzSMRPT53T+nYnvvnPvUg06bHvp/MhyOEXNvle63T7umy30yPNfsxOlmxb9jDLEF0RNBoAgE6rCWqlpdXp6PgNQOg5PPDo63Na1eLA117ZjWO17QCAb/1rH9791kwMixK4vPNcI3ZVtPDfpxWn4c7pRXhjdxUOVdug0+n4c7+voPuEuBTpkDvAzRiW0eUeYuHrrQ4PWiEtmJNs6tXxEQRBEARBEJcnmngWFkURDz30EN59911s2LABxcXFQe9PnjwZer0e69ev568dP34clZWVKCsrAwCUlZXh4MGDqK+v58usW7cOSUlJGDUqOLSY+GK0yn16253Uj5oguoPT9Xb4RaCt0wO728dfZz2x7e6uweoOebnMREncbXdS+LoaRDlGRBCEoPB1v0j5IgRBxOaZj4/jWG070q0GjBqUhHanF/et2oU2R+TvRJtPNQIAFo/NwcZHZuOfX5uGkpxE6LUCWhyeoMwRgiDU45a70DFHiBKzQYvCNGnySJrVgOdvn4C8FHNvDo8gCIIgCIK4TInLMbJ8+XK89tpr+M9//oPExESeCZKcnAyz2Yzk5GTcf//9WLFiBdLS0pCUlIRvf/vbKCsrw/TpUuuYBQsWYNSoUbj77rvxzDPPoLa2Fo899hiWL18e1hVCXDytndIf/1SIJYjuobLZzn9usbuRYJQeoa1yoc3p8cPnF6HVBCr5TBjJloURFsZORMfPhZHAf0UxIJgQBEFEwunxYf1RyY3852VTMDjdghtWbkFlswOrtlbgu/OGh11viyyMzBuZjaJ0qb2PDkBJTiIOXbDhYFUb8lMptI0g4sXDhZHwc/J+edNY7Kpoxr0zB1MbLYIgCIIgCKLXiMsx8sILL6CtrQ2zZ8/GoEGD+P/eeOMNvsxzzz2H6667DkuXLsWsWbOQk5ODd955h7+v1WrxwQcfQKvVoqysDHfddReWLVuGJ598svv2igAAPiuShBGC6B7ONQVCb5vtbv4zc4wAQKfHF7SOQ3aRZCWZ+PteX98H+PZ3REgKCNOYNLJCIpIyQhCXDb/++BiW/3NP3ILy5ycbYXf7MCjZhIkFKUhPMOKRhSUAgH/uOAe3t+szuM3hwcELbQCAmcMygt4bm5cMADggv08QRHzIkT2wGMLPybtyeAYenj+CRBGCIAiCIAiiV4nLMaKmIGUymbBy5UqsXLky4jJFRUVYvXp1PJsm4kQURYVj5OJaaYmi2Oe9tAmiP3GuWSGMOJTCSOAec7i83Eni94tcKGGttADA7vIh2RKXLn3ZwR0jcsKIEPI6QRCXHuXnmvHIWwfwo0WlWDg6fK4cw+nx4cWNpyGKgMvrw5/unhLkxovGR4dqAADXjsmBRl5n0ZhB+EXiUdS3u7DmcC2uH58btM62M40QRWBYVgKyk4LzDcbmpeBfOI/951tV7ilBEEqYY8Rk6NpKiyAIgiAIgiD6CqrMDVA6XF745ArixThGWh1uzPjVBjz6zoHuHhpBXLJUKh0jHZIwIooiz/MBEJQ94vT6eOunFLMeBp30yO0Ik0VCBMOEeI2ilRYQcJIQBHHp8d991TjTaMf/e/sAWhSuO1EU0ekOdttVt3by5+cnR+vx/Tf3YcupRlQ2OXC+2RHReef2+vHJEamN1qIxg/jrBp0GX7miEADw920VXdZj+SJXhrhFAGDK4FQAwJ7KlrBuE4IgouP2S/+Ih8sYIQiCIAiCIIi+goSRAUqrYgZ7+0VkGuw734qaNifWHK7rzmERxCXNuSZFxogshnS4vPAqbAzKli8ORaHPrNdyJ0nHZdzezunx4fH/Hsa2001Rl1OGrwOBVlrkGCGI7mf/+Va8uPE0fvDWfhzqwXZRlbLrrsXhwTNrjgOQRJGH39iHsY+vwdEaG1/2fIsUdG6VZ5i/t68ad/51B2b95lNc9cynuO3P2/kEECXbzjTB5vQiI8GIyUWpQe99ZVohdBoBuypacLy2Pei9LaekZ9KMoeldPnN4VgLSrAY4PX4cvNB6kXtPEJcvbt5Ki4QRgiAIgiAIov9AwsgApa1TIYxcRCutmjYnAClHwUN5CASBNocHNoWgwTJGlCIkECyGsBnQZr0WGo0QEEZcF9febiDw4YEarNpagd+tPR70+rFaGx58tRwn66RipV9WRoQQx4iflBGC6Fbe31+NG1Zuwa8+OoZ/l1fh9j9vx86zzT2yrUpFO8LXd1Viw7E6vLHrPN7bVw2vX8Rnxxv4++flZcuGpuOle6bgS+NzkZtsglmvhSAA5eda8NqOc122wUTXeSOzurTeyk4y4arhkiOEOUQAoMXuxtlGSfieNqSrMCIIAqYPSQMAbD/TM8eGIAYybtZKixwjBEEQBEEQRD+ChJEBirJY6/T44xY3mDACAE0d7ihLEsTlwblme9DvzDGiDF4HALuiTRb7mc2QZMLIxbS3GygcqGoFEPyMAYDXdlTio0O1eKu8CgB4wyxNiGOEIIju5b/7qwEAEwtTMKkwBR0uL5b9bQc+O17frdvx+0VUyS6Q6UPSIIrAfat246f/OcyXOV6rdIxIwkh+qgVzR2bj93dMxNZH5+Loz6/F49ePBgD8Zs1xNHa4grbDnH0jshPDjmNqsSRw7K4ICBxnZFFkULIJyWZ92PWmFUuCyfYz0d1uBEF0hWWMUCstgiAIgiAIoj9BwsgApbUzuFgbbyG2prWT/9zQ7oqyJEFcHpxT5IsAAcdIS6hjxBVwjDD3iMUYLIx0XER7u4HCQblNT0O7i+eIAAGhhOUOcMeI/D53jIjkGCGIWPzgrf2486/b4YiRZ+T0+PD5Scml8Ysbx+C1r0/HnNIsOD1+fP3vu/HRwZpuG1NDhwsurx9ajYC/3jMVd02X8j7cPj/SrAYAwDFFe6uqZul7SH6quctn3TW9CKNzk2BzevG7tSeC3mPP6qJ0S9hxTB0sCSO7Kpr5M6hCFkYGp1sjjn+67CTZXdFCTlqCiBPmGDFTKy2CIAiCIAiiH0HCyAAltL1PvO20am2B2dwNHc4oSxLE5QFrAcP63bfYpXuqNYpjhIkkFr0kiBSkSYW63RUtPTvYforX58fhamlGuNvnD2r5Vy8/c1rl1wIZI/J/QRkjBKGGhnYX/l1ehS2nmvCHDafg94t4bUcl1h/tmhm29XQjnB4/cpNNGDUoCSa9Fi/eNRlLxg2Cxydi+Wt7UH4u+Hm17XQTnlt3AhuO1WHLqUY8/8lJ/OS9Q/jJe4fw6bHILhP2DM1NMSHBqMMvbhyLl786FV+dMRh/vWcKAOB0QwcXHZhjhD03lWg1An50bSkAYKPC2SKKIt9OJGFkXH4yDDoNGjvcqJBFlArZZTI4I7IwwnJGOj0+HKjquRwWghhoiKJIGSMEQRAEQRBEv0TX1wMgegZlwRGI3zFSTY4RggiCtWcZm5+M7Wea0cxaadmDhRFHUPi63EpLdoxcN24Q3t5ThQ8OVOOxJSOh015e2vTJ+g64vIGZ1nU2F1Is0kxxJsa2OZgwIikggVZaCHqdIIjwsHZ1APDXz8/gZF07PjkqiQcv3jUJ144ZxN9fd0R6fe7IbAjyvWbQafD72yfC6fZh/bF6rDlcGxRi/t3X96I+wveCf2w/hz/ePj7se5WyCFGoEDquKc3CNaVZEEURCUYdOlxenG20Y0R2Im+7VZAaXuAYn58CAKhuc6Ld6UGiSY9muxsdLi8EQWrBFQ6jTovx+cnYVdGCXRXNKM6w8lZaQ6IIIxqNgGnFafjoUC22n2nqEuxOEER4PD4RfnlyA2WMEARBEARBEP2Jy6sqdxkROovdFodjRBTFoP7/JIwQRKA9y8RCqRjWEqmVlkcRvi7/zGZIXjk8A2lWAxo73Nh6+vLrU8/aaDHq26XnjM8v8ucMawPoD3GMMIGEHCMEEZ1951v5zx6fyEURAPjeG/twUHY7+P0iNhyTXCRzR2YFfYZWI+DaMTldPq+pw4X6dhcEQRIR8lLMuGFCLr4zdzgWjs4GAPzg7YOo7Og6LubkKAzjABEEASOyEwBI7bTsLi9vV5if1rWVFgAkW/TITDQCAE43SMLGOXkbOUmmqAXYKYODc0Z4K60owggATCtmAeyX3/ObIC4Wp+J7EWWMEARBEARBEP0JEkb6iK2nGnHLi1txoq499sIXQWgrrY44HCM2p5dnIwAkjBAEECjqTShIASCFrvv9YhcRUpkxYpd/NsuttPRaDZaMlWZrv7fvQk8Pud9xMKT9TL1NerY0dri44NHqCG6lxQQRgRwjBKEKJmR8Y9YQWA1aGHQavHjXZMwakQmnx4+H39wHURRxqLoNdTYXrAYtyoamd/kc9qw7WNUGr9ze6mS9pHjkp5qx4QezseX/zcHzt0/EivkjsPIrkzC7RNrGq6e0Xe7V882RW2MBQElOEgDgWI2Nt9FKNuuRZAofhg5I7a0A4KT8XSqcKyUcUwdLAvfuihaIosiFkeKM6OvNLsnCIwtL8P0FJVGXIwgiAJswotMIMOjoT0+CIAiCIAii/0DfTvuI13edx66KFnxwoPuCTZW0foFWWrVtwZkiDR0kjBCXN26vn7d6Yu1b/KLkxGKOEaP8x35Qxoj8s9UYmCF5w4RcAMCaQ7Vd2nANdA7IjhGW08La8dQpMo1aOz0QRTFi+DrJIkRPIoriJS2+iaKI/bIwcv34XKxdcTU2PXINrh2Tgz/cPhEGnQan6jtwrLYdH8rB6leXZMKo6zqLe0hmAhKMOnR6fFwQOSX/d3hWYpfldVoNnr99IvRaAXWdAndxMKI5RgCgNEf6zOO17TgvB68XRHCLMJgwcqpBGles4HXG5ELJ+XGm0Y4jNTbY3T5ohMiiDWNwhhXLrxnGRSOCIGLDHCPURosgCIIgCILob5Aw0kcw8aGxh0QH1qdfJzfmjyd8vbqtM+h3cowQlzstDjdEUWovk5VoRKJJcoA0291okR0jealSAU/pGGHOK2XY6KTCVOSnmmF3+3Dlrzfgd2uPw3+J9ofy+UW4FZkh0fD4/DhaIwWvzxqRCSDQSqvOFnjGuL1+OD1+XpwWeMYIa6V1aR4r4tLg7pd2YtHzn/MA8O6g/FwLXtp8lrsuYuH0+C76mVDR5IDN6YVBp0FJTiLyUszISTYBkFpPzRou3XurD9bg/X3VAIAvjc8N+1lajYCxeckAwMWWgDCSEHadZLMe0+V2UxuONwS9x1wgkYSRElkYOVbbHnCXRMgJYQxjwkidLIw0S2JMUXr0lljJFj3G5EkOlb9sOgNAeoaHE4gIgvhidLqlZ59ZT392EgRBEARBEP0L+obaR9TYJPGhp0QHVqzNTZGKtRfjGGHFXxJGiL5md0UzHv/vYXS41F/H3Qm7n1Itemg0AtKsBv46a/2UJ99rwY4RJozo+GsajYDf3zERpTmJsLt9+MOGUzhUHdxiCpBmfr+48TTWHq7tmZ3qBh577yDGPbEGZxvtMZc9WdcBt9ePRJOO9/dnrbRqbcEutdZON3eGsNB15hzxd1+9miCCaGh3YfOpRhyrbce5ptjXtBo8Pj+++Wo5fv7BEfxty9mYy1c02jH+ibV44B/lFyWOMAFjTG4S9NquX/EWj5VyQ/62+Syq25xINOowuySry3KMCYUp0ufKge4n66WWVUMjCCMAMLdUEl8+VQgjTo+PC6CRxA7mGLnQ2slF1FgOjmGyc4U5WtS20gKA68dJgtB/90sC0eAYYgpBEBcHy1szG0h4JAiCIAiCIPoXJIz0AX6/iLq2QG/9noC10mJtKNrjKCjXtEqizbh8aaZodwojlU0OVMmzRonLB1EU8cT7h/HnTacvav1frj6KVVsr+kwkYCHAKRZJEEmV/9ts93DRJJ85RhT5PKy4mmIO7pE/qTAVH333KozOlWYsKx0TjMPVNvzqo2P4/pv74esjR0l9uxO7K5rh8vq6vNfW6cG/y6vg9Pix4Vh9mLWDuSA/V4ZkWJGdZOSfDwD1IcJIi90TaKUVEr5e3+7keQAEEY4j1Tbexi4ejtXa+M/Vrc4oS6rns+MN/N/Q//3kJGpkR2abw4Of/ucQnl13Imj5T4/Xw+X145OjdUFCyuHqNty3aheeeP8w1hyujeg+Yfki4yO0epo7Mht6rQC7/Jy6dkxO1PY2rHXgvvOSeBvLMQIA15RIwsieylb+7GT/7icadUixhM8MSbEY+LNhtdzmiz1XI8EcI+dbHHB6fLxdV6xWWoDUagwAzzcaEiN4nSCIi4MLI9RKiyAIgiAIguhnkDDSBzQ73HDLRY2eEEZEUeSttNjMzHhaadXIjpFxckHE7vbB3g0z9Z0eH5b84XN86Y9bwhZaiYHLyfoOvLylAr/66Fjc597r8+NwtVSwrGnrnmJlvLTYpfsnTRZEuGPEHsYxIt8rnW4fPpNnTF8tFwqVCIKAnCSpxU2458BpuWd+u8vLf+4tzjXZsfC5TbjiqfX48ovb8MJnXQWtDcfq4PFJFcVDF7o6XkJh+5iRYERWorTfLGMkNNeotdPNw9eFkPD1r768C9c+v6mLmEIQAPDZ8Xos/v3n+Ml7h+Ne93htO/+5JqSl5MXyxq7zAKS2VA63Dz/89wGs2nIW1z6/CX/fdg6/X38S1a2BbR1U3EvPfHwcR6pt6HB58eCre7DhWD1e3lKBb/yjHK9sOxd2e3srWwAgYgZGslmPGUMz+O83TMiLOn72OSfq2lFnc3IRN5pjJDfFjDyLCL8IfCqLppWK4HV2T4fja1cOAQAu3MRqpZWRYECKRQ9RlMQj9kwpSostcuSmmHGF3PYLkPJDCKI7eeGFFzBu3DgkJSUhKSkJZWVl+Oijj/j7TqcTy5cvR3p6OhISErB06VLU1dUFfUZlZSWWLFkCi8WCrKwsPPLII/B6+8Y9e7E43ZQxQhAEQRAEQfRPSBjpA5RFwMb27g9f7vT4uPDCZlva4milxYrPQzMTeDaCWgHnH9vP4bo/fB4UpsyobXOi3elFs92NYzXtYdYmBiqsLYpfDLQ6UcvJ+g645ByL7nAvtTs9eG1HJZriECV5Ky2rNNOZOUbqbE7e3isvxDGy8UQDOj0+5KWYeZ/+UNITpM8JN5aKxsBxYrPAe4u1h+twvC5wj+4Ps/3VBwPunQNVXd8Phe1jekJgVni9zQVRFFEXcl7bHB4+i5uVUDWKYqrT48f2s80q9oS43Fh/VCrErz0S2VURiWMKYeRCNzhG6tud+PS4NJ7nbpsAjQB8frIRj79/JEjk3XG2if98sEoSRgYlm+D2+XHbn7fha6/sQmWzA3kpZswflQ0g4KhQsulEA/ZXtUEjAFMHp3V5n8HaaWUmGlE2ND3qPuQkm5CdZITPL+Lf5VXSa0kmJJnCuz4YY1KlG/ifO86hts2Jv22uAAAMzogudHx91hC8dM8UpFsNMGg1GCW76iIhCAJ3r7Bzn2zWIzmCKyWUGyYE8lVIGCG6m/z8fPzqV79CeXk5du/ejTlz5uCGG27A4cOScPvwww/j/fffx1tvvYWNGzeiuroaN998M1/f5/NhyZIlcLvd2Lp1K1555RWsWrUKP/3pT/tqly4Kh6dr3hpBEARBEARB9AdIGOkDlMJIp6d73BhK2Ax2vVZAtjwjvSMuYUSavZqbbEJmolTAVFuQXrXlLA5dsOGDA12LNvWKz9ivopBK9C+2nm7E+CfW4sMw5zYWyoLj6Yb42iCxQiEQaL30RfjXzkr8+N2D+OOnp1Sv02JnGSPMMSIV3c7ILZ0EAfxeYxkjHx+SjtOiMTkRZ0hnJEj3V2NHV4FUmXEQTpjoSVjbKxZOfL4lePa83eXFphOB/IAzjfaY+S9sH5WOkU6PD+0uL+rkZ6JJDmZt7fTw8HUmiLSFuN72nGuJf8f6EaIodmvANyGxq0ISzNqdXhyqtsVYOpggx0jrF3eMvLPnAnx+EZMKU/Cl8bl45svjsWBUNhaMysa3Zg/FXdMLAQDbT0tjtivcYavuvQITClLQ7vRi+5lmCALw7K3j8cSXRgMA9lS2BAmqLq8PP/uvVGy9Z8Zgni8Wjpsm5uMbVw/B724ZD60msnuDceUwyfH2+/UnAQDDsyO7RRiTM/3QawXsqWzFzF9vwOZTjTDrtfjaVUNirjt3ZDY2/fAafP6ja/hzNRqsnRYTi9S00WIsHjMIeq10DKK1ByOIi+H666/H4sWLMXz4cIwYMQJPPfUUEhISsH37drS1teGll17Cs88+izlz5mDy5Ml4+eWXsXXrVmzfvh0AsHbtWhw5cgSvvvoqJkyYgEWLFuHnP/85Vq5cCbe7+ydW9RROD3OM0J+dBEEQBEEQRP+CvqH2ATUhbopobowOlxetjvj++GHCSLLZgER5VqfaVlqiKPKZrDnJJmQmhBdGRFFEZZMjKBzW5fWhQnYDsHYeSpSf0dsz4Psjbq//kmoH9N7eC2jr9GDV1tgBwqEoC45nGuNrC6VsLVMfJosjXqrkIv/JOvXjaOaOEUPQf8/IRcxks57PoO50++Dy+vjs5UXy7OxwMGGkIZxjRCmM9LKQyMTRacXSbPKqFgcXKoBADkJRugW5ySapjU2MdlqN3DFihNmgRaJRCqSvt7lQJwteI7KlIOVWh4e30mJ1W7sruAVbuGfMpcQ9L+/CrGc+jfv5TkSmrdMT5HTacqpR9bo+v4gTdcpWWuGfzQ3tLtWZP+uPSi1xvjy5QP5vPv68bAr+vGwKfnhtKeaUSqHn22XHyJEaG/yi5MgoyUnEW98sw3fmDkeCUYdHFpZg2pB05KaYMTo3CaIYHG7+18/P4myjHZmJRjw8f0TUcRl0Gjy6aCRmjeja4i8cKxaMgFmv5c69oZmxBYRsM/D6165AcYYVPr+IRJMOr37tCkwqTFW1TatRp0oUAQIB7Oz7xzAV42OkWg3487IpeO628ciP0baLIL4IPp8Pr7/+Oux2O8rKylBeXg6Px4N58+bxZUpLS1FYWIht27YBALZt24axY8ciOzubL7Nw4ULYbDbuOrkU6PRIzw7KGCEIgiAIgiD6G7q+HsDlSG1I7/LGDheK0ru2cPD7Rdzwx82wOb34ZMXVSDaraw3R2smCovVIMkmnuD2GY+RItQ0vbT6Ls40dvBXQoGRzwDESUrj9187z+PG7BzGtOA3P3jYBeSlmnGmw84LR3srWLttQzvbv7Rnw/ZEn3j+M13edxz/uvyKo53t/5ajc/mxPZSvaOj2qr0cgWBg5G6dj5ICi4F7XDY6RJtm5cK5Z/TiYY4RnjMj/PSGLK6kWA28RYXd5seVUI9pdXmQnGTGxIHIhMForrXOKlmPHatrh9Ph6rT83KwpPLkrFy1vOwunxo6HDxZ0e645IBd9FYwbhTEMHqtucOHihDdOGRG7LE8gYkfY5M8mI9gYvzrc4uJg7IjsRB6ra0NrpVoSvS8rIhIJk7Dvfhu/PH4HfrTuBw9W2Xj0m3YnH58fmkw1SBsPxetw0Mb+vhzQg2HOuBQr9DptPNmL5NcNUrVvRZOeFfwBBuR+M/+y7gBVv7sfkwlT88+vToNdGn1tyVm6HF6mV3pTBadAI0r1e09bJ3XFj5OX1Wg1WzB+Bh+cND3KdzR2ZjcPVNnxypA5fnpwPURTxytYKAMCji0pjtrmKl7wUM749dxie+fg4AHWOEQAYl5+MD759Jd7dewEzhqZjSByCRTwsHJ2Nf+44hwSjDlMHp+H+K4vjWv+akqweGRdBAMDBgwdRVlYGp9OJhIQEvPvuuxg1ahT27dsHg8GAlJSUoOWzs7NRWyu1qqytrQ0SRdj77L1IuFwuuFyB7xU2m+Se83g88HjUZw52Fx3y3yVGndAn2ye+OOy80fkbONA5HZjQeR240LkdeNA57VniOa4kjPQBtW3BRdCGCDkjF1o7eduh9UfrcPMkdcUzFryeatErHCORhZH/9/YBvC4HxDKKM6wwG7RcGAmdqb9Hnq2942wzrv3fTXjjgTKcrFf2Z+9EfbuTF1KB4FZapxvscRfXL1W8Pj82nmhA2dB0WAyBW27H2Wb4/CJe3Him3wsjXp+fz8T2+UVsPdWIRWMHqVrX5vTw1kxAoP2UGjw+P88nAQKZFNHCe2PRZJeuw+pWJzw+f8ziJgC0yPdUity3njlGOuX2EIvH5sAqOyAcbh92VUj3x5zSLGiitKrJjNBKy+b0oEkWY5JMOticXhyutmFykbrZ1l+UajlfoTDNgkHJZlxo7cT55k5+PzOh64riVFgNWqw9Uhfk7AmHspUWAGQlGnGmwY5DcjHYqNOgME2asd3m8IDVt9mp/t9bx6G+w4upg1Px9+3n0NDuwsELbVGzFPordTYnz1D57HgDCSPdBGujNaUoFbvPtaD8XAs63T6Yw/S1f21HJf67/wIenjcC04ak82s61aJHi8OD6rbOoGdN+blmPPLWAfj8InZWNOOPG05FdWbYXV4uBhZGaO2UZNJjTF4yDlS1YceZZn4PjcsPFlJCn3fzRmbh9+tPYtPJBjg9Ppxu6EB9uwtmvRZLxql7LsfL164cgvf2XsDJ+o64nkNWow53TS/qkTEx8lMt2PD92T26DYK4WEpKSrBv3z60tbXh3//+N+655x5s3LixR7f59NNP44knnujy+tq1a2Gx9L4z6kilBoAGjTXVWL26qte3T3Qf69at6+shEN0MndOBCZ3XgQud24EHndOeweFQn21MwkgfUGvr6hgJh1Jo+OhQLW6elI+PDtbggwM1OHihDTdOyMWKBSVd1mvtVLbSYo6R8GpZp9vHRZHrxg3CojGDoNUAE+V2F5FaaZ1vli6yRKMO7U4v/rG9AulWY9Ay+ypbsWB0oI1Q6GccrGrDlcPVCwJVLQ58fKgWowYlYWJhathiVywaO1xYd6QOs0ZkIsvavZf/hdZOPPD33chOMuGbVw/FFcVSwfYXHx7Fqq0V+M7c4VghF9JEUURVi3QMN51owJmGjh6bTRsNMWRWfiTONtrhVsym/ux4Q0xhZOfZZrQ7A+KXRpDC11n7qWisPVyL36w5jjkjs+D2+mE1aGF3++Dy+mFzer+QoMYcIz6/iAstnaoCd1n4eprVEPRfAJhdkomH543gIonXL+JUvbSPsVrOpMv3V6hjhAXUZyQYMKEgFZ8crcO+8609JozU25z4+j/KMbc0C9+4egh/JuWmmJGfKgkjVS0OTC5KhSiK3M0yON3KM0AOVLVh/dE6uL3+sNdGE3eMSPvM2uSwYnBOsgmpsvDU6vDAYpTub3Zp5qWYMThTen9SYQrWHK7DnnMtaLG7kWTWY3oUt8qF1k58cqQOC0fnICdZXXuenqRaEey96UQDfH5RVdYDEZ3dsiB565QCXGjtRE2bE7vPNeOq4ZkhyzXjsfcOwi8Ct/9lO741eyh3mswakYn/7KuG0+NHq8ODVKsBbQ4PHvh7Odw+P0qyE3G8rh1/2HASk4pScXWEdlSV8r+RKRZ91OfVtOI0HKhqw/YzTTggt8wbmx/eYcIYk5uM7CQj6mwubDvdhKO1kng8Y2g6jLqecVAZdBq89c0ZuNDSidKc6IHoBEEEMBgMGDZMcq5NnjwZu3btwvPPP4/bbrsNbrcbra2tQa6Ruro65ORI351zcnKwc+fOoM+rq6vj70Xi0UcfxYoVK/jvNpsNBQUFWLBgAZKSev/+3fvhUeDCeQwfUoTFi0f2+vaJL47H48G6deswf/586PUDf1Lb5QCd04EJndeBC53bgQed056FOabVQMJIH8Da1AzJsOJMoz2iMHJCkYGw8UQD/ru/Gt/5117+2j+2nwsvjChmtyfIwojd7QtbfLvQKgscJh3++JVJXT4rUistltNwz4zB+OOnp7DlVBNKcqQ+3wadBm6vH/vOBwsjzDGi1wrw+ETsr2pVLYw0drhw+5+38+0mGHV47rYJmD8qO8aaQKvDje1nmrHpZAPeLq+Cy+vHmLwkvPONaaq2rZbfrTmOw9U2HK62YcOxetxxRSEevHoo/rnjHADgoCInosnuhtMTEBr+sf0cfna9FKrb6fZBhBjkLolEh8uLVVvO4vrxuWHbsUWj/FwzHvn3AQDAb748PmrR/Yjs2jDqNHB5JQdMNOfG4eo23PnX7fD4RNw4IReA1DZm59lmtDg8aLG7uesilGa7Gz98+wBaHR6clAWG8QUpOHShDTanFw3tzqBCY4fLi7fLq5Bk1uG6MbGvB+bEAIBzzQ5VwkizPThjZERWIpLNehSmWfCHOyZCp9XAojgWbPZ5fmrkAGQg0FaqxeEJcq+clV01RelWTChIxidH67D1VCPuKSuCToXDJV6e++QE9p9vRWWTHTfI58uo0yDVokd+qgU7zjbze6++3YVOjw9ajYD8VAs/F2cb7bj/ld0AgMevH4Wvzgy0s/H4/Nx1w/Y5S362HJAdI9mJJiTLLcpaO90wG6RjpwlzjU0qTMWaw3V4ceNptDg8MGg12PL/5vDnFeNkXTte2Hga/91XDa9fxIsbT+OfX5vWJyKkEmWbphaHB4cutGF8QUrfDegSpqHdhaUvbIXVqOPB5VOL0zBzWAb+XV6FLaeagoSRdqcHD7+5D34RKEgz43xzJ1Z+epoLcOPyU7DlVCMaO9y40NqJVKsBn59qQJPdjcI0C95dPgM/fucg3ttXjXv+thMzhqbjunG5mDYkLUgIZeJhUVr02dnTh6TjL5+fxXv7LvBWXpFabzE0GgHXjs7BK9vO4ZVtFeiU21/OLlGXGXKxJJujizwEQcTG7/fD5XJh8uTJ0Ov1WL9+PZYuXQoAOH78OCorK1FWVgYAKCsrw1NPPYX6+npkZUkt39atW4ekpCSMGjUq4jaMRiOMRmOX1/V6fZ/84e3yScpzgslAf/hf4vTVNUT0HHROByZ0XgcudG4HHnROe4Z4jimFr/cyoiiiVhZGWB/xiMKIIpfB7fXjB2/uBwAsGiOJDS0OD2xhnCAHL7QCkPILmGMEADrCtNM6Lxc7I4WOZiVJf1gpg2g9Pj8PZ146OR86jYDKZge2n5ECZK+VxZDQnBHmGCmT20Z9cKAGj75zAO/tvRB22wynx4cH/r4bVS2dyEw0IifJhA6XF998tRz/2Rd93SPVNlz1zKf45qvleG1HJS88Hbpgw+ZTTVHXjYdjtTa8K4/l+vG50AjAv3ZW4o6/SOIAECh2AwFhiRXj3tx1Hg++Wo4bVm7B2MfXYMavNvB2ZdF4evVR/HbtCfzkP/GFcP7fZ6dwy4vbcKbBjjMNdtz6p228R304mDBy/fhcGHUa1NqcQcKdEqfHh+++vo/v93v7qgEAEwtTMEierR+tndZv1hxDq8ODBGPg2h2bn4ws2WGgbOv2j20VmPH0evzsv4fx/Tf3x8zS8flF7v4AgMqmyONQ0srb00mF+2SLHjt+PBfvLZ/J29VpNQJMeumRymaLxwrzTbEYeLh4i1KwaWLCiIW3ilp/rB6zf/sZz/foLk43dODN3VJrixaHB/tloSI3xQxBEFCQJgkUzCVWIZ+7vBQzDDoN0hOMGCKLS2z/n/zgCD49Xs+3wfZNI0j7DIC35aq1Sc+W7GQTUswBxwhzM4UVRmQRj4ktbp8fr++s5O+7vX58+197Mf+5TXhnzwV45fDnmjYnbv3TNu7o6U7qbE48/t/D2Ho6duD3hZD8is8UIdoXw44zTVj+2h48+Go5fvqfQ3B6fFGXb+xwwe6Kfq9cKry9pwqVzQ4crbHB7fUjI8GAwekWTJMde3tDnqPPf3IS55s7kZdixoffuQr/d+ckJJv13DFSmpOIQcnSNc/+3dtzrhWAJDxYDDr84qaxuHWK9G/f1tNN+PG7BzH3dxuDnqGVcoZRYQzBevqQdOSnmuH0+CGK0j3PXFXRuO/KYmgE6dphLcSuHkFZGQTRn3j00UexadMmVFRU4ODBg3j00Ufx2Wef4c4770RycjLuv/9+rFixAp9++inKy8tx7733oqysDNOnTwcALFiwAKNGjcLdd9+N/fv3Y82aNXjsscewfPnysMJHf4X9m2Qy0J+dBEEQBEEQRP+CvqH2Mjanl4ebj8mT7OyNETJGTsittIZnSbNQ3T4/BiWb8NtbxiNdnrnOipWMs412fHxICmS8cUIejDotDDrpNLe7uoooVVwYCT+zfUiGtO0zDR08WL26tRN+UZpRPjjdgomFKdLny0Xp26YWAAAOVLXydQCgQQ7Onj9SKt4crbHhXzvP4+E392HN4cghki9uPI09la1IMunw+gPTsflH1+DmiXnw+UV87419EYPcnR4fvvfGXrQ7vShIM+POaYV47WvTcJ88k/1Pn5+NuM14+e2aExBFKWviD3dMxONfktwfygLo+ZZOeHySMHNBPu4TC1IwLCsBdrcPHx2qxf7zrfD6RbQ6PLjrrzuw9VTkImtFox1vyG3Qtp5q5NkysXh1+zk88/Fx+EXg5ol5uHFCLnx+EU99eJSPLxQWvD6xMAVlQ6WWRR8dqgm77DMfH8ep+g5kJBhh1AUeMaU5iSiWC+iR2mntO9/KW7v97atT8YMFI1CUbsGXxudyhwFzHnl8fvz8g6OwydedX+zari2UFoc7KJxZGXAeCZfXhw65iMxC1wHApNd2cWBZQ1w+BTFmi2s1AtKsXV1ZFfK4itOtmDYkHT+9bhTSrQZUtXTiG//YjTd3nw/7eYCUbbCnsoULC7F4du2JoPv0s2OSoJGbIgkXBbK4c15u/cZnwityE164azJ+d8t47Pqfebh1Sj78IvDdf+3lxRC2b2lWIz9m15RmIi/FDLNei1SLHkvGDuIZLm2dHvijDH9sXjIXzhbIrrFXd5zj1+9/9l3A+/slQW7h6Gy8t3wmPv3BbIwalITGDjee+vBI1GNSZ3Nid0VzTIGBIYoifvDWfqzaWoGv/GUHnvrwCFzeyOuy5wITCj87UR9x2VjU2Zz4xqvl+PBADT46VIu/bzuHDw6Evzd9fhErPz2F6b9cjwXPbUK9zRl2OSUdLi/e23sBP373IL7+9928zVtPU2dz4unVR3HLi1vx5Re24tF3DgRdp4z/yMLrnNIsDMtKwAOzhkAQBIzLTwEAHLrQBr9iPSbY/c+SkUgy6bF47CB8/L2rMLc0C+PykzGpMJVf+2wCABOpJ8ktJhOMOjzz5fHY+MNr8N25w/m/gX/bcpbfd2odI1ajDhu+PxvvfmsGnrxhNF64c7Kq41OUbsWScZK7yy9KuWCRskwIgugb6uvrsWzZMpSUlGDu3LnYtWsX1qxZg/nz5wMAnnvuOVx33XVYunQpZs2ahZycHLzzzjt8fa1Wiw8++ABarRZlZWW46667sGzZMjz55JN9tUsXRafskDbre6bVH0EQBEEQBEFcLNRKq5epkwtRKXKLGqBrmypAKmCdlGfkf3vucN5C6yfXjYLVqEN+mgVNdjfON3didG6g7cafN52BX5SKRCMHScJLkkmHxg532Nn0LOcikjBSkGaBQW6fdKGlE4XpFpxvDogpgiBg5rAMHjadapF6/bNMiJP17SjNSYLX5+ctjBaMzsHOihbU25ww6DT4/GQjvvf6Pvz+jom4clhGl+yQraclZ8ePFpXyViW/vWU8Oj2SmLDy01P487IpXcb+64+P4USdVKB/71szeZ5DcaYV/9hegR1nWzAjwmTef+44h48P1eKJL42O2XbndEMHPjlaB61GwPfl1mbLygbjTIMdq7ZWYMm4QdhwtB6dHh+qWjpRnGHlx70wzYLvLyjBppMN8IvSuRqdm4wn3j+Mz0824sF/7sHO/5kbtm/8s+tOwCsX/Lx+EeuO1uHLk6OHOH9+sgE/+6/kLlkxfwS+M3c4/H4Ra4/UweH2obLZETYXgwWgjxyUhASjDp8db8DfNp/FvTOKkWwJWNREUcRb5VLR/lc3j8XOimb8edMZAEBJdhKGZFqx9XRTkHtGyXPrJIHp5ol5uKI4DVcUp+GhOcMBBFovsXvofLMDbp8fZr0WWUlGnGtyhL2XlDSFhJyfa45d5GVuEa1GCHJghcNi1IKZUJJMOlVtZzISDGjscAWNjTtGZCHpviuLcccVhXji/cN4fdd5/PDfB2DUaXDDhLygz6pp68Rdf92B0w12zC7JxDNfHsedGeG40NqJDw/WQBCAkuxEHKttx2cnJPcCmzXPxB1231fIYxusmAlfkpPIW+n94sax2HCsHo0dbh4YHwheDwhLw7ISseX/zQkaDxN6WxXh6+GiN0x6LV5/YDpvizfzVxtQZ3Nh7eE6LBk3iM+g/8bVQ/DookA/85V3TsLc332GT4834GiNjT8jlbR1enD9Hzajvt0FvVbAtOJ0PDBrCK4anhGxddzqg7X4/GQjtBoBPr+Iv3x+Fsdq2/GnuyeHbYnHWmndMqUAv19/EnsrW3HnX7djRHYi9p1vxfj8FPz0ulHQhOy82+vHx4dr0eH0QqcRMCo3Cb/+WHJYjRyUhNxkE9Yfq8fuiuagZ8HBqjZ8cKAaG0804JjsRLzQ2omv/X033nigLGxek9vrxx83nMSqrRVcfASk5927D84Muu/DseNMEzISjTFzdkJxeX14bt1J/G3zWbgVQu3ucy24YUJeUJbMibp2HK2xQa8V8Ltbxge15xuaaYVZL/07dKbRjmFZCWh1uHG6Qbp+lZ8zKNmMl746Neh3QMqCcXp8OFwtuaiYMMLISzHj4fkj8I2rh+CKp9bjXJMDO842Y/qQdO4aUyNWGHQaTCxM5dleannw6qFcAIyUdUIQRN/x0ksvRX3fZDJh5cqVWLlyZcRlioqKsHr16u4eWq/C2v2ZSBghCIIgCIIg+hnkGOllWGuOnCQTb5cRrpXW+WYHXF4/jDoNlowdhAdnD8W35wzjbbQKebEyUNitsznxdrnUEufB2UP566zVT3hhRCrQ5aWEF0a0GoG3yWFh8AExRRrDlcMCOSEjshOh1Qi8X/4+uZ1Wk12aqa/VCMhMMOIPd0zEG98ow8tfnYqrhmeg0+PD1/++G+OeWBPUjsTnF3FYDmdmLYUAqcf69xeMgCAAa4/U4WRdoO0YG+PLW6TP+c2Xx3FRBJCKXjfKBeXNtV1vgf/ur8b/vHsIn59sxH2rdgW1OArHIXl84/OTg4qAP7t+FP79zTL89svj+ez6s40d8vjk455qRkGaBXdOK8Ld04tww4Q8DMtKwF+WTUGSSYe2Tk/Ytj9bTjXiv3JBjLUu+ziCg4Nhd3nx8Bv74POLuHliHr49RwoD1WgEDMmUzvHpMNtq7HChod0FQZBcH9eNy0VJdiJsTi9e2Hg6aNnqNifanV7otQKuLsnEg1cPRWaiEYOSTRiaZVU4kLoKI4er27DxRAM0AvDdecO7vM9bacmuEFbgHJpl5UHejR3Rz1WTPXzIeTRY660Us75LoToUiz5QBI/lFmGEew5U8HDzwGeYDVo8ffNY3D29CIDk/FFyvtmBW17cxo/LZ8cbsOh/P8e+861S67l/lOPWF7cFuSDYtTUiKxGLxkiB6SxPJVd2M7BWWtWtnfD5xbCOESUGnYbP1me5OqHB65FgxfZOj48XUiKJEWPykjG5KBVGnRZfuaIQAPDKtgoAgRDu6cXBgezFGVYeDP9iyLXLeHbtcdS3u6ARAI9PxOZTjVj2t524/o+b8eGBmi6uhQ6XFz//QHKgLL9mGP5892RYDFp8frIRd7+0E5tPNnZpW8WEkamDU/GdOcOg1QjYcqoJL2+pwN7KVqzaWoFn153oMrbXdpzDd/61Fz9+9yB++PYBXPeHzfj8ZCOMOg3+cMcE3CEfByYMAZJz7o6/bMefNp3Bsdp2WA1aPLqoFKkWPQ5UteH7b+0LclQw/vL5Gfx+wynYnF4UZ1jxtSuLkZtswpkGO+57ZRee/+Qk3i6v6uJMauv04Dv/2ovb/rwd1/9hMxcV1FDRaMdNK7fixY2n4fb5MXVwKn53y3hcIbfFCm0vyFopXj0is0tmkU6rwahcSfhiz+i9sruwOMOKtAgZR0DALVXd2onD1W3w+ERkJBj4vRCKxaDD9eOl6+pN2fGm1jHyRRiVm4TFY3MgCODbJwiC6G90yt87LCSMEARBEARBEP0MEkZ6mdq2QAsVNnu6MUz7nxNyoX9YVgK0GgE/urYU319QwouEhXKBplIhjLy79wLcPj8mF6UGiQis5cxHh2rw18/PBBX2qmJkjADA8GxpJjgrorKWOqxINL4gBVZ5xvEIedkJsjDCckZYLkRGgiGouKzTarDyzkm4fWoBspOM8PjEoILv2cYO2N0+mPXaLjOPh2Ul8jY6L248E/TejjPNfBzXlHbtu37TREkYOWkTggp7+8634gdvSVkuBp0GFU0O3P/KLqw5XBuxVRUTE9i+MwRBwJTBaTAbtLyF1NlG6diFikuhmPRalOZIRb3jtcGiz4Zjdbhv1S4AwM2T8vDw/BEAgE0nGtEeJnOG8bfNZ9HY4UZRugVPLx0bVHBmx/ZUmBZXrKg4ON0Ki0EHrUbAIwslZ8yqrWe5g0Maq41/nl6rQarVgHUPz8LH35sFo06LYlmAOdPYdTvsHF43LnyQfGgrLXY9Ds1M4KHbah0j7LMqmx0xW06FBq9Hw2IM/NFfECNfhMGeA2xsHS4vbwlWlBZ8HARBwFdnDgYAHLzQBq9iRv2z606gqqUTg9MtWHXvVJTmJKLJ7sadf9mOW1/cho8P12JnRTPKzwWKy1WKe5k5Phi5slianWiCXivA6xdR09YZ1jESCguPPnhBuh6Y6JOeEP0YJhp1vNVWqyOQSxKLr0wrgkYAdp5txr7zrTjTaIcgdJ3hD0iz7AHg/f3VXYSxQxfa8A/5+fOP+6fh0x/Mxn0zi2HWa3Hogg3LX9uDe/62M0hIeG/vBdTanChIM+Nbs4diwegcvPq1aUgy6VB+rgV3vbQDk3+xDvvkorwoiryVXm6KGSsWlGDjI7PxzauHYllZEb4li9p//PQU3t1bFTS+HWel59qoQUm4clgGEuVn++NfGo1hWYmYLGevnG6wczGKCWNpVgOevXU8PnvkGnzj6qF48a7J0GsFrD5Yi9+tO97lOG2TnXrfnjMMn6y4Go9dNwp/vWcqLAYtys+14LlPTuD7b+3HzrMBEcbj8+OWF7dy0dbh9uFrr+xW1bLL4fbivlW7cKTGhlSLHn+6ezLe+uYMLJ2cj/kjpec8y/pgx5G10Qp1TjHYdXhAzs3ZK1/7rPVVJNi1X9PWybc5sTA1okgHSO4fAFh9qAYtdjdvlxbuWdadPHfbBGz+0RxMLkqLvTBBEEQfEMgYIWGEIAiCIAiC6F+QMNLLVLfKjpFkMzLk4qzdHZgdzWDCSGixncEcI0phhM2SZq4SBmv/8/KWCvziw6N4e0+g2HYhRsYIEMg4OcmEEbmlDiv86rUaXDlcco2MzZcKUawlyN7z0pjq5XyRcG19kkx6/GrpOHz4nav4dto6pQL/QbkoPzo3qUueAwA8OFtyPfxn3wW+DQDYfU4q1rGZxqFMLEyFXiug1S2gsiWQA/K/n5yA2+vHvJFZ+M/ymUgw6rCnshXf+Ec5rnxmQ1h3Dzsuw7Iit4xhwggLro6V7QKAF6qVwsiZhg488PdyuLx+zB+VjV/eNBYjshMwJMMKt8+P+1/Zje+/uZ/PSGe02N28pdX3F5R0ac3FhJHT9cFOjo8P1eB7b+wDIDliGHNHZmFSYQqcHj/eUuRdsCwSZZE9xWLgLaVK5ddPN9jhcAdm0Z9rsuPDA1KR85tXB9xOSpj4wYqspxsUwghzXUTI62GwYvG4/BRoBGkWY8xcErt0LSrzRSKhzBiJdm6VpIc4Rths/7wUc9h2RcXpViSadHB6/DhRFxCYWIH6FzeOxeySLLz94AzMGJoOu9uHI3IrNOXnA8HCaGmIMDJILg5rNAJ3lJ1v7uTX8OCMyMJPQBhpBRAQfWI5RgRB4NdKsyyMRCtGM3KSTTz75mf/OQRAag0W7viNyUvGrBGZ8IvAP7ZXBL338w+OwC8C14/PxcxhGSjOsOKn14/Clv83B9+ZOxxmvRabTzXyHBwA2HZGEhBumVzA24RMKkzF2w/OwM0T85CRYITT4+duPpvTC7v8vM+VWzblp1rw/xaV4skbxuCH15ZyceTp1ceCRBiWp/TT60fh1a9Nw76fLcDen8znTpFUqwEjsqV7ebcsAmyXx3flsAzcPCmf30fThqTjVzePAwCs/PQ03tt7gW9HFEUckN0+C0fn8GfvqNwkvPFAGZaVFaFE/rdpiyIH6XC1DSfqOpBg1OHv912BoZlW1LQ5cfuft3OBNRK/+vgEzjTakZ1kxMffm4WFowP/jk0qSgEgBakzIXPf+VZUtXTCYtBiniychMKuQ7btPbJQH04wU6JspRWaLxKJiQUpGJ6VAKfHjz9sOAWfX4RRp+EibE9h1GkjOj4JgiD6Ayxb0aynPzsJgiAIgiCI/gV9Q+1lDlezGfVWJBp1PBg9tODOCp7Ds8MX2wtCWmmJooi9lWw2bHABh81+ZfXFdUfqAEgzuNh2o81u7yKM8FnmgXV+fsMYPPPlcVg6SeprzxwjJ+s70O708OJzZpQiUUaCkbfnYbOr2UzfMXnJYdeZUJCCcfnJ8PpFfH4iUKBjmSdTisIXs8wGLS/0s4Kyy+vjTpMfLCzByEFJeOMb03HHFYVINuvR7vTy95Ww4zI8gogFAIO5Y8QOURRVOXVKB0mfd0whjGw4Vg+vX8SUolT8352TYNJrIQgCrhufy/fl7T1VXdoEvbjxNNpdXowalITrxnZtucKFEYVjZOvpRnzz1T1odXgwNi8Zj1xbyt8TBAFL5QyDjXImBRAQcULdB4xByWYMSjbB5xex/3ygUPrBgRr4ReCq4Rm8/U0orF1WA2+lFb9jhLk/BiWbePGzMkbOCG+lFSNTAQAsitmQ8bbSYmPfeFw6nrMiZAZoNALGy62q2H1SZ3PiQmsnNAIwQZ4NbzXq8LevTsXNE/MwclAS7imTWnAxARUIbqVXmGYJCkZlrbSU+7LvfCvsbh8EIfq1ywTSU/UdcLi9fN9iCSOA1LIMAG9hp8IwAgC4YbzkGtgvPzOmDI5cyF4mtyN7Z88FHth+qr4dO842Q6sR8OPFpUHLp1kNWDF/BH4gO6WeWXMMzXY3RFHEDll4UGZWANLz4NnbJuDXS8cCANYfrYMoily0TLMawmZ7AMD35o1AglGH+nYXF4frbU5UtzmhEQIFf61G6OJkmiK7BXfLAhgTRqYN6SoSL52cz0WYZz4OiDCVzQ7YnF4YtJou4vzY/GQ8ecMY3Cs7l7Yrnol7ZDHmiuI0zBqRiZe/egVykkw402jHTf+3Bb/++FhYcflwi4B/7ZKEo9/dMoHf64zRucnQawU02d38fv34UC0AKU8r0nFk1+Gh6jZ4fH5+v8QSOXgrrbZObDhWL6+TEnUdQRBwt3yPrdp6FoA0gSFW+z2CIIiBDnOMUPg6QRAEQRAE0d8gYaQXCRUvBEHgM91DC7rMMVISwzFS1SL1/a9sdqDJ7oZBq8GYvODC8o8Xj8TKr0zC61+fDgDYfLIRTjkIHJDa1ySZI4dKMyfE6foOiKLYxTECSPkPt04p4DOLMxONyE81QxQlcYO1P4o1e5YVrFiBjc30HZcfXhgBAhknbOZys93N2yxNGRy5vcgV8ns7zkrb2lvZik6PDxkJBn7cR+cm4+mbx/L+7fvlWdQMj8/PZ9CrcYycbbSjxeHh/ZZZAS4cpWEcI2y2/7xR2dBrA7fvt2YPxbO3jsd9M4sBBIsVPr+IN2VXx4r5I8IW6vg5bujgM7LfLpdmkC8ak4O3H5zRZVbyrOFS4X5PZSt3+LCxhroPlPBzrMgLYO2dZpd0bXvGULbSEkWRtzAbmmXlwki4oquSRrnYnp5g4CLcv8ur8MGBal4gD4UV6KNlEjCsRmXGiFrHSHArrU3yuYsWpjy+QLofmIOA3S8lOUm8dR4gtWR79rYJ+Oi7V+GOaZKrYE9lC2/BFWjpZoZGI3C3ARBwjEj7Ih0r5irITTZHDVHNTjIhK9EIvwgcqbbx7JdYrbSAQM5Ii9y6TqPCMQIAC8fkwKC4J6ZGufdnl2QiM9GIJrsb649Khe83d0uF+WtKsrhoFso9ZUUozUlEq8OD36w5htMNdjR2uGHUafg5CWXmsAyY9BpUtzlxpMamaKMV+d436DT8/H9yVBKymeAzPCsx6DoLZaosCO2qaIHT4+PtDEOFG8Z35g5HolGH6jYnd5kwMaZ0UCIX70Nhn7fvfCsvegXcFSkApODxj757FRaOzobHJ+KFz07jyl9vwDt7gluEbaiWtnHvzMHcfajEpNdidG4y34YoilgtZyotDiP0MoZmJsCs18Lh9uHjQ7XocHlhMWiDrvNw5CSZsGBUNkQRcHn90GkEnpsTjdumFiAvxQxm8omUw0MQBHE50emRvnOQMEIQBEEQBEH0N0gY6UXCiResnZYyZ8Tp8fHCfrSZ9zqNALfPjzpboN3H6LykLm2S0qwGLBk3CFcUp2FQsgmdHh+2nW7iRdG8VHPUdjVF6VboNAI6XF6cbbQHXCYxCr/MNbLvfCuf5R9bGJHW2VPZAp9fxCE5o0CNMLL5VCNEUeRF9mFZCVGL2dOKpQLijrPNEEURW2VhZeawjC7HI3SGPuNckx1evwirQRs0wz4UJoxUt3Vyp0N2krHLuVLCZmrX2pxodUiz09ls/6khs+FNei1unpSPFQtGQK8VcK7JwQWbPZUtaHF4kGzWY3ZJ+GJ7UboFGgFod0qz+91eP9YdkWZkf3XG4LDF0YI0C4ZmWuHzS8fO7fXzfSvJCe/6AAL9/ZlIqBQMo83KZuHrHS4vn9EuCFLWBXeMqGyllW418HPy+q7zeOi1vfh3eVXYdVhLJ1UZI0rHiMqMkUxFK63KJgfONNqh0wiYMSx8IRsIXI9MqAstSIdjRFYiEk06ONw+3vIs1LnEnjdJJl2QwHKD7Eg6Lgu2agq+7J49eKGNH/fMOBwjDJW6CJLNelxTGri+owkjOq2Gu9ve2n0eHp+fF+tvm1oQdb0nbxgDQBJSWFvCSYWpEe9lk16LK4dJ41p/tB7Vcs5UbgTxhTF3pCQSfiILN0wEiyTAMNh+H7rQhu1nmuDy+pGZaMSQjPBZFya9Fgvl9osszPygLMKMjeDUA6RrICfJBLfPz6+/vWFaVaVaDXjxrsn4092TMT4/GU6PHz/7z2EuONa0OXFa7vT29auGRNxeQDRvxeFqG843d8Kk10R8pgGSo2a07ED7w4aTAKR7R6eN/tVHEAT8edkUvP3gDCydlI+fXj8qoitFiVGn5ZlPgHrXGEEQxECmkzJGCIIgCIIgiH4KCSO9SDjxQhkCzThSY4PXLyIjwRCxd7hWI/AMg8pmBw+IjdYiRBAEXmxbd7ROVc4FIM1eZq2gPpPb/CQYdTwLIBI8Z6Syhed/RGulpVxn3/lWnKxvR6fHB4tBi+KMyDN8JxWlwqjToL7dhVP1HbyFTKh40GVbBSnQCiJqbS6cb+7EZiaMDO06Y5mJPAerggOvT9YF8kWiiUvpVgMSjTqIYsDZEq0VEQAkmvT8/B+rbceZRrskrOk0EVuLJRh1mCKH8DLXCJtxPrskM2JB0KTX8iLe6Xo7tp1pgs3pRUaCIarr5uoRWXxbZxo74PWLSDTpoopEk4qYY6QVoihyF41Bp+GzwiPtGxMeWDB0QaoFJr02SFyIRjN3jBhx35XFuGFCLne37DrbtU0aEHCMpKpopaWcyR/r/DKUjpGNJ+S2PUWpSDJF3h67Hk/UtcPu8qrKTtBoBN5abmdFM5yKfBX2DGCCVm7Ic2fakHR8/api/vvgCEV2JewaPVjVpjp8HZDyQoLGHUcnohvlEO78VHOXfQjllimSMPLp8Xr8Zs1xNHa4kZFgjFpoB6Q2UTOHpcPnF/EnuWVdJDcGYx4XOep4KHes8V1TkgWNABytsaGqxcFFsPHyuY9EXooZeSlmeP0ifvDWAQDAtOK0qM8ndtw+PFgDt9fPHSPRhBFBEHh7ru1nmoPauYWOURAELBydg3e/NROlOYlod3l5u78PD9ZChICpg1OjHhOWM7KnsoW30bp6RCYshsjuGUB5rzAXYfR/F5RMLkrF724dj2Vlg1Wvc9PEPN5+MpqLkCAI4nJAFEUujFjIMUIQBEEQBEH0M0gY6UXCiResUKkMsOUzg/NTohazlDkjagNi58ohteuP1vGsEDUF3GFyBsWnx+vldaK7TICAM2Df+VbeSiszTPi6ktKcRFgMWrQ7vXh9p9T+aUxuctjgdYZJr+WzpDefauTtpphAEAmzQYtCuW71/oFq3qpmZphWLkMyE5Bg1KHT48MpRQ7HKd7OKXoBTBAEXkzefJIJI7FbLSnbaTHBZ0JBSlSnydVyYfcz+VyxVkGRAooZypyRj+U2NQsUwcvRt9WAYzWBNlrRro3RuUkwaDVotrtxrsnBi/pj85Ijtu1hMCFxzeFaeczWoNeb7G4osqq7wNpVpVsNGJqZgOdvn4hH5NyIgxHCoVlLp1QV4etMuMlIiJwfEQrL3Wiyu/CpLDzGKs5nJZmQm2yCX5Rm6bOxT4qQqcNQ5k+wrAurQcvzU+aUZiHJpMP8UV2vFZa7A0Ru8aeEOUb2nm9VHb4OAN+8emiIu0G9MnLtmBw88aXReP72iTGXHZqZgCsGp8EvAn/edAYAsHRyXlCLukh8a/YwAODX2vQw+R1K5sjCyIGqNmyXRb1YgdmpVgN/hq0/Wh/070I0BEHAT64bBZ1G4IJULOGmbGg6MhKMaHV4sOlEQ0AYieLUU37u9jNNQe3cIrX60mgE/PBa6X5btbUCtW1O/He/9Kz50rjILbGAwL9th6tt/HxFa6PFeGDWEHz9qmJ8ZVohvjFrCO6dWRxznS+CViO5TVbMH8FdSQRBEJcrLq8fcofWqC04CYIgCIIgCKIvIGGkFwknXrDC8rYzTbxPe6BlSkrUz2PCyPHadh7QzWbVRqJsSDosBi3qbC6eF6CmQM9C4D+Xi/pqWoSMGpQEvVZAY4ebh6jHcozotBpeUF21tQIAMLU49gzfmXI7rVVbK7jAEa2VDmNkiuT++M2a4/D5RRRnWMMWLLUagc+e3q9op8WD17NiF4pZ6ybWx1/NcWetjY7VtvNA+VhOGJZNsO1ME07UteNUfQd0GoFfa5FgIsOJunasPSy5TBaPiV54nFacBpNeg1qbE69uPxc05kgYdVreSm5PZYuqNlCMq+RcEyYgMDEnzWqAIEiF6g5P5PXDORfYeT3V0AG7y9tlHRa+ripjRJ69rtYtohyLxyfyoOdo+SIM9nxY+ekpuL1+pFkNGByjxdUVxdI9sauiBecVbbSYkFWcYcW+ny7A9xeUdFnXqNPi7/ddgaduGhO13RQfX34KDDoNzjZK7eYAdcewKN2KD75zJe6aXoghGVZMHZwScx2GIAi4Z8ZgTI4hEDF+c8s4fHXGYIzOTcLQTKtqZ8CMoen8OSXli0QfY1aiiR979nyK5RgBAu20nvn4GGxOL4w6Tcz7C5AEoj8vmwyDTgONEGg3GAmtRuA5Sj/772G0O70w6LoGr4fCc0YqW7H2iPTMiHUfX1OShamDU+Hy+nHDys04WtsOrSBi4ejI+UKAdLyYYOf2+WE1aDGnNPo6gCQi/s+SUfjlTWPx6OKRqq7BL0pxhhXfmTucioAEQVz2sL9tAMCspz87CYIgCIIgiP4FfUPtJewub1jxoiQ7EdlJRjg9fu50YIWzWMU2FsD+9p4q+PwiBiWbIoYGM0x6Le6dORgAUGcLbqMTDaXIkJFgwB1XxC6MmvRaPHTNcAiCFAAOSLkasVAKR0vGDsKD8uzsaLDC37kmB3x+EYvH5qgKv75mkIibJuby32cMjZLrwDNTAs6CgDASu2XKbVMLgvZ/bF5KzHVYEfRAVSt2yq2eorW2AiTHBrumHnptDwBg2pC0qK2ZgIDI8Or2c2iyu5Fi0fNWOZEw6bXcibJbMWM8FsoAdjbTPJbbCQB+eG1J0PXKnDo6rQbpcsGzPYIw4vb6YXNKwke6NXAespJMyE4yQhSlNnahsPZbKSocI4WyMBGtBVEoRp2Wi1I6jYDrxg3CqEGxj+FshagKSK3hYrm4xuYlw6jToLHDxTNkQu9/TRSHUGaiEXdOK1JV8E1PMOIPd0zkLfeSTDrVhWKLQYdf3DgWG34wG4PTY7ftuliK0q14/Euj8eF3rsL678+O6eJgCIKA78wZDgCYNSJT1X79/vaJuHlSHndgqRE4bplSgOFZCbC7pcLSmLxkVY4WAJhTmo3V37kS//zadFWtz+6bWYyMBCNv9TVyUFLMbQ1Ot2BIhhVunx/vykJ7rPtYEAQ88aUxyEw08n+DRqaIqhxZf1k2BTv/Zy5evGsy3vrmDCTGeKYRBEEQfYtD/vdLK4gx850IgiAIgiAIoreJ3pw7DJs2bcJvfvMblJeXo6amBu+++y5uvPFG/r4oivjZz36Gv/zlL2htbcXMmTPxwgsvYPjw4XyZ5uZmfPvb38b7778PjUaDpUuX4vnnn0dCwqXVj3tnRTMcHoRtOwNIxwKQCkH7q1rDiheCIODqEZl4c3cVNh5vwNi8ZJyVQ7PHx2hjwgqGrNWPmlnmAPCDBSXw+kX8aaPUjkSN+2PWiEy8t3wmEk06DMmwxizAMr47bziWjMvBS5srYNRpVBUe77iiEKfqO3DtmBzcNDFP1bZG5SahIM2MujYXfnhtCe6bWaxqPYMWeOb6MZg3Mgfv7r0Qtc3KBDn0eG9lCzrdPpxp7MAZua0Wc9REY+awDGx/dC7ONTnQ7HBjYgzhCwAvkB+ulgr2gqCu8LhozCCs2lrB++rPLY3eRgsAhsuzw/2i1F7pZ9ePUlWEffrmsShKt+Dv287B5fFHFZcYk4tS8dfNZ/HW7iq45cyWWG2gACl35X9vm4Bb/7QNfjFYkMpMNKGxww2bJ/x5Z84PrUboko8zNi8FdbY6HKhqCxIB62xO1MvF2wwV+RjzR2bj3W/NQKkKcUjJvx6YjsomB0bnJqtuwXXrlAL4/MCLG0+jstnBA7SjYdJrMbskE2sO1/GweTXC6MWycHQOxuUn4zdrjsdsAXWpMW9UNlZ/5yrkqTx+OckmPHvrBPxgQQma7W5V+RNpVgM+/t4srD5Yg48P1eKu6UVxjXFYViKGxTZVAJD+HVjzvavwo7cP4JOj9bgqhssEkJ41f7lnCr77+l4cuiA9o9S4dUblJuHzH16Df5dXYePxekw2VKsbJCT3zbUqrnWCIAii72H5IgbSRAiCIAiCIIh+SNzCiN1ux/jx43Hffffh5ptv7vL+M888g9///vd45ZVXUFxcjJ/85CdYuHAhjhw5ApNJype48847UVNTg3Xr1sHj8eDee+/FAw88gNdee+2L71Ev4fQB9/99D5weP74zZxgenj+CF+KrWhz46+dn8XZ5Fa4bn4tf3jQG/9krFX7CFX+vHpElCSMnGnCVLG4UZ1hjzlCfOzILX7uyGFqtgCsGp2GWSmFEEAT8v2tLMSTDiqqWTlWz04FAiG28DMtKxNM3j1W9fEGaBX9eNiWubWg1Aj546Cq4fD5kxcgxCceScYOwJEaP+wkF0rk7VtuOkT/9mL9uMWhVt05iWSODoW4W/LCsBCy/Zig+OliLM412XD0iM2boPQA8tmQkZpdkYldFMzqcXtyuwuEzqTAFjywsgUYQ8JUrCpGsImwckMSKRxaW4luzh8Hh9sVslwZIReXZJZn4TG6JlZdiRnaSuvM2ZXAanr99Io7XtgcVYTMTjThaA7S7A8s63F6YdFpoFHkLqRZDF1fEuPxkfHK0DodCckae+vAo3D4/JhSkcIdWNDQaARNVOF9CyUo0xX3dCoKAr0wrxK1T8lHT5lQtcCwaMwhrDtfB6ZEEqXjafl0Mg5LNePbWCT26jb5iVG58AhggtYRS00aLIbW5ysX143NjL/wFSU8w4i/LpuBck0PV9Q5ITrN3HpyJv24+A1GEKncKIIl0d00vwm2Tc7F6tXphhCAIgrh06HSTMEIQBEEQBEH0X+IWRhYtWoRFixaFfU8URfzv//4vHnvsMdxwww0AgL///e/Izs7Ge++9h9tvvx1Hjx7Fxx9/jF27dmHKFKn4/Yc//AGLFy/Gb3/7W+Tm9nzxpzs42SbwwuLvN5zCrooWJJl1OFnXgTOy4wMA/rWzEma9Fm/sloLEvzpjcJfPunJYBjSC1Jbp9Z2VAGK7RQBAr9XgsetGXdT4BUHAbVMLL2rd/opUyO+51io5ySbMHJaOLaek1kUJRh0mFaXijqkFUQPKvwiCIOCRhaV4ZGEpbE4PEgzqblmdVoPZJVmYXaJyuri8reXXxG5bFgmrURcxdDkUvVaDv90zFau2VuDZdSewdFJeXNuSCsXBr2XKwd42D+D3i3hx42k8u/YExuQl4W9fncpbYoVzfrDWVweqWvlrn59swH/3V0MjAL+4cYxql1Rvo9NqVLm+GHNGZkGvFeDxSY62nnSMEJceTLyNB4NOwwPpCYIgCILBHSMUuUQQBEEQBEH0Q+IWRqJx9uxZ1NbWYt68efy15ORkTJs2Ddu2bcPtt9+Obdu2ISUlhYsiADBv3jxoNBrs2LEDN910U3cOqcc42ioVSYdnJeBkfQfv88+YMTQdBakWvLH7PP625SwAYOmk/LCB4MkWPcqGSgX3jw5Jff9j5YsQfcOr90/j/ZJNem2PCSLhiJURcqmh0Qi478pifHXG4Ki5FmphTpVml4D7/r4HW05L9+Seylbc9qftGCa3O0sPI4yMkYWRM412PL36KNYcrkVFkwMAcNf0Iv7+QCDJpMdVwzN50HtPO0YIgiAIgrg8IccIQRAEQRAE0Z/pVmGktlYq6mdnB+cZZGdn8/dqa2uRlRU8i12n0yEtLY0vE4rL5YLL5eK/22xSL3OPxwOPJ0LScg/idru5MPLIguFItehxuEYKVh+UbMLkwhQkm/Xw+vw4Wd+OPZWtSDLp8Mj8oRHH++ubRuPZT07hv/trAADTilL6ZN8uJ9jxjfc4sz/u/D4v/L7uHtXlia8bjmOaRXqc7awX4KlrglmvwbeuHoJ/7DiP43XtOF4n3aNFaeYu5zzFpEFOkhG1Nhf+tEnK3hEEYMaQdHz3miED7l6cPzIgjGQl6Pr1/l3sfUpcGtD5HXjQOe1Z6LgSlxLMMaInYYQgCIIgCILoh3SrMNJTPP3003jiiSe6vL527VpYLL0/27muE2h26aAVRLSe2IVOLcBSBZyNwJbTgWWvzwC8HRpMy3Rhx6b1UT/3ahMwfoKUX3KyfBNO9tgeEErWrVvX10MguoELjQIALTyiJFreUOBBof0YvjEMeLdCA6sOGJokYiIqsHp1RZf1h5k1qLVpUJQgYk6uHyOSRVh0ddj86cC7PkQPkKjXwqoDtn32Cfppl7Ag6D4d2ND5HXjQOe0ZHA5HXw+BIFTDHSNasY9HQhAEQRAEQRBd6VZhJCcnBwBQV1eHQYMCQdZ1dXWYMGECX6a+vj5oPa/Xi+bmZr5+KI8++ihWrFjBf7fZbCgoKMCCBQuQlBR/+O0X5aXPzwA4hSsGp+Gm66fGXP6unh8ScRF4PB6sW7cO8+fPh14/sNpUXY6kn23GKyd3AwCK0y342bIZ0GmlKYrLVKw/z+tHk92NnCRjv80T6U7mzXdDr9UgQWUuTF9B9+nAhs7vwIPOac/CXNMEcSnAM0bIMUIQBEEQBEH0Q7q1IlZcXIycnBysX7+eCyE2mw07duzAgw8+CAAoKytDa2srysvLMXnyZADAhg0b4Pf7MW3atLCfazQaYTQau7yu1+v75I/uLWdaAACzSzLpj/4BQF9dR0T3kpMSCIx+eN4wmE1dnxnR0OsBqzm+dS5lspIvrWue7tOBDZ3fgQed056BjilxKUEZIwRBEARBEER/Jm5hpKOjA6dOneK/nz17Fvv27UNaWhoKCwvxve99D7/4xS8wfPhwFBcX4yc/+Qlyc3Nx4403AgBGjhyJa6+9Fl//+tfx4osvwuPx4KGHHsLtt9+O3NzcbtuxnsLp8WFnhSSMXDU8o49HQxAEozjDilnD09HR3IBrR2fHXoEgCIIgCILoMbhjRNvHAyEIgiAIgiCIMMQtjOzevRvXXHMN/521uLrnnnuwatUq/PCHP4TdbscDDzyA1tZWXHnllfj4449hMpn4Ov/85z/x0EMPYe7cudBoNFi6dCl+//vfd8Pu9DxajYAX7pyANz7ZjWGZ1tgrEATRK2g1Al5aNhmrV6++LFphEQRBEARB9GeuHpGJBIMG9acP9fVQCIIgCIIgCKILcQsjs2fPhihGDtATBAFPPvkknnzyyYjLpKWl4bXXXot30/0CvVaDq4ZloP2En4qvBEEQBEEQBEEQYRiTl4ySLAtWNx7s66EQBEEQBEEQRBeo4ytBEARBEARBEARBEATx/9u799ia7z+O46+iF6Xq1osORTAzQtaJnlhmQ6pio3QxIgubCFYEsSwSGdsy1t1sv7hkW9z2B0biEmXL6lYzxciRqEnZ1imhJTXVubSdfn5/SE8cPeXUWj3fz3k+kvNHv99Pv9/P9/M6+ea88+63BwCAoEFjBAAAAAAAAAAABA0aIwAAAAAAAAAAIGjQGAEAAAAAAAAAAEGDxggAAAAAAAAAAAgaNEYAAAAAAAAAAEDQoDECAAAAAAAAAACCBo0RAAAAAAAAAAAQNGiMAAAAAEA9Wrp0qQYMGKCoqCjFxsYqLS1N+fn5XmPu3LmjjIwMtWvXTi1btlR6erqKi4u9xhQWFmrkyJGKjIxUbGys3nnnHf37779P8lIAAAAAK9EYAQAAAIB6lJOTo4yMDB05ckTZ2dmqrKxUSkqKbt686Rkzd+5c7dy5U1u2bFFOTo4uXbqksWPHevbfvXtXI0eOVEVFhQ4fPqz169dr3bp1eu+99xrjkgAAAACrNGvsCQAAAACATX788Uevn9etW6fY2FidOHFCL774okpLS7V69Wpt2LBBQ4YMkSStXbtWzzzzjI4cOaLk5GT99NNP+u2337Rnzx7FxcWpf//++vDDD/Xuu+9q8eLFCgsLa4xLAwAAAKzAEyMAAAAA0IBKS0slSW3btpUknThxQpWVlRo2bJhnTK9evdS5c2fl5uZKknJzc9W3b1/FxcV5xgwfPlw3btzQ6dOnn+DsAQAAAPs48okRY4wk6caNG41y/srKSt26dUs3btxQaGhoo8wB/x052odM7UOmdiNf+5Bpw6r+7Fv9WRjOUFVVpTlz5mjQoEHq06ePJKmoqEhhYWFq3bq119i4uDgVFRV5xtzfFKneX73Pl/LycpWXl3t+rm7IXLt2TZWVlfVyPXVRfU8oKSnhnuBQZGgfMrUTudqLbO1Dpg2rrKxMkn81kyMbI9UX2KlTp0aeCQAAAPBklZWVKTo6urGnAT9lZGQoLy9Phw4davBzLV26VO+//36N7V27dm3wcwMAAACBwp+ayZGNkYSEBF24cEFRUVEKCQl54ue/ceOGOnXqpAsXLqhVq1ZP/PyoH+RoHzK1D5najXztQ6YNyxijsrIyJSQkNPZU4KeZM2cqKytLBw8eVMeOHT3b4+PjVVFRoevXr3s9NVJcXKz4+HjPmGPHjnkdr7i42LPPlwULFmjevHmen6uqqnTt2jW1a9eOugmPhQztQ6Z2Ild7ka19yLRh1aVmcmRjpEmTJl6FRWNp1aoVb2ALkKN9yNQ+ZGo38rUPmTYcnhRxBmOMZs2apW3btunAgQM1nthISkpSaGio9u7dq/T0dElSfn6+CgsL5XK5JEkul0sfffSRrly5otjYWElSdna2WrVqpd69e/s8b3h4uMLDw722PfjvuhoD9wTnI0P7kKmdyNVeZGsfMm04/tZMjmyMAAAAAECgysjI0IYNG7Rjxw5FRUV5vhMkOjpazZs3V3R0tKZMmaJ58+apbdu2atWqlWbNmiWXy6Xk5GRJUkpKinr37q033nhDn3zyiYqKirRw4UJlZGTUaH4AAAAAqBsaIwAAAABQj1atWiVJeumll7y2r127VpMnT5YkLVu2TE2aNFF6errKy8s1fPhwrVy50jO2adOmysrK0owZM+RyudSiRQtNmjRJH3zwwZO6DAAAAMBaNEYeQ3h4uBYtWsRfajkcOdqHTO1DpnYjX/uQKXCPMeaRYyIiIrRixQqtWLGi1jGJiYnavXt3fU7tieKe4HxkaB8ytRO52ots7UOmgSPE+POpHQAAAAAAAAAAwAJNGnsCAAAAAAAAAAAATwqNEQAAAAAAAAAAEDRojAAAAAAAAAAAgKBBYwQAAAAAAAAAAAQNaxojS5cu1YABAxQVFaXY2FilpaUpPz/fa8ydO3eUkZGhdu3aqWXLlkpPT1dxcbHXmNmzZyspKUnh4eHq37+/z3Nt3rxZ/fv3V2RkpBITE/Xpp5/6NcctW7aoV69eioiIUN++fbV7926v/Vu3blVKSoratWunkJAQnTx50u/rt4UNOS5evFi9evVSixYt1KZNGw0bNkxHjx71fxEsY0OmkydPVkhIiNcrNTXV/0WwjA2ZPphn9cvf49vMhnyLi4s1efJkJSQkKDIyUqmpqTp37pz/i2CZQM/09OnTSk9PV5cuXRQSEqIvv/yyxpiDBw/q1VdfVUJCgkJCQrR9+3Z/Lx/AAwL9niBRNz2KDRlSM9VkQ67UTd5syJS6yTcbsqVm8hbomVIzNQxrGiM5OTnKyMjQkSNHlJ2drcrKSqWkpOjmzZueMXPnztXOnTu1ZcsW5eTk6NKlSxo7dmyNY7311lt6/fXXfZ7nhx9+0MSJEzV9+nTl5eVp5cqVWrZsmZYvX/7Q+R0+fFgTJkzQlClT5Ha7lZaWprS0NOXl5XnG3Lx5Uy+88IIyMzMfcxWcz4Yce/bsqeXLl+vUqVM6dOiQunTpopSUFF29evUxV8XZbMhUklJTU3X58mXPa+PGjY+xGnawIdP7s7x8+bLWrFmjkJAQpaenP+aq2MPp+RpjlJaWpj///FM7duyQ2+1WYmKihg0b5nUNwSTQM71165a6deumjz/+WPHx8T7H3Lx5U/369dOKFSvqcOUAfAn0ewJ106PZkCE1U0025CpRN93Phkypm3xzerbUTDUFeqbUTA3EWOrKlStGksnJyTHGGHP9+nUTGhpqtmzZ4hlz5swZI8nk5ubW+P1FixaZfv361dg+YcIE89prr3lt+9///mc6duxoqqqqap3PuHHjzMiRI722DRw40EybNq3G2IKCAiPJuN3uh11iUHByjtVKS0uNJLNnz55axwQTJ2Y6adIkM3r0aH8uLyg5MdMHjR492gwZMqTW/cHMafnm5+cbSSYvL8+z/+7duyYmJsZ8++23j77gIBBomd4vMTHRLFu27KFjJJlt27b5dTwAjxZo9wTqprpzcobVqJlqcmKu1E0P58RMH0Td5JvTsqVmerRAy/R+1Ez1x5onRh5UWloqSWrbtq0k6cSJE6qsrNSwYcM8Y3r16qXOnTsrNzfX7+OWl5crIiLCa1vz5s118eJFnT9/vtbfy83N9Tq3JA0fPrxO5w5GTs+xoqJC33zzjaKjo9WvXz+/52czp2Z64MABxcbG6umnn9aMGTNUUlLi99xs59RMqxUXF2vXrl2aMmWK33MLJk7Lt7y8XJK8jt2kSROFh4fr0KFDfs/PZoGWKYDGFWj3BOqmunN6htRMvjk1V+qm2jk102rUTbVzWrbUTI8WaJmiYVjZGKmqqtKcOXM0aNAg9enTR5JUVFSksLAwtW7d2mtsXFycioqK/D728OHDtXXrVu3du1dVVVU6e/asPv/8c0n3HjGsTVFRkeLi4v7TuYONk3PMyspSy5YtFRERoWXLlik7O1vt27f3e362cmqmqamp+u6777R3715lZmYqJydHI0aM0N27d/2en62cmun91q9fr6ioKJ+PwAY7J+Zb/eF0wYIF+vvvv1VRUaHMzExdvHjxoccNFoGYKYDGE4j3BOqmunFyhtRMtXNqrtRNtXNqpvejbvLNidlSMz1cIGaKhmFlYyQjI0N5eXnatGlTvR976tSpmjlzpl555RWFhYUpOTlZ48ePl3Svu1pYWKiWLVt6XkuWLKn3OQQLJ+f48ssv6+TJkzp8+LBSU1M1btw4Xblypd6vw2mcmun48eM1atQo9e3bV2lpacrKytKvv/6qAwcO1Pt1OI1TM73fmjVrNHHixBp/tQFn5hsaGqqtW7fq7Nmzatu2rSIjI7V//36NGDFCTZpY+bGnTpyYKYCGwz3B+ZycITVT7ZyaK3VT7Zya6f2om3xzYrbUTA/nxEzxeJo19gTq28yZM5WVlaWDBw+qY8eOnu3x8fGqqKjQ9evXvbp7xcXFtX5pjS8hISHKzMzUkiVLVFRUpJiYGO3du1eS1K1bN7Vp00YnT570jK9+5Co+Pl7FxcVex6rruYOJ03Ns0aKFunfvru7duys5OVk9evTQ6tWrtWDBAr/naBunZ3q/bt26qX379vr99981dOhQv+doGxsy/fnnn5Wfn6/vv//e73kFCyfnm5SUpJMnT6q0tFQVFRWKiYnRwIED9fzzz9dlCawTqJkCaByBek+gbvKf0zOkZvLN6bnej7rpHhsypW7yzcnZUjP5FqiZomFY0wY0xmjmzJnatm2b9u3bp65du3rtT0pKUmhoqOfNJkn5+fkqLCyUy+Wq8/maNm2qp556SmFhYdq4caNcLpdiYmLUrFkzz4e77t27e97ALpfL69ySlJ2d/VjntpmtOVZVVXn+h2OwsTHTixcvqqSkRB06dKjz/GxgU6arV69WUlIS/8/6PjblGx0drZiYGJ07d07Hjx/X6NGj6zw/GwR6pgCerEC/J1A3PZqtGQZzzSTZmSt1kz2ZUjd5sylbaqZ7Aj1TNJDG+c73+jdjxgwTHR1tDhw4YC5fvux53bp1yzNm+vTppnPnzmbfvn3m+PHjxuVyGZfL5XWcc+fOGbfbbaZNm2Z69uxp3G63cbvdpry83BhjzNWrV82qVavMmTNnjNvtNrNnzzYRERHm6NGjD53fL7/8Ypo1a2Y+++wzc+bMGbNo0SITGhpqTp065RlTUlJi3G632bVrl5FkNm3aZNxut7l8+XI9rlRgc3qO//zzj1mwYIHJzc01f/31lzl+/Lh58803TXh4uMnLy6vn1XIGp2daVlZm5s+fb3Jzc01BQYHZs2ePee6550yPHj3MnTt36nm1nMHpmVYrLS01kZGRZtWqVfW0MnawId/Nmzeb/fv3mz/++MNs377dJCYmmrFjx9bjKjlLoGdaXl7uOVaHDh3M/PnzjdvtNufOnfOMKSsr84yRZL744gvjdrvN+fPn63GlgOAQ6PcE6qZHc3qG1Ey+OT1X6qaanJ5pNeqmmmzIlprJW6BnSs3UMKxpjEjy+Vq7dq1nzO3bt83bb79t2rRpYyIjI82YMWNqfHgePHiwz+MUFBQYY+69gZOTk02LFi1MZGSkGTp0qDly5Ihfc9y8ebPp2bOnCQsLM88++6zZtWuX1/61a9f6PPeiRYv+y9I4itNzvH37thkzZoxJSEgwYWFhpkOHDmbUqFHm2LFj/3ltnMrpmd66dcukpKSYmJgYExoaahITE83UqVNNUVHRf14bp3J6ptW+/vpr07x5c3P9+vXHXgsb2ZDvV199ZTp27GhCQ0NN586dzcKFCz0fRINRoGdaUFDg87iDBw/2jNm/f7/PMZMmTaqHFQKCS6DfE4yhbnoUp2dIzeSb03OlbqrJ6ZlWo26qyYZsqZm8BXqm1EwNI8QYYwQAAAAAAAAAABAErPmOEQAAAAAAAAAAgEehMQIAAAAAAAAAAIIGjREAAAAAAAAAABA0aIwAAAAAAAAAAICgQWMEAAAAAAAAAAAEDRojAAAAAAAAAAAgaNAYAQAAAAAAAAAAQYPGCAAAAAAAAAAACBo0RgAAAAAAAAAAQNCgMQIAAAAAAAAAAIIGjREAAAAAAAAAABA0aIwAAAAAAAAAAICg8X8fXS50t6gnpwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from etna.datasets import TSDataset\n", + "\n", + "df = TSDataset.to_dataset(df)\n", + "ts = TSDataset(df, freq=\"D\")\n", + "ts.plot()" + ] + }, + { + "cell_type": "markdown", + "id": "12ae04a8", + "metadata": {}, + "source": [ + "We want to make two versions of data: old and new. New version should include more timestamps." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "cf92bb7c", + "metadata": {}, + "outputs": [], + "source": [ + "new_ts, test_ts = ts.train_test_split(test_size=HORIZON)\n", + "old_ts, _ = ts.train_test_split(test_size=HORIZON * 3)" + ] + }, + { + "cell_type": "markdown", + "id": "5036be41", + "metadata": {}, + "source": [ + "Let's visualize them." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "c8abaddd", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB9sAAAPzCAYAAAAXr2wFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeZgU1dk28Luq93X2FYZh30XcQEQFlU2MkbxGY2KiaKJRMXmNSUx8Y4yafBqXGDWLMRsmasymEjWIDCoiiqAoyioMMKyzb713V1fV90d19zAzvVTPwgzM/buuXLGrazl9pqaZU895niOoqqqCiIiIiIiIiIiIiIiIiIiIdBMHugFEREREREREREREREREREQnGgbbiYiIiIiIiIiIiIiIiIiIssRgOxERERERERERERERERERUZYYbCciIiIiIiIiIiIiIiIiIsoSg+1ERERERERERERERERERERZYrCdiIiIiIiIiIiIiIiIiIgoSwy2ExERERERERERERERERERZYnBdiIiIiIiIiIiIiIiIiIioiwx2E5ERERERERERERERERERJQlBtuJiIjopFVTUwNBEPD0008PdFOIiIiIiIiIhoT4WPyRRx4Z6KYQERH1OwbbiYiIaNC4//77sWLFioFuBhEREREREdGQxzE6ERFRZgy2ExER0aDBgTwRERERERHR4MAxOhERUWYMthMREREREREREREREREREWWJwXYiIqJBwOv14rbbbsPIkSNhsVhQXFyM+fPn46OPPkrss3HjRixatAg5OTmw2+2YM2cO3n333W7nWrt2Lc4880xYrVaMGTMGTz31FO655x4IgtBpP0EQcOutt+Jf//oXJk+eDJvNhlmzZmHr1q0AgKeeegpjx46F1WrF3LlzUVNT0+1aetoUv3Z1dTWWLl2K3Nxc5OTk4LrrrkMgEOjUHr/fj7/85S8QBAGCIGDp0qW6+7CtrQ1Lly5FTk4OcnNzce2116KtrU338UREREREREQAx+jx9vRmjB73y1/+EpWVlbDZbJgzZw62bduW9TmIiIgGM+NAN4CIiIiAm266Cf/+979x6623YvLkyWhubsb69euxc+dOnH766XjzzTdx8cUX44wzzsBPfvITiKKI5cuX48ILL8Q777yDGTNmAAA+/vhjLFq0CGVlZbj33nshyzLuu+8+FBUVJb3uO++8g5dffhnLli0DADzwwAP43Oc+hzvuuAO//e1vccstt6C1tRUPPfQQrr/+erz55puJY/W2Ke7KK6/EqFGj8MADD+Cjjz7CH//4RxQXF+PBBx8EADzzzDP4xje+gRkzZuDGG28EAIwZM0ZX/6mqissuuwzr16/HTTfdhEmTJuGll17Ctddem90PgoiIiIiIiIY8jtF7N0aP++tf/wqv14tly5YhFArh8ccfx4UXXoitW7eipKQkq3MRERENWioRERENuJycHHXZsmVJ31MURR03bpy6cOFCVVGUxPZAIKCOGjVKnT9/fmLbpZdeqtrtdvXIkSOJbXv27FGNRqPa9Z99AKrFYlH379+f2PbUU0+pANTS0lLV4/Ektt95550qgMS+2bTpJz/5iQpAvf766ztd/wtf+IJaUFDQaZvD4VCvvfbaFL2U2ooVK1QA6kMPPZTYFo1G1fPOO08FoC5fvjzrcxIREREREdHQxDG6pqdj9P3796sAVJvNph4+fDixfePGjSoA9Tvf+U7W5yQiIhqsWEaeiIhoEMjNzcXGjRtx9OjRbu9t2bIFe/bswVe+8hU0NzejqakJTU1N8Pv9uOiii7Bu3TooigJZlrFmzRosWbIE5eXliePHjh2Liy++OOl1L7roIowcOTLxeubMmQCAyy+/HC6Xq9v2ffv2ZdWmY910002dXp933nlobm6Gx+PJoqeSW7lyJYxGI26++ebENoPBgG9961u9PjcRERERERENLRyj940lS5Zg2LBhidczZszAzJkzsXLlyj67BhER0UBjGXkiIqJB4KGHHsK1116LiooKnHHGGVi8eDGuueYajB49Gnv27AGAtCXR29vbEQqFEAwGMXbs2G7vJ9sGACNGjOj0OicnBwBQUVGRdHtraysA6G5TXl5eymvF32ttbYXb7U55Hj0OHDiAsrIyOJ3OTtsnTJjQq/MSERERERHR0MMxeu/G6HHjxo3rtm38+PH45z//2SfnJyIiGgwYbCciIhoErrzySpx33nl46aWXsHr1ajz88MN48MEH8eKLLyZmnz/88MOYPn160uOdTidCoVDW1zUYDFltV1UVAHS3KZtzEhEREREREQ0GHKMTERGRXgy2ExERDRJlZWW45ZZbcMstt6ChoQGnn346/t//+3/45S9/CQBwu92YN29eyuOLi4thtVpRXV3d7b1k23pjzJgxutqULUEQenRcZWUl3njjDfh8vk4PED777LO+ahoRERERERENIRyj93yMHhfPuD/W7t27O5XKJyIiOtFxzXYiIqIBJssy2tvbO20rLi5GeXk5wuEwzjjjDIwZMwaPPPIIfD5ft+MbGxsBaLPS582bhxUrVnRaV666uhqvvfZan7ZZb5uy5XA40NbWlvVxixcvRjQaxZNPPpnYJssyfvWrX/WoHURERERERDQ0cYzeoadj9LgVK1bgyJEjidebNm3Cxo0bU65ZT0REdCJiZjsREdEA83q9GD58OL74xS/i1FNPhdPpxJo1a/DBBx/gF7/4BURRxB//+EdcfPHFmDJlCq677joMGzYMR44cwVtvvQW3241XXnkFAHDPPfdg9erVmD17Nm6++WbIsoxf//rXmDp1KrZs2dJnbc6mTdk444wzsGbNGjz66KMoLy/HqFGjMHPmzIzHXXrppZg9ezZ++MMfoqamBpMnT8aLL77Y7QEJERERERERUToco3fo6Rg9buzYsTj33HNx8803IxwO47HHHkNBQQHuuOOOrNtCREQ0WDHYTkRENMDsdjtuueUWrF69OrH+29ixY/Hb3/4WN998MwBg7ty52LBhA37605/i17/+NXw+H0pLSzFz5kx885vfTJzrjDPOwGuvvYbvfe97+PGPf4yKigrcd9992LlzJ3bt2tWn7dbbpmw8+uijuPHGG3HXXXchGAzi2muv1TWQF0URL7/8Mm677TY8++yzEAQBn//85/GLX/wCp512Wo/aQkREREREREMPx+gdejpGj7vmmmsgiiIee+wxNDQ0YMaMGfj1r3+NsrKyHrWHiIhoMBJUVVUHuhFERETUv5YsWYLt27cnXS+NiIiIiIiIiI4fjtGJiIhOHlyznYiI6CQTDAY7vd6zZw9WrlyJuXPnDkyDiIiIiIiIiIYojtGJiIhObsxsJyIiOsmUlZVh6dKlGD16NA4cOIAnn3wS4XAYH3/8McaNGzfQzcuKLMtobGxMu4/T6YTT6TxOLSIiIiIiIiLSj2N0IiKikxvXbCciIjrJLFq0CM8//zzq6upgsVgwa9Ys3H///SfcIB4ADh06hFGjRqXd5yc/+Qnuueee49MgIiIiIiIioixwjE5ERHRyY2Y7ERERDVqhUAjr169Pu8/o0aMxevTo49QiIiIiIiIioqGJY3QiIqLuGGwnIiIiIiIiIiIiIiIiIiLKkjjQDSAiIiIiIiIiIiIiIiIiIjrRnLRrtiuKgqNHj8LlckEQhIFuDhEREREREVFKqqrC6/WivLwconjyzYvnGJ2IiIiIiIhOJHrH6SdtsP3o0aOoqKgY6GYQERERERER6Xbo0CEMHz58oJvR5zhGJyIiIiIiohNRpnH6SRtsd7lcALQOcLvdA9ya9CRJwurVq7FgwQKYTKaBbs5Jh/3bc+y7/sX+7Xvs0/7F/u177NP+xf7tX+zfvsc+7V+DvX89Hg8qKioSY9mTDcfoFMf+7R32X/9i//Y99mn/Yv/2PfZp/2L/9i/2b99jn/avwd6/esfpJ22wPV6Wzu12nxADebvdDrfbPShvphMd+7fn2Hf9i/3b99in/Yv92/fYp/2L/du/2L99j33av06U/j1ZS6xzjE5x7N/eYf/1L/Zv32Of9i/2b99jn/Yv9m//Yv/2PfZp/zpR+jfTOP3kWwiOiIiIiIiIiIiIiIiIiIionzHYTkRERERERERERERERERElCUG24mIiIiIiIiIiIiIiIiIiLJ00q7ZroeqqohGo5BleUDbIUkSjEYjQqHQgLflZDSY+9dkMsFgMAx0M4iIiIiI6CT1wAMP4MUXX8SuXbtgs9lwzjnn4MEHH8SECRMAADU1NRg1alTSY//5z3/iiiuuAJB8jbrnn38eV111VZ+1lWP0oWEw96/BYIDRaMy4JiMREREREVHckA22RyIR1NbWIhAIDHRToKoqSktLcejQIQ7o+sFg7l9BEDB8+HA4nc6BbgoREREREZ2E3n77bSxbtgxnnXUWotEo/u///g8LFizAjh074HA4UFFRgdra2k7H/P73v8fDDz+Miy++uNP25cuXY9GiRYnXubm5fdZOjtGHjsHev3a7HWVlZTCbzQPdFCIiIiIiOgEMyWC7oijYv38/DAYDysvLYTabB3SApygKfD4fnE4nRJGV/fvaYO1fVVXR2NiIw4cPY9y4ccxwJyIiIiKiPrdq1apOr59++mkUFxdj8+bNOP/882EwGFBaWtppn5deeglXXnllt0nBubm53fZNJRwOIxwOJ157PB4AWlazJEmd9j12jF5WVgaTyTSgY3RVVeH3++FwOAZlMPhEN1j7V1VVSJKExsZG7Nu3D6NGjRpUzxDi4r8/XX+PqG+wf/se+7R/sX/7Hvu0f7F/+xf7t++xT/vXYO9fve0aksH2SCQCRVFQUVEBu90+0M2BoiiIRCKwWq2DciB3ohvM/VtUVISamhpIksRgOxERERER9bv29nYAQH5+ftL3N2/ejC1btuA3v/lNt/eWLVuGb3zjGxg9ejRuuukmXHfddSmDpQ888ADuvffebttXr17dbRxuNBpRWlqK4cOHAxgcD1rMZvOgaMfJajD3r9vtxuHDh1FVVTXoytwfq6qqaqCbcFJj//Y99mn/Yv/2PfZp/2L/9i/2b99jn/avwdq/eiuvDclge9xgC7zS0DOYZvETEREREdHJTVEU3HbbbZg9ezamTp2adJ8//elPmDRpEs4555xO2++77z5ceOGFsNvtWL16NW655Rb4fD58+9vfTnqeO++8E7fffnvitcfjQUVFBRYsWAC3291p31AohEOHDsHlcsFqtfbyU/aeqqrwer1wuVwcs/WDwd6/oVAINpsNc+bMGRT3Y1eSJKGqqgrz58+HyWQa6OacdNi/fY992r/Yv32Pfdq/2L/9i/3b99in/Wuw92+8QlsmQzrYTkRERERERDRULFu2DNu2bcP69euTvh8MBvG3v/0NP/7xj7u9d+y20047DX6/Hw8//HDKYLvFYoHFYum23WQydXuIIssyBEGAKIqDYlK8oigAkGgT9a3B3r+iKEIQhKT36mAy2Nt3omP/9j32af9i//Y99mn/Yv/2L/Zv32Of9q/B2r962zT4RjVERERERERE1KduvfVWvPrqq3jrrbcS5dq7+ve//41AIIBrrrkm4/lmzpyJw4cPd1qXnYiIiIiIiGioYbCdBp3f//73qKiogCiKeOyxxwa6OURERERERCcsVVVx66234qWXXsKbb76JUaNGpdz3T3/6Ez7/+c+jqKgo43m3bNmCvLy8pNnrdPLhOJ2IiIiIiCg5lpGnHqmpqcGoUaPw8ccfY/r06X12Xo/Hg1tvvRWPPvooLr/8cuTk5PTZuY+3pUuXoq2tDStWrBjophARERER0RC1bNky/O1vf8N//vMfuFwu1NXVAQBycnJgs9kS+1VXV2PdunVYuXJlt3O88sorqK+vx9lnnw2r1Yqqqircf//9+N73vnfcPgdlxnF6ZhynExERERFRX2OwnQaVgwcPQpIkXHLJJSgrK+vxeSRJGpTrOxARERERER1PTz75JABg7ty5nbYvX74cS5cuTbz+85//jOHDh2PBggXdzmEymfCb3/wG3/nOd6CqKsaOHYtHH30UN9xwQ382nQYJjtOJiIiIiIhSYxn5E8jcuXPx7W9/G3fccQfy8/NRWlqKe+65p9M+bW1t+MY3voGioiK43W5ceOGF+OSTTwAA7e3tMBgM+PDDDwEAiqIgPz8fZ599duL4Z599FhUVFRnbEi89eNppp0EQhMSDm7Vr12LGjBlwOBzIzc3F7NmzceDAAV2f7+mnn8Ypp5wCABg9ejQEQUBNTQ0A7QHRmDFjYDabMWHCBDzzzDOdjhUEAU8++SQ+//nPw+Fw4P/9v/8HAPjPf/6DM888E6WlpRg7dizuvfdeRKPRTv31zW9+EyUlJbBarZg6dSpeffVVAEBzczO+/OUvY9iwYbDb7TjllFPw/PPPd7ruv//9b5xyyimw2WwoKCjAvHnz4Pf7cc899+Avf/kL/vOf/0AQBAiCgLVr1+rqByIiIiIior6iqmrS/x0baAeA+++/HwcPHoQodn9MsGjRInz88cfwer3w+XzYsmULvvnNbybdd6jhOL1n4/Q5c+bAbrdj9OjRHKcTEREREdEJjZntMcGIjL2NvuN+3TFFTliMgu79//KXv+D222/Hxo0bsWHDBixduhSzZ8/G/PnzAQBXXHEFbDYbXnvtNeTk5OCpp57CRRddhN27dyM/Px/Tp0/H2rVrceaZZ2Lr1q0QBAEff/wxfD4fnE4n3n77bcyZMydjOzZt2oQZM2ZgzZo1mDJlCsxmM6LRKJYsWYIbbrgBzz//PCKRCDZt2gRB0D5fvKTdW2+91S2rAgC+9KUvoaKiAvPmzcOmTZtQUVGBoqIivPTSS/jf//1fPPbYY5g3bx5effVVXHfddRg+fDguuOCCxPH33HMPfv7zn+Oxxx6D0WjEO++8g2uuuQaPPfYYTjvtNNTX1+Omm24CAPzkJz+Boii4+OKL4fV68eyzz2LMmDHYsWMHDAYDACAUCuGMM87AD37wA7jdbvz3v//F1772NYwZMwYzZsxAbW0tvvzlL+Ohhx7CF77wBXi9XrzzzjtQVRXf+973sHPnTng8HixfvhwAkJ+fr/vnTERERERDz+HWIKo9A90KosFjoMbpowrsWe3PcXp24/SlS5fi5z//OebPn4/9+/fjxhtvBMBxOhER9d5Hry3HxPP+B3bnibvkCRERnXgYbI/Z2+jD5361/rhf99VvnYvJZS7d+0+bNg0/+clPAADjxo3Dr3/9a7zxxhuYP38+1q9fj02bNqGhoQEWiwUA8Mgjj2DFihX497//jRtvvBFz587F2rVr8b3vfQ9r167F/PnzsWvXLqxfvx6LFi3C2rVrcccdd2RsR1FREQCgoKAApaWlAICWlha0t7fjc5/7HMaMGQMAmDRpUuIYk8mECRMmwG5P/uAiPus8fv74eR955BEsXboUt9xyCwDg9ttvx/vvv49HHnmk0yD+K1/5Cq677rrE6+uvvx4//OEPce2118Lj8WDatGn46U9/ijvuuAM/+clPsGbNGmzatAk7d+7E+PHjAWgz9eOGDRvWaQ3Cb33rW3j99dfxz3/+MzGIj0aj+J//+R9UVlYCQGLGf/zzhMPhxOcgIiIiIkrnT+/WYFW1Ad8e6IYQDRIDNU5/edk5GOHSPyme4/Tsxuk/+MEP8OUvfxlutxtjx47lOJ2IiPpEe3M9Tt94GzYF2jHj8tsGujlERDSEMNgeM6bIiVe/de6AXDcb06ZN6/S6rKwMDQ0NAIBPPvkEPp8vMRCOCwaD2Lt3LwBgzpw5+NOf/gRZlvH2229jwYIFKC0txdq1azFt2jRUV1cnnc2uR35+PpYuXYqFCxdi/vz5mDdvHq688srEmm7Dhg3Drl27sj7vzp07EzPd42bPno3HH3+807Yzzzyz0+tPPvkE7777bqJUHQDIsoxQKIRAIIAtW7Zg+PDhiQF8V7Is4/7778c///lPHDlyBJFIBOFwOPEQ4tRTT8VFF12EU045BQsXLsSCBQvwxS9+EXl5eVl/RiIiIiKi2vYQPNJAt4Jo8BiocfqoAjukkF/3/hyna7IZp99///2JbRynExFRX/B7WpEDQGnI/t81IiKi3mCwPcZmNmDqsIEpL6Moiu59TSZTp9eCICSO9/l8KCsrS7rmWG5uLgDg/PPPh9frxUcffYR169bh/vvvR2lpKX7+85/j1FNPRXl5OcaNG9fjz7J8+XJ8+9vfxqpVq/CPf/wDd911F6qqqjqtN9dfHA5Hp9c+nw/33nsvlixZkii/F19T0Gq1wmazpT3fww8/jMcffxyPPfYYTjnlFDgcDtx2222IRCIAAIPBgKqqKrz33ntYvXo1fvWrX+FHP/oRNm7cmFgrj4iIiIhIr3pPGBFFgD8cRW6Xv/uJhqKBGqcrigIppH9/jtNTSzZOv+eeezB//vxOY3SA43QiIuqdoK8NAGBrrx7YhhAR0ZAjZt6FThSnn3466urqYDQaMXbs2E7/KywsBKAN5qdNm4Zf//rXMJlMmDhxIs4//3x8/PHHePXVV3WtAwcAZrMZgDarvKvTTjsNd955J9577z1MnToVf/vb33r1uSZNmoR3332307Z3330XkydPTnvc6aefjs8++wxjx47F6NGjO/WHKIqYNm0aDh8+jN27dyc9/t1338Vll12Gr371qzj11FMxevTobvsKgoDZs2fj3nvvxccffwyz2YyXXnoJgNZHyfqHiIiIiCiZOo8W3WvyRwa4JUTUVzhO7yw+Tu86Ruc4nYiIeisSaAcAFIUPDHBLiIhoqGGw/SQyb948zJo1C0uWLMHq1atRU1OD9957Dz/60Y/w4YcfJvabO3cunnvuucSAPT8/H5MmTcI//vEP3YP44uJi2Gw2rFq1CvX19Whvb8f+/ftx5513YsOGDThw4ABWr16NPXv2JNaDO3LkCCZOnIhNmzZl9bm+//3v4+mnn8aTTz6JPXv24NFHH8WLL77YaZ22ZO6++2789a9/xX333YedO3di586d+Pvf/4677roLgFaq7/zzz8fll1+Oqqoq7N+/H6+99hpWrVoFQFtrLz4jfufOnfjmN7+J+vr6xPk3btyI+++/Hx9++CEOHjyIF198EY2NjYnPO3LkSHz66af47LPP0NTUBEliTVAiIiIiSi4SVdAcC7I3+xhsJzpZcJze2d13341nnnkGDz74ILZv385xOhER9ZmIXwu2l6sNCPjaB7g1REQ0lDDYfhIRBAErV67E+eefj+uuuw7jx4/HVVddhQMHDqCkpCSx35w5cyDLcqc13+bOndttWzpGoxFPPPEEnnrqKZSXl+Oyyy6D3W7Hrl27cPnll2P8+PG48cYbsWzZMnzzm98EAEiShM8++wyBQCCrz7VkyRI8/vjjeOSRRzBlyhQ89dRTWL58eca2Lly4EK+++iqqqqpw0UUX4ZxzzsEvf/lLVFZWJvZ54YUXcNZZZ+HLX/4yJk+ejDvuuCMxy/2uu+7C6aefjoULF2Lu3LkoLS3FkiVLEse63W6sW7cOixcvxvjx43HXXXfhF7/4BS6++GIAwA033IAJEybgzDPPRFFRUbdZ/0REREREcQ3eEFRV++8mX3hgG0NEfYbj9M4WLlyIl19+GW+++SZmzpyJs88+m+N0IiLqE1KwI8B+dO/WAWwJERENNVyz/QSSbI23FStWdHrtcrnwxBNP4Iknnkh5niVLlkCNP8mLeeyxx/DYY49l1Z5vfOMb+MY3vtFpW7w0WzIjR47sdt2upk+fnnSfm2++GTfffHPK41Kdd+HChZg/fz48Hg/cbnen9eAALVvgz3/+c9Jj8/Pzu/XvsSZNmpSYXZ9MUVERVq9enfJ9IiIiIqK4ek/HAtFNzGwnOmFwnN6zcfqsWbOSjtEBjtOJiKhn5IAn8d9tB7YBp547gK0hIqKhhMF2IiIiIiKiAVbbrgXbzaLKMvJERERERFlSw154VRuCgg1S/c6Bbg4REQ0hLCNPSd1///1wOp1J/xcvv0ZERERERH2jrj0Em0lEkRVo8rOMPBF1x3E6ERFRamrYi4BgR72lEta26sT2Q3s+wYanvgVVUQawdUREdDJjZjslddNNN+HKK69M+p7NZjvOrSEiIiIiOrnVtYdQ6rbCEvWxjDwRJcVxOhERUWpC2IugaIffPRblze8lth99/THManoRofDPYbU5BrCFRER0smKwnZLKz89Hfn7+QDeDiIiIiGhIqPOEUOK2QPb5WEaeiJLiOJ2IiCg1MeJFWHRAKJqA8oYXEAmHYDSaMLrpLQBA0OdhsJ2IiPoFy8gTERERERENsHpPCCVuK1wmMLOdiIiIiChLxqgPEYMdroqpMAoKavdtx+7Nb6IIrQCAoK99gFtIREQnKwbbiYiIiIiIBlhtrIy8y6RyzXYiIiIioiwZowFIRidKx0wDADTXfIq2zS8k3g8HGGwnopOLJCvYU+8d6GYQGGwnIiIiIiIaUIqiosETRonbApcJ8IdlhCR5oJtFRERERHTCMEf9iJqcyC8ehla4EK7dicr6NdhhmgoACAcYkCKik8tLHx3BJb9az+cHg0DWwfZ169bh0ksvRXl5OQRBwIoVKzq9r6oq7r77bpSVlcFms2HevHnYs2dPp31aWlpw9dVXw+12Izc3F1//+tfh8/k67fPpp5/ivPPOg9VqRUVFBR566KHsPx0REREREdEg1xKIICIrscx2bVujl9ntRERERER6WRU/FLMTAFBrqkT54f+iDI3wTbwCACAFGWwnosFJUVREZSXr43bXexGJKqhrD/VDqygbWQfb/X4/Tj31VPzmN79J+v5DDz2EJ554Ar/73e+wceNGOBwOLFy4EKFQxw/76quvxvbt21FVVYVXX30V69atw4033ph43+PxYMGCBaisrMTmzZvx8MMP45577sHvf//7HnxEIiIiIiKiwSs+MNYy21UAQJOPwXYiIiIiIr2sSgAwuwAAXtdoVCqH0QYnRs/+HwBANOgZyOYREaX027XV+OqfNmZ9XE2zHwBwtC3Y102iLBmzPeDiiy/GxRdfnPQ9VVXx2GOP4a677sJll10GAPjrX/+KkpISrFixAldddRV27tyJVatW4YMPPsCZZ54JAPjVr36FxYsX45FHHkF5eTmee+45RCIR/PnPf4bZbMaUKVOwZcsWPProo52C8scKh8MIhzseSHk82j+ekiRBkqRO+0qSBFVVoSgKFCX72SJ9TVXVxP/3pj1r167FRRddhObmZuTm5ibd5+mnn8btt9+OlpaWHl+ntwKBAK655hqsWbMGXq83bXv7Ql/1b39QFAWqqkKSJBgMhoFuTjfx352uv0PUN9i/fY992r/Yv32Pfdq/2L/9i/3bdw63aFW+Cu2GRGZ7fVsAUplzAFt18hns9+xgbRf1ztq1a3HBBRegtbU17Tj9tttuQ1tb23Ft27ECgQC+9rWvoaqqCl6vN217iYiIBiM7goBF+/tZLZwAtAC7c8/HqbmFAIBo0JfucCKiAbOvyY/qBn/Wx+1v0o45wmD7gMs62J7O/v37UVdXh3nz5iW25eTkYObMmdiwYQOuuuoqbNiwAbm5uYlAOwDMmzcPoihi48aN+MIXvoANGzbg/PPPh9lsTuyzcOFCPPjgg2htbUVeXl63az/wwAO49957u21fvXo17HZ7p21GoxGlpaXw+XyIRCJ98dH7hNfbu1I2gUAgcR5RTF60IBQKQVXVxGSEdH7+85/jv//9L955551etaurP/3pT3jnnXewatUqFBQUQBAEXe3prd72bzJ5eXl49tlncckll/To+EgkgmAwiHXr1iEajfZx6/pOVVXVQDfhpMb+7Xvs0/7F/u177NP+xf7tX+zf3ltfJ0CEiI82rIPTBAhQ8db7mxHerw50005Kg/WejY/niNK55557sGLFCmzZsqVPz/uXv/wF77zzDt577z0UFhYiJyenT89/PAmCgJdeeglLliwZ6KYQEdFxoioKHGoAgtUNAHAMnwLsBsynXAaL1Y6IaoASZrCdiAYnTzCKFn8YiqJCFAVdx8iKikMtWpCdwfaB16fB9rq6OgBASUlJp+0lJSWJ9+rq6lBcXNy5EUYj8vPzO+0zatSobueIv5cs2H7nnXfi9ttvT7z2eDyoqKjAggUL4Ha7O+0bCoVw6NAhOJ1OWK3WnnzUPqWqKrxeL1wuFwRB3y9SMvFJBS6Xq9tnjrNarRAEIeX7x7JYLDAYDLr2zcbRo0cxefJknH322T0+hyzLEAQh5aSCY/VV/6Zis9l63EehUAg2mw3nn3/+oLgXu5IkCVVVVZg/fz5MJtNAN+ekw/7te+zT/sX+7Xvs0/7F/u1f7N++89maapS0HMXCBbNQVVWFPLsZZaMqsXju6IFu2kllsN+zx2MCMlEqe/fuxaRJkzB16tQenyObcToREVFfCga8sAsqDDbtGe2kWZfgw7YHcdqcL2rvC1aoDLYT0SDlCUpQVKAtKCHfYc58ALTS8RFZgSCwjPxg0KfB9oFksVhgsVi6bTeZTN0epBw7ABwMg8B4afNMg9JwOIzvf//7+Pvf/w6Px4MzzzwTv/zlL3HWWWcBQOLYYz/X008/jbvvvhtNTU1YuHAhzj333E77pvL000/jvvvuA4BEefPly5fj2muvxb333os///nPqK+vR0FBAb74xS/iiSee0PVZ586di7fffjtx3jlz5mDt2rVobW3F//7v/+KVV15BOBzGnDlz8MQTT2DcuHGJ9tx2223461//ih/+8IfYvXs3qqurUVZWhh/96Ed4/vnn0dbWhqlTp+LBBx/E3LlzE9d85513cOedd+Kjjz6CxWLBjBkz8Pe//x15eXlYtWoVfvazn2Hbtm0wGAyYNWsWHn/8cYwZMwaAlnl+++2344UXXkBraytKSkpw00034c4778TIkSMBAJdffjkAoLKyEjU1Nbr6IU4URQiCkPQ+HUwGe/tOdOzfvsc+7V/s377HPu1f7N/+xf7tvQZfBKU51kQ/FjotaA1I7Nd+Mljv2cHYJsos0zg9mVTj9EyefvrpREW/+ETyvh6nC4JwXMbp77//Pn7+859j06ZN/TJO/8IXvgCgZ+N0IiI68QQ8bbADMNm1YLvRZMaZn78p8X4QNqgRBtuJaHDyhLQlxZp9Yd3B9vh67ZPL3DjaFuq3tpE+fRpsLy0tBQDU19ejrKwssb2+vh7Tp09P7NPQ0NDpuGg0ipaWlsTxpaWlqK+v77RP/HV8nz4XCQBNu/vn3OkUjgeM+jKa77jjDrzwwgv4y1/+gsrKSjz00ENYuHAhqqurkZ+f323/jRs34utf/zoeeOABLFmyBKtWrcJPfvITXdf60pe+hG3btmHVqlVYs2YNAG1JgBdeeAG//OUv8fe//x1TpkxBXV0dPvnkk8Rx99xzD55++umUg9kXX3wRP/zhD7Ft2za8+OKLiaUCli5dij179uDll1+G2+3GD37wAyxevBg7duxIPHQKBAJ48MEH8cc//hEFBQUoLi7Grbfeih07duDvf/87ysvL8dJLL2HRokXYunUrxo0bhy1btmD+/Pm4+uqr8atf/QpmsxlvvfUWZFkGAPj9ftx+++2YNm0afD4f7r77bnzhC1/Ali1bIIoinnjiCbz88sv45z//iREjRuDQoUM4dOgQAOCDDz5AcXExli9fjkWLFg3KNdeJiIiIaPCr94RQ6u4YExQ6zWjyDZ7lrogGzECN0wvG6t6V4/SejdOXLFmC6667Do8//jiMRiPH6URE1CsBXysAwGRLvgxKWLRBiGS/HjIR0fHQHtSC7U2+CMaVZNg5pqbJD6Mo4KyR+Vi3u7EfW0d69GmwfdSoUSgtLcUbb7yRCK57PB5s3LgRN998MwBg1qxZaGtrw+bNm3HGGWcAAN58800oioKZM2cm9vnRj34ESerI5qiqqsKECROSlpDvE027gd/P6Z9zp3Pj20DptIy7+f1+PPnkk3j66adx8cUXAwD+8Ic/oKqqCn/605/w/e9/v9sxjz/+OBYtWoQ77rgDADB+/Hi89957WLVqVcbr2Ww2OJ3OxPr2cQcPHkRpaSnmzZsHk8mEESNGYMaMGYn3CwsLE7PNk8nPz4fdbofZbE6cNz54f/fdd3HOOecAAJ577jlUVFRgxYoVuOKKKwBoZR9/+9vf4tRTT020Zfny5Th48CDKy8sBAN/73vewatUqLF++HPfffz8eeughnHnmmfjFL34Bt9sNURQxZcqURHviWelxf/7zn1FUVIQdO3Zg6tSpOHjwIMaNG4dzzz0XgiCgsrIysW9RUREAIDc3t/8mgRARERHRSa+2PYTzxhUmXhc4zaj3hgewRUSDxECN029YCzhGZdyN4/SejdMffvhhTJ8+Hb/5zW8SVfc4Ticiot4I+7XleCyO1MF2UWKwnagvbDvSjqAk46yR3SeWUs94YsH2Zr/+5wD7mwKoyLdjRL4dR9qCUFW1X5ZRJn2yDrb7fD5UV1cnXu/fvx9btmxBfn4+RowYgdtuuw0/+9nPMG7cOIwaNQo//vGPUV5ejiVLlgAAJk2ahEWLFuGGG27A7373O0iShFtvvRVXXXVVYiD2la98Bffeey++/vWv4wc/+AG2bduGxx9/HL/85S/75lMnUzheC3wfb4Xjde22d+9eSJKE2bNnJ7aZTCbMmDEDO3fuTHrMzp07E6XT4mbNmqVrEJ/KFVdcgcceewyjR4/GokWLsHjxYlx66aUwGrVb6dZbb8Wtt96a1Tl37twJo9GYmGwBAAUFBZgwYUKnz2Y2mzFtWsfEhK1bt0KWZYwf37kPw+EwCgoKAABbtmzBF7/4xZTX3rNnD+6++25s3LgRTU1NiZL+Bw8exNSpU7F06VLMnz8fEyZMwKJFi/C5z30OCxYsyOrzERERERGlU9/eNbPdgu213gFsEdEgMVDj9IKxQDCacTeO03s2Tv/kk09w6aWXprw2x+lERJStsL8NAGB1Jk/UixjsMEQDx7FFRCevJ97Yg9r2EF75lr6lkCg9SVbgj2gVnpqzqHB3oNmPkQV2lOfaEI4qaPFHUODsvtQ2HR9ZB9s//PBDXHDBBYnXt99+OwDg2muvxdNPP4077rgDfr8fN954I9ra2nDuuedi1apVsFo7Hh4999xzuPXWW3HRRRdBFEVcfvnlndYSy8nJwerVq7Fs2TKcccYZKCwsxN13340bb7yxN581PbMdKJ/ef+dPJzZwPBFUVFTgs88+w5o1a1BVVYVbbrkFDz/8MN5+++1+X2PQZrN1mpnj8/lgMBiwefPmbqXhnE5n4ph0Lr30UlRWVuIPf/gDysvLoSgKpk6dikhE+1I7/fTTsX//frz22mtYs2YNrrzySsybNw///ve/+/jTEREREdFQ5AtH4Q1HUZrTMV4qcJjRxMx2ooEbpysKEPQc/+v2EMfpHKcTEZ1MVEVB9SfrMe6083UfIwW0f7ftrtzk7xvsMEazy2xXFQW7P3ob408fgCo7RINYiz+CvY0+KIoKUWQmdW95Qx2TfJt9WWS2N/sxZ3wRhuVqf1sfbQsx2D6Asg62z507F6qqpnxfEATcd999uO+++1Luk5+fj7/97W9przNt2jS888472TbvpDVmzBiYzWa8++67iRJpkiThgw8+wG233Zb0mEmTJmHjxo2dtr3//vu6r2k2mxNrph3LZrPh0ksvxaWXXoply5Zh4sSJ2Lp1K04//XT9H6hLO6PRKDZu3JgoT9fc3IzPPvsMkydPTnncaaedBlmW0dDQgPPOOy/pPtOmTcObb76ZmBRyrPg1/vCHPySOX79+fbf93G43vvSlL+FLX/oSvvjFL2LRokVoaWlBfn4+TCZT0j4iIiIiItKjrj0EAN3WbPeEoghHZViMXG+YaLDiOL07PeP0U045BW+/nbxiAcfpRET02QdrMPG1K3Ak530MGz1J1zHRQDsAwO5KXkZeNtphDtVn1Y4DuzZj/Mufxx7hlawC/0QnuxZ/BIGIjKPtQQzPsw90c0548fXaAaDJry+zPSorONQSwMgCB8pztWcJR9qCOGV48u9A6n99umY79R+Hw4Gbb74Z3//+9xMl+x966CEEAgF8/etfT3rMt7/9bcyePRuPPPIILrvsMrz++utZlaYbOXJkYpmA4cOHw+Vy4fnnn4csy5g5cybsdjueffZZ2Gy2xIOFX//613jppZfwxhtv6L7OuHHjcNlll+GGG27AU089BZfLhR/+8IcYNmwYLrvsspTHjR8/HldffTWuueYa/OIXv8Bpp52GxsZGvPHGG5g2bRouueQS3HnnnTjllFPw3e9+F9/61rdgtVrx1ltv4YorrkB+fj4KCgrw+9//HmVlZTh48CB++MMfdrrGo48+irKyMpx22mkQRRH/+te/UFpaitzc3EQfvfHGG5g9ezYsFgvy8pKXKiIiIiIiSiYebC/L6cj0LHSaAWgl5Mpz02eAEtHA4Ti9Oz3j9B/+8Ic49dRTsWzZMtx8880wm80cpxMRUYK3TlvC1t/WAEBfsF0JexFRjbBYkwf+ZJMDZn8wq3YEPc0AgNaaLUAfB9sVWUYo6IPdycAYnXiaYwHh6gYfg+19IL5ee5HLojuz/WhbCJKsYmShA/kOMyxGEUfbsvuOo74lDnQDSL+f//znuPzyy/G1r30Np59+Oqqrq/H666+nHDieffbZ+MMf/oDHH38cp556KlavXo277rpL9/Uuv/xyLFq0CBdccAGKiorw/PPPIzc3F3/4wx8we/ZsTJs2DWvWrMErr7ySWHutqakJe/fuzfqzLV++HGeccQY+97nPYdasWVBVFStXrsxY8m758uW45ppr8N3vfhcTJkzAkiVL8MEHH2DEiBEAtIH+qlWrsG3bNpx99tmYNWsW/vOf/8BoNEIURfz973/H5s2bMXXqVHznO9/Bww8/3On8LpcLDz30EM4880ycddZZqKmpwcqVKyGK2q/OL37xC1RVVaGiogKnnXZa1p+biIiIiIa2Bq8WbC92d5R7K4yVfmvKooQcEQ0MjtOTH5dpnP7iiy/i008/xYwZMzhOJyKiTqJthwEAkSyWdFFCHviF1EE/1WiHRc0uECVHtP2V+l1ZHafHpufvg++R6Whvzi7bnmigRWUlkYld3eAb4NacHOL9ObrQoXvN9ppmbVmMUQUOCIKAYbk2BtsHGDPbTyBWqxVPPPFEp/Xtj5WsxP/111+P66+/vtO27373u7quZ7FYkq55tmTJkpTH3HPPPbjnnnvSnvexxx7rti0vLw9//etfUx6zdOlSLF26tNt2k8mEe++9F/fee2/KY+fMmYPXX38dbrc7MfiOmzdvHnbs2NFp27F9eMMNN+CGG25Iee54mT4iIiIiop4ISjJEAbCaDJAkBQBQEMtsZ7CdaPDjOH1pt+16xumzZ8/GO++8022MDnCcTkQ01IneWgBANJhFIC/sRUCwIVUtE9XshFXJNtgeAADY2quzOk4PsWk3itGCTc/chhm3Pd/n5yfqL62BjpLnDLb3DU8oFmwvcuL9fc26jqlp9sNkEBIl5MtzbTjazmD7QGJmOxERERER0QCRogpMhs7DsgJHLNju1TernYiIiIjoZGEO1AEAollktosRH0KiI+X7gsUBW5aZ7Uoss70wVJPVcXpYQ/XwwI4ZbSuxdd1LfX5+ov7SEishX5FvY7C9j7QHJYgCUFlg1z3hfn+THxV5dhhjzxLKc6040hbqz2ZSBgy2D2FTpkyB0+lM+r/nnntuoJtHRERERHTSiypqt2C7ySAi125CIzPbiYYcjtOJiGioc0YaAQBySH8gzxDxImxIF2x3wY4QVEXRfU5F0oLtZUoDQoG+DSq6Iw3YWbQY2yzTUfDWHQj42vv0/ET9JR5snzGyAHsafN0qOFH22oMS3DYTipwWeENRhKNyxmNqmvwYWdjxnVfOMvIDjmXkh7CVK1dCkqSk75WUlBzn1hARERERDT0RWYHJIHTbXui0sIw80RDEcToREQ11eVEt2K5Gsgi2R/2QDKnXbDdYnDAIKkKhAKx2p65zqrHMdlFQcaT6U4yZdo7u9mSSrzSjzlWOvItvR95f5mLLc3dh1jd/lfG4uoN7cOA/P8OZN/8JBiNDO3T8xYPtM0fl44WPDqPJF0GRyzLArTqxeYJRuK2mxHJyzb4IynNtaY850BzA3AnFidfDcm1o9IYRjsqwGA392l5Kjt/IQ1hlZeVAN4GIiIiIaEiLymqi9NuxipwWNHoZbCcaajhOJyKioUyKhJGvtgMCoIb9uo8zR/0IWgpTvm+wagF2v7dNf7BdCiKiGmEWomg9uA3oo2C7z9MKNwIw5g3HsNFT8GHO+cht+lDXsUe2vo2ZzSvQ2HAvispH9kl7iLLR4g/DKAo4bUQuAG3ddgbbe6c9KCHHZkKhU+vHTMH2qKzgYEsAowo7JhgNi+1f2xbqlPFOx8+QLiPPEhc00HgPEhEREQ1tkqzAJHbPbB+eZ8PBlsAAtIho4HB8RIMB70MiooHTXHcQoqB9DwtZZLabZT9kc+ogusnmAgCE/F79jZFCaBPcaEQepLqd+o/LoLn2AADAVlABAIjaS+CMtuk6VpW16je+tsY+aw9RNlr8EvIcZowsdMAoCqhu5LrtveUJSXDbjInM9iZ/+kn3R9qCiCoqKgs6l5EHwFLyA2hIBttNJhMAIBDgwysaWJGIVnbFYGBpDyIiIqKhSJJVmIzdh2Vjip3Y1+hn0IeGBI7RaTCJ34fx+5KIiI6ftroaAEBINUGQ9Ge2W5UAVFPqYLvZkQMACAc8+hsTDSIimFFvqYSltVr/cRl4G7Rge25prJqNoxA5apuuYxU5CgAIMNhOA6TFH0aBwwyTQcTIQgeq67OYwEJJeWKZ7fmOjjLy6cSXmyvNsSa2xf/7CIPtA2ZIlpE3GAzIzc1FQ0MDAMBut0MQumeTHC+KoiASiSAUCkEUh+T8h341WPtXURQ0NjbCbrfDyDV2iIiIiIakqKzAmCSzfXShA75wFI3eMIrd1iRHEp08OEYfWgZr/6qqikAggIaGBuTm5nJSPBFRD6iKgs8+fAMTZ8zv0fH+psMAgKOGYTBkEWy3qQGoFlfK9y2xzPZIFsF2IRqCJFjgd41GScsHuo/LJNh8CABQEAu2G1zFcCOAcCgAizX1uvMAAEULtoe9zX3WHqJsNPsjiaDw2CInM9v7gCcoYViuDRajAS6rEc2+9Jntkag2Id90zHJ0VpMBhU4LjraF+rWtlNqQjfCVlpYCQGIwP5BUVUUwGITNZhvQBwonq8Hcv6IoYsSIEYOuXURERER0fEiy0mmQHDe6SMvM2dvoZ7CdhgSO0YeOwd6/ubm5ifuRiIiys239KzjlzWtQV7YZpRVjsz5eaj2EgGqB11wEQ1R/xRu7GoSQLtjucAPILtguyiFIogUomohhjf+BFAnDZO792tRy21G0woW82Nrx5pwSAEBbUy1Kho9Je2y8jHzUx2A7DYzWQAR5sWD7uBIn/vnhoQFu0YkvvmY7ABQ6LWj2p89sjyoKAHSbtD8s18oy8gNoyAbbBUFAWVkZiouLIUnSgLZFkiSsW7cO559/PsuU9YPB3L9ms3lQzeQnIiIiouNLUtSkwfYR+XYYRAH7mnyYNaZgAFpGdHxxjD50DOb+NZlMzGgnIuqFQO0uAEDI19azE3iOolksQNTogEXSd46oFIFdCEO0uVPuY4sF26Mh/SWvxWgIUdECx/DJMO2UcWD/TlROmK77+FQE7xG0GAqRF3ttz9MmeHmb9QTbtcx2xc9gOw2MZl8EY2ITw8cWO1HvCWtrjlsH1990JxJPKAp3LNhe4DAnysSnIslasL3rc4TyXBuOtjPYPlCGbLA9zmAwDPhAymAwIBqNwmq1DrqB5smA/UtEREREg5UUVWAydM/sNBtFjMi3Y1+j/vKZRCcDjtFPfuxfIqKTl9qqrUcuhXsW8DEF6uAxFUE2OWAK1eo6xu9tRw4AY7pgu1Nbs10O6S95bZBDiIpWlI+ZDlQBzTVb+yTYbg42wGcuSrx2FZQBAAItdZkPVrQJiWqwrdftIOqJFn8EefZYGfliLehe3eDD6SPy0h1GKaiqivag1BFsd5ozrtkuyfEy8p2fIwzPs+G/n9ZCVdVBWT3qZMeUWiIiIiIiogESVVQYk2S2A9q67Xu5Bh4RERERnSDMXq2ktNzDYLs91ICArQSKyQGLou8cAW8LAMBkz0ndLosVEdUIJZxFsF0JQzZYUFA8DO1wIFy7Xfex6bjC9QjZOpYryS3Ugu3h9vrMB8cy2w3h1j5pC1E2VFVFayCCAqcWbB9T5IQgaMF26plARIasqHBbtbzoAqcFzf70me3RWLC963OE88YV4Wh7CNuP6l8ug/oOg+1EREREREQDRFuzPfms89FFDma2ExHRoPHRI5fiw5d/N9DNIKJBzB06AgCISqEeHZ8TbUTUUQo1i2B7yK8Flkz21JntABAQrFCyKCNvVMKQDVYIoohaUyVMLXt0H5tOntwExVmWeG21OeBVbZB9DZkPVmStbeG2PmnLUOXztKLmvqnY/dHagW7KCcUbjkKSVeTH1my3mgwYnmfDXgbbe6w9qFWrSKzZ7sic2R5fs73rc4RZYwqQYzNh1TYdVTKOsflAKy554h2Eo3JWx1FnDLYTERERERENEC3YniKzvciJw60BDnqJiGhQGOnbgujhjwa6GUQ0iBXLWpBHjmQfbFdkGYVKC8ScYYDZARv0BdvDsfXhbY7ctPsFYQMi+ieyGpUwFIMFAOBxjkauf7/uY1OJhEMoQDuMucM6bW8XcwFfY8bj1VgZeYvU3uu2DGXVH7yOkcohNH/wr4FuygmlJRYEzo+VkQeAYpcVTRmCw5SaJ6T9TneUkbeg2ReBqqopj4lEtWC7Uez8HMFkEDFvUglWbc8u2L63wYftRz34+GBbVsdRZwy2ExERERERDZCorHYbJMeNLnRAUYEDzYHj3CoiIqLu7GoQYkR/VigRDS3trU1wQwtmK1L2ZeRbm2phFqIw5w2HaHXBruoL2Ef8WuDZ6spNu19YtEGQ9AfbTUoIqsEKAFAKx2NY9BAUuXeTYJtqtTXtLfnDO233GfNgCDZnPoGilZG3R1kmujdCu98CABQ2buy0vfqTd7HxV9f06tz7tm3Epse/AjWWfXwyaQnEgu3OjmB7rs2UyM4+GUmygjte2Iq29JXde6w90DmzvcBpRkRW4A1HUx4TVZKv2Q4Ai6aWorrBh+oG/X+vRWTtXn1vr47vIEqJwXYiIiIiIqIBEpEVmI2pysg7AQD7uG479cIDDzyAs846Cy6XC8XFxViyZAk+++yzTvvMnTsXgiB0+t9NN93UaZ+DBw/ikksugd1uR3FxMb7//e8jGk39EIiITi5RKQKrIMEY5fImRJRc48GOvy96ktneWlcDAHAWjYBoccIsRBEJZz6PFNSC7XZXXtr9wqINYhbBdrMagWKyaf9dOBo2IYL2Fh2l3tPw1GvBdndJZaftQVMezGEdga7Ymu0OhcH23ihq2givasNoqRrtLR0VBVrffAIzm/8Dv7etx+dueuMJzGj9L9qa6/ugpYNLIrPd0RFsz7GZ0B48eTPbD7UE8NKWWlR7ko/Ze8sT0n6nE8F2h1ZNI10p+aiswChqY7auzhtXCIfZgNe26s9ul2LB9g17m3QfQ90x2E5ERERERDRA0mW2FzrNcFmN2Mt126kX3n77bSxbtgzvv/8+qqqqIEkSFixYAL+/8311ww03oLa2NvG/hx56KPGeLMu45JJLEIlE8N577+Evf/kLnn76adx9993H++MQ0QDx+7TADoPtRJSKt6468d9qD9Zs9zUeAgDklY2EwapNOg36M2dnykFtH4czJ+1+ksEGQ1bB9jBg1ILt9nxtjfW2xsO6j0/G33QQAJBfNqrT9oi1AHapNePxQqyMvEvlZNyeamk4gjHyfmwbeS0Mgop9H74OAJAiYYxvfwcA0NZ4pEfnjkoRjGtdBwBoPrq3bxo8iLT4tQBw3jFl5N0neWZ7vES+t58+Yrzv3NbYmu2xqgHNvtSp9JKswpgkqx0ArCYDLphYjNeyWLc9Hmz/+GAb/Gky6ik9BtuJiIiIiIgGSFRRUg6UBUHA6CIn9jHYTr2watUqLF26FFOmTMGpp56Kp59+GgcPHsTmzZs77We321FaWpr4n9vtTry3evVq7NixA88++yymT5+Oiy++GD/96U/xm9/8BpHIyZvJQkQdgrE1kc0MthNRCuHG/QioFkRUA5QeBNvDLYcgqQbkFw2D0eoC0PHdk44S8sCvWiEaDGn3kwwOGGX9yzOZEQFime2uAm2NdV/TUd3HJ21D2xEEVAtc7s5Z+Iq9EC65LfMJYmXkbUIEoQAD7j2x/8PVAIDR82/EUaEEkT1aSfld769ETmwZBG8Pg+2fbapCHrTJad76mt43dpBpCUTgthphMnSEFXPtJrQFTt5ge6NXC3p7pH7KbA9KsJkMMBu1Pi1wapntTWky2yVZgSnFhH1AKyW/o9aDgzqXo5NkFYKglaf/oKYli9bTsYwD3QAiIiIiIqKhKiKrMBtSD5THFDqwr4kP0qjvtLdrpVbz8/M7bX/uuefw7LPPorS0FJdeeil+/OMfw263AwA2bNiAU045BSUlJYn9Fy5ciJtvvhnbt2/Haaed1u064XAY4XBHRobHoz14lCQJkjS4H8jF2zfY23miYv/2zkD1n69de/hqUfwn9c+O92ffG8x9GgmHsP/TdzDhrPkD3ZQeG1T923oA9YYSFMqNkCOBrNsktx1Bs5CHAkWBwaJltvs8rRnPowQ98At2mDPsFzXa4QjWZjxf/H2LGgEMZkiSBGdeEQAg0HKkV32tth9Bk1iIMlkGjl3/3V6IPLUdkXAYQpogWjzYDgAtjUdRVD4q9b6D1EDfs1L1WzgolKOsZAQ+yjkTxc2bIEkS/FteRCtcyIMXvqbDPWqf96N/ox4FyFE9CDXuH5DPmE3/7q73osBhTgR4M2n0BJHvMHc6t9Msoj04+P++76m6di1g7Y30zz3b6g/BbTUmzu0wAqIANHhSf4eGpSiMBiHl++eOzoPFKOK/nx7BN84dmbENoYiEYqcFKoD1exoxe3T6JTn62kB/J2Sit10MthMREREREQ2QqJw6sx0AxhQ78cauBqiqmnRNNqJsKIqC2267DbNnz8bUqVMT27/yla+gsrIS5eXl+PTTT/GDH/wAn332GV588UUAQF1dXadAO4DE67q65CUKH3jgAdx7773dtq9evToRxB/sqqqqBroJJzX2b+8c7/4LNe7FWABW2Y+VK1ce12sPBN6ffW8w9qm0/x18ofWPWHH4dzBabAPdnF4ZDP1b1roXDSiAG21oqj2S9XdFTsNeNCEPG1euRKjlIKYA2Pz+emzfW5v2OEvjYfhhxYYM13OEFLgln652qYoKmxDB0YaWxP7zVCtqqz/t1XdgYfN+NCMHH3c5R7jZj1mChBf+81Lae9HpaUv89ztvroY1v6LHbRloA3XPTm/ZhN3myfh45UpExErMVP6Lf/3rOVzYvBYbrefiotBqHPxsC45EC7I6r6IomN30Fj62nIWJka1oP7h9QP+91NO/928xYLxbxRdHK7rOubVaBMJCp89V0yggHDVgxSsrYU5fXOKEtPGgCECEV+qfe/aT/SKEaOc+dRgNeP/jbchp3Jr0mB2HBMiSmPb+Gu0U8Z/3d6HcsyNjG3YeFBGNCBjlUvH6x/txilyd8Zj+MBj+HUsmENBXIYDBdiIiIiIiogEiyUqnMnxdjS50oD0oocUf0Z1xkI6qqvjVm9X44hnDUZ57Yj9UpuwtW7YM27Ztw/r16zttv/HGGxP/fcopp6CsrAwXXXQR9u7dizFjxvToWnfeeSduv/32xGuPx4OKigosWLCgU4n6wUiSJFRVVWH+/PkwmUwD3ZyTDvu3dwaq/3a8+ypwGHAIISxevPi4Xfd44/3Z9wZzn374x9dgEFScMX0Sho2aPNDN6ZHB1L9HP/k/HM0/G1LTIRTmuXCWju8KX3szrHYXjCYzdu34JcKWcixevBhHa3YCB4BJ40Zh0jnpz/PR/n8gIjszfjd9cPQ12Bt2ZtxPkiS8tvK/AIDho8bh9Nj+9VvyUOyArs+Vyt5tD8DrqOjWhp0bALz5G5x56iSUj059L368/3m0tmnZ15PHjsDEsy/ucVsGykDesw1H9mHYx7VomPY9zFm4GM11pwB/+i0qmteiQPBgxAXXoXXVRpS6DFn/nPdsfhPFn7Si/Pxr4XnnERQZ/Zg2AP9eZtO//7f5DYRtbixefJauc7/0zEcYUyBg8eKOqla2zxrxbPXHmDXnQpS4rb1q+2C0fsV24MgReCShX+7ZtS9sxTBzEIsXz0hs++2+91BQnofFiyclPWbXmj341FuLxYvPT3ne7cbdePXTurT7xH266jPsCzfi8vNG4f9WbMfsC+Yjx3b8fjcH079jycQrtGXCYDsREREREdEAicpq+mB7kVZCc2+jv0+C7U2+CB6t2g2X1YjrZmdXdrLBE4LDYoTDwmHkiejWW2/Fq6++inXr1mH48OFp9505cyYAoLq6GmPGjEFpaSk2bdrUaZ/6+noAQGlpadJzWCwWWCzd71mTyTQoH6IkcyK19UTE/u2d491/SkRbx9ahBiAaDOnLHJ8EeH/2vcHYp/Z2LXsv4msddG3L1kD3r6ooKJYbUJtXCanZDEGJZGyPqigI/3o2Go35cH3tWbilRtTmjIfJZILTrS13I4f9Gc9jlAOQDPaM+wkWN6xqUFc/qVFtvWSzzZHY32vMhynU3Kt+zpWa0Fo8s9s53EXamvDBtnqYTKemPF5QZbSLechTvIgGTuz7diDu2aOfvIFhAMbMuBgmkwmlFaNRI1bgrKYVaBDyMfGsedhXlQdDsCnrtnm2/AfNyMHksxdh84fPIddXPaA/n0z9G4hE4Y/I2NuY+XcsrjUYxcQSV6f9C1xagD0QxQl9P6bS7NdKiHul/rlnvWEZuXZz5z51WtAajKa8lqIKMBnFtG2ZUJqD379Tg4giZBy/y6oAs9GA88YXQ1W3Y/MhDxZOST7G608D/e9YKnrbdHL/ZUxERERERDSIRWQFRjF1efjKAjsEAdjX2Dfrth9uDcT+P5j1sdcu/wCPv7GnT9pBx4+qqrj11lvx0ksv4c0338SoUZknWWzZsgUAUFZWBgCYNWsWtm7dioaGhsQ+VVVVcLvdmDz5xMwEJKLsRINaVo9BUBEMeAe4NUR9oyh8AAAQbGvIsCdl0txwGDYhAkvRaEQFM4RoOOMxh/dtRymaMEw6CNvyC1Eq1wPucgCAw5ULAJBDmf8GNko+SEZnxv0EiwM2NZRxPwBQZS3YLpo7lr4JmgtgDTXpOj4ZRZZRoLZAjH3GY+UUasH2QFt92nOIShR+Yw4UVYDkbe5xW4as/euw1zAK+cXDEpvq82fAIKjYXzgXosEAv7kA5ix/zqqiYET9GlQXzIXBaITsHo786OD+Xmnyavd4sz+CVn9E1zEt/jDyHOZO23Js2uu2wOBcb7u3mnxhmAwCfBIgK2qfn98TjMLdJYvcajIgHE1d2l/KMGEfAMYWxyftZ/4OjVfbG55nx4h8Ozbs5XdLTzDYTkRERERENEAyZbZbTQYMy7WhplnfOmGZHIoF2eNB92wcaQ3gk0NtfdIOOn6WLVuGZ599Fn/729/gcrlQV1eHuro6BIPavbB371789Kc/xebNm1FTU4OXX34Z11xzDc4//3xMmzYNALBgwQJMnjwZX/va1/DJJ5/g9ddfx1133YVly5YlzV4nopOPEu54WBs4Zs1gohNVwNeOUqURABDx9jyASpqmQ7sBAO6ysZBEMwQ5c7C9foe2rE3L19bggHUSLIIEc0ElAMBitUNWBcjhzIEis+xHVE+w3eyEHSGoSub1qVVZCxwajwm2S7ZCOKSWjMem0tJ4BCZBhiXJOus5+cWQVQGSJ32wXVCjkEUzvIIdcqC1x20ZqsrbP0JjQeeS6ebxFwIAHKf9DwAgbCmEI5Ldd8KO91ehXK2HfdoSAIAhrwKFaEM4pH/M1XT0AA7fOwEb//ULXfdobzX6OiaeVOuc2N3ql1DQLdiuBYrbg9kF259cuxdX/m4DDrX0zTi3vzR6wxhT5IQKAS06JyVkoz0odSvZbjIIiKQJtkeV9BP2AWBMLNhe3aAv2G40aOc7Z0wB3t/HYHtPMNhOREREREQ0QKKKApMh/UC5PMeG2vbsM9GT6WlmeySqwBOKYledF6ra9zP6qf88+eSTaG9vx9y5c1FWVpb43z/+8Q8AgNlsxpo1a7BgwQJMnDgR3/3ud3H55ZfjlVdeSZzDYDDg1VdfhcFgwKxZs/DVr34V11xzDe67776B+lhEdJypoY5s9qC/beAaQtRHju7dClHQ/qaRfQy295avbi8AoHjEeEQFM0QdwXb54Ac4JJSjYuwpOOX7r2PrBcsxbd7VAABBFBGAFaqOYLtVDkAxZw62G6xOiDqrc8Qz240WW2Kb4ihGjtLzAHdrnVZJwVHUPdguGgxoFXKg+BrTnkNQZKiCAV7BDQR7HvgfqpyqD6qjuNO2aRdehU/m/BFTZl0CAJDtRXBF9f+cQ0E/nGu+j8+MEzB59ucBAPZCbdJI09H9us/TdLQaw9U6zNx+Hz58/MsI+vu3ikyjt+N3dE995t+zcFSGLxxFfopge1sgu0D09qPt2FTTgkueeAdv7ko/yWSgqKqKJl8Yk0q175cmX98H2z0hCW5r5zLvZqMhbbBdT2a702JEeY4Ve3QF2zvON2VYDqobfJDk/p/wcbLhYntERERERES9tKvOg0MtQcyfXJLVcZGoknGgXJpjRW27vpKXmRxqiWe2Zxdsj8/ibw9KqPOEUJZjy3AEDRaZJkdUVFTg7bffznieyspKrFy5sq+aRUQnGDXS8bA25GsfwJYQ9Y22A9sAAO1wQA0waNlbUvN+tMKFvJx8yKK+YHte21bUu6agAlqw+ZQ5/9Pp/aBg0xVst6j6gu1GmxsAEPB5YHfmpN03Hmw3WR2JbQZXCfJUD6JSBEaTOdWhKfkatGB7Xmll0ve9Yi5Ef/pgu6hGoQhGBAwuGELMbM+WQVUgGDpnERuMRpx6wRWJ14KrBPlqG1RFgSBmzlX9+Lm7cIZci6NXrIbBqIXbcspGAwBaa/dh2OgputqmRLXM8A3Dr8f0Q8/i0C8vxNg734doMOg6PluNvgiMooDheTZd2c/x8WDXYLvZKMJuNmSd2R6VVZw+Ihf5DjOuf/pD/OKKU3H5GcOzOkd/aw9KkGQVk8rceGlLLZp8mb/XenKNrmXkzQYRkTTB7mMz0dMZU+zU9bONyArMsWcS44qdiCoqDjT7MbbYlfFY6sDMdiIiIiIiol76/dv78K3nP8r+IYOiwpgh2F6Wa0VdHwXbD7cGYBQFtAcleEP629rs73iwsKuWa/USEQ01QsSPkKo9DA4zs51OAlL9LjQgH42GUogMWvaaoe0AmoylAADZYIGopM8ADQX9GCnthVx+Rup9RBuEiI4y8moEMFoz7me0aQH5cMCTcV8hVkbefEyw3ZxbBlFQ0dZcl/H4ZMKN+xBUzcgvGpb0fb8pF8ZQ+vLNgipDFYwIGnNginDiU7aMiAJdgu1dmXJKYREkeD2Zvxf2bduIMw/9BZtHXI+Rk85MbC8qHwUACDYe0N02Jar9zoy48BvYOethjI/uRt3BPbqPz1ajN4xCpwXjSly6ysinCrYDWna7J8txsCQryHeY8fuvnYkZo/Lx2rbarI4/HuLZ/xNKtO+Oxj4OtkuygkBE7h5sN4rpy8jLmSfsA9q67Xv1ZLZHO6rtjc2i/Dx1xmA7ERERERFRL+1t8iMkKXjpo8NZHSfJCswZZqWXubVgu6L0vnz74dYgpg3XMnmOtOnPbm+OlcwTBGBnXeYHlEREdHIRJR+axXwAgKQjUEU02Fnb9qDeUqkFLcPMbO8tR+AIvNZyAIAimmFQ0gelara/D7MgI2/8OSn3CQs2CNHM6zlrAdTMmebmWGZ7SE957lhmu9nWEWy352ufr70hu7/344SWvagzlKfMVA6ZC2CNpL8XRTUKVTRAMufALDHYni0jZAhi+mLP1twyAEBbw6G0+6mKguiKW3HEMAynX915aSWr3Ylm5CDamv4cx4pnthuMZpRPng0AaNy/Rffx2Wr0hlHoMmNssRPV9Zl/JzIF29uyDbYrWulyURQwbViOrnLn2VIUFU+u3QtfONqj4+PB9WG5NtgMap+UkfeFo3hszW4EI3JigkLXNdstRjFtGXet7zJnto8rdqGm2Y9wVE67n3RM8L7AYUau3cRgew8w2E5ERERERNQLqqpiX6MPBlHAcxsP6l7TXFVVSLKezHYbIrKClizXwetKUVQcaQ3i7NEFAIDDLVkE22OZ7VPK3cxsJyIaggySH+3GIgBANMAAD5348oM1CLjHIGLOhYUZwr2WJ9Ui7NLWIldEM4wZMtvbdm9AWDVh5JSZKfeJGGwwSP6M1zaqMgRD5tVyLXatJHJEx3eYEGu/xWpPbHMXasF2f/PRjMcnY/cdQJstdZnsqK0AjgxrhYuxzHbZkgt7lBOfsqEqCoxC9zLyXbliP2dvU/qfs6etGeOju9E0/ZZO90lci7EYBo/+iRlKrJqC0WhGyfAxCKgWBI/u1H18tpp8YRQ5LRhb5MTR9hD8GQLSmYLt2ZeRVxLj4LHFThxqCSAkpQ8KZ2tfkx8PrtqFdbvTL8+QSjyzvdBphsvUN2u2v76tDo+t2YNHqz6DJ6T1eddgu57MdqOOJQ7GFjuhqEBNU/pJS5KswmTUzicIAsYVO/tl8sPJjsF2IiIiIiKiXmjyReANRfHVmSOwp8GHD2r0lSKVY5nqRjFDZnuOVhaztq13peQbvGFEZAWnjciD2SjicGvmTKG4Zl8EDrMBp1XkYRcz24mIhhxj1I+wORcR1QAlzElXdGKLhEMol2uBoomIWvJgj2YXbFcVBZ+ufQGqkjoYMhhVf7Ie9Yf39vl5o1IExUoTxLyRAADFYIEhQ7DdWPsRakxjYLakLv8eNdhh0JvZLqYPoAKANbZOuxTI/B2WCLYfk9meV6yVfw+396yMfEHkCELukal3sBchR0l/L4qqDFU0QrHlw6Hwuzgb0VjmeKYy8jlF2oSIUFv6suZRSQvEGm05Sd/3WkphDeovjZ7IbDeZIYgijhgrIDbt1n18tjrKyGtlw/dmKCXf4o/AElufvatcuwltgezXbDeJHaXLFRXY35R5ck02Grza+LmnS7I1esOwmQxwWIxwm9Ena7a/t7cZBlHAn9bvxzt7tEkAbmv3NdvDaYLtkqwvs11vSfhj12yPH8fM9uwx2E5ERERERNQL+2IPJq4+uxKjCx14bqO+tfkkWQu2m40ZMttzbACA2nb9mejJHIoF10fk2zE814bDrdlktkeQ7zRjYpkLexszl6IjIqKTi0kOImq0wy/YoYQ46YpObLX7tsMkyHAOnxILWmZ3Tx+q/hTT1l6PXR9U9VML+5Yiy9jw5+9j9Iufw4F/39Xn529rroNRUGDJ14KUqsECo5o+2F7u24bW/FPT7hM1OmCS9QTb5YzZygBgdWhB0Wgoc5BalLtntlusdnjgQNRTn/H4rsKhAEqURhgKx6a+pqsIOaoXUSl134lqFKpggGDLQ47qPeEmfAykeL+KGaoguHPyEVZNkDJMqogH2wVj8nsv4ihHTkT/vaLG7jmDScscb3OORo5vn+7js9XkC6PIZcGYIi0gu6c+fXC1PSghx2aCIHQP8vYksz0iKzD28zrhDR7tZ1Tn6VmwvckXQZHLAgBwmXpfRl5VVWzY24SvnV2JSWVu3L9Sq1yQY0+S2Z6ujLzONdvzHWYUOMzY05D+O087X8fPdUyRE3sbfX2yjN1QwmA7ERERERFRL+xr8kMUgMoCO74ycwRe21qHZh2z3qXYw7FMJeAKHGaYDAJqezgjPy6eyT48z4ZheVkG231hFDgsmFjqhqyonOlORDTEWJQAFJMTQcEOMLOdTnDNB7YCAErHTIPoKECu6skqaBn2a8H5QJP+9Zj1ikoRNNf3bE3wZNqb67Ht4YWYeeAPaBFyYMsi01YvKaz9TWkwa4Fp1WiFKU2wvaXhCMrVehgrz0p7XtlohzlDsF1vaXAAcDi1Ndujocx/x4pKBEFVyzA+VquYB8GXfbC9rmYXDIIKR9mElPuY3SUQBRVtzanPH89sNzoLYBEkhIJ9mwl8Motntme6VwRRRIuQC9XXkHY/WepYYz2pnOEokht1f7eosfaZYsH2aP44lEUP9suEClVV0ejVgu0OixHlOVZUZ8hsl2Ql5STxHpWRVzoCxrl2Mwqdlj4vXR7PbO/pODreRwDgMnWUle+pA80BHG0P4fzxhXjw8mmJyfdua+cJIJnLyGdeii5ujI4s9aisdgrejytxISQpONLWs8n+kaiCtl4ugXciYrCdiIiIiIgoZt3uRnx8UF8Z+Lh9jT5U5NthMRpw+enDAQH41+bMD0ml2AA6Uwk4URRQmmPtdbD9UEsQBQ4zHBYjhufZcbgtuzLyhU4zJpRqa10ej3XbX9h8GEt+826/X4eIiDJLBNtFO8QIJ1zRiS1cuxOtcCG/qBwGZwHMQhQBv/7s9mhEC0BIPchwzuSD5d+F9OScPjvfZ8/chsrQDmy/8M+oLpoPl9TUZ+eOi0a0v1HjGbmq0QJTmjLyB7e+AwAon3xe2vMqJgfMSvpgjxTLVtYTbDeazAipJih6MtsVCWGhexDVZ8yHMZh9H7Ye2gUAKKqclHIfa14JAMCbZk14gxoFRCPMzgIAgKc1fUCYOsjxzPYUmejH8hrzYPCn79uoFIqdL3mw3VwwAnYhjPYWfT8jVdHW7zbGfo+sZZPhRgBNdQd1HZ8NbziKcFRBoVMLJI8tcWUdkD1Wrt3cgzXbO59vbLEDe/s42F4fy2yv72mw3RdGoVP7ebjNKpr9vQsgx0vInzUyH1OH5eCmOaPhshrhtHQJthsyBNsVJVGCPxM9JeG7Zsr3ttLA0+/txxW/29CjY09k/RJs93q9uO2221BZWQmbzYZzzjkHH3zwQeJ9VVVx9913o6ysDDabDfPmzcOePXs6naOlpQVXX3013G43cnNz8fWvfx0+H/+YJyIiIiKi/vNo1W4sf7cmq2P2NvoxulBbzzHPYcac8UVYt7sx43HRWFk2PSXgytw21PWyjPzh1gCG52kl6Ydnm9nuj6DAYYHTYsSIfPtxWbf908NtXB+eiGiQsKohwGxHWHRAlPh8jk5sppY9qDONgCCKsLiLAGgZ4HpFw1rgRvX2bbA94GvHlKMvoBRNCAX65vesvP1j7Cq6GKfM+R+ozhLkKS19ct5jJcpzx4KEMFpgQurAW3D/RrTAjbLK8WnPq5odsGYItmcq5d3t2oINqo4JQwYlggi6B1FDlgLYwtkH20MNexBQLSgqq0y5jyu/HADgb0ldvlyEDFU0wZpTCADwtWYec5AmkdkuZr5X/OZCWDL8nOXY+VIF753FowAATUf26mqfKmvnM8bOVzjqFABA/d5PdB2fjaZYhnY8a3tsUeaAbKRLqfFjuWOZ7aqqv+y4JCswHhMw7o91whtin7PW07NxdFOXzPbWgJQ2CJ7Ju3ubMG14DlyxNdq/t2AC3v7+Bd1K85sylJGPyGqiBH8m44qd2Nfkh5ymJHykS9WC8hwr7GZDxvLzqdR7wokl7IaSfgm2f+Mb30BVVRWeeeYZbN26FQsWLMC8efNw5MgRAMBDDz2EJ554Ar/73e+wceNGOBwOLFy4EKFQxwyTq6++Gtu3b0dVVRVeffVVrFu3DjfeeGN/NJeIiIiIiAiAthadlGZgm8y+Rh9Gx9a6A4Ap5W7srPVkfNgQH6jrGSiX5lhxtA8y24fna+U9h+fZ0BaQ4A3py0Bo9oeRH5vVP7HUhV11/Z/ZXucJISQpiGb58yAior5nV4MQLC5IRjuMDLbTCS4vsB8e1xgAgC1HC7b72/RnCMtSrGx6oG8DnVtf+wPc0MqCN9cd6PX52prqMFythaFCK9duzClHDvx9FsiPk2MBb6NJC0oJRivMSJ0Bam/aikO2Sd1KtHclmJ2wIVNmeyzgqSOzHQCCghWIZC69blAlRARL9+vZiuCMZj9hQWjZhzpDWdrPnFtUBgAItaeexGFQZaiiAY5c7b4Nehhs10uOxqog6JiYEbEWwh5J/3OO3/cGU/f7BAAKhmnfMd76/brap8oSoqqYuEfKRk5CRDXCf2SHruPT+euGGnzpqY5M48auwfZiJw40+xGOyinPEZXVlMuf5dpMkBUVvnBUd5ukLqXQxxW7sK/J16djv4bYWu317eGsJgLENfrCKHJaAWjBdkAbF/eEoqh4f28zzhlTkNgmCALyHd0n9VgMImRFTRkgj+pcsx3QfraRqIJDLamD310nPgiC0KvJD4FIFCFJQUhKfT+djPo82B4MBvHCCy/goYcewvnnn4+xY8finnvuwdixY/Hkk09CVVU89thjuOuuu3DZZZdh2rRp+Otf/4qjR49ixYoVAICdO3di1apV+OMf/4iZM2fi3HPPxa9+9Sv8/e9/x9GjqcuoEBERERER9UZbIJJVsD0SVXCoNYjRRY7EtomlbrQGpIxrumWV2Z5rRV1vg+1dMtsB6F6HrdkXQUHsQcDEMjd2Hocy8nWxsn/+8NAapBMRDTZyNAq7EIbB6kLU6IQ5yjWC6cQlR6MYFj0EtVDLqo4HLUPt+oOWSqyMfKbM12yoioKSnU9jv6hlPrf1QbD9QKxce+nkcwEA1ljmdEsfrgkPdGSXG81aUEowWWFRU0/otEa9CFsKUr4fJ1icsKnp//6NBzz1lJEHgLBgg6An2K5EEElSRl51FCNHyW7JKQBw+GrQZhuRdh+7w42gakbUk3rih1ZG3gRnbjEAIOLp+2UBTlZyYmJGijXWj6Hai5AjZwq2a8H7VGu25xeVI6yaEG7W97usyhKiMCReG01mHDWUA427dB2fzvObDmHj/pZEMLzRp/3exMvIjytxQlGBmqb0AVlTmjXbAWRVSj4qKzAbOme2S7KKg2mCwtlq8IYxIt+OiKygJcsS8LKiotkXRqErVkbepI3dm7w9KyW/u8GLZn8E54wpzLhvPMs8VRZ9upL+XekpCS9Fu59PT7WDVAIRbfzeOsTWbTdm3iU70WgUsizDarV22m6z2bB+/Xrs378fdXV1mDdvXuK9nJwczJw5Exs2bMBVV12FDRs2IDc3F2eeeWZin3nz5kEURWzcuBFf+MIXul03HA4jHO54mOXxaOUGJUlKzHAbrOLtG+ztPFGxf3uOfde/2L99j33av9i/fY992r/Yv/3rZOxfRVHRHpQQlmTdn2tvgw+yoqIyz5o4ZmyRFsjedrgV541LPZgOhmPZFarSadyS7NrFTjNq24MIhyMQda7PdqyorKC2PYRytwWSJKHEqT0QqWn0YkyBLe2xwYiMQERGrs0ISZIwrsiOJl8Yta2+xAOabKmqimXPf4JvnDsSp4/ITbpPvGx+mz8Iu77np2kN9nt2sLaLiMjva4cbgGh1I2pywhzo+/VjiY6XuoN7MEyQYC+fDADIKSgFAISzyBBWYms1OyLNfdaubetfwSnKIWw57yngnW8i2Hyo1+cM7NuIVrgwbLT2WV1FFQAAT+MhlI+a2OvzxynxoGMis90CiyBBVZSkmdxGNQLVaO22vSvR4oRZkBEJh2C2JN+/o5R35gAqAIRFO0Qpc7DdqIYhid3/zjW4S5ALH8KhACxWu65rAkBh+Aj2509Lu48gimgTcqD60gTbIQOiEa6cfMiqAMnX98sCnEjqDu5B/d9uxrClf0ZhafrJDLIcD7ZnDokJrhLkqu1QZBmiwZB0HyV2vlSZ7YIookEsAtp0/i7LEqJdwnUt9lFwevfpOz6FA81+7KzVYmWf1XlwRmU+mrxhmI0i3FbtemNjVdr2NHgxodSV9DySrKZcJzwebG8LSBieB/jCUXznH1tw/xdOSWTPdzuf0jmz/dig8LFV43qjwRPCBROLcbAlgDpPCAVZjF1bAxEoKlDk7CgjDwCNvhCAnKzb8l51M8wGEWdU5mXc99hgu83c/f6TlM6Z6OmUuq1wWozY0+DDvMklSfeRupSRB4AxxU5U7ayHqqrdytxnEg+2t/gjKMtJ/6zhZNLnwXaXy4VZs2bhpz/9KSZNmoSSkhI8//zz2LBhA8aOHYu6Om3NkZKSzj/YkpKSxHt1dXUoLi7u3FCjEfn5+Yl9unrggQdw7733dtu+evVq2O36/+EbSFVVVQPdhJMa+7fn2Hf9i/3b99in/Yv92/fYp/2L/du/Tqb+DUQBRTWirqERK1eu1HXMpy0CAAP2ffI+mndq2xQVMIsGrFj7Abx7UperO+wHACM2vf8e6rZ1bE/Wp0dbBEiyAf965bXEQD8bzSFAVoyo3bMNK5u2QlEBg2BA1bubEd6XvqReS1hr597tW7DyyMdoCGqvn3n5TUzIzb4cHwB4IkDVTiNETx3qRnSfsa+oQKPHAEDAyjVvobwPh3SD9Z4NBIbeunZEdGII+T1wAzDanJDMLlgVfl/Riav5wHYMA1A4cioAwGZ3IayaEPXpD5zHg+1uOfsM51TkDb/FPnEkTr3gSnjX3YZoa++zzx2NW3DQNgl5sYB3XrEWbA80921muxzrD2NszXbRpAXGI5FQ0oC0UY1ANWQOehltWsAt4G2D2VKadJ94Vn2qdbO7kgw2GHVU5zCqEqJi9wC/JVcr9d7aeBSlFWN1XTMU9KNYbcLBwjGZ9xXtEKTU37FasN0A0WBAq+CEEhjawfYD76/AzNAH+OjZZSj83itp901MCtFxr5hzS2EWZLS1NiK3MPm917F8QurztZuLYfbrq9SsyhKiQufAajhvHCoP/UvX8ams2lYHq0lEVFaxo9aLMyrzY+XRLYkgap7DDFHQguWpSGlKl+fGZkZ7Ypntnx5qQ9WOelx3zsiUwfaorHRaTq3YZYHLqgWFF0zp0UftxBeOwh+RcerwXLz6aS3q2kOYUq4/SB6vUlfo6hxs72lm+3t7m3F6ZS6spuSTN45ljvVzqnXbJVnpNFEhHUEQUOg0oy2Yut0RWYGpy9J244qd8IaiaPSGUezOPDnqWMFYsD3d/XQy6vNgOwA888wzuP766zFs2DAYDAacfvrp+PKXv4zNmzf3x+UAAHfeeSduv/32xGuPx4OKigosWLAAbre7367bFyRJQlVVFebPnw9Tmi9n6hn2b8+x7/oX+7fvsU/7F/u377FP+xf7t3+djP17sCUAfLAe7tx8LF48Q9cxh9bth6NmH666bH6nGd9/ObIRQp4dixefkvLYTw+3A59uxJzzzsOkMlfaPq040o4/fbYRU886F1PKsx/fbNzfAnz8Ib6w4PxEyfvH96xH7rAiLF40Ie2xnx5uBz7aiEUXzMbkMjdkRcVvd69FIHcEFi/uWVbUppoWYPOHMOWXY/Hi7lk+9Z4QlPfXAQDOmHEOTkuR/Z6NwX7PxquzERENNkFfOwDAbHcjYHbCpjLYPtB2bnwdgebDOGPx1we6KSecYP0eRFQjSoZrgU9BFNEuuKAG9Afb1agWhMnLkPmq15F9OzEtsBEfTrsHo0URzYZCwFvbq3OqioLK0A7sGPHVxDZ3XhHCqgmRtt6duysl1h+mWJA9HmwPh4JJg+0mNQLVqCfYrv3NG/S3pwl46i8NDgBRox2GaObvMJMaQTRJZrsjVorf26Q/2F5fswuVggpnefq/uQEgKpggKKmDYgbIQOyz+gQXhGDfTfg4EYlHNyOgWnC6bx0+ev0ZnL7wayn3jcarIJgy3yu22KSKtsbDKe89JXa+VGXkASBgK0eurzrj9WIn7JbZbiqdiIJD7WhvrkdOQQk+Xv0sRKMZp154pb5zAnhtWx3mjC/CgeZAIsO90RtOBJET1zKIaZdTiyqdg+PH6lpGvrpRKz8eTnM+LVO+I2AcXyd8bw9Ll3cVX699crkbBlFAbZZLsjXFSu3HM9sNIpBnNyVK8GdDVlRs3N+MG84brWv/RGZ7iv6LymqnEvyZWIwGhKV0P4vuEymOrTRwbLBdVVU8tW4flkwfhtKc5EH4QERbriDb0v0nun4Jto8ZMwZvv/02/H4/PB4PysrK8KUvfQmjR49Gaan25VRfX4+ysrLEMfX19Zg+fToAoLS0FA0NnculRKNRtLS0JI7vymKxwGLp/g+gyWQalA9SkjmR2noiYv/2HPuuf7F/+x77tH+xf/se+7R/sX/718nUv76IlqUdVVTdn+lASxBji5wwmzs/ZJlUloOPD7amPY8qaANam6VzHybr04oCrZxfg0/C9B7091GPNtCtLHLBFJtNX5Fvx9H2cMbP2h5bM70016G1DcAVZ1bgHx8cwg8XT9Y1O7+rQ63h2P8Hk16/JdiRcRSU0af32GC9Zwdjm4iIACDsjwfbcyBYXbCrwQFuEUlvPYyy8EGAwfasqc17UWsoQ6Wx47G4T3RDDOrPEFZjmdwmQUZrSwPyisoyHJFew55NGCaoGHveFQAAr6kI5kDy6q56Hd67FRXwwzF6ZmKbIIpoFvOg9jKQ31U84G2KlXoXzVrZ4EgoAKD72uxmNQLoKCNvsml//4YD3tTXjurPVga0YLsj0pZxP6MagSx2n+CaUzQMAOBv0ZetDAAth3aiEkBx5eSM+8qCCYKcOhvUqMoQRO1v74DBDTE0tIPtxZ6t2Fp4MSzBelRs+DHaZ1yMnLzky3gpWZSRd8V+zr7m1D9nJXbvGc2pJ44oxZNR2VoFn6cVTnf68uGCLEFG53FVfuU04AOgtvoTeFvLMend27DHOhXQGWyvbQ9iy6E2/PJLp2Ld7ibsOKoF25t8kUQQOc6cIdgeiaqJjOuuXFYTBAFoiwXb99T7YsdkCvB2DhiPLXLis/rUv+/ZqPdo482yHCuKXRbUe7ILtscz27XMfO1zFDrNie3ZaAtE4A1FU5bo7yrTmu2SrOrObAcAi0lEOCqnfF9Ksgb8iHw7zAYRexp8OGdsx+/U9qMe/Py1XcixmfDlGcmXbggkMtuHVrBd/0+kBxwOB8rKytDa2orXX38dl112GUaNGoXS0lK88cYbif08Hg82btyIWbNmAQBmzZqFtra2Tpnwb775JhRFwcyZM7tdh4iIiIiIqLfiDwcisv7S6Pua/EnXlJtU5sLeRl+GBwzadVKV4ztWgcMMk0FAXZYPCeIOtwZR7LJ0CowPz7PhcGvmgEmTTxsk59k7JhR8ZcYItAclvPppzx7W7m/yJ/5fVbv3d90xmQf+cLRH1yAior4RCWoP560OFwxWN+xCGFFpaD1AHUxURcGI0E6UKg0I+vsmKDGU2Lw1aLUO77QtYMqFMaw/aKlGO/5OaW860us2xQPGFptWfShoK4UjnHrdbj3qdrwLAKicdn6n7R5DAYz+3p27q3imfzzoaDBpwXYpnDyD3IwIBFPmYLvFHgu2+1NX/5GzyFYGAMXkhEXHUhhmVYJs6N7G3MIyKKqQqA6wf8cHOLAzfTXfcMMeBFQLCkorMl5XFk0QM2a2axMLQiY3TJH2jOc8WbW3NqFSOQyxYgbKvvIb2NQQPvvr/6bcP5uJGbmxYHuoNfVYR5VjwfY0me0jzrkSFkHCZ++8kPGaqiJBFjpPBCgfMxWyKqD94Fa0//NmWAUJtqj+alivb6uDySDgwoklmFTmwmd1XsiKikZvGEWuzu02G8XE+DSZdJntBlGAy2LsyGyPZaenz5TvHjAeV+JEdYMv6fgwWw1e7Xu62G1FiduadWZ7ozcMl8XYafxc5LT0KLM93q8Wo75wbKZge7qfRTLWNJntiqJCVrpPpDAaRIwqdCR+lnGvbdN+J9KN0YNSfM32oVVGvl+C7a+//jpWrVqF/fv3o6qqChdccAEmTpyI6667DoIg4LbbbsPPfvYzvPzyy9i6dSuuueYalJeXY8mSJQCASZMmYdGiRbjhhhuwadMmvPvuu7j11ltx1VVXoby8vD+aTEREREREQ1x85nW6hwJd7Wv0YXSho9v2iaVuSLKKfU2py+BFFe06egbKoiigxG3F0bYeBttbAqjI71zGc3ieHYdbMz9sbPFH4LYaE4N+ABhZ6MB54wrx3MYDPWrP3kY/DKIATyiadC23ek8IRlHrFx+D7UREAyoayyq1OnJgiJV19nuHboBnoB3etx258EEUVByp/nSgm3PCKQgfRsg1stO2iCkHZh3ZzgnRMBQ19ndKHwTb1djkFZNZC+4qzjLkRRt7dU7l0Ac4JJQjJ7+o0/aApQjWUN8G25XY2tXx9htjGe5SOPmkTosqQdCR2W5x5AIAIjoy20WDvsx21WiDWcn897RZDUNJsq68yWxBu+CC7K1He3M93P+8HK2v/CjtuYSWfag1lkMQM4diZNEMUU4fbBdELSArmXJgkYbud/HBre8AAEomz0bJ8DHYOvJaTG9ZlXL/eNl3UccSBg5XLgKqBVFP6goTso7M9vKRE1BtGANh58sZr5kss91qc6BWLEHFjt9hSuRT7DJOgl3RP8nqtW11mD22EDk2EyaX5SAoyTjQ7EdTbM32Y5kMIsIZM9FT38M5dlNiXBcvI58qWBwP8HbLbC92IhCRcTTLwHgyDZ4wHGYDnBYjynKsWWe2N/nC3dabL3RaepTZHn++kKoyQFeJNdtTZbZHlU4l+DPRMttTnCv2TMJk7P5MYuqwHLyzpxGK0jH5YdU27XfCH06dKR/PbG9lZnvvtbe3Y9myZZg4cSKuueYanHvuuXj99dcTZfHuuOMOfOtb38KNN96Is846Cz6fD6tWrYLV2vGP7HPPPYeJEyfioosuwuLFi3Huuefi97//fX80l4iIiIiIKDETX2+wvcUfQWtASprZHi8Rt6s29cOQbAfd5Tk21LX3rHTv4dYghufZOm0blmtDa0DKGMxu9oVR6Oz+EOnqmZX4+GAbth/N/iHf/iYfzqjUSinWNPu7vV/nCaHEbYXVJMIXYrCdiGggRWOZ7Q5XLkz2HABAwKu/5Dal1tJwBD5PdmWg63esT/x328Ftfd2kPtFcfxjhUOYJfcebFAmjVKmHUDCm83ZLHuxR/X/PCNEwmgTt75hQW+/KvQMdGbKmWHa2kFOOArW1VxUk8tu2os49tdt2yVYEp6R/ffqu2pvr4fe2ddrWtf1GczyzvXtwS1UUWARJV2a7zaFN7omGdJSR15nZDqMVJjVzv5oRgWK0JX2vTcyD6GvA7mf+FwVohynDGvAO/0G02zJntQOAIpogqsmzQVVFgVmQgViwPWrNg13Wn+V8ImpvbULAl/x307f3fXjgwPAxpwAADO5SmIUoFDl5EDBeRt6go4w8ALSIeVB9qSemqLHgvTHDvddUsQgTve8jFMiwFrkS7ZbZDgBNtlEoVxuwKXcx2kYugltnsL3ZF8YHNS1YNEVblnlSmTY+3X7UgyZfkjXbjULacXCyUuPHyrWZ0R6U0B6QEgHplMHi+KTzLgHjsUVaG7tmU/dEgzeUWGu8NKdnme1d+6jQaU6s5Z6N+Nrrpmwz21Pcy1KSiQrpWIypy8inq7b3lZkjUNMcwNu7tclfe+q92Nuojd39kTSZ7Swj33euvPJK7N27F+FwGLW1tfj1r3+NnJycxPuCIOC+++5DXV0dQqEQ1qxZg/Hjx3c6R35+Pv72t7/B6/Wivb0df/7zn+F0dn+IRURERERE1BfiM/GlNDP6j7UvNmN/dFH3zPYcmwnDcm3YWZf6AVh8YKt3vbXSHGuPZvm/W92Ejw62Ykp553Un48H3IxlKyTf7Iihwdn+IdNGkYpS4LfjbxoNZtScqKzjYEsAFE4oBpAi2t4dR4rbAaTGlLVH3XnVTYpIEERH1DznkhawKsFjtMNm1f0tCaco6kz7e9hZIvz0PO/98c1bHyQe1jOVG5EGq39VPreud8O8uxMcvPDzQzeim/uAeGAUFjrLOz6EVWz4cWQQthWgIftENv2pNm/mqlxqNIKIaEpnP1oLhMAgqWhp6ljUfCvpRKe2DUn5mt/cUVylylZ5Pljn81BXY9pfbO23T2m9MtD+e6RtNUkY+PglDNCUPZB/L5tS+b+Q0wfZ4trLeNdthtMIMHcF2VYKaIvveZ8rHiKZ1OKvtNbTCDUOasu8AUBg+jLB7lK7mKWnKyCuxAKUQ/6yuMpTIdag7VK3r3Ceimt9/Bb5HpmPXpqpu79katqDGOhGiQcsGF2IZ65FI8vFSPDhuMOm7V3zGfBgDaSpMxIL3JlP6TPnyc66EXQhj5/oVafcTkpSRB4Bg4TQ0IB8TrnkCoqMATiEIKZI54LupphWKClw4SRtzFTgtKHZZ8P6+ZkiymjSzPd04ONka68fKsZngCUqobuz4fY2kCN5H4wHeLsHn4Xk2WE0i9vTBuu0N3o7M9FK3FfXZBtuTZP8Xunq2Znt8EoOe5eOAjsn4qbLRo7KS5ZrtBoRSlJGP/8yTte30EbmYNjwHy9+rAaBVSnCYDRhf4kw5YV9VVQRigfiWJBXsTmb9umY7ERERERHRiSIebNe7Zvu+2Lrjo5KUkQeAiaUuXZntemell+VaO61lrsdndV7c9MxmnDO2ENfN7vyQz23THjRlzGz3R1DgSFJG0yDiS2eNwIqPj2RV6v1IWxCSrGLqMDeKXBbUNHV/EFvvCaE0xwqnxZB2IL/06Q/wzw8O6b42ERFlT4344BdsEEQRVmcuACDsaxvQNp0Mdvz1OyhBM0a2vQ9V0b+ETV7bVtS7pqDeUglL655+bGHPeNtbUK7WQw0MvuoHzYd2AgAKRkzstF2wF8Ct6g/uCHIYkmhGq5gHeOt73S5VjiCKjiCbs3AEAKC1dn+PzlezbQPMgoz8Ced0e8/gLkMevD2uPDAssrfb+vaqHIF0TPuNFm3pomiSoGc4pE3yFM06yshbbIiqIuRQ6ixXJbEOd+bS4AAAkwXmFJnjna6NCJAisz1sKUAZGrHNMh27Cy6ESU0dfAsFfChFE4yFY1LucyxFNMOgJG+fFCvXHy8jP+lz34ZPcKD+b7dk9R1yIrFJrShQWzHmv1/C+8/fn/icqqJgRHAHAoXTE/uKsaB3JElFBQBQ4musZwiOxwXMBbCEU1eBUKIRyKoAgzF9pvyI8dNRI1Yguv0/afcTUmS2n/W1n8F++0fIyS+C2VkAAPC0Zl5mIr5udq6tY9L05HI31u3Rju1aIt1sENOvsS53X2P9WDl2E9qCEVQ3+CAKWnZ2yjXH48F2sfM4WBQFTCh1Y0dt7yf01ccqpQHapHVvOApvSH/wt8kb6V5G3mGBNxRFe0BCSJIhK/qeG0jRePa4vnF/ujXbZUWFouo/F5Apsz11tT1BELD0nJFYt7sR1Q0+rNpWhwsnlSDPbkYgxRg9HFWgqIDVJDKznYiIiIiIaCjKds32uvYQCp1mWE2GpO9PKnNjV5rM9miakm3JlLm1YLuq6hvU13tCuG75JgzPt+O3V5/e7TodM+ZTr7cGAM3+MPKTZLYDwBdOGwZ/RMaHNfofqB87SWFkgR0H0pSRd1qNKYPt4aiCSFTBIR3rzhMRUc+pYR+C0IJO8WB7xD901wnuCzs2vIaZzSvwsf0cFKEVB/foW3s9FPRjpLQX8rAz4XeNQUGwpn8b2gP1NVpAW5AHX0ZbsG43wqoJJcPHdtpudBbALoQzl3mOEeUwooIZXmMeDMGm3jcsGoF0TJAtv0ybIBlo7tmEwva9HyCiGjFy8oxu71nzygEALfXZn7u9uR658HXLvFa7tN9k0b4vFKl70FOKBfkNOoLtgigiINighnVktuvMVhZ0ZrZbEAFSlLqXHOUIqmbkfem3UI22tMH2+oO7AQD20nG62pcu2C7HPms8sz0nrxCHz/kZTg1uxOaVf9R1/q42//ePOHrveGx/9789Or6/iaqMzfmXYHPpFTj7swfx/l//DwBQe2A38uGBbXTHPR5fi10KJ6/apUS1MYWos4y8ZC2AQ0o9xlFlqdMkmXTqyhdgQvv6lBMBAC3YriQJthtNZjjd2rIVFrcWbPe1pi5vH9cx1uwIyk4qc+NQi9Y/XZcJMxvFlJnogDZGTrf8WY7NhPaghD31PlTk2+EwG1KeL1FGPsn5Jpe5sDPNhHW9GrxhFB+T2Q4gq3Xbm3xhFDg6j4FLc7TznXrfakz88Sqc/9BbndYzTyWS7ZrtaYLt8WcVXUvwp2MxGlJmycfbZkwRvL9kWhkKnRb87L87sKPWg4unlsJhMcKXYs32eAn5Ybk2tPgZbCciIiIiIhpy2rJcs73BG0KRK/WDwollLtR7wikHmR0DZb2Z7TZEZAXNOgetP311B2RVxfKlZ8Fp6f7gxmJKPYg/VrMvgkJH8mB7Zb4dFqOYWLtNj/2NfliMIspzbBhZ4MD+5iSZ7e0hlLqtcJhTB9sDsYH84Qxl8ImIqHeEiA8hUctUtbu0B/5SkMH2ngoFfHCtvh27TJMx9pvPQVINqNvyuq5ja7a/r2Usjz8HKJqAcvmornLCx1P7kVhp+xQBw4EkNO9FraE0UXY6zuwqAgC0t+jLUheVCGTRjKC5EJZw74PtWmZ4R7A4t6AEYdWEcMvhnp0v5IVPsMNk7p7B6yoaDgBob8g+2F5/QJtI0a3MeZfMfHMs2C4nzWyPBdt1lJEHgCCsUCOp/86Mr8Odad3sONFkhVmQIUfTV2WyIgIhRRsnXf4j1F7xKoaNngLVaIU5TRn5SFCbwBGfqJSJajDDmGJN+Wg8WCx29PVpC76Kj5xzMObDn6K1sVbXNTq1r343ytV6TFj9Vbz/zN2DLkPeoEahGG04++ansGHYUpyx//c4sHMzjm5fBwComHpeYt94ZntUSv6dqCbuFX2Z7arRBrOSJjjbpaJDOkUzvgg3Ati1IfWkBkGNQhaST+KOs+do31XB9szfO/Gy74LQOdieaFPXNdsNIiLR1IFjSVbSjltzbCa0BSRUN/owtsiZNrNdShPgnVTmRnWDN+MYNZMGj7YsGQCU5Wi/y3Xt+v+9DEkybObOP4+zKvPwu6+egcevmo5vXTgWR9qCONiSeeJ31mXkY8F2KUnFvaiSvAR/OhajiHCqMvIZEgAsRgOunjkCaz9rhMUoYs74IjgsxpRLvQViFRXKc22JyoFDBYPtREREREREyD6zvcHTMVs+mYml2sOMVNntkqxCEACD3mB7jhbY11tKfvtRDy45pRylOcknBMRn1qd7kKGqamzN9uSfUxQFjC5yYm+jvkwwANjf5MeoQgdEUcDIQke3zHZ/OApvOIoStxUua+qBfHx7pjXniYiod0TJj7CoPah2OHMAAHKw91lnQ9WWf96PEqUBtst/A1dOPqrNE2E6uF7XsW2730NYNaFy8gw4h0+FSZBxdN/2fm5xdiINWml7QdG/xMzxYvMdQKu1ott2ayyA5csm2G6wQLIVps181UvokiEriCKaxHyonqM9Ol/XsvTHyi3WStQHW7JfD95zWJtI0W2NcjmC6DGTBcxWbXKOLHX/Gy2+jnu81HwmIdEGIV2wPZbtbTTqC7YLZu27LJIi+xkAFFmGRZAgpMhszy0sxeipM7UXJitMaTLl4xMOjDoy+QFAFU0wqMl/d+R4GXlD5yz+EV/9DUTI2PPc7bqu0aWBqEcBPhj2NZy993FsfOrm7M/RjwyIArHJBad99X7UGUoRfGEZ5AMbcUQoQX7xsI5948H2FGu2d0zM0FcFQTVatOunel+WEM0QHI8bPfVsHBFKENz6csp9REVKmtl+LEeu9l0V8ugItitqt+znybFgu91sgKPLZGyTQUg7DpZkNW2ANzeW2V7d4MPYkvTB9njWfbJM70llbkiymtX4sit/OApfOIri2MT44ljQvbZd/7gxIiuwdPm8RoOIRVNLcdn0YfjarEoAwE4dJe8TwXadAfLEOF3unj0ejZ9L5zMEALCaDAhlKCOfbiLA1TNHwGQQEoF2p8WQWJe9q2Bs+7BcG3zhaK8nTZxIGGwnIiIiIiKCltnuthohyaquUu3HlqZLZmSBlvWdat32qKLAJIqdsg3Sic/IP9qW+SFBSJJxoNmPcSXOlPvEZ8ynKikHaOu5R2QFBSnKyAPAmCIH9jbofxiyr8mXWOe+ssCOtoDUaT23ulh5vxK3FQ6LEd5QimB7bCB/pC2ou7Q+ERFlzyD5ETFogTGD0YiAaoES6v16qkOVpfET7LJNR+XE0wEAbaWzMNr/EZQkD9W7MtV+hP2msTBbrCgZMw0A0HJga7+2N1vGVm2dcUEefOVj88OHEXZVdtvuyC0GAATbM6+DDAAGOQxFNENxFCNHbs18QAZa0K5z4KvdVAyTv65nJ5QjiArJA4q5BSWIqAZEWrMP5EuN1QCSB9ulY65niQXblSRBTymi/R1rtOjLbI+INghS6mC7GrvPDLoz22PB9jRr1sez70Vz5gkBgskGS4pMdACIRrUAuTFJlYGkDGYYU6wpnyiD3mWN8MLSCuwcdxNOa30djUdr9F0ncVIJkmDGrBufwMbCy1HR8FZ2x/czgxqFGptcYLU54F/4S0yM7sRpDStQ6zql077G2OSIaIpS7aqs9Z/BqC/YDoMFphQ/CwBAFmXkBVFEo200LIHUv9OCKmcMtufka99VEV/qteTj4pntxxpV6IDVJHYrIQ8AZqMhw5rtStoAb47NBG8oiiNtQYwtcsKUZg34dBXeJpa6AAA7jvb874wGr/Z7Fw+yW00G5DvMusvIq6qqTS5IE4AudllR6LRkF2zXu2Z7mknx8Uz0ZCX4U0mX2R6/RroS98VuKx6/6jR8b+EEAIBdR/W5Ybnad+1QWredwXYiIiIiIiIA7QEpUU4vWcm2rho8ocQAPhmjQXuQ0exPXq4uEu3+ACQdt017+JIq+HysmmY/FBUYW5w62G4xGhLtSKXZpw2O81OUkQeAMUXOrMvIx4PtIwscsfZ2PPCsj2Xul+ZY4bQYE0H1ruKZ7b5wFO3BoVWijojoeDJG/ZAMHUEnv2BPu4YypWcLNyNsLUq8dk+6CLnwYf/2jRmPLfNtR1u+FmQvKB6GNjgRqt3Zb23tCWfgIIDBl9kuRcIoVRogFI7t9p67oAQAEPboDLbHMtsNrhLkqe0ZS5JnIigRyF2C4wFLMWwhfZn23c4nR7oF7xPviSJahHwo3uwD+aZ2bSJF12CwIEcgH3M9o9EEWRWSrtkejWWUm8x6g+12GNIF22OZ7Sadwfb4WvHpMtvDIe16oo42Ckartr57CkokHmzXmdluMKcM8Eaj2nUEsXuwePIlyyDBiL0rn9B1nThBiSZ+dsKw6ShTGhAK9DyjuK8ZVLnT5500cyE2Fv4PzEIU0bLTO+0bLyMvpchshxy/V/ROfDDBhDRjDEV/sB0AFNHUfaLKMQQlCiXJz/ZYJrMFPtUGJZC5ooYUVROTq+MMooAJJa5uJeQBwJwhsz2SIficY9ParsbGoGZDmsx2JXXA2GU1YUS+XVcQ+1j/2XIE71ZrGf8NsaB68TFLvpW6rajVWSEuscZ6hkz0SWUu7NCxvny8PL/eNdtFUYDJIKRfsz2L5wgWk4hwpsx2Y/rzLT6lDONLtIkQWhn55OeLB9vLY8H2FgbbiYiIiIiIhg5VVdEWPDbYnr7cmaqqaPSFUeJO/+DMZjYglGIWeVRRs5qR3lFOLnMptupYpvnYotTB9nigP9354hMFkmU/xI0pdqLJF0a7jjXZghEZR9tDnTLbAXQqJR/PbC91a8F2X6rM9mMG+Fy3nYio/5jkAGRjR7A9KNohMNjeY265BVFbR7B97OlzEVJNaPx0ddrjWhqOoFyth7HyLABa0LTWNAKmlj392t5sFUtaeXJhkK3ZXndgF4yCAkfZ+G7vOV25kFQDojqyRQHAqEagGiww55TCIKhobcp+rexjJQuORx2lyJH0Bf+7nU+RICN10K7dWACDvyHr87pjEymMSvdg+7GZ9IIoIgwz1GiyYHt2ZeQlox1GOXUWerZrtieC7aHUfzvGs94NejLbzTaYBBlRKXlASYkFyPWuEw6jBcYUAV45kdne/Wfrzi3A1qJLMP7wvxKZ+Xoce++5K6ZAFFQcqf5U9/H9zYiOzPa4yV/7BT7IWYiRs6/svG/sZyunWLNdkSUoqgCDUWc2utECU4qS/tqFoikntSS9vmiGIU2mvKhGoeo4n1dwQtURbI8qSrcy8gBw/bmjcNVZ3ZfTMBnEtBXPooqSduyaY+/4OY0tdsJiFFOOM+NB5FQTzyeVubAzxVJsqfxp/X786KWtUBQV9V0y2wFtIrfezPZM65jHTS5zZ5nZnt3YP9nPI10J/lQsxtTPJPR+1mM5LYaUS70F45nteVqwvdU/uP4W6E8MthMRERER0ZDnDUchKyqKYrPfMwXbWwMSJFlNW0YeAGwmA4JSilnkWWa2C4KQdu27Y1U3+FDgMCMvTUZ6/HzhFO0DgKZYZntB2sx2LXC+tylzFkxNLKg+OnaMy2pCodOMmqaOh4J1nhDcViNsZoMWbE8xa/7YAf4RHaX1iYioZ8xyALKpY/JWSHRAjDDY3hOqoiBXaYPgKk5ss1jt2GOdCtuRd9Mee3DrOwCA8snnJbZ5naOR69/fP43tAW97CwrQDgAQ05VfHgAth7QKAIUjJnV7TxBFtAsuXdmiAGBSIlBFM+wF5QCA9sbs1z/vdH1F6pbZDnc5CpVmqEoP1rtVupelP1bAUghrKPtge0n0CGRVgLFL2XSt/Z2vJwlGIElme3wd93ip+UyiBjtM0TTB41iw3WDQF/Q0xrLV40H/ZKREsD1zZns8+z1VgDse+DXpLJsvGMwps6mVWMl80ZB8IkXp/P9FPjz4dNVyXdfSThpNlC4vHzsdANB6cJv+47s4XL0N1Z+s7/HxXRkgJ9Zsj3Pl5OOs7/wTpSPGddoeL9WfKtgOJYpoFuEwwWhJm9muVaTIMtieJrNdVKNQxcxrwPsNboihtoz7aWusdx9rXjZ9GK44M3mwPe2a7RnGrvHM9lK3FS6rSRtnZshsTxXgnVyWg5213qyWCotEFdQ0B7B2dwMaPCHYTAa4jlmXvjQni8z2qN7MdjeOtAUzTjrvSbDdlGKygqSkLsGfijWW2Z6sP+NrwGcTvHfEqs8lOx/LyBMREREREQ1h8QFyUSyDO1P2eINXG6gXudJntltNIkKRFMF2JX0pvmQsxtQl4I5V3eDDmDQl5I89X7rP2uKPQBCAXHvqYPvoQu06etZt39/k73QMoJWSrzkms72+PYTSHK1fHRYjfOHkDy/8sX41G0QcYWY7EVG/sShBqCZH4nXEYIchqn/5EOrg97XDLoRhzCnttN1Xfg7GBj6FFEkRJAIQqvsMAdWCssqOzGylcAKGRQ/pWu/9eKjbvx0A0ITcQVdGPlhXjZBqQvGw0Unf94luCIEsMtuNVrgLhwEA/M29DLbL3YPV5vzhsAoS2luyD4pr50ud2R6xFcMZacrqnG1NdciBH0fFsu5l5BXp/7P35+GSHHeZL/5GrrWcfT+9b5JarV2WLHnFeJHlNosBz2AwDMwF7Blscw0Xs8wFD3i9ZvHPYIwZfjbLDPgaD2DjRQhJXpFt7UurJXWru9Wnt7PvW1VlZkTcPzKz1oisjDyn1UdSfJ7Hj9W1REVlZeWpiPf7vl9Qo/G3ogcHPGg9n2kU8W2nFNuZXYDN5L/zOPXhcRNE4OAVEYvtce94EV4pvL7ZKdz3ZtQDvlISXxPjY+Ck7dluOVI3NY0i8w1JYcHuK67HkdxN6Hnir1IXaRAWgEZR6F09/ZhGH/zJ7K0pxr/6YZAvvzvz85uxeAAiKS5oeWz02VJBkQcQnisqse/EcuAQKj2WhPpgCuNxK9fy3anHYOmc7SWrC3Zloe3jfMpgp/xeAKGwnNRKrd3aNV4vxm3MQvFePF7Qpof5laOdmF/zMLUs/5vYMr9ozL/+7hhmVioY6nJBSG380a4cJlOK7X5KAfrQti4AaOvCV+3ZHr+2qMg+yNSz3QTjtSKHerwMhQBFxwLjELrl16MWcMNdORhEx8hrNBqNRqPRaDQazYuKxUhsj6Pm2vVsn44W/u2c7TnbRFkijgeUKfVaAyJxPKWz/bK0Yntiz/YK+goOzITK+bxjYntPPlXf9tOza+gp2A2O+91NYvvkcrkaz9/hWij7rLohU89aJYBjGdjRm9cx8hqNRnMRyfN1cLez+m/fLMLyt05P3+cTC9PnAQC5nkaxvf+a21AkZZx6/N+lz+VBBRXiNoiKhW2HkCceJs9ujSj55QvHAQBTzm4YWyxGnsyfwqQ5CsMUO0fXrG5YKQQsALC5B2656BkMne2VRfX+5w1zYz5YkzheHNgFAJifPKM8nsE8UEMu2rGOYfSydC7+mKmxpwAAs4V9LW5fg7Y6fH3iALRVKGOR2O7m0jm9md0Bl8ld6KoCauwwDxJ6tvte+HppCgJi97sncbbHYrudsmd76KaWie1xjLy8CJbf8l9wGT2J4w/ek+r1ms+VaXcX3IWTqZ4rHI9WMBqMZ0tkEGCBAinFdruds536CEh753gMsaIibFkP+DYJEs1w02lJhajH5O17tgOA5/TA8ZfaPs5v02O9mbbOdspS9WyPxfYwkU3WJzwSjCXFAFeORiK2Qt92n3Js78nj30/M4nun5jDcVBQ/3J3D3JqXqnA9rbN930ARjmW0nWfY7540iP/tkCXaZRHu3eh9iJIGajHy6ccrRokBq4Io+ZJPYZthgl5Pwanus7wY0GK7RqPRaDQajUajeVFR9imenljG8claBO5iKdz4iJ3tfhtBO+73Vt8HTkTeNqt9y5ppt2EhwrXMxF56AEAZx7Oza9WNjiRkveBiZlc99He074G5f6gDp2baCy/PzqxV+7XH7Okv4MxcfYx8BSOx2J4LF/Jrgij5NS9A0TGxvTePC4vpe1NqNBqNRo0CL4E4tWt3YHfAodrZnoXVuXEAQGf/9obb913zcpS5jcUT98mfTH34TaLi0P7rAAAzp7dGj2Vv+gQW0Imy25fYm/hSkF89g4Vca3RyTMXugeMtphrLhg9YLnL5IpZRBF3emNhuMB+0SWTrGdkNAFiZziK2t4r39Vhdo+jFMrxKOpcnAKyMh4UU5d7LW8V25reIhD5xQATOdhbFyDspY9W5U0QuwdkeCp7pBdTYrR4kONtpJMRbKcT2uPe8L4mlZ4GHgBup+4QblgubUGFaRdz/XeZsB4BrXv3jOGPsRM+//lc888i32r4eqYuRB4C1zv3oK2VvTWEwHwVSwezk2cxj1GOBpna2xwUNokQFAOAsAEX6cyUuapB9T5qPXTu46cBu17M9oUgmJnC6kQvat3LxKRPGyMtwTCItwqaMg/NkQbbomBjocHDDrp5oPHlRdywYywrPd/Tm0Zmz8JSS2M7ww9dtw0CHiycuLGGwaZ0+GiWnTS21d8undXtbpoHLhzvw1HgbZ3ugvu5vL7anHy9nh+d9WdA+rjpem8KCeopuOJ6ob/u6R5GPXq+3YGN+TTvbNRqNRqPRaDQajeYFxbn5dbz+49/GofffiTf9yb/jLZ/6btUxHVdcD3bGzvZ2MfIV9BRsuFbyhk0uqWc75UrRfoB80V3Pufl1eAFLJba7tpnsbF/z0JfQrz1m/2Axldh+enYVe/ubxPaBIubXPCyVws+gOUYeAFa91oX8WiVA0bWwozeve7ZrNBrNRYJRigKpwMjVnO3M7kCObrzIabOcj88nSvOh2N4z1Cj6WraDVVIE9xL+llKvxUU5vGM/1rmL0vhTmz7XLFiLpzFtbQczbBh8a0TbxwxUzqPStUd6v+/2Ih+0d4sCgMM9ECv8rbJo9ABrMxuam8Fbxer+4Z2gnKA8d055PCIQv+txe8Nij/mp9GP7MyfD9gCFvpaYc4O3ivs+cUAEznbul1HhtjRhoBniFJGHvCiAU78ag56GWOSnnvwaFt/npIiRj8V2ryz+LcqDCjykE4uBMLocELupadyf3pb/NjdME+5//hKWrAHs+Zcfx/1f+IPEa63BmwTjoYPYTscbWlqoXKtJdG5Mj238msQZg00UxHY3/E7Kne2KYrsdjhdI2nuEqQDpP1uYbmKMvMmDlv70IliuFx20vQgdMC51jouwTXl7sTQCLyEE9/7ma/Ej14WJH05Cu7KAJce0E0Jw5WiXsrO96Jj4mVvDVJBmZ/uO3vC7em6h/e+XtM52ADg02tU2Rt7LUGTvSJIGav3uN8vZrt6zvSNao68J1ujrHkXBCe/vLThY0DHyGo1Go9FoNBqNRvPC4utPT+Hs3Do+9JZr8N9/+BBKPsWZ+XCxvbjuwTIIegrhhkm7nu0zK5W2EfJA6GwX9TIDwoWtaox8Oyc6EEbIA9gUZ3vJC6qL6SQODHXg7Nx62yKFpZLfIt7HTvd7T8yCMo6Z1UpDjDwArJZFYjtF0bGwvSeve7ZrNBrNRWJ9LdxANuvFdrcTObYxZ3tpbQXTHziAB/7k7ShLeh2/EPGXJuFxC109/S33ecQBfPnfMxJUEDQJmsQwcMHeBXP22KbPNQuda2exXNwFTiyYWyhGngYBhtk0SN9e6WNYvg+dwWKq8Vz4IJEQt2L1wSptUGwXONEt28Ec6QVbHs82XoIIWBzYAQBYmj6H+7/wh1j+vW04/eT9iWPai6cxY28HsVw4Ime72fj7LiAOSNAqGPOgjEqC674Z4nagwBN+59EAgYKAGkfDU1k0OGrOdjdflD6mOl4k8PoVyXVMUCSTRFzEIXJTcxrFyLcRn0d2HsDe930bjw79GG556sN47J7PSR/bfK50bL8KNqEYP/10dR6TH7gcD9/x16nmH3/v1yaOp3p8EjR6v2kEaKBWSMFkYjtTazlg2FERtuRcCZ3t6c89WE5LKkQ9Jih4CvGeFPrQyVM42wOmJKDaljxGPq3TO2eb1ah0xzTgB+LWbH6KvuOHRruUne22ZeCnb9kFxzSwradRbN/ekwchYWF6mrGAdIL2laNdeGZqVdj2rDpeBme7KylWqKYCKBRSVMV2gQkgLixQmV8spovS50pegIITOduLDha0s12j0Wg0Go1Go9FoXlg8eGYB1+7oxk/fsgtvvnYUQE2YXlz30VOwq9XrbXu2r5Qx1Nm+92LeMYVxbQAQKPbRAwDXTiG2z6yiw7WqUexJOFbyeJWAparo3z/YgYBxnJlLFkx8ylsi6g6NduF1B4fwq194DP/48DlQxmsx8gn94EJnexgjv7DuC2PsNBqNRrMxSquh09fK1xVwOR3IY2NFTicf/gaGMYcb5v8V5//oVRg/vTXE4osNW53GPOlp6Lse4xEXJElsZz6owCE7330Ig8tPbuo8szIUXEDQsw/cdGDwrfN3uVJeg0k4zHyX9DFm724M8tm20eqMUjgkqIqiZXcAucrshuZnCsRqAFi0BmCuqIvtpsApX0/vcJis4Nzxq7jlqQ+hC2tYPJ/8HewqncNKcTcMy4VFWLV/eHX+Ta9HDQcGaxVZuF+Gh/apSTHEzsMiDIEvEWyYmrM97hXPksT2yNnupoiRt91QkKeS80bV2W5Y4WMDkbM9ipE3E2LkYxw3h1ve9VmUuIPKnLwVAWmKLh/efy0AYH7scQDAse99FaOYgXf+0XTzj5zbdPbZVI9PIv7M2xUXxFjRsZPFyENRHDejlAGps50Hie0amiFWDs4mONvNYh+KpNz2WuVTrlTYnSSOB1VxXK3neEXmbE8x3pWjnRibXZO2ZGsmbtE21JnDV97zSvzUS3e1zGe0K6fkbHdTrIOvHO2CFzA8OytfB/uUwVEtspes0/0Mn4UbxbrLxiMEMI3041Wd7bIYeacWI7+ge7ZrNBqNRqPRaDQazQsHzjkePD2Pm/b0AQh7s3flrJrYXvLRU3Cq4nc7h/bUcjpnu2sb8hh5xpTi34DYiZ684XByehX7hzqqroLE+bWJpU/bV37/YEf02sliuydwWBgGwZ//zI34gcsH8Zv/9AQAVGPk457tIrF93aNRjHy4ESqKkl9Y815UfeI0Go1msymvhWK7ne+u3mbkulDkpQ3FwK8e+zrm0I0zP/4V5Nkqin/7WsxOqsdlP98w16axbPUJ7/ONHAhNEE+oh0AgoJIdN2EXPYeVpfnNmmYmlhfn0Idl2IP7wQ0b1hYS230/3OyPezCLKI5eAZNwTJ5JFp29yPUcR0z7uQF0+Bs79gb3hY7WVXcYufKU+ngsSBTbe/pH4HETw3QCD177AQBAUJb/huOMYSS4ANq7F8QKf//GxwEIxf3m+QeGA0MQI4+gDF9BfDadUByXJmDQQKlne839nBBN75fAOEnVV96J3O+BJJaeUDU3tRmfVwKxPXa2m3b64+cTG5CJzwBM1igY9w9txyI6UJ4Ine3lI18EAFhrk6lez2DhHN3l7H3fY/xIbCdWuvdLDAMVboMH4t/+hPpKMfKmI/8sgDAVQCVGXpQK0fB6PABPUVhgd4TJKMsL04mPC9ea6eW/pNj3LFHjSe3Pqs7xBHf2odFuMA687o+/hVf/wTfxlk99V1rEHo8ZC9pXjHRW25HVs6OvgHPz7YsF0zr5AeDKkbCIK6lvuycoOG+H7PgFGT6LnB0+VtazXdUAUO3ZLoiRL3m00dmuY+Q1Go1Go9FoNBqNZmuxkQiyc/MlTK9UcPOeXgBhH7gDQx04Ve9sz9vVRavfxj0+vVLGUArneBgjn9CzPYOzvV3P9pPTqzgw2D5CHkjeVAHE4riIgQ4HXTmrbd92n4qd8q5l4lM/fSNuv2oEhADbesLNzQ5HXjW/WgmqMfIAhFHy//DQObzqY98AZclJBRqNRqMRU45i5J1CzRFs5rtgE4pKOXvf9v7p72Os8yU4cN0rwN7+T+jGGsaPPbDh+W51nPIs1m252G4EchHAYD6owEU5fPAVMAjHmSfu3bR5ZmHqdOiu795+EDAsGNg6YnvsEk7q/Ty45xAAYP5cstheiXpzG5EQxzuG0M0WNjQ/k4vFca9zFwYq5zOMJxbvYwzTxJOv+FPMvO1fcdNb3oOAG2AV+W+4xbkpdGENzuBl1WjteletyYOW12OGA5O1irwkqMAz2hesVucaic+e5HpDmA+qENNumCY8boELIu5jmF9CGY4wgaKZqngvEds5bW3/kDg/Jzw2Imc7C6Ke7QlFI834sOROb7QWehDDwIS9C/b8CdAgwGUL3wEA5FMWfZiRc7u3tPHiKRqL7YLUBxkeLEBU5AEALFA6V0xb/lkAUSqAUosAFzahYFS8NjRBgRTifa5rAACwtpDcvkJVRLVNIl0DV6PLFZ3ynqRIPE1M+1XbuvDbbzqIt9ywHdft7MFj5xYxJ9kP4JynWlvv7C1ses/27oKN7T35xP7yWQTt8PglOdtVYuSTnO1q7QaA+hh5mbO9rmf7i6jwXYvtGo1Go9FoNBqNZsvztSMTuOGDd+N/3SePQUziwbHQcXTT7toG94GhDpyIxPalkoeegl1dBCcJ0JxzTKd0tudsUxp9F1CmtEgG2vdY55zj1PRqqn7tQBRPl+gQSFeFTwjB/qGOtmJ7knjvWAb+7KdvwF3vfXW1r3tcNS92tgcouCaGu3KwDILzgo2Th8bmccOuXqVYPI1Go9HU8CKxPVesOdutyOW+upxNYFxenMN+/wTo7lcBAIZ27AcAlBfU47KfbxT8eXi5AeF9geHCTBAAZaLizsuvxwrPY+XUfZs2zywsXQhF6uG9V4GbDqyEuOTnmiDq4RwLxSIGRnahxB2UJ59JHMuPRN9YBLY6h9GLlbaRzkmY3BeKbMbwQYywaZTW2vdnbhyvVfxu5obbfga7r3wJiGFgneTAPbmzfWosLKTo2XFFzdHv1QpDLO6Dm43HlpkuTEGMPKEVBCS9eGq5YYJRktjOFJzjAFCBDZ7gbIdfRiWl+z7u6y7rAU+or9Sz3bJigbdVMK4621M6vQGEKQJULnaZTTHyALDSsQ89a6dx7P5/Qy+W8bR9CF1+srBbPx7jBCN0XCoqpyWIHOqGyvsltrS4gHAKqhIjH53rVNIDXtQ+IYlaoYq4qMpCAKRoEZDvHgQArC0lfyZhy7L0ayDbTHK28+pjUo+XUNQdRIXQSWs0wyB45w/sx2/cfhA/c0sYCS9bt8bjtVtb7+zLp3K2q77fK9v0l88itss+j4CpFz5Ue7YL9hE8qp62ZxoEedvEqqBn+7pPUbBrMfLL5SCxn/0LCS22azQajUaj0Wg0mi0N5xyf/MYJdOdt/O6XjuJvvqseS/jQmXlcMdyJ7kJtQ+RAJA4zxrG47qM771QXmkk925fLASoBw1BXe7E9dLbLHQK2ogjsWmais316pYKVSpBabHc3ydkOhFHyp2baxMi3WcxbpoHLhjsb/p2zDayWRc52ig7XgmkQjPbkcL4pRp4xjofOLOCmKM1Ao9FoNOr4pUhs76g52+1CKLaXVhczjfnsQ3fBJBzbb3wjgLAv8gI6wZYmNjbZ5wFdwTxocUh4HzVzMGmCs516oEarSGmYJs7krkBuKl1P5YuFP3MK8+hCV08/YNow+caEts2E+u0dwYZpYtLcBjJ/KnGsWCgz7dDR3H/5rQCAo9/8fOb5WTwAF7h3u3deDYNwXDh5RHE8XziejDJy4BX5b7iV8bAAYWTvoVq0dkOMfGv8tVRsD8pKYnscI+9XJG5UFigJqADgESfR2R6K7enmGPd1Z574u6taXBAfX6GzPRLNLQXxOSA2SKKznbaI7WzgCmwPzmH10X/EFPqxtPs2DNDZVK1DLO5jwhhCnniYnTybep7CuSv2bAeAABaILEae+WAqhQ9OLLZLYuQFhQpJECscryIpzLFAQVKI9529odheWZ5NfJyqwOtYhrSVWpDCid4yXmIP+HBNmKbtGVDrOd4u5r7d/Hb2FjC7WmnbB17F2Q4AO3rzmFmRf8+y9mwXO9vVY+RjsV2UuBdkSNsDgKJrCZ3tJS+oxcgXwmvfYmnrFN9dTLTYrtFoNBqNRqPRaLY03zo+g2OTK/iLn3kJfulVe/F7X3kKn71XTXB/cKxVdD0w1IF1j2JiuYyFdQ+9Bbvq4k7q2T6zEm6QDHWmi5H3KBPGmGeJkU/qfQcAJ6ZCZ3l6Z3uyeO9RVl2ct2P/YAeenV4F5+JNFc45PMrgWGoboh2uLYmoC6oRdtt78i0x8qdmVrG47uPmPeK4Xo1Go9G0JyiHjtpCR83Z7hRD4b0S9XNXpfzMNzGBQWzbc2X1tkWjD2Q1XU/g5yucMfTxRRgdcrHdEsRuxxhc7qJcGbgeO9efSiWGXSysxWcxbW0P/2HaoUtzixBEYllSz3YAWMjvRGE1WSCM+zdbbvg7cN/Vt+Ap5xrkHv7/Z56fxT1hr+bRA9cBABbPHlUaz+RBqjjqmArJgfjyaGU6cxIz6EWxs6fq9q0Xg23uA03iPjNdWAKx3aAVBAox8jVnu0TMVoyRBwAPTmIfcwTrqKQUyKux9P7mzC8purzWsz29eB8QG2ByoUtUmFHYdgh54uGama/h9OBrYfftQoFUsLw0337+PMBMfh8AYGbsqdTzFBEXySg726nk/TIKqpCCYEWfhSy1IE2CRMPjBYUqDa/HAyBFYUFXJLb7a8mfh0+5kvvZNg0wDqELWaWHeUxSuzKPclgp2jRUx4petyIrYo9E/XYC9M6+8HoiSkRrGE9R0G63RveCzVv3V2PkFYr2c3ZyjHwWsb3DNYU928MY+VrPdgBYfJH0bddiu0aj0Wg0Go1Go9nSfPpbp3DDrh7cuq8P/+3wlfj5l+/BR+54OvWibX7Nw8np1RbR9bKh0EF9cnoVSyUfPYW6nu0JYvvUcrg5N5zC2e7aCVXkjCltgABhVXpF0vsOAE5Or8CxDOzszacar10svRekX3zv7MtjpRJgWeBCBwDKODhXc0QA4UJeFCO/VgnQEcXMb+8p4EKTs/3BsQWYBsH1O3uUXk+j0Wg0NWhpBYwT5Au11JFcRw8AoLKaTWwfmr0f53pubuiHvOIMwC6liyl+vrK8OAeHBLC7R4T3MzMHm8ndtgbzwSS9n/N7bsEAFjF1PtmVfTHJl6exlhsGABBja4nttBojnyxSVrp2o99L7pEeRA5ry6n91irf+Is45B/Fyce/m2l+ocjWOreunn5Mow/+5NOK46k52ytGHsSXO9uNtSksWKHAJxKDLbSK7dx0YfPW3+omqyAQJDTIsKOihkDibCcsUHIrA4BvOMlu76ASCvIpKRNHKrbLEilkWFHPdipwZ8diu7KzvU2MfHNhxuC+awAABVJB140/gWL/TgDAwuRY29czEaDctQ+UE6xNHE89TxE0+ozaFcnUExAHRNKzPbyGpi/6jc890WcBiCP4k4i/O7KUBgsUJIXYbtkOVngebG0u8XE+U+vFXVsHtxZOB1WBV81NLROgw3ZqCjHotjwGHUhfDLCzL7xut+vbHs877Tq43Zo6i6AtS6CLPwuVNmnVGHnBnkRYDK8uExccmbOdtjjb59e0s12j0Wg0Go1Go9FoLikPjc3jgbF5/Ncf2A9Cwqi5X37NfjDOcc/T06nGePhM2FO22dm+vSePnG3gxNRKGCNfcGo92xOj2tWc7YBYbPcDrrQBAiQ7BABgYqmMbd251L3gXbtNFb7C4jteVMt66cXzVl3Md+QsidhOa8723jzOLzSL7fO4alsXiq7aBqxGo9FoavDKCtaRaxDG85HY7q+ri+3z0xewj43B2Pfqhtsr7iAKlRe22L44fQ4AkO/bJryfWXnYCc52k3lgEgF1xzWvAgBcOPqdDc4yOwYLwOK+3ZYDm28dsT2Oo7YSerYDgDlwAMNsBhVJf3Cg1qvccmti+7Wv+2lMYgDz3/yzTPMLezWLRbYpdzfcxZMZxksvUPpGDkYgf8+hOzucn1WNOa+dqxYCkGax3XJhCcR2g1Zq50kKbDfsiR5I3MCZxHbigCTEyBNaVhLbPTjyPuGKzva4iIMKerYzGrdDUBHbnWSxHa0x8sM7DmCdu5hDN664+Q3oHtkNAFieOtN+/jwAd4qYMgZB5zZW/EMDdWd7WFwg69kegCmI43Z0rjNZz3ZFZ7shSIVoGA80lbMdAFaMLvD1hcTH+Ipu6uo6WLDWrDq9LcUe8DKxnamtg2OxWDZeNUa+zTpzuDMHxzRwdq6N2E4ZTIOkFrST+t3H82s3t2YcyfELmFoEPxC2ZjMNIna2B1y5GB4AOlwLa6Ke7R5FPlqj90Yt/Ba0s12j0Wg0Go1GsxHu+9yHMH1Bvbe0RqOp8RffPoXLhjrw+iuHq7cNdeVw465e3Hk0XW/XB8fmMdqdw/aeRre3YRDsG+jA4+eXEDCOnrwN0yAwSHLP9unlCjpdqxqPlkT8mJJIbM/gbHcsQxqfB4TV/nFMXKrxEjZBALUqfNeSx9MB6eP9mik6rWI7ZRwlP+zZDtT65NUXNTw4No+bdusIeY1Go9kI3FvDOmn8+9nRHV5bvdVkV52I0w/dBQDY9ZLbG24PisPoourjPZ9YnQt/t3T0i8V2budh8wSxPUHYGRjZiXEyBP/MgxufaEZM7lfnR0wbFrZQz/bImWq2EduLo1fAJByTY8fkY0X9lu06Z7tlOzi976dx3cLdmJ++oDw/WyBWx6x37Ud/aUxpvCTxXoRvFmAGYjEbaBS0q32sG2LkA6DZfWzl4AjEdotVQBVi5O1cLD5LnOPcB1UQUIFk9zMAmEEZnkKfdY+4gMzZzjwwFSd/5GxnIvGeqTvbqWHDEMT5x1iCFgCGaeLZ3JU4MfwmmJaF/khsr8wnpz4AtXNvztmB3PJY6nkK5x4VyZgKznZKLGlxAWFUsWd7wmeBKBVAoajFdOQtAhilMAlP3Z9+zeiEUU4W21VT1JyEdmp+Bmd7XCQuajHmKzrb47nJEt5it3c70dgwCLb35nFuQX69A0JRXykVoE2MfOae7aJIf4XkuXpyliE2AGSMkS+6ZkKrt3BfoDtvgxBgYU2L7RqNRqPRaDSajCzMTODWZ/4Qp7/3z5d6KhrN85bp5TLueXoav/SqfTCaqspvv2oE3zkxK3Q8N/Pg2Dxu3tMnrP4+MNSBh8fCfnc9UeW1bRqJMfLTKxUMpoiQB2r90TZrYetaZmLVfCVQi4Fz7eRYek9hPLfNJkiFhrerOts7c60RdXF/uEIUI78jKqSYWCpH/1/C+YUSbm5KM9BoNBqNGqSygrLRKLbn8kXMogd0vr3LsZng1Ddx1tiOoe17G1+ncwQDbP6S9hxvhtHNFYtLi+MAgN6hHeIH2AW4iWK7vGc7AEx0XIXu+cc3NMeNUB+pTEwH9haKkWdV0S5ZyBracwgAsHAuQWyPRN9YBI459OZ3g4Hg+B2fVJ6fLEYeADB4BbbRcfgCp7MMmwcgKtHbZh4WlTs9DeaDGrGzPXzfgV8ntsNvLRYwHdhojQ62mKfkbHdzkbNdIrYTFoArOtsDw4GRJLazCnxJywYRSU55gyV/b5uJ3dRU4Kbm1EfAjYakkXZQw4HRxtkOs/X4Hfz1u3HzL30KAOC4OcyiB8Fi+0KSOOVgvXMPekrnqrfH6RIq1Jz8ajHyhqRHPeEBuEKMvOO2cbZDLUbesltTIWL8+DVSiu1lqwu2t5j4GJ+qucdjoVostqdzjteTFEvvU6YYSZ9c1K3SU35Hbx7n5tv3bFdxe7ft2U43r2d7wLhSv/YY1zY3tWd7wbWEPdtLfi1G3jINdOVsLKzrGHmNRqPRaDQaTUamnn0i/A/JQk+j0bTnbLQIvn5XT8t9t189Ai9g+Nbx5Cj5sk9x9MKSVHQ9MNSB8UigjXuKOSnE9qHOdJuEtRh5cb+1LIvuZGc7VYvkS+FsT1uFH2+CiN5rOFbsOFB0trsWVpr6wK9HkXVxRPyegXAj9hvHwvPhobG4dYB2tms0Gs1GIP4aKkah5fY5awTW8lnl8YYWHsNE700ttzs9o3BIgOWFrRElf/zBu7H2ge1YXtw8t32wNIl17qLY0S28n9g5uJALgBZrdaDW44/ciL3eCSVRdjNp6BNu2jAIBw22huBOqzHyyS2ABkZ2YZ27KE+fSBgr/N3ouI3fi+7+YTzR/0bsH/sH5c/Ahlwc79hxNWxCMf7sk2rjKThuqZWHTROc7bzmbK/2sY7EQc4YHEJb5k/sHFyRs5174Fb7VkwxTlTUwGTOca4eI08NF0ZSywZaRqDgbPcTnPJhkYx6j3omEO85DRAgvVgMRGJ7krMdAYigGMCyHZhW7bgumv0wVtunitk8dLbzvn0YpeNglGJu6jwWPnw5Hv3DNytdU9MWydST5OQPe7YrxMhHSRiyFgGJRTKi8dw4paH1s42LEUjK9+o5PXD85cTHqIqoTkI7tSAqhLMVRN64wFrWd1xFzG5X1O0riO07+wrpnO2WQmFGm1ZvfgY3umOa4s8iozjuWuK+8h5Vc/HHdDgWVpti5H3K4FNe3QMBwij5RR0jr9FoNBqNRqPJyvL5pwCE1ecajSYbFxbDRfBod+uG3M6+Aq7a1oV/PTqZOMb8mgefcuzsaxUKgFBsj+nOR872NovlqeUyhrvSbRLGznZRjLxHmXJVuttmbipOdCB5Y4AxHjoiUo6Xs+NNEFmMfMae7YKq+TjRoBj1g9vWk8fP3robf/Rvx3F6dg0Pjc1j70ARgymLIjQajUYjxvTX4DU52wFgJb8dxXX1uOw8WwPL97fcXugP3d7zU+oC/sVg+ZnvopOUMH784U0bk69OY9HokbpSiV1ALsnZDj+xP3DPZS9Djvg48/SliZI3eQBE8zMi4dWX9CZ+rmGRszeOhZZBDAOT5ijI/LPSx9BI9I1F0XoGX/ceDGEeR+7+Xwpzo7AJlYrjI/uvBQDMjR1JNR5nLEwVUBABmV2Ew+SflVnnzm7uY+1XRcLGY0usHByBs93mFfAMznYui5Fnau5ioL3b22Jl+Cpiu+HCkDjbzYzOdi5ygrMAVFFs54YFM0FsF7YAELDiDiNXSl53AbVCj/zIZcgRHzMTYxj7u/fAgYf9a49g+U9egbGnHkg197hnu4qznRkOiMTwYHAKbqQ/foZpwuMmeCA+fmFkvkosfZQKITiXAz/qT5/yXA7cHuSDpeTHUK4U1W4nxMh7gXrRtJ0g3vuKRedJhQDheLHY3v797uwt4Pz8ujDevn48ldh31zRAGQdl4jGzuMdl63Rf8XOtztEyUBGm7WUbr+i2ps+te+H4Bad2HvcWHczrGHmNRqPRaDQaTVbYzDPhf0gWZhqNpj0TS2V05ix05sQbVLdfNYJvHpsWRrTHxAtvmcB7WZ3YXouRJ9X+4iJmFJztsQBd8lrnGFCuFMUHyBfJMapiu2uZUqe81+bYicYCIJ2fSrxfPR2uhdVmZ3skvhfd2obZb73pIIa6XPz6/34c95+ex027dYS8RqN57njgHz+O+/7ily/1NDYdi67DN1sL1vyunej327scW8aTiIBdgzsBAKuz7XsCPxfY8+Fv+eVzRzdtTGt9BsumPHGFOAU4hErjli0e1JzjAvZc/TL43MTc8e9veK5ZqHe2x8KxnyE6+mIQC8NpHLKL+V0oro7Jx4oKCNxc6/di71W34EnnOhQf/UzqucXx0TJne9/gNiyiA5WJp1ONR2kAg3ClGHlu5eEyudPT4H5V0K46ryOHf1xQYQic7RZhLeezzTxwK73YbloWPG5WX691boGSmA0AzHRhJjjbbeYpOdtD8V4ittcnPqTAtsPHCt3U1AdViEEHQvHZ5HIDgAUKkiK63MsPobOSnCjGKIVFGAzLQe+OgwCA01/5A7xk5Rs4ceP7sfKf7kHFyGHHP78F5ZmT7eceFUSYdvrPlxm2tLggTEFQO1d82HJnO+RFMiKaUyHqCeLrQMoYeZ7rRZGuJD7Gy+xsb10Hx852FVHWTRDvw37y6edmGASOKXZm179GGof2zr48VioBlkry70WFqhew189DND/HUhO0bZNIChUy9myXxchn7AHf4ZpYbxLbS1WxvXad6is4+PLj47j1I1/HrR/5Or7w0Dm8UNFiu0aj0Wg0Gs1FwF0+DQDgCRXzGo0mmfHFErZ1t7rpYt50zQjWPYp7T8xKH9Nu4b27vwjTIDANgo4oktw2DXgJfVqnl8sY6kznbM8n9GwPKFOK4gNSONspq25spMGxDFQSNgWA9OK428bZHm8WqMbUdbitEXXNznYgrK7/o/9wHR45u4Bjkyu4WUfIAwA++tGP4uabb0ZnZyeGhobwlre8BcePH6/ePz8/j/e85z244oorkM/nsWvXLvzKr/wKlpYa3TKEkJb/ff7zn3+u345Gs2XJnfwqRqb//VJPY9MxaUXYX9ns24NBPo9KObnvaTOOqLczgL6RUGwvz6u75S8G3Wvhb3k2c7zNI9PjlmdRcltd/TFmFEteLq0J77e4DySIlLlCB6aMQfD50xubaEbqCymMSNQW9Sa+FLDIIWs57X+/Vbr3YKAiPw95UAHlBJZEuPduegcOBk/jmUe+nWpuceR8s1gdQwwDE/Zu2Avtxck044ngTgdcLne2G5xW+6I7bhzrHjnbK+Hzmp3tRnSsvUqjiG/DBxRi5AGgAgc8IUZetWc7M1xYCWK7xStKYntg5KTivcmTEymaIYYBj1vifQRGlWPkmeFIxWfOGCzQaiJFErxzO3pZcgR8fd/xkd0HQTnBrVOfx+P5l+IlP/QObN93Fbb/X/firL0HLz3/GVTKyVHe1e+tnb44I3y/Mme7egqCT6w2MfLqqQUisT128af+3hZ60cWTxfaAqUW1x2u+xJ7tKuK9leRsV+uJDsRF5xtvV7azN/xbe25efv75gaLz3mqzDs7QPs5N6NmePUZe5GzP3rN9tcXZHv67Xmz/ldddhv/yA/vxkzfvRFfewlePqBdqPl/QYrtGo9FoNBrNRaC/fCb8D7Y1+hRqNM9HxhfL2NYj34w7MNSJ/YPFxCj5SpvocscysLu/gJ68DULCBX/Ys13sbF+tBFjzKIa6UvZsd5Ji5LP1bPcpB5NE1GXqLxcwYYyeqjjerpeeqlM+puhaWK00bpo192yPuXlPH37xlXvD/96rxXYA+Pa3v413vetduO+++3D33XfD933cdtttWFsLxZzx8XGMj4/jj/7oj3D06FH8zd/8De688078wi/8QstYf/3Xf42JiYnq/97ylrc8x+9Go9m6DJXPIM/EIunzGZlrtDC0DwbhmD5/Smk8iwdCwTiXL2IJRQRL6TdhOWP4/l/+Cs4cf0xpDu3H5dgehM6rwpLa+0ui4M/Dyw1I7zedSGxfXxXeH0aDJws7S/YgrLX2Uc8yOGO47zO/hmce+Zbyc626+cWCEd0izvZYuHTaxMgDgNm/H0N8Vlr0wP0yKnCk7QCufe3bME6GsPTtPwMAVMrr+P5f/yaeuu9O4ePjgoRmsbqelc596F2TR9vX42UQ24lTQD5BbG+IkY+c17HTPJ5/s/vYtENR3msSVB14ILaa2O4RB1wW055BQGWWCyshWt3hFVCFPuvMdGFKeraHiQ9qbY08iZuaM189Rt50wkIdASopCGbPdvRiRXp9AhoLPRw3h0ljCGs8h+Gf+vPq9yVX6ID5I3+K7XwKRz7/e8lzp+FeikrP9iQnf1g0onb8fNiApDWghSC1Ex2oS4UQnMtxAoSR8r2ahT4USEV6nQIy9GyPnNey6HIgm9gudFNTrtxOLan9WVwMkMZ5H7eXO7cgLxb0KFVztqeIuc+y7g9Y67rfz9CKDpAn2vmMK7vugShG3qMN+wiiGPnrdvbgV99wOX71DZfjzddsw+PnFhMj/J/PqP0l0mg0Go1Go9G0xfcqGKWTAAGgne0aTWbGF0u4fldP4mNu3tOHJ8eXpfen2Rg4MNiBUzO1jSPbFFeRA6GrHUBqZ3vOSnC2K8bnAbWodo8y5AQ9B72AKTnHY4E8dMQ3jlc9dqox8m16tqu6GDpyFso+Q0Brx2tNECMf8xu3H8QbrxrB3oGi0uu8ULnzzsbN/b/5m7/B0NAQHn74Ybz61a/G1VdfjX/6p3+q3r9//358+MMfxs/8zM8gCAJYVm3boKenByMjI8/Z3DWa5wurywsYwSxWuDyN5flKKGS1bv73br8cALB44QR2Hrgm9XgOfKmws2D0w1hNLxRTGuBl43+LR74yht1XfDn189rhrc+jSMoYM3ZhqDy2aeN203nMFIek91uRs92TiCc29xMFWQAo5YZRKE9lnuNDX/40bj3/WdxfWQJufI3Scy0eVD9bI5qnL4n+fq5hUWsvO4XY3rHtChhPcEyNHcPuK1/Scj8PKvCIjdYQ+RDTsnB2/9tx44k/DYsW7ngfXhY8g/tXJ4Fbb295vEysbph//+XYNvdvYJTCMJPFwqAa655e4CVOEXmUwRkTFhEYPACPREViGKjwmhgcf8aG1Xj9M22xsz3HPRBFZ7sHB5DGyFNlsZ2bLmyeJLZ7oApudGrmkK+Ik7ZCsV0xupxIostZAKoo53DTlYrPge/BAmCkmF++fwcAYG7yDLbvu0r4mLi4Jr5OnT/0Dkx1DePGXZc1PG73lTfh3wo/gjee/xucfvInsfeqW4TjVWPkVXq2m3Inv1l3HqclgAUICik4Y3CIWox83HqCC53tkdiecjynK0xJWV2YRS4vXvOo9kWvOtslTnSDAKaCyJvUsz3IID4ntVNTiZHvLdgoOibOzcvF9qzO9qRigCxiezxm/bo/oFx5DwEIU+jKImd7wGAX1L4XQBgjTxlHJWDI2Y0Gg7wj/jt1/a4eLN3j4/TsGvYNdggf83xGi+0ajUaj0Wg0m8zkmWPYScIfmURSBa3RaNozsVTCm3tGEx+Ts02pMA7UubMTBOOfeukujM3VNrZti0j7rc2thRshg53pNkIMg8CxDJRFVeSBenxevUMgXtTWU1Hs2V4f79cstsfHzlV1tm9SD/iYON5/rULRXTCq/01ILaa/Hts0cJOOkJcSx8P39cmP0dLSErq6uhqEdgB417vehV/8xV/Evn378F/+y3/Bf/7P/7maCNFMpVJBpVLbTFxeDotifN+H72/tv43x/Lb6PJ+vvBCP77njj+JKAEWUUSmX24phG+G5Pn4m88GI1fJ6vcM7QTnB6uTJ1HOhQYAcYeCGLXzOit0Pa3069Xjl9TV0Arh25d9x4fRxDO3Yl+p5Sfi+D74cuuvHR9+Al1/4LBbnZ1Hs7N7QuIxS9PIloDgofX9GJE6ury0LH2MjjMtOOj5eYRijK09kOj8Wpi/gssc+AgAoLJ9SHqN+fpxEvy/K5S3xnY9d2IzxtvPo3REWksyeeRLbDlzbcj/3SvDgJI5z+W3vRHDiz3HgX96CKTKAcTIEEpSEzylFxRWciL8XAJAbPYj8CQ9nTz+F0d0HG+5rPr5Vp6uZfK7UQ+wCTMKxsrKEXKFVADG5D1Y3Pw8WmB9+tpVSJFgZZsPrxYUX9eczoxQuCcDN5OPXjE8cICgLn2PyQHiNSoIZDizuSZ/j8gooST9HZjiwWEX8vY1i5JXeLyxwv3V+PPBBiaH4Xm1YXPzba319HTkAnJhtxyzEYvuFZzG083LhY0rra+gGqufCjW/5P8P30zS27/vwD/wQLjz5EPx/fhcq++8V/t2MC1E4SOr3zIklfb8GD8DR/r02zDUqfGh5D14FBaQ7dtW5cYBxgqCy3vKcOFKfp/x87UIvAGBxdhzdg9sa5+b7YBygjMMAS38d4OFareS1Hr+KF8Ay1c49Ix6v0nouewGFaaj9XXAsA+teIL6OxilonKYac2dvHmfmVqWPLfsBbLN23rX7O2YgfK/r5Qp8v1Vy9QIGk7T/+1OPibDwfa1UgYmaGF7xA9iKxw4AHJOgJDh+XkBhEvXxctE+xuJaGf3F8Hq/sh5+Zx1D/F6vGgkLQx46PYedPbWCsK3wOyGJtPPSYrtGo9FoNBrNJjN35insBLCIDhBJvzCNRpNMyaNYWPcx2p3sfJH1HotJU+X+gwcbXWa2aUjF9tihLhK6ZeQsQxgj72fot9YY1d5agR6K5psTeReL42md7YZB4JjiinlAzXFQTyy2r3oBuqOq+7VKgKJjSYVejRjGGN773vfiFa94Ba6++mrhY2ZnZ/HBD34Q73jHOxpu/8AHPoDXvva1KBQKuOuuu/DLv/zLWF1dxa/8yq8Ix/noRz+K3//932+5/a677kKhIPMDbi3uvvvuSz2FFzQvpOPrn74XVwIwCMdXv/wlWO7Fd7g/V8fvEK1gea2MO+64o+W+m9GPhdOPC+8TEfgefgLAuQuTmBI8p4cW0e9NpB+vso6fAGARhsf/4YPwr/wPqZ7XDmd9HBVu4yzZgZcD+Lcv/h1yA3s3NKZfWsZbCcO52VVMS95fee4MDgF4+P7v4slTjXH6nHH8CAKMT80kHh+2ZuAlbB5f++rXQBRjZvuO/Dmu4gRfd34Q15QfS/05xPxQ3fzK0ydwLYD7vv9d5I6NAbi033l67iwq3GpJexHBGccbuItzR7+L85XWIgt7dhIet9oeH9LxI+gtn8PUZf8J+45/Ct7qovA55aVJ/CSA48+cxJll8ZiV1RVcD+D7d30Rue3XCR8TH9/K8jT+I4DjJ57FmZV0n2H5whReCuDf/vVrsPOdLfdfy3wsraxV5/9K2JidvBB+1gvnsQfAU8eO49m52m/A8vQJXAPg/u/di9zTYwDqrgET08JrgIxD3MTqgvjcv455WFpZVzpfzaU17GcV6XNuhwdmOKnP2dyahwEqvk6+kgeYnV9Wmt9LuImFucmW57gLcwi4ofxe9zFP+By/tIK3Ajh99hzG24xJvTL2ATj+6Hdxel68TqqszuI/Ajhx8jTOrSePZ1g27u/7cfzk7J/gC//77+B2DbbOb+wUXgrgm9/8Vup4dXe1jFHJ+72W+VhaVTtXruImVhfmWp4T+BX8BICzFyYwqTDeG2Fh8vyZlvHK82dxAMCTTz2NUzPt0xErSxM4BOCh+76DJ09Pt9wfJ48/dfQJ3DF1JNXcVnwAsPD9+x/E6onGmO8j4wRE8dybKoXjffve7+J8V+N95y4YCDiUxquUTDxz8lncQU+23PfILAFg4ptfvwe5FMt02zPw6DPLuOOOMeH9Z88bWAta5ye7JpxeAQAL93zz29gmWOasrps4feoE7qg8035yEU/Mh+/pX++6G511p//YWQMrZaL8N3p+RvyeZuZMuOV53HHHWaXxji+F8/vav92DgWjL5vG58LZ7v/UNFCVf2aGciS9/9wjcicda7tuqa4P1dXkKQj1abNdoNBqNRqPZZMqTx7DGc5i1hgEttms0mRhfCqv7R7uTBQvXkke+A+mc7c3YCT3bs4yXd0yUPEGMPGWp+srVU+9EF86PqjnbXVse/a7asx2I4/0kc8tw7IBaX/bVclC9bc0LhBHymmTe9a534ejRo7j33nuF9y8vL+PNb34zDh06hN/7vd9ruO93f/d3q/99ww03YG1tDX/4h38oFdt/+7d/G7/2a7/WMPbOnTtx2223oaurS/icrYLv+7j77rvxhje8AXZCrK8mGy/E4/vgZ++q/vetL70BQ9s37rCW8Vwfv/HH/xs6evrwmsOHW+47/uQfY9hcwbWC+0SsLs0BR4E9+y/D9W9sfc6DE3ehb+oErkg53vzMBPAUcJ6M4uXlb8J8zSeFrlwVfN/H94/+NS6Y2/HGH/9Z4E9/H3v6LNyYck4yxp56EDgGXHXTK3H5jT8ofMz5k08AZ4FDV1yGg7e8sXFeXgXG4xw7du9LnMvjd8/DfeB/4eW33ojegeR0oHqOfP3zeAm9Dw+85GPoYAxDj30Tr37FLejo7k/1fBoEMB/l2LFrL248fBinHv934AJww3XXYscVN274nB176kHsvPwGmFa2reyH/uExBMsWDqf8HM8+sQ2j9prwWD90/qsIPLf9WHX3P/nxv0URBm4RPOfssUeAZ4Frrrsel73ktcKhOGNY/8hvY2dHgJubxmi+Jpw78ThwCrjqmutwxc2vT/FugSfvDYBvA7fcfCNGmiK/AWD6sfehq3eg+trzj9oY6O3CzYcP49kj3wPGgOtvuAn7rn159TnPPvF94AJw3dVXYf91rwAALC/MAEeBvfuvwHW3pf9OnXriI+gqOMLrUDi3/pbjksSDC/fDGQuEnyENAriPBmCmg9tTnrMPTtyN3NRjwvHKj/gYGNmmNL+Jx34bfZ1F3NT0nIfOfwVszk59HgPAg/Pfh3NG/F5nJ88Cx4ADlx/ENa9pP+byk+/F9m5L+l4unH4KOAEcuvoaHLz1TdJx4nP24HU3A18HbnrJ9dh5WWsRycP/8iywABx+8w+lTox5cPLrcCbE73fqsd9EZ08/Xqtw/MaOfADdRRc/2PSclYXZ8O/ZvgPCv2cySo/aGB7sazmGpx7/d+AMcP2NN2HfNS9rO87C7ATwP34TB3YO47rXt14TvnJnKFq+5IbrcfjadH8Llks+fuehb+La62/Am65ubBt17junkZ8ew+HD4r9fIs4trOMjj92Ll9x8C16+v/FvyRfnHoFpEBw+fEPq8T5z9j6Mjnbh8OFDLff5j40DJ47izW+6PVXh+aM4hu+cmMXhw68U3v+VhUfRzTgOH74xHL/Nb68nx5fxiaP34daXvRJXb29d57z/sW/gqiv34vCr0hfudZ6YxWeOP4JXv+a1DQaEe/73EWC5gsOHb049FgB8q/QEzi2UcPjwSxtu//Tp72P/7h4cPnyl0njbzy/hz5+6Hze/7FW4cjQs0vIeGweeOYofebP8c/hW6QmcmF7D4cO3Vm/b6muDOKGtHVps12g0Go1Go9lkjLmTmLC2gxJbx8hrNBkZXwzF9u09yWK7YxnSHuFAnTtbpeeaaUj7rdWi1dMLvXnbbHF7U8bBuNq84rkB8r7oF8PZribey5MGvLgHvOJ77sxFYnulTmyPnO2a9Lz73e/GV7/6VXznO9/Bjh07Wu5fWVnB7bffjs7OTnzxi19su9Fxyy234IMf/CAqlQpct7UvrOu6wttt296Smygink9zfT7yQjq++eVnsYwCurAOv7TynLyv5+r4mZwCpit8rfXCdvSunkg9D87Cvw+WkxM+x+gaRf/EPCzTFPaNbobwcLwLV/wcbn76Y3jonr/FS3/ivanmksRgMI754l7s6xvEFPrBZp7Z8LEuL80AAHqHd0vHKkRR9dwvtzzGr4SuKlNy7GK6RsKN/JXZcQyN7ko1t+XFOey87/14PH8Lbv6hd+DUE98DHgOmx55C701i8bcZGvUgjufn5KIewpxW55v1nF1dXsCef/4hPHLoN3DLT/6W8vMBACxAQEwUU77+cm4b8qVJ8XnKPATEUXovzMzB9sXXBs7C3zd2rpA45hl7F6x5+fetenyj75nTZrx6csVQHKLeuvA5JqcwrNp79okNwjzYtg3Ow/k7+cbXqxa+UK96O4v6Utv59HMDAGqEfbjTzC0NhpOHy8XjeeUo1t9wUp+zxMnDkYxHEcCwk7+3zQTEhsH8lucYnIIRU+292jnYvHUsoBYbbre5rsRcMPphrk5IH0uic89286nGc6Ne4zwQHzvCKSgncHPJSWcNz7FzsCF+vyYPQCy16xA1HBg8EDwnPHayv2cylmGDUMH7jT4LJ5fu2PUNhGI4W18Un3fR0i7vpn+/BR7+3WUwWp7DQGBbrbcnjhetA0TjUQ4UbLVzOWebYTKc4DkMRvSaDowUqS47+oqYWLogff2Ah0XpzffLrgmFXBijzggR3u9Tjpyjdu7l3WjMpuPHOIFjqR27cDwblaD1Gh8wDte2lMfrKYafr8dQfW6FAqZBUMw50gS6G3f34StHJkFhtKQFbtW1Qdo5qe1yaDQazXPEytI8HvznP7nU09BoNJpMdKyOYbGwB9QIF8kajUadicWwt+Zwd6tYV49rbbxnezO2SeAnOMdVx8vZJspNzna/WgSg5myPneiy91wJmJITveqUFxQX+BkKFVzLTCwEqH/NtBSrPdvrne20ersmGc453v3ud+OLX/wivvGNb2Dv3lZHxfLyMm677TY4joMvf/nLyKXY1HzsscfQ29srFNQ1mhcbg6XTGMuFjqDy6uKlncwmY/EAMMXXW9q9CwPBZOqxfC/8227a4muM3bMdLvGxvDiXary4n29x+yEcKd6KwSf/GlPnT2Hq/KnUY4jYwcbh9R4AAEzl9iC3eEL4ON+rgDP5b5B6KovjAIC+oe3Sx+TyoTgZeCXBa4UipRH1wZbRM7wbALA6M5ZqXgDw9P/6VRR4CcM//ecghoFt+68BACydO5p6DC/6LIgZzs+0GsXVjTA3fho2oeg49bXsg1APvqD9jvThVgEWKwvvM2gFAUn+HFrGM3OwWEV8X1SoYNnJYy4W96J79dn2rxUXPtjp/z7H0fFeaVV4v4UA3Kwdv4CEgiEAMD/8f8tp/F7bbpilXH8+e1FfatNWa7URGC5MKv48mueWBmLn4UC8Ti+trQAAuJn++BErBwet5zpnDA6Cav/6tASGA8IE3x0W9qdXwnTgIBDeFV9DDSvde112hmCvT0nvD/x016kYywnPA19wzQMAUB+BqlfUtGFLPlsTFDDUxqN153o9qu81xocDCMZjQThnM2VcvmU7WEYRbH1eeH8c0qZUcJ6wLgwog63YmiR5PA4rRVFdPUnrfo8ymAZJJbQD4fqy5FNwLk+zc6z0xfXtCuJ9yuBkTbRrOn4eZcp7CIC8/Z5PWeq2cfUUnNaC+JJHUbDNxFZv1+/sRcA4nhxfUn7NrY4W2zUazZbkmXv/GTcfeT+W5mcu9VQ0Go1GmWH/HPze/WDE1D3bNZqMXFgsYbDThdtmkdvO2Z5F1E7q2V7JIBjnbLOlZ3s8vuomQ3tnO1Vzosc94AXR71UXv+J4SZsMAGApbtRUe7Y3OdsLjo6RT8O73vUu/N3f/R0+97nPobOzE5OTk5icnESpFG5sxkL72toaPvvZz2J5ebn6GErD8/YrX/kKPvOZz+Do0aM4efIkPv3pT+MjH/kI3vOe91zKt6bRbAnKpTWMskmsD1wPAPDWXlibhxZ8wBSLCXb/XvRiBavLC6nGCmLBWCIqFvq3AQAWp9L1DQ38cjSeC+vlv4y9bAzDn7kRw5+5Ebn/32W4/x/+n9RieMz8zAT6yArskbB4Yr1rPwZKY8LHHv/j23DfX78v1bj+9DNYRjEx5j52ebLKWuvzIzHKkBQqxPQP70TADZTnzqea15PfuwO3zP0Lnrzq1zCyMywwKHR0Y5wMgU0dSzUGAARRIUXcV9lyQvGO+hsX25enzwAADlaewPz0hUxjEEXRjlk52BKxnVAP1FAT2JiVILZHBQntxPGg7zKMBmfbntNpxft6csVIbF8XR+VaCBquAwFxqgIkjb6Hza/nuPmG+QBAECU0WK6gqXECzHRhUPHxsxAoC6iGnYNFWFUwracSHQNupXdTww6d8s1QGsAgHCSlmF19HrGECXmEBWBQ+/1LLBcu8YXnTfXcSynwlnPD6KjIxXbVQo+4IINWxN81Tn0EGd6vzcXFBZnEdsOGISh8qIntaoUePrFBgtZzmVU/i/TnyirpAC+J//7GYrulILabBoFBIFwHe5QrC7JJ7c/8jO3UktaZKuv9nN1eHFcZL36volZ0nHP4lCunu7mS4xe2olOXdWVF8X7AlOcG1BfE1/Y51j2KfJs1+sHRTriWgUfPLiq/5lZn08V2Sil+93d/F3v37kU+n8f+/fvxwQ9+sKFKhHOO97///RgdHUU+n8frX/96nDjRWCU6Pz+Pt7/97ejq6kJPTw9+4Rd+Aaur4uo6jUbzwoNGC8k4vkmj0WieLyzNz6AfS7CHLwclNgzJQk+j0SQzsVTCtu72m1yuFUa+J1WlA2p9x20ruWe7aRCYCoJx3jZR9psXydki1V07uWd7JVDs2V6tmG+tcs8Swe/aJsq+JEY+mltSpbuIYrRgbxTbaVWE1yTz6U9/GktLS3jNa16D0dHR6v/+4R/+AQDwyCOP4P7778cTTzyBAwcONDzm3LlzAMLovE996lN42ctehuuvvx7/43/8D3z84x/Hf//v//1SvjWNZksw8exRmIQjvy/sPemvL17aCW0yJqhUbO8Y2Q8AmD77TKqxYoerJRGMuwbD2PPlmXRCcVXYsRxc/cofwbE3/W8c+YHP4sgPfBaPDr4Ftzz9UTz8if+A9dX0BRDTzx4BAPTtuhoAQAavwCibRKW83vC48voqrig/AXNlvO2YvlfB/vNfwrG+5Eh2NxcKT8xbb7kvdqCabVyUpmVhnvSAL7WfV3l9Fd13/xqesq/GzT/xfzXcN+PuRm7pVNsxqvOLhadIZIvnyQSikiqlusKBk9/5h0xjcOqDkvSiHTNzsCXiuMkqCBTFdm7mYHPxeKwqjif/7s2NHkIX1sM+2wnQqtM8vWjnFkKxPZDswVmcgtQlXNS7fePP2G6avx2fz36ds70qtqs525OSAcK5qQmecdFK8/caAMqxs11B9DTsHHICQdurREUyiu5najhCgZfwAEzhPA7nFr4PX1BYQCM3tawAqhnWMYqeYFZ+fyQYpy30sHNRQUaSs13x/RLLhS1x8jcXjaQh/CxaCx/iIpO0qQAxYSqESGyPnO0KEdoecUACcaFCzdmutu6yTUO4zgwoUy6YTmpX5jMOW9nZ3k5sTz9ePkqLS1y3ZkkFEBYWZFv325Ii+4DxzM520fv1KFdOLQBqa/T69Ll1v31BvG0auGZ7Nx47t6j8mludTRfbP/axj+HTn/40/uzP/gxPP/00Pvaxj+EP/uAP8MlPfrL6mD/4gz/An/7pn+Iv/uIvcP/996NYLOKNb3wjyuXaxeHtb387nnzySdx9993VvnLveMc7Nnu6Go1mi8KjH+txxJRGo9E8X5iINuh6dhwC0zHyGk1mxhfL2NamXztQW9i2q0pXEXiTerarxrQDYeW8zNmuulBO2rTgnMOjamK7k8LZrirei8YC4vg89SWoZRrI2yZWy03Odi22p4JzLvzfz//8zwMAXvOa10gfs2fPHgDA7bffjkcffRQrKytYXV3FY489hne+850wFDfJNJoXIvNjTwAAdl3zKgAALYmdoRvhkT/8YTx6199t+rhpsHnQILLVM7DjcgDA0nhooHnyu1/DUx9+BZiggAtoFWSb6R/ZCQAoL6RzL8fjxS7Kg7fchmt/8K249gffilve/Vd46OY/wqGlf8fYnxxONR4ArF54CgE3MLL3EACgc+fVsAjD+LNPNjxu7InvwSZUKIg18/jd/xNDmMfg65LTQIhhYJ27DeJkjErc84I1CGN1ou3jHv3Hj2GQzaLjP3wKhtm4OV7qPoDB8um2YzTPLxbZY6GXCeKSVaGL5zGPLhxzr0Hu5B2ZxiDMQ0DSi1jcykvFcYNWwBQixsPxcnAEzmeg5i5uJ44P7A3j/adOPZ74uFj8VomRz8Vie0VsdLMRVFsEAEBQ5/alfrjebZ6/WxVSa/v9NBKfbUdNbGeGA0vyXQsF1Gxiu2jP0S+FYjtR+IyN6P00i/fV9g8KnwUQFjMIxXZGlWPkSfTasfDf8Dp+uiKe6ljd29HPF4SJAOF4sTs7pdgeFV2IWmcAAGfqMfLEcmETKvw7ZHIGYqiJ99ywYAo+C6oY+x4TEFscIx8lGagkUtQnTLTcFy3HVAVeR5Lwpipmh68drnOlsfSWYjs1y0BFIo77lCutM+Ne4c1r9BiP8kxrapmLH8CmJQP4lCmn4wHhexY62zPGyFumgZxtYM1rjJHPO+2/s9fv7NFiexq+973v4Ud/9Efx5je/GXv27MFb3/pW3HbbbXjggQcAhAv9T3ziE/id3/kd/OiP/iiuvfZa/M//+T8xPj6OL33pSwCAp59+GnfeeSc+85nP4JZbbsErX/lKfPKTn8TnP/95jI+3r8zUaDTPf3hUIegL4tM0Go1mK7Ny/mkAwLb9V4MbFoh2tms0mRhfKmG0u/1GXBwzLxPbs4jjtkmkMfKeonMcAPJOq9vbZxtztov6rQWMg3M1F3/1+CX2bE+/ESLrBQeou+7rKbpWY9W8F6DD1THyGo3m0uNNHsMcutE7OIpVngcrb67YvrQwixvXvgPvma9v6rhpsZpEtnr6R3aizG1UZkNRln/nD3DIP4rS+orw8dW4aUfs4M0VOrCMIoKl9kJxOF7kCJaIlDe9+Zfw1M0fwiH/KKYvpBSOZ47jPBmG44ZzHN1/HQBgfqyxf/niie8BgDTaup6ORz+Lo+712HvVLW0fWyEOuMjZHh07M4Vbec0dQq4sj3qOMRdP44y9F7suv77lPmPoIEbZNMrr6VJG6yP9AcCKxLZYiN0IxuoE5s1BrOx9Ew6WHsHSgtxZK4NQD1RFtLPl4rjFPFBDTTyFnYfT1tmeLLKN7rkSHrewduGpxMdVxXsFgTcfie2sLO/ZXi9oU8OBEYl8sVnGdhu/13GMfLy/B9REVTtXTD03ICxWsCTHzwKVXqNkmJE4Hjvt66mK7QrHrya2N4rG1fYPiu5nWdG+wX11Z3sUhx8XxNRTa2GQ7vjl+rfDJFzaziEu9EibqhCfI6ICo2iCoMox8uF7ERUXZCnMYIYDg7d+FtUCI9VCirrvTsPr0HCdYymkICSJ7Vl6tgOhwCtKePOZegw6IUQq3mfp2e5Y8oJ41Vj62Nle8mTOdqrW7z4uiBcUecTvf7N6tmeJpAfkRfFZCiliik7zGp2mavV2/a4enF8oYXZ14+k3W4lNtwK8/OUvx1/+5V/imWeeweWXX47HH38c9957Lz7+8Y8DAE6fPo3JyUm8/vWvrz6nu7sbt9xyC77//e/jbW97G77//e+jp6cHN910U/Uxr3/962EYBu6//3782I/9WMvrVioVVCq1D2d5OVzc+L4PfxN+2F1M4vlt9Xk+X9HHNzuX8tix6Md4eW31BfvZ6XNz89HH9OKij28jj9/9d+DH7sD17/lcw+3+1HFMoR99bgGU2HCZ/LeIPqYXF318Ly4X8/hyzjG+WMJIl9N2fJOEC8b1cgUFweqm7AVhD3aFeZokXGCLnlPyfDgmURrPNQmmvaDhOaVKuDFCOGs5lkljGzx6v5XWa0u80LUITz0/wsMNgVK5dbxSxW+ZYzsck6DU9F5jKl4A21A7djEdromlkld97ko5QM5S+1y3+jVhq85Lo9Ek4y48g0lnN/oBrJM8+CaL7ReOPYhuALm1dNHqm42dIE4Qw8CUOQwsnMHppx7E1ZXHAACV0hqKnT0tj0/Tz3fB6ANZnUw1N9rkbBex/5YfBh56H8489K8Y2v7LbcfsWHkWE8Y2bI/+3Ts4igV0wZt8uuFxzuQj4Wu3cbY/88i3cTB4Go++9FNtXxsAKnBBEpztaYQdrzCCvrn72j6OUB9U4vbu2nkVjCc4Lpw6iv3X3Np2rGaHbCy28U1wtrvrU1h1BrH3VT8J5/jH8Ph3voCbf7T9Z9kAC0CN9CIbsfNwIZ67yTxlZzuxc3Ak48Xx0bIilBjLdnDa3A7MHEt8XFX8bjNePaZlocQdMIHhhQYBTMJh1F0HWF3MeVws0Px6hmnC42Z1fw8AaHRuO4ox8tx0YQuKHzhjsAhTjpGPxXZf4GwPyqHYbpgKx88JI/PDVpiDtbEyCrLMcGD5re0vCKNgij3H49f2vda4cabozu4Y3AMAWJg4jaHte1vHo2otDGpiuzgKHcxHoOjkjwt+PK+CXKGj4b6wMENdbLcEhQ+xE121RUAgaREQXyvTFj4A8n7ywObHyId9vdWjxh1LMp5iT3Qg6jmekKCmIhjnqjHysvEUne0J6XNZWrMljRlkOHZAWLRfCSg45w2pfwHlyoUAMUXXwmpdz/ZSWrF9Zw8A4LGzi3j9oeFMr70V2XSx/bd+67ewvLyMgwcPwjRNUErx4Q9/GG9/+9sBAJOT4Q/m4eHGgzg8PFy9b3JyEkNDQ40TtSz09fVVH9PMRz/6Ufz+7/9+y+133XUXCoXCht/Xc8Hdd999qafwgkYf3+xcimNnTIVVko8/8iCOX0jfX+35iD43Nx99TC8u+viGuE/dhdeX78G//MuXGlwIg9NP4wIZwX133IHukoc8LeGOO5LjDvUxvbjo43txSXN8x9eAvz1h4levocilMCes+UDZtzBx6incsfhk4mOPLRIAJu68++voE+zrPHmOgAVG2+9hPRfOGZhfIsLnPH3WAPXF98mYmjAwudr4nMl1ALDw0AP3Yb5pzzTpmIbF9xYeeOgRsDONroM1P7zviccfg3H+0VRzK0fj3f/Qw/DHGsd7eCo8tvf8251Im8K/OGdgjkN67HxP7djFBGUTT594FnfQkwCA+WUT42dXcMcd6fvJxmzVa8L6equ7SqPRbH1618cw3XsDAGDdKIJUxK7urCyPhdfznko6t/dmEotsJEFMWHRGkVs7j+l7/hSx9CJyFAK1OOkkEXDF7oez3t6VDdS5KBPEid7BUZwy9wKnvwOgvUA7VDmDs/mXN9w24eyGs9DYl37bauguNiV9pGOWvv1nGCdDuPa1b2v72gDgGS7gt/49oCndzwCAzlH0zcy1fZjBPKkAPXrgegDAwpkjQBqxvdpv2G2YJw82LrZ3etOY7bkWwzv247h1BazjX0Waz7Ieg/lKznZi5+HKnO3cA1d0UhM7j5xkvFgcd1IIlAuFPehYeTbxMbFb2XbU5lgiOXCv1dnu+xWYQMN1gBk2bD98bCwS2oJz04MDHghi5HNqe/XczsMRiIq+78EBlAXUuLDBF8SXB6XwfRm2itgex9I3FivEAreqs50bNkxBQp7BA+UY+arYXmkVtGsFS+nea7FnAABQWZkX3h8nWdgpiwss24HPzYb0g3oIVfveArVj7Tf9HaoWZigWK3DTgSlwtrPo2FmKMfKyFgE8iI+ditgudskD2Z3ttkXEse+Mw8rgfnYkfdZ9xpTHS0pQU42RzzttYuQDNfHeMAgsg2xqz/ZY7G9OBvApV3Lxx7iWCcbjQoLw+XEbuszOdtfCel2M/JoXVFMDktjek8ebrxmtFj28UNh0sf0LX/gC/v7v/x6f+9zncNVVV+Gxxx7De9/7Xmzbtg0/93M/t9kvV+W3f/u38Wu/9mvVfy8vL2Pnzp247bbb0NXVddFedzPwfR9333033vCGN8C21S7Qmvbo45udS3nsHpz8OrAOHLx8Pw69In1/tecT+tzcfPQxvbjo49vIw2f+CVaF4ao9/dh/3auqt194/P/GZN9NOHz4MB4Z+wKc5UkcPiy+juljenHRx/fionJ8v/DQeUweeQp7r3s5btjV03bsJ8eXgYfuw5t/8OW4bkd34mMHxubx6acfwite9QPYO9AaSXnsnhM4sjqBw4df3fZ1Y47ceRznjs3g8OFXCu87WRbfJ+Oxfz2OqROzOHz4FbV5Ta4Aj38fr3rlK6rvMc0xZYzjfQ/cjSuvvhaHX7K94b6p5TLw0HfwsltuwmsuHxQ+vxmfMvzmA/fg0DXX4vANjeMt3H8W9pnjePOb0/8Wu2v1CBbWPBw+fFPLfUfuPI5TFbVjF/O5yQfR1+ni8OFrAQC/8+g3cN1Ve3H4la2uGhlb/ZoQp7NpNJrnD4HvYTu9gKmBUEitGEUY3uaK7cZU2BN+iE6BM7EDS8axB+6G6eRw2fWvav9gAbHIZiQIi+WOndg9++/oXnsYT+RuxDWVR+CXW92xQLre1GV3EMVSuhaSVUdwG2FnZuAW7Jn6OjhjIAmxtStL8xjGHNZzjX8PVzr3YWih1id7dvIsRjCDVZ6HKXA81h53Dtctfh2PXPYr2Gal24L1SA5EEE1fi8xvL4pZvTvQhXWsLi+go6tX+jjCfDCJs727bxCz6EEwmeyijgmaIv1jsS12f26EXjqL6Y4RAMDC7ttx/ck/x9rKojA9QQZhPqiCyEbsPFzihwUnTZ+dzT1wK70QCwDEysEhgXC82A2cxole6b0Mu879Y+JjuJ9+vHrKJAcIWxhEaUxNzvZYgOSBB4+bcATfLY/YgF87n2MHc9zPPTWWC1uQDBD4lVBsVxQ8LTcU+wNBYRCrrMLjZsvnlGa8ZoG3mviQ0uldnYPpCFMzCKfgii0MzGphgcDZHjvRUwq8bhT/L+2xHsRO/vSCsQdbKraDBaCKsflx4UDz+w0CH3b4AKXxuOnAEsXIB9lTC0TtR7L0bKeGIy34ivVZ9T7rBnyJO1u1NVs4nliADjJEoSfFyKuK4/mqs10m3jO4GXqsCwsLgmzOdlfSsz1gWXu219rRxUJ+kLG1XUzRMbHaFCPf093+O0YIwafefmOm19zKbLrY/r73vQ+/9Vu/hbe9LVxoXHPNNThz5gw++tGP4ud+7ucwMhL+OJqamsLo6Gj1eVNTU7j++usBACMjI5ienm4YNwgCzM/PV5/fjOu6cN3Wi5tt21tyI0XE82muz0f08c3OpTh2cZUfp94L/nPT5+bmo4/pxUUf3xCThgvM5TNHYN/0WgDA6vICdtHzmN72i+ExMh2YCNoeL31MLy76+F5c0hzfqZXw7/rYQhkv3d/+s5hZCxdsu/o72o5dcKOeoDCEj6WcwLVMpXMg51hhXzrBcwIGuLbaeEXXRtlnDc/hxIheq/X4tTumlkFAOVoewxBu0hRcJ/X8LIuDEIDy1uMX8LDPnsp7zTsWJpcr0s/CUfwsYjpzNkrRMeScY92j6Mq7mcbaqteErTgnjUaTzMTY09hJAnTsuAoAULE6YPnpelynpXflGSygC71kGbPT59HdP9r+SRH87v+OdbMAXH9Pptf2vQpySBayeM8ujMzOoAIb7JZ3At95p9BBCcjjpusJCkPoWjmSan4sZW/q3OU/iJGpz+PC2NPYvu8q6ePmJ8+iEwDN9zXcTnbcjN2zX8b46WPYtvcgzh35DgYAPJu/GvlgUTre+Se/i+sJxd7X/Gyq9wMAgeHCCFqFLBUHamFgFwBgbuJMothuMD8xWn3S3QNn8UTb1wNqLs9YeDItC5STDTvbK+V19GEZZs8OAEDfVa9F7tSf4OSzR3HguvTFe0ZCYYHw8dUe3GsodDQWftoZnO1J4/HAA+UklbjrjFyJgXOLWJqbQne/OHo3dpqrOm49kgMRpCrEUeikzp3NjJoYzKkHHzZER8SDA9Q522tiu5qzXZY0ELfgMRQF1Li/vC/o2c4rqygRtUIFOxbby43jBZHgqyrIctMVCrwGD8CNbOJzIBDbuWKMvJsP36esxzqrpiqkf78eaUw/qIcwH1Q5Rj48E4Omv0OB78GG+rkiE9urx07x9zszHdhUUJAWie2mmf79ytoNAOE6DgjXjSrIe6yr9USvjmeJx/Mph604t6QY+YAx2Fb68dxIeJb3bFePapcVA1R7tivMD5DHyKtG3Me4VnjtqAQMnU1zszOMB4TO9vqe7SWPIu9suuT8vCHbUUxgfX0dRlNlhWmaYFH17d69ezEyMoKvf/3r1fuXl5dx//3342UvexkA4GUvexkWFxfx8MMPVx/zjW98A4wx3HLLLZs9ZY1GswWJK7mZpFpSo9FoLjVmtAnGJ2qbgWeOfh8G4Rg8GP6m4YYNSxD/9lwzceY4PMmmp0bzXHBhMTz/Ts2kEyDGF0uwTYKBjvYbNfGiUVQxH9+eqaJfVjVPmfLiNmcbLVXzcZxctoWyuGreo1R5TEJCQV0UyedTrrzwTor3qwTqxy6mK2djfs2rjkMZR9F9YcXOaTSa5x+zp0PX+fD+6wAAgVWEHWye2B74HnYFZ3CiJxQVZ8890+YZjXQFs+jxssfPxyJbUgSyMxAmjBzpfT06h/ZGz5MJMY3uZyFdo+hjC6lc/KnGA7D/ptsQcAMXHvm3xMfFLlTSJEBfc9vPY5kUcfbOTwAAymMPYAa9KHXsEvbyrc4vEhZzxeSUnnp8idjOotvSiFjdw6HYvjJ9JvFxBvfBE8T2tc596Fs/3fb1gFoxQL0r04dVFZCyMjdxFgCQ7w/fkx31eI5fLy2E+Uq9ro2oB3el1CrGWtwHFJ3tSePxwAuPVQp6d18DAJg4+bj0MaHT3EpMcRBRMfIw/FYRMIgEVKNOkOVWriZABh58iSDqEwe8zsXL/TIq3FaeG7HEPe+r31llsT06jwTXKu6vowy1z7fmbG8S2xUSKRrmYNjC6HKDU3BFp3f82lTgHq9dQ9PNL3a2c9leLVWLkQdCZzsCSTsOph6bb9nx+20cM4jEcaIgZgMAJGJ7tV2DQrsBoLFQpR5OffjcVPpuhAkI4mtsHCOvuvYKBWPecrufwYkOhIKxrGe7coy8LV4DA4AfcCW3d9XZLlm3ZnHyy95r1p7tcTR9pSVGnikXUQA1p3z9MfSDaE8iY8/2DtfCWl3P9nUvSNWz/YXKpovtP/zDP4wPf/jD+NrXvoaxsTF88YtfxMc//nH82I/9GIBwM+e9730vPvShD+HLX/4ynnjiCfyn//SfsG3bNrzlLW8BAFx55ZW4/fbb8Uu/9Et44IEH8N3vfhfvfve78ba3vQ3btm3b7ClrNJotSCy2i374ajQazVbAipztnUvHq7etnLoP69zFriteAgDgprjX2nMJDQJ0/NUP4NEv/9klnYfmxc2FxXDj6dS0OFa2mfGlEka6czBSLCIdwaKxnizieCi2t24yxK+juvDO2WaL2B5Ei+YsC2VZRF18m+r8XEuyMZDhvSY5DvwN9IPbP9SBE9Or4JxXq+eLL+KqeY1GszWoTB7HKs9jYCQUAgO7Ay7dPLH9wskn4BIfztU/AgBYnTyV+rmcMfSzeQxniJ+PiQVNI8FxO3z5zVjhefS97r3VPszN7s6Y2NnuuHJxwundgTzxMD/TPkqep3RRdnb34ZR9Gcwz/574uKo40yTK5oudeHr0x3Fo6l+wtrKIzrnHcb5wKBIc5aJv9f0quDwDMw+TinorRyJWClGsf3QPAKA0dy7xcSbzwBLEdgxegW10vBojnkQs2tULTwGsqss6K4tTYwCArqGdAGqFH6rx9KrO9lg8rQhaIjjwlMV2q87Z3gJNL7Zv2381KCdYPv+k9DFcYbx6fDNfTW+rJy66Met6tte7fTn1EEheLyAOSFAvtpdQUfgcYoiTh0MoaNC4tqaRgGpYakkDsROdCtzexFtDmajF3DtRLD5tEttpdOxUosGBJGc7TSyQERG76kXOdlYVx9ONaVoWPG4mOtsDbsAw04ttPmlMP6iHsAAMik5+SWx+7e+Z4vlnOrDQuqfDqs52tc+WST5bTn0Eiu+VG470b1Dmnu2SovNwHZdl3WqKe8BnGE+2Zo3np7JujXuFy5ztPmXKRedJLn4gW1S7I3jPAeXKhQpA7T3X70tkLQSIKbom1rxGZ7sW2zeRT37yk3jrW9+KX/7lX8aVV16JX//1X8c73/lOfPCDH6w+5jd+4zfwnve8B+94xztw8803Y3V1FXfeeSdyudoPlb//+7/HwYMH8brXvQ6HDx/GK1/5SvzlX/7lZk9Xo9FsUYxoQSbt26PRaDSXGDvaiNjpnapuYDpTj2LMvbwWAbgFnO0zE2PoJCXwGTUnlEazmYxHzvZnUzvby9jWnW6TS9bLLMbPEgEn6VUXv46qeJ93TJR8Cs5rAv5GFt2uZUrFcaAWi5cWRzJeFnE8yXGQRbyPOTjSiZVygPGlcrV6vuhqsV2j0VxayNIZTFkjVScac7rgMrHQnIWZkw8BAPbe+HosoBP+XDqXMQAsL80jR3zkiI+5yWTRVYYfrceTnO3b912F4vsvYP81tya6RYE6cTzB9Tiw/wYAwPjxh6WPURkvZn7oVuxZeTix8EAmtgPA3jf9Coq8hKNf+zT2lI+jPHwDuOXCFogmMXGksuOmF+6YmYPFRHHP6Vz8AJDLF7GATtDF5IIFkwVghlwoKu64Cg6hGD/9VNvXjN9rvfDkEwucbmwttD4bOtv7t4WpCVYkCja7Vtth8CC5sKCJqlNZJLZzvyFSPQ1mwniceghSCtC5fBETxgjY9DH5gxKc5kn4ZgFW0Hr9ih289e0kQrE9EvmohwDi+fuGUzXTAOF57AkD55MxoiKO5mKF2DmuKqA6uQSx3V+DZ6iK7UXheKrO8eocTFt4bTF4oOxsjwt0YuG/Hp6yFUc9FTjSvdoshR5+U0FGPYQHyjHy8TUyaJpjnNBAFFtAENOBA1GMfPprcgOmI05EYRnEdtMRJiAANbFdNfpd1mM9a9G0IxuPZevZXgka19QxHlWLkbdNA7ZJhD3bA8rAuHoBu0gYB+qi2jP1vBeI7YwpR/ADdc72usL4jcwNAApOY4z8uk+R12L75tHZ2YlPfOITOHPmDEqlEk6dOoUPfehDcJzahYwQgg984AOYnJxEuVzGPffcg8svv7xhnL6+Pnzuc5/DysoKlpaW8Fd/9Vfo6OjY7OlqNJotStyznWmxXaPRbFFsVsYEBtFJSpg4EwrZ21afxnLftbUHRT3bLyXz58M+i+7q+Us6D82LF8Y4JpZKODjSiTPz61JRvJ6JxRK29aiJ7bLo8mzOdiKswAeyie05ywTjaBjTZ9kXtrJ+cN4GnO3iWHpWPb5pyVmm9LPI4hCIOTjaBQA4NrFcrZ7XYrtGo7nU5NfOY9mtJTBytxP5TRTb/fEjmMQAuvsGMWuNwFw6m/q5i5O1CPHZ89mKLmM3dZLYDqDqYnSrgpNMbK/A52ai63H7vqtR4g7Wzj7adn6xizJNr+vOK1+Hfixh7JhcxI+dj6KY4ZFdl+HxjlfhimN/hg5SQueBWwHTgS2Ito5R6cVdnYOZg0VbhadaKkC630fz5gDIyoXEx5jcB0+I3x49EBU+PPTVtq8nivSnMIENOtuDxQtY5flq7/nYpRu7StNi8gBcIUY+Ftu9UqO4yxmDCw9EMTo6Tn3wyoLvBvWVBMrZ/B4UluQpF0lO8ySoma+mt9UT+HFf7zqR0qwrNKEefEmxACU2jPrzOSjDI+piuymJ4a9eoxQFVDdyoosc2mawDs9UE9vdfHzta55fa+JDGrgldlOHzna1zzbuT88E7Sl41dme/vh5xAGXONtBfeVCj6CpIKMegwVK7R+A2jWiubiAZo2Rt1yhgSLLsQPi1AJxjHygeOy46cKWOdujpZ3qulDubFeLaY+RrVuz9IB3ozV1wEQx9+rFADnLRFmQyJa13Zs0Mj/jGj2eQ/OYXpBtTR0X5Nev1TcqtrfGyFMUbC22azQazZYiFtsh+wGn0Wg0lxiXlXChK+zPOXXiIcxOnsUIZmDvurn2INMWLpKfS1YnTwIAuirZ+3VqNBthdrUCn3K86rIBUMZxdr59lPz4YgnbelL2DmzTsz3LwtuWRMAB2fq3xdXd9Yv5eNGtuskAROK4YGMg3shQ3RhwE8R75bFsQ7hpUR0v40J+W3cOnTkLxyZX6mLkX7wLeY1GszXorUyg0rmz+m/idqKDp2uZkobiwjFM5g8AAFZy21BYTxZP61mZrRVaqsTP1xMLRWZK12g1Slmyjk/jejQtC2ftvTBn5DHZKuPFHHjJ6+BxC1OP3yV9TCwYi5ztAJB71bvQg1UwTrDnmleC2DnYAsdjdX5BRdnlya0cbC5wttPYxZ9O2Fl1BuGUphMfY/EAPMHZ3j+8Aw/0/TCuPv5nmDqffA6JIv0D2CAb7NmO5XHMmQO1OUfvXzVG3mR+oou/mWpLhOYe3IEPk/Cq0zr1eFGRhF8Rx8iriGyl7sswVB6T3k+oL3WaJ8GsPGxBqkL1OlDvfrYc2NE6l1Bf6j4ODKdBbCdBJYwNV8SMjrfXHNMeJyqoOtsjt7fIoW0G6/BVxfaqU77x2he7n+2E1hkiiOUKry0mp9Lrk4yqs90XR5er9gn3II9959QDVbzmBaTxHKmHZOnZHrVsYE1u+ayFGcRyhc72+Bqk3iLAESei0CAsUFIZyxJH0gNAkDFG3pWsgwPK4Cg4x2NEYjFlHIwDtqJ4n5RoF2ToKZ+L0ueayVrALi2IjwXtLMfPNODRpnZ0jGfs2S7Yk6iK7dl6thddC6vR2pwyDi9gKLyIW71psV2j0WxJYrGdS6KENBqN5lLj8jL87j2YRxfK5x7D+aPfBQBsu+rl1ceE8W+XuGf7/BgAYJBOXdJ5aF68XFgMN51eddkgAODkdPso+fl1D33FdJF8bXu2B+rubNs0wHi4YBSNp+xsj6rI62Pq4or87M721o2BWIBXrsKX9WzPEiMfxfuJ8DJu0gBhOtqVI114emIZa56OkddoNJceRimG2TTQs7t6m5nvRoFUWvoKZ2Vb+SRK/YcAAJXOnejz0hdPluZDYX6V55Xi5+sJRCJbArHgxBJi5NO4Hhe7rsDASgo3Pk0fl50rdOCEeyWc89+XDxfHDEvErCtfehtOmftwxtwVOq1NF25CjDyoB0+xPzW38nCYOO7ZUxDFyvkRdFaSf/9b3APaCE9X/OwnUCI5TP79f02M4BdF+gfErLo/s+KsT2LZrhPbI3e16l5ROxd/y+tG53LQJO5WyuG/1cX2onA8IBKrFQRKa/gKjGAGayuLwvuzOGQBgNlFuKz1uxt/L4y640fqWigQWpHG4FPDrZlpAJCghCCL2B4nDZSbxfZIQFUUPIlhoMxtYZqmTdcRmAWl8WzHRcCNFvE+LlTIEjUu2kcwoJbQANQ720XtKTzl6HLPcEEkYrtqSgPQWpBRD+HqYrtTLS5oEttpnNSidk02LAcWYS1/13nggXECM4tTXlSkxXz1RApT3sqEcYAQwFQUZW3TgEdFMe0Zne0Ct3cs8KoWnSet+70MPeDztkRsz+j2dkxxWtzG2seJe7ZnGSsncLZ7Qfa5AUCHa2I9Sp2L/1/HyGs0Gs0Ww4p/jMt+wGk0Gs0lJocKiF3ABXc/cnNPoTT2AObQjZGdl9UeZIrj355LrOUwbrQLa1hamL2kc9G8OIn7tV+7oxvdeRunZto7/nzKUwvkTkKFOxBuDGRZKIfzELu946rwtOSiKLWSJ4ps23xnu5sQzyvCkQjkmZztlolKwMS99DbgbAeAg6OdTc52LbZrNJpLx8zEGBwSID+8r3qbmQ9bXqwuL2x4/NnJcxjAItztYYsio28vhtgMAj9dLDddmsAyChi3dyrFzzeMEQtZVjohy7Id+NyU9vMF9eCncdwOX40d9FxV2JQSqIkTpdwwcv6i9P5YeJPFDBPDgPUfPovgRz4FIBRcXeJLRegscd7czsPhIrG9ku7YRbCOUfTS5N/+JoK2AnR37wDOv/xDuK50Px6+4zPy1xNE+lNig4h6EytQLE+jnB+p/jsWLdVj5Cmg0LPdzYWtTJtjwb2MYrtTjRkXfDcUerYDQPeuqwEA46eeEN5PmJpTPobbBbgJzvZ6wbje7UuY3NnOTAdmXfEIoV4msT3ued5crCAqBEhLhYgd2jYtgVpqYjsQ9zJvdraH80vb/iFG5qY2M8TIx6/NfYGgzdRj332SLLarnnvNBRn1GMzPXlzQ9HeIRX87VcVxErVR8Zu/uzTssa6SChCPJ/psQQNQoihSShIQACBgG+kRLu5jnnm8pjV11qLzpPZxWdLs8rbZsD6PyZoWdzF6tjuWURXrAYBzDp+pR/ADNWd7fUFAsIHWdkDYs92nHJWAVo9lQYvtGo1Gs7Uwox9a0h9wGo1Gc4nJ8TKIW8Raz0EMl06gOHsE5/JXNiy2SF283qWiY/08zpNwg2r2/MlLOhfNi5PxxRKKjonuvI39g0WcauNsp4yDMp5alDUNAssgcjd1QDP0bI8EfEkMnOp4+UhsLzf0R9uosz2hZ3uGGHlxFb66Q8C1DHCOhk2BxvE2ILaPdOHZmVXMr4W/Ewvui3chr9FoLj1z508AAHpGa4WWdrEHALC+Mr/h8SeOPwgAGLzsJgBAYWgfLMIwM/5sugFWJ7Fg9GMltw1Fhfj5euI+4SoxuSLBqUpQSRVv3b3nBtiE4vwzjyU+TlXMZoZT3WsQ3t/G2Q4Auw/eiMuuf1X4uEiE8UQCKgAEGXpn2wW4EIjtir2QrZ7t6McSvIp8T8XiQVtnOwDccNvP4JGOH8D+hz4oLSQRRfpTmCAb7NneE8wgKNaJ7dG5qOqYN+GDK4jtdiyOVxrPZS/6t+lkixlnnsDZniBWi9h2IGxltnhGIrZTD1QxUQEA4BSRQ+t3Ny5sqI9qJ5YLhwTgjIXzl0T0M8OtmWkAGLSCwFB0eQOwc+Hn4Td9HtUYeUVnOxDGoYsSElxWArPVxXaPOECLwBtdQxXd1MRyYRLeUlxl8kA5Rt6ybDBOqnOphyumKgBtYt8zxMgz020oyKjHyOBsrxbkNL3fIGsKQnSdrzRdS1XamDROUOxGV70OhHNz4Eic7ZQDdoao8bBnu2QdlzFGvrmAPchYdF4ViyV91pVj5G1xwXnc7k25YL+N2J61Z3v9Op0yDs6zu+SBRrG9OreM6XNx0txahWI9Etu1s12j0Wi2GBaPFrmSH3AajUZzKfG9ChxCQZwirO3XYRufxv7SUZSGrm94nGHaMAlPFSU6df4ULjz79KbPtd+fxHhPuEm7PKHFds1zz4XFErb15EEIwf7BDpyaSRbb/QyV5DKxOBxPfeEdL/x9UURdhlh6kbM93mTI0m/NsUyxsz2j2C6NkQ8YHEUXvyuIp6uOl6FQoZ6Do51gHHjs3CIcy9iQcK/RaDQbZS3qgz606/LqbU6hGwBQXl3c+PhnH8M6d7F9bxgj37M9FPUXL6T7PWevT2PF7ofXuQu9fvr4+XpiZ7tKBLJHbEDkoEQoxPgpRMAdV94MAJh/9pE2E1RzBHPTkfa3BWouVMNI97fPiNy2lbKkuCDl+62H2HnkBM52KBYWuH07AACzE2ekj7GRTmwHgMKr34NeLGPmnCTeXxDpTw0b2EBLLRoE6OcLMLq31+YcxdTHn1VaLN7exV9PLh/14G7u2R4Jbqais92ViPeAujje0dWLFZ4HXZkW3p9FtAMA4hSRF5x7NHYE173n+kITI9HZ7jYUuJi0jEAizCcRu5WDpuMnKgRIiy9xtrusBG4XlceriHqZUw8Vbiu7n+M0Ed9r/DxMqCU0AGEihwdL3HohcmerEJguDCop4slw7lHThSXZ+zW4emx+7ORnTdeIuMe6agpC3EYl8JrF9gCBqhMd4XfHRWsiCmHqhQ/EcqXmDppRkBWJ40C0ps4SIy9YZ3rVdbD6mrX++Y3zUy/qzm22s13g4gdqa/QsiXbNMfy1VIBs6XhAY2u7jcfIx2J7UBXbdc92jUaj2WLEC2BZtaRGo9FcStbXVgAAptuB/v03AgCKpIzi3pc2PI7Ei2TJhmM9577wG1j6f39xU+dZLq1hCPMgO1+KMrdRmZNvtmk0F4vxSGwHgP1DHTg1syaMGI+pZKgkb674ridLFLptxTHym9OzPXa21/eE8ymDZRAQkm2hLFrIV6IxVXvzyfvLMTiKC/lcJM6XRY6DIFt/uZgrhjsBAI+cWagu7DUajeZSEcyPYRY9yBc7q7flOnoAbI7Y7kw+irP2PhhRa5ChHfvBOMH6TLr+6/nKLMruAIy+3Rhis6nj5+thkThjpoyRBwAPLnggF5/TCDEdXb04T0ZAJ8TO3RjCAlAFoYibbiqxnaQUUIw4XlggoAJxZLZif2CngBzxwWiTAKAYI981vBsAsDyVILZzv7peaYdbDFskVErioklOWyP9KSyQDfRsn58+D4swuP07q7eZlgXKSVU4S4uZ0sUf4zi5yA3c+Nn6XuRsdxXF9tjZLkh9MJgfFiYoUCJ5cE/cmolQP5Oz3XSLcInfcq1gUTpBfcKFEQmQlXIJBvXAJPMPv3N1YjvzwMzszvbmGPlYUDUt9TF94oAIBOgcyoCjLraLxPus7uf4+DYnUxhgQMpioHo8YgOi/VXB97Yd1HATne2q17zmc6SeMDZfbbzYyd9cXFBNQbDU3m/8WbTGyKdsi9IEsVwYhFed9lVYoFyoYFgubEKF5o5QbM8i7hKpO3sze44D6j3bq85sibNddd2adyQ924NsTnS5s52DECiv0atj0lYnumqhAgBYphElAraOlzlGPkqaW1j3UPLD81DHyGs0Gs0Ww45+aEmrJTUajeYSUlkPxXYrV8SOy66Hx8NF0a6rX9HwOBJVTTdXpItwvAXs8E9Lez5mYfpcGG9aGD6AaXMIWMzWr1Oj2QjjS3Vi+2AHVisBplfk34ksvcxdy5T2bA8F483r2V7J0Hc8jlKr3xjI4rivzm8Te6wD8uNXydKzPcHZ7lP1VIB6iq6F3f0FPDu79qJexGs0mq2BtXQWc9ZIw22Frj4AgLe2lHnc8voqHvjET+HGte9gcc/t1dvdXAEzpA9sPl3xZFcwi6AwXI2fnz6fMn6+jlicUHG2+8QWClhA6NxLK8RMFy5D50Kb1CdlZ7tc1AFCYczjFkjKDfE4SjxJbFd1KhrRmM396lVFrK7+UQBAaUnsfgZCZztJKUA7+VBsD8pigVck2lHDgrGBnu0Lk+G53jGws+H2ABagKLZbUIvfJoaBsqAlQuysthVj5IlhoMxtME/gbM/gBq6QHIhMbM8g3gOAEfWpjwvLY7jAPV5faGJwH0xybnIrV93fAwCTVUAzxMjHbmXqSZztdjZnuyhNs8DLIBnFdtJUaMSDinK6BVB3fJsEXtXzOCaQOduzONENeew7ySAYc9OFLevZnsHZLnPyx+eKoViYEcfOB02FD4T6SsVetfHiQorGc4UwH0zRKU+itInmsQCAMgJrk3qsA6GjOkufcFtQ1B2L+07QawABAABJREFU7apr6lybdaays90yURKlxW2gZ7s4FSCcW5Yi+1DAr0/Hy+5sB6JEwCYDQDhetjX6/oEODHS4eOf/ehjfOzkHoGY0eDGixXaNRrMlsbWzXaPRbGEq68sAACvXAdtxcdbajfNkBD0DjRuucbweTeEkcoM1dGENc5PnNm2eCxdCsb1vxwEsOqNwV89v2tgaTVrGF8vY3hNuBOwfDDeukvq2Z4lC33Rn+yb3bI/d3i3O9g0sksXiuHp/eiC5v5zqJki1l55EvN9o9PvBkdBBqp3tGo3mUlMsXcBKfnvDbYXOHgCAX8omtk+ePYHzf/xqXLtwNx647kO49Wd+r+H+OXsU9kr734qcMfSxBaBzpBo/P39BEv+dQCxOWCrOdsNtEZxiVOKyK/2HsN07lViIqixSWo6wV24MDzx4Ck7FOFa7xfEYw3zlyGzTDX8rldebfispvtd85ESnFbEgyxlTipF3C6EQKxfbW4sBGLFANiC2r86EhcJ9o3sabg9ggiv2glcpLIipELdVbI/EXstV7+ldIQ4gcbbLnOHSsYw8iC/+LAwmF7+TsCL3eFxYHhMnXFhOzc1ff+4bzAeTHFtuOg1CqpXR2e5EyQC06fjFCQdWhp7tAXFAmpzoge/BJT6Im0FsN9yW8UD9TM52WXS5yWm1oF9pbrBBBK0XwhQE9R7rstj3UDBWF9vlzvZA2dkOIDzmzWJ79VxRdMpH5zptSivkGds1GHZcpNUk3jOq7myXJCAAQJDR2W7LBOMMBedAKKg3j+dHf9dViwHidaZs3ao6Xt4xGyLVq2NljH2XrdGzrKlj7KYY+Y2K465tinu2Zxyvu2Djq+95Jbb15PHHd4e/M1/MRfFabNdoNFsSG1F1qqS6UaPRaC4llWjzy8mHm05zV/wUzl/2sy2PiyvsgxTOdpeF7pXJU49t0iyB8vSz8LmJoe37USpuR2c5W79OjSYrJY9ifs2rOtt39hVgmySxb3uWBZ9sYQuE4rjqQrnas13Sc01ZbHfCxzf0bGc886JW9n69jJsgboJTXnUhnxzvtxlieygevJgX8RqNZmvQ503A72p03BaKXaCcgK5nE9vP/+NvoYsu4MJbv4qX/th7Wu5fK2xHZ+lC23FWlhdQIBXYPdtq8fNT6s52XhXZ0otjgcQtCgAG8xCkFE7yO69HD1YxPS6PzVftdU1MeX9bIIxCb+47noRZ7SO9LrzfSBmbX08s4jbHtas626ux5Z54bpQGMAivijXtyMVie0X8G45QH0HTe2WGDWMDPdv9hfPwuIXegdHG24kFTtXGtXgAKBSNAGEPbuI3ibGRqGW7as72cDwXXNAjPMkZLsMz8jBlYjvP5my3cuFvrHJTMkcsUtp1IqURXROCShkmD+TFApZb3d8DAItXwC21CH4AyEU971mT+JylICiGGg6Mpj3H+nZxqgSG2zIegopyrDoAGJJCHgs0k7PdJza44Locpo0oiu1WTiqOZ2mJgKb0g3rMDM52IH6/jWPGCQ2GqTae6Yg/C9E1L9V4klh6wgPlQoXaeSJwtvNsUeOOacAPWlup+SxboXhzDDpQF4WuOF68Bhe2PwsytD+zxWL7Rnq2i+aWZT+iOmZzjDyLI/izralzTc52L3bKW9nmBwAj3Tl8/h234v94xV7s6S+gM6d+zXuhoMV2jUazJXF4LLZrZ7tGo5Hz0Jf/Ao/8618/56/rlxvF9lv+4/tw60//TsvjDDPu2d6+JUYuEttXzx/drGmCL5zBlDEI07LAunZikE5u2tgaTRouLIYL/1hst00Du/uLODUjcUVhI8721oVyPJ5jqgmzsSAs2mjIImg7pgGDAOVgs5ztpnghnzFGXrQJAmRz8SfFyGcZr5krR0Nne1E72zUazSXEq5QxxOdg9u1puJ0YBtZIAby8rDwmZwx7lh/CqdEfwv5rbhU+JujahYGg/e+5hanQ/Z7v216Nn6fz6Xq9N8wpFtlUxPaEfr4G81KLisOXvwQAMPnMg9LHKAs7lpPYsx3UU+pfHDseZYW1JIPD2IzEdq/JQa5aWGCYJkrcAZM42+PY4bQ92/OF8O8vlxQWQBCZz8jGYuTZ0jhmjX6QJsEojJFXM2ZYGZztPnEAv/H9xs5qJ6cutnvEAQTrwizOdt/Mw6TiBAmD+ZkEynhtW2lKVeCRI9quc7ZXz32/DJN5UvcxsXNwUPusbO6BZ3C2W7aDgBstSQOxoGpmcbYbTsu1qrxWS7BTH8+FSZsFWS+jIBu+n2Y3tYlszvaA2CCi7wxTF3iZmYOdECOvnKpgNZ4j9Zg8ADI521ud/Cx6/1bKAqPq9OIYeb/Zie4rtwkBamK7V248l40MqQBV4V4UI8+hLD4DSVHo2VqgiRLUqlHoisUA1aJu4TpTfX5522woho/J6vaWRfD7Ac+8BnabnO1B7GzP0P8dEDjbg4055WNs08D7f/gQvvW+H9zwev/5zIv3nWs0mi2NE1W+yn7AaTQaDQB0HPkbkCe+8Jy/rh85Tdxo00mGUY2Rb7/JVEC4kUNmj29wdjWclbNYcEIniD2wB91Yw/Li3KaNr9G0YzwS27f31DYk9w8WE53tXoZotCRnu0+ZcqV2vEDcLAGaEIJc02J+Iy5vWey7F2TriS6NkQ/UNy3iyPyyyNkeZK/qj4md7UVHi+0ajebSMX3uJAzCURja13LfOrKJ7WePP4oBLKLj4A9KH2P178EAFhG0aVG0EsVvdw2Gzvs5ZxvsZfVWRVWRTUGcoAliO2EBaMpY9ZGdl2EZRZTOHpE+RjVGnlgunARnO4KKktgeu5sDgasQiIsB1ERAO4ry9kqNIrnBPGXHaJnkwH2xOO574WdrpBTbTctCmdvSWHrRZ8ENG2QDznZ7bRxL1kDL7RQmiELPds4YHKIuUnqG25LSEPdctzPEyAeCnt5AtqhsahVgBeLP1mQ+mOJ5B9TE9riwPCYuurHqerbHbt/AKyfOn9gF5HkFjIa/gW3mgSv2zI6pwAFvEjxjt7KdQWxnZqs4Hrv6rXzyOl8+XuP5QqiHQKE1RYxVd3wbbgfL1rOdOEKx3cggGHPLhc0lBVXcB1Odn+1WDVfNmKAbcLY392wPr0WmpfZ5xJ8Fa/67mzFGvvbdae7ZHigfu2o7B2HP9jASXhXbJC3rQsY4KOPZYunN1nVmNQpdcY2e1K4sXPOr94AvS9LdgGw922Ux8pu17vfpxpztblP7vWrKQEbxXtOIFts1Gs2WI/A9WIRhnbuwdIy8RqNJoCeYuSTtJmgUn5hrI7bLKtKb4YyhyMMFUufyqU2YYUhXeRzrxXCTtWM43AyePX9y08a/1By998vwU0T0ay4d44slEAIMd9WcMPsHOxJ7tscLyM3q2e5T9bj2qrOdNlfhM1CWrTI931RFHmR0BwCti+SYsBBAPV5d6pSn6uJ9O2d7lmKAenb1FZC3Te1s12g0l5SF8RMAgN7tl7fcVzKKMLyVltvbMfn4XfC4iQM3vUH6mOLwfgBAsDqTOFZ5fhwA0DcS/g5cy6eLn2+GBR4CbsBQSIihhtMiYMWYzEvt4CWGgfPOPjiz8tQnVUcwsVy4xJf2gVeNarecUGynkp7tWQRyJxLbm3ujG8xXcrYDYWy5qEc4UIswNhSEzzJxwT2J2C5w3jPDhrkBZ3u+PI313HDL7QGxwBXG9SORLK2Lv/Y6rT24WST2uhmc7b7hwhB8N8wMzvbAKsKWOdu5n6nPtVsMCxr9pp7tPPDgcbMhYaBeDLa4L3Wru307YROKuShtw4YPZIiRB8TJABvp2U6N1j3HuF+9k0Fsp2auNZ0zS6w6xD3baRC1flCMQQcAKnG2E+aDqorZVh5OQoy8qrOdtHO2Z3Dyi95vXDRiKl4HzGrP9tYY+Uxiuy0upDAyxMhb1YKv1j2RMEY+ozgu6bGeZe3qWkZ1fR8TxFHois72pBj5IIOgHTrbRWvgyHmvmmZ3EXq2hwl0teNX69meNSHPaIjO96OIe0K02L4ZaLFdo9FsOeI4s1VSlPbt0Wg0GhoEGODzl6TdRLz5lSu2c7ZHkWNB8mZQaX0FJuE4Y+zENn9MugGoyhCdBOveBQAY2HYAALA8sXli/qVkaX4GV9/zszhyz99d6qloEhhfLGGo020Qp/uKDhZL8u+ElyHKzLVMec/2DNHqsp7t8cZDFsG42dnuUZa5glzaD24jMfKS8dR7tosdB5zzzPGD9RgGwRsODeOqbV0bGkej0Wg2wvrUKQTcwNCOVmd72SzA8ORFZTKcc/fipHsI+YTfl307LosmkJxUFCyNY4XnUejoDv/dvQv9KeLnm+HURwC1Ii5q5qRF86qO25XuK9C/Lv/tqtrrOhZbfVkygGL/4jhKnEoE7SyipxP1pm52KpIMgmzFcEEkzvYgKgY2FVILysiByN6rQFTkG+zZ3uXPwi+0iu2UWErO9vi9KovtglhwFo3lZujZ7hMXhqBnu8l9cMWIe24X4DLxZ5HYQz2BuFVAUGl1tjcnPsRiO/UqobNdIoh2bwsLhObOPQMAcHkFxM4mtlfgAM3HLxZQMwjQzHRbCve9qtiuHiPPTBdW096EoVjAE1M9vnXXqiCORc8SI2/Yrf3kEce+qzrR83JxPMN1yrBzcAgFDVqvFWbGHvWi2PxaYYbiNTl2tgdNqQUZxHEAsF2x2E4y9KeXCfcAEPBs4rgoRj7YgJtatM6sRZerrYVNg8AyiMTZru68zzuSnu0bcbZLkvEyO9tNA15dEXuQsRAgpiVGfhPW55oa+khqNJotR9y3Zt3o0GK7RqORMj99HhZhlyQBg1XWQDlpu8kSb161c7aXVsOo0amua9CDVcxNqzuPmlman0EX1uAM7AUA9A3vQIXbKM+q9+vcilSiKH9v6plLPBNNM1946BzOzYcbuxcWyw0R8kAoOstc6EC2HmmupGc75zx0e2fosV4/l5jqwjvDgjRnGyj5jQvl7Itk8futBAxuRseBUGzP0rNd4jiINx42o4fbn/7UDfg/Xrl3w+NoNBpNVtj8GUwbA8Je5p5ZhOWrOdtpEGDf2qNYGnlZ4uM6uvsBAETiaK2yOoUFs6/6T6svjJ8vrSk67qkHXzFiWCQ4xZiK4jMrDKDI5IULys72uFeuIHIXiN3ZCmJ7tBZgkt/6WYSn2NneHNduZoik90hOGFsOAEFF3dleMXItPcxjxDHyVuhMzUiOl8Dd1uI6CgtExdkeR+YripSBmWtxovOgDI9bLX3k040nbrGQJUae2QW4XCa2+5n6XOej4hzaFCMfFqE0Ft3YTs3ta3MfkBQLDO26AgCwOhUWzbjwQTI6233SKrZz6re47tPCTQdW055jUE7XLk48ntvSCpNkcHoDtePL6tzUcfsQksXZbjhCsT1Ln3BiuXBlzvYM53JcfCG6Lm+m2M5peC1STUGIxfHm67yowCgNtUKKxvFMFoCrOtsdseseiJztGWPfGQcoa3VTZ+oBHznlOa8bj2UX713LQKVJII/X/Mrtz2yzYX1enV/GaHVHEJkfj6camV8ds0nAj1MGsny2QOu+yUYi7jWt6COp0Wi2HHGcWdnskFZLajQazcLkGADAkvT3uphwbw0l5Nou6uO+drINuJjS6mI47vabAACTpx7b8BxnzoW93ztHQ0e7YZqYNgaBxbMbHnsrEG82WItjl3YiKQh8T31z+3nKctnHb/zjEfzC3z6IdS/A+GIJ25rEdtcyQBlvEbJjslSSy2Lk/Q1EwIVzaYy8y1rlDrRWzgcse/9y2UI+q7NdFkvvb0Rsb9q4yPpZaDQazVbEWTmLBXtUeF9gd8Km4qhtGaefvA/dWEP3odclv24k7hKWLGDa61NYqet1XRwJ3aXTZ9WKFDn1lV2Z3Mq1CFgxJvfBFBy8xJbHC4fjqQk7hhX3txXHvhPFqPZYhJHFyGfpnZ0rhI7aoCmuPYtL3jdyMCXiOK0629PPzycuiKRPuKjwgRv2hsR2F57QBU2JBbT5DtSTJTIfAKjpwmoW2/0yKhl6cANhbLnJWs8VK0GsluIUkZOI7RYPlJ3yAOC4OfjcBGsq9EAgd7YzvwIL8vkXO3uwgC74c2NglMIhAYitngoAhGJ7c6y/yHWfFm7lWgw+QTlcs+WK3RnGy7eMF7aSUP8srKiQiwb1zvbwnFctGgEAZjgwBAUqRoYUBGLnkSeeMI0vLKhSdGdH55JXbr22WDwAyRIjLyouiJ3tigkX1c/Cby6kyOZslwnk4WehNl616EXwN4iyjM52QdF5tU94hqKWeA71gnEQR6FnSHkTucfjWPosYrtoXyJeU6tGq7uCVAAA8IPsRfbNyQDBBj6LcI4mKn5jz3a9Pt889JHUaDRbjtjZXrE64FwCEU2j0Tw/WJs5AwDSzbyLCffWUSbtN2uqzvY2MfKVtUUAQO/+m+BxE2vnn9zwHJcnwt7sgzuvqN624I7CWd24a34rEC9OO9bPXeKZtOfBz/0exj/+qks9jeeEp8bDlIZTM2v4nS8dxYXFktDZDoh7rQG1hbiKEC2LkfczuqllPdsrGxDbc1Zj5by3oUV3mA5Q7xCI53epY+Qt0xDG+22kUEGj0Wi2Gp3lcawVtgvvC+wOuIpi++yRu7DOXRy44TWJj7NtB4wToUOxnnxlFqXcYPXf/VH8/OLECaV5IUOMPDdd2Fzu9FZx3BI7j1zCb31V53j829yXiOOqYnvV2R4kOPkVRc9cFF/NK43CU6a+3gJndvW+DDHynpGHIXHKiyL9Q7E9+56Owz1hf29K1JztsWBpKIpsYUuExs+WB+Wwd3gGmJmDJXK2Qx7DLoM4HcjJvmfcVx4vpkRc8KZCD85aBW3bjVsoVGAhAEk4z2esEZhLZ1GJxFQjY4x8YDggzcdP4LpPS3itaooaj5zthTbt4oQIxPus7mfbiVMz6nq2x+0QsojtRBIjnyG63Ijm5gmuo2aGQg8jKr4QOdst0Iw9262W98uoD8YJTEvt/cbXeR60frZZ2jVUvzuCnu2qzvZqwZegvQfl2dLY4rVfY9R4tD7PuM4Mx6h3ymcvwm4WixvmpxojH+1LNLvbs/ZYd6L+9Iw1rtE3Img3r9OzpADW49oGykF9azueKbFAI0bvdGg0mi1H4IU/Eny7C652tms0GgmV+fMAEMbWPdf4ayiT9psEcRW0bAMuJu4NV+wZwLi5HZh+esNT9GZPY43n0NNf63NYKmxHV3l8w2NvBeIChkF/6xcPuDNHsZ+exsrS/KWeykXn6IUl5GwDH/uJa/HPj1zA2fn1Fmd7LLaL+qMBm+tsz9L/vf7xsp7tWRa3Imf7RuLfwvk1Oe8py9RPXhTvB2zMKd/8+W50Y0Cj0Wi2EoPBJGj3LuF93OlETlFsL1z4Hk7mr4HjJv++JIYBDxaMNq7eTn8OQV2v68HRPfC4hfK0Yjsh6im7RrmVgy0pBrCgJj4TKweHBMJevkAkTiiMVxXbJc52VWHMsh0E3AAXRPgCkcNYUYwxLQsVboM1iSdZhPvAzLc4s2NiAdoStEJIGs+Uie2s1SHLTRsmF//eawdnDDniC4VZpii2B3GMvKUY1S4Q2xFU4COb2C4S74HwPFF1thtuBwqkIvxuZBkvpoxci9gO6iFoEgHd6FrFgzJsHgAJhQwr+e0orp+vOpcNJ2OMvOG2xvpTHzSjs10kjtPKKkrcURZk4/Ga9zBN5ilfAwBU/xbUJ+Sx2NmeYW7MdFr604fzU4+5NyOxvVxqdaJnaYlQc7aLxfZMxQWG05oAwwLl4jFAnlZoZO3ZLiikAOJCBcW2IwmtTChXj0EH6sXxVjd1Vic6AKFgnGUtHLZTaxbbw/mprjPzTvj4stf4d2ojBewAWpz3lYziPdCaaLeRYweEBoAWZ7suht809JHUaDRbjiCq7qNOF2xCq1HBGo1G08BSKLI2L5CfCwx/HRWjffxdHFFGg+Q5+utLAIB8Rw/mCvvQsXJqw3MkC2OYNkcaou5Z904M0KkNj70VCLxwQTmARayvLl3i2STTWQrP1QvHHrrEM7n4HL2whEOjXXjrS3bgp28JRYjR7sYNNVlP75haZbpaz/YkZ7uqAB1XxUt7tmdxttsmypsU2eZUj2HjxoAX0GziuN36mTDGEbBsle6ubWpnu0ajecGytrKIXizD7t8rvJ+7nchzcdS2CK9SxoHSEaxve3m6xxOnrdDYz+aAzprYbpgmJsxRYFYtRh6CPtxtsVxp9LtqvHXsoKyUxcULFg+U+vnGok5c4N/yeorOdgDwYINLCmst7mUSPSvEAfeanO0ZYuRDJ7WkZ3u076LibA8SxhPG3Bt25pZfsWtWGCNv2G0LTuqJXfyGwnsF4pjxpujooAI/Qw/ueDxL4Ea3oS6Om7kwAaG03tqqykKQyQ0MABWSA2kS24lA0K4X+Wz4ic52r3Mn+ryJqnPZzCi2U8OFQZujwbMJqICkTUVlDaUURfVC7Bxc3izIZnQ/V4v262Lkoxh0kmE8ZjiwJDHyqteV+Lrsl1qvy6biNRkALLcAAAia0jw4Y7BJNrGdGq3FBTxDUgsQFrlVeOt13mTq12QAcHNigdzkFMjsbBeJ7STTWlO0DvY2wdneEIXOshXEA+J2ajUBWj1GHhA727O0exNF5gOAH2ygfVxTbH41Rj5r0X5TsYKfIclOI0cfSY1Gs+Xwo4Uvc8LYJlGUkEaj0VhrkwCQ2MfxYmEEJfhpxPbqIjl5k4mWwk2SQmcPvL7LMeqd2fAc82sXsJjb1nCb3b8HPVh9QTis6xeUk2PHLuFM2jNEJwAAS2OPbMp4Z44/hrGnt6Zw/8SFJVy9Pexx+P4fOoTfftNBvOLAQMNj2jnbszigw57jreNVMjrbCSGwTQKv2Tm+QbG9VFc179PsMfKuYNMi/nemyDsz/Ew8wabKZvWA9zIUUWg0Gs1WZPrscQBAR9QHvRmS60IHT+9sf/ax76BAKui/5g2pHu/BhpEgYK4uL6BAKrC6G3vKzxYvQ9fS8dTzAkKRrdnR2vY5dj6M/xZgcR9Q6JttOKEII3I8AoAJNbHDjIRbWUG/kcGF6hFb6mwP48HVxfYyXPAmZ3uWPtzUysMW9AgHakKPpRDpTS25U94UONthOjCRzdkeu2ZjF209obM9vdgep4yZijHy3Go9l0lQhp8xRp6bLhyhs90HUe0jHbUbKK8ut9zXTvxOomLkQYKmYiHmgzZFtRumCZ+b4EEZDqGJ8zd692CIz6K0uggAMKPvtSrCnvdsY8725taV3FtNlWAngth5OGgcz2I+WJae7bYDykmDwEv9cGzDVH+/3HSELR3MDDHyVrUIStRjXT2BIx7PbyqCCqI9lKzO9hYnP83ecsCDBTQVemTpsQ7Ux9I3FWZkaCeR5GwPWDZBttqzPaitg2NxPJNT3mxdt9Z6wGd1tosT1FQF7dq+hLhnuyqi9xrPL3ORvdkYTV8tVMjcs70xgU73bN9c9JHUaDRbDhq5FUku3KyvCKKJNBqNplAOHdo2T7/RslmYwTp8I32MvMztEkPLy/C4CdfNwxk5hD4sY346ezx64HvYUT6Ocs+Bhts7hvcBAGbOKfbr3IIwWtssWLyg6NJ6Dlman0E3wg13MnV0U8Zc/OKvo/TP79mUsTaTtUqAZ2fXqmJ7zjbxzh/Yj6LbFDsZLVyTYuQtg8BQWHy3c7ZnrUz3JYJxlqj2vG00VM0HlGXaYAASIuo2Gnkn6s2XqZeefBNEO9s1Gs3znZWZsJVRz8ge4f1mvhs54sOTRJU3szT2CDxuYt816ZztPuzQPShhfjIs2sz37Wi43Rs4hJ3es2A0vfip2sMcCN2isnZwtqLjNnbAJjnbVYQdy4ldgPIYeVUXqgenRYSJsbmfydnuERfwG/dBLO4pi1jcLsCR9PXOEiPPrAIcJil8EIlsphV+5hnwK3HkuFhsTyo4aSYurlBx8QMA7HzL8SO0giCDeAoA3M4LW6DZbXqei7Dc0JxSWheI7RuIkfeMPMymc4+wQHgd8GGBVaJ1TsLrFYb3wSQc8+fCAmlL8JmmgZmuQEANMguohp2DCx+c1X7/En8dFZJtfoaTh0UYfK92zmRp/xDjw2roE85o3A5BfTxuOsKUiUxiu8SJDsSpCmrzi3uYB03iffy9zSK2c8OG2eTk5yzIXJgREBto7tmeocc6UCtUaW41mOmzEBRlxFCebR1nV9eZdYJskL3HumjdGlAOQgAzi9hutSaoxfNTjpFPdLZvzpo6HI9njmpvPn6xGSDreLmmBDrds31z0TsdGo1my0GjakaS7wEAeIIfcBqNRtMTzGAZRelm3sXEpCUEZgpnux0uNDlN3gzilRWskzyIYWBg77UAgImTj2ee39Pf/1f0YRn9N7214fbR/dehzG1M3f+/lceslNcbNiIuNfXOdm966xYPzJwLHWRnjJ3oWVZzk8noq1zALsXN8ueCpyaWwTlw9bbuxMfFFeSyGHkvg+Nb2rN9AwKvbRryGHlTfVMvb5tNVeTZF92uFR3DTarCF0X7195rNhe/aG5AtsIHjUaj2UrE61UnJ3Znmvnw7+D6ymKq8XhQQQXpewT7xIaRECO/MhMWbHYNbm+4vbjrBnSQEibOpC9SJBli5A07D4dQYS9pm/sgCs52q+psF+8JWIpidiwsxxHqzZhc4M5uQyjCSHq2Z4zz9okLo2nMLH24uZWH28bZbitEeodOb3l/+ub4aGI6MDOK7XGagWkLxHbFGPl43WDaasePCGLBCfMQGIqiffxcKw8HmxMj7xSiJEhBjLyNQNkpHxOYeZhNrQJk1wGP2EAlfP2kiP7ebZcBAMoXngQAWG42MZuaOVi0+fPI0Ooifq6dg0E4/LqkC8Nfg5ciwU6EEaVElOvi1bM4vWM8YgN175cGG3O2S8V25UKP8PiI9motUEBxfnYs3jc52/2q2K5+/JjIyU8D0IxSmA8LvKmoKsuxaxjPb77GUyBDLL2slQnlyCSi1tzZNWe7v8HY93C8pnZqhgFCsojtrUX2WWPuq2K719yaLWNanCx9biM926Mx432JII7Mz1i031wUr53tm4s+khqNZstRjTMr9gAAfElknEajefHCGcMAm8OUtQ0m4dIoyIuFRUugVvtFuG3HzvY286usYp2Ei8zRfVfB5yZWz2d3QZce/QIukGFcdv2rGm7v7hvEYyNvxdVn/w5Lc+l7tzNKsfj/XI0Hv/inmee02cTR/AvoAlkcu7STSWB5PCwEGB99PXb6Y8KNZxUYpRhm0yiSMsZPP70ZU9w0jl5YgmMZuGy4I/FxaZztqoKxa5liZ/sGqvATxfbMPdubFrab7Gz36GY623nDfSokOtv1Yl6j0TzPid1otkQwcgpdAIC15YVU4/HAU4pqD4g4DjimNB8673uHdzXcvu2KmwEAUyfSt6IhVF3Iintsi9zoqg7eWNQROSiBUMxWGi9y1FJP7PY2MzjbfeKASJ3tgVJxQYxnuCBBU4x8BuGe2AW4AnEXqJ3HKs522AVhDDogifQ37cwpZH50/lhuazEAN9Sc7TRaK1rKYnu+pbDbpBXltIcqdg5uUyw9DQKYhCuL4/F1xis1iu2M0qjPdUax3crDaoqRl10HPDgg3mr4mITzfGjnATBOYM6H6yI7o7M9FIybYv2ZD5bRrWzYrXHoZrAOL0VRvQhTUBwU9jDPdr74TSJqvI7M4mwnpisV21XnZyc527l6C4M4Cp02tc6Iv7eGleH4iYoLmI8g47niNxU+ANn608d4RNADPmNxlkdsQJDWQrl6D3Ogtm6uXwf7GyiaFq1bfcoy9xx3BOvMrD3gZe3tPMo3VMDe0rM9Yw94oLVYIe7Znr0dXaOzXYvtm4s+khqNZssR/8Byir0AAL+Svt+dRqN5cbAwOwGHBFjOh/GYon5hFxOHlUGt9r3mTMsC5QSsjdhueCuoRGK74+Zw3tyJ/LN3ZnKS+14Fly98C2dH3wgi6ON02Y//DkwwPPXPH0k95vlTT2AYczDHvqU8n4tFfEwn7F0orm68x/3Fwpt5Fis8j84rX4s88XD+1Mai5GcmxuCQcKNl+uTW6tt+9MIyrhzpbLtYa+dsz7Lgkzvbw4Vzlth3R9CzvbJBsb3UJLZn2QAB6pzoAvd47HpXwak622vz24iz3bVane0bOXYajUazlYiLwx2BCAgAbke4ji2vphPbQdUEgIAkx8gHSxNY4zl0dPU23N4/shPz6ELlfPr0JMIDMFVnu6TPOmcMLlFzttu5IgDAr4gL8C0EgIIQY0fCMgsSotAzONuJxNnuQL0XNwAERq7F2W5D7diFEyi0OLNj4mJgW0Fs504ROcid7c0uT2I6odM1A/FnHkdWN8yDWErO9rhI11ToTw+IUxoM5oGaGZ3tAvHej1IWVAXUXDF0tvtNznY/uj5ldbZTswC7KQ1Bdh0IiA3TD8V205Z/bxw3h2nSj67VZwHUvteqcCsPu/l8ZkFLP/m0xG0q6sVxi64jMLP1lDdjx3ddoZG9AWd7AAuoS8iL26hlcrZbDmwIxHaoR5fHn18gaJWSJaXBjlJiaFPiSE1sz+LkFxQXbOBcCYjdUlRlZfh7EePDbmk/YoGCZBjPh93iugcAyrKK4+Fz6sX2gG2sgB1oLOoOGN+gM1scI686Zl4mtmd1tkfpd5vas71JwPcZyxzBD7T2bA8oz1z4oGlF73RoNJotR3XzIna2p+x1p9FoXjzMT4wBALyuPeH/P8cJGA4rg9vpFuFh5Fiy88II1lCuW9Qvvew3cW35YTz0pU8qz+2p734ZPVjF0K0/Jby/f3gHHt/2k7ju/P+LhZmJVGNOH7sPALBtZXN6jlfK63j4j9+CybPZ499jN85K5z70eeObMq+LAVk6gylrG3YcfCkAYObkgxsab+58eMwoJ0qb5c8FRy8sVfu1J1ETiuXOdlVx3LUMeJSB80Zx3NuIs90SONs3EEufd0yU/cZNhuwV6a299IBsx65hvIb+beHYmar6bcEmyAar8DUajWarEEe/OpL47VxH+LewvLqYbkDqqYnthjgOuMrKJOaNvpabiWHggnsAubknU7+WwTxQxc1/WZ/1IBI8VURAOypo8CWFtaq9qePIdOZL3NkZYoEDibOdMwaHqPfiBoDAzMGkTWJ7hhh5wymgQCrC1kOx2C47j0UQO4+8RLwXRfoT04ZNaKYC4jhSWpQgwYzkgpOWx8cuflVneyT0l0ur1dtMWgHL2LNd1NPbi/5bXWwPrzNBuUlszzheDLMLcGjj9012HfCJDdNfi14vuQBh3hnFNv8sgJqTWRVuubAFzvasMfLxtaq+mMdOmWAnHi8W22vjWfCBDOkWQOSmrivap9F/p205Ug+xXKHYnqU9hZOLE0LEMfKqhR5uNB5rEtuD6P0aGa6h3LRhN/2dJNQHw+aJ7SYoeAYnOhAmoqDF2a4ewQ9Ewr0gRj7I2rNdII5XY9ozFWG3OuWDjGls4XitiXZZ1+g5J3z8pvdsb3a2B9nX/c0JdH6wMSd63LM93jfZSMS9phV9JDUazZYj3rzIdYYbBM19ezQazfOX2fEzOP3k/RseZ3UmXKibA/sA1BwBzxWuotjeXLXcjOWvwTNrFf7Xv+Gn8WDPm3Dl4x/FxBm1Pt/eY/+Ic2Qb9l19q/QxB3/8v4GD4Ng/fyjVmMH5RwAAo5jB7ORZpfmIOH/iCF6y8k2cffCrmceIK/v5wOUYZjPPebpBWgqr57Cc246egRFMoR/+hSMbGm9t8hQA4BnnEPLzWydGvuRRnJheSSW2p3O2q1VX15zZmyeO26ZRjcyrjhf9O4ugnbOMhoW8F2wgTi7B2Z7NiS7YVNlAoYIoRn4jEfwajUazleBBBR63hAlCAJDvjBLa1pfSDagoFlEjOUaeBCVUJD2H13qvxHDpZOrXIiwAU4zMjvusN7eD8yJBS0lsjxyUVLInoBpLH4v3VCK2h05FRbHdsGGw1t/6teICdaGNmi5M1uxsVxfu45QB0e9kFnjwuQnDTC8+mW4RLvGFbZFEkf7xZ+1naPmVJLZz04ahJLZni5GP+8WX1+vE9g04241IjK3v6R1Une1qYxYiZ3tQXm24PfBiZ3u2OTK7AIc3OdtZAC5xtls0fC/tUgPW8tvRSaLPNJfNOQ4rB6dFbFdP34iJxXG/Lg7dpiVQO5vzPo5X9+ud7WgtQkkLJTZIXXQ5p3GMfIbP1nThiGLkMwi8TvW63HhdoUEAizAYigJ0XHzBmqLQ4+ICkilG3g0LHephQebCDCpxtmf9bH3heNli5EWFAADAeLa+3iLBOI4uz+KAFrUr8yiHJfkNlWa81qLubMUAjmnAIK1ie5a2dvHc4uc3zy97cUFTjDzjmVvRxeNxXiuE1zHym4s+khqNZssRb15UqyUl/dk0Gs3zj5Nf+hDwT+/Y8DiV+XPwuYnCwG4AjQvk5wIXZSCl2B4QSxjrVY8TrCKwGhf1V/z8p7BKipj73DuEbhQRlfI6rlj6Di5sf5N0AxgAegdHcWTHT+H68S9gfbX9RnD3wlEcsw8BAM4d+U6quSSxdOEYAIDNZHe282jTrrj9KpiEY+rsMxue18Wg1xuH17kTADCZP4DCBgXyYH4Mc+jG4sANGFlPv1l+sXl6chmMA9coONtlPdsrGXu2A6Iq8uxV+LKe7YRk27jIO2EVPo1i+DbmbI8KFprml+XYAbXIu4rAwZCtX525aZsgGo1Gs9XgQQUe5BviHV1R0XhKsZ1QX6lnO23jbCfUk/aUtrZdg218GsuLc6ley2C+csSwGbvRm9rBxSKgaacXitwEsb0q7CiI9zVRJ8mdrSZ2UMOFIfitXy0uUBR4AYCaedh1zvb4vRKFYwcAZq4DQKNYHMOpFxYFK2C44edRaoouB8SR/rFIVu/kTguNjp8jihwnVihM/X/s/XfYJFl9HY6feyt195vzOzlvznkXRGaBAdkSKNpIQpasBLIkLFtf+avf1wpWsC1jSTaSbAkDNgqATGaBXRCbd9gcZnZnJ+eZN+furnTv74+qW11dXdVddatn5l2o8zw8zHbX++nblbruPZ9zTkoIG3k1g4ofaFjYh23BVW6BS5LtItPbDJPtgVV2Rutt3YDFVXAr6TqTzZXvQSlCtlNmxxLaLtGg+/nutMN57gxsC/4tlMxZQbQSdHSPbFdjlOgGr4GniIuLg2giCAuGNO5IW/o7RANhjXt9oGyXUD8TVYcOp8VlQoOT2bq8VPauyagSXTbCgCqKdy5HojMc249/kNl/MUp+wt18ZDtrVbbLZrY7kUYKwHcFkCLb9ZZaQH5lux2KU8szjxON4OG5oZMjsz2uqbsxvmw1CSEoac3uc6JeLmV7jABAPrO9eZ5uu1w6ig7wHOi8eq5fj0ErmuG7hmJPFihQYN2BOyZMaKFuycJGvkCB7xao9Xn0scXcddjSWcyR4WABJC4v7GKizOsgerqOdy9rrf1ikMaqcLXeptf6B0cw85aP4DrzeTz9+T9N9VmvPPpF9KOKydf9s47b9uz5PpSJheWFmbbbuY6DbdYRLG59O6YxjPqJ/M4E1rSnzi4tHZWuIaz5x3ZcDwBYOLP+yHbHtjDBZkCGdwAAqsNXY2M9H0GuLp3ErLoB2sYbMIkZLM1NdWOouXHg7BI0hWDPRG/HbSkl0JX4jHVAPrMdiFF65yCM4zLbLceFrlAQkn2y3FD0exPbPIsMcd+Xc+7ZwEnavgPNCwN5FlUMjcZm3wFyrgAFChQosK7gWJ69bwKMUgU2V+DWUpLtzE4kx+PQiWynzIKTQJ6M7LoFAHDmYLpYG4XbYBmJGM0QOesRIsb/7yyK23Z2xTLEjqpqYJyAx1juAj5hnJls16GwGKIjsPPORvACAFPLTbnZQa53RhWlmCvVq8utbzpmpiYPwFO2e/VayfY4m3tBkjkJzQ3twGyfbI9VtuugSE+2i+OtZVW2B2R7iDxl+cn2cEZ4cJ5INGVUSQks0tRi23JKeQFi9KAcJdu5E3sfcIgOg3nfRe3QCKKObA/+bUgq24lWRimibKfchitJeAqnCyfUuF9iNXC983wmvp7IMg8p5SUcKQSihKxQtss0UhDVACU8cNwQULkDZG300HS4nATXaDBeWyjRs39fE1rgciog4h+yKuXFGLRIQw5hNphkZrtLNVAW2XcS+fRBvQSyHRKZ7Q5trQXIZ7Y3yPa4eaFEvTilfM6m8+icXyjvZRzeyprSOm91WZBdnwVi/3Qzs13zxyH2n5ODuAcaTfuiwcCzuC8y27uFYqWjQIEC6w7cqcMmGnT/Ady1Cxv5AgW+W6Daq+jnK1K5fU11Vs9jURuD6i++2JcwbsJ1HJSIHSw2ddw+hY18ya2CxUzqr3/DP8XT/W/Hzv1/itXlhY6fZb38VZykm7H96ts6bius/jo1Kpw+/DwqxETfzjtxpuda9M8+37F2J9DF4wCAkbq8JT13PevL8U07YXINtSl5lfzFwvTZ49CIi8rELgCAvukmjGEBc1NnpGv2VM9ipbwJY7u9Y3zm4NNdGWtevHR2CVdO9gWTt06II2MFZGzWjKR8NEG2d0vZnsMCTpDtNUt0kXPpfLS472vl+K5xioM85Hicsj1P1l+BAgUKrCdw12yrCCaUYpVUwOoxBGfc9hlt5Bk1oLUhGimzEq3fN++5CRZXsXz82VSfRbkrQba3ElhAgwTMomwvlb3nYx7zrC9D7BBKYUEN8sqjkCFPGNVjbeRFM4AMMcbVUlM2tSnRqAAAqi9gsGprLe/JKNtFPbPaWs9TZUYz273/diVs5IXoQo8hZnnWzHZ/Lqbp2fZfnC14HmW7Klwf6mFle/brQqCOMmBFbOQDpbwk2a73oAyzab5OuRPrcOFSDWWfbO80/t5Jbz5kcq2tA1vbsakl6MRpcn1LsrhPg6BxPyTwKaEOknKeH0W0OYi5LjTiSlv6uxFlOxNkuwSZTf3jY5nN91IZNTWhFCZ08CjZLiIMJAhoi+gtynbXbwxQJBpRiKJDjyrbmeOtzUjAJVqLg4nGHSklOuA1qoTruY4DSriUZb6nbG+9x7qSynYxL2xuwpaPFxP17EhTd544teicX/y3jOK7pCnB/DyoJxvNpiS47bk5MtsjxyOv7XspomwvMtu7i2JPFihQYN2BOBYs6EG3Kysy2wsU+K6B7q5BJ26s9WAWlOtTWDPGofnWb84ldMAQY6cpJ+EOUQGWrD4CgDKvgut9se9t/qE/RB9fw/7P/F7Hz1LNJSzpE6nGpfiLTY7dft/NvLoPjBNsve5uWJO3YIf5arCII4vK2mkwTrCBXYAl6UrAHQsOvJzJC8okMH8815guBubPvAoAGNp0BQBgfI+nJjv3ajo1WRxG7POw+7dg0+7rYXINKyfTLZZfbLw6tYqrJ/tTbx/XkS7gZZnLKtubJ8pmjpzwJBt5WWV2WZDtdsOyLU9WnRhPeGxAQ6UuUy9syZfPRp7G5skrlEDJkTFXoECBAusCHZTtAFAjFcBM97xL3Ixku9JJ2W7DTcgd13QDp9RtoNP7U32WwuzMRJaeYP0uk02tqCosrrRk+Xr15Igdi2hAjAoQEOrsbGQHU3SocWS7T2rJkJ5cLUMPKdvFvstKyGq+jXzYBj2Aa3sOXDL1as2NJIJUjFqh00DZnn3uIFSusSpoJZuNPHdsME4y22+Lc7lJqcxtQMKtAGiQu+EINDdoypAg22kJJGIj36gnp7hVjB5Qwpty5RXmgMXcUxjVUYavbO9g0T+y2ZsPmRlcPKIQmfdmyBmAcnkbec0Q5Lh3rXLGUMngYBdF1J3TskSTjKT6mTYTvNwnn6mEjbw4v5xQpANnDDpxpNTUJkkm22UajGzoQMRxRDQXyCnbDaiEwXUa9wnCHDBJFwRGdVAeVbbL2b4DniNKuElLNGfJfFdPdd9Fsj2mqVvMiWWi1AK1d6Se7Dw4bp6ZR3lf1pXWzPYu28jbkuR9XE2bcWl3PCAUR9cl8r5AM4o9WaBAgfUHpw6HaCFrosJGvkCB7xYYrtd538m6vBMGrGnYPRsCdYBzCZtyhG2iyEDsBIeoIG57sr3CayCleLJ9cusePLvpx3Hj6f+D6bPtCWXKLLg03UKNWBDp1KjAzjyL08om9A0Mo3/33agQEycP5iN4R82zOKRdBZUwnD9xUK4Is2H7CysLxiaUV0/mGtPFQHXqKFxOML5lNwBg445rUeUG1k49L1XPrFcxxuehDG+Hquk4pW6DMn2giyOWR9V0MFBOvzhQ0ijqTpKyPbviu52ynRJIEbyaGk+2y06Uy3rEsi2HjbxKCSiJkOOisUCmC78NeS9rIx+XpVdY1BUoUOBywzLreOHbn83lskRcEw5pT57UaAXUSkm2MztRiR4HrrRm0YZBmR1LjAks9F2BoZV08TsKt8EzktmCwIoq2wXhqmRUF8cpKAF5YseGlmgjL2P5zBUDKm8lOoLvq2UnZolWgYHGGIUNe9Zcb93PVrZrrZntcDs3jSTVMyP1kiz9hTW6k7C/24HZNVhcBVViXJMU3XMhSAtfxZ9VUa355KkdInc1WNJkuy6U1GEbeXGeSBCyFi2D2kmZ7ZJW9/6ctLbWaKhQkKRs19HDvWtT7UDuj05uhck1WJAjngFA8eevYRt+yuLHlgZ6hGw3zRpUwkANORt5o9wsGLKDiAC5YxF1zeB+A3/WOITwGMLxHq5PZss0A1gx5HieCAObaCBRsj24NrIT0MH3Da11EO5I28gzqkFpOhZ+o4KsjTzVm1wLAqcWKbJdb1Hdu4yDg0jNNRV/nhmeBwvrcpkoNUKIp0ZvymyXty5PmmcCcvPWUozjnozTHnCRMtsjNR2XQZNsVAAa8/56SABQkO3dQ7EnCxQosP7gWl42UWBNVJDtBQp8t0DYzK0tzkrX4IxhhM0B/RsDaz/3EirbTZ9sFzaKneAStWkiFQVjDL2kBmrEk+0AcN2P/g5qpIQTn/13bT9LYSZ4ys70tGT74OIBzPReDQDYfv09cDjF7MHHUn1GHMx6FeN8Fgub3wQAmD+ZTlnVAqehxqn3bcOQeVZ6TAAwN3UGL/zR2zB7rnukvTt3HNNkFLrfFKKoKk5rO6BNvSBVb/r0YVDCA1v6hf4rUy+WX2zUHTeTotpQaUA6R2E62Se3iZntErWCmgqB5TRntpt5bOSDfDSR2S5vIx+3aJFHia4qFJTEKxjklO0xNvI5GhUKFChQoFvY/+BnceNDP4unv/yX0jU8sr3985ZJe6CkJNs9JXoWsl1vS7YrzAJrQwC449dhq30ildpY4S6QkcgyfEI22jQvnjk7ZTtHYcUoKAF5YseGBhJjI88Z88j2jPU41aHGPOsHSn4ZhbFeRomHyHZRK2Ojgu7b8DsxynbiWnAzk+39sfUEqRgl7QSBLGMjz+06TCSMj6pQEN+0GVvL9RyxskIvi7lmg9zVuZU541ogIO9DVt5CiZ71ugAAm5ZBneZro1FPboxijluvNhoqFGbHqp8Z1aESn+Tq0FRCFQXTdAxWh0altjW0BGW7hDIbaEQUiHtVfU001SfPy9vB8Mn7gGzP4W4BeARvOCecCWW7DPmsemOzQnP/IHJAguC1iQ5iR889obzPfoxtooMk2chLXG/Eb4gxQ80FhLnSLghM0b3rQIwtaFSQO/cY1aGwxj3eDcj27OOLizLJQz6Lv7Ob5plcWokOeM3gUVt6Gcv3uFqAlzsOyH3fshajbJdw2gMQuLiZMQIATXINQVjTi2Pq7Tv5BnYRbddQtvMgF75AfhSrHQUKFFh3IK4J238At0hy13mBAgVee6hwb2GmtiyvbF9enEOFmNCGtkDzCWNmX7r7hOkvPOjldJPwaNZaFMy/xynlZAvuvoFhHL76Q7ht4Ws4cySZnFaYDTdlhqDqL4i4VvK+sy0T2+yjcCZvAgBUegdwQt0BclY+J/zCyUOghKP/ijdglZdhXnhVqg5nDbKdDO/ApHuhySYuK6aOvYQb60/h6Od+R7pGFPrKKczrG5tem9/yVly//IgUqb9w9ggAYNi3pWfj12GrczJY4LycMG2WOq8d8CZ50Y50ARkFtPjsOGV7rkWGOGW7rI28HukiZ/LKdqCV0BaNBtLNBRFLvoayPfsYu6kQKFCgQIFuwpo+DADY89zvY27qTOw2y4tzTURTFMRvDm8HW61AcWKsu+PqZbRB5orhWVknQGF22+bLvm03wyA2zh55qeNnKWhfKw5GhMASCEjADnbTUcQpKAH5bGqHqOAxNvKuKzJzMyrb1VKssj0PiUq0MgxYgQODUCurGb9rueLNV1wrnmx3MhJPRiWevE+y9Bfqaimy3aknErNE0TzL/9S1rMARKwsatuANcteADSLhVgDEk/du4IAgQbarFahus4OE68jXA0JW96FjrMAFjyFkw64XaopGkAVjY7DWJwPFJ7PDNvyUy2e2R+9VtbUlAIBWllO2E0pR51pQL7hH5VC2K6F7PfcJXhllexAhF3IEtIImGRmy3Wglx3NEGDhUB4ncl5krzmWZ5gLvb8KNLYQ74JLKdh45FoFrgaSy3SPvwzbyovEhe73oeQKEyHbJ+C5dac5Fd3I6lEVz1vM4nhlaa1O3zeTjykqaEjNv5dLRcdFmAJdxMElLf6DV1j+vEt2IiBSKhvjuotiTBQoUWHegrhVkzFnQgZgu9gIFCrz2wBlDL/cmxvbqvHSd+fPHAAA9Y1ugl3zrt0t4n7BqXse7nnIS7nawkRed72obsh0Atr/uh0AJD3LA46ByC7yNbWjTtr7a2m3jHnLq4DMoERuDu+4IXpsbvB4Ty50XZ5OwcMazjR/bdjXOa5tB54/IFQotEJYnr4BOXLi/NwHz349i+bc34tX/cAee++hPwDzzXLpy/gT35pkv4sJpyTFF0Fc7i7WezU2vXfNPPgwLGg5/+Y8z16tNH4PDKcY37wQA9O+4BTpxcObw8wCQyxI3L8yMWebtlO0eoZ1tISQ6aQzXkp0od5tsFw0Bjcx2nmuinKRsl/2+hqo0LYLks6WPUbbnUPIXKFCgQLdAFk/iHBkHB8GJT30odpvTf/4DeP6Tv55Yw4vtaf+85ag90CIkWBIUZmdTZioG9DbKdpW3V7ZvvOIWAMDcyRRkO3ey28jrBhxOg2dcAVfS3tqiraQOIE/sOEQDcVvJ3yR1didwNb75wZFsLgAAqlegEB6oUGVJuyRyHPDiC7Iq20uintncjJJk6S8UszJkOxzTy3GOQ1YbeeZkzqcHgJJwafDPZce2oBMnUFhnRRx5Lxqv05DVUThKBZrTfJ9hQZOHXEOAUN9bYbKd27FW7eH7jGZ0/ry1oauwqo5IjQsAVD+zPWwjr3B5G/ngXuXPh4WDnZayqT4OJmmsYQrLdhllNiCsy0NkO3P8etnJ54arXauaWsr2PYYcd2y5e7xXzwCNku2+sl2mYUnEdzghUQZltrSynSsRsl0o0XMo28OOKKJJRqYeUwyoLcp2eaU3IOLUGg5veQneKAHtMPl6hkrhMA6XhcbnMKk8ecAj22tWd5TtgDdHt+Pc4nKS7WZgIy/vCgAgcCMUwoc8x6JAK4o9WaBAgXUHykw4gmwn8V3sBQoUeO2hXlsLbObykO3L06cAAIOT24NudJ5D2f7it/8Br3znG6m3t2vewkNaZTvrZCPvLx7qPQNt61T6hrzPry4mbqMyCzylsj2NK8Dc4e/A5QRbr70zeI1uuQPb2GksLchFAdSnjqDONYxObsVSZRv61k5I1SGuDddfNLv6nvfgyet/B89d/et4/up/jQM7PoDlnu3YvPQs3jj9iVT1mG/ByEBw8gu/JzWmKMac82AD25teGxgaxUsbfxjXn/ts5n3I549jmo4FtpCbr7odADDzzT/Fc//pXaj9ziSeu/9TXRk74OXapoXpuJlI3lJMR7qAnLJddHxHJso5CO04st3sQmZ7zXLB/AWCXAoBhSZktsspNqLkvTgOMtl8hkpjbeRl7fMKFChQoFsor53FVHk3jt7yW7h15dt4/pt/17LNRus41FrybzRlne23XbUCPSXZTnlG9bhqQG9DNHrkUzK509PvPVO6MQRsy0dxB5CwGLaggUcIckEqahnJZ4foIE5rY61sNrVD9FiyXTz3ZFYWKrqX4x2BbHMBACi+urhe9Y6RaI7NStwbRhkuJ2BW67lI3Oxku1DKc7O5XpKlvyCQ3Zj93QnErsFKOI+JokHNYCMP15Ii2zVNb2ocWZy74L3eP565FtBK3gP5yHamVaCxSFOLT9rJ1AMQxLQ5oWOscjc2mzp8n0lzXd/yU/8Z23/5S1Ljah5b4ztT7kqT7YB/rxJku59Tn3aeH19PD+59Afks0XADtBK83G/gVyUI2YB8DtnIN8j27PvPI8cTbN8l7nluLNmeI7NdKPlD89k85wpXdO/30EfD9l2ukSJ6bPNY8EdV8kBI2S5pDx5n+567SdxtridLjgfz/sj4pOfomtIiArByOLIlNcTL7j+h2Bc1bcakHQuAhgBAfOe8tvQFmlGsdhQoUGDdgYayw7yJcJHZXqDAdwPWlhoEO1uTJ9vNudNwOcHIxBaomu4tILVRZ7fDk//3T3Ddgz8L9q305KpT9zrehbKjE1yqgbax+hSd73qlPdne0zsAxgnc2nLiNhq3wNV0k3nNEK4AyWQ7P/ccTinbUOltjG3yujcAAA499OlUnxMFmT+GC8oGUEWBPbQbk/ZpqTpgNly/M13TDdzxvl/FnT/2m7jzx34Td//UH+D2X/sMztz8rzFBFrA0P92xnJjgPrfxR3Hz7Jdx7oScvb3A8uIchrACdWxHy3t7vv/XocHBy1/6SKaa+uppzOsbgv/uHxzBabIRdyx8FWVrAaukB87LX8k1boETrzwN+w+24cl/6DxGzrmnbNfSk7yesj3ZRj6rOltMGrua2a4SWG5zZnueegNlDRVdweHpVdi+C0Ge7DtDa57IC3JbdKtnRZS8z9NYYKgULuNwIl39hbK9QIHuYN+f/0vs+8tfutzDWDd44n/+Kzz5Z+9Pte2gdQ5m7xbc+p6fwwvlOzD22L9ven91eQFDWAFlyc9HXsZ6+wVxpvXCYOmclyhzwLIQAFonZbsdS4wFf67pYCmfn1XIke0mMVpy1hs28hkz1okRS47LZlO7icp2b39kVbYTrQQt5ngEJKqM5bPhkbJmzVOQu5KKUUIp6jDAY8h2z6Eh27FVVBV1rsE1IzbyCQpZQZIxCWV7OF6w5T1Fg0oYmJuScJewzAe8/WdCD87l5dnzAIDy4ETmWoB37XnND+HMdtt/T4Zs72m5z7Ccme263xDgNNnIO7GZ7eH7TBprc6NUQU/foNS4gJDFvRlVtsupiwFPiS6iK23fwc6otHeca1/PAGxvfILYlrX051RvUixz14HDKYjE/EGcD2FXu6QmmTSIJcfFfUqCHHcjGeZAo7lAZv+pgbI9TLZni2xpGouiN8WFNFT8cuceV4ymeq5/DlKJfcep7v3uhyBU6bJzTU0lLersPISsppBmZbvLpNXZgaNduOk8RyZ6NzPbgZhGhRzRbHE1nZzkeNlfs1k1nWB8xRy9eyj2ZIECBdYdKLPAfGWmnWAZV6BAgdce1lYWgn/z2qJ0HXfpLObIEDR/oc5bAMl+n/jOZ/4z7njp32OB9GPInkr/+XVv0avck24SzokKwtrYHPr3uHLvYNs6VFGwhhJYvR3Zbqe2+tT9/RdVHYUxsHwYc717ml7bsvt6PNvzfdjx/H/C8uJcqs8Ko7R6Cgslz1pdn7gCQ1jB4uyFzHXS5KUO77wZAHDu0LMd64lFlj3/9DewQnpx5ov5sttnTnlkff+GPS3vjW7chudH9+KK459qmwkbRV/tHKqVTU2vaT/9JUz97LO46rf24dj427F58enMY509dxK1tZWm16a+9VH0kDpueen38MK3P9v2722Xg/Ns9uXtlO2mxOQ2aq/WGFvOzPYYdXZWi/twvdftHsWDr07DEdZ+OZTeHjneHdt3oJW8t10ub5nvT+Kj4yss6i4P/vAP/xC33347+vr6MD4+jh/4gR/Aq682NxTV63V88IMfxMjICHp7e/G+970PU1PNv42nTp3Cu9/9blQqFYyPj+Pf/Jt/A8fJYONboGsYnn8eozP7Lvcw1g22nf8aBpYPd9yOuS4m3GlgaBsIpbCv/WFs4lNNzzPTpw4B8BrAk0CZBdYptkfvRYmltJHPqGwnHWzkOz0PegSiFjz7tIMKB0SCyLKgtTjUNZTt2Sy4HcWAEtOAL5tN7VANlLUeX0c2b1gxYMQ01gbf18huOa7qHqlo1YSyXT7/vU4M8LjMdmaDZVS2J9VLsvQXalphB50FxDXhJJHtfkOEndLdjDAns4pfwCQ6uE+ers17c5a+kY1StaLkPdCYg8go0blWaSXbhfW2pJpaWN03KdsTmm64T9JaXJEigLOPzW8WDzUreI0A8sp2G1owHxcNBqUeeWV7VemHUl/0xhlcFzmU7SEXE+7acCE3DxEW/G6Tsl1eTe3S1vuyk8elQTFayHbmikYUGSW/yKhvJtulXRAUvSkuRPxeyGa2e2R72EbebyyQsaVXWsl2h+UjeKMObw7LFwemq0qEvJevFzTZxziyyaCsx2W251S2R74rkG/erymka5ntZV3BjtEePH/aW5+1ctYr0Iyu78nt27eDENLyvw9+8IMAikl8gQIFOkMNLV44RG/plixQoMBrE+baovf/XAM1F6XrkPoSqrShKreJmjlu4pn7Po47X/4P2Df+Izhy9S9hjM3BTfms4ZprYJwENoCdwKgG2sZGXkzuKym6/KukAt6GbFdhAyk703V/4a+djbzuVuHqrYsNG3/sT1DhNbz8N7+R6rPCGDbPwuzbBgAY3HItAODCsewZ8IQ5YKT9YsOmndfC5CrWTr/YsZ7YD/1D4zh8xb/ErfP34flv/X3mcQksn/cW/Uc3t5LtALD53b+BQb6MF776P1LXHHMvtNjST27dg4nNuwAApT1vwgbM4Nzxg6lrvvKdb6D8P+7Aqx/94eC1tZVFXDvzNTyx8Sexv+dO7H7wQzjywmOJNQJFdQYSuqS1TmoFZCaQeoydnPhv2Yl8bGZ7TnX2m68cxzMnFzC76i/A57GA05RYizrphYFIF34ecrwU0/xg51AcFMiHhx56CB/84Aexb98+PPDAA7BtG/feey/W1hpkya/92q/hy1/+Mj772c/ioYcewrlz5/De9743eN91Xbz73e+GZVl4/PHH8clPfhKf+MQn8P/9f//f5fhK3/PodRcx6ZwDZ/FNS99LOHf8IDby6SaFWBLmpk7DIDZKYzsBAAObrgIATJ14Odhm6Zz3+x1d9A9DYe0z0QEARi/KSNcMmlWZSbUSVMICNXEUaZ4HbdIgmNpB4w4gkTdsEQPEjlfcanpGJTrVW+yKw/WyZlO7VI8l2wUxllXlSbUSDGK3XI/B95UgyLVyc262GFuaXOwoTFIKnLTC8BwaJMh2lALlrkCSpb9Q0zKJaEDqNuIFoxC5xknXQMv2ksp2ALBgAMJmfMkj2wfHNrT7k7YwidHU7CyssrPGKwDwmnoi9xlB3uuSNvLCvS2cK69yByTO4cK/D9qQV5ZngbCRd0M28gp3wCXcNwS86EpBtnvNx2FXt6yoasPQTM/FL4h/kHQZ4BGCF8yBI0m2i3tH2NXOzWHT7iqllpxw4WAho0Rn1GixQuc5MtsF4d+U2Z7DRp4ohtd04iPJzSPDAKGHle1BveznCleN5vMEgO3ky2yPmxfmUVPHxZXJ1ouzkXdy2NwbWqvjnreG0C0L/nwN8YDXrGCGbN/zkuN37xrB40fngvEVZHv30PU9+dRTT+H8+fPB/x544AEAwA//sLeAV0ziCxQo0AkKtwNlu0MLsr1Age8WmKte5+Q0HYNmLUrXIa4JmzYmNV4uWrb7BD3wDzioXYM7f+F/oDS2ExpxMXP+RKq/5dYa6tBTd+8zqjXlcUWh+BmUacj2Gq2AmCuJ7+uwQFJO+KiiwOZK232nwo7NgJ/cshsv7vlF3D79D21J2Cgc28IEmwIZ9qzVN+70yPbls6+kriFAWOecSVXTcYJsBp0+0LEe9xVsmqbj9h/5TbzYcw+uePhf4fBzDwPw1N9Pf+R9eOKT/2+q8dn++T44Mhn7/qad1+KIdiXomXTKxOXFOQxiFero9sRtdtx2L1xOcObZr6eqeeDx+7Dtvp/AAh3ETdUnsP9RL0PxwDf+FyqoY/s7PoQrfunTOKdtQf/n35+Y4W75Fm5ZlO1xmd5BPYlOcoUSqJQ02ckB+QjeWLLdyW5xH8abrxoD48A/HpwOPkMWRmQib/qLBNJq9MgxydPRL5Tt4YULy2Ewion8ZcHXv/51fOADH8C1116LG2+8EZ/4xCdw6tQpPPPMMwCApaUlfOxjH8NHPvIRvOUtb8Gtt96Kj3/843j88cexb593j7r//vvx8ssv41Of+hRuuukmvOtd78Lv/d7v4aMf/SgsK7s9cIF8GGRL6CU1zE2fvdxDuewQv3lRVVcc5k57qvWBjbsBAOPbrwEALJ1tNKmZM8e8ejFkrIDK7I7KdmL0osJrqRoiPLIo/QI78YkHy2wlUAFAg90xR9bKomyXUO55cXDx+bt6RqW3S0uxzQ+y2dSM6rGNsIIwzkp2iGdvy2p+ThLjkyHItZIg2z0HpDzW4BYxYjPvaUZHBQGTlloaKZIs/Rtke3ZlO3VNuDR+3yn+MRLHrBM8Fb8k2U71wG3RWZlGlRu5yFgTOkjIlY07jTlIVlCjBxXefN4xNwd5D6BU9sh2HlKPa3BioynEuW9L7tusMPwmFNcOk+2ulPuGgEN0EP9e6NZXMzXVx8EyhlGxBNkulN7Z3S0AtCqWXRtuh2bzJIjzIUy2B4SxDDmuGFATlOgy9ymmGi2/uzxQtmevJ5wd3NA9QsmjbFe1JkI7aCyQUaLDI++1EHmfS9muGtAQyWzPqWz31NmNODWH5SNko/NWh3Fpi3s9xkY+T1xZ1EaeMe4p+XMo282Yhvg8+2+i38D5Je++5zAmnXcvcM+uERybWcPZxRoYz2dxX6AZXf81HBsba/rvP/qjP8KuXbvwxje+MZjE/+3f/i3e8pa3AAA+/vGP4+qrr8a+fftw1113BZP4b37zm5iYmMBNN92E3/u938Nv/MZv4Ld/+7ehZ+yALVCgwGsPKjMDpYCrxE+sCxQo8NqDXV0CACwYG6DbyersTqARS0Gb6ECGphzOGLas7cfhjf8UhFIMbPDUTQvnjmJyy+7Of2+toUZKqKT9PKKCtrGRp24dJtdgpFiIq9NeUKsN2c5tIGVmOwDYUNuT7W1sSG/9kX+HU3/0ebhf/jW41z4ORe38WDl95hg2EheVSU/tXe7pwwWMwZ3ubP0aRVo1znl1Czasdq7PHRMWV6BTCoVSXPXBT+PUf30rRr/4fux7+WdxzeG/xM28CnPpEaws/Wv0DQynq6ckL4gs9e7E4OqRjmMDPFv6fgC9k7sStxkYGsVhdRfoyUcA/Grbei/v+zp2fuOncKR0LXb98hfx6p/ci9K3fxvs7ndj+JVP4cXKnbhp25UAgOo9v449D/88ZuYuYGzj9pZaMlnhJU0JyOEobEeuWzuOwM9D8OoKCWzfwvVkJ94AsGGgjKsm+3D/Ac/ZK49CwNDiJ/LyZHurUj5PZjuAlvFpajGRXw9YWvJ+j4eHvfvYM888A9u28ba3vS3Y5qqrrsLWrVvxxBNP4K677sITTzyB66+/HhMTjZzad7zjHfjFX/xFHDhwADfffHPL55imCdNs/MYsL3u//bZtw7azEy+XEmJ863Gc1dUlDBBvv1449hIGEpq61jO6uX/JCa8pTuNWx3rLvmp9aHIHbNtGpXcAC+iDdeFQ8Ld84SQAj2xPqqdwC4xqbT+PaD1QCcPKylKgFE2Cwm0woqTfH/6zWXV1NZb007gDprQfn0V0cKvWdhvOGHTigmcZm6hPdcBuru9aNS8rnvFM9VzFQMmab/kbx28CzDo+l2jQnLWWvzFrnpKXKCqAzudTAP94rK2ugoYUtq5oUpTYf8Im3aquwrbtwAqZUIljQQwQq/X7Kq4FU2t/nsTBJgZgN9cTefecqJF63vOAN/7+TJ/lke167N8wX91br1VRSVPTteG2jC0dbGIAjncus5VpLNIBaDnuXRbRwexqMBbXrns27K4LpM2gF9Aq0ImDRT8OyrZtuFbdy4XnHExynC5X4NRXgzGqiL8PiGYNB3L7NivE9eXU10Jjc7LdPyOwfWW7bdtw68uoogTDdaV/p5zSCHqXvOcqu+67A1AqNT5ONWhoPDMx14YDye+qeHN1N3Tft/2oAE6yj0+Q7eG/c0QDWIrjEd2/jHqZ6E2/GbYJh1NwmWvDPzdts3GuUO6AS+4/TnXocIK/Neved5X5fQQApnjkfeNYyP9ecKo3nScAUDO9fxPOpManUgLTDn1f24VC5Z/bVArUQ/Vsx4VCsj0LCCjw5uertcb5Urcd6fHpClCzGte8mL9SNI8v7T1BU0jTd63VvUYIwl3p/bdztILDUyuwbRuW46Ksyt1TBG7b6j07/uPLnltL9LteDqznuReQflwXtfXMsix86lOfwoc//GEQQi7aJB4oJvIFklHsX3lcrn3nLTZ4kz6X6NCdle/K41ecm91HsU8vLvLuX8tX+tbKGzG6fEC6DnEtuKSxMGRDA+x66npTp49gMxZxcuvtsG0bgxPbAQAr547Att/S8e+5uQaTlFJ/nks1UO7Ebm/bNlS3hiopgaaoZykVKHb8PZEzhhKxASV+USq2HtHA2uw7jdvgCYtcIBRrb/uPuOYbP47v/P3v47Yf/XcdP2/m5MvYCKBvw66g5rSxFaWlo9nPB2aDdZgs27aNxdIW3LHyJOq1WtuGAGabsKGBiIUbvYShn/4M6n99L+46/F/wVP/bMfjWX8OOz70HT33tf+K29/3rDsOrN9WLgzO0CxsXvg3LNDs6JSyc9dR4w6F9F4eZ0Tuxe+prHWtWH/1LXFAmsf2XPg/NqMB56+/iym/8CJ74i5/D3e5RPHvLrwefQ1RPjVFdWYqdcK75E0glwyTNm3DHTzhNx4UqMfnWVYqa2fzsb9ouVMmJNyWeaj/8t3XHka4n8KYrRvFXj54A0LoAkuU+G120EIsqlLmQGZ6qROpZDjSFSC6CeIsUazUTtu0RBt6xkKvXLaz354RLMS7GGH71V38Vr3vd63DdddcBAC5cuABd1zE4ONi07cTEBC5cuBBsE56ji/fFe3H4wz/8Q/zO7/xOy+v3338/KpW0LWuXF8Kpbz3BXJ7Bj/j/PvjkP+LozPo8n9Mg7/7ljON1y8/AggKVW7jvvvvabk8PP4M53o9HH2m48uzCJKzzLwd/Ozl/1NvWrSXWu941sbRab/t55rlp3AHgG1/7CrRyf9tx3cZsLCyvdRy/QP3sGdwB4NFHHoTeM9Ty/rth48LUbNt6N3AVy/PTbbdhroMfBHDm3BSmUo5NYLtLUV9dbKrPzpyCBRXf+Ho6Bx6B3pqDXrvaMlbz9Ku4FcAjjz4KzehJXW/QdDDottarzR7DFQD2v3wQpeGtqc9P88wZ3A7gW9/8BvTQsXZOHsOdAO6//5sgGVVodm0Z2wEcfOkZHF8ArBOHcTuAbz/0SKDqTottTIW5utDyfXfZdaymuG6i2MFUmMtzTX9Xv/AyrgPw9DPP4aXDZ4LXXdvEewGcOnEM+rbxTNf8VnMVq7Q/dnz1sydwK4CHH3oQem/7BlgAGFpbhu4i83cFgF1MQW3J+759syexyPvwlEQdgWu4irWFxvXJzp6GDRXflKhpnpvBnQC+ef/XoRk9eOCBB8DOnIINFd/IMcY3w8DU2VO47777wBjDDxKGs+enMB2p6Uz7NsRckdq3WcEZx/dzgjMnj+GC/3lv4A5m5helP38no6gtz+O+++4DPX8KNRj4VqhW1t8pturiRraE++67D+aZV3AzgCf2PQmtnD7mS4DPLeIGbgffjc5MweFU6ru6joP3Ajhx7AjO+X9fnz6MqwA8/8KLOHhqPlM9Y9XEJGv+HbROHcJtAB5++FEoKZ0VxP7VVmrY7JrNvxlnT8OBInUuW2uL2ALg0MsHcHLZu2fewGwsrrbe+9PAmZrBnXDwpa98FYSS4Pfixf0HcOj8auZ67sw8bkXj2NamDuJaAM889xz2H4t/rk4Cm5nHLaHzBACOLgOAiif3PYFTEo/cy4sUJ6vzuO++UwCAE6coVutE+jpbnKdYWQDuu89zZJpbUHDOWcR9953MXOt8FQBUPPjIozjpJx4eOUZRW5Mb37ELBGtm47qqO179Ay++AP3c8y3bd7onrCxSnFxr7LvTq169J/c9jnPZ0xMBAGyB4JVzFF/96n2YmlZgGjzYl7LYWFHw2Uf3A6DY/+LzUM8+l6tet7Ae514AUK1WO2+Ei0y2f+ELX8Di4iI+8IEPALh4k3igmMgX6Ixi/8rjUu+7W1wTi/7ixaDpYshNv/DwWkRxbnYfxT69uJDdv+zEIaxxA7N1ii3OsvR1PVFdRhWNxZKruYLVxfYLimGYp5/EjwA4tsBxxv+bN/JeXDj8bKoa5fkp1LiW+vN6qiYGneQFWY3VsMbLeDhFvVFHQclqXSwDPHvGHwRw+vx06gXRu7mKuelziWN7I7cxs7DU9rueLb0Dbzr83/C5vxlDaWhT289zjj6Ea7iC5w4cxQuvnAAAlPkI9lT3Zz4fJmurcNB50czs3YLKqolPf/Z/ozTQRv13/kzsQpe1+zfhrs2gPHElzp2YxaxyM8YOfgpf/cpVbRdOyfnTsDosnNVXVdxDavjs//272MXyMPjh7+AabuDxJ58HoS8k1+QbcA/m8ZlPfxzGQHKe5GR1EdMYwYsPPhy8tqjcgdfN/gPO8VGcXC3jtJj8zxzFDQD2Pf4ISgdPtNR68JHHAKh45sknMPNyy9uxOH2aYnElfkJcMxUcPfwq7lvLtijFHAUHDh5q+rtTZylcLre4euwswVq9eUFrbl7BeVtuYUBAXwZc5k3DnnnqO1h8tXWbNPfZhRmKemjh+JkpAkDBN+//BoiEgHxpnmIZjUWQo8cpqqtyixZn1wBAxT8+/AiO+oLOs+cpFCJ3LLqN9fqckHYSnwcf/OAHsX//fjz66KMX/bN+8zd/Ex/+8IeD/15eXsaWLVtw7733or+/Pfl4uWHbNh544AG8/e1vh6ZdmizatDj87IOAxwdjY9nC7Xv3XtbxyCDL/uWM4aVvfwbXvOG9Lda0J199DmMvLGK/fhM2W0ewt8O+eO7432HWmmza7vmjn8Jk9RRe57925oXfAgAYxE2sN/X8v0Xf8Bje0ubzXn6MAQ8Ct996IzZuv7rtuBae+1UMjUykPpb7H3WAaeDWm2/Elt3XNb3nOg7U5xg2bt2BW9vUO/Xib2Owt9R2m9raCvAisHXHTtyc8Tx75eU/Ra9KcU/o7576u2dgL6sdj1MUT5/+Ekrzx1r+7rn7zgGzwL33vhPlnr7U9Z49/vcwVudb6r361DeB08DNt96OV45Ppb7+DzxiAjPAPXfegfHNOxvj/ocDMBc1vPs97049NgHHtoCDH8LWiUHcuncvnvniMWAB2Lv3PancpJrG98p/Rx8luDvyfU+8+Lso9w/i9RmPx8uv/Bn6KGk6tvsfNoHzwOvf8AaMbdwRvG5bJrAf2LxxAtNApnvq0Zf+AHbvUOz58srjDJgG7rjj1o7XFwC8eOivoTjlzOceALx64CPo1xW8fu9e7D/457DUUak6Akdf+gP0VzS8ya/x1N89DWcl+3UB+Ofew8BtN9+AF14+ire//e14fvlZqessjKXndIwP9+H2vXs9Be8LwJbtO3FLpOazXzoBvAQ41Mj1eVlgPq9jw9hwcL+sP+tibHKj9G/hqwc+gj5dxev37sVT574Bs+adJ7LPAc9+9Sx6nv9bvPmN34dXH5kGZoC3vu3t6B0YyTy2pz+7H9qrjd+ip6a+DVaVO7acMeAlYMuG8eC+/8q+rwNngTvvugebdl3XoUIznpr6R5TO2U1jefYrp4E54B3v2gu9g2tfdP8+NfMQjDPN9Z76+2fhSJ7LS/PTwCFg5/atuPFe7++nnv8N9A+OSJ0rz37pBOgSx733vg2abuDQ0/8InAZuu/1ObL3qlsz1nvnCERjLDt71zneCUOo9M5wD7rrnddiw7apstT5/CPqBRi0AePTQNHDgebzx+16PXRPZn7k/O/MMenQFe/feBAC4/zMvQlk1sXfv7ZlrAcBXFp+H5TDs3evtq/925DHs2jmCvXuzfVcAODlXxR+98Chuu+Mu3LnDa7Z69AsHsDq1ir1778xcb+2Zs/iH4wfwjne+CwolmF+zgKcexB233Yq3XzMebJf2nvB/Z5+BoTb23XOnFoGXnsSb3/AG7Jlo73SUBOXAFL769y/gzje+FZ88+zy2jfZg795s12wUz+EgPvvsWQAu7rztVrz16vGOf3MxsZ7nXkBD2N0JF5Vs/9jHPoZ3vetd2Lhx48X8GADFRL5AMor9K4/Lte/mn/s1DIyM4/a9e/Hsic+gvDx1yR7cLyWKc7P7KPbpxUXe/fvUJx9BdbWCoY070H/kfunr+pWX/xS22hf8/bGXfh/9FSNYsOiEp//qPpwj4/iBH/rx4LWTL05gwqi3LCDE4dnjfw+H9aQe/9OnvwR9nsdub9s2Hjvwv1FX09V79vin0bsav5i8srQAvARs37kHN70z3dhmnv91jAz0JU447WdtjG/YjNvajK3+pjdg6k9eh5tP/y9s+ZGH2ma0PfXXX8PUyjje857vD157unoAmw5+CxNveyu0DJmbL7/yZ3Bpqe1+s20bX/3SMnAB2DWiBRPt2LHNPgJ7Tet4HA70mdj98L+EtaGMPbcmOyE8NfMQ7DW9bb0zR7YAn/6vuHLTAK6+p/3nPvWxB7C4NthxwXZ15R44f/oRbDGWcdven0nc7uDLfwIrdB0BwLmrtsP627fgxI4fxXve857g9RMvPwmcAa6/5krsueVNwevinnDzbXcALz6Lt7zx+3DFRLrF7lMPHcOT8yexd++bW977N099EzdcdzX23rU1VS2BPz74CLbumMDee68IXvvc3LPQFRpMdrNg6vGT+NaFI9i79x3Ba396+DHs2TWKve+6MnM9Acdl+OSxB7FUc/D6192Dm7cMBu9luc9+a+0lXFiuB4se8985Be3kq3j3u+XurfctPY+q5WLv3lsBAA99bj/qc1Xs3XtH5lrHZ9fwn158DLfdcTdu3+41knx66mkMVXTs3XuD1Pi6gfX+nJB2Ei+LD33oQ/jKV76Chx9+GJs3bw5en5ychGVZWFxcbGqMn5qawuTkZLDNk08+2VRvamoqeC8OhmHAMFrv65qmrcv9H4f1OFZrZRYAcIJuQWnlxLobXxak2b/H9n8Ht+77EJ62q7jt+3++6b25/d/CVq5gdeProB9/pWOtnupZrJY3NW3nDO3ExPI+aJoGzhgm3CmsogwNVmI9jdsgWqnt55X7vXufU692HJcKB1TVUx9LzfAEJdx1Wv4mnBHcrp5DdFDXbLtNlTO/VvvvGgdX8fJ3w39HmQObaOjLes5qJWg85nj4MU2Vnl6oWWr6Ocit9TyXCKPs7d+0179Q1TO3eYyE2bCholfiGtU0DUvoAa8uQNM0EGbD4RSlcvbsZ6aWoNmrLd9F5Q6gGBLHtgzVrUW+q3csjFKl6XXVj1Mi3A2+V9rP8+Ks4senGmW/LktVj3IHjMrdzx0/2lDTNFTsBSz17sp133WpASV07XnnidzYjB7PCpj5GfDBuULy/XaZxABxvDFa9TUAgKK3HgvFPw4uUS/Zb9Eq0UFC+8+Bm+n+GUW9NIax1VegKgoUtwaTNt87sz4HVIa9Zue1pRkQ7l0X5Z4+qfEpehkGscEVBYRSELhwiSL9XU3unR/Bueff4/XIdZsGRC9DR/Se59+TKz0dXdsExP4lWhkamu/LhDM4RJG6h1Z6fFIz9H0V7oCocteGONfBXe/v/e+ql7PvO8A7tgDAmIOS0RPcI6P30LS1KOEgBMHfcuLt/0pJ7tooaQpc3qjHOKBr8td5SVexZjWuW5cDhmS9nrK33uRw0lxPlbs2ev16LihKmgpOvGNRLsWfK53uCYamwmW8se/8Y1GWPBYAcNXGQQDAiXnT33fy9wGB1+8Zxyee8NT3JWP9zHfW49wLQOoxXTSy/eTJk/jmN7+Jz33uc8FrF2sSDxQT+QKdUexfeVzqfafDBtW8B1yulqHGTay/i1Ccm91HsU8vLmT3L7VXUKU9UHtH0UtqsDnLRK4KKNyCpQw1JthUDxZA0mBo4UWc770OG0Pbr5Q2oFI9l6qG6tZgK+0XMMMgigYFrYuhAjqrwaLpJlXc6EdpeS12W+56Vt6qkX5sDtFAWcxio6gJB7TDYrI2MIRz7/7v2P3l9+Kpz/w+7vrAHyRuW145hXljEzaH6o1ceQ/0V10s/efrcGz0zRj5vp/B7htf33HsCnfgKJ0nLHq5H7MYhH3hQNttCXPgoPOE74Y3vg9nH/ktrD3xMWh3vSNxuzQLXZt3XQuLK6hdONTxcym3YZPO33doeAyvaldAP/M4NO3fJm6ncBs8sv+2XXkjzv3047h94/am18v+Qh534n+PXT+Ps6eUfsG2UtJhOq0LpJxz2C5DSc8++S5pChxGmv7OYRx9JbnJaFlXYbu86W9tJje2MDQNeMMV4/jyC+dQMeKPaZr7bFlXYYXG53IivcgAeIsgS3UnVE9+0aKn7N3bw4sgDuvOwkA3sF6fEy7WmDjn+OVf/mV8/vOfx4MPPogdO3Y0vX/rrbdC0zR861vfwvve9z4AwKuvvopTp07h7rvvBgDcfffd+P3f/31MT09jfNxTPjzwwAPo7+/HNddcc1HGXSAe1tIUGCeY7r8eIyvZbWlfa1g45Vmm0INfBiJku376URwxrgGpDEJHZzv9Ees8jo/e1PSaNr4bQyeXsbQwC8eqY4SYOKRegTHnfGIdDTaI0v4Z1qh4og+rutRxXCocQE1//av+Ir1j1VreM806SgCo1n58DtVBmdV+Gz+Hm6rZn9eZYkCzFppe464FR2YZUi1D52bLy9yxwDiBomSryRUvGzgKZvvP0h32XRSKr+AU+ys8PpvIL7uukH6Q6lxQy4ImtYjrKhWUzdmW11VuBXnzmeqpZZStZstp5ogmj2Y1K6EUFlfAHQvI+FEat8DVeHUs9a8X10kXo0GZDdbhmk0CUwxottcM1+cuYr4yKlVHwFEMKG7oXHFtuesCgF72mlytaqhZz/WaPPLAJgaI491fHMs7tnHxBYp/rTjk0j1T2dAAp3E/UOGCKPKfX77rX2Db/T+Olx79Iqi9Botmb2gJozLkke0rcxfA/OYnPaWlehTEv/fatgXdKIG4XoyaLCyo4KF9x8T6QZtm+cSxaWXovPn6464FmyvQUhLtzfVKMKL3ZdnfDAC6T46z0PdV4AZZ7llB/fPfNutA70Cw77LGegT1/GvHMusolXvAXFu6HtVKfq1asL5mMy/XXM0YYSKgKRRrlhv8t+0y6IpcLa8egeVnoYt6smMzVO8aMJvqcWiqXL2y5tWr2S56DBW26zehKNnPY8CLtluqhmLi/Hpajv23baQClRIcmV6B7XKoEtdYFHfsHAYlfiOF5Hct0IqLtic//vGPY3x8HO9+d0N9E57EC8RN4l966SVMT08H2xST+AIFvregcRvwHzC4akCLmQgXKFDgtQdqrcCkFWi+XfbywoxUHZVZTYslLjU6LhYKWGYdO6zDsDfc2vS62bMJg1a6bCzFqcFR0k/CuaJ5ypEEGKwOS0lnJ8WNPpRZvM2w7S/wiS7pNHCggbjx+465LnTiBpP8drjytrfg6fH34ZoTn2i73WD9LGq9zWrlK255E159z+dxdOId2D77EDZ/7gewvDjX8TMVZoOlnCyfN3aiNPdK222Ia6VaKKKKgtM7fhQ3LP4jFmeTzxniWrA71NN0A+eVjcDsoY6fS5x66oWs+fE7sX3lWc8uMAEKs8BiFlg3br+ypQlGL3uKLceKP/fExNnQ0k8tDJWibrvgnDe97jIOLjnh01UK03GbXrMdLj151BQKy2VNY7Qc1pXJ6JuvHAs+Qxa6SpsWLUyHQVfl6xkqbVq0sBwGTbKe4f9duJ7p5htfAXl88IMfxKc+9Sn87d/+Lfr6+nDhwgVcuHABtZq3kD4wMICf+ZmfwYc//GF8+9vfxjPPPIOf/umfxt1334277roLAHDvvffimmuuwU/8xE/ghRdewDe+8Q381m/9Fj74wQ/GNr0XuHhwV6exRPrARvZg0jnX9l7/3QB7+jAA4OrV76C62iCuXcfBzrXnsDR5N4hWgkqYZ72dVMcyMcZnQYe2N70+sMmzMJ06fgCzp73f46WeHa2L/iGE56tJKPV6jWp2daXtdl49JxPpqfq/045db3nPNr3ruhNB7lIdNOEZMNjGJzJJhkYAAaaUoEafz12z47NRLFQDOmLG6lqwoaZWUApwX9keBXO8z9Ayku2qT3Q4ZqT5wfUUy7JYUwZA637DgmvBkSTumVqCxlqbFRQ44BIkJVMr0FjzuSf2nR7TSO1ABWfpSPEwNG6BJxDkoiFCODl0gsJtMMn95yolqP7+G2SLID1jUnWCetRTygdw5I+taOqxa6HM6BznioBFS6A+2W7791USc48ShKGb8/MyjY0YgD82zhg0ko9sv+aud+KosgPuE38JxanCVvJF0Q6MeGR7bfF8QD5TRY4gJz4JLub54G6ufe0QDXAa91LRDCBLthuR+zLP0ehB1FJr0xxzwCSpK0VRwTgBt6Nku9yxEIS2bdb9oXl1ZcQjAKBoZb+efy674vcnB9leb/wG2Y4geOXnwXaEzM5D8BoqDUhnrx6THpuYTzaR9w6THl9AtvvNBWL+Kjtv1RXa0lggXpeFplBsH+3BkenVXPsujP6Shhs2D3r1izl613BR9iRjDB//+MfxUz/1U1BDWULFJL5AgQJpoMOz5QMAqKXYLvYCBQq89qDaKzCVXhj9nhpgdbFVYZGqjm8pKJBmsVDgxIHvwCA2hq64p/mNwa0YYzOpFqw1twY3A9kORYfSjmznNThqukk9KfWjhyeQ7f5ETdHSd847VAdJaFSwhJop7YLj2JUo89ZF3zBG2AxY/+aW16+87S246xf/B/jP3I8SsXHokX/o+HGUO+A03WR+dfBKjNeOtN8oJdkOAFe88xdAwPHqNz+euE1a8n6uvB2V5WMdt0tbDwB6r3ozRrCEU4dfTNxGbbOAGYVR8s5P11yLfV9MSEWXeRqUNAWMe8rzMCxXfnJrRMhnUU92oiwmseExWjkJbYG912/Ab737auwel8ttA1qbC8ycjQBR8t5TMOQl20OKCKc7CwMFsuMv/uIvsLS0hDe96U3YsGFD8L9Pf/rTwTb/9b/+V7znPe/B+973PrzhDW/A5ORkk0udoij4yle+AkVRcPfdd+P9738/fvInfxK/+7u/ezm+0vc0yNoslugAjIkr0EPqmJs+c7mHdFFBF49jFoMoEwsHH/188PrxA/swgDUMXPPWgFi2omRnCNNnjkAhHJWJnU2vT+64FgCwfO5VrEwdBQA4w3vaKuV1OB2bEUu+K4xd60y2Z1VmCht5ZrU+dzkpn99c3xmqHdopWjuBKUZAUAoQ15ZSwMYpKAFfRSlB7BDF8BomIgjU2RnJdk1YaUePh2vmIj3r2gA0axEAwB0TliRxz9UyDNZ6bagZmzzC9XQeT7bHEU8OUQE3O9mucxPQ4udcilC2t2mwCYMyB1xS0crUMjRmorq6hAoxofbly7Vlit50bRBmwZVUhpd6BdneuM/IXmdhONQA9dX3jk9W0ph7FFX9c5/KqXtlYBMdxL9WHdEQlINsJ5Ri/tqfxg3V72C8eiRTU30cBkY9V15zaRrcMXO5DFC1meAlzIFL5JXtNlRwt3HucaGmznjPAzwlukbc5iY314IjOb7YpjnmSN9DCaWekj+0TqRC7p4HNPaRbQuy3VvfUSSa0YDGb7RopGCOOBYyZHtzLaBB8KqSamrRdB6ul4eQ1ZXmpm7H5dJK77im7jwEdElrnrc2lOjyZLvphhvYea56AnvGe3FkZhWOy3Kp5MO4Z9cIgPxjK9DARdmT3/zmN3Hq1Cn8i3/xL1reKybxBQoUaAdPSRlavFBL0FJYAhYoUGD9Q7NXYWu9qAx4ZHttWZZsbyYJGdWhpFS2Lxx6HBZXsf26u5peN0a3o0RszE2f7VhDYzW4ahayXfMmdgko8xpcLR3hppT60UPqcJ3WemJxVVhZpoFLkpXtlpjUJ9g3RhE74Y5A5xZIwqIZAExu2Y1D6hWeVWwHKDz9ohmduBab+BRWlxcSt/EWutJN5ofHN2GajoEvnk6u55qpFs7MwV0YM0913I4yC07KhazBDR6RsDp3LnGbaNNKOxgV7/xkMXa1QJhsz6ZsB4C63apEB+QmfHpEmQ346mzZjv6YrnnLYZm+ZxJKmoKf/b6dUCTt8wC/ucBtHlueRgBdUWKU8jnt/ewIeV90zV8WcM5j//eBD3wg2KZUKuGjH/0o5ufnsba2hs997nMtMW7btm3Dfffdh2q1ipmZGfzxH/9xU3N9gUsDtT6HNXUIQ1s8Rfb0iZcv84guLvrWTuJE/204TreDvdx4PpjZ92lUuYHdN78Jit5MSMRh/ozXdDe0cU9z/YFhzGEA9vQR2LPHsYweKP2TiUp5zhgMYnck23t8EozVl9tux1zXV2ZmUbZ739eNUbYHBHmH5kumGB3JdtcntKgE2c7VUotDHXFNabK9BKulKVbWpp2reuyzuSCM1YxKxSRbf+LacHMQbZY+hLK9GNSStVPmek+sgEGTJZ60CoyIsr2dpb8NSbIdydeZaLBxnXRzQMXPbJeBdy6bgaOVMTghVUeAhZTygGiolTu25R7vPuPUm5Xtbg5HBQBwaCmwundt79jRGBJQ0S+9st1uagQQqvt83/f6d/4MlkgvNvPzcFM2wSdB0w0sohfu8hSQM0pCEVFM/n3dU3rnINujynb/upSKCPTve/VaqBnbkb9PUf93zaw3hAW576GkOXJA4QwkY+xIMD7/nuO0kOOyynbhiOLVE40PMi4DQSNA6BlINIvnUY+HleiOy6HlmLfqait5r0qOTaUElDQ3dXsN9nLjKwXKdm98Yj6cx0Y+TtmeVz2+e7wXh6dWPZeBLpHtr9/trc326PL3lQLNuCirHffeey8457jiiita3ism8QUKFGiHhpLSe/CIze0pUKDAaxK6uwZH7UXvgGe9Z67Ike1efl+IbFfSk+3KuadxXNsVKHUF+ia8/Nq5M4c71tBZHSzDJJxQzVvMSkAZdTA9Jdle9hZUVlcWW94T1pVaBht5l2qJFvwNpXy6CWQ4KywOnLFUSrC5re/E1avfQW2tvRIsC9k+uOMmAMCZV59J3MZTgaSf3FrEAHGSF/Wpa6Wqp45fiUnMYi3mmDbVY1Zq1YhW8mzf3QRyHPAscHnKBVbDKINxAteMd1UQE90sJLSY1EbJcdP1aslMbg1VaVG25yF4RS5deKEhj1K+24hO5PM2Ahhaq428vAU/ASHNx9fqkuVdgQLf6zDMOdT1YUxuvxqME6yde/VyD+miYsw+C3tgBy5svhdXLj0Gs17F8QPfwa3n/gYvbnk/dKMUyj5N/t2rTR8F4wTjW3a3vDejbYK2eAzK0ilMK5Oxi/4CgaVyh+cZVdNR4zpcc7XtdravGiUZCG01SUmNhrW80oEwZtTo+PwsiKw4kq0TuGJAixC8hNlSCl6ql0EJD9YKAkgS0EQ1Yhv6Ayt0I5uyVS/5xyNqaZ7yWTAJbmkIFdeLTuCuLa+S1yowEEO2czvTeSfA9Z7Wem0s/V0oQEoXsjB0bgEJTb/CfYClJtvTP/dGwdUSdGZidf48gEYmtyx4xNZf9roAgHLFy2xnVoPwJCzHueLDVQwovgI6ULbHnCui0US2kUEGDtFB/LG1s7jPglKlFwc3vhcAwLR8ZDsALNFBkOqs774hv2+Ec4C49xHmSMchAM37DvCaZABAk8iUFzboVuh3kufIWG/UC/2O51bya00Z9SocIKUzXsv49GayXdSNi87IUs/25+uNxofs9YIok9DcPyB4JQlyPZKxnncep0Ws1R3GpTPbCSEt835PKS9pI683MtuBkO27JHnvzdGb8+6BfJntgEe2T6+YWKxaXclsB4C7d43gs79wdy63vQLNKFY7ChQosK5g+g9WQklJ1BKMmC72AgUKvPZQYmtgRj96h7zuSWtlXqpOdOGFKwbUlE05kyv7sTB8Y8vrY1u8BsHV6eMpPr8OnmUSruptM9srvAaekmzXKp4laXW5NdNcTK7UDJPldhb8woYsrZqJxk2Qw+NzbFDCOy7qbb77h1AmFl559Attt1O5nVqNs2n3jXA4xdKJ5xO38cjs9JNvmxogTvKiflpyfGCLZ1977uhLbbejzAZLSbbrwSJ8O7I9eQEzCkIp6tDB7WRlu0JJpu50YdfWomx3/S58CdI4LrM9z8KA+DvRhc8Yh+3yrijbuwFDVSJktptT2d7ahS+77wghKKlK0/G1u2TBX6DA9zp67AU4pRGUyj2YJiNwZo9e7iFdNKwszWMUi9DGdmPyzh9CH6nhlUe+APvzH8J5ZSNufv9/ABDOPk1ugnPnT2CajECPcQBaqWxFX/UUymtnsFzaGL/o70MQ+mlidqqkDG62bx4MCO0MpKcgRlhMXnXgdNRhfEw1WjPVI3CDPF8JMkEre8/sIRBXzi5bPGPWa5HmB1liRzHibekdCy4nUDKKfRrHI6JsZ/mys3llGH3Mc0aQdQUAPGeAcoKyXYakjKvXztLfIRrgJs+F4sAZQ4nYQTNvFELxK9SlnaBweZINagk6LFQXPGW7yOSWBfOV8gLEtaWV4VRRUOUGWKipR/Y6C8PLqW/Opo6LkxDzTpbz87LAUYyQ6l7cP/N//s69vwKHU7CUjnPtsKYOQa3N+vco+bE1CF5/nZQ7YDnIZ4doIKxxzQRqaon9p+itZDtyNHoE9ULN3V4jSo7mAqhNjT5ZI1vCCAht/5xjOZToQOPaaZD3voOEBImqRGoB3pyagoNKEtqaElG2M5ZLTR1Vyud1PIs62uWzkW8m2xvKdrlrLU7FDwBaToJcEOJrVr45fxiEENy+fRiEdEcpX6Ag2wsUKLDOEFVSUr0MhfAgi6lAgQKvXVTYGrjRj1K5x1P6rMmR7RrspoUhTvWOi4UAMD99Fpv5Bajb7mh5r39wBKu8DHvuZMc6JV4H9AzKdiXeqlKgghpg9KeqpfcMAgDqq4st7wl1k8jxTANG9URlu7A0oym7tZWYrLAw0i5Ob9lzI47TbWAHvtj+8+CAp5wsG6UyziibgQvJhHYW5Tjg2StSt3XhUoAwO1W9DbuuBwAsnTrQdjvFNVOrRoyyr2xPIMcB7zpCB1VeGCZpT7ZnJaADm/EY23dAVtnePLEF8hG8YsIuGgDy5MlfDMQp2/MuWlhdVPG3KOVdFrgFFChQQB79bBGsx3MJmjU2w1ju3Cj4WsWUb5Hfv/kqbL/6dpwmG7H5sd/Ebvswau/6k8CpqGEjH+/AAgD6ymnM6/EkmTO0A+POOQxZ52H1bY1d9BcQhH4SCRhGnZQAc63tNsIeOAtZZPhKahZrI++91qn50lOedyLbvfdlMmmJakBHc33KbLgSCljFEM0UkePBJDPgVQM6nNaGfskM+CRlu0ei5lC1VkbQz1fhOk4u9bNi9MAgdlMMFWdM2kY+tl4bu2wXCpDShUzAFPOGBMcuQXClVrZDPrOdaGUY3IK9NAWgkcktDbW5EYUwOxdZXYvcZ7zrLJ+yPWx177bJkhaRC5dS2e5SI2gWb5Dt+d1wJzbvwgt3/jE2v+Vnc9eq60MwzHkQx8zVcCMaHMS9hTA3p7Jda1a2uzZsrsQ6UnSC6q85WPWQq0IO2/d48j6fkt8mWkC2c8agEiZPtovIhIAc92NHJBs9hBth4FDDbFjSx8L/jYwo2/MYimlRwtiRV44DzfNWzr0G9jzqbEOlLXFlssrxsk+2iyZxK7B9l3UFiMzRXU/FL9v4ILBrrBeCE5d1BShw8bE+VooKFChQwIeYQIsFE7GIEWfhV6BAgdcWengVxPCs7lZIL3htUaqOzm0gtMAZlwkZh1MvPgwA2HjtG1reI5RiRhkHWUrO4BYocRNE70k9XqJo0Ikb69DhOg56iAlaStdBX+odBACYq0uttXwiVMuQ2c6oDiVG2QM0bEjVFIvJQOO+naRsF4vTaWzpL2y6F1csPxbkxsdB5Q6QYWFnWZ+AVm91BBDwbPnS1/NUFclktsKsVEr0voFhTGMY9nR7G2CF22A0Zca6Tz4kZawD3nWUxTrUgg6SRLbb2cn2ZGW7vG2bHpl0A/kI3oBs9yfLAdku2eXebRiRjn4zh+17UK9Jic7zke0RpwHLKWzkCxTIC+a6GOTLoL0e2b7Wuw0Dtc7PLq9VLJ31fhsntl8LQinObHgbRrGIp8bfh6tuf1uwXSMzO/m5obd2FmvlTbHv6eN7MIQVbGBTIEPbgkV/O+aZJnD+SfE8U6cVUDutjXz6BjjNJ73C9rgCgnzqTLaXOjpDiTxsmUxaj6BsfsakTE5xK46vFVG2yyqCqWaAxjT0c8eUI9uN+OYHr5FTnoTU+0ehEI6VxVlfrSxHOhGfFKvXGuei6zqghKc6j6OghjcPqlVDrg3MSXQZ8NS02ZTtwvEwqalFWC3zlPb0KnekbeSJXoEBC87KNBbRC03SNjqAVm6y4ZdtQhGokxIQsZHPqzQPW90LG/m4+0BgI5/Txj0LmGIEqnvHv0fRLn3+rXt/Blv2tLrgZYVdGkXFWZBuCBJoqJ/9pqycyvaoqx135BqMgAbZ3uQo41rS3zf4rk3KdidXZrvXXOB93+B+L9mIItZExG9sHnIcAFRDKOUbme2yFvxi37lW475iuxx5epx1hcJ2eKMekyezRT1BQLt+nnwepbyhUVhuOLM9h418lGzvdmZ7l+bAJU3B5iHvniubd1/g4qM4MgUKFFhXcCKZ7QHZXmuvCChQoMD6hmNbqBATStmzQV+j/aD1hcx1OGMwYAdREwDAVcOzFO8A8+D9OEfGsWHrntj3l41JlNbOtq3BXBcVYoJmIdt9QjPOoaPq53QrpXTK9nLfEADAXFtsHZu/EJIlZ5LR5Lz7wIY0pS19sNCdoCoLFglSLOpN3PnD6EcVBx//SvLnZbS+dJRSYDkYB48cT7844ColKKx1kbupXsrxTRtbYSweabtNlnqqpsPmCniM4k1Aj1xHnWARA0jIqDcdN7BfSwuhbK9HyfEctm2GqrQo2/OovQXhLxoAgrGtI2W7yzic0PjykuMtyvZc5H3U5r6wkS9QIC+WF2agEgatfwIAwId2YoNz7rs2csuaPoxF9GJg2Gsu2Pq2X8LT/W/HdT/5X5q2UyPZp3EYdS7AGdgW+97ApqsAAArhKI3vDBau4+plaR60aAXUTqdsj7NoTgKhFHWuxZLtgvDtmMGrGtA6PD8L1bCSoREgGKNWgkFssNBiuBeJI0+22/XmfUmkle3evhauSwJckihSNR0Op+ARZXtusr3PO+9XFqZ8S3pZu2KfHF9rkOPiu8tktis+2V4Pk+1tLP1dojZZV6eBEGEkKduVQNmerq4XPyWvbNeIC7pyHkt0UKpGc70SjFCjC+Vy14WAScpN9xnZ6ywMplagc2Ej7yvbYxS8un+fkXUNkBobNYL5q2gIIl2wke8mWGUU/e4iSA7yGWhEeLhNme05yHaiNbvaMRuOZD2tJMj25kYP2aagOPLeO5fzZtT7ZLtwQcirbBfkuCOfT+/V8yMYBEHu5jgWQZRJY985LstHtsfYvudWtvv1HJ9sz0vetyrb5cYnRAM1S2S2y8faiXqiRmNs3VGi7xn3xEvdqleg+yhWOwoUKLCuIB6sxINH44EreeGkwPc2qqtLeO7+T13uYRTogLUVT4mtlD1Suab2QTEXM9exbctXYYQWEBXds8RuA84Yts8+hFOjb0zsPq73bEK/eaFtHaEIEYqONBBWZXH26rU1L4dRLacj23v6PbLdrsUo2/36eimDjbyiJzYqpLUhFYizLwvDCjLgOzcD7LjmdpwhG1B/6QvJnwcXUNJPcD0VRDtyPH0mOuCR7Vpb8j59vbW+nRiqto8wULkNrqRf7LagJdq+u47j2ehlUDNZbTLqZWzkhbI9LmMdkLNti9rJiXrdymxfb2S72Ofh8eXJk9f9hQHmL4B0g7xvXgTJZz9YoEABYGn2HACgMuiR7aWJK1AhJuYufHeq29WF45hSG2r0TTuvxm0f/gf09A02b+fPGcOqrjCqq0sYwRLUke2x70/uuCb49+DGPUE9J2YOKrJz0zj/2EoFqtOebJcliyzEk+1Bznon9a2qQ+/w/MwClXx2QlbkrIcJbcosKVJOFaRO5BmTuJYU8RREH0UdlFxbWuXpHY/meoQ5mZ4to6gM+g4WC9O5SCe15M1brJCAwbaE/Xb28Yl6ZpRsTyAVXaKCuNnIduFioGjdsZFX4UiT7cLpwqiew5o6JFUjDKqVUSJ20CRFcyrRLaUCGnLbykveAwC0UmB1Lxq645puhKPaJSXbm1T3ohHg0inr04D2jnkuNK6ZK0oiUD/793rC3VzH1qV6S2a7rHJci2m0z0O2i3PJCd3n82bUe/eeZmW7bGNGQI7bYXJcnmwXBLkg7+HKq/gDZbvdrGyXdEH3xqeQpiZsx+W51NS64s0zOeeN+X4Xm7qdHHN+SgkMlYZs5N1gzDJoUbZ3seFc5LYXc+r1i+LIFChQYF0hSu4EFn5t8vcKfG/jpa/9FW5+/IOoxthqF1g/WFv28tk1P3PcVPuhWdmPmYiUoCECmGillkzIKI6+9AQmMIfeG74/cRs+sAVj7nRbdZhQhCgZyHaxiGXbrYtMIntdrwykqlXp6QfjBG51ueU9oWLOomyHokNNUJqIBevUZHtg/RZPyIqJs5LCepFQirNDt2NkaX/y5/FsOZNMKUFjyeQ45XamhSKmltuS9yq3UttV8pE92OSebcq+zFMP8DLWYcePTyx80wxKNZuUQBKV7SxQqqdFkNkeIceFZbvMBDI2s92Vt0JvyWzPaSnXbQRke8jmPutxaK7nuw04jby6PBP5kqYEtVzG4bJ8tvQFChQAVue9psCeES97fGjzlQCA6ZMvX7YxXUz0VU9hpbK143bBonVCw9/C9BkAQHk43ka+t38IsxgEAExs3RO76C8gmsDTOP84ameyXSjb1YzqcQtarONMQ9ne/nmQqKWm3Og4CCJTlbEa11sd6hQuRz5rovkhEi0nm2MuXJZaGmFdS5o8sYgWZPgKKDlJ1L5hr6mmvjzrWY3L2jMLsr3esJEP4hAkXAs0P/7KCtnSe5b+8c8gjKigksp2LWFeI2zkkZLEV+FmcsQKQ9G986+/fh51fViqRhhCrS9y6ZWcSnSblqDYjWujG8p2ErK6F8r2uKabgGy/hDbyXOtBiVX9sfnOaZKNFBcLWv84NOJCr8/mcreIqp8pd8BzkM+Mas2udjkajPSyd19xQ3N/2Xsy0LjWw7/jWWPeonCpHij53UDZLtsM4Ecm+OccZzYcyB8LLRI/kqdetBbQhcx2pVXZLhvNBjSa1S2XwfHn1rky27XmuDLb5bnGV9YV1Px1CWGfLzvn1xRvTYJzfw2hiw3nu8e8398is339oljtKFCgwLqC6OoTagKhlEzKAC5QANOvACjOkfWG+emzeOJj/xq2PzGsrXiW8Uavr8zWB1ByVhL/Pgl2HEmoGF6OexvMPPMFLKOCK+98Z+I22sg29JIalhdmErcxq96iklrqSz1mMda4HNF61Ws4MHrSKdsJpVglZfB6a6MCc0zYXIGipp9AcsVIzOt009qQ+hCTPCfButzJSN5zrQdam0VgDU4m60svezC5nsrtTHmDXClB5+3Idjv1wlPPpquhEwcXTiXntmuZle16ou275S9Wp40IAERGfRuyXeuusl1mchvNHBcEb15le2Aj764vZbsYh+jqN3Mq0cf6vPNretk7r7upbLdzHNcCBQo0UF+cAgAMjG4EAExsvwqME6yeS/79eC1j3D4De3BHx+0aC83xv8vi+VGQjnGY0TZhBkMolXsazzRR5TMazzkdleMAHLUHutt+jhJY22YktG2oQIyqVxDkutH+N95rVu2gbHflyXZBUIaV7VkjewQ0/7hF3e5ks66Fy1JU2U5yqDzjnrtkv69A/9C4V3tlFpRZ0ir5OHK8XQ53JwiSzQyT7W1INpdmz2wPmloSyHZFVeFyApaWbOc5lO3+GEbZNOzSiFSNMAKy3VfvZ234jcJRK1DdBtnuNbXkJ9tLQtkexEm0nn+iyftSku3om8Aw8xr5XWFxr60vZXtpcBIA0G/N5FO2+9enOAaUO+A5bNVbIuRcG64kwWv4jiMs5KSWx4FDCxxqQjby3MllIx+2zXeEi4zkuar7v/lNyvYcNvKN/deoJ/v7Y5RiyHaWM7O9RZ2dU9keahJ3AmV7dzLgAW+enmd8ZU1BzV9HMF0GlRJQSUJbj7jj5bXgD2P3RKFsX+8ojkyBAgXWFcSChiB3GgsdhbK9QDx6lr2c42jmXoHLB9dxcPZj/xx3n/5rHN//BIBGxrjhK9tZaQgVt1Wd3QlWoCZqLLxQrdRkxReHsbPfwqG+u6G1WRjtm9wFAJg5k5ydbda8BgGtnCWz3ZtgOzELwHZAtqdTtgNAFT3gZmujArfrmTvTeRsb+UDNlJpsb50ghxFkwKckyLlagp5AjnPGoBE3sOhPA6aWoLUhxxVmAxkWprhWblsvC9k+tuN6AMDM8Zfa1kMmJXoy2S4Wl7Ms7LvUAG1HtmckZZMy2+0chLYeUbaLWrLW6mKiLNT2YkKfx6q9mxD70AqNLw+ZvWnQu6+eXfTus3kXBsKKA3OdWfAXKPBahbMyBYur6PNjZUrlHsyQYbjzJy7vwC4ClhfnMIxlaGO7O24bKOIS4lMa7mnJau+loetwrrzHr1dJrJfF+YfpvTBY+3lsQGRlJD0togMxv8tCddfJ6YhoJWjEDcj+dmPTJGzkRUOfVW9WtsuQcnop/vgSSeW4cFlqaRB15XPRHaIBEVt/muFZMA66UcIKL4OtzeZSKxtlb3HeDrkMiHUXGWW77sdfOU3KdivRPpoRFaRDY3QUwlUiSdkOAA7UFjeBJGhwpEk2zXc060cVrDImVSOMoBHFvza86yIf2a6FyXaWj7wHAKpXoBMHruMETTdxDdiqpsPlJJPbWF6oAxtQISZWlxcCtXJcnvzlRO+wR7aPsJlcjQ+N37aGjXweZTtXdG/OK5DD9l1E1zUr2+WV6EG9MNnOHLAcVu2est37vqIxQ9YFIWgscUJkex4beb9BJKjH5DPb9ajFPXxley4beQrGveZ1US/PvLCie99t1XRg+zXzkOOG1mwjn3d8ZU0JbORtJ38+PdCYo3v1upXZ3oteQ8V4f/bf7gKXBsVqR4ECBdYVmJ8HKx5kgry8BPKmQIFJ8wSAImpgPeHJT/4Grq0/DwBYPncIAGD5ZHtPn59zVxpEL1+N+ev2sGPIduJnZtoJi4UXTh/BbvcocNW72tYe3uiR7StTxxO3sfxsQr2cXtkuyGU3xkbe9u3gK5Hs0Xao0QpIHNnumJ51eBa0ybsPbEhT2tLrgfVb/P06cC5Jq6bWStAS4gHEsc60aKZV2ivRkXFBtIP9qsYtkJRK9PGNnmrPWryQXA92poUsm+iJtu8NG/n0kQOuUoKaQLZbtoyNfIKyPYdVu6EqTbb0Zg5LeqCRGy8IfDHW9UIYd1vZvmHQuzbPLnjnR35le2MRxO5CNl+BAgUAtjqDBTIAErLerNJeECv7M9V6x9QJzxq/f9NVHbdtqLrif+dFxE27Z5pbf/a/4apf+SKAxqI/i7GRZxmeZzy74/YNwUHGekayyEZ8Dja3TbicdHQ6ov7zc7uGZZ7DRl7M48Nq9KyROAJ6qdWuGJBXtgfRR1bz+UKYPHliEx3Eba6ndiE7e4X2g1fncxGoRsUj2x2zQba7gbI9+/Fo1ItmNcePj1ENNKOy3Qls5JMbnG2oQAp7+qBJVzLXW/XvB4CXxZ0XSuDeKMj2fOQ4UyvQQ/eZvPUAgPhz7XptNXAPULX4mha0S0q2l4c3AwDmL5wMxibTNHIxMTDqRZb0Yw2upCMF0HAo4f6cTuEueA6Clyl6k6sdyUEYJynbZW3zG7/joXrczqnk10I28n5mu6zDhXDTEAp515JWogOeY6HJtYBsJ8yVbnygigKLKw3iHl7Gei5le8ThzXF5LsJ424h3Lz8+s9aIjcthhW6otJlsz0loGyGy3cqZsd5CtndR2d5X0vD0b70Nd+/M77JS4OKgWO0oUKDAuoIgaUT2U1xuT4ECAktzUxjFIoB4m8cClx4vPfQ53HnqY/jO9p/HAvpgzxwFADg+2V7pHwQAkMoQ+vhqWzV6HMTCS3iBU6hzzXp8w8XJx/8vbK5gzz0/2Lb2yPgm1LkGc/ZE4ja2n3UoFpnSQIwvzl7drXukeaU3vbLdVHqgWDEW/I4JGxknj6rRhmz3JmtGBxtSAT1mghyGm0JVFka7LFGRM0kyLBAStRRkD8ZBzai2InoFpTbkvQYbPOWiHlUU1LkGZiU3DRncAsmwkORQHSSBHBf7T015bAGfbE/IvDcdN7Pam1ICXaUtynbLz3DTJJXtZoyyPU/emlfHG5O5zjLbhUJgpe5dw5bj5ibHx/oMnF2sgTEOh3EYeRQHoUUQq1C2FyjQFdDqDFaUwabXLFoGtdvngr8WsXT2IABgYvs1HbcVqi6eGGUjyPZK7PsAoOlGQB6IRf+4OaggKVM1Ixp9KKN9Q3CgzMxsI6/FOs5wx/TIrw6gWue4Nu4TWZoEISue9+zQ83nWZy2Bku8oFX1OkiViFE2Q7VEbeUva8tkhWkuTY1bXpDisKgNQavNQMsYdhaH7ynYn5DKQx0a+FJDtjSafdiQbIypoRmW7mDeI+UUcHKKAu51JfKkm3RDC9w19YFyqRhiiEUXEOsleFwJc64ERekaXdZAIQ6jv69VVcDtZ2Q4Aq6QHpJQuEq0b6B/ziOyVmbNwg4ag9aVs7x8cgc295/Q8jQ+BYtn/LcprI8+pDoU3rhmSQ9lOFcUji0O/u3nI8bjfcZq3uYA2lPyuT0TTHC4IFrSQEt2R3neNemrQSEGYDZaDvLfDY4M3D84z7dJCVuicc1g5CeNtwxVoCsGRmVU4/hqgzHxfoMXmnvFc88yyRlGzuqxsD6Lo8o0tipKmgJAis329oljtKFCgwLoCCxYvvActQ3SxF2R7gRicP/JC8G+7OEcuO6qrS9j87V/BS+XbcOdP/gFm1A1Ql04CANz6MhxOUa54inC1dxgqYVhdWcz0GcL+Wg0teijBYmH8Ymb5+P04WLoBA0OjbWsTSjFHh8FXziduIxapjEqWzHZvQiesy8Jg9WXUuA41wyKmqfRAdWIUbK4JO+MCIVF1aDx+kYqntCEV0DvkpYrFEC0lwUu0EowEZbtjS9jAaWUYbZToKs+mHCdaOXF8gJexnoUcrxMDPKFRAfDtL7X05LhNDVA3/lgElv4Z6jG1DI3F15PJbAcEGdtNZbs36eacN9WSnci3ZLavM8J467B3Hzw559378nbhA56V/NnFWrA4INT9MiiF7fi6kM1XoEABQK/PoaoNN71mKWUoznefw5M9fQQL6MPAcGclaVQhFkW0obsT2pH3gfNPiuZBavSizNs3BAvb9zQZ8GHYRAN1Y55DXCvV82Bg895B2W5xpclJIS1EzrpjhZXt2Z61glqaDsZJS0OnwmypHHPRtOtGji9lFlxJosghOkjkeCjIT3rW1QFo1qJHoEqSdpUeb97CrJCyPYiLyk62i/kcC5H37Sz9OdWgZFS2i2Pdbh7iQAXiroEIgiZdSZJNnMtAI4s7D4RaXzSieEr0HGS73gMjdJ9Ref4mj0ZDwFrHppvqj30O17/ng7k+LwuGJrYCAGrzZ8BFZruka8HFAqEUC8Rrppe5RwlQRcE0huEunfX+m7u5yHZEI+Ry2rSbRGuavyo5bOQJpV7zeZhsZ04ud5CwbT5zvHtQnsgBm2jBPSdPo0K4XjN5Lx8RYJFWsj2HcLw5Y13YvucoqCoUO0Z7cHhqNWhkz1MvvI7AOc9vI683MtstN3tEXtPYlIunbC+w/lEc6QIFCqwriAUNMalKymcrcPlx4PH7cOg/3J5ZmdxNLJ1q5BsXUQOXH0ef/UcMYRkD//SPQBUFy+Ut6KmeAQCw2hJWSSVYrNN7PeJ7ZWEm02fEWZEL5bgdcw6sLi/gqtpzWNt+b6r6FimDtrnfuL79YikD2S6sN904Erq+girSE54A4Gi90GLIduKYXk53BhDVgJ6kbHdM2FwBVdJN+lRNh8NpoqosaKZKaSNP1BJ04sJ1WhfnxLHOYhlI9TJKxAZz3dj3NThAhoUaqlegERe2Fb+wr8MBUtrIA4AJA7DjyRLmutCIm+n7uu3I9hiHiE7gbTLvvcz27IsDHhkbn9kuQ8pGbdXzKtuj9nnrjWzvK2kY6zNwbNa7L1lOvoUBANg0VMbZhVpo38kv+sQp29dL3n2BAq9VlKx5mEYz2e4oFajO5Ve27/vzn8PTX/rLrtVTF49jWt2UevuwQiyKNMRdGHGL/o1aohmx828oNXqhEzfRfQlAkIesZiSLHDTsccNIq2wXZLvdxh2Mu7ZHaEpAKP/DVuMqHCmynVCKOvSWZ0xZAlo8i0ajj6hkBjwAOLT1eGg5M9sBwNIHYViLvgW/nFW2phuwudLkDNBovMxeU1HVFkemtsp2mkfZnuxG4SREKbRsJ5p0JQnZ8BhEFnceiDWu4HmcO9LW1gBA9B6UeYjw7EKThxKQ7TVw14LDaWLTzbarbkFPhki0vOjtH8IaL8FZOi99/7wUEC40PMexBYA5bRLq8ikAno088ijbVQNa6FqkbeIf0sCK3JdpzggDi+hA6HdcgQNQ+blI2DbfEZntech2qCHb9/xkuwUd6FI9G1pT85HtcqiES9cTc3HbZXB8cjzvHHj3eC+OTK8G9fIQ0OG4MpdxcJ6PvC9HbOTzNIjH28gXDeffKyhWOwoUKLCuwBwTDqeByjPIASqI1HWH5cOP4QrnEJaX5i/bGPjMQZjce1h2CmX7Zcfqqw9hHv3YduUtAAC7fytGLa8LG+YKqqSxUFEe8DKGqkvtyXYrsgAo4gLC1p0iv92OUeacfOlx6MTFhpvfmeo72LQ1bzEM4bIh7CzTQHRPOzFkO12bwjwZTF0LAFytF4bbuqhOXBNORrKdqgZUwmIJbe6YXhZiBnjWakkL3dlUZdQ/rnGKK6HGyaJsp74dYtKCt8rtTPaSNMgybD0WnDEYJJuy3SIGSEKjh9gHWeq51ICSoER3Iy4yacDVMvSEenUJG3kgXtluuwy6QqWs0QThb7WQ43KTWzEpFnVE3fVCtgPAztEeHA+R7d1Qtp9bqjVcAfJk36kUZmjRwqu3fvZdgQKvRfQ6i3DLzU49jtYDzb38z8GbZx7C4Av/s2v1+tZOYblna+rtLaJ3VLa3I+7i6iHmmSaL849S9qyVqytLiduIHNmsCmOHqPFNda6ViiBXhZW62cYVwbWk83zFvg4T2jqyPWuFYRK9xQGIcjnVo3j+iTbCEiafse41OTaT7bJK/jCc0hAq7pJvNS5PEtWhg4eU7aJpRM3gctRUjxhN9drZR3OqgfL4ZtckCNtso8016xIFPEVmu0yTbhhGaN7XP5q+ASgJgeuDINuR79gSoxcV1MGF+pTLNbXEjdGur4K7duY54cXGPB0GVi401MoSURcXG2vaEADkci0AgLXyJvT6AgaKfDbyUHSooUZ7j+DNo6Y2ACfU6JHzPmVFrNBpDkcPAGDGACrMi99jEusHUYQJbdIFG/kVZRDK2lRQL4/LgE20pmcW22XdyWx3eDCPUyVcbsLYPd6HIzOrjXo555kNMjt/M4AREgHknVNHbeQLZfv3FoojXaBAgXUFbtebOvFVTYfNlbbWugUuD8iq91C4Mnfhso2hZ+kITmnbAQAsQV1a4NJhYPopnOi5Keh6V0Z3YhzzqFdXQa0V1GhjoaLS7y0U15bmEusdfPIB8D/YjOmzx4PXhMtFOL9PqHPj3A2qU0fAOMHk9qtSfQfPeruNwifSEJQGQjHCYmzkS9ULmKcjqWsBANP7UYol263MZLsgb+MIbe5YsDNO+LyF0PbK9rSqMqG4MmPIbMfyJ8sZjkNAtsfUA4QSPcNx9S0gzVqry4DIhqQZ1EIWLYE48b91pp+nmqUeUwyoCY0jcQ4RHaGVoCfY5lu2nKI6TtluOfKd34Gy3Y6Q45LqbIUSENKYwOexuL9Y2DnWg+Oz3jloOSz32DYNlnF+sY56F1T8hqZ0dRGkQIECwABfBHqayXamVqAz+blSvbaGJz7x/+DQsw/lGpvOLex2j+Lc8YMdtz324uNgR+5vu82EcxbOwI7Un29DCxRiUUTd09IguugvIJrDFbXzM5Lmk+21teXEbbikjbxDNCgxynbimHBSKBVVf1+0i+LiriVNsjXI9ubMdkgSnt7xjSrb5eyyk1ynaC6yXW9pclQzuibFgZeH0ceWcxOodVICDx3rPDbyAFBHqcmRSWFOol02p1qzdXUKcKcOi6ttHbZcklbZ7mc1S5Jsosna4gr6B4Y7bN0Z4j4kmri1HE0oAKAYvVAIhyvs3uEAOdXUuq9sd+pVv4FHnpC9GFjWRqBWp4P59Xok2y3dO1fyugw4/VsxYntrbgp3gRzkeNTVLi/BaxEdJPQ7qeRWthvNyvactvmkdwLDbAGcseD6yHOuOCEb+TxOKAIr5Y2oVD1xSt5jEY0ycRhHnmmhFiKMnS7Fge0e78XMiom5Vb/xP5eyPeSg1oWm7rKmoGp5zTt5yfGost1y+LpaPyhwcVEc6QIFCqwrcMeEFXlgsaAlkjcFLh+0mqdIXl2cumxjmDBPYL7/agCtmXsFLi3q1VXstg7C2nx38Frv5B4AwNSpQ1CsZZhKb+O9IS9/01pNdkZYe+TPYRAbi1OngteEykELZbYHZHsMYezMHcc0GWmrigijnfU20NoQlAZCMRKXZd5vTWFZzbZow40+lHmrCom6ZqJ9YxIEeRt1EAAAOKa3sJkBbRe6/deT8v5ax5asbBeLZlmsL1VfiW7WW8l2zpiXiZ5hAVjUs2qtxyJQomcYn01LoAlku1gIpynyYQVcpRS7CA+Es2vT1yNaGaU2NvIlLfvCj6HSwK5NwHKZdMa6Eekib2S2yy0MEEKgKbTVRn4dTZZ3jPbg+MwaOOe+nX9+st1yGc4t+o1NORdBAjs+p1C2FyiQF2a9in5UofSNN73OtR4YkmT7+ZOv4vR/eSPuPvEXWHj8k7nGJxqyTj329x23XX7ov+GNy19MfJ8zhiEsQ+lPb9lsRxb9w2B2HRZXUhHkAu2U7WmfBXU/dshcW0zcRuQhZ2nkBDwVW+zvPLNTke0icz7u+TmA68CVJNkEQcmiynZJ8jlKwgDw1d4SGfC+sp3FkPeyZDujeqyNfB4SFQBozwgG+Ao0WLnIdpMYQEjA0FC2SzoN0FKTI1M7+2hONSg8W2Y7t+swO1xnLjSQFMp20VSRpUk3DGHDv0gGEq3Us0Ao5UUjisbzNWUoJW+OLdzFVC5/nQloZa+mbXqZ7WnuKZcSNWMcZXMa3CcX084vLyUc34Umr408HdnuCRhqa6Bw89WLsZHPk4nuEbxhcjyfEj36O65wR6qhSkAdmECJ2FhZXggaM/Io2x2iBoQ2YQ7cPC4DAKzeLRi2znvj4naueg7Rmsj2binbLYcFTdN553G7x7z7yqsXPLcBLcf9NOyg5nSBbL9yog/7zy5jdtXMrWzXisz272kUR7pAgQLrC47p5daE4FkCFkTqekPZnAUAmMvZMre7haWFWYxjHthwIwDEZioWuHQ4+vzD0ImDseveErw2utVTky+cPQTVWYOlNJTtff1DcDiFsxavbJ+bOoPrlz2FlR0iR8XCkBGyv1ZF532MMkdbPoU5fUPq7+FSA0oHZXu0IagTFM3bXihIwhhhM6hp2ch2YvShJ45sZxZcmk2dQv1GgFhVkytBthMNSGhW4I4Ji6upF6kUobiKsTdlTnaFSiN7sLWe6zqghGdamFJ9e0WrHqNsN0UOZnoy26ZGMtnuL4RnaS7gip6Ysd6w9E9vp0u0CgxY4Iy1vCdL8pa0RtaaQB51dkPZ7k28AzV1ns70MNnu563RHHlw3caO0V6sWS4uLNfhMJ5bOb5x0DtnhTV9nnpjfQamV0x/kWb9NSoUKPBaw+KstyCrD0w0vc713tgmvE54ed/XUf74W9DjLuEU3QS1nuw2lAa6v4A/eOLrbbfjjGHb8jMoI7m50TSzN5l5C81JzyD1ljlmJySR91mcf4weT9lutlW2C7Io2zOcSzRP2R2B53SURtme/Pzc+JB0teKgaToYJ2A+Ies6DlTCpK28bWKAxpDjMsSOUBbzFmV7sjq7E5iiQ42S7ZIZ9WGovWNQCcMAX8lF3NukBGqH5lQ+8ZSl8bK5ngHihJTt7Sz9qSpBtte8hpc2cIkCsM51RWa7TD69gAkdy8qQ9N+HUfKJbOE0oMLJdWy1stfUI+bJWs56QMiZwqwBrrPulO1OZRz99px0s9IlQY8nLoAif94BQM/4LgDA9OnDnsNFHqW3ojcp2ynPaV1Om+/LeeMuvN/dkC098inby4MbAQBLM2fAgnMlb3OBr2zn+ZXtZHg7xtkMHNsCYQ54LmV78zOQ7fJcZLsgh223MY/LSxjvHOsBJcArF7xnolw28qF1hEYzgHy9H75tMygF/u47p2C7PJ+yXWkWANg5xAQFXnsojnSBAgXWF9xW2zsTOkhBpK479Dvegpy1PHtZPv/8kecBAEO7bgdQkO2XG8sHH8QyerDjmtuD10Ynt8LkGupTR6A7q3C0hrKdUIoV0gtWjVe2H/r6X0CF93DqhMhMFmMDqvnKdjfGRr6vdgZrlS2pv4erlKAm5FL7g8m8WCusKnnERr66uoQBrMHUs9nI0/IAysSCHYlOUJgJN+MCoVh0isu7T2tDGkY7VVkWJRgQUo7HkOOOb9OeZdFMZA9aMTbyQomexaZdENV2zPiCbMgM9RylnNjoISISlAy5mlwtQ+Xxyva4ppVOoHoZKmGBRX4YpsNgdEnZnqfzO1HZnmOyrCmkYVHXBZv2bmPHqHdeH/QVArkz24e86+5EF8j2Kyf64DCO47NrDVeAYqGhQAFprMx5ZHtlqFntTYxelHn252Dr4T/BAh1Bz4cexXTv1ShZyW5DncAZgwELr2jX4CrnFcycO5G47anDL2Ic8ygTC8yNz3FuxKek/51yqB7Yu7aMT6JZ0iZGPHmfwfmn1DMAALCqyWQ7c6zUtvRhuESDFvM7T1wLborvKiKZ4p6fg1pMXtlOKPVywv1nd/FsJKu4takOEqNsJxLEjlDB8kgjbB4LZK4YLc0PWV2T4mD0e/MElbBc6udoXJEQM2iSNvIWLUMJ28hzO5EE5IruWepnQYwIIwo3pDJtu52EI1YUJtFR1bpDtiuqimkMg519Fpwx6MTNpURXBXnvNsj2vE0epYpX07HWfBv59ZXZjr5JDLP5Btmuri/lPQBQ34Umb+PD8ObdAIDFs0dAwfKR7ZoBhfBgLk14vgx4J+IKmDfuImqFrvB8kQi9o5sAACuz54K1GCXHtRa+51CWb98BQHlsJ1TCMH32eO7GB4fqoBFlu6S5GwBgtNfbTyfm1gKyPQ85DniN9luGK3jl/Eruer2GipW6A8Z4V5oBBis6fvDmzfg/+05izXRyu7sBUWX7+mnWL3BxUax2FChQYF2BuBbsSAeznWDhV+DyYph5C3Lu6uUh25dP7QfjBFuvutVXTRSZ7ZcTfVPfwbHKDU25elRRcEGZBBZOwHDX4IbIdgBYJb0gtcWWWsx1se3EZ/BCj2dJ75oNcjQuvy/IvbNbCeMx5zzcga2pvwdTjA5ku+mptzNA2NyzCAk942fRs1I2ZbtW8VRS1ZXFptcVZoFlnNyKRey4vHuZDHhvgpxAtrtWpn2ntrE3FS4BWTLXNF+hYZutZLstMuAzTL513wLSjrGlbyjbs2Ssl6CyTmR7BmW7asQuwgPxTSudQHXv+9ZjmhW6rWyXtUKPZraLiXcea/WRXgOzfq6cmdNS7mJg63AFlDTs+Aw1n/JooKyhz1BxYs47zrns+CY9pdXBC8tdydIrUOB7HdV5L7O1b6TZsYcavSjDTCSuk6C6Ncz37MTAyASc0gh6nAXpsdm2BYVwLO14N2yu4NgjyVbyF57/RvDveq3VHQYAbP+3RsnwO+UQLTkKKAVx11qvldwFkMn5p9w76NWqryRuw11bKhfdJWpsUx1lFpwUhLF4BmAxz8+ND5FXtgOARTRwv77lN4kSNX0DRRhRUgfwFMEyKkpCKUyuBRFHQT1uS+crc6pDCynbHf+ayGvnXRlsOFnkIe5tpdTU1CnrqCDgKGXQUL22lv5Kdht54tRhd2gidokGkqKumzOzHQAs6DCN/HntAke3/hCun/0a5qb9vOYcBKXhzw3h1OE6TlfOu0YMRA1gNtwcJODFgDqwAT2kDlZdgM2Vrtj7dxuGcKHJeSzGN+2CzRXUZo55TSs5CF7hLCIazRVmS7t5AL4rYGjtREE+23eX6k33eQVuru87OOaR7bWFC2A+Ea3kaMxwQ3EhnrI933UxtNmLXZw/e8gn7+Xncd7YIsr2HJfFeH8JN24ewNf3X4DDumMjD3hW8mKemYfQFtFn0ytm1+aZH7hnO6ZXTDx8eCbXnL8ls90tMtu/l1Ac6QIFCqwrEKfeMqFvR94UuDxYXV5AhXjHhFfzWU7Kgk0fxDk6gVKlFya0ImrgMsIy69hVfxn1jXe1vLdgbEJ59RTKbA3M6G96r6r0gdZbF3b3P/x5bOTTML7vXwGIkO0x+X2CRI02XKwuL2AYy9BGd6b+LlwtJaqBAYC4ZmYCWvOtyoR1mcDylEe2k0o2lYRaHgQArC037zuFWWAZbeQVX83ixKiVScrF2jDiFkIbb1qZFpOFEj3O3pT5481iGSjsEJ0YW/ogEz3DImYwvph6YsxqBkWeq5SgJSjbBXmvZrB9h1qCnnAue5b+SlPTSicIwsOKaS4wHVeK0I5XtsvbtgmiWUy4zS4o2zcPlXFmwScK1iHZrqsUW4YrAdnejYn8xsEyjs9Wg/qyGKzomOg3cGhqpVC2FyjQBZhLUwCAwdEI2V7qBSU8kbhOQvi5gfeMYoAtyY/Nd3nRBjfglfJN6D16X+K22qlHwbin8DGr8WMOiIAMcSxuTGZ2gJg5pmy9LM4/lV7v2depJZPtnmo0+wK7S7Wm7F0BL1ao8/NRYBPdpmGZ5CTZLOiAT2gLFyUqSXTEPWNqkM9Et6C2kO25lO2ROYRwoMrichSH3qHx4N95CFmHlqC4ocx2SUeFoJ5Sghqq5+27ZLI9q7KduGaLCCMKRlXQFDbyoklXlVTxA8C8Pgln+Arpv49iz95fhgoHh+/7MwAAyWGD3jvo25XXlxruWjkJXlXTYXEF3KqCuOuPbC8Ne/bgZOnMurO4FwhcaHIq2xVVxTQdBZ8/AYW7Um4eAjRwtfPPE57PupwpzRF8KvIp0R2qN5H3ak6Xhv7BEVhchb10Hszx7hV5yHZT7UNf9QwAoWzP56gwvmUPGCeoTR3zle3y9RjVQVnjmcBh+TLbAeCd123Ag6/OYLnmx450QZ29e6IX3OPuoeaYt24Z9p5hTi9UQ8r2fOO7crIP9+waQd3Op0TXI257tlNktn8voTjSBQoUWFeIy5iLs4wrcHmxMHUq+LdSk7eczIPK0mHMlD0S1SZasJBTIBv2/d0f4OTBZ3PVOPbioygTC8PXvLnlvXrvFgyaZ1Hha0CEbLeUHqhO6yKr+9THcFTZgavvfAdsroBFle2RhRfdiLeRnz51CADQu2F36u/C1TL0Nsp24tQ7LvxEIWzuo1aV9VnvOtIq2VQShq+Sqq0uNr2uSijb1bbKdjv7wnQ7VZmbzRVAZEjGkdluYCOfnszWfXLcjVHKO1Z2e0mRtxhPtvtKdD2b7buWoGx3fSW6mqEe0UrQkUy2p1XlCQinAbPaTLYz7hHkMorqWGW7K09oGwnK9jwEbxPZnmNsFxM7Rnu6ZiMPeFbygY18zoWBKyf78eqFla4tghQo8N0Azhg4Y503jMBdncYKLweKQwG15LlIVFezkeUqs8D8JjOldxwDfCW2+S4NROSLoldQ2/VuXGW+iIWZ8y3bMdfFzrVncUi7EgBgxrilAIDt/7aqGTLbo4q4MIjTmbiLwkmol8X5R9MNmFwDa6tsl1OPM6JCjSXb0ykVG8r2djbyOcl2ogO+dbkTWHnLKds9BWXzWDXuSKtGvflj8/meJ2+YK3pT84Nldof07B8Oke157I/VchM5zl0rU7xTXD0tVK+dpT+hEmS7U4dD2j+XM6KCsNZroGWsEvFTUVz1bx/Ene//Xem/j2J0citeGHwrrjrluYDksbYe27gd58g4BpcPBtdZ3vMO8OIcuV0DYTacdUa29495MXFG9dy6JduFC03eKAkAWNA3QF89DSWnjbxwtbPF/TinjbwXwde4j2rcyXWfYkrUlt4FUXLY5lOKeTIEvjoVRA7kuQ/wG34UVzoHceSFx6BwBywn2W6UKpglQ3DmT3iNDzmOBaNaU4Og7eTLbAeAd143iZrt4lsHpwF0T9kuoFL5AW72o89Oz1dhO91T3v/063YAAPQcbnFi/hxE0eWIySvw2kNxpAsUKNCEs8cOYN9f/pL0QkteeLZ3zQ9nbZWSBS4LVmbPAQDOkQlo1mLmv5/27bPzYLx+AvVBj0S10GoDWKAzDj/3MO569T9i6v6PNL2+OHsB+/7yl7A0N5WqzsLL38YaL2Hn9Xe3vjm8A5PuFHp4DbTUTLa7ke5bwFsovmHtCczs/pFQ1mODzCSO1UISBouFkXNg6dxhAMDYlitTfQ+gvfU2IGetLjLkomS7s3gGcxjIrPAp9Xr5n+baYvPncBtcyTZ5bJd3n1YZFYbTRlWWdd+1yxIVNnCZlO0+Oe7G2siLBdH0+88I7BWTyfYsChqmlaHz+PuY2AdaFrJdLaGUqGxvbVrpBNVvVoja8Auu3NBkbOQpzIiy3XLkO8kbme1uUAvIq2yv4MxCNai3Hi3gdo724sh0F8n2wTJq/nHJW++qyT4cvBBStq/D/VegwKXG03/6Y3jyL/5l5r/ja7NYpv0tr2tl77X6anIueBzUkBJVH5gAJRyLcxcyjwtouJ4oegm73/Cj4CA4/smfb2kAOLZ/HwaxivlNb/H+LslGXijbM9jIe2RsPPFGXLNljtkJTGm2xw1qZXT+qZIyYLZxHZC0kWdEj22qo8xKpY5TVBU2V4JM9Th4ZLs8mWATA8R/PhfPRlRSwcsUA2qMjbys2tuGFmRcB/Xy5A2rBlQ0zj+ZZ8s4lMo9qHKvRh6VvKuUm/efY+YiUJlaaWoSbWvpr+peY0QGxK0LtYyBaqAp6oo5Yh5CW1HVTI5QaTDwxg9hCN59Oy8he3rgNuyyXoYVRGPlJ3hNYoDbdRCW3y672xia8GLi+swL664RQGBwbCMsrkLtGcxdq1rZjL7aOf+eJ/99lUDZ7v/Gtot/SAGmlpoi+NTcNvJGE3mftx4ALKtDUKozgcugKunmAQA3vPWf4QJGMf/t/+65eeRQ8QvMaRugLZ/K3fjAqA4lTLa7+ZXtO0Z7cNVkH778grf+2xVl+3iDbM8zR+8xVIz26jg9X4PNuueg9parxrF1uIJeQ/5YqAoFJc2Z7euxYb/AxUFxpAsUKNCEUw/9b9x14W/w7Jc+elk+n7qt5I4TyZ4pcPlRm/eyxabKu2BkJNtPvPI0xv/qJux/5IvSn7+yNI9JzEKduBqAUE18954jz379E9j3qd/uet2Vb/1nAMDW+X1NCquD9/8V7rrwNzj7P94X2IK2Q+X8d3C0fF0s8Vme2AWD2NCIC6U80PQeiyFmq6vLUAhHaXQ7AKBOSuBhMjNGWZ60WGjOHEWVGxge29jxOwgQtQwjQQ0MCAI626SKUOrZ8EVs5JWVs5hXxjLVAoBKr2c7b0XIdo1b4BkXVlTfFcCJWWilzMq8wBrtRg/DI9vTT1oCJXoc2e5342ch20tl3y41xpZeWKgqGchxQ8QXxJDtol4WJTq0SjLZ7tfTjCzK9jJ04sRn+Ga09Pc+2/u+VkSFaAuyXcpGvlXZbufo/E7KbM+zMLB5qIyVuoOlmu3byK8/9cyOsR7YrtfR342J/MbBBrmVtwv/iok+nFmoYaFqQ1MICCmU7QUK9FbPYGDx5cx/R+0aLNJKPusVT9luVrOR7eHnhrKfC70826pGT4Ng4V4vY2RiM164849x1co+TH/k9Th9+IVgu9mXHkCdaxi69m0Aksl24RqjZ4hPYRH72TCoRAyQR97H2MhnVKLXSBncak+2uxLKTEZV6DHKdiWD05EFrS3ZTpkDlmPx36GNODjhIpQlYicMVyk1HQ/OGHTiSqsoY5XtsKXJdqIaTc0PDSV/ftJziXgNNXkIVK6WoLNmZbtMk0ejXhk6b5w77Sz9iaJBRczzaBtQ14TbIR6LkXQ28szxLZBz2MhfDFxxyxtxUPXWM3KfJ9u/D7txGosXTgDojrLdIgZgV0GYk6vp5mKgt28QVW5gzJ2Wun9eCpTKPTj/4w/ghre9P3ctNrANY+4FqGC5yGcl4mqXl+DligEtNH/VkF/ZrjSR7fls8wGgqo/AqM+Cu969Isv6QRSqpuP4zn+GGxceQL+7AHSh0WO1sgm9tXOg3M1lS8+oDjXUcGizfJntAu+8bjJweeuKst0n2ykBlBzKdsBrij+9UIXtryfkUcoLKJTg73/uLvybd6QX7MRBV2mwFmE7DHrh7vY9g4JsL1CgQBPKM95iyM6X/gRrK/K5fbJQWOukyqUGlELZvq5gL51Hjeswe7egx812nixd8FXtj36k/YZtIOzB+zZ5D0AO0b6rowb4/s/jlsN/hplzJ7pW89Sh53HTyiN4rvI6TGIGpw6/GLzXd+J+nKBbsMs8iP0f/efxZF0Im+qHsTZ2c+x7g5uuCv4d7epmit6yiNlQvXj3AdOf5AskZabHLRaShROYUjaA0AyPO1oJRgLhCaRb+ImDAxXcbf6updoUVo2JzLV6BjzbeafafO2p3AbJqGwXZDCzWr8zZVYqG9Iwot3oYRDXzLRQY5SEvWkrOS5jA6frJTBOwGLIdhkbeaooqHMttp4g9LPZvpdRQvy5J/ZBFmW7sAmMbZjJaOkPAHo5PqPed22TspE3tNbM9jy56NHMdsv1lOh5CN5NPvF8ZqEKy2FSTQUXGztHG5bS3VCObxpqkHndULYDwIFzS4WqvUABHyq3MGQ3uwdZZh0v/eGbcOKVpxP/LklRrVc8Is5qlwseA41bgOr9VvSNeI2Ja/NyynaR/yps32/d+zOY/rH7QOFi6FPvwLNf/wQAoHz2MRwuXYdyv/8sE+M2AwCO+B3NQrYrycp2Kqlsj3umyer8Y5IyaBuyPSt5H4yPaNARR7Y7qZ/fLKKDt5lDeYrWfMp26uf5Rp/xs4KrpSZSx/ad+GSV7S7RgkYAgVz5wGqpqfnBMbujbAeANUWQ7TlIrGhTp2vDyUG2Q6vACCnb21n6E0WHThxwxlOX99aF2n9fTlXQmIaTKJjIbO9C40O3sXrzzwCQj1cQ2HLz2wEAcy9+HYC8g0QYFvHiHD2Hi/VFaBNKMU+H0Y+1fOfxRca2q27pSpOHOrodg1gFJRy0C8r2MNmeh7znagm676TmOg4UwnOR7VzRofr1OGNQCctNtlvGCCr2POCvH2g57wPXvPtDYCAYx3wuVwABp38rRuzz/rHI0wBVghK6H9oug9oFfved100G/86TsS7QV9Iw2V/qSq0twxXPRt7tno084DWeD/fkO7aaQmE5DJxzVG23sJH/HkJxpAsUKBCAM4bN1Vfw1MC96ONrePlzf3DJx0CZ1dLNl2ThV+Dyga9cwDwdAq8Mo49lI9vtlTkAwHXm8zj07INSn2/XvQWrUo+nlLaJDuImq5HXC159+h9x7vjBzH+nOWvQiYsj9/1p18Zy4Wv/CfNkADt/5uOwuIrzz3wFALA0N4Urzf2YuvoDOHD3H+Pm5W/jO//rw21rlXkdJKJaF5jYugeMe0/5eqVV2a5GFkWF5aJYcLBICTRCttsxCy/eYmHzfaK0ehqLpfSqdsAjPA1YiVmqioS1OgBP0R1Rz/RbU6hXNmSuVSr3wOEUbq1ZwaajsWieFoGNfIyqKYsySiDajR4GzWoj34YcF4tmeobFi0YsQQzZLjLRMy5MmSS+XkOJnt7+lugVlDoo24W1fhoI610rhmyXya7VSvFke15le91uVbbLkrJRZXse4l5g85BH9JxZqK3rzHaBkoSdfxSbQsr2vAT57vFeUAK8dHYJ2jrcdwUKXA5ozMQon4cdanQ7f+Igrjefw+zhpxL/LimOpdTjNbVYGZXtOmzAJwIHx7znEXNJjmwXvw1aqUGOb7/6Ngz/6mM41Hc7btn3K9j3F7+A3dUXsbrxdUG0i3imj0K42mT53Qsv0kfhEeTZFti5ojfZ4wa13GzOP6ZSAbXjmwoAAJK56JxqUAlriX9TuZWaALCgtXUHo8zO7OgUhkv1oGneFYRnFtefEKIKSqEcJ5KkohNDtufJGyaqgRKxgzlE4JrUBdKzpg74tXKQRC1ku5W58TIMrvfACDWJtrX098kyjvj5VRxU14SrtD9XvIziDDbyXTgW3cZN9/4Unrrhd7H7ljfnqjO2cTuOYyMGzj4MoDuOCjYtgTo10HVoIw8Ay9ooAKy7RoCLgb7J3Y3/yEE+i/tv0GjeLv4hVcFyEMEXRGfkIKC9piq/XtBQlY9sd3vG0e/Mg7k2GCe54yAGRibw0sg7vPHmtLgHAGV4O8awgDKr5qrHFb0pDtGzkU/f4JSEKyf6grlmN2zkAW9+qHVBhb5lqIwzC7VAQb6e5umG6pHtjxyexWLVxh07hi/3kApcIqyfs7BAgQKXHVNnjmIUi9Cufy+e3fjjuOn0p2CtLVzSMajMghtRZrIEC78C6fDUF/+8JS8xL9TqNJbVEdCeUQzwlY7K5zCctTmYXMNpshFrvo15Vgi1iyCy4pQJ6w312homvvITmPv7X8z8t7rjLURedeYfUK+1WaxLiemzx3HT/NdxZNdPYWBkAodK16F86kEAwOHHPg+VMOx83Q/hlnd+AN/Z+M9xy5m/aVvPgAWSQPKWyj2YId6DpeHbnwtwRW/qvgVCXdY+iWrRcpNrQZI62obaslg4ZJ2D2be17dijoHoZCuFwnHiVhMJMsIzqcTE+HmksGHVnwfuzNQMAHmm8Rspg9QjZzu1ERUkStIS8ewBQmJ1Z2d5uoZtkXLAllMKEFqu4EmR7VqWAlz3YSj4zW24B2IQBxJDtzBYZ69nIdp04LYvmXj2fbM9A3lPN2zZO2Z7kENEORgLZ3shsz75wUdIoTKf598PMQZArlEClBGZI2Z53UWC0V4ehUo9sX6fK9sn+UkCy613IE93UZCOfb/+VNAXbR3pwcq5aKNsLFPChcRMK4Zg9fyJ4bfHcYQCIbTATSIqyKfcOAgCcBEv2JOi88fxW6R1AlRtwVqZjtz177BXs+8tfSmxGdEzhwNL8O9XbP4SbP/xF7Lvi13Hrhc+gh9Qxcv3bUfYbBNx6/HOtcHTJ8rvHFSPxGcR7fsv4TBNa9A8jq/OPpVSgOMmxTIQ5Usp2sShvmc3njMrt1Av2NtGBNsp2yh3wHCSbo5SCeCE3p606V0vQwnm0fja1bA63R7Y3H18tRwa8cBQSBFFgIy/ZXBCGqQ/5nyFPoHoOSuE5Vfa4qGi9sk/ed7L0F4p8YeOcBl7Tb/vvy4nqqUE7gEs06V4qqJqO29/7K9AzREUl4Yh+Da6wvIiSrpDtxAB16iDMAesCqdht1AxBtq+/RoBuY3TLFcG/82S2C3cH0dCm5lS2E9UIIvgCclzNQxgbwe9u0FCVox4A0L4JDPFF382jO40ZY2/9Ze8fOY6FQM/ELgDAOJ/NTbaHn4Ecl+fObAcAQkigbteyOEa2we7x3q4p288v1VC1vPWE9aQe1xUKy2X4xOMncM2G/oJs/x7C+jkLCxQocNlx7sCjAIDN170O1/7ob8MkOkaOf/6SjkHhNnhk8YKpBrScyvbTR17CU1/881w1XouYOnMUtz/3m3jpq3/R1bql+ixq+ii0vlEohGNlcTb13/LqPJZIH85f9/O4ee1RnDz4bObPF5MDkSHsUANknTdkvHT/JzGIVVxbfw4XTh3O9LcltoYXyndggK/gpa/9de6xHPvyf0adlHDtP/lVAMDq5jfiitoLqNfWQA59DYfUKzC2cTsAQBm/Cgaxm9RXYTi25dl7tbG+m9U9QlksBgvEEbOCbA+6rhWjaYGSulasDahFdCDUcMFcF5PuFMjQ9sRxxYH6i8RJTQ2KhLU64NnII5TZvrw4h15Sgzq4OXMtAFgjPYAZVbbbbY9DHMTCjiBzw1C4ndkard1Ct4wtvUU0IC5LVNjIZ5zgmtBBYuoJZX9WC0eLGCCx5L0gx9PXU3TvfhZ37nHHhMtJJuW9ULbbZhzZnn2BtVTxVIjRjPqLoWzPM1HWVQrTt6a3HZ67w50Qgs1DZZxZqHqNAOtoEi9AKcH2Ea8Zohsd/eN9BjSF5LbgF7jSt5JfTwsgBQpcTgjL1YXzx4PX6tPHAMRHpwhQN95dpyKIazObjXz0uWGRDoCvzsRue+5Lv4O7LvwNlhfi3xfxKVqMEp1Qirv+2f8PR/b+HfZN/nPsuuH1MMrxvylBPZ9ANso9se/HgatGLDkOiOe3rMr2+HoKtzMR945ageomN8sS1wKTUGaKnF1h4S+g8vS54zbRQdoo273Gy3wZssKhLpi/yZLPWqkpE12oKImkTbtLddBQI6xHGMsr24MILL/JMZjTdEFN7RqDAOQbCwCA6D1NDkqeU0YO0q5vFAaxsbI0HzQpJ2e2+2Q7S9+gn8ahgStaS+N2HJiwj+5C48N6xkL/NdCIt4/znCsCXrNMHZSvT2W7XfHi2Nx1bCPfLQyPbUSVe/cYkuOe3Dfikaa1xfMAAAVuPsJYK8MQ5Li/XpQrOqNJ2e5dtzSnsl3rn4BOXPDVma6R7TuuvRP7tn8QI7f809y1RjbvAQBQwvMdC8WAFrGR79bU6/13bcPPvn4HBsrdabr5oVs34xfftCt3nS1DFTAOnJjznrG6pbzvBnSV4tDUCv7x4DQ+8LrtXZlTF3htoFjxKFCgQADr5FO4gFGMTm5F/+AIXpl4D66y9l/SMajMAo90MHOllEjepMXZBz6Km5/9f7GyNJ+rThye+uKf48BjX+163W5g4cIJAIB+6pGu1u2152CXx2D0jwMAlhfiVTBxoLUFrNE+3Pjun8M0hjH19ezq9sBaMqRsV9a5sr1v///BQe0a1KHj+LeyEeZltobayPV4sXInRvb/r0RVUVoMzT6NVwdejz4/+3v85nejTCy8+sRXceXKdzC36S3BtkoH8lksKCltFLxrlS0AgJ7+qLK95C0IhuBGlFG2UoHiNhYRk2xAHaI1LRbOnD8BnTgojWd7iFeEGjjh+6rMApOYQLqkmWyfO+ctqldGsynvBeqkAhoi25nr+guE2cam+4tOUQt+wL8fZ5zMt1/otjNb8FuIzxLlrgWLqyAZu6uTFFxC2a9nXISziNHkvBCMz8muRFcMj1CoV1uVidyue1avGSByc22zlbihLL5ppR0M3xo4SoyIzHYZ+3KhbOe8YXFnu/kIckOlocz27uSjbR6q4Ow6tpEHgJ1j3SPbKSXYMFDu2oKFINvXoytAgQKXA4IwrE6fCF7jCye9/08gn4Hkhj9V01HnGliCJXscXMeBRtwmsn1VGYRSa22gnZs6gxsXHvDGvLoYX88Wz+bJGetX3/kO3PULfw5FVaHpBiyugFlJyvbmZ/1UiCw0h6FKROMgQdmetfHSVXugt1W221IK42RluwOe8nnQoXrbhmXK7YDUlwFTSoEVf8NGXo6IISFSBwgpxyVJRZdooGGlfM4M+EDZ7h8P8X27oTBmlREA8hb8gHBQcoMGatnzTqB3bDsAb04TND4kNBZQX5nKU1i+C2jcAu8Uj0U1KLwzgc8dCy4nUNTvblKWjl4ZxLd1I5/epQYUtw7KnK7YZXcdvT7Zvg4bAboNQimmFe/70hxK76HRDVhGBfWpIwDyuXkAnlDB8OMzxD2Z5mkKUo3gGUm4oeS1kS8Pe8IPunoeThcjB+76wB/gilvelLvO2MYdsLg/rjzXmapDQ+Me67DuKNsBz/Xst95zDWgXrN8B4LpNA/iFN3aBbB/2nhGPzQiyff3MNXWV4v6XpzDco+Of3JjdzbLAaxfr5ywsUKDAZUff/Is413NN4wVjILAEulTQYjqY25E3aVFZOgSVMBx96hu56kRh1qu46tnfhfXYf+9q3W6hOnsaALBr7dlYa2JZDLJ58N5JVAbHAABrC1Op/1YxF1FV+2GUKji25wO4eeEbOPj0tzJ9fmAt6atnXMUAYZ272i8Xju3/Dq6yX0b11p/H/qG3Yuupz2ey3u/hVaDUB/WeX8JOdgIHnsjX3KFyC0xrKIV2XHM7ZjCEnsf+CL2khonb3xu8JwjAJPJZvE7bKILdwW3e94iQ7VD1lkXRIDtbKK6VEjS3sYiYZAPqEL0pSmD21KsAgMFNV7Rs2w7tcq4B35pTwkbeIWqTVeXy1AlvfJPbM9cCAFPpAbUbi+qWyEjLqMwmlMLiajzZDonvqpYSF7plXAGsBHKcu7YXHZARFjVAnLiMdW/MWReA7YR6zDHhcJppUU/1CQor7lpzTE/lnwHC+cOOOZeT1JHtQBXFI3MiFsc28ybdhpp98cJQFTDuEewClpNP2W6oSpDZnpe4F9js58FZjrt+yfZRTyXarfFtHCx1rdaVE4WyvUCBMARhaC+cCl7TV7xn9naW3u1+R2ukDJjpyXZB0IafG6raMHSztTH50H3/DTrxFnDra/G58K4tlOjJZHvLmGEkNhdwpw6Lq9myVVUDGhLIdt7a0N0J4UX/5lp2pkghpvXAYO1t5GVy0UXObouyHemV7Q7RQNsp23k+ko2pBlSf0BauP7LqYqI2K9vdnBbDLtWb5o+dCONOEI3H4toS31fNECmUBFrxGqTzEKiK/1xY85s6iZuPbB/cuBMAsHTheGDpn6RADWzkMyjbNW52JNs51UCRzkbe+R5QP2vlPhxTdwDoTpOHq5ahMl/Zvg7JdnXAI7BknEFei1g0vO+bx0aeUIopZSOUhaMAfBv5HGS2eIYw69UQ2Z7Dlr7Ujx5eg+s4cH3HDJqzSaZvZBMAoFy7sC5dEBRVxTQdE/8hXYeE1mE457BdDvW7XEy9cbAMSoBjs97v2nqaa+oqBefAj9+xBSWJuL0Cr12sn7OwQIEClxyHn38k6Gx2HQc7zEOwJm4K3id6BaVLTLar3G7txNcqKPNkS8U0mKx7No31V7ORup1w8PGvoI/UMFY71tW63YK1cBYA0I8qjr7waHdqmnUMYQV0YBJ9w153bX0p3lIyDrq9BFMbBADc8kO/gWPaHgx+5eewOHsBAGBbJp74q1/Bk5//s8QaUbULo1pgUbgeMfPtP8cMhnD9W34cvXf9FDbxKbyy7+up/pa5LnpJDbQ0gGtf9/04TrcDD/9xLnW7zkxwtbHwQyjFiYE7sds9ivMYw45rbg/ea0sAorGgpLZRMm15/fvxxLZfaLFRJErroqgbLEx5EzdXLUNjjetfTbAB9cj2xv1qze/Wnti6J3FccVADgjL++8Y1BKWBC7VpQa8+ewouJxiZlFO2W2ov1BDZbtZbF83TwkYC2S5hI4/IQmgYSoYM0WBsSfamjiXVmW6TUqwSnTkiviDbwpRDG1mkYXDHzK5E9zPRrRhlInct2FnriZiNmPxfzyEi+3lsEr0loz6PjbxQw4dz222XQc/Rhq+Hle1dsn3fPFTBmYVq1+pdDNyweQADZQ2lLhHkmwYrXVuwEMr29dqoUKDApQRnDCXiLyAvnw1e7697/yZtbOSVNiRvjZTBrQxku3AmChEyljGMstVMttuWid0nP41XNK8h20xQtotGrCxKdBMGEBPFAgDcrqFOsv1OEdWAntDwp0mQ7dBKsfVUlp7MBgCm98JoM5elTM6imRBhI9+8D3XYqZWKnpV6B7I9h+rRs+L36gsXIWllu16GTly4jkeuCstiVdKy2LO4DynlrXxKeRFF5PjND27QXJCf9FT6vGxqNUeud/Cc6ZPt3rOgPCk2OrkVDqeoz54MGhWS7KPF61ky23VuASnI9qhLWiyYXJPuaxEzo3cCkL/OwmCKF+eocHddKttLvmL5e0HZDgBmrxc/l9dWfbmyFT1rXrOfCjeXclxE8Jm1tUDck8dG3hjeDJUwLEyfbZD3OX6DAGBw3CPb++3prtnIdxsL+gYA+VT84QZB0ci+jlzVLwo0hWLDQBnHZtZACaB0SXnfDegKhUIJfuKu7Zd7KAUuMYoVjwIFvkcxP30WOz///Xj6k/8WAHDq0HOoEBN9u+5qbKSVUYKZ27I6CzTYLZMqZXAThrEc2FVnxdLCLMYxjwX0YXJuXzeGGcB86QsAgI1sCrW1bDmJlwJ8+RwuYAyrvIz5/fd3peb8lKe8KQ1uxIBPtlsr6cn2srMERx8A4OUZD/zU38CAiZN//X7MTZ3BoT9+G+4++wmUXv1CYg1u12FzJSBvGW2oJtYbVpcXcN3s13F083uh6QauvuNenCEbUH3yE+n+fmURAKBUBkAoxdI9/w+uM5/Hiw/+Q7ANZwz7H/tyarW8FtPUQva8FQBwauyNTdbcnchn8Xo7G/nNu6/D3T/9H1vfiFG2R1UvXC1DCy0CKgk2oC7Vm0hPd+44pjGMUoasTyD0fWNyrgFvsbbTwk8cXKICIetEtnQGc2RIOsfRVnuhO41FdTFeGbLdIlos2a5xG8g4WSaqnrjQnXTs2sFrooi3kc9KPgOAoxhNsQRBPX9xIJNdbVCvdQGdOxbsjAs/WslTJicp27N+X+H84cScywozM7sMAB4xwiNEkBOQ7XLKdgBNue2Wk8+q3VBpoGzvlu375qEylusOZletdUsYv/2aCez7zbdC7RJBftOWgSAHPi+2jfTAUOm6ytErUOBywQxZfpeq54J/j7le02mcW4pAu99Rk5RB7eRc8CgayvbG755bGUWfu9i03QsP/G+MYQHWPR/2/q4ar2yPPpunQY20I9vrsJCRbNdK0BOU7RpLYUkdraeWYMBumQtnVsnrPW0bx6VVo74CTmSDC2R5fnOpEds0GHwEd3LZyHNjAH1sGZyx0DO+HBFDg2gr7/k3IHYkFbxMaSbb7UApL1dP8Ylw2288YcI2vwsK46Gt12ONl9A7NCFdQy31AwCqqwsAPBt5lkPZrmo6ZskI2OLpjvbRgY18Cst3AR12x2NBlPQ28lmfy1+r6L3h+7HKy+gdHM1dy5uHW6A57wMXC32jHvm8HvPkLwa47xZI8+R6A7AHdmDMOgvOmBdDl4PM1ns858Ll+QtBg5Eiub4BAL1jXvzgwtRJML85R9a9RKCndwBVbmDUnYW7Tsn2Wo93LuexkSeqAZ24YK4Lx39uWac94l3F5qEylmr2ulK1A57q/gdv3oTJAfkmuQKvTayvM7FAgQKXDKf3PwaFcNx85m9w4fQRzB58HIwTbLv+nmAbqlegEA7LunSK4bhO/PKI91A5e+64VM3zh54FABzc9D5sZ6cxc+5ErjEKOLaFPQsP44B+IyjhOHP4+a7U7Sa0tQuY1yZwuOdm9J97rCs1l6Y9sr1nZCM03cAyKmCrrfmOSehxl+GWhoP/ntyyG6ff9Ke4vvY0jD+/DRusEzii7GqyDo8iml8cXSxZTzjwjY+hBBPb7/1FAJ6K/PT29+K6xQexstRq1RlFdcVbENHKXoPCjW/5URzQb8DAo78bLDLt+9iHcd0D78dz3/hEqjHpMEHUZlJx913/BOfIOAbv/OdNr2uB2jaBbDeF7Xt2i0Sv+7ZZ4SBcCzThWqBVYPDGImLSAqdD9abcRW35FGa17NlIImvUicm5BkRDkExmu9akvFdXzmFBHc9cJ6in98JwG8dE5EMqEtacNjTAab1+tAw2pAKexWeShWv2eg414u1NmSM1WfYWlZMz1rWMiwOuUop31XDMzCSB7jeGxDW2EKcOR9JG3rVav6/C7OzZtfAy6hEhggJlu2RmO9CsbLfcfDbynrLdq2fntKQX2Dzk3Y/OLFTXLdlOCEFZ794C0k/cvR2f+YW7u1JLoeT/z96fh0mS3dXd+OfGmkvt1V1d1fs6+/Tsm2aEBNpHAoSEbIEwYGMJsxrh1/gVBmEkQGBsfhiMwXqxQNgIgcAIIbSiXUizT8/W0zO971tVd62Zsd/fHxGRlUvkEpHVPdU9cZ5Hj3oqI2/ejIzlxvd8zznsWjew6oogOXK8FLCrIbl8nlGG7DCGaX52hmHCa3+S+0oMTbrINo1StlJEtCGuk+BYresGUV7LSDDbsN3gk3/Ms+atbL3l1QB41fZku53yvmdjorRrLsjQZKZoJnqd8rkeWdZvil5AEbKW5R0jrfOPYg5S7qpsz0K2h3NwmxxsdLyeCWNfMTs+Q6nS66v4X9h0K+PMcfbEQWS01jQy2sir+rKCEqgjdvpRti+vWftVtmuxsj1ady0/0/RfaN9x872UfuU0w6PZCdSBsUkAFi+EjT1K4PalbAe4qE+gL5ys/RZKm3V0jXxLkdlu9qJsV3W0Hmzk8d1VS7KtNK67+/UUf/kEA83xbRkQaAV0aWVyJ7scGJ0M64QvF7LdXBtGN/SbYa6u2cEEF1iYvxj9Ift4G68PnRTOPv/tvq+hAKNRxN7i+WN4UcxbP+NBWH+7qIxQFhb+Ko0c8IdDt8O+XAaie6HjWLjey0PZDrBpLKx5rDb3ud9752381tt3v9TTyPESYHUdiTly5LhsqBx5jHnKLIkSx//6FwlOPs4xdVPDonzZEqh3S8J+YUgHmpSZI1NbAZg9fSTTmHPHnsGTCtvf9LMAHHn0M/1MsYZ9j3yeURaQr/r34fyOPL0i464kitY5qoUJ7E2vZJe9l8riXOoxqksLnPzVa9j77c8CULkQqnCGJ8Ku03kxhKxc7Hm8AbmAKDU+/O1+9dt5ZMfPcMzcif0v/5GZkZsxgvbFRulZYZZz/N+qiSZXH9luWxU27f0wTw/cz2SdnfmO174bA5d9X/lY1zGqEdluDIwA4cOC8eBvsDU4zuOf/H0e+evf4b6Tf4IjNbxDvTVUGNKFpsLUyJpJ1v/Kfq6987sa/q4XOivbY4tqPSPZbopGxVCsejHiwpRewpDLZGY7G9CwYLa83WDlBEuljannFDcXJKmBIdx3WRQvvtBQ6gp6ResMS4Xs6pTAGKRQl/9ZI9szKNs9oUOCqinLdxV6AU0EtUaQemTJu/fa2Zv6Dl6GwoqvmonkuPQdHKk1uDr0Nl4BPYG8x7dxUxbOzWKobPfsBLLdd3BT2umaEXnvJ+ThatJpS9h0gitMlDY28lkecOP8spVUthd0lSU7JNsdf+Vs5AECmVuhZ8Wbb17P3dvGum+YI8dVjrh58ZyxiTX+OQDOH3sBgCVZSHRfiaFLp23TmqsW0bzen9nidU59nrQ2OEFJ2LXnhaP7nuBabx/uHe+mPBg2fXpWGycv18JJed+zRXuyXXgWbsr7lIjWQE5Cw6SBU3u9VyhGeO1vdldLS9wrhUEM4eHYyb9tZtVo9B6/rjHe9zw0ESB6JKDDhuX2jfXh2i178X/T7u8A4OSz30R6Nq5UUdRsZEfbTPSMKkqpGg3PjzFRlMUlCpafhfx4flFzwUrYyAOp16jNGIme3asXTgOho0K/BOpScYqSdaarpX+NLOsxs10GAaZwa/WotlC0Hsl2By+DI9aVCrXPjOsatCKGdCKHi9W3/waHRqlKg2AVqu4vBca23ARAIaoLZcXghmsBOHVgD9CfLf3ImklOiCn8448S+BE53oebx+iaKRyp4Vw4Xose6dc2H2BBDZ9BVmvkgL5mG9CvjXy8BrJwY2X7y4Fsj57T9VX2jK4oYlXZ2ue4fFhdR2KOHDkuG4rTT3PUvJYDN/4sd819np0zX+Xc0E0N28R2ypeLbJdBgJHQib9mfdjBWTl/JNvA5/ZyUl3Puo07OKhuh0Nf7W+iEZae/FvOsIYb73szp1mLf+a5FRl3JTHkTuOW1jF12xsxhMeBx/4x9RjHnn+UDfIsi4/8HwCc2dN4UmFsbagarqhDqNZMT2N5rsMQFZRSa8H93h/+IDf84jeZ2nItUi93JNtpykMOyfYe8touM578m99mIjjP2Hd/sOHvExu2cVJdj3/qqa5j2BHZXv9QtevWV/LY0Ou4/rn/yu3PfJCHx9/KU6OvY83FJ3ual4mD0Hsjx40aAZhMPrtRAbJTZns7xOd6vWIoVhjHqhdhlCjWKdvb2YAGaqMyZ413Gm94S+o5xTbiSTnXEBVrM9jIB4qGkMvFoGHnHE45vfK+BnOQklwmZWtFrgxND26T6j6GlkIZFUOJfrek2I8sGfDt7E2F76ZWegP4ajGRHJeekynLMdCKaAlFauHZqecXk+1+EtkeOHgpSQczapQJEpTtWpAhuxZwFLPF1t+ToKsCJcPDZJzz3pzZ3o8C+vqpQfYcn10eawUevNcMGLW5mqusa/5KwU+8egf/7vXXvtTTyJHjJUdMti8ObGVQVJmfnWHu9EEATuqbE91XYmgJMUAxXK2M1sGCvmX7aJ1Tv24wR8ImwNnpUPl6bt+3Adh5z4NouhGSGm2U7Xjpbd8dDNR2ZLtv44q0SvRI1ZVAapvSTb1+i1X/TgLZnsZ2VysOAlBt0/SsBtls5OOivF+3Zq3FA/Q4v0DtHMWl4qd2JarHmsnNnGEt7tGHowig7ERHc7SV12cGfHPed78WyHHjihcp2vtV8q80hkbGw+bs+fD8VgMnW3xBHdyB9Yy4Z7ta+tfItx6V7XYt5qLzvhOagdaLNX3gZmrSfblDRLGSmvRqzT2rCUJRmFHG+opDuJKw5dpbOfrOr7Bj9yu6b9wB67beCMDCsWeB7NEZMc4M3sjoxaf7dhsBUFSVaWWMYP4UvheT9/0p2wGq5jgAwSp1uBiaioQ5fZDt8ZrFtau4fki2ay8DrnfTWHjv1XJiO8cqQV4typHjZYoNlX0sjt/MHW/9WY4qmxhnDrn+9oZtNDO2tO29cNMPXNdBEbLloapYHuQiQ3izxzONW54/wEwpJOzPr72PLXOP9p1DH/g+26a/wpGJ70IoCueK2ynO7e9rzJWGDALGgxkYWs/ma27lHGNU9n0p9ThzR/YAsP3iNwl8n2DhDBfESE2VUNVH0O3elO3zF8Nsd32wswWebLIOb4FnNag8pWaGap9VhLmZs9yw/3/y+JrvYct1t7e8PlPcRrmHY8auhIW54mCjG8DG7/8QunR5tnQ3d/yb/w8238c27zDzs50bHzzXQRd+z+qeQheyPS7wGYX0ZPtyUXT5GhO4VoPCWBhlCti1c7admihUtofHQGVxjnHm0Ma3pp6THquBE1RRge9jCD+T4sUXek3ZLoOAtcF5GN6QepwYwhxqsCSNmwO0bgqQBHgJZHv8XVOT7XFHdcJ9I4uFa2hvmkBmBy5BJnK8kEiOS8/OlOUo1UKD80JtfhkUNIVSfOy1nmvCd/DT2sjrBoEUBG7rb6GRvvEBYlv/xmuzG2TLa4f2ynazD4L8vu1rODy9xJk5K1TJrwA5LoRgQ2Qlnyvbc+TI0Q9iJxo5vhOA6RMHcKYPUZEmi4VJtE7K9g7xLr5WQvd7t5GP43L0unVDeSxsAlyMlK/+6Wc4KdYxOBw2yVZEEWm3UbY3rc17gSNMtDaxUWF8SrrxaoXmJnI8VsmmVbbXF67roUsv1XpGK4Rke2VxNvlzMiqMY7I9VnjDcqNBrznm3dzBdLy+iv8ApwZuYPjC033nZsdke7zGDCKCNzOxoxoNZLsbNSdmHc8oRMp2JybbbRyp9q1IXykIReGCGCFYCOMr1MAjyOByVA9lZBNrgxncqFG03b5T48zlHpXtttUb2Y7Sm4182KS7+sjiVQ+9iBkr2/tourmUmNfXZorGulKRVFdKi5HxdcxTxj8XuuoofWaie1N3sNU9hFMJm/G0Psh2gDltLfriafz4Gt/n/ACcQlh/XK3K9rWbwobkXu/dSYivv65drdnIr5LbzyVFbCOfx5XlWC3Ij8QcOV6GOH/qCGu5iLnlLjTdYPaB9+NLwbqbv7Nhu5hsd6zLo2yPCbck27sZdS3K/MlM407Zh7FHw8VL6brXMMEFjr24J/M8AV588qtMcIGh294GQGVkF+uq2TLlIfxN5mbO9jWnZszPXaAkbPTRDQhF4ejwXaw9/+3U48gzz+JIjTXM8uKTX0VdOsucuqxMd4xRCu5sT2MtRGS7OdSZbBdGiQLti43CsxsLeqqJvsqU7c//1ftRZMDOf/bria9bI7tYZx/tOo5bmQWgPNToBjC5eRcL73mEG9/7KTTdYPLmV6MIyZEnv9JxPKdHpUCM2Io6SFDbQh3ZnkHZHs/BrVcg+TZ2HUmpGCVUIWsKB4Nka/NAW1bmnD8ZnoultVtTz6lQjNXArQXr5WtUFmW7jojUHLMzZykIF2NsU+pxYqjFYUzh1hTkcT5kFnVPmCffSBg7TrpibW1ecWE6QU2dVgkGHRRXGRUqUi2gJ5Dj+G7qbFgAqRcTx8uiRDeMAr4UiceeEjipczWFomBhIN2E3yJw2qojO8FTWy2OvYDM5HhN2e7WK9tlXw/L924Pr5XfPjSN40uMFWrpj63kc7I9R44c/SAmgotT4bPJ/NnDiItHOaeuw1eLaB2cnXTaE8aBXsYIem+QrjXp1a3fhtZMAVC5GCpfB2af51xpOQapKorgJD8Xhkr0lGS7YrZtLlAy3EcVrdFmvPY50ZokbQNhbFvuNjXBmTipxtJLQwBYS8muAIr0MxFZSrQu8Oua6tza+q23tWo3dzAVr+98YGfydrY6+xHOUqa1Vow4+zxuAI4ti7MSO1IzQ8VuBL9PW3o9WgPH40jfwetDyX8pMK+NoVbC53G1z4gAgMKazejCZ+ncEaD9vqs9n/SiQgfcakTed3HsEqoeNoR0gQjcVUuyrWYoRglTuFGj1+pUjxtv/k3GH/yll3oaVxSEonBWW09x9kUAlD5jB8aufQWG8KgcfhQAVe/vWKkUJiha52rXeKVP5T1AUJ4AVi/ZPrp2iifu++9c9x3vyDxGrbbmLNvIa0KuyPxWMzaP5c/oOVYXLsmRePLkSX7oh36I8fFxisUiN998M4899ljtdSkl73//+5mamqJYLPLa176W/fsb1X0XLlzgXe96F0NDQ4yMjPBjP/ZjLC5evtzoHDlWIx7+/R/m6d98DQ/94Y/zyN/+HlY1mfzqhpPPfQuA9TfcB8At3/XPmP/p59l6/Z0N28VZzU6brOaVRky4qQn21gvmOgqV06nHvHDuJOPMYUyFVkk773wtjtQ4/eTn+prrxcf/LzMMc+1drwNAm7yRSc6zMHch23gfeQcv/tnP9DWnljHPHAGgPB4RettfzQ7/EDNnT6QaZ3D+RZ4dfAUXGeTiE3+HUT1PxRivve4Xxij7vWXBV2fDbMrScDeyvUwxiRCLX/fthgKc0EwMVo+y/eSh57j9zCd4dtu/Ynxdcm64Pnk9E1xg7uJ0x7H8yhyBFJTKQy2vTWzYVssB3LjjZi4wxNKBb3Ycz66GBSrV6I0cr1lRJ6hjYbnAF6s50iAmcuuJ2VBhvPyApkUZ6nYlXAMY0oEEG9D6YuH82ZBsH5nclnpOhlGI1MCtxd9llUX6Bz6paCjR/GZOHQJgYGJr6nFiaKUwO3UxuubETQ96Bht5TxgoTcr2WBmV1XK1uTAN6ZVgEJPtyTbyQRayXSuEx1AzfDtbQbTNeFmU6CE5biKTyHbfxlcy2L4LHZlw7oYuAxkcGpRCi9OAGwgKerZHiljZbnthQUBKGeas9/GwPD5gcu26Qb59cAbH81dE2Q6wMVa2513zOXLk6APx/XFkaheuVLGnj1JYOsGsuZ5AK6J3yM82pAttIkACvYQZ9K5sjwnB+vXbyPhkOMe5s8ggYIN9EGv8htrrtlJCaUe2e1ZqctwTZtvYqCz3Pc1MbvhbXr+lWyNpNbJ9eTzPdVCF7DkTHcAsh2s2u5JMtmvSzZTZrqjhe+qV7V5KdXY3dzBden3ZyAOM7HoFReFQnHm2r9xsPRICxK4McfSUntWmXTXQqLOR9/pTysfnUu2ZyXNwVpm9dcUYx7DCZ09Nesg+le1DkzsAcM6HURjtmn7TZrbHDTNJdaF6KJqBKiSB33nckGxfXb/FlQAlugaWZWXVku07b3mgpY6ZozvmipuZsI4A/ZPZW2+8F1vqDJx9BOhf2e6WJhlyz9euyVqf5D2AMhjG5KxWG3mA29/wLxgYGu2+YRuo0fXXcyz8hWn+0vgAE0662u+ViLUDJoamoL8cAupzXBFY8WrRxYsXuf/++9F1nc9+9rPs3buX//pf/yujo8sXjP/8n/8zv/d7v8cf/dEf8fDDD1Mul3nDG96AZS0/xLzrXe/iueee44tf/CKf/vSn+frXv8573vOelZ5ujhxXDHzP47bpTzPonGfDua9z91O/zDOf/9NMY1lHH2OGYdZt2F772+jaqZbtanbKPZDtge/zxOf/d9cHnU5wouJTEpHllKYYdtIrv0/v3wPAmu23AFAaGGa/eQPm8W9knifA8PQejgzchhp1gY5u3Q3Ayf29ZWbXo7I4x3b3AGsW9vU1p2YsnDsGwNC6MLd62z1vAeDww3/f8xgyCNjoHMJZczMHhu9n6sxXKDvT2IW1y9uUxhgM2uQ3NsFaCC3OB0YnOm6nmAPowk/MXISwANeQ46iZYTFoBTB96ijPfuPv+hrj2Df+HAeDW//ZL7bdZnRreEyePrCn41jSmmdRFGu2/e0gFIWj5d0MnX+s43bxeab2qHhRVDXM6EwgAGE5D9rMYCO/bHW1/DsLz2lQvahGeB2qVhaQQUBBuIlqHakatWKhNR0e+2vWp89sX1YDtxKUsRpNzVDUC4SOGtnIL54LHQ3GMjQDxDAHw4aXpbmwYBZbVmYh231FR2lSj7u1IlfKQnetMN26/0JXgnRFPama6AnKdiVwUyu9AdCLbWzfs2XAC6NEIWG8kCRIP54lTKTTes9VAxc/Q0HUwQCvdX5ZXAYgan64BMp2K1K2u37Yfd+vDdx9O8b51sGZvlXy9aiR7Rkt83PkyJED6hyBSgOcV9YQzJ5g2D6FPbARqRXaEp8yCDDw2iuqjQEKnSKYWuYRrRvq1jSabnCRQbyFc5w/fZRRFihsvKX2uq2UUN1ksl3xbbyU5LinmBiydb0AoPoWfpvGgnaI17bN0UdOxvVbTUmdlImegpwoRA2zbhuyXZUeZLGRjwj6egebmrK91/m1a0KMoK+Asn3rza/AlSrbqs80NNSmhRHVJrzomSQmYnQjG2EcNmsvk+1BTdmejbw3zJhsj2zkV6Gy3THHKbvh87gmnb4bKdZsCMl29WLY6NzuuWFZ2d7b83rclNQ1His6Nl23fZMShOv81apoXc1QowaXonD6vg7kWF1wR7YxRehyofR5HTDMAkf0Heyw9gJ9NEDFGFrPeDCDjDPbU9YPkmAMh82EQYbGtisF8b3LcyxmvvFhbhUHKUbNflczFEWwcbSY28jnWDVY8SPxt37rt9i0aRN/8id/wt133822bdt4/etfz44d4SJMSsnv/u7v8ku/9Et87/d+L7t37+bP/uzPOHXqFJ/85CcBeP755/nc5z7HH//xH3PPPffwwAMP8Pu///t8/OMf59SpUys95Rw5rgicP30EQ/jMv/KX2fQrz3NSrMM//UymsYrTT3OieG3X/DCjEHePd1dJPPdPn+L2b/80z3ztbzLNCTp34svhjYz751OPuXjiGRypsn77jbW/za+/n11LT+K52ZTQge+z2TmIs/am2t827rqVQArmj6b/TY499xCaCNjon2hLLmdB9ULYxbhmKiQc10xuZr+6E7H/Cz2PcfbkIYZYorBpN+oNb2FrcIxN3lGC8rraNkppnCG5iO91f3h2FkJicKgL2a5Gx151KTkXMiSy6pTtegFzhZTtBz7569zwjz/CM1/vg3B3KiyIAQqlgbabbNhxE74UzB/rfMxIa54K5Z4+1l5/DzvsfR2Po1rBMYXtuy2MRLUtgHSruFLNZLm4/ECwXMSUfpOyPcqMtyuLyzagSUUwrVBTtnuzJ5hmJFMDAETfN4Fsd2rXqPSEtlR0lKjAZE0fxpY6Y21cD3pBMXKHqERke1zY0zPY+QeKgQgaLUTdjDby7ch23/PQRJC6c15qhcQsUSG9TEUzoRcxE23knWxku15MvPaEtu/pzwlbFCDh2FMDJ1OupiOSyXZDuqldBgB8rdU235XZCehmZbvrh//fb2f6vdvHOXGxypHpJfQVspTLbeRz5MixEvDjWJxCmYv6BMbiCdb5Z5EjW5Basa3S23UdFCHb3peFOUCpDXGdhKCNM9G8MoKoTHP6hdAOdt01dy3PQSujesnrQSWw0yvbFROjjZJfC5zUyvZlcrxxH8bEXVqyPbbY9+rWNG7KTHSgVuz2qh2U7RnIDqEIbKk3uDHVnqd7jBVqJpzrEfg+mggyNefVo1Aa4Ki2lSEqfRGeNTI7eiaRbky2ZyR2tMYYspqKMkMkE4TNKp5UkDHx6zt9KfkvBfzyBIPeRSCMCOjXRn5weIx5SgxUjgPtFa1aSmV7rem3m418lOXsOl3I9iCbI9bLHWp9s0OWJuccqxb62p21f69EJvrFsd2URNyw1N94+ugmSsLGngvFVtoKkO3FsVBcFoirt2k6Fl241UW2H/44e0Zfh1YcfIlndXmwabSElpPtOVYJVny18alPfYo3vOENvOMd7+BrX/saGzZs4Cd/8id597vfDcDhw4c5c+YMr33ta2vvGR4e5p577uHb3/4273znO/n2t7/NyMgId965bAXz2te+FkVRePjhh/m+7/u+ls+1bRvbXl5gzc+HDzKu6+K6qyvHtxnx/Fb7PK9UXC379/zRfUwCg+u24bou54o7Kc/uS/29ZBCwyXqBfRve0fW9alSId6qLXbdd2PslACr7/hH3la3naC+wliKlhKK3fJ4yvIFBUeXi9BkGhkNF59Nf+guGpnaw9Ya7244pzz3PCXUjm4RSG3P4+tcwcOQP2fv4V9h1x3elnuepQ3vZIqoUN91SG1PVTU4pk/hnnuv5N4m3mzsQ5qjrwufAC0+yZYVssLyLJ7jAEIOKWvus85PfwY0n/5JqZakncvTUvkeYBNZsu4WBkbXY39IpCBc5MLH83ctjqEJyfvp0zX6y7ZwWp1mSBYy6OSVB6GFxa3HuAqXBkZbXFT+0qqyNoeioQrIURSv0c76PXHgKRUg2fPmnObXletauz6A+dqs4wuw4D1U3Oa1M4p99vvN87QWqSqmn7zR8zQMU9v9Xntvzda65/TsTt7GiBgahtp5nbaeAiXSqidfTwKliY0CWfR7ZX1qVumuMZ+MJve7cCh8arMU5KovzmJB4jZCKjoGD67oo8ye5qK5lOONx4KI3fN8YViVq/kix72IEioYahGsSeeEwZ5R1rA+CzPcoszwCQHXuPK7r4sVNFKqWeixf6Gh+4/e1K+G5lOY4CScQPlw71UrD+6pLCwwRZtenGS9QQ3vT5vfENvLdxmrev1I1MWkdD9/G72G8FmgFdOFTWVqsRTpATLYXUo9nCxPcSsv7VOmk3ndA6ACSMJ5BWNhPfRyrJnpgNexXLwBDF5muuyIIlexLVvibLFmRhSuyr+v4HZuGEAJmlhw0sTJrwMlBPZpbsCLjtcPVsm5drVjt+3e1zivHysGPiEKzWKZSnGJq/mmKwsFcux3rVKVtLJJjVzGgrX25Yg5QEjaB73d1Q4LlJj2jicxa1EbQqtNUju9hnhJTm5cz2z2tTMGeSf58Pz057guDAsnNBWrgEKRUtmtGO7I9Iu66qWSbEBeu6xvPl8n23gne+FnGqya7Aqj4mS2abaGDv1wHq+WO90pAd1C2u66NCaldiZIwM3IzO2cOZmpsjGHGrnvOsnIcQMtIFLVXtmf/vkuiSFANyWx8py8l/6WAMjDBmJxFBkGYV99nIwXAjDLBGuckAHqbfVccGCKQAtXrLZ4wPueMLk3EseLV7yKiUGRGR6yXOeI4N1iZ60CO1YOB9dfAE+G/s0TkNUPbfBec+yugf2V7eW0Yg+nOHAFA7eOaHGNoTShyuJqbbmLRw8JjH+cGZph91U9y5li2mNMrDW+6aZLTcysnXMuRox+s+FXm0KFD/OEf/iE///M/zy/+4i/y6KOP8rM/+7MYhsGP/MiPcObMGQDWrVvX8L5169bVXjtz5gwTE42qR03TGBsbq23TjA996EP86q/+asvfv/CFL1AqZVO2XW588YtffKmncFXjSt+/7uFvcDOw5/nDPLP/JKqc4D7rS3zmM59JNY69MM0/Y54TzhDnu7w38D2+Dzhx+ABnu2y780yYA7/23LdSzymGNX2YHcBzz7/IwfOND0zWuQXuBr7w6b+hMLoRGUheuec/8oR5N3uP/HDbMbddeJ6TyhTP1M0pCHw2yhIHv/6X7D+b/oZsH3+ELcD+czZH68adEOsxpvem/v7K8Yd5kS1cw1Ge/OqneO7wudRzSkL5zAGmGeUbdfOpik28giX+8v/8Dwrrruk6hnjxy+yUJR576gWE8iJT6g3cHTzF8ZkK56Jxq2fPcSfw5c//A4WR1jiCeminDjHHAI922UfW2SPcBnzz61+mMNJqr7/RWsRSSrV97Zw6wz3AP37+86hGIfP5HvgeD7oH+YfS93Bn5RvM/Om7ePjm/7eWidgrSrPT2FLteiysE1Po5zsfM8OzZ1iUZk/HVeB7bJEm+7/xNxw4k6xuqk4fYhfwzN597D/TW7bnrRjMTZ+u7df6/StOHcdG50sZznvrwnGuA/Y88Sj7joeFqfLcBexged9Zs6e4Ftjz+MMo+4/xDuDQsZOcavo8OTPHbunwmc98ho1zx5hWhtmb8Vp0GzpzM2da9rk1c5TtwHPPv8DB8+kIkdKSxagfzm9y5gBnxTh76sZPe8x6rsPbgQPP7eHYUgn3yEHuBr74pa+gdHEtacao7TMUVBq+r3XxBFuAvfte5NAF2fNY9vw5dgLPPv0EB87V2ZraS3w/cPTEKc6k+F3ExQWuk3bLbzFlLeLQ/RyLEe9f9+wM9wmfv/3036Moy2TE0Pwslq+kvn47J89yD/DZf/g0Wh1hsdmusKRoqce7JtCozE63vO86t8p81c0wnkplbqbhfUHg831CcvL0udp1vFdoixabfKthPDdQqCzMZb73a0LliaeeYeDc08w5ABpP7XkC/2jvx10SNpRUTiwJThw9wmc+c6ivsQAWXVBQefHZPXzmRPrImLS40tetqx2rdf9WKr1nbue4MhGT3GahhDewgY1zoePU0NRO7POHEqNJYJnkbeeuoxRCJ6DK0nxPmZ/StXCl2kKO2cYYpn0BMb2XE/p2bqhbU/h6GaN6PHE8LbCwjXRZo75qtv2+urSRWlrb97DuU6/0huV919WSuglxI4JfbyOfMhM9HKeAIzUCO9mxS8fLTLa76A028nGjQa9ku6IXwkbqIGhxvfNcJyLbVyAvd9NdMPPJvnKzY8eqwIkz2x0cqWKkXPfGEJqJKiSe66DpBkFkWZwlkinGtDqBMh8Sz8J3Vp11uT48iSE85mZnouOufxJr3lzHtuoRoL0rgFkocU6MUrB7cyqMXc+0LmR77LrgdiHbReARrLLGhysB9Y5puY381YXJrcvOnyuhbJ+64ZUQpRm2a7rpFSNRDKY6F0YDrgTZPjaxAbi6yfbY3eeW6X9gr3kzu266l33Hsj2fX2l4592bX+op5MhRw4pfZYIg4M477+Q3fuM3ALjtttt49tln+aM/+iN+5Ed+ZKU/rob3ve99/PzP/3ztv+fn59m0aROvf/3rGRoaumSfuxJwXZcvfvGLvO51r0Pv024lRyuulv376J9+jfOzo3z397wVgKe0GcYf/VvuvWN3Kivip77wvwF44C3vYu36rR23dV0X9ymV9RNj3PXgg223W1yYZfCJw+w1buIG91kGbr+Z8clNPc8pxguP/iMchzvuuY8t197W8Nq5E4fgox/kmo1j3PSqBzlzbD/jT80zXFR5dZu5ySCg8uRPsnfDq3mwaZtn9/8xO9wX2NXhe7XDox/5EucY461vf2fj389+mU2nPsXuHsd0XZcvfP4L7PIPsH/quxk5/Wk2mEsd93UaPLvvf1ApTDZ8d9/zuPhbv8MmeYy7Hvy5rmM8tf9POGFs481veTMAj1kvwPNPcdOdr2TX7a8G4OgLU/DXv8GNu7Zw7V2v7TAaPH70r6k4Qy2/RzMOPT0Cp+CWG69nxy33t7y+/9nfIigO18Z56h8vwgzcd+89PPLEU5nP90NPfwvzaZet3/FDnJc/yHWffxcLM//EXT/6W6nGeeLwxwmCYtfv+eiZf2Tj6c9wS4ftnt33RwTacNexYryw7/fY4h/jpjbb73v483Ac7r73fjbuvLmnMY899SuMDpjsft3rWq6nj577Km7F6Hl+9Thx4Bk4Ctdfew3X3/tGAJ48/BfIoFAb79yJQ3AYrt25lTVbb4Z9cO0NN3LjA42f99hf78XY5/Hggw9y6qlf5NTovZnmBHD8qV9mtGxyR9P79z/xVTgGd9x1b2oHisdOfBpjJuDBBx/kxFO/xNnRO3nwwQf7ukdZz/wEG9cMcOeDD/LYXz+HM6vxlre8JdUYAE8e+hiFymzD/jr09LfgCNxy252J52A7nD91BA7CNTu2ctOrlse7cPYE7IUdu65j93f1/rs8trAHc7/b8ls+v/e/4Wrlrr9x8/7d87mz8Di8+lWvZKDONWPPgY8irELqY+aZryzCt+D+++5uuO8dfPZDuKXez9sYLz772wwVVL6j6X0nnvolysNjvCrlePuf/S2GilrDeEsLc/AUbN6+k9velG68R6e/SeH48u/hui4feeFLTK4d58EHs7my/PKTX2bHtdt48IFtnLhYhce/wSvuuZsHdo5nGi/GU+IFPvKto1x7zQ4efO2u7m/oAXe+Yomt4yUUpT+b+064WtatqxWrff/G7mw5rl4EThVPKuiGiTKyCUJejonN1zD9/DcwcRKJz27xLnpkFWot9k62O+gtJtduYZzh6jGG3bOcHru3ce76AGaQ3BASxp2kU8cFiklROIlqfE06yIzKdr9J2R6rZONCdK8wYnK3gcyOVPIpc70rokBgJZPtmnQzW7W76OAvE41+ZKfdazNAHM3kOFZL/JIXj7UCitaJ6x+APeD1oS5WVBVb6rWopzgTPevs4nPJsatouoGMYnf0jDbyAAvmJIXKaSAk2/tR8l8KFMfWAzB77jjj0l0RtbJVmoKoH6WTonVGn2LQ7Y1sj8/h5piLZigRAex1yWxXAxc/5fUkx3KsJNB3nESO1YWRNZPMUWaYpRUhs9dvvZaLDDEgl9AzNkDFGJ/cTCAFpWoYI9wveQ9hnMmCLCKvZhv56PpbEC7W7e9+iWeTI8fLFytOtk9NTXHDDTc0/O3666/nb/4mzHGenAwths+ePcvU1LIC8uzZs9x66621bc6da1R2ep7HhQsXau9vhmmamGbr4knX9VVZSEnClTTXKxFX+v7VF48zrU+xNvoO6669Cx6Fc4f2sG5j7zbX7sknOccY67f0Vni2MMC3Ou67Y3u+wi0igNf8Mnzun3NizxeZ/O4f73lONUSFgmJpsOXz1m3chicVnIsn0XWd8/sfYROg+dW2c5s+dZQ1LFLcuLtlG2fLd3Dj3v+MYy1RTrAp74Tyxb2cLu5iomlMY8NNTJz6U+YWZhkeW9vTWE7lAmu5yIlt93Dm4l5Kcy+u2HE66JxnZvjGhvF0XeeZ4ftYd+4bPX3OmsoBzo7dVdv2htf/Kx66cJBbd7+i9rfRteFDu7s403VMw5mjqg133a44GGYbBm7y76tJF6kVaq/p0YOgDJza98yyH2cPPoInFXbccj+F0gBPfOsBhs8/mnosNcpr7ro/pm5g8vSfsVBZYHB4LHkbfwnLHO95Dgvr7uS643+JqijJNqLxeVZuPc/awVUKKL69vL/r9q/i27ii+3dNQqEU/m4icOvGa9x35ehYkG61ZhdpFAZaPk81ihjCI1AU1vjTnB7ZmPlc8hQTJXBa3i/9UPFillo/vys0A016aKrKpH+Gs2PbWs7NtGNeFINgzaHrOsJ3cNAZyPCdpWai1v0GADKIv2s51bzKA1GDo+80jRfm1RuFUqrxFKOIgdv6e0sXR+39uIv3rx4p/wLXbnivKl38FOPFMIrReF7j91UDF6maqcfz1AJa0HrP1aOM9bTj+YqJ2nwsR7+FZqb7bQEUs4QpG/edG4TZ61nPN1NX8QKBruvIKOuvaPa/Zrt/11o+8q2jFFZw/Xft+pEVGacXXOnr1tWO1bp/V+OccqwspBvG72hAcU2o3pplgJHhMRSjhCYCHNfBaCKGl5XtbTKRC+H9t1rprWFDehaOMCg3/T0orWXt9DnKssKZqd2N7zEHKbYh27XAIUipRA8i8saqLlIaGG54TZcOUktHjsXkuN9EvNXU3l1Uss0wE8n2dGR2DBsTvGRHNQ0/s8LYEQbCq7eRDz+jVxtfJXJKcOxWst2N9uNKkGybdt7MPKW+1cW20JHxfvQc3D5UikpENLu2BQPDy2S7bhLIbO46dmmKiQuhN3OobF9d1/SB8fC5fWHmJJN4K/LbBkMbIUqX6ESKLRbXM75wpLcxo4aK5piLZih6bCPf2XFMkS6uMtDTZ+dYht5gI7+6juUc/eOstoFh78XU97MkCEXhWPF6dlX2tDTxpYVumEyLYcacsHGpn2iPeswqo0jl6le2n2Etu1/zA/TnEZcjR46s6K/dKAH3338/L7zwQsPfXnzxRbZsCR8kt23bxuTkJF/60pdqr8/Pz/Pwww9z3333AXDfffcxOzvL448/Xtvmy1/+MkEQcM8996z0lHPkuCIwUDnBUnFD7b/Xb72eijRZOvZUunFmnuFk6bqet7cwwelsaVl98aucY4zr7349h5WtBAe/mmpOMfzooar5QR/CBda0GCOYDa0L7WPh9UH1kq2yAc4c3APAmu23tLw2ddsbMYTPgcfS24husPZTGbuh5e/jW8OC1Kn9T/Q+2MWDAGza/R1URq5lonow9XzaYcSfIRhotXUX17yeHf5hzp7o/FlWdYmN/klYd1Ptb8Oja7j3J/4nheLyg9fwWBj74S0mZzjWw3DncIyRrtuZpVCd41rJ2YZ60Kh2iR8QXCe5iNUrxKknOKJto1AKH8Y9rYwapM9PVX2rp9zKkS2hsvzU/j1ttzH9RTxjsOfPLm69i1EWOHfqcOLrtQy8hPOsHTzVRPWTzzXhWbgi2wNQbNNYXxRVokaFGIVy+N19u7JsA5pQeImzMy+cP0lZWOij6d01YriKieK3HkuxjWgme0lFR5UeM+dOUBQOhYmdmecXY0kZRLGiXEjPwclY0JOKgSYbj/NYGdVz5meEWqG7OS+1pshLN57Qw0x0r8keUpEeMoM6So1+O8dqzIzMai8ZZxk6TdcqTbqZCue+WkRNOPZC1Vv6Qoinho0y9XAzWODGEHoJsylP2JNgatlVAgVdwXL9cG5+WBYwtP4fUe7aNoYiwNRX/HEnR44cObLDDUlugOHJsGH6vBoKChQjvIda1dZc43j9prW5jxrR2tle6tEdwbNxEkriysBahlhCFZLR7bc3vCbMAUoyeT2oSzu1Ej3evrrUqvg2pAMpyfu4QSEm6mIEKQnoGJqm40vRRLans2mP4QgT4bbZd3iZLZo9oSPq7vOB56SaX7wWcKzW5/147aWsgPpZUVUOFXfjGMPdN+4AB6Nmmy99J1T2Z51TdC7FzxeB5+BJBVXLTsbIoY2MB6FwSAlWX0746EToiGhdPL1iNvL6WGjf60i1xZGjHu7gZiaCHpXtdlQXKja3AzUiPjZ9r7OyXQk8glX2W1wJMIrL9YKVuA7kWF2YL4Xn7kq4lwBUp+5hUXQ+Z3vFRW0ta4NpILwXr8iY5gbcPu9BqxmFYhlL6hzZ+a4Va1DIkSNHeqx49em9730vDz30EL/xG7/BgQMH+NjHPsaHP/xhfuqnfgoAIQQ/93M/x6/92q/xqU99imeeeYYf/uEfZv369bz1rW8FQiX8G9/4Rt797nfzyCOP8E//9E/89E//NO985ztZv379Sk85R44rAuPuGbyh5RwSVdM4oW9BPb831Thr7eNYo92zumPY6NCmMFCb2/mHOTZ0B0JROLv2XjbPPoIMglTzgmVyRm9DAl7UJ9AWQyuhgZlnwm2D9uSqdTHshFwztbXltU07d3OWcar7vtTyWidMnznGGmYxN93a8tqGnbfgSpX5w72T7UMLBzklJlgzuRl18kbWy3Mszl9MNackuI7NmJxDHW69Zu667634UnD0ob/rOMaJF/egiYDhbbd23E7TDeYp4y9Od51X0ZvD62GBWyiF6hy/DdnebC0ZZzDGxZKsWDv/HDMjy80FUjXQZOcMuCQovt2TVd2GnbcQSMHc8WfbblMIKki99078wmBovWwtzia+HhcMU5HtSiGRAAQQvo2b0jY0hh79bvVFTLWJbDfNIr4U+PZSrcCZZN0ZW0GeOxJeE8trt2SaE4CvtBKU4TzDv3VTWSRCNdDwmD4WNiQOb+jf1rqqDaHac+F/eFb2gqOaQLZnLEzH+ybwklVlaW3qlOgYsZuKwKr0MnWmx6o2x2q8r4X2t+kfSuMsQ7dpfpp0U5MOAL5WQEs41wzSkw4AgWKgBo2/RfzdM5HtRhGjqfnBDQRGH4S2qanYXrhmcKL/N9T+H1GGCjr//Qdv53tuyZ8dcuQA+PrXv853f/d3s379eoQQfPKTn2x4XQiR+L/f/u3frm2zdevWltd/8zd/8zJ/kyscnoUdGV+Pb9gOwEIxvE7VGsIqrevfWqNUm/ty3Kjq9KhsD1XBrfc9YzhsovWlYNO1jWS7Yg5SFhaB77e8L4sSPb5P2gnNBQZOzeK8V5jR/pNNa5DaM2bK9ZtQFOw6cheW10epyXbFRCQ0iQe+jyaCzESWJ4xGst1N913j48m1W+cWN8MqK1S03wHvY+AAAQAASURBVPav/4ydP/o/+xrDEWatNiF8F68Ps85as3YDed+f6lEb38wQFeZnZxCBu+qU7eWBYSrSxJs9iSLkitjIlye2AnT9LdSxLUyIWayE61szas+r3ZTtEQnX7GbR8tnSzdSk+3KHWVyuQSi5jfxVB3c4bPhbKWL29n/+Hwn+1RdWZKxFY23YcC+Vjk08abDpx/431//w767IWKsRmm4w8yNf4+4feP9LPZUcOV7WWHGy/a677uJv//Zv+Yu/+AtuuukmPvjBD/K7v/u7vOtd76pt8wu/8Av8zM/8DO95z3u46667WFxc5HOf+xyFwvIDy5//+Z9z3XXX8ZrXvIYHH3yQBx54gA9/+MMrPd0cOa4IWNUlJriAMr614e+zg9cwtrg/1VgmDhi9dxvaIrkwEGPuwnm2eweRW18JQPHa72SSaU4cei7VvCDMMAQw22RzLRWmKFVPI4OALfaLAOht1LYAfnUOV6oNKuwYQlE4NnI3E+e/nWqOJ59/GIB117S6bBhmgX2F3Qwc+kzP421wDnKqfCMAo9tCBf6JF1Mo49tg5swxFCEpjG1seW14bC0vGjegH+qs6r94+EkANl17R9fPmxdDUOmubC/7CwTFZLv0ehRraubW4huEBb164kltk9GYBovzF9niH0PZsPx9pWpmItu1wOlJ2V4sD3JamSA4075ppiSXkJE1aC8wokaFdsqmuHiR5CDRDr7anmxXfAsvA0kJ9QqkRmV7fTFEKAoWJtKp1HIykzI3Y1J28XR4bRiZ6j1eoxm+aiZ+39h9I02jQg2qhobH4pkDAKzb3HvTUzvY2iC6G5LtMrLzzwKpmaFNeR3SKqNiqJqGK9WGwjRkV4Kpsb1pMzmesWgW2yE2u2aogZtJ8RI3h7lNSnlduqlJB4BAKyY2kYU28ul/30A10YLmxodwX8ZNSmmgJqguvQDMPpTo9cp2xw/Jdn0FyHaAB2+eYv1IhuaYHDmuQiwtLXHLLbfwB3/wB4mvnz59uuF/H/nIRxBC8Pa3v71huw984AMN2/3Mz/zM5Zj+1YM6R6CBoVEuMog9uBVYbghrbjAD8GKStw35VBwYAcCtJueCN0P4yc5EhZFQZX9C3VhzeoqhRLnwlYQ1ZnifStkUFpE3TsKcTekiUo4nFAVHai1rkH7Wb47QG8h7v7aeSXdv8YSJSLCRr1m1ZyQ9fcVA1GW21xpDe8wdV2sNywnH3ApmtgMMj69jeHxdX2O4dc0F0nfx+rCRj5t34zUqfn+29AADa7cCMHPqEErgrDo1tVAUZpURxNwJYLlZuR+MToVNQ932XXEi3O78ye5OftKzcKSWHIlWBy2av+91dqJTMzpivdxRX0fLbeSvPujrwnpEJiFBAgyzwOTm/gUFAE4pXIt4rFzG+ujaKYZGxldsvNWIDdtv7HrdzJEjx6XFJQmreMtb3sJb3vKWtq8LIfjABz7ABz7wgbbbjI2N8bGPfexSTC9HjisOZ4/tZwtQXtdoOxxM3MimC5/DdWz0Hh+oTWmnKlw4GIl2yjEOPfZ5bhOSDbe9AYAdd74B92sqp574LJt23tzz50D3DmZ3YIqpxWc5deR5NrDEUWUThmw/t8CaY1GUGG3TCSm2v5rtT3yW6TPHWTPZm+V09eiTzFNi/dZrE1+3rv9+7trzHzlzbH/XhaZjW+wKDvPE1HcDsHHXrfhSMH/kKbjzNT3Npx1mzx5lEhicSP5ecxtezc2H/xcyCNp2ivqnn+WEmGRjD5n2S+rwsp11BwzJBURxtOt2hlnAlSpBG7K9WeVZsyN3OrswdMLRZ7/NjUKy5rpX1P4Wku0ZbOQDh6BHVev5wjaKcwfavj4gKyiF3u2uCuVwW6eSXGwNnCqeVHq+ZgAEagHdPpf4Wpixnl5xC8vnen0RUw1c7CbyvioKSGepo417TMr65w/gS8Gayc0t2/QKXzEx3NZCcuD0prJIglDDzHZ3+jDTjLBmoH8LM9cYYXjxUDi+l51sD1X3TWR7SmVUPRz01kJ3ZrI93N5uIrOzFs1iJbrXopTPRt7Hme1eU5FaI5uNvNSKGLJVnWPgITKR9wW0oMn2vYs6shNist2uLjEwFF7L3QAKfZDtpqZiuU3K9hWwkc+RI0cj3vSmN/GmN72p7euTk5MN//13f/d3fOd3fifbt29v+Pvg4GDLtjl6h/CqOHUNmade/2F2bQ0bb5fdV1qVn93iXQrlsNnSs3ol2228BNXtwFj4206Xd9HsEaQXw7VLZWG2dg+IYeCkJseJ7mtOtfH7yiDAFG5qZTuErmzNyvZ4/Zam0TSGg9GQtR4raJMaPzvBU5IbOV3HxoTsNvKK0eDGFH/3XteqcfNGkjtYTGCuRJ7vSsEVRq1poV/lePy9amS7159SHmB0fXi9nD9zGCVwe34evJyYV8cwlkK3wJWwBl8ztQVfCtwuv8XYhrCWNXfqANxwZ8dtpVvFRqfb7NSasr1zc3xOtmeDbpi4UkUX/oo13eRYPbj5tT/Ek0aJ29asvjVdMLgeprs7ZuTIkSPHakN+1cqR4wrA7KmQbB/f2EjeDm65FeMFj6MHn2XL9d3VxzIIMHEQeu/kiSNMlIQu/Bj2ga9xmrWs3xbmwA8MjfK8cR360a8Dv9Dz5wBIN+xgNtp04ikjm1h7apqn9/4TG4Azo3ewZeab7Qe0FqiKEu2o3a13PwhP/AeOPPZZ1rzlPT3N0Zh+huPGDm5sQ1Bf950/SPXJX+XwV/+MyR/+YMexju97lOuEy8jO+wAolAY4pq4nOJsuGiAJlekw2350XbKVtja2ifIRC8uuJir/Acqz+zhf2kmrNr4VVX0Ew+lMtlvVJUrCRi331k0aE6xJMKQLdYWfOL+ym4VcJywcfIiKNNl8zW3Lf9SMMDMyJUKb+94eSKsjO9l6+vOJr9lWBVN4KCmU7XHGebtiq/QsHPRUC4BAK7SNbFADu8H2PQ1UTcOTSoPluCYdgqZ9F1pGVupsQFuLpWrUPGDOH2FajLGuDzu0JDUwhAR0IAV6lrFVAx0Pbe4I09oUazLPrm4+5jClubApQAROYtG8FwjNxGgh28Pvb6YsJgM4wkA23TfiIli7rNl2UGOb9iZ7U016yAyF6Zqy3W5Vyjcfd73AjMZrJtsN3EzkuNSKGE3nWo10yDKeaqI3kfduTdmefrzY4thuUbb3l9lue3Fme6xsF5nHy5EjR/84e/Ys//AP/8BHP/rRltd+8zd/kw9+8INs3ryZH/zBH+S9730vWpuMY9u2se3la9D8fHjPcl0X103fzHg5Ec9vxefp2XjCqI17zV2vq32OEpHV1tJCy+e6UQOqULTEOcXRPG5lvqc5Cy90JmrethzZyNvjN7S8ppjhPW9xbqaW/RzDjNa+ve4v13URsY38UuOcrcoigwAJ8+s6rtAJnGrD+3ynQiAFIDKNJ+vGqynAFTXVWK5SQPGslvdUK4sMALLN79p2vGhbX+govlP7b8+x8KSClJKgl+MgWkvZlcWWz3eiRkcp0n3XSwk3suN3XTc8l0i33xoQf/fqEq7rEnhWbbys5//w+Ho8qVA5d5jBwMXVBlbNvotRMcYZskOyXYo+9l8NgmkRPt93Gmt4zQYcqVI9d6jrZwZOFVuYFLpsJ0W4/nTsatsxFxdmGQjmOZPyHLvScKnuWTYGOtVVdR24XLhk64BVAkXVuek7//lL9v067V9laAoA72V43K0Urvbj96VAvk8vLVb7/u11XjnZnqMjlhZm2fvHP841P/LfGR5b+1JP52UL69whHKmydn2jLfLGa++AL8D5Q0/0RLZ7nosuZM1uuRc4wmhrHw0wMf0IJ0buZKrub7NT93PjsT/Hc51U+T/Ss7CE0baD2RzbjCF8ePELnGYtwdBGCjPt56Y481SV9pb5ayY3c0jZirr3b6FHsn1iaT8n1n5H29cHh8d4fOgBpo58Ehn8asd8oYsvfhtbamy+YdmSfrq4g8G5F3uaSyc4F09iS53hsYnE19VCSMguzV9sS7ZP2Mc4tOZ7evo81xxlcOlox20WLp6nABhDvZHtsXV4EprVM3oUPRAqE7IpCIyzT3LYvIYb6wvGmomOl3osXdpIrUdFybrrmTr9f1hamKXc5CKwOHcBE9BKvaugS5Fi2m9Htrth8SKNtkdqxRbCLoYa2Hgpoima4TQpkNSErGtbFBButWPmZmznOVQ9wUVtgn5MKqVWSIwPkJ6NjU4xQ26YUHU0fAYqJ1gsbehjdnUojjEgQzWY4tmZ7fxJsJFPq4yqh4sGzXmpNfvbdGR7rOBrJrNV6WVSjscWss0RFVrgQgbFS2yxGzRdq0I73QyZ6HoJk6aMdccKVW8ZFH5SK4SxG3WoqSMTmla6QTdjG/7l/efK/mzkc2V7jhyrDx/96EcZHBzkbW97W8Pff/Znf5bbb7+dsbExvvWtb/G+972P06dP8zu/8zuJ43zoQx/iV3/1V1v+/oUvfIFSKUMky0uAL36xc+xSWowuXqTqK3zmM62xU/bcaa4BnnryUV481biOs048x63Atx9+FOOZ5GeF10mT00cPJI7djLHFObRAtGwrA4lS+n4sfQfnm16zZo5yM/DIt7/BM/tPNrzne3A5dW6mp8+OEVun731mD4cuyNrfXXuJ7weOnDzD6RTjAdwtdS6cP9Mwj+D4EWx0vvC5z6UaC+AmqbNw8XxtPOfYC9wJfOOb30plJb/GlRSChZb94yzN8g7g4OFjnEz5XQEqrsSoGzc4eQwHnS/2OJY9d5pdwFN7HuPF040OA9a5/VwH7HnqafYdu5B6bpcCmzwFZ3GWz3zmMwzMX2Q44RjuFdbFk1wLPPXE47xwcgFt5hyO1BrGy3L+38UYF44+Q9mtshgMZJ7fpULZM9nqnQcBBw4d4YTV//y2izFGgrmu3/V21jB39Jmu22nnz7T8Fkmw58+xHdj77NMcmm59ZrcunuTuI7/PWlnlmLaTc6vst7gUWOl71v0YDFBl774XODTjr+jYVwpWep/maETS/rXOLXIP4El11V1DrzTkx+/KI9+nlxardf9WKsn8RDNysj1HRxx5+p+4a+5z7HnyS9z6mne+1NN52UJeOMw5ZS0bm1Qjw+PrOMs47slnehrHqi6hA0qKgr0rDMw2ueiObbE9OML0ph9t+PvY7jcxdOzD7H38y9xw7xt7/izpWqFVXxsMrtsKwDXz/8SB8p0Io0yxDQEIoDoLWGpnEnBm97u5a89/5MBT32TnLQ903HZh7gIb5WlOr9/dcTvttn/O1q//OAefe4QdN9/bdjvl/PMcERvZXpdRb49fx7ZjH+9o794T5k8xrYyxoc0YemQ1bi3NQRvtepEqotgbyeubI5Tnnuq4zeLFs6wFzMHeNL0hwdp6M/M9D0P4DcexbsTZ39nJ9vWLz3Nk8vUNfxOamUnZrkun57zm4c03wx44deBpdt3W2MhRWbjIOMu/Vy8wCyU8qeAnWJAC4Nk4pCMVpV7ESFB6Q5hPX1Gz2chDmO8nveV9rEunhWx3FRPFq9TU0mYhiWwP5zDlnWTfYPvzrheE6uKE7+tZuEInS6qZohloImCte5K5df3NL4YojTIoF5FBgNKHw0Cist2zQ9vADJlfjjDAazxvYqW8ntK6XGunbMfrixz3m8hxFbdnN4p6xJa0zWR7VmU7RpFC033NsUOyPVOuplZoaaSoRQRksJHXCrHFcaOyvR9yvKArLFhhgTRWthsrlNmeI0eObPjIRz7Cu971LgqFxuvEz//8z9f+vXv3bgzD4Md//Mf50Ic+hGm2XqPe9773Nbxnfn6eTZs28frXv56hod5de14KuK7LF7/4RV73uteh6ytnP/zMCx9GBAM8+OCDLa+dO3kIDsG1O7Zx03c0vr7n8+fhPLzmNa9jcDR5LT3/ZIF1owPclTB2M57d90cImTwPeHPie04e3gsfgxt2buX6Vyy/z7EtlKckG7fs4PYePhvC/fvZT/8dANs3TXHrG5ffN33mGOyFnddez82v7m28GGf3/AfGhsoN++DRjz2Ks6C3+a6dceTpDzBcNvmu6L1P/P1RmIE3vunNGCkaCPcc/D+Uqkstczh7/AC8CNdefz03PtD7/OLjUy8OUXTs2riPfuxRvAWt5+969vgBOATX7dre8vnPP/Q5OAn33PsKNuy4qee5XUo8t+8PKKNwz4MP8uShj0GlkOl3BTh15Hk4Atdfu5PrX/Egj538DL5l8OCDD/Z1/u9/9reY0KqYqqQ4MMz9Ged3qfDo+W8wduJLANxw026uu7d9vEiveGr/nxJUKh1/C9d1eX7PWibUBXZ32SePnfosnmV2/W3PnTgEB+HaXTu48ZWN2z752Y9w0+H/xFl1kvPv+CxvSxlxeKXhUt2zzu/5f0DCLbfewY5b7l+xca8EXKp9miNEp/174sAm+MsP4Yve72c5GpEfvyuPfJ9eWqz2/Rs7tHVDTrbn6IilM/sBsM4dfIlncmXi0LMPYxTKbNzZ38OpsXiCi8b6REr0THEHpYv7ehrHiTJq48zVXuAKAy2YTXytsjCLAWgDjQWfXbe9iulPjzC/51OQgmzHs3E7kIDjUQbaEBXsid1oZhlTuPieh5pgX6l7CzjaYMePvO3N7+H4U3/A4uc+CLckW3nHOP78I9wAjO+8q+N2NzzwfVz8+r/n/D/9WWey3atQEY2/hbn+RkaPzTN97mTPOfIxjjz/GL7nsePme9EqZ5nT1tJOP2tGSunqwmzb8QrS7jlyQBoDmLK9ywBAZW4GgPJIby4ZtlJEuK028o5dpUijyjNWq4YkUvos7Okzx5jkPCc3N/62Qiugk97CxpCNmfKdMLIuzBavXDzT8pq1OAtAYaB7zn0MoShURAFpt8ns9Kz02d56EZPkpgMtsDORlDHCLMx6G/lW0tNViiieVSMJzQS1dZydWRYWbnmq5fVUSFADQ6j2TtuoECNWb61hlkPj27ps3Ru08iiaCFhYmEXxnT7IdgNVyAY3EunZuGiZvq0nDESTI8pyxmm6VoX4d/WSyPYMNvKxk4fvJNnSp99/iqpiydCyNobnOmhCZiLbhV6igNPQcBU3GihZxtMKLUr52CGiXe5vJ+iF1ox6NwBT74Ns11TOR8eH4+fK9hw5Xmp84xvf4IUXXuAv//Ivu257zz334HkeR44c4dprr2153TTNRBJe1/VVWURJwkrPVQtsfNVMHLMcuRNJz255XQTherQ0ONR2PpYoILxKT/NVpYOnllJ9t6GR8JnPt5ca3mdVwjWnVhhINV6cFy09q+F9MsoKNwrl1PveFQZK4DS8T/gODgbDGX5HTzFQ68fzo9+hVE7VGB3oRbSl1t+VIFSK6ka636L2ds1Es5bnJwIXB52hHseKmxDxvdZjToaNcEYh29wuBezSFBsvfBtNVVGkRyCyn5/FUlgnkEH43ZXAxRdaw3hZzv9KcYqB6mk06YXuUatk38VQhyfhRPhv3SyuyPzEDd/DqRNPsqXLWLPaWrbYx7p+puLbuEr3fWcWo+eKwK9t69gWT/zxT3Pv+U/w2PBrueE9H6k5v70csNL3LEeYIMN9vdqO5cuFK2nNciUiaf+u27QDoOWanCM98uN35ZHv00uL1bp/e51TXsnK0RH+zKHwHxc720PnSIb3yZ/mwl//277HGbJOUSknq48ro9exrtpbM0SsRFNTFNg9YaC3UbTGhRW9ONDwd0VVOTT6ABvOfgUZBD1/lvAs3A5k0fDYBBUZFuwGtt1dyw2sLCV3FxneIp4+kPhaDE03OHv7z3Fr9SFefOKrHbddOLoHR2psuubWjtvphsmLa17H9jOfxffaW5BrfqiSrcfaHWFe+OkXn+j4GUlY+tv3svWv38hDf/hvGKwcp1pItpAHKEQPnPbSXOLrnutgCB/RY2OGMAcoyWQHhBjOwnkABkd7M/gOsw1ble3LTSN1ZHtE4AUZM9tP7n0IgKkbXtHwd6GZGMIn8NNZpqVRtRaj38Krth7H9uLFcJvB3sl2AIv2efeKZ+GKdKSd0EuYbVwkQhV/Fq13CFfo4C+PnWS/7apFVL+KdC1sqScWNxuIw+H+bNqlXkhuLvDsULWdAaKOGB6Y3Jl1ag0wBsNIhoWL51EDB1/J5uoQk7hOHaEtPQcnYwa8KwyE33i8xK4ERsqccKPQnhyPGxjSQNMNXKki3ebx3Ey29AC2MBrGs6NrVBYlumqWUITErvst3IgcVzPYyKMXMJqU7XHjQ9yklAZGHNkRke1SypBs74McnxopcPxC+H1jG3k9V7bnyPGS4X/9r//FHXfcwS233NJ12z179qAoChMT7decORqhBjZ+G0egWjSJ3bqGi9e4RofnOFsUUdqs/1rn4RCkvO+Vorij5jWrXU3/jAmgqBqOVFvWrHFUSZa4E0/oLWsQfLvlmatX+IqBUjee9Oy2a9FOkFoRI2EtHd+T1RTRaw3jqgZq/X3ed/BStErW4nWc1qbpIGp60FOu3S4lijd/DxvkWQ499whK4OAr2fVDy85o0e8SuPgZXJOa4Q5uZNQ9l9hAvBpgDE/W/q1mcU1KwB0P/kvue8/vdd1u0VjLhN/aYN4M4Vl4PTxz6dH8pR8+t02fOcah3341t5/7vzx8w3/kjp/7xMuKaL8UiOsGWZp+c+TIitLAMPOU8UnvspcjR44cLyXyStZVjrjgmxXGfEiym4vHV2I6LyvIIGDSO8HO6jM4dmfFbzdM+KcJhjcnvqavv5lJppm7cL7rOI4VFrPVFIULTzHbZjXbEckdK93qYdz03WySpzi2/+meP0v4dkfFrVAUptVQUbH5plegRp9rLyUreAt+hUDvrGwHuO1NP8ZRZRPWF36t43ZB5SLzYqCngsPwPT/IBBfY/8RX2m6j+q0Pkeu33UhFmiw+/4Wun9EM01/itDLJbWf+mmu9F3BL7UntmLx1EwheCCMHoHcXBGEOUsLq2FzhLl4gkILBkd5s5F21iOq1EvgxIajUzU3XDQIpaoReWjgL0wCMrWtsaonJMsfu3EjQDFM6PbsClMqhjWpSxrpbCX+f4sBIqs+vKiVEm2Kr8O2OTS2J79GLlISd+PuG+fTZH749oSPqlO06raSnrxbQ/CrSs7DbFEv1uuuaMZbOFaIZQiskNheILK4AtTGX99H4pmsyz60ehaHwXKrMhWR7kFHZHh/nbv29qovTSCd4ioHSlNleIwlSK9sbyd3a3zPayAPYGMjmjHU8yEDeh+OZUEe2x/sxSwEzvj/bleUYCC8qgCsZit2KXqQonIZzt9b4kML+NoYZNdd5ERHiBRKJ6Its3zUxyJl5i3nLxfUlQoCmiMzj5ciRIxmLi4vs2bOHPXv2AHD48GH27NnDsWPHatvMz8/ziU98gn/9r/91y/u//e1v87u/+7s89dRTHDp0iD//8z/nve99Lz/0Qz/E6Gi6psCXM7TAJlCTr+e1aBK3dd0pPRtHqigd4l1stYSS4AqVPA+n7TzawTSLuFIlaFqzunZrI2yvsEQB2dRc4EYNdlrKNQNEaxC/sWFSeJ2fMTvBV8wGsh3fxslgECm1QuIztRcR2llJT6maDW5M4XftfX0URzMlHXNBFAmkrRAhuxK47r43M0+Z8w//FSIIle1ZoUXrqtg5K1S290+2KyObWCNnMAILmXFtfilRHFt2AFspsr1X2IW1DLHE3MXpjtspgYPXw76Lm1TixpD9n/pt1ntHOfzdf809/+wX+ovlywGE9UAAbRWqDHNc3ZhR1uCL3JA5R44cVxbylcdVjNNHX0B8aBPPfP3vMo8xZJ0EYMQ6tVLTetngwvlTDFGhJGwO7fl65nHmLpxniArGmmTb4dHNoUX9mUPdc9tjskJPRbYbiV34AHY1LLQYpdbMxevuewtVaXD64b/p+bPCDubOD3xz+jpOiEmGx9aiRYrHWGHfjGKwRGB2z4NUNY3pO9/LbutR9j32pfYbuhXsHhXBk9vC36V6sf25owV2i8JY1TSe3vRD3HnqLzjw1Dd7+qwYurQ5MfEqzv3Ql3hi4FUM7v7uttvGHd5eJVnZbkVEj2p2zryvzbswgCIk1Ta/BYC/dIEFUUq0/E+CpxbR/ASyPcGhQSgKNjrSzUa2yzb25HEuvJ2iYUYGAaZwG2zuO0HVNCrSJLBbM9a9yiwAA8PjPX8+gKMUUdzkzHbFs2oPzb0iJgCTmg7SWOYnwUNH1BVFDdnqCuBrJXTfQrpWWwK4XqU7MLE183wgbC5ozjCHsFHBy1iEU7TI2lBqrJ3a2s/0aigPh5EM1vxMpFDLqGyPjtUGst238TKmDflKaOFaDxllwHciCZLQGBGxDA0/k7IdwBJmi7Jdly4io/rIESbCrbNVj8nxLGS7Ed3Xqsvnb2wjrxnpSYf4OuTUKdbifdlJHdkOZmzDH+0/O1Kim1p21cGudSGBf+DcIo7no6sKQuRke44cK43HHnuM2267jdtuC12Ufv7nf57bbruN97///bVtPv7xjyOl5Ad+4Ada3m+aJh//+Md51atexY033siv//qv8973vpcPf/jDl+07XA3QAxvZ5n4tFCWKJmltmJde+zVQDFctoSa4QiVBk07bebRDHFXUvGaN71NqhvuURes9OY6O0TOMF65BGp9dw/VbdrJdDRqV7ZlU8noxsZEzVrYrGdc0UjHQ6qOPfCcVORGvBZKeoYJaI8DqIYwNs8ALww8weeoLqIFL0IcSPW46jJsKRGQj3y8Ka7agiYA18kLmRs5LiaHxZQcw7TK7Fshi2Ch8/tgLHbdTfLsnxy6tRrZHjSFLZzmpb+PaO7+rz5nmiOFGTiyXuzEjR44FY21OtufIkeOKQ062X8WYO3sMQ3iMfuU/1FSqaTHhneIiQ0z4Z1LZgeeA80f21v59cW8HArfbOMfDB5HBqV2Jr6/ZEGbZLJ3vbvUfqw7SqAR8YbS1j3Yist1MINsLpQH2le9k+Pg/9vxZvXQw27t/kJM3vAcAoxiq1mPytRkllhCF7mQ7wG1v+FEq0mT2hX9qu41wqz3bby/bLCYTnhAW25KIu9v/xW9wTNuC9nc/kcqdwghspFZk065buP3/+RQ33v/mttsWS4P4UiSqqQGcajr7Rq0Y7ufKYjJ5DyAqMyyI7k4DMXytiJ5Atrcjnlyh1yzk0iJwq1gJlpDLJGTvv0Ns/6yksHyuiCIygWz3q3NYUk+tQA3J9uQ5K4Hdk1KgHjHZnnQvMei9sSAJnmIg6ohZHa+FbA/VQBb4Di7Jc6/fR2OT/WWiK0YRTQS4TnOx1slcrFWjYtsZdV1qwrkdypFLhL1wISqaZ5xb7OBQR8gKL3tjQbPlKoT2jm4G8j7OWK8n233PQxMBSobMdiCMAmhywUg67nofz0TUjRc3LSgZ4hXiJjKn2qpsz5KxHhMfVnX5ehCqI7VMx2EhUrbL6Jq4TLZnf6TYsXYAIWD/2QVcX2LkFvI5clwSvPrVr0ZK2fK/P/3TP61t8573vIdKpcLwcKvt7u23385DDz3E7Ows1WqVvXv38r73vS8xkz1He3SL3wkbwlqJT+nZXeNdPLWE5l86sh2gSgnsRmcs10rf0B3DEoWGhjUAr6ZsTz+en6hs782SOgmBajSQ7cJzMjn/CL2IKVufU2LnHy0roa0Vwgim+HMCJ9X6rdbg0eaYg/QRQJca+k1vZWtwnHXWIWQ/ZHvcaBB9z9CWvn/17nD0HKILHzKuVS8lRifqyPY+nuGyQB0IG4UXzhzouJ3mV/HaxG3UI7aRxw/PAdO+QNUY62+SORrg15Ttq69xJMfVjcrgNqpab/XcHDly5FgtyKtZVzHih96N8jRPfvwDqd8/d+E8wyxxaOB2ysJidubsSk/xqsb8qZAkf9a8lcEzD2Uf53T4ILK2je3w0OhaKtLEuXAs8fV6xIWLNDmtgWJQaEO2x0SyWUrORfd2vpFrneeZOXuip8/qpYP5zje/m3ve8e8AMKKif0z6N8zb9xmQVUSht4wuRVWpivY51+H8LByltwdSwyzgSJXAbq/01mSyysIwCyhv+yPW+yd54qP/oafPAzCxEXqPtu+KwpIoIq1kG/m0WYla9FtYi8njASj2LBW198VyoJXQg9bCTzuy3UGHPpTtdsJvEavn3RQ28raVnmy3RBGRcKxIa54lkb7Q6GrltsVWxU+f7R1b9tsJzSOmdBB9KNt9saxs9z0PXfgtpGeglzADq6M1ZuxK4Ei1JQ4gLZQaQdl4PVD89I0KtfdG3+misb6vudVjcGgUXwq8pZnMRXNYzgL36nLR+2ksCFVgzcr2bBnwmqbjS9FQBHajwnRWZbvbRI7LIAht5DM2K7iKiaiLvKhlrGcoTus1sn352OuHbI+P5fqGIenZ4fUyA1RNw5FazW7WWQGyvaCrbB4rsf/sIo4fYPQxVo4cOXKsduhdHIEcDEhqmOyB5A2dgHoj20PSPwPZrpRQnCZlex+2765SQDRZ3/uRst9M8cwaI1CMljVIr5bUieOpJlrdeDJj/rvQixRIspGPyPashLZmhBFM8ef4bur1W1ITIkDgxzbyq4tku+7+76EiTdYx05eyXSgKjtRqZLsIvMyRTPUYX799+TNWYWZ7sTzIggzP1cutbNfMQSrSxD5/uON2g840bnFt1/FUTQufEyKyveRewC2kc4TL0Rm+Gh4req5sz3GZcfMP/xc2veevXupp5MiRI0cq5NWsqxhepFh9ZPTN3H7kf3Hy0HOp3n/u6PMA+FtfBcD54y+u7ASvcvjTBzjLOIubX8NO67lUCuV6OOcPsSQLjIwn528LReG8uhbmTnafU2zJl0Il4CsGBZKzmuNjrDSQTKBuv//tABz81v/t6bNU38JP8YAbK9vdBLXt0uIcipBopd7IdiC0iE/Iq4uheFXcFCRlRRQJ7PbkvSltvDYP4NtuvIfHt/8Ed5/63zz9m9/FQ//jPTz29/+zo8NEQdqQRk1NCdmmGSB2C4iJn24wo/1sLbVXtuv2LFWt999DakXMoPX3WD6Om5Tt6JBR2Y5nhbnLTVD19GR7TGopKawvbaXYUmgEEPYCFdHbb1APTy2he8nHnhZYqe3GtShOwG26ji1b5qcvrsbwFb1mOe60cwXQS5jS6piZHhfMppXxvpXjaq25oIlsD+xU16iGMSMbeWugvzz5hvmoKvNigKByIXPRHJaV7V6dkl8EDl7GAmagNlquhoNny4APIyKMBotZz43sPjOT7UYDOe55LoqQmcfzlEKDkr8fctwoxOfa8rHnO7HqLf14cVOSU6dsx81ogRvBEsuZ97bnA/RNkO+aGGD/uUUcL0BXcwv5HDlyXL0wcZAdrue2KCCSnkd6IHkDvYzZI9meNQbIVlpz4f3I0SWL7bujFFCaiF4/uo/qGcj2pIa/Xi2pkyBVs8GmPWxGTH8PVYxSomuSjK3as9qNa4UGxXwWdbaDXiOcm+cWSIGqri4b30JpgOcH7wPoS9kOjd9dDdy+MuBjDA6PMU/0/JZxbX6pMauMApe/kUIogrPqJGK2syvjaDBNMDjVcZsYHhoyspEf8i8SlNb0Pc8cy4jrBqspTiLHywPlwRGG29TBc+TIkWO1Iifbr2LEHeE7f+C3uSBGmP6rf5vq/fOn9wOw8Y4HAViI/jtHbzDnDjFtbGTtza+lIFwOPPHVTOOI2aOcUydb7K3rMa9PYCy1zwaPkUUlEKgmqpC4boLtnbVIIEXNVrYZ4+s28qJxPfr+z/X0WVrKzOFCpKj3EqzQl+YvAKCXRnoez0mwMaxH2AyQQq1METoo2w1pE3RQHtz1g7/CI9t/Cl8x2XLuy9z5+C9w+mhy04sMAgo4CKP339ZSSggn2eY+JnqMYo9kezlsuEhyGaht483jGinIdqOMKVtVFrH6trlpxFUMhJ/swtAVrpVYwIwVOp7T+7gxqZUmX9lWSqhJZLuzgKVkUPXoJYyERgUgzPZOWXBMUtsCtSaiNCr+ZtTbfTqx/XZT57wwSqFzQxdluY3OrDaReS4xYrLdaWouyOIKUHtv9J3k6Na+5taMRTGIqM6GFqIZle0xKezV28j7bmYb+UAxGlRgQE8kQTvYwmiw1I3Px6xqIVcxGwr7/WSsA3iqiVoXeeFHc1UznBd6dD+tb2zx42teIYMtfZKy3c+ubAewWbY4tt2wAayg99fgsmvdYJjZnivbc+TIcZXD6OII1NwQFqMXx5nAKGPK3hpEDdxM8SmO1rpmje9TvT431MNViqhNDQJBdF82M9z3pNqqbFf7aJaUqhm6EUTI6vwTN+FWK43PXn6cNZ1RYSw0I3TniT/Hz0C2t1G2E0UAdapDvGS44XsAMkcoxXBFPdnu9KWUr8e0EqqyV6OyHWBBC63Wm5vXLwdmzSkKS+2dD63KIiMsoo305lTmokHgIoOAETmHMtBdEZ+jd8SxJ6vN4SJHjhw5cuRYjViFq+YcK4VYUTsyPsnJ2/8dt1iPcv7UkZ7f75w/yBxl1m+7jnnKONOdrZ5yNGK4epzFwa1su/EeZhlg/vlsue2FpZPMFTp39VZLUwzY3W3+a4WLFIWQ+AG2uTAQjreEhdFRRXpx4m7WV/b19FlqSrK9GBG8foJ6vLpwEQCj3Du5Gyor2heoVN/uKTsshtVGrRzDoHMxRNMN7vuRX+e2X/gsi2/9EwAq8zOJ29p2FUXImt13L7ATbCBjeDWyPbmRohmFaD+7lfY28iVvDs8c7Xl+wign2i36kdrHaCoOeOiIBFVGT5/lVXFFe2V7PQnZDTGplYZsd7USaoISXXMXsLXefoN6BPpAW7JdD2yClEqmWFnk2c1ke6REz6DgjREoRk3ZHtuQNpP3wihTlHaUQ9n+Qd8RBpXiZOa5xNCi/Pd6dTHERbj+ctHNtTv6m1wTKuogij0bWohmVM/EZLtfR2iHyqishWkDtS4/FMIMeD9DZjtErhVevXI8Korq2QqinlJA9ZMy1jPa5quFBiV/P8r2+P5cf1+Lfxc9S2a7GZPtddcDL7m5qFeERflwvJXIbIdQ2X5ytspsxUHPM9tz5MhxFcPE6egI5CqFhqiTGGHueJdrt1GmkNComrhpRmW7p5bR/Mb1US2qLANx56sF1Kbnr6DNWr8XBE1KdEj/jFkPqRXQg0ay3c9wD1UjlyinaW0ZE71ZLZqFXkAXPr4XEu5KhrWqJ5KfoaTv4tFfM92lwnWvfDuW1JFKf6p7Fw2ihgdFun0r5WPMm+HziFil1tuWGVqt65fZRh7AKm9kxD7d9vXpqGZZHO+NbPeEivQ95ucuYAgfbTBXwq4kZHSfyG3kc+TIkSNHju7Iq1lXMQJ7iaoMidANt3wXAKf29Z4drs4e4ZwWZsueUydR5rpngucIIYOAKe8UcnQ7iqpyuHwrwxlz201vEdcY6biNP7iBMe9c17GyFC5k9LDuJGQ1S3uRiug8ligMU6S3oo8mUyrbi2UCKRKt2u2IbC8M9k7uul3I9tB+u/eilK0U25LZENq+96owLkSNBXYbm3Y7UlOrKSICbK2M5rUh26OimdmjjXxxICTbvWp7sn0gmEcWx3qen2hTMGxnLen1oWwXvp0YEbCs+E1jIx9uq6Y4zzytnJixqbuLuBnIdmmUKQbJLg1Zsr2NQuQiYTeOGatv1RRNHs0IlGVitrbvmh7mFaOELnw0d6kjAVwRZbyhLZnnEkOLzqPm+ICwWJuNkJ3YfA3PmLezafer+p5fPWxtCN2Zw5DZFGqw3BjiO01ke0ZCVmqFBhUY9JcBX0/uAnhxUTTjb+GpjbbvcQZ8VocGXy2g15H3se17FnK85tjiLN/XgrgQn4F0MMy4UWb53O3nt4Ao895dabI9jIXZe3oBIyfbc+TIcZXCdWw0EXSMGvIUs+EeFaMX+3JhDFDsgWyXQYCBl+m+5+kDmE0NorVnzAxKdE8togWNc5auhS31TLFAUjVayPa07mmNbzYbMtGVjDE7ibEuQBDZyGdVtivR2q8WxSTd1OpsVyQ/Q0nfxRWry0I+RnlwhGdu+0+M3/cv+hrHFTpE312VHlJdGbLdLod1tKxr1UsNtxBarb8UBKoc2cKEf7ZtPN7c2dBifnhdb890Hhr4DvPTYaxiYSQn21cSUi/hS4Gqrc5rQY4cOXLkyLGakFezrmJIt4IlwgfoyU27mKNM5eiTPb+/vHSc+cIGAOYL6yktHb8k87waMX3mGCVhU1h3DQD2xvvZ6TxPdam9xXY7mEGVQOtMZKmjm1jDbNdc+EyFi6gwYSco23GWj7F2aEeYJiHMHO696CMUBQuDwEkg25dmASimINs9tdhgBdwyv8BKpQh21BKql/yb+J6HIfyelQfx93DbkNl21AyRhvT01DJam1zvuIEhJn66oRS7DFjJ5L0MAobkIkqp999DMcsYwm/JNmxnLemJZYV0Wii+lahsj8ktP4WN/LLNfe8FR18rYSSQ7Ya/hJeBbA9dAZLPOyPleQbL0RPNZLtdI9v7U7bHluNezc67cbxYDWS6c/gdiqXiXZ/gxnf8Uua5xEgiKCFbo0KMweExbn7fV1gzuXKZ7QCOMYzhzoV2sBnJYt2Mle3Lx3kWZVSMZstV6C8D3hVmg+IqVrYrGZsLAtVsKOzXlPIZle2BVkSrU7YHXnZFXhzLIuuOvSD6XQwzQ2Z7fCzXNQxlzZuN4SgFlKi5wIoy2/sl23dMhOf4vtPzuY18jhw5rlpYURxPJ5LbUwuJzyO9OM6ohUFKwq6pnNvBdR0UITOtGwK9jNnU0Bm48do8vY18oBUxmsl2z8LO2vCnFtCa3HX6aZYUegGDukx0P5vzjxZHMjU9KwWxjXxGi+b4WIqjj7K4MHltyHZ8JyQyVynueutPs+u27+hrjPC7h7+BuoLK9mAoVGVnbYS91AgGJvCk8pIQqOaarRSFw8y5ZCv56kxYdxyf2trTeB4awndZvHAGgIGx/l3OctRBL4YOEDly5MiRI0eOrsirWVcznAo24eJeKAonjJ2Y08/1/PZx5zROpBB0Bjcz6rS3esrRiHOHw/08uuk6ACZvfT2G8Hnx4X9IPZYpqwRG58JFcTz8naZPdbb6l241deEi7u5utrwDUNwlnC5ku2IOYAi/lsXcCXoGIssSJjKBbHeroQK8PNS7ktpTi2gdyXabQEuhVlZLbclsKyLHey38lLoox2OyXTN7L3IlKVNiBE5YsDELvZH3qqZRkSZBm4x6q7qEITzUFGR7TLBWmppU4oJeM5FVn/2dFqpvJRbOjJq9du/K9pig1VP8FoE+gJlg+17wF/GNwZ7HiSHMQUrSSlQM6BlsQ42o6cJvIp/j76qlcFRoRlCXrRmT7WqTuic+Fkr+fMcC4sadNzE43Ps53w5xRn0L2R5kJ9svFXxjmLI3iy78zOSzbrSS7f0UpmmrbM9q+95YBI7zTdWMhelALaDVK9vjJo+M+0+qBQxZR7a7sRI9g+27pmFLvXYNBmr56EYWW/roGu7Xjaf4dl/Kdk8xay4wjrsyyvaSobFprIjtBbmNfI4cOa5aOD04Avmq2RBNEiNUVHe+diuRE1Flqb3TFCw3Syod7OzbQRoDFJrWrNKp4kg1E3EXaEX0BGW7Q9Y1iBFa5NchyzNmDKEVMGWjsj1LM6IeuyY1NcfLaE2TVWGsRO+LI3G0wE1PtitGGzcFd1WT7SuBWXM94zOPI4MATXp9Z8DH0MfC5tpmt67VgvHdb+KJsTe9JJ+9dudtABzb8+XE193Zk8xTrtU/usEXKjJwsWZDsn14zfqVmWgOAEZveDVPrXnwpZ5Gjhw5cuTIcUUgr2ZdxRBeFVtZLswujN7AZOXFnt5rWxUm5DTq+PZwrNEtTATnu3bJ5wixdPoFfCmY3BqS7VuuvZ3jYj03f+3f8Pyvv4KHPvZrnDl+oKexCrIKXcj2kajrd/b0kY7bZSlciOiBs7kLH0DxKjhqF9V9RFpVF5Ptz+thSDs1CWiJAjiVlr/7lTl8KSj3+JAGUbHHb98UYEgbmYZs18vobch7K3IKkL0q20uD+FLgV5PJbCdSyujFFASvMdCiTKm95lSoSBOh9H6bqIgi0k5Wtlejop9a6F2lHW9rVxq/s/QsHKm1ODT4Sj/KdgcvISIgtqoP3O7NIrV5RMRdKitNY4BCwm9RDJaQZnqyXS0MoIkg0e3CwEmtsihGZHvQ1HTgZMinb4Fq1BRIscJYa1JaadGxUA4WMqut08AotqqBob9i7aVCUBxlNLgA0LeyPajLiFUzFGtraLJcBVACN3MGvCeMmpIawHMjG/k+lOh6HTkeNxk0N3n0Cqknj5eFbAewhIGsJ9s9G1vqqa7HMfQa2b68/0RGVV4MT1m24Y9t5A2t/0zX2Eo+t5HPkSPH1Yq4eblT1JCvJj+PKD3cl7VCeB21upDtTj/OROYgRZoJ4+zkuNRLmE1kO54VRshkgWai01izCJ2Jst2ThV7AFG6tgTWLchzAiJ7R3ObMdt/FlWomy3wANWqYiG3kVemmJox9xUxsWJa+i7dKbeRXDHf9K3Z5+3nh8S9HyvaVec4YWLsVyL5WvdS45vZXcfe//dhL8tlTW67joLqN4LlPJb6uLJzigjLe83ie0BG+izN3Dk8qDI2uXamp5gCuu/M13PMzf/ZSTyNHjhw5cuS4IpBXs65iCLeCU2eLrG24hfXyLHMXp7u+9+yxF1GEpDy5C4DCxHYM4XO+i3I6R4hg+gBnlYmaokwoCkM/83Ueu/WDONoAt7/wO0z+rzt44dfu5qGP/RqB77cdqygthNGZoFyzPmyKqJw/0nlintVwTPQCET0gNis8AVRvCUftTLLFRZ9qpbuFvkH6zGFHFBBu69xkdY4lUUpFToQ2hu0VzIa0IYUCJNBKbcnsmlNAj7lwQlGoUEDaycUzN7J911PYN8o2BC+EMRR2ymMlbHxIJttryvsU89MjgtVqyqmXroVN636rV0inhRZYiVmOsW1z4CZYK7ZBLbcyjYW0OUCR1mOvJCuIwlDv40RQo/OuktDkYkon1XEMoBsmnlQa1LYAvp3eMr8ZUjXryPbk8eLjelguZM/cTAEj+jzfbibbXeQqs4MUxVGGiYr3Ge3842NV1ivbMxRra3PSTAzZTLZnz4D3FBPVTyDHM6qFQpv7elt6q6/x0AoNKrpl2/ds54WNiaxrbJGejZNRWWZGjSNBXeNIL1bEneCrJmpEBK1UZjvAronwmq/nNvI5cuS4SuFYESHaoUkx0AoN0SQxVN/umsWtF2OyvXOTsxsTsxnue0phkLKsNronuTZO1ngSvUSBxu8rPBs3I9kumu7JEEYokXH9Fqv/7ToyO5OyvY1rkvQdPLI3rOlR/Ex1IWy81DKR7Uaim0Jxbj9Lau+N61cibn7VOzghplj6+h+gSQ9WiByf2nkLZ1jDyIadKzLe1YZzG9/AdfPfSm4Mr5xh3pjoeawADRG4BIvnmRVDmRtXcuTIkSNHjhw5+kVezbqKoXpV3DoidM2uuwA4sffhru+9eCJUwI9vCjPHRzeEpPvM8d6U8VcakqyW+4E5f4Rpc2PD34bH1nL39/0Mt/yHL2C9dz+P3f6bOGqZe1/8bY4feCZxHN/zKAoHxexMthfLg1xkCG/2eMfthGelLlyIiNjy7Va7cdWr4nch242o6GN3UVhAVAhJSQI6SgElIRdd2vMskc7aWmrFBivgZpjSRqQh241ka3BYVqKTolhTEaW2ynEvIu+NHm3fIbIaTyB4AYRrYadUqNhKCaUN2V5T3qdQtsfFI6faOKZso3YJlH7IdodASSLbYxIyi7I9zW8x0GL7Hvg+ZSyUQvoi13KxtckVIAgoCLdjVmg7WE0EINSR4xkyOmtzUg30iJiN912zUt6MjgVDeJdFWW5GrgTNzQUabuZi7aVCfTSDkpEs1iM79tjKFCLL/IyErNALmDgNx3M/GfC+aja4VtTyTbWMea56EaOuqOxF5LiWsVlBGCUKdfcO6dn4UmTOX7Wbm8g8BzcjiWFG17B6dw41sPH7yCT11UIt8972AgQSXRWZx4uxa12ubM+RI8fVjeWoofZrxOZokhi9kLxGKWzQ7KZsd+1Y2Z6+KUwtDLa6J/WhbMcoYjZ9X9FH3IlIcNfR+1i/KdHawI4aJbTAzhSzU4jWsi0N7L6D24d6fGz9DgDmzxwK55eBbA8SogtOHd7H7qWHmLvunZnndiVAUVVOXPMv2D3/NYblfM+N8N0wPL6Oyf90kM3X3Loi411tmLr3HQyIKs//U6u6vWyfwyqu63ksX6gQeCiV88wrIys4yxw5cuTIkSNHjnTIq1lXMVS/iltnI79x524sqbNw5PGu77XOHcSRGmvXbwNgYlNIti+dO3hpJvsS4vHP/AnnPrCTw3sfXbExR63jVAe2tH19aGScO7/nJxj43v8MQHVhJnG7WA3ei/X2jLoWZf5kx22En14lEFufeVYrKav7VTytM6HYjjBtRlYS0FWKqF7r3BR7nqqSjgCURhlTtidVCziIDhmLLTAGwhiABMRFLlIUQyylhGhDZseFGzMFmS3MQcqyktxs4lZwEsjnTrCVUmLjAywr+dOQsnGjRsux49m4CQW9QDXRZFay3SZIiDBQNQ1XqgReCmV7RED3mncPyYXLpcU5FCFRi+mV7THZblcalU2xKkfJUFy1hAltyPZUlvnN0MyQxKa9/XacGQ8gU0ZNZIFhFAikaIkPCC34L/3np4E+uGyzqGbIXoXQOcOWOrLuONfIrmxX9AKqkHjecrE7tF3NVsAMFKOmpAbw3TizPWv+ahGTeiV6RN5nJMeF3jheqETPXqx1FBNRf1/rg8QQioIl9QZluxo4fTlEBGoBPYht5H00BYRYAbI9UrYbWv9j5ciRI8dqRLz+1zusEZujSWL0Yl9ulsM1o9PFUayW753BgSV2T1pamF3+Y4aG7hiKUaYk7AanN+FZmcl2RS9gCL9hPFM6maN2YtegWoOCdDM1fpqRjXxzIydef7noYxMbqEoD+/wy2S5Szi9sWG5sUDj2ud9lQZS4+U3vzjy3KwU3PvgTOOgUhVOL0MtxabHl2ts5pmzAeebvWl4b8abxB6Z6HssXOsJ30K0ZlvTR7m/IkSNHjhw5cuS4RMjJ9qsYqt+oOtZ0g2P6NtRzz3Z9r7xwmDPqOlQtfPArFMucY4xg5silmu5LBuf8ftYxw8hffR8Hn3mo7/EC32fKP40c724ZVhwYCeewOJv4urUYqhK0YncCdcFcR6FyuuM2imfhpSRQY7I9cFqV7UZQJehCtpul3oo+TqRoTVsIcdUiakIuuuosYKm9E88QqxOTyXbXsdGFn0rZHqqVk8l2LyZVU3TP20qxrXI8dh6oJyW7QS0OoQqZaPEvvCqOSP9baG7rcQLgRoS5kSJT3oy+i9dEtofWkq37rd6OPC106bQlcV20VMr2dpnynZBUuFyaD+0g9dJIz+PEiIutzY4SsSoni7LdEUYL2R7UyPbsynahGhjNZHuTwtisuwZmJYBTzUlRsDBalPymTB91calRqCfbMyqzARy0RrK9Dxv5+Piqbx5RAzeTEgxCZbtWr2yPckW1jBnrzSo6341t5LPtP8UooQsf14nGdK3MSnQAVxQQ3vI1R/o2Xh/jOcIAr17Zns0CtzYfrZ5sD9BXiBvfEZPtubI9R44cVymWle0d1k1aoUXpDdF9uUvDXzF67vKszsp2r42TUC/Qa+r55YbOLO5pMZRoX1h1633Ft1M/s9bmEq3TnLoooDCqLCPZHmeix8r2jOujuAm3mWyXQX9ku1AUzqnrELNHgVDFL1Oqs5sblpcWZrnh7N+xd+r7KJYHM8/tSsHg8BjPTrwl/I+cbL8sEIrCyanXcc3s15fXz4DnOozLi6jDG3oeyxcaQnqYzgVss/es9xw5cuTIkSNHjpVGXs26iqH7Fr7W+AB9cfh61iy80PW9hcVjXDQbF7gz+iTa/NEVneNqgHAtLjLEtLqONX/zNg489c2+xjt74gCmcClOXtN129LQGABuZTbx9WolItt7yGx2SlMMO2c7bqP4Fl7KAruiaolZzQBmUEXqnUm2Qil8QHetzmS7VQ3HV1IqM32tiJZAtmveIo6WkmzXSxRIVkZbkQ262sH2sRmKOdCi1IgRZ6ynIe4ctYTqtiPbw/1XTEG2a5FiOinXW/Es3JRFLk8ro/vJZHvN5r6HxpEYxejY8exmsj25oCebCLk00KXdVqViC6OBhOyGdpnyHT8/IWOzunARACNqykmDQjm0nnerjeddrMrJomx3RJPaFvBrKv7+lO2xjXwQEYLNyvZieahh+8sBWzSS7TIIMIWbWRl1qVAcXlv7d5aieQxX6FBnI6/LPixX9VgFVkfwSjezLX2gFhqKwLHThJYxVzNWoseuHvF4RsZmhfh8iu8T0nf6UrZ7qtnQRCZ8py+y3cZoaBjSpNNX00qglWqqS9sL0FfoaWLA1NgwUkTPyfYcOXJcpfCj56lOjkDCKGEmODX1QvIWB6P13+LFjtvVYoDM9Pc9szwCQLWuQVT4dupnzBhq5BpmVZbX+2qQfbxm23fPddBEkHn9Fq+t3NilKyPZrqhqi9MMAL6D14eNPMCsOYW5eCKcH17qxtDmZ6hnP/thyrLK1jf+bF/zupKw/g0/B4QNlDkuD9bc9f2MsMi+hz5X+9vM2eOoQmKObezwzkYEioYSeAx4s3iFnGzPkSNHjhw5crx0yKtZVzH0wCJoItuZ3M0m/1itINwOI9YJrPKmhr8tljYyUD2F5zo89L/fz0N/9JMrPeWXBp7Fohhg4qc/zzltPYVP/hi+52UebvroPgDGN13fdduBwREA/Gqy+iBWpRql7h3lcngj4/75jtsogYOnpC80WJjIJLJdWkijC9k+EJJkvtXZRn45OzDd/Hy1iJ5AthveIp6ejmxXzDK68HHsVhWzHakt1E5KlCbEauVKQm6iH6ktRAqyyFXLaF7yuSvdKq5U0VMoPfVSWJCLSd16hI0Z6Qo1vlZK/C0A/MgZoZCGbB8I5+dbjd9Z+MmNAFI1WjIae4UhHWjT6OGig987id8uU77j50fkeH3Guh05XhQykO0xOe01Nbk4UVNLFlLWVQooXuO5IV2LQIrMJCWEDSexsl1Gynajyda03pL/cpHdDo1q4Nh9I4srwKXEwMia2r+z2MHGcNGR/nJTiY6bWd0TK8SdulxSLchO8ErVrCmpAXw3PF6yKtsVvYgqZO03DWqZ7dnGi4mC+D6BZ+P1RbYXG2zz+yXb3SZluxZks8CtQS8wIBexrQqOF6Ct4NPEe193Dd93W+9qphw5cuS4kuBH951OjkBCL1KgtclT76FRqjw4wgkxiX/skS7ziMn29MTislX98vNNP0p0LYrAqifbFd/OHHdSa/iLvmPssqNkjJ5Ro7WVay8r28k4t+ZGTgDhu/h9KNsBrPJGRuxTQLZmSamZ6FGDhwwCJvd9lKcGHmBqy7V9zetKwqadN/Pc6/+C61/3oy/1VF422Ln7fk6zlspT/7f2t4tnjgAwONE+krEZgdARgctQMIssr+3+hhw5cuTIkSNHjkuEnGy/imFIC9lEto9sux1NBBzf1z63XQYB6/yzyLFtDX/3hjYz5R7l8G/ex70H/xv3nvlzZqfPXJK5X04Ir4orDIZH1yAf/C9slGd45it/lXm8ypkXcKXK5JbuynZFVVmURYJqq7IYwIlUqWYPZLs+tplBUWV+Njn/HUDzrUw2vpYwWwoDAEVZRXQh22N1cjeyPbbmU1N2k0u9hBG0kuOmv4ifkmyPifRqpXWuWUjK2P6/mqAcj5UtSgqbP08fwPCTM9GlU8FOmelr1gje1mYA1bfw1HTEXWAMYAbJ84uV92YK5b1hFsK89KYIA6WdekYr1ApFaWHQPssxVPz2biPfLlO+E5bjFpaPFXtpFoDiYPrsubhRwWujbM9EtgsTxW/cD0Gk4hdK9uWE0M0w39t1aqSn3pSdragqFRkWDi9XZrojTETddS9WSK22zPah0Xple/a5NSvbjT4s89WaCqwuJxwvM8ErtUZ7U+nHme1ZVW+Rii66rvvR986i8APQIrIivk8I3+nLRt5XCw2OLcJ3MpMYENrIi7pGilDZnn28tXd8L0Vp8+wfvAvLcVdM2Q7w/Xds5BU713TfMEeOHDmuQMSqZrPY/nlHMUpoImiwVobeSd5To3cxeeHRjtvEpL+eoUkvjkFz655f+yHb9ajxwKlbs2qBjZ9xvGbb99hlJ617Wm1+0T6quQHgQkZnHRuzJZKJwO2roQ5Ajmxhwj+LDILIMj/lvqt7hnr2m3/PluAEhQd+qq85XYm48RUPMjg89lJP42UDoSgcXfcadsx8teYEWJk+DsDYZAqyXdFQfYtRFtAGJy7JXHPkyJEjR44cOXpBTrZfxTADC/TGB/nN19+FLwUXDz7W9n1WdYmicNAGGrtCtfHtDLOELh2euPe/AXD48c+v/MQvM0SdXfY1t7+afdr16I/+Uebx5Mwhzijr0HokAZZECWknW6zHFtCxJXQnlNeGDyQzpw613UYNHHw1S1Zza2FABgFF7K5ku6ppVKWRmPlej5paICXZEegljISc9WJQITC72+/XIybb7YQMcydqFtBSZFPrxZjM7kC2pyjWBHoZow2ZLd0qlkhXWImPq5jUrYcWWAQpjxVpDFBIaHyAkGwPpMBMWdSrChPZQrY7yQU4zcysbC9Ipy2J6gkDkULZLtwqTkrry0JEjterhLyIeC9lINsNs4AjVYImC/4a2V5Ir2Ty1EIL2Y5bxemzQKjUZWtKz8aWyeS9HR3fl0vZ7gmjITfbsbK5b1xq6IbJkgznlKVoHsMXeiMhm8GGNIZqNqrKILvtajiZYug+EUHG5HhGJboW2fe6se27G4/XJ9ke3SdEnxnroWPL8rGn+DZ+H+M1H8t9/RbAzlse4Ll7f5vb5r/Cxj2/s6LK9hw5cuS4mlEj2zvcr5ujSWL0SvIqO17FluA406fax78tK+zTrwfjhs76qCI1sPEz2r5rZky2L39fLXAyK9vVaG0Qk+NxdnvW9Vsz2d5PM6IjTGiKZBK+g9+njby5dhslYTNzJrTgTuOcBkCdy1T1iY9zXKzn+nve0NeccuToBQO738IaZjm8N2wQci6cwJI6w2O9k+aB0BhwpwHQh9ddknnmyJEjR44cOXL0grw8dhXDxG6x+C6WBzmubkSefqrt+6qRylUtNCpQb379j/DYXf+FqV94mNvf+KOcFOtw9n9t5Sd+mRF24i8/fC/d/m5udJ7i4DMPZRpPtWdZ0kZ63r6qlBB2so28F1nSFsrdSePR9dsBmD9zuO02nXKpO8FOyGq27SqaCFqOkyRURQHszmS7l1Vxq5cwZavVYkkuQUqyPbYxtCutv0dcANJ7+L4xYvv/JOW4dKo4UkVR1J7HC4wBim3IdtxKWMBJgWIUY+AmNAPovpW+McMYoEi7ZoAKFkZqBbRFoSXCoF1BT2gmhkxPtvuehyE8RBvFiyf0BqKqG4RvJ2bKd0Lc+BCf8xCS7YEUlAe6N9skoSKKBE3nnRcVHPUMyvZQbdtkI+/ZoUqnD8S2nq5tgWdhtyEVLWJl++XJbHeVRjWwFxWmVxvZDrAgwmtNVrIYouM8+r6B72MIP/O+1qKGiPh4g0iRl/W3a2qkCfzw33pWS9jY9j1qoJBesqNCr4hVeW40Hn3avkutgF7XuKQETmYSA8BTTJSGRoo+fosIt7/pX/LINe/lX/NJ3ia/1NdYOXLkyPFyQeBaWG2aCmPUmn+rjQ2TIcnb/T6/9Y43AnDk8c+13SaImqiNDI4upei51K97XlKD7LbvsYObW/d9NekgMzoJ1TLWI0V71qiyGLHVfs0NIItyPIIjTJRmG/nA7ZtsH5raBcCZw08Dy42svUJoBQzp4LkOu2a/wYmp1/blWpUjR6/Yeft3YUud809/IfzD/CmmlTWpjj+p6Iz5IdleGp28FNPMkSNHjhw5cuToCfkK+ipGUdo1q9R6TA9cy8jcvrbvi/PSmhW8hdIAd7753bXs3JMjd7Gui0XdlYDQLnv5gXT3a3+Is4wz86X/lm08bwk3RS66pQygOsnKdj9SvJfK3W3k10xuwZMK1syxttvogZ1arQyRfXQT2V5djJsyus/NEgWk0yWz3YmV7elIQGGUKTYp22UQMCArKMV0JKUR2b471dbGgLgZwCj0Pr/Ypt1JUMpLN73tuzAGKcrkTHThWanJ9nJEtvtW6/w0abfEUHSDYg5QkhYyCFpfdNIr7wFsUUA0KdvbFfTqs7/TIFa8KG0I6NTKdt/GS0m2lwfCwmVgLRcupTXHoiiiqL03ZNTDoghNrhle7TxLr2RKItvxqn3ZZUNdtqZtIT0bt03WtR1dV7PagKaFqzTa5i8Xay/P56fBkhpeh7Mo1GKEZHt4nC/n02e0hI2u43FhGuIM+GzHitALmE3Kdl8KVC1bcbpZiS59B0dqmQvLerTfXSu8VoXuG9nJcakVMeqayNTAwVf6ULYrRsOxnMliNgH3/MAv8/i67+dV2rMgZd/j5ciRI8dVD7eK3WWNGJPFcTRJjF5J3jWTmzisbCE41L4pXrqRsj0DAR3HoNU7s4VK9GxkthFFTHn14/URdxJH6vhuTLZHa9+M6zejbk3TbzOiq5iIprW0CLy+3GsA1m4Os9WXToY1nrTrN6EXMHDZ9/DnGGWB8Tu/v6/55MjRKwrFMvsLN1I48U8AaEtnmNPTxQkFisYo4fVjYGxqxeeYI0eOHDly5MjRK3Ky/SqF73mYwk0k292R7Yx77bPW47w0vdiZRFW2fwdbg2NMnzne32T7gOvYTJ9pTy73AjWw8OvIcd0wObT9Xdxy8YvMnD2Rfjyviqf1Tng42gCqm0xEB9YiltR7sqRXNY1pMU4w2/73CFUC6QsNntJKtluRmqEXW3VbFBFuG0V2/BkRkZVWcSuMMkXsBoK3WlkIVfdpyfZYnVht/T28iESJCfleUIxyuN1qgrLdtWq22L1CFAYptSHbFa9ai0PoFWahhCtV/IT5GYGdWlGimAPowq8RdfUImwvSF6YcpdDiqqAGDkHCdxV6AU0EBIGf6jPsqLmineLFU3SUoHeyvW2mfAdoukFVGg2ND7Iyw7xI585QD0spINzGRoU4vsDMQMoGagGtyUVCeOlV/M2oZWs6FvhOW7I9bmK6XMpyXyk0qIFjhVQ/ueiXClZEtmf5XWP4ilE7zp3ou2bNp49VYF6djXw/tqtCL2Li1K7z0nNwya4Ci+fn1inb+xkvvi/E9zElcPoqnEuj3EC2K33Y6QL4Tcp2Qzp9K9shzNrc/a/+gBM3/CQI0fd4OXLkyHG1Q3oWTpdm2+aGMEjvOHN2/G42zrZviu9FYd8JFVFE1kUVaf0o26Oag2fVrRkyPIfE0M1Gd52+yfao0Tpwq7VnnKzrGU8poDS5ZSmBS6D0qWwfGWeOMnL6xXDMlJFLimaiC5+lJ/+GM6xl162v7Gs+OXKkwcLUfeysPIXnOpSss1QL6azgZZ0zxMiaXNmeI0eOHDly5HjpkJPtVymqkZJWMVuJUFEYakvYAdiR5bXRhWyPLeqOvoS57Y9/4rco/eGdHHm+fQZ9N2h+a3Hghjf/NAGCFz/z+6nH0/0qvtr7w7yrlTG8ZGW7dBZDC/YecVFfi7Z4qu3rWQvsrlpAberCj3PNuzVlQEiYKm5nG/maNV8K5TiEVouKkDU7YICl+YvhWD1k3dcjVla4VivZ7kfqajNFZntxMLIGT1COh1nX6X4LpTCIKdwaEdbwmldN5agAIVGyJIotud4AprSQejriTi2GxHBlodWWXnhVnJTzg/jYaWzU0AKHIOE4jlUc0kunbrdjNWpCcxLERFU6sj0xU74LqqLQqBKqzrCkjqQeJ4atlFrOu+XzLD0pK7UCRtBEtvs2bgbHgnrUZ2sKr33WtXO5yXbVbLjuxTbyWYu1lxK2Hl5rstqgQ5jZHpPtcWFazahsr6nA6qxS+7FdVfQCqpB48bkduH2S4+F1PCbHpefg9EGOx/eFBrK9D2W70IsUqLN9DxyCPsbzVRM1OndlEGDgZW6kaIGigsgfJ3LkyJGjJ3gWTpcmxZZoEupcmHq8L5u7Xs16eY5Th9u42fl213l0gqUUEU6T7XtGsr1YKkdTWh5P7yPupFnZ7scRSind02LEa5rAtWrPYFmdf7ymtSWENvJBn8p2gPPqJKX5QwCoKTPbRUTOXzvzjxyZ+K7cQj7HZcXoja9lQFQ5+NQ3GfbO45bTEeZSDY/3ijQpZYxfy5EjR44cOXLkWAnkq+irFFZEhKoJZLtSHKYkbDw3mTyKiUaz1FnBu2b9Fo4pG/AOfb3neXmuw75Hvtjz9t2gnX2KkrBRPvHDLEYEa1ro0iZoKjoPj6/jueFXMXm8fdZdOxhBFV/vnZD1jUFMvw0R7Sxh0XtBfKkwRal6uv3ccCCDBbOvFFD9RpItbsqIc/Y6wVWLqH77Bg9YJgHTkNlALTO+urRMUlbmLwBglEdTjVWIlOgxYdIwv6hQU+hyXtSjGO2boNpKtguvmlrZrkWNDZWF2ZbXVN/Cy0BmVymC3apsN7HbZpi3gx6R7dWEjPqsZHt47DTZaLYp6MX24nGec8+fYcWKl3Zku5FK2R5mymch24tQl09v2BeoGumO4Xq4ahG1iWwPIqWxWcygbNdKGE2RDYpnpVbxNyMuinqO3THr2quR7ZeH7PbVAlpdc0Gs0tYz5JteanjmcF8KNYiP8/Dccfu1kS805pv2a7saK7SsyIVCeg5eH/mmehM5ju/g9UHeF6MYCK8SrkP6JtuNEoV6G3np1gqJWRAoJlp0DfM8F0XIzL9tjhw5cuTIDuFZXZsUm6NJAOyUjjPb73ojvhSceCL5WVa6Fk4bJ6FeYCsllLoYNF06yKzkuG7gSA1ZFxtl4NQI4LRozlhfXr9lc//RdCN0Aju3n6NPh3WPtJnoMXylgBq0Ktv7iYqJMV/YwFrraDhmyn0XN7KOsMjwHW/vey45cqTBzlu/g0VZ5OKz/8ia4AJiaEO6ASJniFllZOUnlyNHjhw5cuTIkQI52X6Vwq6ED6tJFt9aRIgttSGnY7vsXkjU06N3sT5FbvsTn/6fXPeZ7+fcycM9v6cTRpYO85xxC+P+DC/8f/8qOSu6C9rlmCvXv5ltwZH2ioA2MINqKqv2QB+g0IZsF84StpJCJT8wxYh7rv3cpJOJ7PC1IlpTYSBuyjCK3W2uXbWE5nW2kQ8iBWSaTHRYtlqMbe0BqovhsV0YGEk1Vkyk+wnK9iCD/baiqizJQqJyXHgWXmqyPVKOL7Yqx1XfxsuQlWgpZRS7tRnAlA6iDfncDnq0/+yl2ZbXsijvAXy1iNZkIx+qZ1rHilW4Mi3Zbkc28m1IVKnoNVVoL1AzWj5bSgmlLlKi6F7E6YtsL6E1NSoEkcrHzKLu0YuhO0YdlMDGy9BYUA9Vj8l2CxG0J9v96Lp6uWzcA8WoEZQAfpx3vwpt5H1ztC9lNoTfN24q8aKivpqx0G1E51LghueNG/1/VrJdNWJL3eh4Dry+yPFmJXq/ZHuhWOYMa/HP7w/nGzgEfZDjwihhCK/WFKkFDrIP8j7QlhtHYhcYkZPtOXLkyHHZITyra+xTczQJpHecGR5dw0F9F8rRbyRv4PWnbLfVMqpXR45LBzJElcWoChNZ13BqSrePKJtlJTosu+z00yw5K4a47/SfcfOXfxSAwvDaTOP4WgGtqYFdkR6yTxt5AGdwE+vkNLDsGtUr4oblaUa45o7X9D2XHDnSQNMNDpZ2s/b4ZzGFizmWjmyXUbPKQh+OcDly5MiRI0eOHCuBnGy/SuFU2+dp66WQvFlKUMcCeBExWCx3J1G1Ha9mkzzVM3muHPoKAGdefLyn7TvB9zw2esdY2PJa9t3zG9yx8GUe+cRvpx5Hl3YiOX7N/W/FkRrHHvqbVOOZ0kIavauzZWGYokwmohU3HdmuDG9kbTCd2HQgg4CicFKrlSHMatabyHYvyjUvlLs3ZfhaCa2Lsj0uiBgpSUA9UrY7lWWS0lmcBaA4OJZqrEKxTCAFvt3a/BA4FarSSK0cDa3BW8l2xbdwU5InRim0RUsis7XASmwa6QZbbbUaD3yfgnBTHyuFcjy/VmW76mVT3vtqseXYaReHEKsyZOCl+gy3Zi+ZfN6GFsy9E/haRrLdaSLbB/w5/OKa1OPE8LUyetO+k31kdAq9gElTgTCjZX496u0+Fd/Ba1P89dVStP3lUbZLrTGjvmbBn1EZdSlR2Honh4q7+xojUA3UmGyPrsdpi7Ux4uu4jMbp13Y1PrfjcxXfwe+HbI+cHeImKuG7bZs8esW5wmYKswcBUAO3L9v3uLkgVvJruJmzawGkaqLXIgLiRorVF4eQI0eOHFc7FN9qu86J0dIQxnKUTZoonZm197J1/rHE58JQYZ/9PhU2Ujcp0TM21AHYLJPtge9jZngOiWEWGsn2uPEv7TNmPcS/+ToH3/ZZDr7tsxz9ga9x3V2vyzRO0jO1ukI28mJ0C4qQAGgZle0Hx1+NqvVP/OfIkRbVjfezww9jEMprt6R6r1TD86dqpKv95MiRI0eOHDlyrDRysv0qhRMVaM1iq+W1GeUYVReSle1BpOot9qBs33bn6wE49nh3u/XA99m+EKrgKyef6bp9N5w5tp+CcCltuJE7HvwxHh7/Xm7Y+/9j7sL5VOMY0oGEB9KBoVH2FW9l4MgXUo1XwEakINtFYYhyG7Jd9Sq4KfLf1YFxDOFTrbQqlZ3YFjgDURVoxVayPcohL/ZIthtBZ7JdOlVcqaKlzBzWo2Pcri6TlG5lNpzbYDpVsFAULAyk2/p7SLeKlSGbuipKDZmGMbKQzzUyO0HZrgdWSxxCL3DUMprXOD8r2pdKSlIxdsNwE2zzVb+aSXnv663HTrscx7iwlFbZ7tmdXRWkYqDJ3m3ktcDORLY3O0AMB3OI8njqcWL4ehmjSdku3WpmJVOztTWElvn9KHgB9Jhsd6yIvE8eLz6+L5eNu9SKDRn1tYagDHn3lxq3veFHuPU/fL6vMUIlf3juLOfTZ9vXqqbhSLW2z2KSPKvtahwd4MSWun5/NvKF6L4RxyoI3+6bbK8Mbmcssm/t1/Y9jgCyoiYyPXD6s5HXCujRudtvRECOHDly5MgO1e/uCBQ7bQV1Su/la3fv9+Xyta9mDbMcP/B0y2vhfS/7fcXXyuh1a1ZDuonP073CFgVE9Py1nE+f0V3HaHTXiZsl+1m/rZnczI7dr2DH7lew5dpbM8f2SK1Yux/HUKRbU+b2g8LE9tq/tZTNknFDd+mWt/U9jxw5smDtzcsNLKOTW1O9V0Tnj2PmZHuOHDly5MiR46VFTrZfpehk8R1bayepYwECe4mqNFBUtevnjE1s4LCyhaCH3PYjzz/GGPPYUkedfqHr9t1w/tAeANbtvBWAHe/4dVQC9v7f30g1jonT1qauuv0NXGc9nYrAL0orFdmuFIYoCgfXabWp1vwKrtp7YUAvjQDJEQFWNSxgKBlUAlIrYDQVBgJ7iUCKGmnR8f0JhGnLNl627ECjRvAuE8Z+5OwwMDiSejxLmA2ZgTGEW8UmPTlhK0WE2zqeGlj4KcnnuFHGqbQqx0OyPf1v62rlBmUKLBM8akob+VJ0bXGrbeaXgWyXCTnhpkzOcVRjxUoKFTosK4faKZalajbYiXdDmFuZ/rt62rJKyKouURYW6kA2m0oAqZcxm8476dmZMzpDa2ufIPBrf9N8O/Vx3IyYPPddu2PWtdTL0faXiezWCuh1TRbL7hurz0Z+JSBVA1U2ku292tUmwcFAehHZXhsv276L40JiVbYIvL7IdkVVsaW+TGQE/SvbxdprWO+fxnXsvm3f4+8bN062azDqfcDlY9mNrnf9/LY5cuTIkSMblB5in+LIqrghDJbXqmkcZyZ33Q7AhWPPt7zWb5OZr5cxg3BOMggwyW77DtHzUhQbZVsR2Z6x4U9R1TADPlqDyIzuaZcCSc/UqvRqytx+MLJ+V+3faZXtu259Jc++5s+46YHv7nseOXJkwbYb72GWATypMDaxMdV74/OnH0e4HDly5MiRI0eOlUBOtl+liB/IzVIr6VsaCNW+ThuyHaeCJVJY1A3sYqByvOt25576HJbUeXbolQwvHux5/HaontrLoiwysX4bAGsmN/HU+new+/jHuHj+NBCSho/9z3+DNXOk7TimdKANAb31FW9HEwH7v/W3AMxdOM8jv/dDbW3zHdtCFz6K2Z2AjqFFBPni3IWW13S/iq/1TiwZkfK5khARUCuwZ8xqNlvI9kWqmD01ZaCXMZuU8QkTxM6gsChEZLtXlzseVOdYlMVMNniWKICb0BjgVjLZLTpqCTWBbNd8K7X9drFGZrcqx402cQjd4OtlTL9xfrFLQFIMRef5hcdfUua9Hli1zO00kEbrsWO0KejVVLgple1xFnc7xYtUDTR6H1OXDjKDst3TlpXos9PhNcwYnkg9TgxpDFCQTceyW8XJ4NAAy64YgbdMQGsZv2s99JoCqRqR7ckFR6lf3sx2qRcwaSXbM+XdXwGQ6rKDgx81f/Wzrx2hQ6Qq82qKvGwEdNyQEa9thO/g90G2A+H9JrrWK76D3yfZXt5wPbrwOXX4+ega0AfZHl17nehaquMi+nGQ0AoY0TXMs2PXgqvzOM6RI0eO1QwtsLrGjCiqilXfEAZ48X05BYm6ZnIzttSxzh9q/QzfxuujKSwwhigG4fOD41goQmZyT4vhKiZKrGyPXGzSWOY3w0GvkeyBa+FIdXXYo+vF0FWvDqr0VkTZvm5zHdmesjFUKAo3vfJ7Myv2c+ToF4qqcqh8OxfESPpzNVojiz6a1HPkyJEjR44cOVYC+Wr6KkVMdhUSrODLw6G9kldptaIGkO4S1RRku68PtOQCJ6F4/BvsL9yMu243G92jBL7f9T2doM28wEl9c8ND4XVv+yUA9v3f36CyOMeB//Zm7pv+awozzyaOEWfCKW0UvOs27uCAugPxwmexrQon/uj7uPvC33Pima8lbl+N7L3VFCSlUQrdB5IIct2v4uu9j2WWR4Bk1wKnGqvZspLtjYUB6fR+nEijTJEux4hn4ZC+6BNbl3tWHWFszbMksqlfHWHWbAzrIXwbJ0PmuKsWUb0Esj2wU5PPsVI/sFqV40aHppFOCIzBmjIlhmN1zjBvB8Ms4EiNwGptBtADK1MzgNBLFFgm2z3XQRNBorJdj4t8Qbprix8RbmYx+ftKrVDLO+4FunQgg7onMAZqv8XihTMAlEYnU48TQ5hlik2uAMK3M2d0apFjRz3ZrgdOJseCetQr29XAaVuEFnp4Tl8uG3fR1GQkPRs7Y979lYCQbA8JWT8qUOt9FLpddKQfke0xwdunsj2OfCDw+ibHK5SQVnjPFoGLr/RXhJ/cthuAC0efRZMusg8leuxAVJkNXXV06fVlzyv0Qu1YdqPmon5IjBw5cuTIkQ1qj+um+oYwWLZCT3NfVlSVs+oEXDza+prvpG76rYcYXMd4cIHA95eV6Bkz1iF6XvJjsj2+T2Vf7zlCh2i9KjM+Y14KNK8tIYqeWQkb+WKZ84Siin7WbzlyvFQYfuN/5MS9v5L6fUIN1/DaYPYm9Rw5cuTIkSNHjpXA1VkxzkFgh+ReUu56oVjGkwp+NZlsF84STgqyXWpFzGb1ZBMc22JX9WmWNjxAacPNlITNmWP7e/6MJIwsHWJuYEfD30bXTvH0xndyy6m/5Oh/eyPbredZkMW2zQC2FVmrd+jEP7/hNVwz/22e/YN3sdPeB4DXxhUgzkrXUijbzchpoLrQqmw3ZRWZQtleiwhIyPR2IzJaz6DKDAlPGxkEy390Fnt2QFDMMkXZapPfAM/KRAKWosx4364jtO15qko6ojiGoxRryop6KF4VNwPZ7mlldL91PD2wUyuCVU2jIk38BLK9IG1ElogAY4BiE9kex1BoGUjNJVEksNso7zPMTzQdO8vnbIKyPVZxpFS2xzadZrvvq5mhjXOPMHAQGYg2qZcpRCr+ysWzAAyO9UG2GwOUsBrOW5HxPIPlHGlZT7ZLuy9SEZZtPQPXRg3cthnwIiq6moXLo8gVdWpgCG1I7T4J3tUMoZroEdkeN1T0o2x3hQHNNvIZx4sbLGIXCiVwCfpUtp83N1GYPRCN1z6+oFeMT25iQRaxTj8fXi/6cHxYv/0mbKkzf/hxII676YMU0YvLynYnVrbnhfgcOXLkuNzQA5ugh4ZMGxNZR7Z7UROcljJKZ9ZYj7nY6kDX732vOHkNpnA5e+IAjhVb3Ge/r/hqEdUPv2PsYtOPA4uLXluD4Noh+b4KIIwSBRobeLUVspEHmNGnwjHze3yOKxA7br6X29/4o+nfGDWrmMPZn5tz5MiRI0eOHDlWAitOtv+n//SfEEI0/O+6666rvW5ZFj/1Uz/F+Pg4AwMDvP3tb+fs2bMNYxw7dow3v/nNlEolJiYm+Pf//t/jed5KT/WqRuBUwmz0BAsmoSgsilKi+hRA8SqpFLzSGKDQJY/7wJNfpSRs1tzyBtbtug2Acwef7PkzmhH4PhvcYwRrrm157Ya3/SI+Cpucwxx78P9wTptCD1rJTljOpm6nbAdYe8dbGRRVbpv/Cs/d+9ssyQKBldyoYEfj6QlNDu1QGAzJdnupdcxCUEUavRP35aHItaA62/JaTc2WgWxXjBKaCHDd5eKA4lawld7GUswBDOHh2O2t5MPswPRFH003wly+OrJddRaw1N73Wz1cpYDit85T8aqZ7BZ9rVSzBq+HIe1MGesVUUTajTbtMggoYNfIyDQQ5iClpmaZWmNGIf0+tChAQua9Ke1MynthlDGEhxcde3aUYZzk0BCTtkKmI9ulU8WVKlobi2uhGg2kazeE0RQZilzmIEXCY8WeC++LI2um0o8TQS0OoghZawKC2DY0G2kXN+pIv55sz6bir4em6QRSID07Uvck/w4Dm3ZzUN2OcZkKiIpRDK97kXWr9KyweHuVQmpGrakktszP0pwVwxUGwgv3ne/GtvTZjj0jIhdixb0I3L5t5JeGd7GmGkbChOR9n5ntisJpfRPahQN9Z6wbZoGj+ja0M3vwXAdVyL7IdkUv1I7lOCJAz23kc+TIkeOyo9eoIUeY4NUp26P7qJ7SHrxa3sCwdarl72pgE/TRFDa2+XoAZo7tWxGy3TVHKTsz4b+jZ1atzzVI7K6T1T3tUkDoRXTh19aWENrIswLKdoDF4noAzJTHSY4cVzKEFp7f5T6a1HPkyJEjR44cOVYCl0TZfuONN3L69Ona/775zW/WXnvve9/L3//93/OJT3yCr33ta5w6dYq3ve1ttdd93+fNb34zjuPwrW99i49+9KP86Z/+Ke9///svxVSvWgROBasDcVkRJbBb1bEAqlfF7ZFEhVB5Wm/znIS5577ILANsv+k+JtZvY0EWqZ5MtnbvBWeOH6AkbIobbmx5bXh8HSff/L+Zfuenue6e12MpZcw2zQB2RCp26pzfcfN9PFW8h0dv+H+5/U3/kkVRhjauAE4l3KdpSMpaDneCWr6AhUhh5V0eDDOz3YSIAC8qhBgpFRGwrPyvVpZJXsWt9HycxIrY6lJygwdEituMCouqMBtyDTV3AVvNpmz31AKq10qOq4GNp2awadcHMBKOP0PamQhZSxQRTcpxN7JW79Q00g5KYYgSVkOsQ2zJ385WveP8lBKK05rZHirv089PjVwiKtGx49ixtWQC2R4r04OUZLtnYXcqwumFmuK361hBQEG4maw0FXOA/z97dx4nR13nj/9VVV3V5/QcSebKTO77ICckwyVyBBJUFFa/KCDuF0UxoJBd5VhQDl2U33qtxnNdcb+I7rLrscQIBBRQSAIkJIRcEHJMrplJMpmrj6rqqs/vjz7mnumjOt0zeT0fDx5kqqsr7/5Mdaer3p/3++MT8Up0q+sEwsINjy+7SSMA4PLEJ/2Eu7o/63NZozO5jjSs7huEGnJPtkuyDAMuiJgOlz34WtdzL7gaUx9484y1cU9+7kUTEzykmAGzSG7W5oPsH4eg6EJneyvsxE39XG7WxmQNktU32Z5tZXv8d2ElPudl24SV441puWoOxtvHEQ13xZPtOVa2A0C7fwqCoQNQRSx14y9bp8vmYVzX7tRnnqzmkGxPLAHR3tqS6g6Q6XquRESUu3hHoOE/f03JDTnHNvIAIMomotJq7t2dDIDLNmDn0Ea+esIMxISM0PF3YOrJf1eyb/tul01GdewYhG2nrlnVHI4Xk9TUhD/EoogVSWW7knhNye+WAOBCLLXmdK7M4AQA3ROQic4GcqIzRDCHSepERERETsjLHWuXy4Xq6urUf2PHjgUAtLe34+c//zm+/e1v49JLL8WSJUvwi1/8Aq+++io2bdoEAHjuueewa9cuPPHEE1i4cCFWrlyJRx55BGvXroVhpL9m7lnPDMcrTAcRkf2QB0u2WxGYGbQul7TuBNFgyptexf7AEsiKAkmWcVSbDPXUnrT/jr5O7N8OAKiaunDAx2eddwUmzV4KADBcAXgGqWxPVvAqQ1zMS7KMBXc/h2X/5x4A8bEbbKKCEYknGd3+4PAvIiFQGq9GN8NtvbYL24ZPRCFlUNnuUjWEhRt2pH98scQNdjWD9eSTkuOTfH0AoMTCMNJMPieTftHwwOMG5FZxG4UH6NH6XYt1Iaam312gJ0vxwjXAsgMuKwIri7WpheYfsPNDPEmZ+Y2QqOyDZPauHE/esEkmVDIhJ6qfw6Hu302yfaPbm3miV5d9kPvEl0vlfTLBqyeqs82hku3JynY7s04owozE18YchORyQ4M55GdckpG4GTrQmvLDkd0BqJIFXY9AhE6iTS7N+Bg9uRK/v2iPZSVkK5r1Gp1acvJFjzb9bmFk9Vr7iq+tqadd8XUmJNcKTXZTiC91URw3a/OhbslVcEk29m1eD5G4QZ3LzdqYpEJOJdtza12eXOLB7lHZLnKsbA9OnA9ZEjjy7vb4GroOVJXFKqah1myEBjOnSnQAkMYvQr11FO2nmgAASg7J9omLL0NMyHjvpSdTvwuu50pEdOZpwkir05MhuyH16LRlx5IdZzL77NbGTkZAiqC9taXXdpcwYOfw75SqudEkV0Kces+Rtu9a1QwEpAhaTxzrvmbNIdkeVoJQoycBxLunZbuEktP6fbdEMtnuzPfLkpmXYI9rNmRFceR4RCNByYR5eNc1HWVjWNlOREREhZXbncpBvPvuu6itrYXH40FDQwMeffRRTJgwAVu2bIFpmrj88stT+86aNQsTJkzAxo0bsXz5cmzcuBHz589HVVVVap8rr7wSt912G3bu3IlFixYN+Hfqug5d76626+iIJ45M04RpZlbleKYl43M0TiMEXXIPekxd9kE2Ogd83BULI6pVpB2PpMZbjHd1dQxYCdvZfhrTjD14Y/q1qWO2B6ZgbMeuAf+OzvbTUFV1yIrO0JG3ERIeVFRNGDZO0xWAJ9o64H6RrngCT3YNPlb9nqMEoOjtA+6vJ6rTFdWT9vEUV7wNeizc1us5eiSEgGRDUn0ZnRthyQs70j++ZKJccqlpHy+5n5SowAh3dh9XscKIyd60jiUlbr6EOk4Pun+yjXw27wNdircuTz7XbXWhU52Y1bFiihc+vaXfc11WFGE5/fMkSah+eBHp9zyP6F6zPZNjDvTeDXW2IYh4C7VM40tWjnecPpFKrifXbJczOFeSTMUL2Qz1PpejEQQkAbjSf18kJdehD3WcRtm48YgmKtwlZaDYJNhCgmwbGf09wojAxBCvVdGgSALhSBjqMG2ww10dcCeek/FrTXSA6Gg7BTl8Cl1yaU7/LrgSxwt1nu7xvtVhujL7TEmSkzdlre7x1WBCKJm/L/oyocI2o3CJeIVxMfy7nUyWRro6YJomREyHKWX+nhhOXr4DZKGyfgaOSNXQ926AGDcbplAA24aVxiSTgViSBilxrpiJKjVJznb8JJhCgaWHYZomJDsGK83zZLDxrZw0HwDQun8bgsKELbty/h1olTNQciCeJBBZv9a4iqnnQt4ucHj7i6gBsvpMSSodU4MdvvNQ8c5TaFv4WQDx5TGcOOeK5fwdTTim+VXs41uscZEzNKQ3STEmuyHHupPtwsxuElxJzTQAwInD76BsbHciKt5JKLdJYa3uerg7DznS9r28bkY8zoO7YCUq+nOZ8NdRMQ8TWv4S/8Eysu7q5LRkst3omWx3oBtO0ryLrgEuusaRYxGNFLOWXgYsfaPQYRARERE5n2xftmwZHn/8ccycORPHjx/HQw89hIsuughvv/02mpqaoGkaysrKej2nqqoKTU3xyp2mpqZeifbk48nHBvPoo4/ioYce6rf9ueeeg8+X/azoM2nDhg2OHct3ugURoWH9+vUDPl5taRBdpwZ8fLrRhQ5RNuhz+9KPNeM8AM+sXwfV27+aONp6GP9HsnGoQ0Zz4ph2rAwLY4exbt06yD1aAkePbsfVzWvxsvcKmLM/OujfGWzcikapFu8888yw8Xl1YIoIDzi+0RP7MAPAWzt3453j/VtfD6TGUmEPMnZG404sBrBx8xa43LvSOh4AXAQvThze3+uYZqQTfwfg4LFmHE/zdwEAC+FFe8uRfvHph3dhMYBXNm6G6s6shf/e9w5iEYBNr/4Vnj0HAQCT9U50Kp60zpPoqYOYD+D1jX/DjnePDrhPdaQTJqS0z7ueZgkVodMtqecujnXhdNjO6li+SAzlZqjfc2fHImiPxDI+pnWqA+eKKP647o+QZAkAYNs2PiKZaDrZBlcws/d+teUCQq294tA7mvExAO8eaMThSGbxRZsPYxGAv774Ajxl8XX+zP3v4DwAf37xr73en+kYF1OgGad7n8t6CH8H4NDRZjRlOH7Rk/txDoDNr/4Vnr2NiJzcj+kAduzag3eb+nesuBIuyHYsozF1n2pBFOqgv1vj6HEsA/DM+j8Oux6lEWrDRwEcOHQExzJ9rcePYSmAF59/DhM6jqMNvqzO4dTx2o5hFoA3X9+IPY2tAIBJRghdVnrv276Sn0mwDGzYsAG2FcNHJBtHj59ASw5xAsB5woXWE02YLkycau/M6XU7Jdr8HhYAePVvL8Gzcx8C7aeg20reYnPyO0C2fOo8zD75Cl43/DDgwvM5vNaaGGDHOrB+/Xroh/dgMYC/vbIRqndHVse7HCqajhzC+vXrUa+HEZYz+/dioPE9T4zByb2vosTU0Rk2cv7dRtvCWJL48+FjTanvPNmwbQu1wo32t+Nx733vIBpD2R9PDyzDx058D396+88AgJdeehmyy7lODcVw/o42HNP8KtbxDYcH7sZFo4NHGKlJzEOJKR4oPSvbTR22kKCqmSVlK+vjSeyO4+8Biy5ObY93Esqtw0mkZCKqT21GZ6KyPbWcUxaqJ82Jx3lsL1yJ+wlqDsdTJ5yL2ubfoLXlaLx7WpFUtidfU7K7HgCocG7NdiIiIiIiKhzHk+0rV65M/fmcc87BsmXLMHHiRPzXf/0XvN78rR117733Ys2aNamfOzo6UF9fjxUrViAYTL+ldyGYpokNGzbgiiuugKo6c6G17b0nYAs/Vq1aNfDj+34Jn34CSwZ4/Mj2++EtHYeLBnluX7tesYAXgWVLF6F64ox+j7+75c/AIWDpsgsxYdbixHNsuF98AgtnTUTdtPkQto03fv0wljevBQCMU8NYOMTfv3/H19BeOn3Q19fTa00vwH9s64Dju3vjeuAIsPz8i1A7ZU5ar3fbvl+iJNoy4Nht+cN+4BRw9QevgeJK/+3VvM2PsUEN5/Y4ZtOhd4A9wMy5CzHngvR+FwBw4K1HUOGTsbhPfFvXHQZOAlddtSrttbiT5+bCxecCR4D5c2Zi+uJLAACNbz2IcOnYtH4HR/btABqB2TOmYvbyqwbcZ8+u78BQg2kdr6933/4mSj0y3pd4buebt6O0qr7XeKbr9WPPwtOyq18cx7fdA3/5OFyS4TG3rjsMdbuFyy+/FO7EusORUCewHRg/cQqagYze+9vffRxe42Sv+A7ueh14D5i3cAlmLH5/RvEdeHsM8AfgnNkzMC1xE+6Np95GtE3FBz7wgYyOBcQ/e/yRI73iO3HsALALmD57PuZdnNn4Ne7dBhwG5s6ahpnnXoE9rz0HHAbOXXY+6qef02//yJsaJNvMaEy3NP4OVsw76Lm3/fnTwCngwgsbUD7MWnBNh94B3gFmzj0no/ctALy71Qf8CVh0zmxYh8Lo8E/M6v2Q1HJ0P3AAmDllAua9L36c/Tu+Bk+gLKvjhrvagT2AbBu44ooroEdDwFvAxKnTsfCq7OMEgOZtd6MiGIAWMTGmsjar967T9r9VBhwDFp4zD1PmN2Dbe09AYPDzJFv5+A6QrbfcHajb9DyOKm0wJTWn1/rWOz+DJxbGqlWr8Ob6Y8BJ4Iorr4QvkN3yCF1vqqgaU4pzV63Cu28/Bsub3r8XQ43vzt0/QK10Am7Zgj9Yjotz/N2ahg7zsX+CKlmYNHUGFq7I7Xj7dv1/mGK9BwCYN38BZp57RQ6xXYZT/9/jWK7/FQBw9Qc+CCnDyVQDHreIzt/RgmOaX8U+vsnubDT62JYFTYqlujYNxZI9cFndCVkR02HABU+Gn9vB8nHoFF6YJ/f32q4KA8ixmlpUTEVNy+9xOpE4zqXtu9dfgmaMgXVyH+SqWQAAtzf749XMvQh4HWjc8dfEUmXFkWxPrmtv9Em2O1XZTkREREREhZOXNvI9lZWVYcaMGdi3bx+uuOIKGIaBtra2XtXtzc3NqK6OtzWrrq7Ga6+91usYzc3NqccG43a74Xb3b4WmqmpR3kgZiJOxKlYUpuIZ9Hi2VgJ3+OCAj7tFFHAH0o7FnbhxHjPCAz7HMuKz3X3BstTj42ctBV4ETjfuxKSZC/Hajz+N80/9Hhvr/h6+1l1QY6FB/35h26gzG3F67Mq0YpS8pfAjMuD4Jtel9QaCab9eWyuBJ3xg4P3NCHShwpPhxJKo7Idi9n7NscS4uQOlGZ0XhssP10DjF4tXRPgDwYxvsHsC8QkrdiyaOq5mRwHVn1ZsyXXphTn479Vl64gq7qzeAzHFB8Xqji0gwlC8mY1bkuT2wy2i/Z7rFjpk1ZfxMTV/GYB4BUOgJD6OoZgBILGmtpHZe99yl0CLNPbaX1jx43n9mb9mf+mY+HH1rtRzpVgUUcmNsizGz9YCcHf1/iywEq0v3b6SLOIrjx/XiL+HkXqtA39GtUOFLMyMxjRZ8TLY/mpi3XjY1rDHtBPrmWve9N4bPfmC8ddq6WEErHa0ecfm9G9CSdnYeEzJsQOg2gbgGvzfhiGPl4hPtgyoqopIZ/z3qnrS//diMDFJhWwbUEUMspZdfE5LLmUiYjpUNR6fJWf3GZWOYvi+MvP8D8Dc+EVMbXsFJnKLRyhuKGZb/Bh2/H3hDwThyvKYOtypc08WFoScWXwDjW+0bDomNG9ATFIBV+6/W1VV0ahUY4J9FKo7838v+movn4dzm58CJEDzZP6Z0je2t6pWYXnzr6ELdcDvzLkohvN3tOGY5lexjm8xxkTO0KNheAHIaaxtbrk88Bit3RtiURiSikxr0SVZRourGlL7oV7bVZhADmu2A4Cvega0vTFEm98FkFvbdwA4qdVBaz8Iq2ISAMCdw/FqJkzHKZQisn8TPInvb8VAS0x4NxPdAKxYDIokmGwnIiIiIhoFci9pGUZXVxfee+891NTUYMmSJVBVFS+88ELq8b1796KxsRENDQ0AgIaGBuzYsQMtLS2pfTZs2IBgMIg5c9KrPCZAsSKwlMEvUG0tCI8dGvAxr4hCUtOrfAYAty+eQNTDA1dimIm1wr3+7mq2MZXjcRol0I+9jc3/cT+Wnfo9Xpv/EBo+812YahBabPCW7s1H98MvReEdn975ILlLEEAEYoB1Z5MTAdwZtKmz3aXw2gPHJ4wQwlLmLfl0xQ/F6Oy9LTGeyfFNl+kKwGX2j0/EotChZlXJpiVm4Vt69znjEREILb3zxOOPv4ZYdOBzDoivHWhnuXZgTPHCZcXX94tGQtCkGGRvdtWTkuqFB9F+2zUYEGlUovTl8sRbIUZC3e8PPTEOyXX7MiHUADx27xajZmLdP82T/vs2yVdSBgAwerx/hRmBjux+F7YWgEdEem1LrkuoZhGf1xcfP0uPn9OWEf/dDFY9Y0KFImIZ/R3xipfBX6+ixh8z9f7nRV+xxM0zVxo3UvvyJD4jjXAHgqId8I/N+Bg9+fzJsev+bFGFAZFG+9KByIqCqIgnnQHA1OO/5+Fa66cjJqmQbAMazNRa6YWWPF+Tv9N4sn103wwNBMvxjnsOxiJe2Z4LW3HHJ2UhvtasJSS4Mmx/25MpaUBi/VpFmBBK7gkppXoOakULAnYnhOLM7/aUZ2L82A68L1x1i6FIAgCgunM/XtX7bgEAGPmfa0tERH3okeT3/+E/z23FA1XoqZ9FTIeJ7P7d63DXwhs60mubJsy02tkPpaI+XoEut8SXTtM8uSXbQ4EJKI0chjCj0EV216xJkizjsG8OAie3QbF12A79G5+r5LVa8prYTExIlh34TkNERERERIXleLL9H//xH/HSSy/h4MGDePXVV/GRj3wEiqLg4x//OEpLS3HLLbdgzZo1+Mtf/oItW7bg7//+79HQ0IDly5cDAFasWIE5c+bgpptuwvbt2/Hss8/i/vvvx+rVqx2vwhnNVDsKa4h12CR3Cfxi4DUBPSIKZJAETCaDY5GBE9BWNJ7o8Qa6k8aSLOOYNgmTD/0Plh9ci40TbsV5190Z318rgXuQiQAAcOJAfL3XsZMWpBWf4i2FLAmEQv0nA9hGPFmUblt1AICnFH4xSHxGCHrGNQeA4QpA7TPBwAx3JWIryehYMVcAmtU/PmHGKyKy4fHGKzxj0e4kqldEIaWZbPclku12dPBJFLkkAS2XB2oi2d7VHq8CUX1lWR1L0vzw9Li5leQROqQskuNaIlmsh9pS24zEe0XJIiErtAC8fd67scQkCC2T8zjBVxJP8FqR9tQ2yQzDkLL8vNX8/ZLtZiT+GZDNZABPImGcvCmVTLYPti6kKamQE1W06VKsKGJDTPRIJs6TSdehmInPFFcW1TjeQBkAwOg6hSDCkAPjMj5GTy5VQ1Sovd538bah2d9c1SWtR7I9Ph5KDm1Dk2KSBjkWgUuyIRdJsl1LtC+NJX6nim0Uzc3afOoYH19OIpZrsr18KsabjbBiMQjLgJFlkiApJmmQUsl2Z9Y3LUt8j6hAR84VfknR0mkAAEXNPTk+bmZD6s8uB5L3k+eci3dcM3KeSEFERJkzEpMU5TSuJ4TLC9XuMcnTMrJOtusl9SjXj/fapsGAlOO/U9UTZ8AUCsq69gEA3Fl8z+/JLp+CmtjR+KRfB/6dilQuxKToHqhWFHaRVLa7E9fUVuK7pWnErzlZ2U5ERERENPI5nmw/cuQIPv7xj2PmzJn42Mc+hjFjxmDTpk0YNy6eNPjOd76DD3zgA7juuutw8cUXo7q6Gr/97W9Tz1cUBevWrYOiKGhoaMCNN96IT37yk3j44YedDnVUU+0oLNfgF/KSNzhgst22LHglA7I7/YtlbyKRmkyo9Tum3gVDKP2qx7uC01GNE3i9bCWWf+qb3ftrJfAOkWzXO08CAErHDr6sQE+qL55MDHe09nsslWzPoLJd9pYiIMIDVspLZhhROfMbFzE10K+aP5aYpJBMNqbL0krgsQZICuZQrexOtFO2jfjvRdg2vIhCcgfSer7iciEq1F6V8X25hAExxASRodguX+qGVOh0vCuGVlKR1bFktx+aZKVufgCJ1ysZkLOobHf7k50fut8fRmLSQjaV3pI7AF+fZHZyXJM3cDKKz+ODIVywo93xSbEIjCxvSknukn7xmdH4+ahmEZ+meRATMuzEa7TN5Ht24N9FTNKgiAyT7bY+ZHvJZAWSaaRf2a5mMZHCl5iQlFxX012aW7IdAMKSF9C7P1vcMCByuLmqww0lkWxPnsfZVPH3ZclqqiNHrjd/nZKcHGIlK/htvWhu1ubTuIXxdcatHJPjJVOXwyfpaHznTSCm55zgNWUNkhX/XFYQg3Ag2V43fSFsIcV/cKiqTKmckThc7udK/bT5CIn4+8GJZDsARM7/B7w7boUjxyIiovQlOz250kq2e6AJI/WzFNPjHV6yUTYRVXYLbMsCEG9drklWzt+3XKqGJrkK9eZBGEKB4sqta4q7agb8UhRS+2EYyD35HJjSgBIpgvHmgaKZLJlchz7ZXS+WuN4slommRERERESUPcf7SP7mN78Z8nGPx4O1a9di7dq1g+4zceJErF+/3unQziqaHYVwDZ4AkT1BaFIM0UgInh7VsJFwJ/wAZE/6SbFkxbo1SNWyiHYiInn6XTIHz70em18HFn3mR73bxLlL4Buk6h4A7EgnbCGlqqWHo/nj6wxHO9v6H8sIIyI0eDNoU6f4SqFIAl1d7Qgk1jBOks0QDDnzxJOtlsDTpxo92RHAF8isHbpwDzJZIYdkh6pq8YRnYnKCHg3DIwkoGUzKiEgeCGPwynZNGFlXFgqXF247HtuJfW9gIoDx0xdldSw5Ua0fDnWiVIvHo0fD8CC9SpS+kq3BzR5t2s1E4lh1ewEMPEll0Pg8JfBJenyNv8RNLSuR4PX4sqsoCUk+iF7J9ijMLJZDSMbnkUzETCPVMrp7MkAWkwtkGRG4IZITPcxEZfsgiaeYlHkbecXWYWhlgz6uJqrUkxXOQ0lV3mfxWlXNDV2oUNri62p6y9KbUDSUqOTt9b7ThJFT21Bd8kBJ3PxNTSxwoL21JWvQYvHfsexAktIJXl8AtpBghU8DSC51URw3a/NpyrwGnPpdKWI5JrMnzj8f9nMSTu55FSKm51zZHlHLMOH0Zhzc/QZUh9rIe/0lOCJXoU40QXLodzt2+nmwt0kIVFTlfCxZUXDQPR1zjR2pz6FcLbj0euDS6x05FhERpS/5/V9J53uT6oXWs9OWZWTdccZTOQXa3hiajx9EVd1UGHokvna8A5MbWz11qI8cQ5fw5pweL6ubCQAoaX8HRrYTC3qYeM6FsF+QEJTCEFkuVea0ZLc4O7lmuxn/Ti2zsp2IiIiIaMTL+5rtVBiaHYVQB08MJltshzpO99qeXFfalWbFMgC43V7EhJxaU7kfI4T4JX1vs5ddiWW3/wJanxsOQ1WOA4Ad7UAYHsiKklZ8nkRr5mhXW7/H4m3qMru41XzxBHtX+6l+j8mxCMwsKtttdwk8dt9kexcsIWVUdQ8kKovRf7KCFIvAzLI1uCTLiMINYcaPG+6KtxxXPOlX3UfhAYzBK9tVmNkn2zU/3CKe5Iwd2YqjUhVKx2SX6HAlqlmNHssiRBMt/TPp+JDkTa1X353MTrZEd2X4uwUAxRs/Xqiru+27bUZgCWnQBPRwIpIXwuiOb7i26kPG5y5JxNc9uSCW+L17fJlXtgNAVPJAJCpAbDOK6BDrOMZkDa4MK9tVW4c9RFcFV+JmpGX0X16gr1SyPcvEWFjywh8+CgAIlOeebNclL2Sz+32nwcypksmUNLjsZLI90aEhi/dFX5aspZa/cOLmrxNUzY1GpQ7i+HYAgEuYRXOzNp9kRcG+MZegS8uts0IgWI5GpR720S3xJEGO8zvHfez7iMg+jPvN1Si32wCHkuMnvFMAAJJDVWVT5i1D62e3Y/yUuY4cr7PiHACA6sByDUREVDhmBt+bJNULd49ku2TpWSfby2rjy5ucOvIuAMBIdJzKpmNXX5GSSfFjOtD2vWbSbABAnXkg+yr+HoJlY9Co1AFA0Xx/kxUFulAhEp26zMQkYtnF5V2IiIiIiEY6JttHKQ/0IdddT7VW7+ydbE+2unZl0N5akmWEJQ/EYMl2MwQ9g2pvxROES7IRjQycmBV6V7w1cpo8JWUAACN0uv+DsWjGbeq0RPI+0tn/eIoVgalkfkNccgfh75MgF0YXwvAMmlQc9Fie+BIBfScrSJYOM4cWyFHJnUp4JpPPrgyS7brshWQO3rHALbJfO1BSffFzHkCw9W00+WdndRwAcCW6OkR7tH3Xk8nxLNplexOdCWI9lllItg7Mpu27K5Fsj/SYPCKMMHRoGZ8rSRHZB7lH9bNsRRHLYtIIAKjekv7xJSvvs3i9ABCWA5CiifdbLDpktYsla3D1aLuZDtU2hrwJ50pMCLLM4dvIJ9vca4O0uR9ORPKiwjgGIP2lMoaiK75Usj1mGlAlC1ION1cN2QOXHX+vJdebVLN8rT3ZsgaPnVgDvkgq2wHgRHAeKtreBpBc6qJ4YsunxZ/9GeZ+8Xc5H6clOA9j2t6GFMs+SZBUO3kWxt35Et7xL4FP0iE59LuIlsfbvjuVvAeAsbUTHTuWf84VOIVS+DJcUoaIiIpLcpJiOt8RJdULD7q/z8qWAUvO7t+pyvrpAIBQ03sAuteOVxxYnkSqiE9YM7Jcqqwnjy+AJoxFECHEHEi2A0BLcD6AeFv+YqFLWuqaOpaqbD87vl8SEREREY1mTLaPUh4RhTREZbt7kGpvPZFEVTNoIw/Eq5bFIFXLcobJdpc/Hluovf8a6wAgGZ2IyOkntH3B+NrdZri932OSGYGRYbW3N7EWeLSzf3yqFYY1RPv+wUje0n4JcmGEEclgUkGS4g1CkQQi4d7tyWUrmtONC0PSgEQiUU+0RFczaJVtyJ5eFbY9CduGG0bWSUDJ7YdHRGHFYphkvAuzakFWxwG611E3eq6xHklOLsi8gldze+JroveYjBJLrHXtzqJSUfPFk+3RHpXtwgwjmmXXAgDQZT+UHpXtLisCa4hK76GovnhCSA91V7bbRjjeHj3LtRxbPfXwdhwAgGHbUVuylnEbeZcwhrwJl6xSt9JoIy+M5Jry2VV765IXleIkokJNe6mMoRiKF0qiPbuerGTK4eZqTPakJjMkJx9k+1p7shUNXpFMthfPDVG7djEmxQ4gGglBFQbEWXIzVNXc/brOZEMkxk8yOnNOtgPxavkF//A03lj8DUy+/JacjwcAavUcAMWzfEFf8y/+CCq+chCqVpzxERFRelLL76TxvUnSfFAlC2ZyTW/bgJXlv6O+QClOoRSx1oMAACNxHeLE5EZvdXzCWrZLlfV10l2XOJ4z/+aJ8Uvifyii729RuCFi8e/QdiLZrqhsI09ERERENNIx2T4K2ZYFr2QM2fLam6j21rt6V2cbiepbd4ZJHl3yQBo02R6GmUGyXUtW3XcNUIkOQDa6oGeQbPf7g/F1dyMDJNtj0Ywv5pPJ+4Eq5VUrAsuVXWtwRRII90hQSkYIehbrZieXCAh3tPX+O6woYjlUthuSG1Ksd7Ld7Uu/0s5QfFBiAycrYzETiiSybh8taX5okoWDu9+AT9IRmHJuVscBuqvNzWj3+Wwkuiykc3NsICHJC7tHG3k7Uc2QzbreyfdHr4kyZgR6DhUlpsuXSsgCgMvWYWcxaaRnfHqPNeqFEUY0h4ke0dIpGKc3JoKNDFvZrmbYRl4TOsQQEz2SayXbseHbyNtmFIZQsp5YoCs+KJJAm1SadaeCnmKKD67k+zZxHis5VLbHZDfUZLI9eR47UNkuZA1+UXyV7RXTl0OVLBzcuQmaMIAiqowaCcbMbIBLsjGu7S1Hku1AvAXr0g/dhqq6qY4cr3xSfHKWVMTrpTrxWUBERIWVnLSZzlJDSqKbVrLTm2wbiGVZ2Q4AJ13VcLXHv0vHEnFk07GrrzET4hPWnGj7DgAh/wQAyLqKv6+xM88HgJyWUHJafAJ7srI9fm2hFPF3ECIiIiIiSg/v3o1C0UQVrjxEG3lfSbLau6PXdjORbNe8mbUrjbcIHzjZ7rLCMDNIQLsD8TXRB1pjHQCUWAhGBq3aJVlGF7wQ0Y7+j1lRmBlezAdKxwAAzAHic9sR2Fkk25MJ8lBHdwJfyrAjQJLmjyc7Q33a3MuWASuHtrum7IGcSNrFEueYO5FYTUdM8UKJDdxGPlVxm+WNEMUdT5CfePsFAMCEuedndRwAUFPJ9u5KdDNViZLdmrl916vvXmM989+HN9GVomflvRSLwsiy7TsAxFwBaD2S7WoOyXZP4vwzeibbzUh8DLKkVM5Etd2CaLgrvhzCEDf0bNkNFzKrbNdgDFnx4k783m1j+DbyIoulKXpKfrZ1KmVZH6Mny+WHmlgLvbttaPY3Vy3FE086Iz6xAHCmsl0oGrxS/LguB9qaOmXinPNgCBfa3t0EFaZj63qfLSbOPhe6UDHJOuRYS1in1c9YiO3eZRg3bWmhQyEiolHMSnQIc6cx2VZJTJrXeyTb7RwS0F3e8fBHjgLoXjvelUbSfzhV9VNhCCWniQA9iURbeqeON3H2UpxEGVxl4x05nhNMyQM5UdluxZKV7fx+SUREREQ00jHZPgol19NWhqhs9wfjCe1YuK3X9liimtfjy6yNvKH4oAySbFdjYcQySI4nk4l6V/9KdABwmV0wXZnFF4IXGCDZLmexjrnH64cplAEr5TURhdCyqFZOJCh7rgOvmJlNKkhyJ9rw66G2XttddhRWDpXt8WR7/MZAclKGO4PzJKb4oFoDJ9uNHJPtyfbu7iOv4rBUi2DZmKyOA3Sf+7Eele3JP2sZLq+QFJV9kHqsiZ7LGuvJNeDNSI8uCLHMl0PoyVL90Kzu16uJKETWyfb4RJ2eE3kkM5xTfMG6OZAlgaPvvT1sNwpbyXzNdrcYegkDNdHaUaRR2Q5Th5FDBW/yszKilmd9jJ5s1QfNjiRCS95czW7SCABYLg/UxBqiwojkVMXfU8+10Isp2a65PTigToXr+FZowmRle4ZUzY0D6jTIkoAlO1PZ7jTN7cGCu5/DxFmLCx0KEVFevfzyy/jgBz+I2tpaSJKE3//+970e/9SnPgVJknr9d9VVV/Xap7W1FTfccAOCwSDKyspwyy23oKurCzQ8O7XU0PDfw5TEpPlkdy3FNmArOUzmLKlHhXEcQHdlu+pAZbtL1dCkVGd8PT0Yd2V8fflsl7Pqy6Vq8H/pbSxZ9WlHjucEU9ZS3eK628gz2U5ERERENNIx2T4KJZPtQ60vrbk9iAoVVqR3AtpKVPN6M2wjbw5RtazaEVhq+gno5EQAMzxwG3nNCiPmyiyhHZJ8kI3OftsVKworw4pgSZbRJfkhBki2e0UUUgavNcmTmGAQ6dE6X4mFYSqZ3wTxDDJZIX6TJre1mhUrfmMgeZ74AulXttsuL1R74MrgZLI924pbVyIJPim0Hc0lc7I6RlLy3Lf0Hsl2Pfu27wBgyN7e69WbUehZJp99JfEx7/nelWORnJYIsLxjEbS6zz3N1rNOKvoTS1RY0Z6V95GcKu9rpsbbPLc1vg3JMoaskBWKG2oGle3CtuHG0Ml2SZahCzW9ZHuOle3Jz0rd7VSyPQB3MtmeeJ/lUslkqSUos+OfLblW8fcketxAVnOYDJAPbeXzUd25E25WtmelrWI+AOdawhIRUXZCoRAWLFiAtWvXDrrPVVddhePHj6f++/Wvf93r8RtuuAE7d+7Ehg0bsG7dOrz88su49dZb8x36qCCMCEyhwJXG+tyqN1nZHv8+reRY2a6MmYJKcQpdHae728g79H3rlHcyDFdmXfEGU1E/GwBg59CNrS+vv6SolmMxZQ9kK35NkZoIy2Q7EREREdGIl3s5GhUdM9HiWx2mCjck+SCivROylh6CLSR4MkwqxhQfNHPgSnS3HYHIIAHtSyTrYpH+legA4LZC6FAzqzAOSz4o5kDJdj2r1uohyQeh93+9HhEFhmjfPxhvoq2/0aM1vcsKw1DTT2Yn+RNryscibb22x1uDZ38hHwlMQN2pvwHI7jyxVX8q6ddXsk17tsl2LdH6vRydiFUtyOoYSamW4T2S7cm1qdNp+zgQQ/HB1aNNu4jF11jPpk7e7fHBEArsHp0alFgUZg4TKZSKiRh3pBWGHoXm9sCNodcwHy4+S0ipCRlAvM29mUOyvbRiHE6iDEbzXqiWPmTSTigaVKS/ZrtpGtAkMWxXBV1SIWLDt5FHLJrTupV24rPS8mTfnaEXtx9ekVj+wYE1OrVp70P9yf/GgX07AFOHLmlZncf99PhsUt3FVT2u1C9F3Yn/BqTsu2+czVz1S4GW/4JdpJXtRERni5UrV2LlypVD7uN2u1FdXT3gY7t378YzzzyD119/HUuXxpfe+P73v49Vq1bhX/7lX1BbW+t4zKOJMCPQoSGdfw3LqiYCADqaDwJzzoVLmL0mJmaqbvFVkHd8FXv/+j9wJZYB0zy5V7YDQN0Na2HbliPHqpo0C7aQcppYUOxishuKFb+mCDe9g5iQMW785AJHRUREREREuWKyfRTSU8n2oRODYckPSe+dgBZGFyJww5/h7G/L5YMWbRrwMY8dzqi1uqq5ERZu2ANUjgOAR0Rga5mld6KSF6rZv8Why47C0DJPaEfkQL9KeSsWg1cyILszTz15S5LV/N0JVM2KIOKtyfhY/kTlsxnuPX6qMCBySMhqMy7F+Ff/B0f3787qPBGaH+5BKttNPb492zXRk8l2ACidtiyrYyTJihI//4zuTg1WYjJAppNQkmIuX6/OD5IZgZHDTaSQ5IPd472r2Jl3aOjJO24KZEngxNH3MH7K3Hhb9SwmjQDxKvCQ5IXoGZ8Vybm9ZLNWD+30Psi2MeQ6jkJxwyPSqEBPiEZC0ADIwySgTaRX2S7lmmxPfLYJnzPJdtk/FkHRhUioM1XZnu37DACmLVuF6MY1OP7GHyDFIjAdqmxHz8r2ImojDwBVs88Htsb/LBdZbCNB9ewLgC1gsp2IaAR48cUXUVlZifLyclx66aX42te+hjFj4t9JNm7ciLKyslSiHQAuv/xyyLKMzZs34yMf+Ui/4+m6Dl3v/v7U0RG/1jFNE6aZ/uTIQkjG51ScthGBLmlwp3G8snF1MISCcNM+mKYZr2yX1KxjGVc3FfuUqcDup2HOjf+eJCX74/WONb4eeqbHGmh8FZeGZmksbMVT9OdHtmKKB2osDNM0YbfswVG5FrWy4sj4kXM4vs7jmOYXx9d5HNP84vjmF8fXeRzT/Cr28U03LibbR6FkZbvmG7qdW3wd6b7J9jAikgeZphRt1Z9aF7gvL6KQMlzHPCx5IaL9K9EBwCvCgDuzVnVR2Qd/rP/xXLaeVWt13RWAy+hdeR8JdyIAQB5mksNAAsnW2z2q0TU7kqpyzYRL1RKTFXrHpwoDIofK9qnnrYT1ioSjW/8EoYcyP09UHzwY+BzJteLWnTjXLSFhwpzcku0AEJXcQI9kuzDCMIQCTctu/GIuPwJGd5v2+Brr2SftIpIX0Lsnj7isKCKezJZ+6Km8dioA4PTRfaidNBs+SYecZbIdACLoHZ9iRRHLYkmEnrpKpmBs2w50qWOGbC2pVM5EzfH/QPOJ46iqnTDscbuXMBj69ZrQgHSS7ZY+5GSAYSU+K5XAuOyP0UPl3PdB3fkI9mz5M4Qdb6+v5tBG3hcoxVZlHsoaN6BjzEKYOaxP35NUxJXt46fMQwf8CCIEmW3kMzZ+yhy0wz+qq9SIiEaDq666Ctdeey0mT56M9957D/fddx9WrlyJjRs3QlEUNDU1obKystdzXC4XKioq0NQ08KTrRx99FA899FC/7c899xx8vuJaNmYwGzZscOQ4rhPHYQgX1q9fn9b+i6SxaD/4FtavX4+FtoHTXdG0nzsQyb0Yl3X+L/60dxqWAnj5r68UxVrhfcc3Wv33gLcCzTm81mJWptsos0JYv3496k/twTG5GttyeK1OnZ80MI6v8zim+cXxdR7HNL84vvnF8XUexzS/inV8w+GBl8/ui8n2USiWaH/tGSbZrrsCcPWt9jbCiGaRBBSaH27RP5EqbDu+jnmG1d5h2Q9JH7iNvF9EIHsyS7brshceq/9NINXWIbJYm9pwlfSrlI8mku2uDGMDAMXlQpfw9moN7haRjDoC9BTuU1kMAJrQAVf2SbZg2RjsVWdCOfgSrJI6RKXMjiW7A/CJgSvbY4n16rJNsiXP9cNKPSYlJi7kQocbosca68m2j9mmivpORpFj0ZzWWNclH2Sj+/xT7ShCOaxtOK5uCgAg3HIAejQMDwA5yzbyABCVvUCP8XNZEehaRdbHAwAxZjpqT/4J+xU/IurgEwvqFl0BbP8nNG59DlW1nx72uGkn2yUVUhrJdtnSc/rdyomJRFqwcpg90zNp1hK0IoiuvX+GZ+K5AAB3FhOCejpSshgfbvt3bAtVwcixY0FSz2S7lsNkgHyQFQWH3DMxX9+a9VIXZzNJlrGr5iOQK9gilYiomF1//fWpP8+fPx/nnHMOpk6dihdffBGXXXZZVse89957sWbNmtTPHR0dqK+vx4oVKxAMZj9R9EwwTRMbNmzAFVdcAVXNfXLhG0fXw4x6sGrVqrT237Pru6hUOjB/1SqcenMNSsdU4tw0nzuQw9Pr4P+vpzDV2A0AWHX1B6G4Cnc7aPDxzf41jgRbDz4FX0cLVq1ahdNv3ol9lR9M+5zoyenzk3rj+DqPY5pfHF/ncUzzi+ObXxxf53FM86vYxzfZoW04TLaPQrFoPMnVs7X2QEzFD1efdcxlM5Rdxa3mh3eARKphROGWrIxbq0dlf7827QCgR8NwSzHIGVbxmrIP3h7JvyRV6LCzSLbH1BL49RO9tkW74m86V5aJrHg1f/cb1yuiqSrXTEUkX78lAjSYkHJcb7i1+nzMOvIU3nGXQc+wbbnk9kOTYjANHWqfCnHLSCbbs6tw8fjjCcoTJXMwKasj9KbLHkhmd3JcmBHokhuZT6OIs9UA3Hb3DCjZiuZU/awrPshmz2S7DpHDRAq3x4cWVMA6fQjRcFc82e7OPiGry30mA1hRhHNYwgAAfDWz4X3HwDjjKA766gfdr3L8FBxCNawDfwUwfLLdTHxeuoaZ6BGTNEhWusn27H+3yYlEnjJnku2SLONAYDEqmjehs3YegNzX6LSrFkBpF5jV8SqOqBOdCDOVbLeFBJer+L5UdY1dABxlsj1bDZ9dW+gQiIgoQ1OmTMHYsWOxb98+XHbZZaiurkZLS0uvfWKxGFpbWwdd593tdsPt7j8xT1XVoryJMhCnYlWMDkSUQNrHCvvrMKZ9J1RVhQsxSKonpzimzFmCg3I95oY2w4QCj7c4vtOMpHPBCUL1QhU6ouFOVKIVjTVzcnr9Z9v4nWkcX+dxTPOL4+s8jml+cXzzi+PrPI5pfhXr+KYbU2YLc9OIYBvx5JHPP3RqMKaWQLN6J6DlWBiGnPmFt6QF4Bkg2R5JJKCVTCvRFT+UAdZYD3fG1yF3eTNMtite+ET/ZLsmjKyqvW13EB679/H0ZPv+DGNL6lvN7xURSBmuTZ8UUQL9lghwCwPIYmJBT8E5V6Acnag8vS3j80RJVOyGQ/0nUcQSa6Jn297a7faiA36ICQ1ZPb8vQ/ZC7rHGOswwdCmHCl7N1+v9odh6Tm3VDcUPV6z7/NNEFLYrt1acrWo1XJ1HoKeSz9kfz5S9UHrEp9rRnCYDAMDYyfMBAJVohVCGTmbvU2ejpvWNtI5rJroqDPd6Y7IKWMawx1NsHVYO1d4ub/x9UjKmJutj9BWbcCGmmu8g1hGfIOTOYc12AND8Zdjrmgm/lFuHhp7kRBtTAy5IcvF9NfFOOg8AoGS5lAQREdFIc+TIEZw6dQo1NfHvJA0NDWhra8OWLVtS+/z5z3+GbdtYtiz3ZZxGO0/0BMLa2LT3t0snoDLRmU2DCWmY77/paKpdAU2KwUDx3cA6WwiXB5rQcfy9twAAZRPnFTgiIiIiIiJyQvHd0aac2XoIplD6VQ/3208LwGP1Xm9AiYVhZlGBKnsC8EoGrFis1/ZIKJ4cV4epsu/LdAWgxgZKtrfFj+fLLKFtKV4ERBjCtnttd0MHsmiXLdxB+Oze8ZmReBLZneFrTdJlf6oaOGYa8EgmZE92xzIUX6+uBbZlwS2ZkHOsypy2+BKEhRuT7YMwlcwSdq7EuOjh/sl224wnot3e7KqpJVmG8blNWPrhO7J6fl+m7IYc665sl2JRmDkk2yV3CXw9lllwWZGcErIxl69Pst3I6jzuqctbC3/4GIzEpJFsOzQAgK6Vwd1jjXpN6LBzjK+6fhqiIn5jcLilH1qDszFRHMHJY4eGPW5yooc2XLJdUiGnmWwfak354UxavAIba25E9YSZWR+jr5qFV8Al2XAf/itMocCl5n6z9tT4SwEgp/O4JynxOzWk4lzXe0bD1dhUdT0mzj6v0KEQERFlpaurC9u2bcO2bdsAAAcOHMC2bdvQ2NiIrq4ufOlLX8KmTZtw8OBBvPDCC7jmmmswbdo0XHnllQCA2bNn46qrrsJnPvMZvPbaa3jllVdw++234/rrr0dtbW0BX9nIEDBOwPBVpb2/NnYyggih/fRJqMIEXLl/5xq37GMAivf71llB9UETOtoO7QAA1E6dX+CAiIiIiIjICUy2j0LCDCOSRmLQ1krg7VOdrVgRxDJMogI9q5Z7r1+QTKyq3swq22NqCbRY/0r0aCJ5r/lKMzqe5fLCJdmIhPtXe2fTWl3ylMIvek9USCbbNV+WyXZXIJUgT1Z/K1m28jZdAbh6dAYwEtW7co5t5N0eH/Z5zwGAjCuz1cTEgeTvsKdUsj2Hitux1RMgK0rWz+8ppnihxHqusR6BkWHb/J5kdwA+SU9NRnHZBuwc2qrHXH5oPSbKuKHnvESAWVKHCrMJRiT+vlNzSLYbvmoEze5lFjShA2pu1dSyouCoqw4AIIZLZo+ZBQA4uPXZYY+bTLYPV9luyRpke/g28optwM4hAV0+rgYNn13r6Bqa9dPOwQmUY2Zoi2OVTJVLrgEQHxcnKKnK9uKstPIFSrH8tp/AO0zHGCIiomL1xhtvYNGiRVi0aBEAYM2aNVi0aBG+8pWvQFEUvPXWW/jQhz6EGTNm4JZbbsGSJUvw17/+tVcb+F/96leYNWsWLrvsMqxatQoXXnghfvrTnxbqJY0oZXYrbH/6ywSV1EwDAJxo3OvIcmAAMGXueTgqVRXt962zgaR64BY6rJY9OCZVwhfI7L4GEREREREVJ67ZPgoJIwwdwyd7JE8QPvROGLusCCIZrocOdFctR0MdKCmtSG3XE8l3tz+zi0hbC8Bj969s10Nt2R0v0WI71HE6dUErbDtePZ5Fxa3sLYVP0nutP55c+9mbYWxJpisAzYwnoqOhDgQBuDJsv58UcwUQMFpTP+uRUHwdbgfWGw7XXQjsex1Whm3LNV/8tSQrp3uyzSisIlqr2VK8UHt0BpBjEZg5JFAVb/dklJLSCrhsHXYOLf3j74/u965H6JC03JLZSvlEjDtyCqe62gAMX+k9pGAtxjafhLBtSLIMD3KPDwDafJOAzgPDLoeg+ctwSK6D/d5LAG4dcl/LjE+qGG6ihyVraVW2q7YO24HKIydJsoxDwSVY2vE8WhFE9tMouk2YuRjHpCpYOS4PkJRsIx/jzV8iIqK8uOSSSyCEGPTxZ58dfpJiRUUFnnzySSfDOisYehQV6ICrNP0OAGPrpgMA2o/ugSIJSA58v5RkGY31H0bFsReRfo09OUlSfXDDgLf9PZxwTwR7QhARERERjQ6sbB+NzDB0afhEnuQJwt+ntbpmRTJOogLdlet9q5aNRCW5O8O278IdhNcO99tuhuPJe19JWWYBJhJC4Y4eCeho/PjZJKBdvvjf39XefTwrGn+tniwrHy01ALcVT9hHU+33szyWVtJriYBkZbviQMJz3IKrAAC2mlnKTktMyDAGaCMvzCh0aEWzVrOleOGyu9dYly0dVg6V7S5v/PwPJc4/TeS4hrlWkkq2x0wDmmTlnMz2Vk6GIgmEju0BkPnSDz25ysfDJ+no7Ii3kvcIHVKOle0AYJTFK3zSudl4vPw81LYNv267lXhvqMMsYWDJbih2d7L9jad/glPNR/rt5xLG8JX3BWBPvBAAYMCZSnRJltH1wZ9h3Kp/cuR4SqJay5SYbCciIqLRpbUl/p1RK08/tVo+tgZh4YbRtBdA98TEXC27+VFM+fJfHTkWZU7SvNAkC1XhfYiUTit0OERERERE5JDiyGyRo2QzDD2NxKDiK4UiiV6t3zURhcgiKaYlksJ91+OOJRLQXn9myXbJXdKvTTsAmJF4Etqbabu1RPV6NFG1C8SrvYHsku1aoAwAEGo/ldpm6yHEhAy3O7skqq2VwGvFq76T1d/JavBMCXcJPD2WCDASVfeKlnv7wclzzsVJlEF4yjN6nidR8Z9st9+TMCMwiijJZqs+aD2S7S4rilgObd8r6mYAAE4e3AkA0Gxj2HXHh+QOwIt4kjgaSf5uc0tml9XGb/bYLfFku3uY5PNQ/GMnAABOHz+YmAwQc6SyXauOt4dHGm00XVMuQp1oQtPhfUPuZxnJyvah37e2rKWS7Xo0jKVbvox3nv1Jv/1UkePvNk/GL4pPkjEdXKNzxuL3YeKsxY4cS0l0CIkV0ecAERERkRPamxsBAIGx9Wk/R5JlNCvVUE/Hv8sqDiXbZUVJdWajMy95zVaDE5ArZxU4GiIiIiIicgqT7aOQHIvATKOyXfXGk5+hRPUpALjtKJBhxTIAuH0DVy0nq729gcyS7bK3FAEpAtuyem23I52whQRfpsn7xAQCI9GGHgCiiYR2NklKTyCeaI50dY+dMLoQgTvr6mzhDsKbmGDQ3REgu2S75C6Bv8cSAUY0vXWp0yErCqI3/hGzr7svo+clX0ssGur/YEx3rOLWCcLl7Z1st6M5rbFeO3kuokJF1+G3ACTXWM/+d+EqG48gwmg72YRoOHEeu3NrDl5ZNxUA4OuI39Dz+LKvbC+tnAgA6Gg51D0ZwIFzr2zCPACAlEYye8LiywEAh7cM3RJVmFHYQhp2koxQNCjCBAC0Nh8GALha3+23nyrMYdvcF0LtpJlowjhHk+1OciUmAjHZTkRERKNNuPUYAKCssi6j57V7alEePgDAucp2Kqye9x6C9XMLGAkRERERETmJyfZRSI5FYKaRGHT7ywAAkc7uhLEHUQgt86TdYFXLVrQrq2pvJdF2u6uzrdd2O9qBMDyQFSWj4yWr140ebe67E9CZv15vyRgAgN7Z3UZeGGFE05jkMBjJE0RAhGDFYqlx9GS5/nvfJQJiiVbZLgfWbAeAumnzUFo+NqPn+BLt9S29f2U7YjqMIkoCCtUHt+iZbM9tjXXF5cIR1wTIJ3YDANxCT6s6ezDVsy8AADS+/QoMhyrb3R4fWlCBquhBAIAnhzbyY2rile2R1iOOTQYAgPFT56FLeOEuqxl23/KxNdgvTwIODt0m0zYj0KEOO0nGVtxw2ToAoL0lnmwPdh3ot58GoyiT7ZIs49CYC9CljSl0KANKJtstuXg+B4iIiIicYLQdgykUlI8d/jtsT1F/HWpj8Rb0iurMdRwVVs9ropppCwsXCBEREREROYrJ9lHIZUUQU4a/GHcnWrH3rM72iSjkbCq9E5XmybbxScLoQljyZFztrSbWRA/3mAgAAELvQljK/EZD8uaEFWlLbTNTyfbMj+cPxivbzXD38SQjhGgWsSVVzLoIHsnEm8/8e2ocPRlW8Ccp3iAUSSCSqJA39fhrVT25JzyzpWpu6EKF0PtXtktWFLEiSrZLmg8e6KmfNTsKO5c11gGcDkxHWee7ELYNNwxIOdwwGz9lDtrhR+jAazCi8WS26sm9crxVrUYVTsEQLiguV9bHcXt8aEUQVtvR1GQAJ7oqeHwBWF/cgXMu/T9p7X9izFLUtL855D7CjKa1hIFQNLgSle2R1qMAgJrY4dSEliS3MNJaU74QFnz6h5h2++8KHcaAXInJJzEm24mIiGiUsTuOo1Uqy3jCOMonwivFlzFyYjkwKjw1ce/hJMpQWjGuwNEQEREREZFTmGwfhVxWFFYayXZvSQUAwExUe6fWVs6iAjXZ1t1OJP6ShB5CFJnfGNASFd2RPsl2yehERM48aSfLMrqEF3aku7LdTLQzzyYBHSiNj12sR1t6yQzBkLO/CTJj8fuw3bsMVVu+kzpupu3yk1KTFTrix0muS60Nsy51vkUkN2y9q992ydKLqr21pPng6VHZrgk953W4rXGzUGcegh4NQ5FEVpNaUvHJMg55ZsPbsi2VzHZiIkWXtxYAEJVyTxafVsZC7jqemgzgcmiiR2nFuLRvVLomNaBONOFk0+HBd4pFoWP41ysUD1wifrPTaDsOAAgihFMtR7v3sW24YeY0kSKfPF4/fIHsumXkm8udqGxnG3kiIiIaZZRQM9pdmXcX8oyb2n2MHLpiUfFwJSZIN2sTCxwJERERERE5icn2UUi1I2m1vPaWxKuzk63Vw6F4FbTiznydcMXlQkRosPokUiWjC1E588STJ1AGANC72nptl40u6Fkk2wHEK+KjHamfk63Vs6kIdqkawsINq0fyXo5FYGTxWnvyX/UV1ItjqNj7a0SElnV1cXKyQigxWcFKvlYHqotzEYUXMPpXtsuxaFFVtEqaH5pkwTTi1e2a0IEc1lgHAF/dOfBJOo68uw0Ackq2A0Bo7Dmoj+xOTRrRvLkns82S+DqS0TSSz8Pp1CrhDjenJgNonuzb0merbsH7AQCHt/958J3MaHpLGLi0+HrsAOyOJlhCAgA079/RfSjTgCwJyLwZmjE1Ua1lF9HnABEREZET3JEWhLTMluACgNLa7mS7i5Xto4KauCbqCk4dZk8iIiIiIhpJmGwfhVRbh+0aPpEXKCkDgFTCWE+0HM+2AjUieYA+LcKlWDir5HhyIoDeo3IcABSzC4aSZbJd9gN6j2S7EW+trmXZfrtL8kNEu5PtSiwMM42OAkOZtuBCvOm7ANNj78bHM0tufxmA7vGzEq/V7UBCNhe67IFkhvttly29qNZqVtzxmyCRxHrjbqHnXK1cM2MJAODU3o0AAFeOXQa8k87DGLSj6+guAM5Utstl8bXWDQcq23VfFUqMFpiR+BhqBVjCoKpuKpowDvr+jYPuI8Ui6S1h4HJDRTzZroSaccA1BTEhp8YfAPTE0hQyb4ZmLNlS01aK53OAiIiIyAkB8xQMb2XGz6ucMDP1Z5dWnMsUUWZSnebGzRx6RyIiIiIiGlGYbB+F3CIKkUYVruJyISQ8sBMJ42gq2Z5dBWpU8kIYvSvbFTOUVbW3L5Fsj4Xbe213xUIwXVnGJ/uhGN1rytvJBHSWScCw7IfUI3nvsiKIZTkRoKfSVV8FgJzWf+/uDBAfP9uMt0R3O7Cudy502QvZHKCy3TYQy6EFv9OSifDkBBRPjmusA8DY6glohx/Ssa0AACXHyva6eRcAAFyNr8Rj9OZeOe6rnAwAMB1IttuBGpRbJxFLTMBx+858ZTsAHCk5B+Wntg76uGTpMOXhX6/kckNLVLZ7oifQ6a7GMaUG4sQ7qX30RBW/UqRt5IuZO/GeY2U7ERERjTZl1inYgeqMn+cvKcNpxJcVS05MpJGtvLIOu7T5qFl0VaFDISIiIiIiBzHZPgq5RRRIM9kTknwQ0XhCUQ/FE8dalkk7XeqfSI1Xe2eeVPQHSmELCVako9d2zQoh5souOa67AnCZ3cn2ZGv1bKu9o0oJlB7JdtWKwHLlfhNkyrxl2FLyfnQq5Vkfwx9MrCkfaQMA2EYElpCgqoVNZJmyF3Is0m+7YutFVdHqSiyloIe7YBo6VMmClGNyXJJlHNWmoLLj7cTfkdvxxlZPQBPGYULnmwAAjwPJ7LJEq0ojjeTzcJSy8ahAB8yuVgDZf67kyqo7D5PNfYiGuwZ8XLaiaU0ukFxuaInKdr95EoZ3HE55JsLXsT+1j6nHJ/AorGzPmJYYM1FEnwNEREREuYqZBspFB5Rg5sl2ADjhij+PyfbRweP1Y859f8OEGQsLHQoRERERETmIyfZRyCN0SFp6CeRIj+psM5po9+wLZvX36rK3X4tw1QrDSqOlfV+yoiCE7qr7JLcVhq1ml7QzXSXQYt0JN9tMJNuzrPbWFX+v5L1mR2A7kGwHgLmf/xWqPveHrJ/vL4mv2W6G479bEYtChwZJLuxb3lS8cMX6V7a7bAO2Awlep6iJxLAe6UI0Wa3swHr3ncHpmGAdjv8dDqxhfiwwG+NwGoAzXQvG1U0DAEe6DHjH1AMAzJPvAQB8/pKcj5mNsbMvhiZZ2L/9rwM+rljRtJYwkFweaFIMtmWhzGqFHahGtHQaxuqHUvuYiQk8TpwrZxtJlmEIFwQr24mIiGgUaW05ClkScJePz+r5nZ5aAICqMdlORERERERUrJhsH2WEbcMLPe0q3Kjsh5xorZ5cWznbds+m4oUS651s17JMtgNASPID0c5e2zwiDFvLLj5LDUCzuhO9thGBLlTIipLV8Uw1CC3WM9kehVCdWZfa4/WjbGx21Q8A4FI1hIUbdiQ+WUGYEejprEudZ9HgJFRF3uu33WXrsJXiSbZriW4HZrQLeuJ9kWvbdwBA5RzIkoj/HTmu2Q4ARtUiAEBEODORwuP14wTKEVNyT7YHx8XXf1fb9sMUCtQCrTM5ac556BJetL8zcLJdtoy0Xq+sxuMPhzowBu1QgjVQKmeg2j6BSCjxGarHl2tw8WZoVgyoEC52BSAiIqLRo625EQDgH5Ndst0oiX+n1tz8jkRERERERFSsmGwfZcKhDsiSgOJJr4pUd/nhMuPJREuP/9/ry64CNebywWX1SbbbEdhZJqCjsg/Qe7eR94oI4M4uPksLwmt3J9tzTUBbWgncPZL3HhGBSLOjwJkQlrwQejwJKJlRGCh8st099SLU4ASOH9rba7tqGxBFlGwvG1cHQyg4/dYzMCLxczrXtu8AUDpxQerPqif3c6Vk6nIAQNSBNdaTTqk1iGU5Qaanitr4+u/BcCOiBTz3FJcLBzyz4Wt6Y8DHXXY0rYkeshq/wXnyaHyyiLu8FsH6+OSJY+/tAADEEm3kVd4MzYopqWwjT0RERKNK+NRRAEBZ1YSsnu+qmomI0KCxjTwREREREVHRYrJ9lGk7Eb+Y95SlVxWteyoRjMafE0tU8HqybPccc/mgWr3X4/bY0awT0FElAMXsvc6yX4QhpzmRoB93CXyiRwtzM4Iosk9S2u4gfHZ3fB4RTbt9/5kQkXyQEsl2xKIwi6CyffLiywEAR7a90Gu7SxhFVdFaNrYaW8bfiMWNj6Nl31YAgMuB5HjtzCWpP3scWMN80vzzYQkJeg7ncV+uD/wLxl79lZyPU1JagZDwoDp2BLqDkwGy0VW1FJMib8O2rH6PpbuEQTLZ3nZsH4B4dVLNlHMAAKcP7wQAxBJt5J2YmHE22l+yFO4JS4bfkYiIiGiE0E8fRUzIqBhXm9XzF119K07e+DwUl8vhyIiIiIiIiMgpTLaPMp0njwEA/GPSvJif0IApsf1obz0B2wjBFAo0Lbukp+3yQetT2e5BBMiy7bvRZ010PRqGJlmQPdmtKS95ggiIHvHFIjBySUC7g6nkfXf7/iJKtisBSIklAqRYFGaBE55APIl9QJ4IcfBvvbarwgCKKNkOAAtv+DpapTJUvRJPPKsOJFCDZWPQhLEAALc393PFX1KGRmUCDAfXu5+24AJMnLXYkWOdVMYiiHDBk+2BaReiFCEcfmdbv8dctg47jXNPSbSRj7bsBwCUVdWjtGIcTqIMZlO8U4NlxJPtmofJ9mws+YffYfGVNxU6DCIiIiLH2J1NaJXKsl66zKVqqJ++YPgdiYiIiIiIqGCYbB9lwqebAMTbYKdj/KIrIUsC+994FsIIISK5s177Wah+uO3ele0+EYXsznINeDUANdZdOR7qOA0AcHmzS7bLniA0KYZoJJ4gl3NMQMveMgREGMK2oesRuCQbsrt4ku2G4kstESBZOky58JXtANBSsQQ1bW/22qah+JLtXn8Jmi98BDU4AaB7HfdcNXunAADcDiVkW8oXIaSUOXIsp3Wq8YkFhlTY3+3khRfDEhKad77U7zE1za4KSnId9rZGxISM8rHxCU3NWj20tni1e+jg67CFBG+gzLHYiYiIiGjkUrqa0O4aU+gwiIiIiIiIKI+YbB9lzPbjiAkZpRWVae1fO3kWjkmV0N99EcIII4rsk2JCC8AtoqmfDT0KTYplnWy31ECvNdEjXfH121Vfdsl2l68UANDV3gogUe2dQ0Ww4iuFS7IRDnUgGopXkCvZtrjPA9MVSHUGkK0oYg5WP+fCNeVC1ItjOHnsUGqbJkxALY74elp4+cfxpu98AM6ssQ4A4bJZ0IWadXVLX/M+9T1Ufvq/HDmW0yKeKgDI6X3mhECwHAdcUyAd3tzvMVXoEGms2Z6sbNe6jqBVKku18uwqmYKy8EHs3vwszj34U2yuvQnBMt5QJSIiIiLAHT2BLm1cocMgIiIiIiKiPGKyfZSxO1twWirNKJF3pHQpqk69DskIQc+hAlXSfPCK7sr2SFc7AMCV5drUthaEp0eyPdoVr2zXEknzTGn+snhcnfFke64JaNVfDgBoP9WMSCj+Wp1KyDoh5gpAS4yfbOlFk2yfuPgKAMChNzektrlhQCqyyvak8Tf8EBvH/z0qayc7cry6Sz+NN2fe6cixgHgr+TFV6XWyONNigRoAgCkX/nd7qnwhajq299uuCQNQvcM+P7kOezB6DO1KRWq7GDMd42NHMOZPn8M77rk49/9+y7mgiYiIiGhE8xsnYXiZbCciIiIiIhrNmGwfZeRwS69EUDqkyRdhsn0QWtcR6PLwSadBj+MOwIcohG0DACKheCW6K8tqb+EugbfHGut6OH48tz/XZHsbgNwT0PVzz4cuVDS+/ASMcLxdu+otnsp2yx3ENGMvmh+cgrldm2AVSbJ9bPUEHJZqEdv/VwDA23/9A1TJglY+vsCRDaxy/GQ0fOa7jlWi109fgOWfuN+RYxU7ORhvtR5TCp9sVyY3oE4cx8mmw722azAgqcPH59Li+1RaTQhpY1PbfTWz4ZFMKLBQ+alfwaUWx3INRERERJRf2//8GxzY9fqQ+5RZp2D7q85QRERERERERFQIeU+2f+Mb34AkSbjzzjtT26LRKFavXo0xY8YgEAjguuuuQ3Nzc6/nNTY24uqrr4bP50NlZSW+9KUvIRaL5TvcEU+LnERYzSzZPmHJlQCAaV2v51SBqrgDUCQBPRpPkOuJZHu2CWjJE4S/R7LdDLcBAHwlZVkdzxuMV6Lrnafi8VrRnBLQFZXjsb38Ckze/6tUtXwxJdvHX3E73ph4C/bXX4utEz4F/+V3FzqklOPlS1B1eis62k5h7Atr8LZ7IRZc9vFCh0UOc1fUAwCsIki2153zfgBA4/YXe233CANSGpXtqju+TxAh6N7uZTrq5jbgiFSD41esxdjaic4FTERERERFy4rFMOOlO1Dznyvx2u++P+A+MdNAuWiHEqw5w9ERERERERHRmeTK58Fff/11/OQnP8E555zTa/tdd92FP/7xj3jqqadQWlqK22+/Hddeey1eeeUVAIBlWbj66qtRXV2NV199FcePH8cnP/lJqKqKf/7nf85nyCOe12hFpz+zhE9V3VQckWpQJ47joJJ9ZbviibeLD3e1w+MLQI/E1wvXslxjXfYE4ZUMmIYOVXPDTBzPG8iusn1szWQYwoXw8b0AAJetI6JmF1vSmMu+iKr/uRIHNz8BAPD4iyfZXj99AeqnLyh0GAOSJ12ASVufxps/vQnTRQjiEz91rHKciod/XDLZnv3nilOq66ehCWNh7H8FwE0AANuyoEmxtJYw0LTufXpWJ1VUjkfFV/egOBv5ExEREVE+NDW+i/GSgT2u2Thv+/147fBmLPzsv0Fzd39nPH3iGMZJAlp5bQEjJSIiIiIionzLW2V7V1cXbrjhBvzsZz9DeXl5ant7ezt+/vOf49vf/jYuvfRSLFmyBL/4xS/w6quvYtOmTQCA5557Drt27cITTzyBhQsXYuXKlXjkkUewdu1aGIaRr5BHhaDVipivcvgd+zhWvhQAEMshKZas6o6G4klxI9n2Pctku8tXBgAIdcTXarfCHbCFBJ8/u+OpmhuHXRMgteyM/2xHYSu5tVafOn85dmoLsPDkHwEAbl/xJNuLWd2i+Lrti8KvYNc596Bm4swCR0T5UF49CQBguwqfbAeAoyXnoPzUm6mfk104ZC2dyvbuG6dysNr54IiIiIhoxDh5cDsAoOzmJ/Da/Iew+NQfsfW33+q1T1tLfPmiwFhOyyQiIiIiIhrN8lbZvnr1alx99dW4/PLL8bWvfS21fcuWLTBNE5dffnlq26xZszBhwgRs3LgRy5cvx8aNGzF//nxUVXVXD1555ZW47bbbsHPnTixatKjf36frOnRdT/3c0RFP9JqmCdM08/ESHZOMz4k4y+w2HPKPzfxYky4EWp+GpXizjkPWfACAUEcrTNOE3tUOIN5+OZtjKu54pXz76Rb4S8fAinYgDA/ctg0rsS58OnqOb6t/Gko73oFpmnDZOmzFk/O4Rxd/Bu5Nt8dj1rIfv2Lk5LnZ05jqiWiUxqPVXYeFH7htVI1ZJvI1vsWipGwcDKHAdp2598VQY2rULMXkvd9CZ/tpeHwBdHW2wQsALvew8UmKmvqzq6Rq1P7OhjPaz9lC4JjmF8c3vzi+zuOY5lexj2+xxkX9RY7uQkh4UDV+CqqvuxNbDr6Eunf+H2zrnlTHrtDJIwCAskS3JyIiIiIiIhqd8pJs/81vfoOtW7fi9ddf7/dYU1MTNE1DWVlZr+1VVVVoampK7dMz0Z58PPnYQB599FE89NBD/bY/99xz8Pl82byMM27Dhg05Pd8yorhW0nGkNYqW9eszeq4R8uI8AG1RC+szfG5S9PQRzAGw9bVXsevgCRiHdmIJgL9tfA2KmnkFefTkQSwAsOmvL8Kz6wCUY4cQggcvZBnfhg0bIOwxmGu+hHXr1mGJHcXprmjWrzfJtgOoEpWok1rw4kt/gyznrWFEweR6bg7EmHkvFNWDQ8884/ixR5p8jG+xmC3VoSks5/w+y9RAYxqNBtAgWfjdf/4MnqqZMLpa8VEA7x04jKPDxGfbNj6S+PO+oydx5Ay/nmIzms/ZQuGY5hfHN784vs7jmOZXsY5vOBwudAiUJvnUuziqTsCMxLWf/+LVqPvjddj+0lNYcOn1AIDIgU0whAvlleMLGSoRERERERHlmePJ9sOHD+OLX/wiNmzYAI9n+HVwnXLvvfdizZo1qZ87OjpQX1+PFStWIBjMbV3ufDNNExs2bMAVV1wBVVWHf8Igju3fBewEZi44D7PPX5Xx8/c89iP46+fjklWZPxeIr1uHg8Cs6VMw54JV2PK7d2CdkvCBD14DKYsE9JF9O4D/BGZPn4zZy6/CG0f/iGjUj1UZxtdzfN8JxuB76ddYPGcKPNtNlI6twblZvt6etpjvQd79U3zgAx/I+VjFxKlzkwZ2Noxv9JKLMUHzQHHlrZFKL0ONacw0EPrmP6Nea8O5q1bFPzPfBebMX4BZy1cOf+xtClTJwkWXX41xtZPz9RKK2tlwzp5pHNP84vjmF8fXeRzT/Cr28U12Z6PiV9r1Htr93d8HZy65FO88OwPSaz8FLr0eh3ZvwZIj/w9b6m5Cwxn6HkxERERERESF4fhV35YtW9DS0oLFixentlmWhZdffhk/+MEP8Oyzz8IwDLS1tfWqbm9ubkZ1dXwd3Orqarz22mu9jtvc3Jx6bCButxtud//qaVVVi/JGykByjTXSFh+jYGV9VseZee+rWSXFk0pKKwAAthGO//1GCGF4UDLA7yWt45WPix9P74KqqlDMLuiKL+sxUlUVdbPPA14CWg9uw2QYkDSvI+fH8o/9I6zYnWcsoXimjaT30Ug0msdXLS0vzN87wJiqqoodntnwNW+Bqqo4/vz3USckVIyfmtb4h+GCImxU1k6Ca5T+vtI1ms/ZQuGY5hfHN784vs7jmOZXsY5vMcZE/QnbRq3ZiNaKK1LbJFlGxzn/F0u33oMDu16H/ts70KRUY9GN/1zASImIiIiIiOhMcLzf9WWXXYYdO3Zg27Ztqf+WLl2KG264IfVnVVXxwgsvpJ6zd+9eNDY2oqGhAQDQ0NCAHTt2oKWlJbXPhg0bEAwGMWfOHKdDHjUibccBAGXj6rJ6fi6JdgDwBuIdBKxoJwBAGCFEJG/WxwsE40m6WDi+9rtihmAouS0JMLa6HqdQiuiRHXALA5KafXx9jdZEO9Fo0lW5FJMib2PTrx7C8hNP4Y2592H8lLlpPdeQVJyWgnCpWp6jJCIiIqJidbKpESVSBN7a3t8h56+4GSdRBs9/fRyzYrsRuvI78Hj9BYqSiIiIiIiIzhTHs4MlJSWYN29er21+vx9jxoxJbb/llluwZs0aVFRUIBgM4o477kBDQwOWL18OAFixYgXmzJmDm266CY899hiamppw//33Y/Xq1QNWr1Oc0dYEUygIJirCzzRN88AUCqxoFwBAMkLQpeyXEnB7fNCFilj7MQCAKxaC6QrkHOcx9xR4Tu2CV3I22U5ExS8w/QKUHf4Zlr/7bWysuRENH/ty2s81oKFTKcOYPMZHRERERMWtad92jAMwZvL8XtvdHh+21n8UDYd/hs1jr8WyZVcWJkAiIiIiIiI6oxyvbE/Hd77zHXzgAx/Addddh4svvhjV1dX47W9/m3pcURSsW7cOiqKgoaEBN954Iz75yU/i4YcfLkS4I4bd1YLTUilkRSnI3y/JMiKSB8JIJNvNEHQ5+2S2JMvY7VuC8kPPAgA0K4SYK/fKgFDZLIwP7wYAyBqT7URnk8kLL0FYuLGl5P1Y9ul/zei5MUlFl8pUOxEREdHZLHR0JwzhQs3Emf0em/ORu7Gp7hbMuelbBYiMiIiIiIiICuGM9L1+8cUXe/3s8Xiwdu1arF27dtDnTJw4EevXr89zZCPDwd1v4PTTD0AP1EEaNws1Cy7DhBkL++0nh0+gQylH5ZkPMSUCD4QeAuBM23dr3kcx8/V/wJF9b8NthdGh5l7ZrtTMQ2Xzr+N/ZrKd6KwSCJbjxGdfw8LKuownJpmSBt1TmM4hRERERFQcpJN7cVSpw+QBlhYqrRiH5Z/+dgGiIiIiIiIiokIpSGU7Zab5hbWYFnoT40/8DUvffgTqk3834H5a5ARCasUZjq63qOyFFG0DACixMEwlt2T2nEv+D7qEF4df/iU8Igxbyz3ZXj55UerPipvJdqKzzbjaSVBcmc81O7HwdgQv/HQeIiIiIiKikSLQ+R5afZMKHQYREREREREVCSbbi5xtWZhy8i/YWfUh1H91N7Yt+xZqcAKnmo/029dntMLwjC1AlN2ayxZh2okNiEZCcFlhxHKsbPf6S7C7/BLUH34aPhEG3CU5x1g3YyFiIn7qK1pu8RHR2WPphz6HWUsvK3QYRERERFRA1UYjjIoZhQ6DiIiIiIiIigST7UXuna1/wTicRumS6wAA1bOWAwCO7trUb98S6zRivsK2OK5ZdTcqRDu2r/sRNCsCS819jXXvko+jThxHGboge3JPtnu8fhxRxgMAXG4m24mIiIiIiGh4bSebMAbt0KpnFToUIiIiIiIiKhJMthe5ti2/xUmUYcaSeDVl7aTZ6IAP4UNbe+0nbBvl9mlIgUKu2A7UT5uPbSUXo27XT+Gxu2A7kGyf3XA1WhBvjy97gjkfDwBO+acDAFQm24mIiIiIiCgNx9/bDgComDivwJEQERERERFRsWCyvYgJ28aE5ufx3pj3pdYXlmQZh7Xp0E681WvfUFc7vJIBV7CqEKH2ErziyxgvmjHRPgLhQLJdcbmwv3olAMDldSbZboydDQDQvLnHR0RERERERKNf5+GdsISE2qnzCx0KERERERERFQkm24vY/rc3oVY0w7fgI722d5bPQXV4b69tbS1HAQCe8pozFt9gpi24EG95lsR/0JxJZldddDMsIcE/ts6R45VMXQ5TKAiUFbYTABEREREREY0M9om9OCbXwO1hhzQiIiIiIiKKY7K9iJ147b/RAT9mLV/Va7urfjFqRQvaTjaltnWeiifbSypqz2iMg5EvugsAIDmUbJ88dxlO3fompi+82JHjzbvwQ2j77FaUjyv85AQiIiIiIiIqfr72fTjpnVToMIiIiIiIiKiIMNlexKqPPYe9pRdC1dy9tlfOOA8AcHjX5tS2yOnjAICySmcqv3M1t+FqbJq+BhPPv86xY1aOnwxJdu6UHVc7ybFjERERERER0ehWE30P0fKZhQ6DiIiIiIiIigiT7UVqz+vPY5J9GK65H+r3WN3U+QgJD7oOvpHaZrY3wRAKguXjzmSYg5JkGctv+CpqJvJGBBEREREREY1sp5qPYBxOw123oNChEBERERERURFhsr0ItZ9qRukfP4d3XDMw75KP9ntcVhQc0qZBa3krtU10tqBNKnW08puIiIiIiIiIgGN7XwcAjJu+tMCREBERERERUTFhZrbI2JaFA//2SfgQRslNT/RrIZ/UUT4XVaE9qZ+l8Am0KxVnKkwiIiIiIiKis0aocRvCwo3xk+cUOhQiIiIiIiIqIky2F5nNT3wFCyObcPDi7w7Zgl0ZvxB1ogntp08CALToSYQ1JtuJiIiIiIiInOZq2YnD6mTIilLoUIiIiIiIiKiIMNleRKLhLizd/yNsqr4BCy792JD7Vs5YBgA4vGsjAMBnnILuHpv3GImIiIiIiIjONmO63kFb6eAT4omIiIiIiOjsxGR7EenqaIUqWfBMv3jYfeumL0BYuBF+/Uls/+YKzIzthT1u1hmIkoiIiIiIiOjsoUfDqLOOAFXzCx0KERERERERFRkm24tItKsdAKB6g8Puq7hcaNSm4ry29SjTj+GNJY/h3P/zT/kOkYiIiIiIiEaYl19+GR/84AdRW1sLSZLw+9//PvWYaZq4++67MX/+fPj9ftTW1uKTn/wkjh071usYkyZNgiRJvf77xje+cYZfSWEc3vsmVMlC6eRFhQ6FiIiIiIiIioyr0AFQNz3UAQBw+4dPtgOAsuqb2NpyCAsu+zgmuvirJCIiIiIiov5CoRAWLFiA//t//y+uvfbaXo+Fw2Fs3boVDzzwABYsWIDTp0/ji1/8Ij70oQ/hjTfe6LXvww8/jM985jOpn0tKSs5I/IXWun8LbCGhftbSQodCRERERERERYYZ2iJiRpLJ9tK09p++aPh280RERERERHR2W7lyJVauXDngY6WlpdiwYUOvbT/4wQ9w3nnnobGxERMmTEhtLykpQXV1dV5jLUb28R04JlejrqSs0KEQERERERFRkWGyvYgY4Xiy3RtIL9lORERERERE5LT29nZIkoSysrJe27/xjW/gkUcewYQJE/CJT3wCd911F1yDdFnTdR26rqd+7uiIX++apgnTNPMWuxOS8SX/X9K2B82+6agq8rhHir7jS5nh+OUXx9d5HNP84vg6j2OaXxzf/OL4Oo9jml/FPr7pxsVkexGxop0AAB+T7URERERERFQA0WgUd999Nz7+8Y8jGOxe4uwLX/gCFi9ejIqKCrz66qu49957cfz4cXz7298e8DiPPvooHnrooX7bn3vuOfh8vrzF76QNGzZA2ALv19/DS66rcGT9+kKHNKr07ahAmeH45RfH13kc0/zi+DqPY5pfHN/84vg6j2OaX8U6vuFwOK39mGwvIla0E5aQ4PWdHeveERERERERUfEwTRMf+9jHIITAj370o16PrVmzJvXnc845B5qm4bOf/SweffRRuN3ufse69957ez2no6MD9fX1WLFiRa8kfjEyTRMbNmzAFVdcgdamQyjdHsL4BZfinEtXFTq0UaHn+KqqWuhwRhyOX35xfJ3HMc0vjq/zOKb5xfHNL46v8zim+VXs45vs0DYcJtuLiNC7EIYHJbJc6FCIiIiIiIjoLJJMtB86dAh//vOfh02IL1u2DLFYDAcPHsTMmTP7Pe52uwdMwquqWpQ3UQaiqipO7t+GOgDjZy8bMXGPFCPpXChGHL/84vg6j2OaXxxf53FM84vjm18cX+dxTPOrWMc33ZiY1S0mehcikrfQURAREREREdFZJJlof/fdd/H8889jzJgxwz5n27ZtkGUZlZWVZyDCwokc3oYO+FFVN7XQoRAREREREVERYmV7EZHMLkTkkbF2HREREREREY0MXV1d2LdvX+rnAwcOYNu2baioqEBNTQ3+7u/+Dlu3bsW6detgWRaampoAABUVFdA0DRs3bsTmzZvx/ve/HyUlJdi4cSPuuusu3HjjjSgvLy/UyzojlI7DaHKNR5Ad6IiIiIiIiGgATLYXEdnogs5kOxERERERETnojTfewPvf//7Uz8m11G+++WY8+OCD+N///V8AwMKFC3s97y9/+QsuueQSuN1u/OY3v8GDDz4IXdcxefJk3HXXXb3WZB+tXEYnoq6SQodBRERERERERYrJ9iKixMIwFCbbiYiIiIiIyDmXXHIJhBCDPj7UYwCwePFibNq0yemwRgQt1gFdLSt0GERERERERFSk2AetiLhiIZhMthMREREREREVBXesCzEtWOgwiIiIiIiIqEgx2V5ENCsEy+UvdBhEREREREREBMBrd0FobCNPREREREREA2OyvYi47Qgslcl2IiIiIiIiomLgF2HAU1boMIiIiIiIiKhIMdleRNx2GLYWKHQYRERERERERGc9YdsIiBAkb2mhQyEiIiIiIqIixWR7EfGKCMBkOxEREREREVHBRcKdUCULiq+s0KEQERERERFRkWKyvYj4RASSm2vBERERERERERVaqKMVAKD6WdlOREREREREA2OyvUjYtgWvZEDxMNlOREREREREVGjhzjYAgNtfUdhAiIiIiIiIqGgx2V4kLDMKAJA9wQJHQkRERERERER652kAgCfIZDsRERERERENjMn2ImEnku2ql5XtRERERERERIVmhOJt5H3BMQWOhIiIiIiIiIoVk+1FQiSS7ZqPle1EREREREREhWaG2gAA/mB5YQMhIiIiIiKiosVke5EQsXiy3R0oLXAkRERERERERGRF2hETMnx+ToonIiIiIiKigTmebP/Rj36Ec845B8FgEMFgEA0NDfjTn/6UejwajWL16tUYM2YMAoEArrvuOjQ3N/c6RmNjI66++mr4fD5UVlbiS1/6EmKxmNOhFhUpmWz3lxU2ECIiIiIiIiKCiLSjU/JDklmnQERERERERANz/Iqxrq4O3/jGN7Blyxa88cYbuPTSS3HNNddg586dAIC77roLTz/9NJ566im89NJLOHbsGK699trU8y3LwtVXXw3DMPDqq6/il7/8JR5//HF85StfcTrU4pJItvtY2U5ERERERERUeHo7QpK/0FEQERERERFREXM5fcAPfvCDvX7++te/jh/96EfYtGkT6urq8POf/xxPPvkkLr30UgDAL37xC8yePRubNm3C8uXL8dxzz2HXrl14/vnnUVVVhYULF+KRRx7B3XffjQcffBCapg349+q6Dl3XUz93dHQAAEzThGmaTr9MR5mmCdmKJ9tVj7/o4x1pkuPJcc0cxy6/OL7O45jmF8fXeRzT/OL45hfH13kc0/wq9vEt1rjOZoregajMZDsRERERERENzvFke0+WZeGpp55CKBRCQ0MDtmzZAtM0cfnll6f2mTVrFiZMmICNGzdi+fLl2LhxI+bPn4+qqqrUPldeeSVuu+027Ny5E4sWLRrw73r00Ufx0EMP9dv+3HPPwefzOf/iHKZYEejChedf+HOhQxm1NmzYUOgQRiyOXX5xfJ3HMc0vjq/zOKb5xfHNL46v8zim+VWs4xsOhwsdAvWhmF2IukoKHQYREREREREVsbwk23fs2IGGhgZEo1EEAgH87ne/w5w5c7Bt2zZomoaysrJe+1dVVaGpqQkA0NTU1CvRnnw8+dhg7r33XqxZsyb1c0dHB+rr67FixQoEg0GHXll+mKaJDe+sQ1jyYtWqVYUOZ9QxTRMbNmzAFVdcAVVVCx3OiMKxyy+Or/M4pvnF8XUexzS/OL75xfF1Hsc0v4p9fJPd2ah4aGYHDCbbiYiIiIiIaAh5SbbPnDkT27ZtQ3t7O/77v/8bN998M1566aV8/FUpbrcbbre733ZVVYvyRkpfLjuKiORF+QiIdaQaKedCMeLY5RfH13kc0/zi+DqPY5pfHN/84vg6j2OaX8U6vsUY09nObXUh6q0afkciIiIiIiI6a8n5OKimaZg2bRqWLFmCRx99FAsWLMD3vvc9VFdXwzAMtLW19dq/ubkZ1dXVAIDq6mo0Nzf3ezz52GilWlFEJW+hwyAiIiIiIiIiAF6rC7a7tNBhEBERERERURHLS7K9L9u2oes6lixZAlVV8cILL6Qe27t3LxobG9HQ0AAAaGhowI4dO9DS0pLaZ8OGDQgGg5gzZ86ZCLcgNDsCQyn+teWJiIiIiIiIzgY+EYJwF/eydERERERERFRYjreRv/fee7Fy5UpMmDABnZ2dePLJJ/Hiiy/i2WefRWlpKW655RasWbMGFRUVCAaDuOOOO9DQ0IDly5cDAFasWIE5c+bgpptuwmOPPYampibcf//9WL169YBt4kcLTUSZbCciIiIiIiIqEgERguRlZTsRERERERENzvFke0tLCz75yU/i+PHjKC0txTnnnINnn30WV1xxBQDgO9/5DmRZxnXXXQdd13HllVfihz/8Yer5iqJg3bp1uO2229DQ0AC/34+bb74ZDz/8sNOhFhW3HYHpqih0GERERERERERnPStmwCOZULxlhQ6FiIiIiIiIipjjyfaf//znQz7u8Xiwdu1arF27dtB9Jk6ciPXr1zsdWlHziChCqr/QYRARERERERGd9SwjAgBQ/eUFjoSIiIiIiIiK2RlZs52G50EUlovJdiIiIiIiIqJCE2YYAKD6ywobCBERERERERU1JtuLhE9EILRAocMgIiIiIiIiOusJI55s95RwuTciIiIiIiIaHJPtRcKHKMBkOxEREREREVHhmfE28r4g28gTERERERHR4JhsLwLCtuFDFJKbyXYiIiIiIiKiQpNj8cp2f+nYAkdCRERERERExYzJ9iJg6BGokgXZU1LoUIiIiIiIiIjOenIsDFtICJSUFToUIiIiIiIiKmJMtheBUFcHAMDFZDsRERERERFRwSmxMLokL2RFKXQoREREREREVMSYbC8C0VAbAMDlDRY2ECIiIiIiIiKCaocRgr/QYRAREREREVGRY7K9COiJynbNx2Q7ERERERERUaFpVhhhOVDoMIiIiIiIiKjIMdleBIwIk+1ERERERERExUKzw9AVVrYTERERERHR0JhsLwJmOJ5s9wSYbCciIiIiIiIqNK8dhu4qKXQYREREREREVOSYbC8CsUgnAMAXKC1wJERERERERETkFWHEVCbbiYiIiIiIaGhMthcBS48n271+JtuJiIiIiIiICs0nwohp7D5HREREREREQ2OyvQjY0S6EhRuKy1XoUIiIiIiIiIjOen4RhnBzQjwRERERERENjcn2YqB3IgxPoaMgIiIiIiIiIgAlCAMetpEnIiIiIiKioTHZXgyMEMISk+1EREREREREhRYzDfilKGRvWaFDISIiIiIioiLHZHsRkM0uROAtdBhEREREREREZ72ujlYAgMtXVthAiIiIiIiIqOgx2V4EFDOEKCvbiYiIiIiIiAou3HkaAKD5ywobCBERERERERU9JtuLgCsWgs5kOxEREREREVHBRTuSyfbyAkdCRERERERExY7J9iKgWmEm24mIiIiIiIiKgN4VbyPvCTLZTkRERERERENjsr0IuK0wDJlrthMREREREREVmhFqAwD4gxWFDYSIiIiIiIiKHpPtRcBth2HKrGwnIiIiIiIiKrRYpB0AEGCynYiIiIiIiIbBZHsRiMo+6K5gocMgIiIiIiIiIgBHxTi4VK3QYRAREREREVGRY7K9CEy+ZyMw4+pCh0FERERERESj0Msvv4wPfvCDqK2thSRJ+P3vf9/rcSEEvvKVr6CmpgZerxeXX3453n333V77tLa24oYbbkAwGERZWRluueUWdHV1ncFXceYs+dBqvLH4W4UOg4iIiIiIiEYAJtuJiIiIiIiIRrFQKIQFCxZg7dq1Az7+2GOP4V//9V/x4x//GJs3b4bf78eVV16JaDSa2ueGG27Azp07sWHDBqxbtw4vv/wybr311jP1EoiIiIiIiIiKkqvQARARERERERFR/qxcuRIrV64c8DEhBL773e/i/vvvxzXXXAMA+I//+A9UVVXh97//Pa6//nrs3r0bzzzzDF5//XUsXboUAPD9738fq1atwr/8y7+gtrb2jL0WIiIiIiIiomLCZDsRERERERHRWerAgQNoamrC5ZdfntpWWlqKZcuWYePGjbj++uuxceNGlJWVpRLtAHD55ZdDlmVs3rwZH/nIR/odV9d16Lqe+rmjowMAYJomTNPM4yvKXTK+Yo9zpOL45objl18cX+dxTPOL4+s8jml+cXzzi+PrPI5pfhX7+KYbF5PtRERERERERGeppqYmAEBVVVWv7VVVVanHmpqaUFlZ2etxl8uFioqK1D59Pfroo3jooYf6bX/uuefg8/mcCD3vNmzYUOgQRjWOb244fvnF8XUexzS/OL7O45jmF8c3vzi+zuOY5lexjm84HE5rPybbiYiIiIiIiMhR9957L9asWZP6uaOjA/X19VixYgWCwWABIxueaZrYsGEDrrjiCqiqWuhwRh2Ob244fvnF8XUexzS/OL7O45jmF8c3vzi+zuOY5lexj2+yQ9twmGwnIiIiIiIiOktVV1cDAJqbm1FTU5Pa3tzcjIULF6b2aWlp6fW8WCyG1tbW1PP7crvdcLvd/barqlqUN1EGMpJiHYk4vrnh+OUXx9d5HNP84vg6j2OaXxzf/OL4Oo9jml/FOr7pxiTnOQ4iIiIiIiIiKlKTJ09GdXU1XnjhhdS2jo4ObN68GQ0NDQCAhoYGtLW1YcuWLal9/vznP8O2bSxbtuyMx0xERERERERULFjZTkRERERERDSKdXV1Yd++famfDxw4gG3btqGiogITJkzAnXfeia997WuYPn06Jk+ejAceeAC1tbX48Ic/DACYPXs2rrrqKnzmM5/Bj3/8Y5imidtvvx3XX389amtrC/SqiIiIiIiIiAqPyXYiIiIiIiKiUeyNN97A+9///tTPybXUb775Zjz++OP48pe/jFAohFtvvRVtbW248MIL8cwzz8Dj8aSe86tf/Qq33347LrvsMsiyjOuuuw7/+q//esZfCxEREREREVExYbKdiIiIiIiIaBS75JJLIIQY9HFJkvDwww/j4YcfHnSfiooKPPnkk/kIj4iIiIiIiGjE4prtREREREREREREREREREREGWKynYiIiIiIiIiIiIiIiIiIKEOOJ9sfffRRnHvuuSgpKUFlZSU+/OEPY+/evb32iUajWL16NcaMGYNAIIDrrrsOzc3NvfZpbGzE1VdfDZ/Ph8rKSnzpS19CLBZzOlwiIiIiIiIiIiIiIiIiIqKMOZ5sf+mll7B69Wps2rQJGzZsgGmaWLFiBUKhUGqfu+66C08//TSeeuopvPTSSzh27Biuvfba1OOWZeHqq6+GYRh49dVX8ctf/hKPP/44vvKVrzgdLhERERERERERERERERERUcZcTh/wmWee6fXz448/jsrKSmzZsgUXX3wx2tvb8fOf/xxPPvkkLr30UgDAL37xC8yePRubNm3C8uXL8dxzz2HXrl14/vnnUVVVhYULF+KRRx7B3XffjQcffBCapjkdNhERERERERERERERERERUdocT7b31d7eDgCoqKgAAGzZsgWmaeLyyy9P7TNr1ixMmDABGzduxPLly7Fx40bMnz8fVVVVqX2uvPJK3Hbbbdi5cycWLVrU7+/RdR26rqd+7ujoAACYpgnTNPPy2pySjK/Y4xypOL7Z49jlF8fXeRzT/OL4Oo9jml8c3/zi+DqPY5pfxT6+xRoXEREREREREQ0ur8l227Zx55134oILLsC8efMAAE1NTdA0DWVlZb32raqqQlNTU2qfnon25OPJxwby6KOP4qGHHuq3/fe//z18Pl+uL+WM+MMf/lDoEEY1jm/2OHb5xfF1Hsc0vzi+zuOY5hfHN784vs7jmOZXsY5vOBwGAAghChxJfiRfV3JifDEzTRPhcBgdHR1QVbXQ4Yw6HN/ccPzyi+PrPI5pfnF8nccxzS+Ob35xfJ3HMc2vYh/f5PXrcNfpeU22r169Gm+//Tb+9re/5fOvAQDce++9WLNmTerno0ePYs6cOfj0pz+d97+biIiIiIiIyAmdnZ0oLS0tdBiO6+zsBADU19cXOBIiIiIiIiKi9A13nZ63ZPvtt9+OdevW4eWXX0ZdXV1qe3V1NQzDQFtbW6/q9ubmZlRXV6f2ee2113odr7m5OfXYQNxuN9xud+rnQCCAw4cPo6SkBJIkOfWy8qKjowP19fU4fPgwgsFgocMZdTi+2ePY5RfH13kc0/zi+DqPY5pfHN/84vg6j2OaX8U+vkIIdHZ2ora2ttCh5EVtbS2v0QkAxzdXHL/84vg6j2OaXxxf53FM84vjm18cX+dxTPOr2Mc33et0x5PtQgjccccd+N3vfocXX3wRkydP7vX4kiVLoKoqXnjhBVx33XUAgL1796KxsRENDQ0AgIaGBnz9619HS0sLKisrAQAbNmxAMBjEnDlz0opDluVeSf6RIBgMFuXJNFpwfLPHscsvjq/zOKb5xfF1Hsc0vzi++cXxdR7HNL+KeXxHY0V7Eq/RqS+Ob244fvnF8XUexzS/OL7O45jmF8c3vzi+zuOY5lcxj2861+mOJ9tXr16NJ598En/4wx9QUlKSWmO9tLQUXq8XpaWluOWWW7BmzRpUVFQgGAzijjvuQENDA5YvXw4AWLFiBebMmYObbroJjz32GJqamnD//fdj9erVvarXiYiIiIiIiIiIiIiIiIiICsHxZPuPfvQjAMAll1zSa/svfvELfOpTnwIAfOc734Esy7juuuug6zquvPJK/PCHP0ztqygK1q1bh9tuuw0NDQ3w+/24+eab8fDDDzsdLhERERERERERERERERERUcby0kZ+OB6PB2vXrsXatWsH3WfixIlYv369k6EVLbfbja9+9aus2s8Tjm/2OHb5xfF1Hsc0vzi+zuOY5hfHN784vs7jmOYXx5fSxXMlvzi+ueH45RfH13kc0/zi+DqPY5pfHN/84vg6j2OaX6NlfCWRTnaciIiIiIiIiIiIiIiIiIiIUuRCB0BERERERERERERERERERDTSMNlORERERERERERERERERESUISbbiYiIiIiIiIiIiIiIiIiIMsRkOxERERERERERERERERERUYaYbCciIiIiIiIiIiIiIiIiIsoQk+1EREREI1QoFCp0CEREREREREQEXqMTEZ2tmGwnorwQQsC27UKHMWq1trbi5MmThQ5jVHnvvfewdevWQocxau3btw//+7//C9M0Cx3KqLF3716sXr0ax44dK3Qoo1I4HEZbWxt0XS90KERpEUJACFHoMIiIqEjxGj2/eI3uPF6j5xev0Z3Ha/T84jU6jTS8Rj+7MNk+Qp04cQJtbW2FDmPUOnjwIL773e/iH//xH/Hf//3fhQ5nxHnnnXfwD//wD7jmmmvw9a9/Ha2trYUOaVTZv38/zjvvPPzgBz/A8ePHCx3OqLBt2zYsXryYF/J58tZbb+H888/HH//4R5w4caLQ4YwK27dvx6JFi/Af//EfeOGFFwodzqizc+dOXH/99bjgggvwiU98An/6058KHdKosXfvXvzTP/0Tbr75Znz3u9/F9u3bCx3SqLB79258/vOfx4c+9CF89atfxUsvvVTokEaN48ePY9euXYUOg0YIXqfnF6/Ts8dr9PziNbrzeI2eX7xGdx6v0fOL1+j5xet05/EaPb+K8TqdyfYRaNeuXaivr8fnPvc5dHZ2FjqcUWfHjh24+OKL8fTTT+OVV17Bxz72MXznO98pdFgjxo4dO3DRRRehsbERNTU1ePDBB/HDH/6w0GGNKs8++yz279+Pp59+Gr/85S/R3Nxc6JBGtO3bt+OCCy7Apz/9aXz6058udDijTmNjIz74wQ/iU5/6FH7yk5+gtra20CGNeNu3b0dDQwNuv/123Hnnnfj5z3/OzwEH7dq1CxdddBEmTJiA1atX4/jx4/j1r39d6LBGhZ07d2L58uV455134PF48K1vfQu33HILfvrTnxY6tBFtz549aGhoQEtLC2pra/HEE0/gnnvuwcMPP1zo0Ea83bt3Y9q0afj85z+PPXv2FDocKnK8Ts8vXqdnj9fo+cdrdGfxGj2/eI3uPF6j5xev0fOL1+nO4zV6fhXtdbqgEeX48eOioaFBvP/97xcVFRXi+uuvFx0dHYUOa9Q4ePCgmDp1qvjyl78sYrGYEEKIn/zkJ6K6ulrs27evwNEVv/3794uJEyeKe++9N7XtgQceEKtXrxamaRYwstHlzTffFDfffLN46KGHRG1trfj6178u2traCh3WiLR3717hdrvF/fffL4QQwjAM8fTTT4t/+7d/E+vWrRNdXV0FjnDk+8Mf/iBWrVolhIiP7wMPPCCuvfZa8dnPflb8v//3/woc3cizZcsWEQwGxX333SeEEOJXv/qVKCsrExs3bhRCCGFZViHDG/FCoZC45pprxJ133pna9tvf/lZce+21oqWlhZ8JOejs7BQrVqwQd999d2rboUOHRHl5uaiurhaPPvpoAaMbuWKxmPjiF78obrzxxtS2I0eOiLvvvlvMmzev13hTZlpaWsTFF18sPvzhD4va2lpxySWXiF27dhU6LCpSvE7PL16nZ4/X6GcGr9Gdw2v0/OM1urN4jZ5fvEbPL16nO4/X6PlVzNfprkIn+yl9Qgi8+eabmDx5Mu666y6YpolVq1bh1ltvxU9/+lOUlJQUOsQRzbZtPPnkk5gxYwbuu+8+KIoCAFi+fDlcLhfXNhuGZVl46qmnsGrVKtxzzz2p7ceOHcOePXtwwQUX4Nxzz8XKlStx9dVXFzDSkU8IgU2bNuHxxx+HZVn4yU9+gpKSErz44ouYM2cOHnnkkUKHOCLEYjH84Ac/QCAQwOLFiwEAH/7wh3HkyBG0t7fj8OHD+OhHP4p77rkHCxcuLGywI9jWrVtT7VRXrlwJy7Iwb9487N69G5s3b8bevXt5zqYpFArhwgsvxG233Yavf/3rAIBPfOIT+NnPfoYHHngAzzzzTOrfLsqO2+3GqVOnsHTp0tS2V199FW+++SYWL16MmTNnYvny5fja175WwChHJkmScPr0aSxatAgAEIlEMGHCBFx66aVoa2vD008/jUWLFuHKK68scKQji6IoaGxshGVZqW3jx4/HmjVr4PF48PTTT2PSpEn43Oc+V8AoR6YDBw6krrsqKyuxZMkSfP7zn8cPf/hDzJ49u9DhURHhdXp+8To9e7xGP3N4je4MXqOfGbxGdw6v0fOP1+j5xet05/EaPb+K+TqdbeRHEEmSsGTJEnz605/G0qVL0dDQgHXr1uGZZ57Brbfeio6OjtS+QogCRjoyybKMhoYGLFiwAKWlpantc+fOhaIoXHdrGIqi4Prrr8cnP/lJBINBAMDXvvY1/PKXv8T73vc+fOITn8CmTZvw3e9+l62UcrRo0SJMnDgRjY2NeOihh3DbbbfhvvvuwwsvvICLL7640OGNGC6XC6tXr8a1116Lxx57DBMmTAAA/OY3v8Hu3buxceNGvPzyy/jXf/3XAkc6sp1//vnweDz4+c9/DlmW8atf/Qrf//738dRTT+Gaa67BCy+8gN27dxc6zBHB7/fj7bffxre+9S0ASH1x//jHP47Gxka89dZbAPgdIFu2baOrqws+nw/btm3Dj3/8Y9x3331Yu3YtHnjgAfz4xz/GhRdeiD/96U9Yt25docMdUYQQ6OzsxOHDh1Pfp7xeLw4fPow9e/bgpptuQmdnJ373u98VONKRJfleX7JkCcLhMBobG1OPVVZW4jOf+QxmzJiB3//+99B1vVBhjlizZs3CHXfcgfnz56Ompgavv/469uzZg89//vO9/t3qeROFzk68Ts8vXqdnj9foZw6v0Z3Ba/Qzg9fozuE1en7xGj2/eJ3uPF6j519RX6cXpqCecpFsP5P8/yuvvCLKyspSreoMwxA/+tGPxPPPP1/IMEcs27Z7/T8Wi4nJkyf3Gs8XXnhBnDhxoiDxFbvkuJ04cUJ84QtfEH/6059Sj+3YsUNIkiSeffbZQoU34iXf9xdffLF44oknhBBC3HLLLaKkpERUV1eLb33rW+L48eOFDHHE2b17t7jhhhvE1VdfLfbs2dPrsd/97ndClmXx7rvvFii6ke+tt94SNTU1Yt68eWLFihW9Hjt48KDw+XziN7/5TYGiG5n6tqFrb28X48ePF1/4whcKFNHo8vLLL4sVK1aI66+/XsyYMUP8+7//e+qx48ePi/r6evHYY48VMMKR61vf+paQJEl85jOfEV/5yldEIBAQt956qxBCiN/85jdiypQporW1la0WM/Taa6+JQCAg7rnnHhGNRoUQ3d/Htm7dKiRJSrWxpOzoui6EEOLo0aOiuro61apO13XxzW9+M/WdjM5uvE7PL16nZ4/X6PnFa3Tn8Ro9v3iN7jxeo+cXr9Hzi9fpzuM1+plRbNfpbCNf5A4ePIiNGzeiubkZ73//+zFt2jT4/X7EYjG4XPFf3/nnn4/169dj1apV+OxnPwuv14snnngCu3btKnD0xW+48Y3FYohGo5BlOTUT/L777sM3v/lNHD58uMDRF95g42fbNsaOHYtHH30UPp8PQggIIWDbNhYtWoTa2tpChz4iDDa+ALBs2TLIsowvfOEL+NOf/oRt27bhySefxFe+8hXIsow77riDraoG0HNML7nkEkydOhWzZs3Cgw8+iH379mHKlCkA4jMRJUmCaZqYOXMmxo0bV+DIR4a+5+yUKVMwf/58fP/738fHPvYxnDx5Eps3b8ayZcsAANXV1Vi2bBnKy8sLHHnxGuxzwLIsKIoCy7IQDAZx991343vf+x4+9alPpdp/0fAG+ky46KKL8J//+Z/w+/24+OKLe7X/HTNmDGbOnJnalvysoP76ju306dOxZs0a+P1+/OxnP8OYMWNw//334+677wYANDc3o6ysjJ8Hw2hvb4csyygpKUnNmj/33HPx05/+FDfeeCO8Xi/uvPPO1PfW8vJyzJ07F16vt5Bhjwh9x7bne1vTNMRiMdTW1mLr1q1YvHgxbr/9dowZMwb/+7//i23bthUucCoIXqfnF6/Ts8dr9PziNbrzeI2eX7xGdx6v0fOL1+j5xet05/EaPb9G1HX6GU3tU0beeustMXbsWHHRRReJsrIyMW/ePHHdddeJlpYWIYQQpmn22v+ll14SkiSJiooKsWXLlkKEPKIMN76xWExYliXC4bCYMmWK2Lp1q3j44YeF3+8Xr732WoGjL7x0xi85YyvpvvvuE8uWLWO1QRoGG9/m5mYhhBA//OEPhSRJoqamRrz++uup5/3zP/+zeOeddwoVdlEbaEyvvfZa0dTUJITong3X0z/+4z+Kq666SnR0dJzpcEec4cb38ccfF5IkiZUrV4r/+q//Eu+995645557RG1trWhsbCxw9MUpnc/ZpNdee02MHz9e/PjHPy5UuCPOYOds8nO2tbVVnHfeeeLBBx8UbW1toqurSzzwwAOipqZG7N+/v8DRF7e+Yzt37lzxd3/3d6mx7ejoSM3uTrr99tvFRz/6URGJRPp9f6C4nTt3inPPPVd897vfFe3t7UKIeBVNcrx+9rOfpSoS1q9fLxobG8U999wj6uvrxbFjxwoZetEbaGwHkvzcPXjwYOq6a+vWrWcqTCoSvE7PL16nZ4/X6PnFa3Tn8Ro9v3iN7jxeo+cXr9Hzi9fpzuM1en6NtOt0JtuLVFdXl7jwwgvF7bffLiKRiDBNU/z0pz8VF110kTjnnHNSX4ySJ5Ku6+Jzn/ucKCkpETt37ixk6CNCuuMrRLzFx8KFC8V5550nNE0Tb7zxRgEjLw6ZjJ8QQuzatUvcf//9IhgMiu3btxco6pFjqPGdP3++aG5uFqdPnxZf/vKXxZtvvimE6N+yinrL5pz9p3/6JxEMBsWOHTsKFPXIMdz4Jtsmrlu3TixfvlxUVlaKWbNmienTpzNJMYh0z9meN/RvvPFGMXv2bGGaJi+ChpHuOfvLX/5SSJIkZs2aJZYtWyYmTJjAc3YYg43thRdeKObPn58a2+S/W7t37xZ33nmnCAaD4q233ipk6EXt0KFD4pxzzhEVFRVi7ty54ic/+UnqYrPn+339+vXi3HPPFdXV1WLmzJli0qRJPGeHMdTYDiQcDos77rhDBAIBXnedhXidnl+8Ts8er9Hzi9fozuM1en7xGt15vEbPL16j5xev053Ha/T8GonX6Uy2F6kTJ06IWbNmif/5n/9JbTNNU/z5z38WF1xwgTj//PNFa2urECL+5t28ebOYO3fuWT+TO12ZjG9zc7MoKSkRqqryH5eETMZv//794sMf/rCYO3eu2LZtW6FCHlGGG98LL7yQs7gzlMk5u2/fPnHllVeKadOmpW6U0NCGG9+GhoZUtUxzc7PYs2eP2LZtW2r2N/WXyTmbvKG/efNmzuZOUybn7F/+8hfx8MMPix//+Mcc3zRkcu6ePn1afO973xOXXHIJP2+HYFmW+Ld/+zexatUqsXfvXnHLLbeIadOm9brYtCwrdWOkqalJvP3222LTpk39blRTb+mMbd8bo++++64477zzxObNmwsRMhUYr9Pzi9fp2eM1en7xGt15vEbPL16jO4/X6PnFa/T84nW6s3iNnl8j9TqdyfYiZRiGWL58ufiHf/iHXttt2xZ//OMfxXnnnSceeuih1EnV0dEhTp06VYhQR6R0xzf5gfjrX/9avP3224UItShlen7u2LFDHD58uBChjkjDje/SpUvFww8/zFmxGcj0nH3zzTfFoUOHChHqiJTO+D744IOs7shAuudschtlJt1ztmcbQEpPpp+3J0+e/P/Zu+/4Nur7f+CvO23Jllc8k9hx9t4QQigEyCJACQ1QWloItNAySylQ6I+RQIEyCymFsr4JLauDUaCMJEAgmxCSkL1I7MR7y9rS3f3+kK3E8ZLkO0u2X8/Hgwfx6XT66OWL4vP73p9P+KKe2rd//37l/fffD3994sVmfX29oigtp6ujyEWS7Ym8Xq/idDq7c4iUQHidri1ep8eO1+ja4jW6+niNri1eo6uP1+ja4jW6tnidrj5eo2urJ16ni927QjxFSqfT4YwzzsCaNWuwZs2a8HZBEDB//nxMnDgRK1asgCAIAIDk5GSkp6fHa7g9TrT5Xn755RgzZky8hptwIs2v2dixYzFgwIB4DLVH6izfyZMn49NPPw2fn9S5aM/ZiRMnIj8/Px5D7ZEiyXflypUQRf7YEalozll+FkSP56x2ov28zcjIQFpaWjyG2qMMGzYMF154Yfjrl19+GWeddRYef/xx/POf/4TD4YAoinjttdfgcDjiONKeJ5JsAeAf//gHGhoaYDKZYLPZ4jVcijNep2uL1+mx4zW6tniNrj5eo2uL1zvq4zW6tnjOaovX6erjNbq2euJ1Oj+dEpQoivh//+//we12484778SWLVsgSVL48XPPPRd1dXWoq6uL4yh7LubbNZHmV19fH79B9mA8P9XHc1ZbPGfVx0y1xc8E7TBb7TXneeLF5htvvIFf/vKX+O1vf8vPhS7oLFuet8R/n7XFfGPHf3+1xXNTfTxntcVzVn3MVFv8TNAW89UWr9G11VOu01lsT1B+vx+pqan44osvUF1djZtvvhnvvPMOAoEAFEXBmjVrkJGRAZPJFO+h9kiR5ms2m+M91ITE81NbzFd9zFRbzFd9zFRbzFc7zFYbsiyH/6zT6RAIBACELjZnzpyJG264Af/85z+xYsUKFBQUxGuYPRKzpWjwM05bvE6PHc9NbTFf9TFTbTFf9TFTbTFfbTFf9fE6Uls9MV9BURQl3oPo6xRFaTG9jCRJ0Ol0KC0thdfrRXp6Oi677DJUVVWhoqICY8eOxebNm/HFF19g4sSJ8Rt4D8F8u4b5aYv5qo+Zaov5qo+Zaov5aofZaqO9XKuqqnDgwAGcfvrpLbbfeuut+Mc//oE1a9Zg9OjR8Rp2j8BsKRr8jNMW840ds9MW81UfM9UW81UfM9UW89UW81UfryO11VvyZbE9joLBIPR6PWRZhiiKkGUZsixDr9ejqKgIp59+Ou666y7cfPPNcLlc+Pbbb7F27VpkZWXhrLPOwtChQ+P9FhIa8+0a5qct5qs+Zqot5qs+Zqot5qsdZquNSHK999578etf/zr8nDfffBNXXHEFNm/ejClTpsRx9ImN2VI0+BmnLeYbO2anLearPmaqLearPmaqLearLearPl5Haqu35ctie5zs2bMHf/nLX1BVVYW8vDxcfvnlmD59OgCgpKQEI0aMwM9+9jM8//zzUBQFosgZ/6PBfLuG+WmL+aqPmWqL+aqPmWqL+WqH2WojmlxPvOPb5/OhsrISAwcOjNfQEx6zpWjwM05bzDd2zE5bzFd9zFRbzFd9zFRbzFdbzFd9vI7UVm/Ml3+r4mDXrl2YMWMGFEVBZmYmKioqcOaZZ+Lll1+G2+1GeXk5brzxRjz33HMQBIEfflFivl3D/LTFfNXHTLXFfNXHTLXFfLXDbLURba4nMplMCXmRmSiYLUWDn3HaYr6xY3baYr7qY6baYr7qY6baYr7aYr7q43Wktnptvgp1K6/XqyxcuFC5+eabw9tKS0uVkSNHKkajUXniiScURVEUWZbjNcQejfl2DfPTFvNVHzPVFvNVHzPVFvPVDrPVBnPVDrOlaPB80RbzjR2z0xbzVR8z1RbzVR8z1Rbz1RbzVR8z1VZvzpe3sXSzQCCAAwcOYMyYMQBC6xLk5uZixowZmDVrFu644w7873//a3XHBkWG+XYN89MW81UfM9UW81UfM9UW89UOs9UGc9UOs6Vo8HzRFvONHbPTFvNVHzPVFvNVHzPVFvPVFvNVHzPVVm/Ol8X2bmYymVBQUIDNmzfD4XBAr9ejqKgI//3vf3HrrbfiqquuwiOPPAK32x3vofZIzLdrmJ+2mK/6mKm2mK/6mKm2mK92mK02mKt2mC1Fg+eLtphv7Jidtpiv+piptpiv+piptpivtpiv+piptnpzviy2dxNZlgEABoMB5557Lnbt2oULLrgAf/jDHzBmzBhccsklmD17NubOnYuSkhIEAoE4j7hnYb5dw/y0xXzVx0y1xXzVx0y1xXy1w2y1wVy1w2wpGjxftMV8Y8fstMV81cdMtcV81cdMtcV8tcV81cdMtdUX8tXHewC9XX19PVJTUyGKIoLBIPR6PX7zm98gLS0Nn3/+Ofbv34+HHnoIv/nNbwCE7uyw2+1xHnXPwXy7hvlpi/mqj5lqi/mqj5lqi/lqh9lqg7lqh9lSNHi+aIv5xo7ZaYv5qo+Zaov5qo+Zaov5aov5qo+ZaqtP5RvvReN7s927dyuFhYXKvffeG97m8/la7OP3+1t8/etf/1qZM2eO4na7u2WMPRnz7Rrmpy3mqz5mqi3mqz5mqi3mqx1mqw3mqh1mS9Hg+aIt5hs7Zqct5qs+Zqot5qs+Zqot5qst5qs+ZqqtvpYvi+0aKS4uViZOnKgMGzZMGTt2rLJkyZLwY4FAIPxnWZYVRVGUdevWKTfeeKNit9uV7du3d/t4exrm2zXMT1vMV33MVFvMV33MVFvMVzvMVhvMVTvMlqLB80VbzDd2zE5bzFd9zFRbzFd9zFRbzFdbzFd9zFRbfTFfTiOvAUVR8OabbyIvLw+33nor1q1bhzfffBMAcN9990Gv10OSJOh0OgiCAFmWUV1djW+//RZfffUVxo8fH+d3kNiYb9cwP20xX/UxU20xX/UxU20xX+0wW20wV+0wW4oGzxdtMd/YMTttMV/1MVNtMV/1MVNtMV9tMV/1MVNt9dl8u7Oy35eUlZUpy5cvVxRFUSoqKpT7779fGTlypLJ48eLwPpIktXiOw+Ho1jH2ZMy3a5iftpiv+piptpiv+piptpivdpitNpirdpgtRYPni7aYb+yYnbaYr/qYqbaYr/qYqbaYr7aYr/qYqbb6Yr4stneT0tLSNk+od999VwkGg3EcWe/AfLuG+WmL+aqPmWqL+aqPmWqL+WqH2WqDuWqH2VI0eL5oi/nGjtlpi/mqj5lqi/mqj5lqi/lqi/mqj5lqqy/ky2nkVVJWVoajR4+irq4Os2bNgk6nAwDIsgxBEJCbm4vrrrsOAPDWW29BURQ0NDTgmWeewbFjx5CXlxfP4Sc85ts1zE9bzFd9zFRbzFd9zFRbzFc7zFYbzFU7zJaiwfNFW8w3dsxOW8xXfcxUW8xXfcxUW8xXW8xXfcxUW8wXnEZeDdu3b1cKCgqU4cOHKykpKcrIkSOVN954Q6mpqVEUJTQdgizLiqKE7uC47777FEEQlLS0NOWbb76J59B7BObbNcxPW8xXfcxUW8xXfcxUW8xXO8xWG8xVO8yWosHzRVvMN3bMTlvMV33MVFvMV33MVFvMV1vMV33MVFvMN4TF9i6qrKxURo4cqfzhD39QDh06pJSUlCg//vGPlVGjRin333+/UllZqSiKEj6ZFEVRfv7znyt2u13ZtWtXvIbdYzDfrmF+2mK+6mOm2mK+6mOm2mK+2mG22mCu2mG2FA2eL9pivrFjdtpivupjptpivupjptpivtpivupjptpivsex2N5Fu3btUgYNGtTqDozf//73yrhx45THHntMcblc4e0vv/yykpqaqnz77bfdPdQeifl2DfPTFvNVHzPVFvNVHzPVFvPVDrPVBnPVDrOlaPB80RbzjR2z0xbzVR8z1RbzVR8z1Rbz1RbzVR8z1RbzPY7F9i7atm2bMmDAAOWrr75SFEVR3G53+LFbbrlFKSwsVLZv3x7eVl5ernz//ffdPs6eivl2DfPTFvNVHzPVFvNVHzPVFvPVDrPVBnPVDrOlaPB80RbzjR2z0xbzVR8z1RbzVR8z1Rbz1RbzVR8z1RbzPU5QFEWJ97rxPd2pp56KpKQkfP755wAAn88Hk8kEADjllFMwdOhQvPnmm5AkCTqdLp5D7ZGYb9cwP20xX/UxU20xX/UxU20xX+0wW20wV+0wW4oGzxdtMd/YMTttMV/1MVNtMV/1MVNtMV9tMV/1MVNtMd8QMd4D6GlcLhcaGxvhcDjC21544QXs2rULP/3pTwEAJpMJwWAQAHDmmWfC5XIBQK8+kdTCfLuG+WmL+aqPmWqL+aqPmWqL+WqH2WqDuWqH2VI0eL5oi/nGjtlpi/mqj5lqi/mqj5lqi/lqi/mqj5lqi/m2j8X2KOzevRs/+tGPcNZZZ2HUqFF4/fXXAQCjRo3CM888g5UrV+LSSy9FIBCAKIairayshM1mQzAYBCcR6Bjz7Rrmpy3mqz5mqi3mqz5mqi3mqx1mqw3mqh1mS9Hg+aIt5hs7Zqct5qsL370CAAEAAElEQVQ+Zqot5qs+Zqot5qst5qs+Zqot5tsxfbwH0FPs3r0bZ555Jq688kpMnToVW7ZswdVXX43Ro0dj0qRJ+OEPfwibzYYbbrgB48ePx8iRI2E0GvG///0PGzduhF7PqDvCfLuG+WmL+aqPmWqL+aqPmWqL+WqH2WqDuWqH2VI0eL5oi/nGjtlpi/mqj5lqi/mqj5lqi/lqi/mqj5lqi/l2jmu2R6C2thY/+clPMHLkSDzzzDPh7WeffTbGjRuHpUuXhrc1Njbij3/8I2pra2E2m3H99ddj9OjR8Rh2j8F8u4b5aYv5qo+Zaov5qo+Zaov5aofZaoO5aofZUjR4vmiL+caO2WmL+aqPmWqL+aqPmWqL+WqL+aqPmWqL+Uam999OoIJAIID6+npccsklAABZliGKIgoLC1FbWwsAUBQFiqIgOTkZjz76aIv9qGPMt2uYn7aYr/qYqbaYr/qYqbaYr3aYrTaYq3aYLUWD54u2mG/smJ22mK/6mKm2mK/6mKm2mK+2mK/6mKm2mG9k+s477YLs7Gy89tpr+MEPfgAAkCQJANC/f//wySIIAkRRhMPhCD9PEITuH2wPxHy7hvlpi/mqj5lqi/mqj5lqi/lqh9lqg7lqh9lSNHi+aIv5xo7ZaYv5qo+Zaov5qo+Zaov5aov5qo+Zaov5RobF9ggNGzYMQOhuDIPBACB0t0ZlZWV4n0ceeQQvv/wygsEggL53MnUF8+0a5qct5qs+Zqot5qs+Zqot5qsdZqsN5qodZkvR4PmiLeYbO2anLearPmaqLearPmaqLearLearPmaqLebbOU4jHyVRFKEoSvhEab5z47777sMf//hHbN26FXo9Y40V8+0a5qct5qs+Zqot5qs+Zqot5qsdZqsN5qodZkvR4PmiLeYbO2anLearPmaqLearPmaqLearLearPmaqLebbPna2x0BRFACAXq/HwIED8cQTT+Cxxx7DN998gwkTJsR5dD0f8+0a5qct5qs+Zqot5qs+Zqot5qsdZqsN5qodZkvR4PmiLeYbO2anLearPmaqLearPmaqLearLearPmaqLebbtr55i0EXNd+tYTAY8NJLL8Fut2Pt2rWYPHlynEfWOzDfrmF+2mK+6mOm2mK+6mOm2mK+2mG22mCu2mG2FA2eL9pivrFjdtpivupjptpivupjptpivtpivupjptpivm1jZ3sXzJ07FwCwfv16TJ06Nc6j6X2Yb9cwP20xX/UxU20xX/UxU20xX+0wW20wV+0wW4oGzxdtMd/YMTttMV/1MVNtMV/1MVNtMV9tMV/1MVNtMd+WBKW5559i4nK5YLPZ4j2MXov5dg3z0xbzVR8z1RbzVR8z1Rbz1Q6z1QZz1Q6zpWjwfNEW840ds9MW81UfM9UW81UfM9UW89UW81UfM9UW8z2OxXYiIiIiIiIiIiIiIiIiIqIocRp5IiIiIiIiIiIiIiIiIiKiKLHYTkREREREREREREREREREFCUW24mIiIiIiIiIiIiIiIiIiKLEYjsREREREREREREREREREVGUWGwnIiIiIiIiIiIiIiIiIiKKEovtREREREREREREREREREREUWKxnYiIiIiIiIiIiIiIiIiIKEosthMREREREREREREREREREUWJxXYiIiIiIiIiIiIiIiIiIqIosdhOREREREREREREREREREQUJRbbiYiIiIiIiIiIiIiIiIiIosRiOxERESWMhx9+GO+99168h0FERERERETU5/EanYiIqHOCoihKvAdBREREBABJSUm45JJLsHz58ngPhYiIiIiIiKhP4zU6ERFR59jZTkREREREREREREREREREFCUW24mIiBJAY2Mjbr31VgwaNAgmkwlZWVmYPXs2vv322/A+mzZtwrx585CSkgKr1YqzzjoL69ata3Ws1atXY+rUqTCbzRgyZAheeOEFLF68GIIgtNhPEATcdNNN+Pe//43Ro0fDYrFg+vTp2LFjBwDghRdewNChQ2E2mzFz5kwcOXKk1WtFMqbm1z548CAWLVqE1NRUpKSk4Oqrr4bb7W4xHpfLhVdffRWCIEAQBCxatCjiDGVZxjPPPINx48bBbDYjMzMT8+bNwzfffBPxMYiIiIiIiIh4jd71a/QnnngCp59+OjIyMmCxWDBlyhT85z//ifj5REREPYU+3gMgIiIi4Ne//jX+85//4KabbsLo0aNRU1ODtWvXYs+ePZg8eTI+//xznHfeeZgyZQruv/9+iKKIZcuW4ZxzzsGaNWtw6qmnAgC2bt2KefPmITc3F0uWLIEkSXjggQeQmZnZ5uuuWbMG77//Pm688UYAwCOPPIILLrgAd955J5577jnccMMNqKurw2OPPYZrrrkGn3/+efi5kY6p2WWXXYbCwkI88sgj+Pbbb/Hyyy8jKysLjz76KADgH//4B375y1/i1FNPxXXXXQcAGDJkSMQZ/uIXv8Dy5ctx3nnn4Ze//CWCwSDWrFmDjRs3YurUqZF/M4iIiIiIiKhP4zV616/Rn3nmGfzwhz/EFVdcAb/fj7feeguXXnopPvzwQ5x//vmRfzOIiIgSHNdsJyIiSgCpqan42c9+hmeffbbVY4qiYMSIERg8eDA+/vjj8N3vHo8HY8aMwdChQ7FixQoAwA9/+EN89tlnOHDgAPLy8gAABw8exKhRoxAMBnHiP/uCIMBkMmHv3r0YNGgQAODFF1/Er371K+Tk5GD//v1ITk4GAPzhD3/AI488gsOHD2PQoEFRjWnx4sVYsmQJrrnmGrzyyivh1//Rj36Er776CtXV1eFtsa4H98UXX+Ccc87BLbfcgmeeeaZVfid3DBARERERERG1h9foIV1Zs93j8cBisYS/DgQCmDx5MrKysvDZZ59FfTwiIqJExWnkiYiIEkBqaio2bdqE0tLSVo9t27YNBw4cwE9/+lPU1NSguroa1dXVcLlcOPfcc/HVV19BlmVIkoRVq1ZhwYIF4Yt4ABg6dCjOO++8Nl/33HPPDV/EA8C0adMAAAsXLgxfxJ+4/fvvv49qTCf69a9/3eLrH/zgB6ipqYHD4Ygiqba9/fbbEAQB999/f6vHWGgnIiIiIiKiaPAavetOLLTX1dWhoaEBP/jBD1pMxU9ERNQbcBp5IiKiBPDYY4/hqquuwsCBAzFlyhTMnz8fV155JQYPHowDBw4AAK666qp2n9/Q0ACv1wuPx4OhQ4e2erytbQCQn5/f4uuUlBQAwMCBA9vcXldXBwARjyktLa3d12p+rK6uDna7vd3jROLQoUPIy8tDenp6l45DRERERERExGv0rl2jA8CHH36IP/7xj9i2bRt8Pl94O2+IJyKi3obFdiIiogRw2WWX4Qc/+AHeffddrFixAo8//jgeffRRvPPOO+G7zx9//HFMnDixzecnJSXB6/VG/bo6nS6q7c1T3EU6pmiOSURERERERJQIeI3eNWvWrMEPf/hDnHnmmXjuueeQm5sLg8GAZcuW4Y033ujy8YmIiBIJi+1EREQJIjc3FzfccANuuOEGVFZWYvLkyXjooYfw5z//GQBgt9sxa9asdp+flZUFs9mMgwcPtnqsrW1dMWTIkIjGFK1Y73AfMmQIPv30U9TW1rK7nYiIiIiIiLqM1+ixX6O//fbbMJvN+PTTT2EymcLbly1bptbQiIiIEgbXbCciIoozSZLQ0NDQYltWVhby8vLg8/kwZcoUDBkyBE888QScTmer51dVVQEI3ZU+a9YsvPfeey3WlTt48CA+/vhjVccc6ZiiZbPZUF9fH/XzFi5cCEVRsGTJklaPsXOeiIiIiIiIIsVr9ONivUbX6XQQBAGSJIW3HTlyBO+9915M4yAiIkpk7GwnIiKKs8bGRgwYMACXXHIJJkyYgKSkJKxatQqbN2/Gk08+CVEU8fLLL+O8887DmDFjcPXVV6N///4oKSnBF198Abvdjg8++AAAsHjxYqxYsQIzZszA9ddfD0mS8Oyzz2Ls2LHYtm2bamOOZkzRmDJlClatWoWnnnoKeXl5KCwsxLRp0zp93tlnn42f//znWLp0KQ4cOIB58+ZBlmWsWbMGZ599Nm666aZY3iYRERERERH1MbxGPy7Wa/Tzzz8fTz31FObNm4ef/vSnqKysxF//+lcMHToU3333XSxvkYiIKGGx2E5ERBRnVqsVN9xwA1asWBFe/23o0KF47rnncP311wMAZs6ciQ0bNuDBBx/Es88+C6fTiZycHEybNg2/+tWvwseaMmUKPv74Y9x+++249957MXDgQDzwwAPYs2cP9u7dq+q4Ix1TNJ566ilcd911uOeee+DxeHDVVVdFdCEPhKajGz9+PF555RXccccdSElJwdSpU3H66afHNBYiIiIiIiLqe3iNflys1+jnnHMOXnnlFfzpT3/CrbfeisLCQjz66KM4cuQIi+1ERNTrCArnViUiIur1FixYgF27duHAgQPxHgoRERERERFRn8ZrdCIiot6Da7YTERH1Mh6Pp8XXBw4cwEcffYSZM2fGZ0BEREREREREfRSv0YmIiHo3drYTERH1Mrm5uVi0aBEGDx6MoqIiPP/88/D5fNi6dSuGDRsW7+FFRZIkVFVVdbhPUlISkpKSumlERERERERERJHjNToREVHvxjXbiYiIepl58+bhzTffRHl5OUwmE6ZPn46HH364x13EA8DRo0dRWFjY4T73338/Fi9e3D0DIiIiIiIiIooCr9GJiIh6N3a2ExERUcLyer1Yu3Zth/sMHjwYgwcP7qYREREREREREfVNvEYnIiJqjcV2IiIiIiIiIiIiIiIiIiKiKPXaaeRlWUZpaSmSk5MhCEK8h0NERERERETULkVR0NjYiLy8PIiiqOqxS0pK8Pvf/x4ff/wx3G43hg4dimXLlmHq1Knh177//vvx0ksvob6+HjNmzMDzzz/fYnrb2tpa3Hzzzfjggw8giiIWLlyIZ555JuI1WXmNTkRERERERD1JpNfpvbbYXlpaioEDB8Z7GEREREREREQRO3r0KAYMGKDa8erq6jBjxgycffbZ+Pjjj5GZmYkDBw4gLS0tvM9jjz2GpUuX4tVXX0VhYSHuvfdezJ07F7t374bZbAYAXHHFFSgrK8PKlSsRCARw9dVX47rrrsMbb7wR0Th4jU5EREREREQ9UWfX6b12GvmGhgakpqbi6NGjsNvt8R5OhwKBAFasWIE5c+bAYDDEezi9DvONHbPTFvNVHzPVFvNVHzPVFvPVFvNVHzPVVqLn63A4MHDgQNTX1yMlJUW14951111Yt24d1qxZ0+bjiqIgLy8Pv/vd73D77bcDCF1PZ2dnY/ny5bj88suxZ88ejB49Gps3bw53w3/yySeYP38+jh07hry8vE7HwWt0asZ8u4b5aYv5qo+Zaov5qo+Zaov5aov5qo+ZaivR8430Or3XdrY3T0tnt9t7xIW81WqF3W5PyJOpp2O+sWN22mK+6mOm2mK+6mOm2mK+2mK+6mOm2uop+ao9xfr777+PuXPn4tJLL8WXX36J/v3744YbbsC1114LADh8+DDKy8sxa9as8HNSUlIwbdo0bNiwAZdffjk2bNiA1NTUcKEdAGbNmgVRFLFp0yZcfPHFrV7X5/PB5/OFv25sbAQAWCwWWCwWVd+j2vR6PaxWKywWS0KfKz0V8+0a5qct5qs+Zqot5qs+Zqot5qst5qs+ZqqtRM83EAgA6Pw6vdcW24mIiIiIiIj6uu+//x7PP/88brvtNvzhD3/A5s2bccstt8BoNOKqq65CeXk5ACA7O7vF87Kzs8OPlZeXIysrq8Xjer0e6enp4X1O9sgjj2DJkiWttq9YsQJWq1WNt6a5lStXxnsIvRrz7Rrmpy3mqz5mqi3mqz5mqi3mqy3mqz5mqq1Ezdftdke0H4vtRERERERERL2ULMuYOnUqHn74YQDApEmTsHPnTvztb3/DVVddpdnr3n333bjtttvCXzdPvzdnzpweMfvcypUrMXv27ITsrujpmG/XMD9tMV/1MVNtMV/1MVNtMV9tMV/1MVNtJXq+Docjov1YbCciIiIiIiLqpXJzczF69OgW20aNGoW3334bAJCTkwMAqKioQG5ubnifiooKTJw4MbxPZWVli2MEg0HU1taGn38yk8kEk8nUarvBYEjIX6K0pSeNtSdivl3D/LTFfNXHTLXFfNXHTLXFfLXFfNXHTLWVqPlGOqY+X2yXJCk85368BAIB6PV6eL1eSJIU17H0Romcr9FohCiK8R4GERERERH1UjNmzMC+fftabNu/fz8KCgoAAIWFhcjJycFnn30WLq47HA5s2rQJ119/PQBg+vTpqK+vx5YtWzBlyhQAwOeffw5ZljFt2jRVx8tr9N4vkfM1GAzQ6XTxHgYREREREfUgfbbYrigKysvLUV9fH++hQFEU5OTk4OjRoxAEId7D6XUSOV9RFFFYWAij0RjvoRARERERUS/029/+FqeffjoefvhhXHbZZfj666/x4osv4sUXXwQACIKAW2+9FX/84x8xbNgwFBYW4t5770VeXh4WLFgAINQJP2/ePFx77bX429/+hkAggJtuugmXX3458vLyVBknr9H7jkTPNzU1FTk5OQk5NiIiIiIiSjx9ttjefBGflZUFq9Ua14soWZbhdDqRlJTELmcNJGq+siyjtLQUZWVlyM/P54U8ERERERGp7pRTTsG7776Lu+++Gw888AAKCwvx9NNP44orrgjvc+edd8LlcuG6665DfX09zjjjDHzyyScwm83hfV5//XXcdNNNOPfccyGKIhYuXIilS5eqNk5eo/cdiZqvoihwu93hJRNOXFaBiIiIiIioPX2y2C5JUvgiPiMjI97DgSzL8Pv9MJvNCXWh2Vskcr6ZmZkoLS1FMBhMyPUoiIiIiIio57vgggtwwQUXtPu4IAh44IEH8MADD7S7T3p6Ot544w0thsdr9D4mkfO1WCwAgMrKSmRlZXFKeSIiIiIi6lRiXdV0k+b136xWa5xHQn1d8/TxibZOHRERERERUXfhNTolkubzsPm8JCIiIiIi6ojqxXZJknDvvfeisLAQFosFQ4YMwYMPPghFUcL7KIqC++67D7m5ubBYLJg1axYOHDjQ4ji1tbW44oorYLfbkZqail/84hdwOp2qjpXTdlO88RwkIiIiIiIK4fURJQKeh0REREREFA3Vi+2PPvoonn/+eTz77LPYs2cPHn30UTz22GP4y1/+Et7nsccew9KlS/G3v/0NmzZtgs1mw9y5c+H1esP7XHHFFdi1axdWrlyJDz/8EF999RWuu+46tYdLREREREREREREREREREQUNdXXbF+/fj0uuuginH/++QCAQYMG4c0338TXX38NINTV/vTTT+Oee+7BRRddBAD4+9//juzsbLz33nu4/PLLsWfPHnzyySfYvHkzpk6dCgD4y1/+gvnz5+OJJ55AXl6e2sMmIiIiIiIiIiIiIiIiIiKKmOrF9tNPPx0vvvgi9u/fj+HDh2P79u1Yu3YtnnrqKQDA4cOHUV5ejlmzZoWfk5KSgmnTpmHDhg24/PLLsWHDBqSmpoYL7QAwa9YsiKKITZs24eKLL271uj6fDz6fL/y1w+EAEFpj6+R1tgKBABRFgSzLkGVZ1fcfi+Yp9pvH1Ne9+OKLeOihh1BSUoInn3wSv/nNb7p0vETOV5ZlKIqCQCAAnU4X7+G00vx3h2vVaYP5qo+Zaov5qo+Zaov5aov5qo+ZaivR803UcREBoev0Bx98ECUlJXjqqadw6623xntIRERERERECUH1Yvtdd90Fh8OBkSNHQqfTQZIkPPTQQ7jiiisAAOXl5QCA7OzsFs/Lzs4OP1ZeXo6srKyWA9XrkZ6eHt7nZI888giWLFnSavuKFStgtVpbHSsnJwdOpxN+vz+2N6qBxsbGeA8hYsXFxZgwYQK++uorjBs3TrXjOhwO3HLLLfjjH/+IH/7wh7Db7eEbJ7qqu/O94YYb0NDQgNdff73dffx+PzweD7766isEg8FuHF10Vq5cGe8h9GrMV33MVFvMV33MVFvMV1vMV33MVFuJmq/b7Y73EKiHO3LkCAoLC7F161ZMnDhRteM6HA7cdNNNeOqpp7Bw4UKkpKSoduzutmjRItTX1+O9996L91CIiIiIiKiXUL3Y/q9//Quvv/463njjDYwZMwbbtm3Drbfeiry8PFx11VVqv1zY3Xffjdtuuy38tcPhwMCBAzFnzhzY7fYW+3q9Xhw9ehRJSUkwm82ajSlSiqKgsbERycnJEAQh3sOJSFJSEgDAZrO1yrcriouLEQgEsHDhQhQWFsZ8nEAgAIPBACB++RoMBuj1+g7z8Xq9sFgsOPPMMxPiXDxZIBDAypUrMXv27HCepB7mqz5mqi3mqz5mqi3mqy3mqz5mqq1Ez1etm4yJ1NZ8nX7++ecjNzc35uOceJ1ORERERETUaygqGzBggPLss8+22Pbggw8qI0aMUBRFUQ4dOqQAULZu3dpinzPPPFO55ZZbFEVRlFdeeUVJTU1t8XggEFB0Op3yzjvvRDSOhoYGBYDS0NDQ6jGPx6Ps3r1b8Xg8kb4tTUmSpNTV1SmSJHW431lnnaXcfPPNyh133KGkpaUp2dnZyv33399in7q6OuUXv/iF0q9fPyU5OVk5++yzlW3btimKoij19fWKKIrK5s2bw6+blpamTJs2Lfz8f/zjH8qAAQM6HTOAFv+dddZZiqIoyhdffKGccsopitVqVVJSUpTTTz9dOXLkSEQ5LFu2rNVxDx8+rCiKojz33HPK4MGDFYPBoAwfPlz5+9//3mo8zz33nHLhhRcqVqs1nMt7772nTJo0STGZTEphYaGyePFiJRAItMjruuuuU7KyshSTyaSMGTNG+eCDDxRFUZTq6mrl8ssvV/Ly8hSLxaKMHTtWeeONN1q87r///W9l7NixitlsVtLT05Vzzz1XcTqdyv3339/qvXzxxRet3nOinYsn8/v9ynvvvaf4/f54D6VXYr7qY6baYr7qY6baYr7aYr7qY6baSvR8O7qG7Q164zW6ovA6PZbr9HfeeUcZP348r9NjlOifZT0d81UfM9UW81UfM9UW89UW81UfM9VWoucb6XW66p3tbrcboii22KbT6cJrZRcWFiInJwefffZZeFozh8OBTZs24frrrwcATJ8+HfX19diyZQumTJkCAPj8888hyzKmTZum9pABAB6/hENVTk2O3ZEhmUkw6SPvtn711Vdx2223YdOmTdiwYQMWLVqEGTNmYPbs2QCASy+9FBaLBR9//DFSUlLwwgsv4Nxzz8X+/fuRnp6OiRMnYvXq1Zg6dSp27NgBQRCwdetWOJ1OJCUl4csvv8RZZ53V6Ti+/vprnHrqqVi1ahXGjBkDo9GIYDCIBQsW4Nprr8Wbb74Jv9+Pr7/+OtxN3jyl3RdffIGZM2e2OuaPf/xjDBw4ELNmzcLXX3+NgQMHIjMzE++++y5+85vf4Omnn8asWbPw4Ycf4uqrr8aAAQNw9tlnh5+/ePFi/OlPf8LTTz8NvV6PNWvW4Morr8TTTz+NSZMmoaKiAr/+9a8BAPfffz9kWcZ5552HxsZGvPbaaxgyZAh2794dXjvd6/ViypQp+P3vfw+73Y7//e9/+PnPf44hQ4bg1FNPRVlZGX7yk5/gsccew8UXX4zGxkasWbMGiqLg9ttvx549e+BwOLBs2TIAQHp6esTfZyIi6hv2bV4J3d63gfnz4z0UIiKihBOv6/TCDGvnO52A1+nRXacvWrQIf/rTnzB79mwcPnwY1113HQBepxMRERERRWN/RSP+b+1hPPKjcT1m1uzeSvVi+4UXXoiHHnoI+fn5GDNmDLZu3YqnnnoK11xzDQBAEATceuut+OMf/4hhw4ahsLAQ9957L/Ly8rBgwQIAwKhRozBv3jxce+21+Nvf/oZAIICbbroJl19+OfLy8tQeMgDgUJUTF/xlrSbH7siHN5+B0bnJEe8/fvx43H///QCAYcOG4dlnn8Vnn32G2bNnY+3atfj6669RWVkJk8kEAHjiiSfw3nvv4T//+Q+uu+46zJw5E6tXr8btt9+O1atXY/bs2di7dy/Wrl2LefPmYfXq1bjzzjs7HUdmZiYAICMjAzk5OQCA2tpaNDQ04IILLsCQIUMAhL6XzQwGA0aMGAGrte1fXFgsFmRkZISP33zcJ554AosWLcINN9wAALjtttuwceNGPPHEEy0u4n/605/i6quvDn99zTXX4K677sJVV10Fh8OB8ePH48EHH8Sdd96J+++/H6tWrcLXX3+NPXv2YPjw4QCAwYMHh5/fv39/3H777eGvb775Znz66af417/+Fb6IDwaD+NGPfoSCggIAaLF+vcVigc/nC78PIiKikzl2r8Kp7i/jPQwiIqKEFK/r9PdvPB35yZH/sorX6dFdp//+97/HT37yE9jtdgwdOpTX6UREREREMfhqfxXe2nwUt80ZjqzkxFumuC9Rvdj+l7/8Bffeey9uuOEGVFZWIi8vD7/61a9w3333hfe588474XK5cN1116G+vh5nnHEGPvnkkxZrVr/++uu46aabcO6550IURSxcuBBLly5Ve7hhQzKT8OHNZ2h2/I5eNxrjx49v8XVubi4qKysBANu3b4fT6QxfCDfzeDw4dOgQAOCss87CK6+8AkmS8OWXX2LOnDnIycnB6tWrMX78eBw8eLDNu9kjkZ6ejkWLFmHu3LmYPXs2Zs2ahcsuuyy8plv//v2xd+/eqI+7Z8+e8J3uzWbMmIFnnnmmxbapU6e2+Hr79u1Yt24dHnroofA2SZLg9Xrhdruxbds2DBgwIHwBfzJJkvDwww/jX//6F0pKSuD3++Hz+cK/hJgwYQLOPfdcjBs3DnPnzsWcOXNwySWXIC0tLer3SEREfZSiQIQS71EQERElpHhdpxdmWBHwuiLen9fpIdFcpz/88MPhbbxOJyIiIiKKXoXDCwAornGz2B5nqhfbk5OT8fTTT+Ppp59udx9BEPDAAw/ggQceaHef9PR0vPHGG2oPr10Wow5j+6d02+udqHmK/UgYDIYWXwuCEH6+0+lEbm4uVq9e3ep5qampAIAzzzwTjY2N+Pbbb/HVV1/h4YcfRk5ODv70pz9hwoQJyMvLw7Bhw2J+L8uWLcMtt9yCTz75BP/85z9xzz33YOXKlTjttNNiPmakbDZbi6+dTieWLFmCBQsWhKffa17iwGw2w2KxdHi8xx9/HM888wyefvppjBs3DjabDbfeeiv8fj+A0PIIK1euxPr167FixQr85S9/wf/7f/8PmzZtQmFhoTZvkoiIehdFhsBiOxERUZvidZ0uyzIC3sj353V6+9q6Tl+8eDFmz57d4hod4HU6EREREVE0Kht9AICiGjemDuLySPEkdr4L9RSTJ09GeXk59Ho9hg4d2uK/fv36AQhdzI8fPx7PPvssDAYDRo4ciTPPPBNbt27Fhx9+GNE6cABgNBoBhO4qP9mkSZNw9913Y/369Rg7dmyXb5oYNWoU1q1b12LbunXrMHr06A6fN3nyZOzbtw9Dhw7F4MGDW+QhiiLGjx+PY8eOYf/+/W0+f926dbjooovws5/9DBMmTMDgwYNb7SsIAmbMmIElS5Zg69atMBqNePfddwGEMmorHyIiojBFhojIb7ojIiKinoXX6S01X6effI3O63QiIiIiouhUOpqK7bXuOI+EWGzvRWbNmoXp06djwYIFWLFiBY4cOYL169fj//2//4dvvvkmvN/MmTPx+uuvhy/Y09PTMWrUKPzzn/+M+CI+KysLFosFn3zyCSoqKtDQ0IDDhw/j7rvvxoYNG1BUVIQVK1bgwIED4fXgSkpKMHLkSHz99ddRva877rgDy5cvx/PPP48DBw7gqaeewjvvvNNinba23Hffffj73/+OBx54AHv27MGePXvw1ltv4Z577gEQmqrvzDPPxMKFC7Fy5UocPnwYH3/8MT755BMAobX2mu+I37NnD371q1+hoqIifPxNmzbh4YcfxjfffIPi4mK88847qKqqCr/fQYMG4bvvvsO+fftQXV2NQCAQ1fsmIqI+QJE5jTwREVEvxuv0lu677z784x//wKOPPopdu3bxOp2IiIiIKEaVjc3TyEe+BBZpg8X2XkQQBHz00Uc488wzcfXVV2P48OG4/PLLUVRUhOzs7PB+Z511FiRJarHm28yZM1tt64her8fSpUvxwgsvIC8vDxdddBGsViv27t2LhQsXYvjw4bjuuutw44034le/+hUAIBAIYN++fXC7o7vLZsGCBXjmmWfwxBNPYMyYMXjhhRewbNmyTsc6d+5cfPjhh1i5ciXOPfdcnH766fjzn/+MgoKC8D5vv/02TjnlFPzkJz/B6NGjceedd4bvcr/nnnswefJkzJ07FzNnzkROTg4WLFgQfq7dbsdXX32F+fPnY/jw4bjnnnvw5JNP4rzzzgMAXHvttRgxYgSmTp2KzMzMVnf9ExERQVE4jTwREVEvxuv0lubOnYv3338fn3/+OaZNm4bTTjuN1+k9yK51/0PFsUPxHgYRERER4YRp5NnZHneqr9lO2mlrjbf33nuvxdfJyclYunQpli5d2u5xFixYAEVp+Yv9p59+Gk8//XRU4/nlL3+JX/7yly22NU/N1pZBgwa1et2TTZw4sc19rr/+elx//fXtPq+9486dOxezZ8+Gw+GA3W5vsR4cEOoW+L//+782n5uent4q3xONGjUqfHd9WzIzM7FixYp2HyciIhIgQ8dp5ImIiHosXqfHdp0+ffr0Nq/RAV6nJ7KMlb/B93nnIfu6v8R7KERERER9mscvodEbRGE/G4prWGyPN3a2ExEREcWLIrOznYiIiIh6BCvcEL318R4GERERUZ/XPIX8KYPSUOPyw+kLxnlEfRuL7dSmhx9+GElJSW3+1zz9GhEREXWRIkNkZzsRERFFgNfpFE+KLMOieKEPNMZ7KERERER9XvMU8lMHpQMAirhue1xxGnlq069//WtcdtllbT5msVi6eTRERES9FNdsJyIiogjxOp3iye/3wiRIMLDYTkRERBR3lY5Qsf3UcLHdjTF5KfEcUp/GYju1KT09Henp6fEeBhERUa8mKDJEFtuJiIgoArxOp3jyOB0wATAFWWwnIiIiirfKRi+MehEFGVYkm/Qo4rrtccVp5ImIiIjihtPIExEREVHi87gaAAAW2RnnkRARERFRhcOHrGQTBEFAfoYVxbWcRj6eWGwnIiIiihdFhk5gZzsRERERJTafO9TRbpX5i1wiSlzHDu6ELEnxHgYRkeYqG73ISjYBAAoyrOxsjzMW24mIiIjiRFBCXe2KzO52IiIiIkpcPpcDAJCksNhORInJ1ViPrH+che+++Fe8h0JEpLmqRh+yks0AgPx0G4vtccZiOxEREVG8KKGudkkKxnkgRERERETt8zd1tpuFALweFtyJKPE01lfDKAThqz0a76EQEWmu0uFDtv14Z3tZgwf+IJt54oXFdiIiIqI4EZrWa5fZ2U5ERERECSzobQz/2dlQG8eREBG1zedsAADIbn5GEVHvV9noRZY91NlekG6FrADH6tjdHi8stvciq1evhiAIqK+vb3ef5cuXIzU1tdvG1Ba3242FCxfCbrd3Ol4iIqJeLTyNPNeUIyIi6o14nU69hXRCsd3tqInjSIiI2uZ1hYrtgqc+vgMhItKYLyihzh1AZtOa7fkZVgBAUS2L7fHCYju1a/HixZg4caLqx3311VexZs0arF+/HmVlZUhJSVH9NbqLIAh477334j0MIiLqoZrXbGdnOxEREUWC1+md43W6NiSvM/xnj4Ndo0SUeJqXuxB9DXEeCRGRtqoafQCArKZie26KBQadgGKu2x43LLZTtzt06BBGjRqFsWPHIicnB4IgRH0MSZJYmCAiop6vac12/ptGRERE8cTrdOqM4j9ebPe76uM3ECKidgQ8DgCAwV8f34EQUUxkWcF1f/8GG7/nDDqdqQwX20PTyOtEAQPTrChisT1uWGzvQXw+H2655RZkZWXBbDbjjDPOwObNmzt8zvLly5Gfnw+r1YqLL74YNTWRfVAtX74cS5Yswfbt2yEIAgRBwPLly6EoChYvXoz8/HyYTCbk5eXhlltuifg9zJw5E08++SS++uorCIKAmTNnAgDq6upw5ZVXIi0tDVarFeeddx4OHDjQYjypqal4//33MXr0aJhMJhQXF8Pn8+H2229H//79YbPZMG3aNKxevbrFa65btw4XXHABkpKSkJaWhrlz56Kurg4A8Mknn+CMM85AamoqMjIycMEFF+DQoUPh5/r9ftx0003Izc2F2WxGQUEBHnnkEQDAoEGDAAAXX3wxBEEIf01ERBQpdrYTERH1bLxOj+06fePGjTjnnHNgtVp5nd5DKD4XXEroF7p+V12cR0NE1JrUVGw3BRxxHgkRxeK7kgas2F2Br/ZXxXsoCa/SESq2Z9tN4W35GVYU17riNaQ+Tx/vASQMvxuo3t/9r9tvOKA3R7TrnXfeibfffhuvvvoqCgoK8Nhjj2Hu3Lk4ePAg0tPTW+2/adMm/OIXv8AjjzyCBQsW4JNPPsH9998f0Wv9+Mc/xs6dO/HJJ59g1apVAICUlBS8/fbb+POf/4y33noLY8aMQXl5ObZv3x5+3uLFi7F8+XIcOXKkzeO+8847uOuuu7Bz50688847MBqNAIBFixbhwIEDeP/992G32/H73/8e8+fPx+7du2EwGACE1pB79NFH8fLLLyMjIwNZWVm46aabsHv3brz11lvIy8vDu+++i3nz5mHHjh0YNmwYtm3bhtmzZ+OKK67AX/7yFxiNRnzxxReQpNDauC6XC7fddhvGjx8Pp9OJ++67DxdffDG2bdsGURSxdOlSvP/++/jXv/6F/Px8HD16FEePHgUAbN68GVlZWVi2bBnmzZsHnU4XUbZERETHhTrbwTXbiYiIWovXdXrG0Ih35XV6bNfpCxYswNVXX41nnnkGer2e1+k9gOB3olZMh0UuQ5Cd7USUgGRfaBp5q8RiO1FP9OmucgCJt+54gyfQPDFlwqhq9EIvCkizGsPbBmXY8NUB3qgQLyy2N6veD7x4Vve/7nVfAjnjO93N5XLh+eefx/Lly3HeeecBAF566SWsXLkSr7zyCu64445Wz3nmmWcwb9483HnnnQCA4cOHY/369fjkk086fT2LxYKkpCTo9Xrk5OSEtxcXFyMnJwezZs2CwWBAfn4+Tj311PDj/fr1w5AhQ9o9bnp6OqxWK4xGY/i4zRfv69atw+mnnw4AeP311zFw4EC89957uPTSSwEAgUAAzz33HCZMmBAey7Jly1BcXIy8vDwAwO23345PPvkEy5Ytw8MPP4zHHnsMU6dOxZNPPgm73Q5RFDFmzJjweBYuXNhifP/3f/+HzMxM7N69G2PHjkVxcTGGDRuGM844A4IgoKCgILxvZmYmACA1NbVFRkRERJEKd7Yr7GwnIiJqJV7X6deuBmyFne7G6/TYrtMff/xxTJw4EX/9618hiqEJF3mdnviEoBte0QqnYoXiqY/3cIiIWpG9oWK7TW6M80iIKBYrmortibTu+KEqJ+Y9/RV+PTLeI2mpwuFDZrIJonh86aeROcn4+4YjcPuDsBpZ+u1uTLxZv+Ghwnc8XjcChw4dQiAQwIwZM8LbDAYDTj31VOzZs6fN5+zZswcXX3xxi23Tp0+P6CK+PZdeeimefvppDB48GPPmzcP8+fNx4YUXQq8PnUo33XQTbrrppqiOuWfPHuj1ekybNi28LSMjAyNGjGjx3oxGI8aPP35jwo4dOyBJEoYPb5mhz+dDRkYGAGDbtm245JJL2n3tAwcO4L777sOmTZtQXV0dnsa3uLgYY8eOxaJFizB79myMGDEC8+bNwwUXXIA5c+ZE9f6IiIjaF/p3p7mTi4iIiE4Qr+v0jKGAJ9jpbrxOj+06ffv27bjwwgvbfW1epycmXcAFv84Cp2yD4m2I93CIiFrzOwEAdsUJRZYhiFxBl6inOFjpxKEqF6YUpOFAReLcMPPymsMISApqvELnO3ejykYvspJNLbaN7Z8CWQH2lDkwpaD1DFukLRbbmxmtQN7E+Lx2D1qndeDAgdi3bx9WrVqFlStX4oYbbsDjjz+OL7/8MjyNnFYsFgsE4fiHmtPphE6nw5YtW1pNDZeUlBR+TkcuvPBCFBQU4KWXXkJeXh5kWcbYsWPh9/sBAJMnT8bhw4fx8ccfY9WqVbjsssswa9Ys/Oc//1H53RERUV8kKJxGnoiIqF3xuk6XZcDTc6ag5XU6r9O7gy7oRkBng0eyQfSx2E5EiUdsKrabhAA8HhcstuQ4j4iIIvXprnJYjTpcMS0ft/1rO+rdfqSeMEV6PFQ7fXjn22MAAFfn9+F2q8pGHzKTWy5PPTw7GUadiJ0lLLbHA2/v6iGGDBkCo9GIdevWhbcFAgFs3rwZo0ePbvM5o0aNwqZNm1ps27hxY8SvaTQa2+y0s1gsuPDCC7F06VKsXr0aGzZswI4dOyI+blvjDAaDLcZaU1ODffv2tfveAGDSpEmQJAmVlZUYOnRoi/+ap4sbP348Pv/88zaf3/wa99xzD84991yMGjUKdXV1rfaz2+348Y9/jJdeegn//Oc/8fbbb6O2thZAqGuB3YhERBQrTiNPRETUc/E6vbVIrtPHjRuHL79se8YCXqcnLoPkhqS3wqtLgi7gjPdwiIhaEQOu8J8ddZVxHAkRRWvF7gqcNTwTw7NDN8kUJcBU8v/YUARREJBmNcAVTLDOdocPWfaWne1GvYgROcnYWcKbIuOBne09hM1mw/XXX4877rgD6enpyM/Px2OPPQa3241f/OIXbT7nlltuwYwZM/DEE0/goosuwqeffhrV1HSDBg3C4cOHsW3bNgwYMADJycl48803IUkSpk2bBqvVitdeew0WiyW8Rtqzzz6Ld999F5999lnErzNs2DBcdNFFuPbaa/HCCy8gOTkZd911F/r374+LLrqo3ecNHz4cV1xxBa688ko8+eSTmDRpEqqqqvDZZ59h/PjxOP/883H33Xdj3Lhx+N3vfoebb74ZZrMZX3zxBS699FKkp6cjIyMDL774InJzc1FcXIy77rqrxWs89dRTyM3NxaRJkyCKIv79738jJycHqamp4Yw+++wzzJgxAyaTCWlpaRG/byIiouZp5BV2thMREfU4vE5vLZLr9LvuugsTJkzAjTfeiOuvvx5Go5HX6T2AQfLArbfCLyXDEOg5Mz8QUd+hC7jggA12uOCqrwYGDIn3kIgoAuUNXmw/Wo+rT5+I/AwrAKCo1o0JA1PjNiZvQMI/Nhbh0qkD8G1RHdwBX9zG0pbKRh+yT+psB4Cx/e3YWlzf/QMidrb3JH/605+wcOFC/PznP8fkyZNx8OBBfPrpp+1eOJ522ml46aWX8Mwzz2DChAlYsWIF7rnnnohfb+HChZg3bx7OPvtsZGZm4s0330RqaipeeuklzJgxA+PHj8eqVavwwQcfhNdeq66uxqFDh6J+b8uWLcOUKVNwwQUXYPr06VAUBR999FGnU94tW7YMV155JX73u99hxIgRWLBgATZv3oz8/HwAoQv9Tz75BDt37sRpp52G6dOn47///S/0ej1EUcRbb72FLVu2YOzYsfjtb3+Lxx9/vMXxk5OT8dhjj2Hq1Kk45ZRTcOTIEXz00UcQm9b8efLJJ7Fy5UoMHDgQkyZNivp9ExFR39Y8jbwiK3EeCREREcWC1+ltP6+z6/R33nkH3333HU499VRep/cQJtkD2WBD0GCHKcjOdiJKPHrJhWoxEwDgaaiO82iIKFIrd5dDLwo4e0QW7GYD0qwGFNe4On+iht75tgR1bj+umVGIVKshoaaRD0oyalytO9sBYExeCg5UOuENsKmnu7GzvQcxm81YunQpli5d2ubjM2fOhKK0/GX9Nddcg2uuuabFtt/97ncRvZ7JZGpzzbMFCxa0+5zFixdj8eLFHR736aefbrUtLS0Nf//739t9zqJFi7Bo0aJW2w0GA5YsWYIlS5a0+9yzzjoLn376Kex2e/jiu9msWbOwe/fuFttOzPDaa6/Ftdde2+6xL7zwQlx44YXtPk5ERNQRoamzXWZnOxERUY/E6/RFrbZHcp0+Y8YMrFmzptU1OtBzr9O//s9TkGqPYPp1bZ8LPZ1J9kAx2iBBgbmxMd7DISJqxRh0w2HOBdxH4Hey2E7UU6zYXYHpQzKQYg3d0JmfYYv7NPJ/33AEc0ZnY1A/G1ItBpQn0DTy1U4/FAXISm5dbB/XPwWSrGBfeWNcZwboi9jZTkRERBQnzWu2KwqL7UREREQ9lSLLyN31EnLLP4/3UDRjhhcwJkExpcAqx7fbjIioLSbZDZ81FwAQcNbGeTREFKm95Y2YlH98VqiCdGvci+0ldR5MLUgHAKTZjHAF1H+NDYdqMP+ZNThQEd1NjFWNoSntM9soto/ISYZOFLCD67Z3Oxbb+7AxY8YgKSmpzf9ef/31eA+PiIio1xMQ6tKSZTnOIyEiIqJEwOv0nql4/zYMVEp7dRHaqnghmmwQzHYkKb33fRJRz2WW3ZBNdjhgg+xisZ2oJ3D7g6hq9KEg3RreVpBhRVFtfH/W8Esy9LpQN3uaRZtp5NcerMLuMgd+/OJG7IyiOO5pmiLeamw9cbnZoMOwrCTsKmWxvbtxGvk+7KOPPkIg0PYtOdnZ2d08GiIior4n3NkusbOdiIiIeJ3eU5Vt/A8KgG4pQpce2dPtN2oG/D6YhABEUxIUowyr4EPA74PB2LqjiogoXizwAMYkNApJUDz18R4OEUWguDbUwV6QcbzYnp9uRYXDB29Agtmgi8u4grICvS7Uq9y8ZvvJS0N11ZEaN8b1T4EoAD95aSOWX30qphSkdfq8gBT6OdCoa7uXelz/FOwscag6Vuoci+19WEFBQbyHQERE1MeFflBXFHa2ExEREa/Te6r0YyvhV3SwCj4EA37oDUZNXqe+uhx5r83ExtzfAbhAk9doi9vViBQAOnMSIIR+6e1sqEVaZm63jYGIqDNWxQPRnAy3zg7RVx/v4RBRBJqni8/POLGz3QYgVIgfnp3c7WNSFAWSrMAghjrbU60GSIoAt1+CUcUf8Y5UuzB+QAr+MH8UfvHqN/j5K5vw8pVTcfrQfh0+r7nY3tx5f7Kx/VPw322l8AdlGPWc3Ly79Omk1b4ThShaPAeJiPq25s52TiNPRETE6yNKDNGehxXHDmF4cD92Js0AECpCa6W65CAMggQx0L3rmHpdoalI9eZkGJNSAQCuhppuHQMRUUd8XjeMggTRlAyP3g6Dvz7eQyKiCBTXuGE16pCZdHy2nOYu93it2x6QQj8LntjZDgB1bvUWblcUBUeqXRiUYUOy2YBXrz4VUwelY9Hyzfh8b0VE4zO009k+tn8K/JKM/VGuBU9d0yeL7QZD6C+H2x2fv6xEzfx+PwBAp4vPdChERBRfIpqK7DKnkScior6L1+iUSJrPw+bzsjNH1v4LfkUHYfwlAACXo06zsTmrj4X+oGiwcGgHvK7QL2uNlmSYk9IBAJ5GrodMRImj+bNXZ7EjYEiBMcAplIm0sqWoDq+sPYyimq4vn1NU60J+uhWCcLxLOyvZBLNBVOX4sQg2NcQYmjrH062hdvZ6FYvt1U4/XH4p3MVvMerw0pVTcPaITPzqH1vwxd7K9scntRzfyUblJkMUwHXbu1mfnEZep9MhNTUVlZWhE9ZqbfmXubvJsgy/3w+v1wtR7JP3P2gqUfOVZRlVVVWwWq3Q6/vkX0Uioj5PaCq2cxp5IiLqy3iN3rckar6KosDtdqOyshKpqakR3xRvO/wJ9lomISl7MADA06hdx7evNlRsF7r5Rk2/O1S0MljtMNtSAADeRu1uKiAiipbH2fQ5ZbHDbUpFqvtIfAdE1Is9v/oQVu2pwIMf7sbInGTcPX8UzhqeGdOximrcLdZrBwBBEJCfbg2v517W4MHy9Udw59yR0InaXyOc3Dke7mz3+FV7jSNNNxIU9rOFt5n0Ovz1p5Ox4Ll1+PeWozh7ZFbb45Nbdt6fzGrUY0hmEnaUNODHp6g2ZOpEn63w5eTkAED4Yj6eFEWBx+OBxWKJ6y8UeqtEzlcUReTn5yfcuIiIqJs0TVPKaeSJiKiv4zV635Ho+aampobPx8401FRgpPc7bBnzB6QnpQEAvE7titBKQykAQFC6u9ge6mw325KRlBLqbA+4WWwnosTRvNyF0ZoMpzkVNonTJxNppcblw/njc3HBuFy8svYwfvvPbVh121lIt0W/oHlxrRtzx7T+uSs/3YaiGjcURcFdb+/Al/ursOj0QchNsajxFjrU3Dmub16z3RIqtqvZ2X64OlRsP/lGA71ORI7dDH+w/d8TBoIdd7YDwKhcO/aXO1UYKUWqzxbbBUFAbm4usrKyEAio95ckFoFAAF999RXOPPPMiKcpo8glcr5GozGh7uQnIqLuJYSnkWexnYiI+jZeo/cdiZyvwWCIapm3A+vfw1RBxpAzLoPOEPoFs99Zr9HoANFZBqD7i+0Bb6hoZbLaYbOHbioIuuq7dQxERB3xu0PFdrMtBYIlDckKi+1EWql1+XFqYTrOG5eLqYPSce6Tq/HwR3vwxKUTojpOUJJRUudBfrq11WMFGVZ8vrcSH3xXhi/3VwEAAkFFlfF35uTOdqtRB52gqFpsL6pxITfFDLOh9c+dRr2IRm/7SwaFp7nvoK40NCsJaw9Wd32gFLE+W2xvptPp4r5etk6nQzAYhNlsTrgLzd6A+RIRUaISmzrblW7+hSkREVGi4jV679eb8g3UFqEWdvTLK0DA7wMABN31mr2e2Rua+aG7i+3BpmK7NckOvcEIp2KB7Knv1jEQUc9Q8v0e+F/7Mfr9ZjWSm2bCiNaxgzshvXE57NevRFpmbkTPaV7uwpSUAp0tHTbBC7/PC6PJHNMYiKh9NU4/+tlMAIDMZBPunj8Kd7+zAz+a3B+nD+kX8XFK670Iykqr7m4gVGw/VufGAx/sDk8p75e6p1El0NzZ3tQ5LggCbHqgzq3iNPLVbgzKsLX5mFEnhsfQFr+kQCcKEDuYUn9IZhJqXX7UuvwxzThA0WNLLREREVGchNdsl7vn7lwiIiIiUpGvEW4h9Atig9EEt2LStAid7A91dnV3sV32OiErAsyWJACAU7BB8TZ06xioZ3E7GyAF2+/Ko96r8uAWFMpFqK88GvMxSrb8DwXyUZQe2Brxc4KeULHdkpQKQ1IGAMBRVxXzGIiobd6ABKcv2KKA++OpA3HqoHT8v3d3whuI/GeUotqmqdTTWxed89OtCEgKfAEJ95w/CgA6nFpdTcHmNdFP6By3GdSfRn5Qv7aL7Qad2OF7DUpyeIr79gzJCh37+6rOp5JXFAWN3vjOLNYbsNhOREREFCcCmjrbZf4iioiIiKinEf1OeMXjvyh1CVYoXodmr5cuh6YD7fZiu88JD0wQm2ad8IhJEFlspw7UPHkaNv/7sXgPg+KgeXaPoN8b8zHE0m8BAO6qIxE/R/KEZuCwJdlhTg4V2131LLZT+0q+3wOFS/pFrcYV6u7OSDpebBdFAQ//aCyO1rrx9rfHIj5WUY0belFAXmrrGSiGZSdDEIA7zxuJAWmhGxs76vZWU/Oa7SeuiW7TK6hTqdiuKAqKalwY1EZHPxCaRr6jLv6AJMOo67i0OyjDBlEADlZ2Xmz/bE8lTn3oMxytdXe6L7WPxXYiIiKiOBGU0A/PMi/wiIiIiHocnb8RPt3xX5S6xSQIGhWhvW4nUhDqABO7udiu+JzwCMd/Ee7V2SAGuB4yta26tAgDlVIozsp4D4XiQHLXAQCCgdinW85q3BU6Vl3kRTvZ1wiPYoTeYITFHiq2exq4XjG1raG2CpmvzsB3X74d76H0ODXO0LI5/ZJMLbYPzUrGmP4p2Hy4NuJjFde60T/NAn0bheP+qRZ8dcfZ+Nm0fBj1oaJ3dxXbm9dsP3FcNj1Q71Gn2F7l9MHll9rtbDfqxQ7Xpw9ISniK+/aYDToMTLfiUASd7TUuHzwBCUs/O9DpvtQ+FtuJiIiI4iTc2a6w2E5ERETU0+iCLgR0x39R6hVtEP3aFKGrS4+E/9zdne3wu+EVLOEvffpkGFhsp3aU7N0Q+oPMKWn7IsUTuuFICvhien5jQy0GSqEiu9AYebFd8TnhalrWw5aWCQDwNtbENAbq/eorimEUJHgrv4/3UHqctjrbm03JT8OW4rqIj1VU40J+etvd3QAwMN0KQRBgaCp6d9ea7UG5rc529aaRP1Id6iAvbK/Yruu4sz0oKeFMOjIkMwmHqlyd7udvurng7W+P4WAlf76LFYvtRERERHFyfM12FtuJiIiIehpj0ImgISn8dagIrc008o6q4+sfC+jeYrsYcMInHi+2Bw3JMLLYTu1wHwlNAS7I3XxTCCUEwVsPAJBi7Gwv2rkOoqDgqJAHs6s08tf1NYZvCkpO7QcACDgTt9h+9MB2bPnolXgPo89y1lUAAGTOwBG1Gmfo7/aJa7Y3m1yQiqO1HlQ2RraMRFGNGwXtTKV+IqO+qdjeTWu2N3e2n1jQthqAOnfsM3ac6EhNqADe3o0GRn3Ha7YHJDnCYrstomnkA0EZRr2I3BQLnlq5v9P9O3O42oVPdpZ1+Tg9DYvtRERERHEiKE3TQrGznYiIiKjHMUkuSCcU2wOGJBiCnf9SMxbumlCxvQppELu5iCkG3PCfUGyXjHZYJG3eJ/V85uodAACBne19ks4fuuFIDsbY2X7oa7gUM0ozTkOKvyLi5wkBF7xiqHBlMlvhVkyQXJFPZ93dSlY9j3Gb7kRjQ+KOsTfzOUJFdtFdFeeR9Dw1Th+STXqY9LpWj00pSAMAfFtU3+lxFEVBca0bBeltd3efqLmw3FwE11rzmu168Xhne5JeUbGz3YW8FDPMhtYZAp13tgdkudNp5AFgaFYSjta54Q10/HNjQJJh1ou4ddYwfLSjHDuOdW1JpDe/Lsbd7+zo0jF6IhbbiYiIiOKEne1EREREPZdZdkM2Hi+2B412mIPadHwH60vgUsxwisndvma7LuhG4IS16WVzCiwyi+3Utjz3vtAf5GB8B0Jx0Ty7R6zTyJsqtuKIaTiU1HxkSpURXyvrAk74T/iccgjJgKc+pjF0B72nCkYhiP1r34n3UPqkgCNUZDd6quM8kp6nxuVvcwp5AMhNsSA3xYytEUwlX+X0we2XkB9BZ/vxYnv8OtttesDll1Tprj9S42p3vXYAMHTW2R6MfBp5RTneSd/u8aRQZ/uPJg/A0KwkPLVyX6fH7khVow917kC3zUSQKFQvtg8aNAiCILT678YbbwQAeL1e3HjjjcjIyEBSUhIWLlyIioqWd6kVFxfj/PPPh9VqRVZWFu644w4Eg/wBjYiIiHoXkWu2ExEREfVYFsUNmJLDX8vGZJjlztfGjImjDDW6DMiCHmI3TyOvl1wI6o93tgtmO2yKRu+TerSaimPIRmjqbna2903NS0woMXa257n2wJExHob0fNgELxwRdn6ffFOQS5cMwRv52tHdzeRrmuJ+74fxHUgfJbtCRXaLnzMLRKvG6UdGkqndxycXpGFLUed/94prQuuWRzKNvKm7p5FvusnnxO5xqyH0/3oVppI/XO1GQUb7xXajruNie1CWW3Tdt2dIZuiG0M6mkvc3rQGvEwVcfspArD9UE+7uj0W1M/T5X+WM7d+Bnkr1YvvmzZtRVlYW/m/lypUAgEsvvRQA8Nvf/hYffPAB/v3vf+PLL79EaWkpfvSjH4WfL0kSzj//fPj9fqxfvx6vvvoqli9fjvvuu0/toRIRERHFVXNnO7q5O4mIiIiIus6muCGY7Mc3mFM0K0Ib3eVwGDIhQdftne1GyQNJf/yXwqIlFcmCBxIbY+gkJXs2AQCqkQqBne19kkUKFdulYPQFqerSIuSgGqb8qbBlFgAAakoORfRcY9CF4AmfU16dHTrf8amQE202uaRAHQKKDiMcG+HzuuM9nD5HcIdudkiWWGyPVo3Lh4w21mtvNiU/Dd+VNHRaGC9qKra3t275iZq7uDuaWl1NwabOdr14Ymd7aFtdF6eSVxQFRTUuFPZr/30b9WKHXfzNneidSbMZkWEz4lBl553tzRmPzrPDF5RxuDr2n2erGkNF9kqHN+Zj9ESqF9szMzORk5MT/u/DDz/EkCFDcNZZZ6GhoQGvvPIKnnrqKZxzzjmYMmUKli1bhvXr12Pjxo0AgBUrVmD37t147bXXMHHiRJx33nl48MEH8de//hV+f9fvGiEiIiJKFEJzZ3s3r7tJRERERF0T8PtgFgLQWY4X20VLKpIUtyZFHauvCh5zFmRBB1Hp3iKmUXJD1h//pbDemgoAcDoSt2uU4sN9ZAsaFQsqjPkstvdR1qYlJpRA9L/HP7ZrHQAgb8wZSM8bAgBwVByO6LlG2Q3JcLzY7jOkwBgIFdu/+fBFVD8wOKGK2na5Dt8l/wBJggd7N/wv3sPpc/TeUJE9Ta6P70B6oEg62/1BGbtKO173u6jWjaxkE6xGfaevqRMFiEL3TSPf3NVtOKGz3dY0zFpX12qUVY2h6fMHddLZHpQVyHLba9QHJCWiznYg1N1+qKrjzvZAUA6/19G5oZ9rd5c5Ijp+W6qdoYwqHH2rs73zM7kL/H4/XnvtNdx2220QBAFbtmxBIBDArFmzwvuMHDkS+fn52LBhA0477TRs2LAB48aNQ3Z2dnifuXPn4vrrr8euXbswadKkNl/L5/PB5zv+zXM4QidDIBBAIJDY0xY1jy/Rx9lTMd/YMTttMV/1MVNtMV/1CU3Tx0vBIHPVAM9ZbTFf9TFTbSV6vok6LiJqm7uxHikAdJaU8DadJQUGQYLb3QhrUkr7T45BSqAKdbapkN2lELt5CSKT4oFsPP5LYYMtHQDgaqhBSnpmt46FEpuxageKTcMgiQaICv9d64uSFScgxDaNvKdoM6qRiuwBQyDLMgKKDr6a4oiea5LdkA1J4a+DphQkOcohSxIyv12KTNRh784NGDn13KjHpTYpGESq4kCw4Ac4tnsffDv+C5x9abyH1aeY/LWQFAFWwQe3s0H1f7N7sxpnx53to3PtMOlFbCmqw6T8tHb3K6nzYECapd3HT2bsZB1zNQXkttdsB7o+jXxRbfP0+R0U2/XHO/nNoq71+E7oRO/MkCwbth/t+MaHE4+XajUiL8WM3WUOXDSxf0SvcSJJVlDrappGvrFvdbZrWmx/7733UF9fj0WLFgEAysvLYTQakZqa2mK/7OxslJeXh/c5sdDe/HjzY+155JFHsGTJklbbV6xYAau186koEkHzlPukDeYbO2anLearPmaqLearnmmKDAjAoUOHUOL7KN7D6bV4zmqL+aqPmWorUfN1uxOn24qIOudqKrYbrcc72w220C+VXY46VX9xL0sSMpRaFCXnQq7WQ+zmWZHMihc4odhuTg69T7ejpkvH3bt5FQpGT4PFltz5ztQj5Lj3ojjrXFgc30Pg7F19TsDvg1UIFVkUKfqClK16O45ZRqKfKEIniqgQMyDXH43ouWbZA8V4vNgumdJglRzY8eXbmCAfhawIqN+3FkiAYntddRn6CQqMKTk4ln0OhpV/CCkYhE6vaamGTmANNqBUzMVApRR1laUstkdIURRUu/zISGq/2G7Uixg/IAVbi+s7PJY3IMFmivycN+g6nlpdTc2d7Seu2W7RA6LQ9WnkS+s9AID+Hdxo0KLYbmhdbA82rbEeiSGZSXh3awlkWYHYTje8X1JaTEs/Os+OPWWNER3/ZHVuP5ob8isb2dmumldeeQXnnXce8vLytHwZAMDdd9+N2267Lfy1w+HAwIEDMWfOHNjt9g6eGX+BQAArV67E7NmzYTAY4j2cXof5xo7ZaYv5qo+Zaov5qq9u660AgMJBBZg0Z358B9ML8ZzVFvNVHzPVVqLn2zw7GxH1DF5nPQDAaDv+C3qTLRUA4G6oAfIGqfZa9TXlSBckmNL7QyrSQyd1bxHTonghnFDEai62e52xr3XraqzHsA8vwXerZ2Di7z6AIKq+0iV1s4aaCuQplSgdMAnynuJuX+4gFk5HHQ5s/B8mzflZvIfSKzgbatHcx6pEuWa7IssY5N2LXQU/D2+rN2TD4CyN6PlWxQPBdPxzSrCkIllpRP2mv2K/fjiCghHGsm+iGpNWHNWl6AfAkp4LS+rFyPjodezd8jlGTpsT76H1GclSPY7ZxmCgqxSNNSXA4FHxHlKP4PJL8AflDqeRB0JTyf93a8d/d/1RdGcDoanVA1Lb06qrrXnNdsMJP5uIApBiMaCui53tFQ4vkkx6JHVwo0F4jfp2OvlDnegRTiOflQRvQEZpgwcD0tpuSj65U35Urh1vbY7sRqeTVTtDBXa9KKCS08iro6ioCKtWrcI777wT3paTkwO/34/6+voW3e0VFRXIyckJ7/P111+3OFZFRUX4sfaYTCaYTK3/khsMhoT8RUpbetJYeyLmGztmpy3mqz5mqi3mqx4RoR+cRQHMVEM8Z7XFfNXHTLWVqPkm4piIqH0+Vz2A4wV2ADDbQ9Ore5zqrmVeV16EdADWjIFwC3rolO775aUUDMIq+CCeUMSyNb3PgKvjaUk7UnXsIAYJCia51mLDP+7F9Kse6vJY+5KD29fBVVOCCedcFu+hhB3dvREpADKHT0PNvv9BCCb+9LE73rwP08v+joapc7kkggqcDdXHi+1SdN2fpUf2oT9csA6aGt7mNufA5um82K7IMqzwQjAdnyVDtKUjBS6k+LZhyylPwn9sO4aUfQhFluN+c4+rNvSe7Bn9kZM/DNUfpaL+23cAFtu7hSLLSFUcOJQ+AnCtgaeu/dmUqaWapkJqvw6mkQeAyflpeOHL71FS70H/1LY7uAOSDJM+imK7XoQvymnkZVnB3zccwaVTB0bVRe+XZIgCWnWCp1oMXZ5GvqzBi5wUc4f7hDvbOyi26yO8UWFoZujnt4OVzk6K7cff66hcO6oafahq9CEzueMbK05W3RjKZ2hWEir72DTymv3LsmzZMmRlZeH8888Pb5syZQoMBgM+++yz8LZ9+/ahuLgY06dPBwBMnz4dO3bsQGVlZXiflStXwm63Y/To0VoNl4iIiKjbCQjdLat087qbRERERNQ1/qZCszU5NbzN0tTx7VO52O6sDq1ZnJpTAEXQQ0T3dbZ73KFpRHXm48V2e1omJEWAv6Ei5uM2lH0PANiceh5O/f6v2PHlO508g07UsOoJ5H91G4KBrv3SX03Ow9/ApZgxcOg4yIIeOjmxO9udjjqMKfsPAKCuoijOo+kdPI4TZruIchr5ygOh5rv+I04Nbwsk90daoLK9p4S5XQ6IggKd5Xix3ZAUuimoDJmYMOdKmAunIQu1qDh2KKpxacFXHyrupmX1h6jToShpIpLrdsV5VH2Hy9kAoxCEIWs4gooIfwOL7ZGqdob+XnfW2T48O/R3sajG1e4+0aw7DsQ2jfyuUgcWf7AbK3ZH9z0OtlPMTrUaUOvq2jTy5Q1e5HZWbG967fbeb1BWwvt0pn+qBSa9iIOVznb3Ofl7MTo3NFP4nrLoZ15r7mwfnWtHRR/rbNek2C7LMpYtW4arrroK+hPWGklJScEvfvEL3Hbbbfjiiy+wZcsWXH311Zg+fTpOO+00AMCcOXMwevRo/PznP8f27dvx6aef4p577sGNN97YZuc6ERERUU/V3NkOmcV2IiIiop4k4GldbE9KyQg95q5X9bW8NSWQFAEZ2QOhiHrolO4rtnudoV+06i3Hi+16gxE1QhrkhmOxH7f6CAKKDhNveBW7LFMx8IubUVMR+/H6mmTPMaShEfu+XqnK8Tb963Fs+d/LXTqGoWoHio1DIOp0UER9wk8jv/PDv8IONwCgsaokzqPpHXyNNQAASRGAYHRFFu+x71CDFGTkDAxvE1MHop9S0+lNJZ7G0Oex3nJ8KVljUj8AQNHwq6A3GJE/YSYA4NiO1VGNSwtBRwVcihkWW6ggGTSnwyzFtj4yRa+hOlR4NaXkoF6wQ27s/IYOCmnubE/vpLPd1ElnNgAEgpEXjAHAoBMQiLKzfduxegCIev3xoKzA0Mb65mlWozqd7fbOOttDr91efv6g3GI9+Y6IooBsuzl8o0Tbx2v5vchPt8Jm1GF3jMV2q1GHggxbn1uzXZNi+6pVq1BcXIxrrrmm1WN//vOfccEFF2DhwoU488wzkZOT02KqeZ1Ohw8//BA6nQ7Tp0/Hz372M1x55ZV44IEHtBgqERERUdyws52IiIioZ5LcDsiKAKvteHHHarMjqIiQmqaYV4vsKEWtkAq9wRjqGEb3/ezocTcV2832Ftvr9JnQO8tiPq5cdxRVYgYMRhPyFi2DXXHh0Pp3uzTWviQzGCoWNW5TJ7O8Pf8Hy7ZlXTqG2VcLtzkbABK+2B4M+JF/4FVstZ0BAPDVR7YuOHXM7wrN6lEnpECIsrPdXLMbpaYhLaZ4N2fkQy/IqC4v7vC5nqbPXMMJxfbCCWdgQ95VGP/DWwAAGdkDcEzIhXRkY1Tj0oSzEnViavhLxZyGJCn6ohbFxlkb+rfLmpaNBl0aRHdVnEfUc9S6/BAEIM3a8fJXnU2DDkS/Znssne3bj9YDAHaXRvf3KyAp7Xa2d3XN9sg623UA0O60+UFZgT6K5TDMBrHjGx9O+l6IooCRufaYOturnD70SzIhy25CjcuHYJTfs55Mk2L7nDlzoCgKhg8f3uoxs9mMv/71r6itrYXL5cI777zTai32goICfPTRR3C73aiqqsITTzzRokOeiIiIqDcQm4vtcvd1JxERERFR1yk+B5yCpUVhSBBFOAUrZK+6RROdswz1+lCXpiLqoUP3FTF9rtB7MVqTW2x3mbNh8cRebDc6j6HOECrM9ssZiO/1gyEe/jL2gfYgG19bjK+X/izm5zsddUiDA9VIxaCq1VC6OEuW1+NCnlyGgf5DXTqWqAQhi6ECjCIaoEvgYvv2la8jT6lE8py74YAVwYbYz2U6Luiqg6QIcInJgBzdVMs57gNwpY1qsc2eUwgAqC873OFzvU2fU6YTb35KSsH065bCmpQS3lZmH4f0uu1RjUsLOk81nPr04xusaUhW2p/imdTldYQ62e0ZOXAZ0mHwVMd5RD1HjcuPNKux0/XCw8X2DgqtAUkO7xcJk17s8Hht2X60HqIQmg5dUZSInxc8aQ3zZmlWA+rdsU8jH5RkVDl9yO6k2G5o6mxv7+aCUHaRdbYDgEmvgy/Y/u8dA5IMw0nfi1G5yeFie0CSccXLG/GPjZ0vuVLV6EO/JCOykk1QlNA501dotmY7EREREXVMaO5oZ2c7ERERUc/ibYQb1lab3YIN8Nar+lJmTyWcxkwA6PZp5P2e0NSrppOK7X5bHlL8sU+9a/OUwW3JC39dnXkaChzfdLlw3BNYj63BxJqP4XY2xPT8yuL9AIADBZcjB1U4tGN9l8ZTemgndIKCZMGDsqL9MR9HpwSgiE3NUqIeYjeep9FQZBlJ3z6PXcbxGDrhDNSLaYCzIt7D6hVkTwMaBRsCgjGqzvaGumrkogr6vPEttvfrPwQA4Kw60uHz/eFie0qH+8n9T8WgwPfwuOI7ZbvJVwOP8XixXWfLgFXwwetpf31rUo+vIdTJbk/Pgs+UAYu/Js4j6jmqnT5kdDKFPHB8zfFouqk7Y9CJ8AfbL5h7A1KL13P6gjhY5cQ5I7NQ4/KjKoopzQOy0ubYUi1d62yvdvohyUrEa7a3l19Aiq6z3aQX2+2SDx2v9c0Fo3LtOFTlgjcg4f/WHsa6gzVYvu5wpzctVDv9oc725NB7rOxD67az2E5EREQUJ82d7Sy2ExEREfUw/kZ4xTaK7WISRJ+6ne3J/ir4raFZIRXRAB26r4gZaCq2m08uYtn7o59cHXNxPD1YASl5QPhr26hZyEQdivdtjXmsPUWKvxxGIYj9Gz+K6fkNpQcAAINnX4cG2FC1+e0ujaf2yPFO34oD38R8HFGRoJzY2d6N52k0ivdtxYjgPvin/goA0KjPgMHNNZtV4amHS7BBEgwQouhsP7bnawBAv2FTW2xPTkkPzTxQ0/E08gFP6DPXktRxsb3fqB/AIEg4/N3aiMemBVugFn5zv/DXxuRQ4b2xLr7TmTc21KK+aT3z3kx2VqFRscBktkKyZCI5WBvvIfUYNU4/MpLUKrYr4Q7uSHQ2jfyvX9uC+9/fGf56x7EGKApw+Sn5AIBdUUyJHpTaXhM91WpEvScASY68S/5EZQ0eAECO3dLhfp3NDBDtjQomQ8fFdr/Ucs12ABida4ckK/h8byX+vGo/JgxMxaEqV6fruFc3+tAvOTSNPABUOLwRj7OnY7GdiIiIKE64ZjsRERFRzyT6nfCKtlbbfTobdH71uialYBCZUgVke6gwrQi6bi1iBj2hqY3NtpZrthvTB8Ii+OGIoTjk93nRT6mDmJYf3jZ06mz4FT3Ktn3atQEnOEWWkSWFCru+PZ/EdAxf1fdwKyZk5RVif8oM5JR+1qUxBcr3oAppqIUd3qPbYj6OTgm2LLYn6DTyNcW7AQD5E2YCADymTJh9XLNZDaK/AR4xCZJogBhFZ3tj0Vb4FAMGDB3f6rEaMQuC41iHzw82FdutnRTbB42aCpdiRsP++Bbb7VIdZGtm+GtTcqjw7qyP73m475VrUfzyFXEdQ3dQ3DVoEJvOlaRMpMr1XT+mLGPv1yu7fJxEV+PyIcNm6nQ/URRg0AkdTvvuD8qtCrwdMeo7Xne80uHD+9tK4fGHfkbafqweVqMOM0dkItmkj2r98aCswNBG53ia1QBFARye2KaSL28IFZ4j7Wxv7+aC9qa5b49Jr4Mv0ME08sHWxfsROckQBODO/3yHDJsJf7/mVKTbjHh/W2mHr1XdtGZ7hs0IQQAqo5hRoKdjsZ2IiIgoTkRwGnkiIiKinkgfcMKvb93Z7tcnwxBUr9h+ZPfXSBI8SBl2emiDzgB9NxbbJV/ovVhtLaeRt2aGCuXVpR2vpdyWqpJDEAUFlszC8DaLLRkHTKNgOrqmC6NNfHXVZbAIfpSjHwbWro9pZgCh7ggqddkQRBH60RegUC7CsYM7O39iO8x1+1FuGoQS0xCYa3bHfBy9EgDC08jrErbY7q8O3ayQnhlaxiBozWJnq0r0fge8+mRIgj6qznaxYieO6vOhN7TumHWYsmFyl3X4fMnbCEkRYDlpuYuT6fR6HDaPhKViS8RjU5ssSUhTGiAmZ4W32VJDhXdPQ/zWDldkGfmOb2H39/4lFXSeWrh0oWK7LjkbSYIHXrezS8fcveFjjPzoEhzcvk6NISasSDvbgVDBuKPiuD+GaeQ76mz3SzJcfgmf7w3d0Lb9aD3G9U+BXidiZG4ydpdGXmz3B9vubE9vmkK/xhVbAbmswQuTXkSq1dDhfuHO9g6mkY+qsz2iaeRbHs9q1KOwnw1OXxAPLhiDFIsB54/LxfvbSyG309kvywpqXH5kJhmh14nol2RCZSM724mIiIhIY+Fp5PvA2pREREREvYleciGob93ZHjQkwxTs2i/tT1S16wv4FT0GTzwTAKAI3btmu+x1wqsYWhXB0nMHAwAaK49Efcy60kMAgNS8wS22O3JnYIh7G4KB2NdDTXQ1JaH3frjgEuQplSjevy3qY5hdx1BvChWKR8xYAK9iwLEN/4p5TBmew3DZh8KVOhLZngMxH0cHCYqu6TzRJe408kLdEVTociA0dy0mZyNNYrFdDYaAA369HbJogBhFsT29cR9qk0e0+ZjXmotkX8dTmyu+RrhhPv497YAzdRQyPEURj01tDbWV0AsyjCnZ4W1JqaHCu9cRXbG9aN82fPPBC6qMq+LYIWShFklyfNez7w5Gfx08hjQAgDk1tERLbWVJl47ZeHgzAKDu8LYuHSfR1bj8EXW2A6GCcbQF3o6P13GnfHMh/r/bQt/L7441YOLAVAChKdGj62yX21wTvbkjvbQ+tgJyhcOL3BQzBKHjrvTmYnt7+QXamea+PaFiewed7ZLc5pT+88bk4Cen5uOckaHPqx9OzENZgxffFNW1eZzmKfb7JYXOkaxkEzvbiYiIiEh7nEaeiIiIqGcyBV0I6pNabZdMdpgl9YrtxmMbcdA4EmZLU2G/m4uYit8Jj9B6bdGM7IEIKDr4OllLuS3uqiMAgMz+LYvtaWNmwQ43vt+xPqax9gSNFd8DAApnXQuvYkDZlg+iPkaqrxTepIEAQtNmHzSPgakstrXWfV438qQyCFmjoO8/AXlKJRrqYuuu1SlBQBfq1hNEA/RIzM52s/Mo6s39w1/r7TlIFjzwuHp/kVFr5mAjgkY7ZMEAUYms2B7w+5AfLIKcPbbNx2X7APRrWnqhPYqv7c+pNvfVm0OzMMRJQ3WoEGhJzQ1vS07NAAAEnTURHyfg90H+55UY/80f4PO6uzyuYztWAwDsSmNMM270JBZ/HfymdACANT1041JjddeK7bqqXQCAYEXss4MkOllWUOuKorO9k2nfQ1OXR14w7rRTPigjzWrA6n1VOFTlREm9BxOaiu2jcu04XO0KTzHfmaCktDm2bLsJggCU1nsiHveJyhq8yLZ3PIU8gPBNCAGp7Q7yoBxtZ7uukxsfWq/ZDgB3zhuJR340Lvz1lPw09E+1hG9oOFm1M1RY75d8QrHdwWI7EREREWmM08gTERER9Uwm2QXZ2HrKYsVkh1VWp9iuyDIGubahIeuU4xtFfbdOIw+/Cx6h9S+GdXo9aoR0yA3RFyik2mJUI/X4DQRNhkw8E07FgtrvVsQ83ETnrymCWzEhu/9g7LdMhK34i6ier8gysqVyIG1QeJsreTBSvR2vad2e0kM7oBdk2PPHImPIZABAyd7NMR1Lj+DxaeR13XyeRiHVXwZf0oDw1+a0ULGttiL6G0eoJYvkhGxKgawzRtzZfuzgdzAKQdgHTW7zcV1SP6TA1WEBWPA74RFbL+vR9gGNMCB+xXZnTWi946SMvPA2vcEIB2yQ3ZHPsPDNm0tQKBfBKARxeOeGLo8reGQTAMAoSHA5G7p8vERmk+ohWULF9pSm5SQ8dR3PntCZjMb9AABL/cGuDS6BNYS7lqMotnfYia6EO7gj0ek08kEZF07IQ0CW8ejHewEA4weElgsYlWuHrAD7KiK7qSogKdC3UXw26ERkJ5tjLraXN3g7Xa8dAPSiAEHoYBr5aG9U0IvwBbo+pb8oCrhgQi4+2lHW5veiuqmLPTPc2W7mNPJEREREpD2d0DyNfGL+IoqIiIiI2maR3VBMrYvtgjkFNqXrXYYAUHzgO6TDgaThZx7fqOvejmHB74JPaLuIVWfIhN5ZGvUx9Y3HUKPPbrXdYDThoHUCksp68Zq39UdRpcuCIIpwF5yNEd4dcDXW48C2Ndj+6Bzs3dTxjQY15UdhFgIwZx6fFUBJH4xcqRSyFP01Rc2R7wAAeUMnYsCwifArejiObI36OECo2C6cOI18Ny53EClZkpAjVbS4WSG5X6jw7qiK7YYFOs6mOAFzKmTRAF2Exfaag6H10/uPPKXNx5vPqUAHy0uIfid8kRbb9aa4zrrgrQ8VdVOz+rfY3igkQXG3PTXzyUq+34VJ37+IjVmXwaMYUb9vbZfHlVG3DVUITa3uqO14JoGezq44IFhDswmkZuRAVgT4G2Ivtvu8bgyUjqIBNmR5D6s1zIRT4wr9HUyPdBr5DjrRFUWJfs12vdhupzcQKhgPSLPgtMIMrNhdgX5JRvRPDc14MSInGaKAiKeSD8rtF7NzU80oiXEa+TKHBzkpnc/CIQhCU35t/zsaaGea+/ZENI18hN+Liyb0R507gLUHWs+CU3VyZ7udne1EREREpLEWd+azs52IiIioR7EqbghtFNt1lhTYBK8q646Xf/cZgoqIwklnH9/YzZ3tYsAFn9j2L4bd5mxYPdEXKKzuUjjNuW0+5h14BoZ5d8Hv652dUCZXCRqMoTWCB5xyEYxCEIf+uhCD370QEzybULdvTYfPrz66DwCQ0n9YeJs5exjMQgBVZUeiHk+wbA+qkYqUjGwYjCYU6wsgVu6M+jgAoFek49PI6wwJ2dleU3EUppNuVkjNzgcAuGsiv3Gkvrochx8Yj6MHtqs+xp5KkWUkKy4IlhQoogG6CKdqD5Z+h1IhCylp/dp8XDSEijZ+X/udpLqgC35dZMV2QW+EMY7TyAcdFfAoRtiSUlpsd+vs0Pk6L7Yrsozaf96IWjEN4698AoeNw2GMcRmJZh5XIwYFvsfhtBmhsTRUdel4iczv88ION8SkTAChWQXqhWRIjRUxH/PY/m0wCBL2pZ+DHLkS7l46M0BNUyE18mnkde0W24NyqGge1ZrtEXS2G3UiLpoYmq1gwoDU8NroZoMOgzOTsLs0wmK71P407XmpFpQ1RN/ZrigKKhp8EXW2A83vt+2bCwKSAkMUswKYDGLH08hH0Sk/KjcZw7KS2pxKvtrph9kgwmbUAQCy7GZUO32Q5fZvkuhNWGwnIiIiigP5hGK7ovSNHzyJiIiIEtGGV27HN08tjHh/WZJggxei2d7qMb0tFQDgckTWodgR3dH1+N4wFEn2tBM2dm+xXRd0I6Bru9gesOUhJRB9B2RqoByBpP5tPmbrPwYmIYCa8qKoj9sT2H3l8NhChYABQ8fiqJCH4Z7t+HrIzahGKhDo+Bf4zopDAICsgceL7ekDRwIAqoqiXyvYWLcf5aZB4a/rkocjzbEv6uMAgAFBCE3FdiTomu3NNyuknnCzgj01Az7FgEBDWcTHqTq6H4VyEY59/rLqY+xuDXXVqF5cgMO7NnXpOB53IwyCBJ0tranYHtn331a3BxWWoe0+LhpChalABzfg6IMuBCIttuuMcT03FWcl6sRUCCd1pXr0KdD7Oi/S7lr/Icb5tqLqBw/BmpSChn6TMcC5s0vrrB/+bi0MggTj6PNDY+nFxfaGmtANYqaUzOPbxDSIrtjfc82hLZAVAdZJl0IUFJQc/K7L40xEzZ3t/SLtbO9gzfbmonk008h3dLzmTnmjXofzxubCqBMxKT+1xT6jc+0Rd7YHJBl6se3ic/9US0zTyNe6/PBLMnIiLba3Mw2/LCuQZAWGdsbXlojWbI/weyEIAn44IQ8rdlfA42/582i104d+SabwTQ5ZySYEZQW17q7fgNoTsNhOREREFAfyiVPHJ+AUi0RERER9haV6BzKcByLe3+1yQBQU6Cyti+0GayoAwNkQ+dq7bVFkGQMdW1GbMaXFdkE0QNeNxXa95EZQ184vhlP6I1OuiarII0sSMuVqCGn5bT6elDkQANBQeTTqsfYE/aQKyPbj64WLP/8P6n+xAdOvfBBewQIEO/4FfqD6MGqQAltyanhbTsFISIoAV+n+qMeT4TkMl/14oVPKGov8YFFMMzPoIQFNU36LOj10ghLT1PZacpaF1lM+8WYFQRRRK6RCaYx8lga/xwkAGFT2ccK9x2hVH92PfqhHfUnkn4FtaawPTSlssKVB0Rmhj6B7XJYkDPAdgDdjTLv7iPrQORUMtD8VsSHohqS3RTROQW+CUZDi9n3TuavRqEtvtd1vSIEpUN/p85unoR926lwAgGXwdGShFuVHY//+NexfC6diQeHUOQAAX2Pr6aF7i8baUAe72Z4V3uYypMHgjf09y2U7UCrmYNCE0JIv9UU7ujbIBFXj9EEvCrBb9BHtb9K1v2Z7IBhqODFGse64QSe0ezxJVqAooX1SrAa8d+MMXD2jsMU+o5qK7ZF0WQckuc012wEgL8WM0gZv1N3aZQ2hG4Zy7JEX29sqkAeafuaKZlYAk16EL9D2Z14sU/r/cGIe3H4Jq/a0nBGiujFUbG+W1TSdfF+ZSp7FdiIiIqI4aFlsZ2c7ERERUbzYAjWwys6I93c31gMA9NaUVo+ZkkNFFE9j14rtZcUHkI0amIee2WK7oDPAKEhd6mKMhigHIIttTxlrTM+HSQigrjryjuDq8mIYBQmmfoPafDw9PKV371s/2+moQwpcMKQXhLf1HzwGOfmhwm9AMEHspLNd31CEan1Oi21GkxkVYhaUmkNRjcfndaO/VApkjQpvSy6YBJMQwLEoOzOlYBCioEDQN3W2N3W4BzookMZDsPYIqpEK60lTeDv0GdC7I5+lIegNdUfmogr7v/lM1TF2N3ddqHgrdXLudXocR+gzz5ScDkVnjKiz/fDuzUhDI5JHntXuPrqmaeQ76mw3yW5IhkiL7c1rwMfn3DT5quE2ti62S6YUWIKdd90qwdCNMPqmXAaOD/0bUbLzq5jHZKnYgsPmkbCnpCOg6CA5a2I+VqJrPt+T0o8vZeI19YPZH/u/2cn1e1BpHYYkexrKkYlg+Z4ujzMR1bkDSLUaw13LnemoE93XdLNLVGu2dzCNvP+kTvnReXbYTC1vChiZmwyXX0JpBFPAB2Wl3WnV81It8AflcKd/pMqbiu2RTiPf3vsNNk0tr4/iRgVTO4V7ILYp/QsybJg4MBXvb2+5/EpzZ3uzrKYbCyobe+fSQCdjsZ2IiIgoDrhmOxEREVFisAdrkaS4It7f0xiaIt5obd3ZbkkKTfnudXat2F6ybRUAoHDyuS22N0/TLUndMw2yTglCEQ1tPpacFSoa15Ydjvh4tSWhzuKUnMI2H7enZcKnGOCvi3z97J6i6ljovSdltf3eA6IRgtTxL6RtnhI0Wga02l5tGgCT40hU4yn9fhf0gozkgWPD2waMOjV0vINbojpWwB8at9jU2d5cdI+lQ15LoZsVclttd5v6weSNfBrpoDf0eVGHZDRsflO18cVDc6e07O9asd3jCBVoLckZgM4IQwSd7VXffQqvYsDQyee0u0/zmu3BQMfFdtmYFNE4j68BH5/ij9VfC7+59fr0siUdNrmx0+crUihXgyH0dy0jewCOCbmQjmyMaTyKLKPAvQuuzMkQRBENQjJkd9eXQUlUXkfoppqUfsdvWgpa+iEpGNu/2YosY4D/EHz9RgMAKs2DYGno2iwRicoflGGKctr39gq8zWuRR7Vme0fT0oc75ds/3oDU0JI4pfWd/90PTSPf/prtoeNE95lZ5vBCLwrISOraNPzNxfaO3uvJTIbQNPJtLWHZXNCPdM32Zj+ckIfV+yrR4D7+WV/t9CMz+fgNmplJ7GwnIiIiIo217GxnsZ2IiIgoHhRZRppSD5vgjbgw6HXWAwBMTeuzn8iWkgEACLg6X3u3w3EVrcNhcRBSMrJbPqDr3iKmKAcht1NsT8sdBABorDgS8fGclaHCfL8Bw9p8XBBF1IjpUBoj75bvKRzloc7ztP5D2nw8IJohSh3/QjrDX4qAvfUU/J6kAqR5o5t6v/bwdgBA3tCJ4W0p6Zk4IuZDv/udqI4VaDofm4vsYvg87bzg2p1s7hI4rf1bbfdbspDkj3waadkbmgljX/b5GFa9KuFuKoiG1BgqPiodFLMj4XeGCrS2lHRAZ4QenX/vLcfW4oB5LMyW9rvS9cZQZ2TQ3/7fDbPiBSLsbBf1zZ3yXbu5IFZ2qQ6KNbPVdsGShmSl8xlWFCmAoCK2WPO9zD4e6XXbYxrPse93IQ0OWIecDgBwiskQPF27WSyRSY3V8Ct62E6Y3UKxZSFVrgcAHNqxEd988ELEx6so+R4pcMEycCIAwJ0yFP08kd+A1pMEJDm6NdY7nEY++qnQjToxXKQ/WXOnfEfjy20qkpdF0tkuKe12jvePsdhe3uBBtt0MXYRrrRt1bRfbmzNtb5r7tjTfJNHW9yOSGxXacsH4XEiygo93Hv95reqkaeSNehHpNiM724mIiIhIOzI724mIqBssXrwYgiC0+G/kyJHhx71eL2688UZkZGQgKSkJCxcuREVFy/X3iouLcf7558NqtSIrKwt33HEHgsHu6aol0pqjrgpGIfRL2kjXWfe7Q4V0c1Jqq8eSUkLTAwdcsXcGup0NGFG3GhVZM1o9JupC06IGuqmIqVMCUHRtF9vTM/vDr+jgr428yBuoKYIDNiSntJ5GuVmDPgN6V0W7j/dU3qoiBBQd+uUUtPl4UDRB10Fnu8/rRqZSC136oFaPKemDkSOVRbUOtb98D6qRitR+Laelr55yCyZ6NmLv1ysjPpbUXGwPr9ke+r8UTKwidL9A2zcryLYspMiR/52VfC54FQP6nf5zpMOB3es+UHOY3cvZXGzvWvG5+TMvKSWjqdje8c8Jfp8Xw9zb4cxr/Tl3Il3TtO9SR2u2IwDoI+sWPd4p3/3nZujmrgYIyVmtHtPZ0mEVfPB6Op5lRQn6EUDL6bHl/qdgUOB7eFydd8afrLxp+vmCiTMBAG5dCvTe3tvZLruqUS/YW9ysoEvOgh0ubHz+1yj4z3mYuuXOTr8Pzcr3bQYA5Iw4JXSs7FHIkyti+l4kutC63pF3P4c6s9v+NykQnvY9mjXb2y/eNxelOyq2J5n0SDbrI+tsl5V2i8+pVgMsBh1Koi62+5AT4RTyAGDQtzONvBx9J7pJrwOANmca8EvR3/gAhKaInz4kIzyVvKIoqHG1LLYDoXXbKxvZ2U5EREREGmlRbJcj/6UYERFRtMaMGYOysrLwf2vXrg0/9tvf/hYffPAB/v3vf+PLL79EaWkpfvSjH4UflyQJ559/Pvx+P9avX49XX30Vy5cvx3333RePt0KkuvrK42uDO+sj62wNNBXbbcmprR4zGE1wKybIntg723d8+BxsigcF5/2m1WPN08jLUncV24OAoG/zMVGnQ7XYD3JD6Beth3dtwqa/XNXhevKi4xiqdK0LTSfymDJh9ka+fnZPIdcXo0rsB52+7TwlnRm6DjrbK48egCgosOa07oy35AyDWQigsjTyjkrRXYU6XevprCfPuwbfi4MgrVrS4ffyRM1dxzpD6Pxs7nCXgonT2e71uNBPqYO+jZsVdPYcpCmOiAuwit8Jj2DGkHGno1jsD9/Wf6o82u6j84Smf+9qsV1y18GrGGC22CDoDDB0smb7oW1fwir40G/83A73a+5sl/ztF8gMSjC8Fntnmov3Ha0BrxVHfQ2MQhAGe3arx4zJob+LjXWdLGcgBxCErsWmzNFnwiBIOPzd2nae1L5gXTFqkIKUtNDr+wx2GPz1UR+npxDd1WjUpbbYZkoN3XA0qfw/+C75DABAbcWxk5/aJs/RbWiADdn9BwMA7PnjIAoKSg5+p96gE0RAklWb9j2WAm/z8dqeCj2yaenzUiwRdrbL7Xa2C4KA3FQzyhqi+wwpd3iQY4+82G5qp7O9uRM9muyaO9t9gTaO1/y9iGLWgmYXTeiPDd/XYH9FIxo8AQQkpVWxPTPZhJK61pkH27lxoidjsZ2IiIgoDlqu2d72VFhERERq0Ov1yMnJCf/Xr1/oF6oNDQ145ZVX8NRTT+Gcc87BlClTsGzZMqxfvx4bN4bW/lyxYgV2796N1157DRMnTsR5552HBx98EH/961/h9ydWxyJRZ0oP78X2R+e06FhrrCkJ/9nTGFlne9AT6liztlFsBwCXYIXija3YLgWDGLBvGbbbZyK3YESrx8NrtndTV6YOQSi69otY9YYsGFylUGQZ7v/ejmk178Hjbr+jz+wqgcPUes3sE/mt2UgORD6ld09hdJagztC6yNZM1pmgk9v/5X3dsdA6wOn9h7d6LH3gKABAddHuiMcjSAFIYuvvrajTwTHjbozx78DONe9FdKxgUwe7GO5sD91QEOygG7m7hW9WyB7a6jFTWi5EQUFtZUkbz2yD3w0vzBBEESUDzsfo+i/h87pVHnH3MPpCxXYEu/a9UjwNaBRC66YLelOo27wD9btWwQEbBo87vcP99MamTvQOxmdAEEKEne265mnp43Bu1leFzi9zWuvPQJM9tASJs77jYrsiBRA86QaogpFT4FQsaNgffbFdkAII4PjsJQFjKsxBR9TH6SkMvjq49Skttg2dOhsbcn+Gyp99hozzFwMAHJXFER3PVL0bx4xDw53yecMmAgDqi3phsT2oRF8cb28a+RjWbG/eNyi3/v1ZJJ3tACIukgclpd0124HQVPJRr9ne4I2qs92oF+Fra9r3pt8l6iOcjh4ATIamYnsbMw3EumY7AMwfn4thWUn4yYsbseZA6Oe2fkktf644a3gmvthXiR3Hjv9c3OAJYP7SNfhoR+9aMqjtWymJiIiISFMK12wnIqJucuDAAeTl5cFsNmP69Ol45JFHkJ+fjy1btiAQCGDWrFnhfUeOHIn8/Hxs2LABp512GjZs2IBx48YhO/t4gWju3Lm4/vrrsWvXLkyaNKnN1/T5fPD5jv8i2+EI/eI2EAh02/TXsWoeX6KPs6eKZ75Ht3+OaZ5N2L93KwrHTgMAuGtLw4+7G6ojGpfkrodHMUIviG3u7xZtgLchpve4feVrmKpUoPGsv7X9fCHU0ej1urslQ50ShCzo2n0tlykbNk8Ztn/5Lib6Q8UFZ2MDDCZrm/vb/RUoTz+1w7HLtmykV9bG5RzR8vy0ecrgsBW0e2xJNMEgedvPuuIQgoqItKwBrfZJzx0MSRHgLN0X8dgFyQ9J0Le5/+gzLsbeDX+G+auH4D/t/BZTLrfF21RoVprPlabz1O/1Jsxnak3xXuQDSMkd3Gos5pRQ8bO27DDSsgZ0fjC/Ez7RjEAggKQRM2ErfhEHD+5EwYi2/03UUlfztQWabjIKeLr2PfLUwS3aEAgEoIh6GAUJfp+v3XMnpWwdDlonYZyiQO7odcWmpTO8bY9PliSYBAmKaIhs/GKosOxzO9vdX6tztqEytOSGJSWr1bFNtjQAQGNNeYevqwT8CKL139vD5pGwlG2Oesxy0I/gCZ8DQVMabA0OTf++xvMzweSvg8fYr8VrG802TL3maQBAY12oYNhYVRzR+LLcB3C03w/C+5qtyShHP/jLdsftM0+rfP3BIPRi5MfVC4AvILW5v8fXtPSIIkd8PBGh35u5vT5YjS3Lms3HEzs5XnayETtLOz+/A5IEnaC0yrL5/zl2E/aVN0Y8dkVRUN7gRVZShJ9TAHQi4G8jP4+3KTtEnp0OoRsUXB4/Akktlwby+ELHiOZ70cwkAq9dMxXXvPotfvPWVgBAqrnlz4w/PaU//rPlGH7/9na8/atpEAUBv31rG8obvBieZW1xbRjvnxPaE/E5r/E4iIiIiKgNknTCtHosthMRkUamTZuG5cuXY8SIESgrK8OSJUvwgx/8ADt37kR5eTmMRiNSU1NbPCc7Oxvl5eUAgPLy8haF9ubHmx9rzyOPPIIlS5a02r5ixQpYrW0X4RLNypWRr1dM0YtHvvLBHQCAretXYU9xqJtTPrAdkiJAJyjYt/NbHGnQdXQIAIBQchguWLDuo4/afHyobIa3tgwftfN4R4Zs+yu2CyNxpKQR+0paP99TfgRTAGzasAGmXQejPn60TpUDqG1wtvteDAEL+vsr0PDlH+FWTLAKPqz+fBVMSRltH09yocYV7DAbf30Ap8OFd/77LnSGyLpVTyb5veEO1lhocX5OD5TjoH9Uu+/d4g6gn+RpP5ujh+CCGatXrmrz4SnIRN2hbyM+7/q5HRBlpd39vZk/wo/LHsY/X3kU5v4TOjyWt64EgwDs2bsfh+sAb8V+jAOwccM6mPceARD/z1Tp0HqMUXTYvH0vxB37Wzzmd9VjBIDvNn2FfSWdr7WcXF8Ft2zERx99BL+7AeMAbFn9IXYdil+XXnv5ylIQioJ2ly+YFqwDBMBZVxXTZ1Yze10ZGhVLKJPSCpwG4MMPP2zzdSW/Fxf69+IDyxU42slrBjwOXALgwN5dKHa2/jwIBvxYCOBoSTkqIhi/t7YYowB8++3m8L8D7VH7nA18/yXGA/h2x358t/9oy8c8jSgEsGf7Zhyubf/3A/qaSgQVsdX3SjGMwNzGd/BBlJ+bprpqBE48njOIMbKjS+dCpOLxmTDWX4tjyGn3/SmygrmKEcf2fovSYOtlNk4UDPhxsVyOjQE7Kk84Xn8hF2LFzm7JsCNq51t0VIQziIjf17FiEXUOoc399zcIAHRYt+ZL7Ivwn+qdNaHnfPTJClhP+lg53AgAemxcvxZFHVxmNFYIKKps/ffnZA2NOhQdduKjjw612N6cqbNCwOEIjtPMGwTcfj1KD+3BRw2RzUBTVy0iILfO+6gTAPT4esN6lO2I6FAoanrOZ6u/xF5by8dKXKHHNm/cgMpdkR3vZD/rD7zQqMORRmDrhi+x96Tvz/x+wJ936nD3sk/hl4Evjoq4dqSMXRtX48SXjPfPCe1xuyObuYbFdiIiIqI4UE4ssLPYTkREGjnvvPPCfx4/fjymTZuGgoIC/Otf/4LFYtHsde+++27cdttt4a8dDgcGDhyIOXPmwG63a/a6aggEAli5ciVmz54Ng8HQ+RMoKvHMd/MrKwEnkJ9mwNT585u2fYoKVxZy5ErkZ6dhStP2Do9T+ik8Hhvmt7Pvnt3PwK5XcEYExzrRgS2fY7RyAFtOexbzz237ubvXAygDJk+agIIRE6M6fiwatt6C9H5ZOKWd9/KNexfy9n2APFRj/cBrcfqxl3DK5IkYMHRcm/s7t96I9Ky8do8HAHvWy8AXf8Pk8SPQv3B01GPe8cW/MPLb38J383dISmm76N8erc5Pn9eDpK316DdkQrvn2OayT2GqCLZ7Xm2uXouAy9jheZcj1mNshOfdzr3PQ4C13eMB81H88Kso9O/GpPl3d3isI7u/Bo4A4ydOxtBJZ+Lg1iSgNHSe9h82KSE+U795+WNUNmbhggsuaPWYFAxC+tNvkJ9pi+gzYPuBZZCFJMyfPx+KLKPx4TsxMEnq8LzuiCxJqCz5Hjn5w6J+bmfn7Dcv34yRFR9i//jfY9L517XoNFdkGfg2NPOM3WrEzBjHDwA79/4NQX0a5s+fj60flwN1wDlnnwVbckrrfb98GwZBwsR5izBw2PgOj+tsqAH2AoUFAzFxbuvxORtqgJ3AoCHD2nz8ZEcPbAeKgLGjRmDEKbPb3EeLzwFFllH02APYYZqEH168sNXjUjAI7L0RBTmpHZ6Dm8s+heQ1tPp7W/r9IFjefAv5NjcmzLo44nFtKX4PSuD458oW/0Ek7/wX5s6Z0+4NGl0Vz58DGrbeguTsApzTQcYV36Uj24ZO/z7XVZdB3KmgcMR4jJ91fN9vSj7CwKovI/os0YJW+f6vYRuSAzLmz58c0f77Vh3Enm2lmD//zFaPJR2oBnZ/izmzzol4HXPzvir83/6tOOvsc5GZ3PKGkk2Ha4Gd32DW2TNRkNF+td3zbQk+encXzp09FyZD+zdXPrLrS4wY3h/zzw0tO3Jypp5vS/BxBMdpVtXoAzZ/idOnTcU5IzIjer8rnN+h1uXH/PlTW2zfdrQe/5+9Pw+TJLvLe/H3nNhyqb2qa+m9p2d6Fs1oZjQajQbJkgxaQIhFYDAghK4vBttgbNDjn7eHy/0hc/FyjcH4YvPI5vLADyR5QRICS4CQ0GIts0iafaZnpqd7eqmufa/MjIgT5/z+iDhZuZwTGSeqenpGOp9/pK6MOhEZGRlZk+/3fV88/iDe8qa/hptnhwutdXZhG//u8a/g3td/G+46Ntb12ONXNoHHHsCb3/RG3DZX/r/R3vmdCZ5e2MZrjo8pH18Zegb/9eHLiBKOn/v20/i5v366/djL/b+9ZELbIKzYbrFYLBaLxXId6O5st2K7xWKxWF4axsbGcObMGTz//PN429vehiiKsLGx0eVuX1xcxOzsLABgdnYWDz74YNcai4uL7cd0BEGAIOh3Vnme97L8EkXFK+lYX4lcj/PrtlIXI9m81N6311zBljuJoXgbCLcKHZPDdtCiNe22zK3DS3aNn9/2Qx/CPJnB3W/7MVBH/eWtm7m1ieAvyflzkIB4Fe2+qlMngbPA48FrMPWadwGX/zNEEmu3D0QEGujPHQCMzp4CADTWrsI7k++oVsGe+RRqJMTFC09i/LXfYfz7wMFfn4svnsUQgKGZG7TrEr8OX0T6x3kMBlf7eHP4BGbWHi583I5gYI7+tQWAK3PfgVvmPwYCAdfr73dvk/33jBek63lBpf3z9nvtOt9Tg53LWPfncFRxDJ7nYYWMQuwsFzpGl7fA3L3r+IJ3DO7GC12/uzx/ASwOMXfi5oHrPf6VT+LWz/xvmH/PX+H4mbuKP6me56A69vrms/AEw32P/SIeP/tHmH7v72DmaCpybK6vYJSkiWtOEhZ67vMXzsKv1DA1e6zr536yjWZlpuv1JyJRrhk+9zksYQKnbrl7YEVBtZ6KSYSr7ys8S4zzBtxXJEEls3VyNnD7g7xmn/zyJ/Gq5Hk89sbfUa7peR62UAca67n7pCJBQvqP68TNd+I8PQHxzP+E913/W+HjIkiQkL37SjAyBUoEWrubGJvS/513EFyPe4KHGNTPv1a23Cn4jcWBx0ay+54bVLu2dWZuxeHF/4ooDlGpDR3MgZfgoM9vwgHPdQqvWfVdxIn6bxWO9H1fC3yD9dLtBO0/BrletZK/3rHJ9PVYaSQ4OaUX+RkHAq//81ae0+MF15EIytrPoejzDTwHjIu+7UVW01IxOHf1avrfZAmoYj3z10KF53m477T+XPzj77oVnz27jFtmR/Dzb70ZVNE5f73/TtBR9JjyP80sFovFYrFYLNcE3tnZDiu2WywWi+WlYWdnB+fOncPc3BzuueceeJ6Hz3zmM+3Hz549i4sXL+L+++8HANx///14/PHHsbS01N7m05/+NEZGRnDbbeaOU4vlehKEqdju717p+lnDn8Qu6hDNzULrONEOIkfvnGLeEAK2a3x8Q9vncHXoNq3QDgDUTb/wS9jg/sjzTz2Ei88+YnwcnXiCgTh6r870ja/BFmqofOcvwwvStIy4pX7ugnMEiEC8/FSNidnjAIDm6uVSx3xkPR0Q2rpULKr1pWDjahpFOzZ3WrsNcSsIEOofTyIwov/CV0ycxmxyFTxJtNt0QkUMQfO/QJ54zbsxjm2cfUgdXS9J4vS4XT/9Qt/JhHle4Dp9qRhtXUFj6Jj28U1nAnR3sdBaHmsgcfau463acQzvXuja5vIf/AxWPvR3C60XbS/DJRzzn/1goe1NGImW8eT0d+PRN/8XHAnP4cX/8Yvtx7ZW0nthQwRwklah9bb/4Cfwwn/rTzqosm0kfuqKpFmMeRyq1xxefxKXh+4YKLQDgJ8NGAkWKR+Po1bXPgchBwHkNftSEf+v38QFehx3vPkHtNtskyGI5kbuOiSJkED9GbF4+K04s/klxFHx50aSGEnHfcUfTl232+vF3guvNDzBACdncAhAs3IIlXB54FryPPfG9o+duguUCFx69hvlD/RlSJRw+G6/QKrDdylCpv6uK8p+7rnF5UnPSbeNFWvK9Xwnf7250fT9f3Uz/37HOG/vT8XhsfT+P7/RzF2nvV6SPd8Bx9dJ4NL281KtNei59q4FQPl6REwYH1sZhgIXn/6FN+OD771HKbR/M2DFdovFYrFYLJbrgHW2WywWi+Wl4B/9o3+Ez3/+87hw4QK+/OUv493vfjccx8GP/uiPYnR0FD/5kz+J97///firv/orfO1rX8Pf+lt/C/fffz9e//rXAwDe/va347bbbsN73/tePProo/jzP/9z/OIv/iJ+9md/Vulct1hezlTjdQDAUGuh/bN6vIq4eggNZwg0LCa2e2wHkat3q3GvjoAX63fsZDq6jHj0htxtpNjOE7Xw1Enj47+AtY//U+Pj6MQFA8kRJg6fugXDv3QFN939JnhB6hhlofrLZ8ZiOESADhDbh4bH0BAB4o154+OdP/8MjohUJEqWnjH+/WtFc/kCAODQ0ZzX16siEDmv6wCxvTp7BhUSY+nKC4WOyeEx+ACx/aa734wlTGD7kY/lbidFdSe7Pp32dfryENsF55hmV8FHT2i32fEm4TeXtI934vEmEndv4CYeO42ZuHs45EjjaQzHgwU7AOCZ8Htm4U8QaQTqTh7+xG9jef5CobUn+Cr48GHc+dd/COdGX4+RjqGA7dW0Y37JmYbDB99TBOeYYxfhRP299jW+Cx6kkfHUzcT2WP1cfN4E84vFFVPHQSwccKYWkFl2vhyvWBS1TGjgL6HY/uLZR3BX4ytYvv1v5w4Y7DqjcML1/MU4Q0LUA1BT9/4ARrGLsw/8WeFjozxGQvfWq42lYvvuRrFr95WGBwbi5ovtcW0Gw/HKwLVYlH7W9Q56HLnpLgDA+vlHSh3jy5U4yRege/E1YrFcCzATjP1MMI6S/jXb6w0Q7+dG078/rm7mi+QsEfAcvSA8m4n2VwqK7XFbbDcYVnDUwwry+bsGa7XF9rh/GK99bAaDD2Wp+s43rdAOWLHdYrFYLBaL5brAO8R2YsV2i8VisVwjLl++jB/90R/FzTffjB/+4R/G5OQkvvrVr+LQofTL1F//9V/Hu971LvzgD/4g3vSmN2F2dhYf/ehH27/vOA7+9E//FI7j4P7778eP//iP4yd+4ifwgQ984Ho9JYulNCNsHbFwMMn2HHujyTp4fRotZwhOVKyT0WO7SNy69nERDKPCi30BK9neXMMhrMOdPpO7nesWdwyPxssYb10yOo5ePDDAGRClm4lHfjUT2yP1oEGrmTreqZ8vihFKsUonge2F3O1UXP76p5AIgrPuzahsFhOdXwrYxhWsYAxBRZ+IQP0qKiTWOtMJzxfbJ46lceUrF58udExOAWc7dRycn3oLTiz9VfewcA88cx07mcjqtBMYBgu4LwVR1MIwacId0cdih5VDqEeDBTYgFYu5t3cP8GfOYAJb2FxLBcqVhYuYxhpGebEBHpENz0xgC49/5sO521554Wm89uv/BOc+/4cD123ubmMEu/DGDgMA2OhJTMV7QyytjfQ9tunPwuGDRf71lasYQQNUIczXxQ5IdQzAntjOYvXr7/EWuJs/dNNJDFfrbJcOdSev5qBz31kCh068vxYs/PmvYQVjePU7fyp3u5Y7AjfcyN2GcNblRO/k9B3fhgUcwu6jHy98bITH4B3i/fDYdHosW8XeC68keJLAI0nuABkAYHgWE8nqwPXa116PeF8fHsMVMgO+8GTpY305EifCXGxPOIQQfY9FJZzeUphXCfhRQfG+6jsYq3kDne1xwuHmiMIVz8HUkD9wnfbxlXCPew5tC+GdsMR8LdkrrxLvywwCWNRYsd1isVgsFovlOmCd7RaLxWJ5KfjIRz6C+fl5hGGIy5cv4yMf+QhOn96LMa5UKvit3/otrK2tYXd3Fx/96Ef7uthPnDiBT37yk2g0GlheXsa//bf/Fq6rj5W2WF6OCM4xJjbwonsSk9hEq7GDhDGMi03QoWlE7gi8uJjYHvBdJP6w9nHiD6EGM2f7wvn0S/mRo7fmblc0Rl5wjkm+htlksXCseC8JY3CIGOgClPhSxNKI7WEmtju+XnCWbHmTcBvmMcbOhS/gnHcT1ifuxFTzgvHvXyvo7gI2nMn8bTLHf9hSnz+aRFqRDQBmjt8MJih2588WOiZHMIhBohOA2qu/H3NYxrnHv6LdRorq7Rj57JoRL5MYeRn3THIE2aQ+gxG2Vmi9Cm9BeHvX8Wj2vl144XEAwJWnvpr+XGwjYWzgeoKFiISLZ9xb4T/6+7nbXvzC72UHPHiQYeXqhfR4J48CALypGzCFDexubwAA4s1FxMJBWDkEjw8Wn5cupNUMvS74hDEMkyZoJrZL4VsX1e6LCMJEbCcuoBHHZYy8M2CIp73vLEb+pXK2b64u4s7VT+G5kz+aO2wDAJE3iiDOH9CgPAKn6r/BCKW4cOgtOLXyudzhmO71uhMuhifSYcx4e7DY/Eojzl7zQZ9p7uhhDJNm+32iQw6T9MbIA8BS9TRqm8+WO9CXKcbOdodCCIDxfrE9TjgoARwDl7OXRdirBGgpIg9ytgOpu31Q/DvjAu6A53p4bPA6krjMcEE2rKBfq4SzPUdsN0kZsKixZ9BisVgsFovlOiA6O9sVk74Wi8VisVgsloNjZ3sDFRJjdex2AMDS5eexvnIVDhEIxubA/BEEbKfQWlXeAPf1MfKkMoKaaBYWOwBg83LqRp694fbc7Rwvi+ceIGJuba6hSiIEJMbS/PnCx9GJFCboAGe7JMic7YkmRj7KROQiYnszmEa1VSzSW8KTBKe2H8bq9P0gh27GHF8oFMn9UhA0l7DjH8rdxsmGFeRQQi+Ex2A5TnQ/qOCcdwb+hc8WOqYiznYAuOX134kt1LHy0B9ptxE9MfLtBIYCgvBLAYvUDtRO6MgsJsR6ofdtgBbg7znb5254FQBgK3sfN178WromEdhYHZzQIFiICB62XvVjuCP8OubPqysQBOeYu/in2ZMaPMiwtXgRADA6fRwAMDR3EwBg4UK6Pt9ZxjoZhXArcAvEyG/Pp+Kh0yPM72ymwqxbH0sfz8RHpukO90UIDKiT6CSG13b/98KyqHq3oNjuZcemc8ofNEuXnkWFxDh097sGbpsEY6iy/KEvwhk4UXe2A8DwXe/GNNbw3CNfLHR8VLAuZ3tQqaEhAiS734Rie3Y90gFie3UiHU5ZW8xPhpHDJHLIqJPWxC2Ya7180lUOgohx+CYx6K7eiR4zM+EeyHe2m4j3h0cruY50zgUSnh8jn65TLRwjz7gcBjA7f8rnys2d7S4loAQIWf/wZVTCKW9RY8+gxWKxWCwWy3VAiL0/cm2MvMVisVgsFsu1ZXM5jU6mR+5J/331BWwuXwEA1CYPI/FHUEn6e4hVVEUDCPTOdqcyDJfwdmx6EeLFZ7GCMYyM5bufHUeKmPlC28bCi+3/v3qxmNO5F+naK+psl65NHqu/fI5b6fmQMc65+65NY6RAZ26nMHrh6YcxgS0M3/odGDpyG1zCcfWFl0eMbz1cRlidzt3GycTbsKW+bmgSIaH5r8X66e/Fq3YfwObq4FQAVzCIAoMUnh/g2ZFvw8z8Z7TbSFHdzYRM6WzmBVzdLwUsE1bz4qO90Vn4JMHm2uAhj5pogXSI7fXhMSxhAmz5OQBAZflxbIv0Ot/KetHzECxETDzc/rb3YVtU8eJf/rZyu/NPPYSTPBUABR8stjdX020n504CAA4dvyU9piz9gDaWseWMQ7hVeGKw+MxWngeAPmG+2UjvnW4lvS9K4ZtpOtsrIgQxENsZPK2TP4mk4FlMbKeOg0g4EAVi5JfnL+DCB+7A+aceKnysfceXDR95Ff2AloRXxzHE88X2VBzXv29vft3bsI5hrH7to9ptutbj/UM3W2QEolEs5eGVhBz+IG6/ON7JyHQqtm8tDRLb5X2v/9rz516FQ1jHxop5HcrLFcbNYuSDPLE9EcZOarnvOFHE0jNeyNUOAHNjlVxHepz9XeHSg3O2yxj5QWt2ksbIK1IBmHlnOyEEgesgjNWDD3J/lv1hz6DFYrFYLBbLdYB3RWlZsd1isVgsFovlWrKzlgpeEzfei0QQNJcvYHc1FdtHpo5AVEZR48XE8bpogFZGtI+7tVEAGBhB24m38QKWvKMDt5POYTFAbN9avtz+/7sLzxU+jk7awkSBqHEgFbFC4UFoBLY4TJ3t7oAoZQDAyBwmeL7YIzjHwgfO4Csf/AcQnGPp0T9HKDzceM93YOaGOwAAaxefKHTs15qxZBV8SN8XDgBOkJ6XSBcjzyPwAWL7jX/9vXDAcfZzHxp4TK5gIE6+6NTe963fjVP8AhYvn1M+LjvbPT89vj2x/eURI88KOFprE0cAAOsDBDYWp4kRtEc8XfaPIdhMnaxzjWfx3NC9AIDdtcFiO5IYMVzUhkbx1NQ7cPrKHyvrHxa//AfYwBCWMFEoRp5tzmMLNdSG0nvSxKHD2BUVhEvp6+i1VtHwxgG3krrNB+BvpikZruh+XeNMUHaza9iVr7+ms72CEKRAwkV7feKBaMRxLp3tBTvbAYDB1TrlO1k+/zhO8osIP/pzpes45LkpMmREquMYFvkJK5THSHISKVzPx7nh12Fy8cuFjo8K1hUjDwA7zghoa73Q77+SaCdcePlDRuMzaRJEc+1y7nbta0/hbJ+64W4AwJWzXzM+TiD9fGvs5FcKvNTECYdXUNAGOpztiij0yHCtzvVUMfJxwguL93OjVSxs6Z3tshN9kJh9eKyCKxvNnu/21LSj3w2ec6BxtkuXvGcg3ANA4FHb2X6NsWK7xWKxWCwWy/WgK0beiu0Wi8VisVgs15LGeuouG589gRUygWT9IsKNVAQbO3QYpDKKITFYbA9bDfgkyRXbvWr6WHNno/DxjTUuYGfo5MDt2jHyA8T2ViYSrGEEyWq5KFvpBh4kTHQSEh9C42xnmYjsBYNFNnfsMOqkhZ0tveATRS3MYRn3z/8eHvyPP4nq5S/iucqrUKkNYXL6CDZRR+vq04WP/VrB4ggTYgPOyFzudl42hBBrxHaHR32iWC9Ts8fxVOUu1M9+bOBxuYgLOdsBYGjmBgDAzvqy8nEZIy+d7V4mfBZxX78UyE556uqf78ihYwCAnZV8ga2xm7q4naDe9fOd4VMYa7yI9eWrmMUy2A3fDgBobQ5OGQALwTK38tA9fzONAf/G57s2EZzj5PyncHbyOxCRAGTAPQAAsH0V63QvLYNQigV3DmTjAgCgGq0hDCZSsR2D1xtppIMIbo8LnslBmkxQdjKnb6IQ2+MohEs4qIHYnhAX0FxL8rUtImZLIuIVipEPs9fuFvY0HvqjXyu8ftfxZfdDvzL4+NyhSVRJhFZDL7gTwSCIurNdwk++Cafj57C5PjgdxBGsz9necofhha88sT1hDAuXntc+HmfiOB3gbB8aGceOqIJtzA/YX+ZsV4jth0/fjki42L746KDDVvKNv/h9sH97i1FCzrXGNPrdd9K6A13su6mzvR0jrxLvTZztoxVsNGI0I/UAjRTbBx3f6ekhtGJeKEq+jKCtjZFPBBxKQA367oFUvFfFyMcJh+cQEGLF9v1ixXaLxWKxWCyW6wDvENhtjLzFYrFYLBbLtSXeWkQiCMYmZ7HmzcDbvoxkaxFbqKNSrcOpjaFGwoEd37uZ+OtW9WK7X08fC3eLudIE55hjV8AnTg/c1nFl33C+MMY257GJOq76J+FvvZi7rXYN6QYu6GwHgBB+jrNdxinXlY93UpOduQv6Y5ev1SPV1+Pe5Y/hzuaD2D78BgCpqHjVPQ5vTS+8vFSsL8/DIQLBxOHc7aRYGLXUQpsj4oHOdgBo3vIDuDV8DMvzF3K3c8EKpxa0BwFCtfAjkxakyC5dxoOu05eKPUerXmSbmE3F9tZavsAW9kSmS8TEacwl87j0ZOoonrvzrQiFB7alHlDohCQR4kxsv+V1b8c6RrD2te6BibMPfwZzWMbQPT8CRlyAD47o9xsL2PKmun62WTmK2k7a5T7E1pFUDwFeBcEAZ7vgHLPsCiLh9kXOt53tfnoNe5n4yBVu9GYmJFPfIEaeeCAaJ7p0F3sm68EtlgywvYyGCPDgxPfgtif/3cD3lPL4IulsHzxc4A2lgxFbmqEWAHA4g6D5YvvRe74LDhF44aE/G7jP9L7SLbaH3hj8+OXlqi7Cg//vL6D6O2/SPi6rURxF7Hsva84EsJ0fAS+rCDzFfcXzA1xyj4EuPzVwXyriZz+DETSwdKlcMk1RLqzsYqMx+L0ApN3enoHAK8VvnZvaM+gvB/Zc4SoBOu2TL+5sB4D5TU3ljYyRH7DeLbPpZ8AzC4MriOKCAn4nnkMRJRxCdDvn44TDNRTaAaQx8qpzl5jVA1j02LNosVgsFovFch2Q/ZKJIIAYHDtlsVgsFovFYikP31nGOhkFdRzsVg+j1rwK7C5hnY4DANzaGABgZ3M1dx3pVvdqerG9MpSuFe7md+9KVhcuoU5aCGbODNzWK+hspzsLWKeT2K0fw0gz36mrY88NXCxqHAAi4gNM/QW2icNTuoy3lvWR3lJAFXe/F1+/999gHcOYe90PtB/fGjqF0caFood+zdhYTIXN+uSx3O28zCktXcK9OLyY2H7zW34MDA7O/dXv5+9PMCAnVr0TP4tMZ5o+eZFEiIUDksXaugXrDl4qkkz0zxPbK9U6tlAH28oX2FrZEI3bEyNfnTuDKonQfPwT2BZVHDl1G9bJKMRuMbFdOtsd18VzY2/EkcXPdG2z+eCHsYQJ3HrfO5AQF6RAakCttYxWZabrZ9HwcUxG6UDBqNgA6lMgXhUBovZ/o6pYW57HMGniknsMfp+zXQrKqYjpZf3pXOEejzKxvTcZII8kV2xP7wN+UKyzHQBieECBznbsLmODjuLmH/91hCTApT/8ucL72Du+dBigUh0stgcjqdi+u7Gk3UYV+97L4ZM34wqZQfTsZwfukwoG9Ij3LBhDlRX7/Hq5sDx/AXdd+QhGsauN/E+ya4UWqBzYdqfgNfJTKfKc7QCwXr8RI1vlBr6mNx5L17hybcX2v/37D+M/fk5dD9JL6Rh5jThuKvBKV7gqRj5KROFjOzyW3iuubqgHA4vGyM+OVDBScXF2YfB7RR7zIAG/E1/TUc9K9N0DmbNd1dmemL8WFjX2LFosFovFYrFcB0QWI8/ggIhy/W8Wi8VisVgslmLQ3SVs0zEAQDx0BBPxItzGMnbcCQCAP5T+7+5mfuxuM+thD+pj2m2qWT9y3CjmDFw8n/aKT5y4feC27V7iASKm11jCtjeFZOwkZpICndEK2m7gnOjtXmLigzD1F9hJKMX2wSJb22W8ekW/ryiLBPYCvPZdP42xX7qIk7e+tv04n7wJh+NLuQLiS8HOciq2j2U9wDr8anpe5HnqxRExRAEn+uj4FJ4cej0mzv9J7naegbM9yJztSaQeBBBJDAan/W9CKZigLx+xXYpsA2Lz1+k4yE6+wBZmYrFf63a2Tx5P379nVj+Li8GNoI6DbWcMtDE4ypvwCAnZOzb/9u/FcX4FLz7zdQDAxsoCXrX8SZybexeo46TicwGxfYytgA3Ndu9r8gZM82Xsbm9gBA04wzMgXgUOEWA5SQTLL6aVDOv1G+H1RM4nPe5tKT5yRcpF2JKR88Vj5Bn1QLlGbGdSbD8Yp3wnTnMVO84YRicO4YU7fgGv2f0CVubNkkKks933Bw8D1MemAQCNnKEvR8QDne0AcGX8dZhde3Dgdq5gffcVXp1APXllie0vfPSXUSXpaxpFGhE1+0xzc4ZuJM3KIVTD/EEZkTnldddePHUrjsYXjD+DtjZWcSJJr7PWUjEhvAxCCFxca2BhMz/RR2IqyubFvsclBGPZUa4U2w2c7bOj6XtR62yXke8DOtEJIbhldgRnF/W1D31rGsbIA/3nL0r4wEEAFWlnuyJGvsTgg0WNPYsWi8VisVgs1wGRRcenYruNkbdYLBaLxVKMRz/7ETz2uT+63ofxisNrrWLHS13sdPw4psQqauESWkHqJKwMp2J7czu/p1ZGw1cyQV1FfTjdD2sWEyt25p8BExRzJ28ZuK3jpCLLIBGzFi6jVZmGf+g0RrCLzdUCvdE9SDcwLSBMSGISaMV2ngm1lWqBGPmhUWyhBrapj/SOsxh5J3Nnk54vxitzt6JOWliaP1/o2K8V0cY8mKCYOJQfIx9UU6e0TtB2RVRIbAcA/qq/gTPsWVx+/gnl44Jz+ISBFHS2ewMGAdAjtgPpf+e8bMT2AQ5UyY47Ca+pdxUDQNRMI4P9arfYPnviDGLhYBxb2B5/FQCg4Y3Db+WnZQCps71TbL/l274HDRFg/oH/AQB45n98AAQCN7/7nwIAOHEHdrbzJMGkWAMd6b7uajM3wSUcFx77EgAgGJ2Bk0Ww5/VDb8+fBQDEkzfDF71iexblHvTGyCuc7VlNgltg6Kb9XIgHqhkuECxCIggcd7AALWHEKxQj74draGafGyfu+x4AwKXHP1d4P0A6cNASXt/9ScXw2CEAQLitv2aoSPo61lU4p9+CE/wSlq7k3//Szvbu+wCpTWBEDI7Gfrlw5YWn8ZrlP8azbpoOE7Z06SqD6yQkrDaDkTh/UEbGyLuagbTa0TswRJq4etHMnf7iY18AJQJN4UOsXTD6XRNWdyNEjGNtt1iMfNqzXkIsVkaXmwu8lBJ4DtGslxTubA9cB1NDvnbIYM+FPvi53jw7bORsHyTgdyLPT9zzfFnJ2HddjLzp62rRY8V2i8VisVgslutAO0YeDgAbI2+xWCwWi6UY7lf/I5wv//r1PoxXHJVoDWEmrFenTsIlHMfD5xFXU3GjPpo+Fm6v5a7DMqEoyIuRr9aRCIKkoNguVp7DAp0pFINMKEUsHIgBfc2jbAWsPoPRIzcDABZffKbQsXTSFiYMnO2MBqCJRmyPm0gEafd6D2KdTuZ25rLMMepoHKOTJ1On8dILasH5pYJvXcUqGQd1nNztgixmWjphe3FFDBQQ2QDg1GvfDgBYfuER5eNx5sgs6myv1rJBAE3EveiIQZcwuEAB9/VLQSK7mgdcy6mbNV9gY830HlCpd4vtrufjqpO6yN0jdwMAomAS1Th/gAcAKI+QdLy2ldoQnhm6D5OXPo2lK+dx19X/hseOvxcT00fS50NcEJF/D1hbnodHEvjjR7p+PnksvSdsP5eK7bWJWTh+eu2FOWI7W34eS5gArU0gQNzl1t2riEjXkR3WQiG2x1kVgWcSI099rZNfsBARit+jgMzZrnHKd1KN19ufGzNHT2MBhxCef8BoX2CttF6jAMNjU+CCgO3or8FUHB/8fE/d+10AgBcf/lTudq5ggNM9qODUJlAjYe7whQmCc3z1P/1dPPfIFw9kvV7m//iXsEmGsX333wEAxJqhoPbQTZHPoJE5TPC1XFe6SCJEwtUOUszc9BoAwNLzXx+8vw52nv8yNjCE5yu3I9jRV6nsFxmjvrIzuFJBCIHYUOQNcsT21E1tLvCmPeb935/FzOzYZkcruKpxtjMusn0NPr4zs8N4YXlX+Ry7ji8RcCkBNehaDzTO9rKx74FL9Z3tBvUAFj32LFosFovFYrFcB6SzPQEFrLPdYrFYLBZLQSrJFmaia/fl6zcrdbYOVp0CAIzO3QAAGCJNiHoa2yvF9mg3XxjjUlTKiSwmlGKX1CDCYs7AytZ5rFby+7w7YXByY+QF56mjdfQwpk/cCgDYuvps4fUlUphwCorjQCq2OxqxXcRNhPALOTwBYNubzO3MZZmb1vHUYvvciZsRCReN+acK7e9a4ewsYNOdHLhdEFTBBckR2xmEWyxloFLLd8nLCH5S8LX1PB+JIO3rv4+E9TvbiQOR5AvCLxW83dmeP9DCqocwHOc70VkrfV9XFAM3q5UTAIBDZ14HAEiqkxhiRcT2uMvZDgD85u/GGfYsrvzhz6BFAtz+N/753mPE1caqSzYW0xjqoUPd9QXTR29ALBxUFr8GABiZOtIeWIk1wxQA4G9dwLJ/BNSrgBLRHtgAAB7JXvJUQKeOkw4FKdzjcSbg+gUSLtrrUw+O7vmyEDExE9vTDvjBgyDDyTqS7HMDAK4M346x1W8Y7UuwECGKvc8c18U2qYHv6oe+0qGbwS7+iekjOOecAl74fO52LmKgZ+jGz7rjt9fzY9RVPPTx38JX/vM/7PrZs1//HF6/+GGsPHTwqTwXnn4Y92x8Gudu/Zl2HYzuOuZtZ/vgwTZv7DBqJMT2lv79K1iEGPrXYubIDdhCDa3Ljw/cXyf1pa/hxeptaAwdx0hLn+6yX6TYXMTZLnvDjWLk22KxIrq8pGDsOVTT2c4LO9sBYG60inlNZ3vb2V7gb5VbZofBuMC55fwo+bhE9LsuGSDm5QYV0s72g3stLP3Ys2ixWCwWi8VyHeBZZ3tiY+QtFovFYrEYUE+2MYUNbG/mO7At3YzyDYhaKpocOnq6/XNnJHWi1odGkQgCtruRu450e3sDXOgNVAuL7ZOti2iO3FBoWyCL585xtm+sLsInCbyxIxgZm8Q6hhEvm/e+tt3ABjHyzKmAauKZRdxESIqv1axMo5bTmSvFdlfjbHc9H/POYWDFfNDgIKm0lrHrHxq4HaEUIbx23H4vnkIU0+4zi6QXGuFedhc7BWPkCaVoIYDQHBuSCEmP6PRycrbLXu+BjtbhWUzw/HtrEqZicbXH2Q4A4cgpNESAoze+Ov1BfQojYnPg8VEegfdEed/01/4GYuHg7saX8cyNfxvDoxPtxzj1QAakW+wsp0NZ4zMnun7uej4W6TRONJ8EAIxNzcHJ+tMjTfw2AIw2LmK3fhw0e79FHe5hHreQCNIVpx3DVTrbWXYNydqEInDqwzlAZ3uS0wHfyRjfBBnaE9vjw/fihujZdu98IeIm4oLOdgDYJsMQTf016CCBcIo93+Wp1+P45kO57mwHSZ94H4yk96uddfP6EZz/HO67/Hu48sKT7R9tful3AADe9sEPCq7/yS9hgU7j7u//h+06BKbpbJcDZN6AOgkAqE0eTddfeFG7jUhixEQvthNKccU7BW/16YH7k/AkwanmU2jM3AMxehzT7Kpx53tRrmYx6uuNCELkpy2y7BhMHNC5zvZEGInjEt+l2lh6kw74w3nOdoPBgjMz6efA2YX8v/fKCNqepvM+ZgLuAcfIW7H9YLBn0WKxWCwWi+V6wPec7cTGyFssFovFYimI7FFduM7R2K8k4ijEGHbgDqcu9trQKNaRulKDsVRsp46DHVKDaG7kriWdcXnOdgBo0RpIlO90ksc2yxdBJm8cuK1kkLN9ffEiAKA+mcZHL7tzcDcuFF5f0nYDFxRkAYA7AVyuFjpI3Crs8AQAVpvGCNPHKRfp4V6rnkR9+4XC+7wWDEXLiGozhbYNiQ+hcY97iEEKOtup4yASrla4j7PruOh68tgQq19b8BisR3RK4AAvG2d7sfhod2QWddLC7vaGfq1wB5FwlLUPN37vP8ELb/+ddn+4MzyNETQGirMOj8B7BilGx6fwdPUuLGECd/3A/6f7GIir7TCXhOtXwATF+PSRvsfWgqMYxza2UIcfVOBlYruMeO9FcI4ZNo9k/DRods1EHc9JlVoRExdg/fHUclghyCLniyAcH47QPN8kSgc7DCgitrM4Qp204AztDcpM3PxG+ITh/BNfKbwvkoRGYntMKqBM8z5DGiNPCtZJVG/+dsxgFZfP6Z3VnmAgPff4+lj6WdnYyK9UUEF5DEoELn/y1wAAO1vruH3t02CCot48WJf2s1//HO5ufAlX7vp5+EGlPRgWh7oqEzl0M/i+N5IlQmwv5wwIJBHiAYMeWyM3YXqneI3Li2e/jmHSxPBNb4B/6AYMkyY215YK/74J85nYHCcCW638e3XM0u+synS2q6PLywm8vs7Zzsyc7bOj1fawQS/twYICz3W06uHwaAVnFweJ7cJoGADQO9sZ53AN4uglgUcRMrWz3Xa2HwxWbLdYLBaLxWK5DuzFyDs2Rt5isVgsFkshwlYDNZJ+Wbx5ubhT6ludjZWrAAB/bE/wXHGy+PiJw+2f7ZIhiFa+C1UoHJwqQloDLSC2L7z4DDySoH745oHbShjcXLFdOlpHZ1KxYKt6DPVdc0ehdAMXcQG2f8epwNXGPbeMRCf4Q6gIveiUZO5s19cPPoTjN2I2vHDNnIFFGOdr4EPFxPYIPqAR2nwRAwbieIsEWuHe1NmeHlsAwdTrEc6Q9IrtxHkZOdtljHz++atk94P1xcvabUS4iyZRpylMHT6B29/wPe1/+6Pp6y7vQTooZ33OdgCYfs8HEb7n4+1agPYxUBd0QGe72JzHGhlrC/+dNIfS2ooNOgYAcLPhIaaJ315bnscwaaIyc2PbPdzpbBcsRNQT5R7DU8bIJ9k+gpqJs93LF9sNY+Q59QcOKyThFgAgGN177566/fVoCh8bZ/9X4X0Rw/teTH2QRN+h7YIVdrbfeO/bwQXB1Sf0UfIuGEjPoMfwWDpgEOV0x+uQiQt3LP8pNlcX8dRf/C4CRPjG+DswGS8Yr5dH9Of/Jy7QY3jNd/80AMDNhkZ0zvZ2wkWBz7TJ2fQ90ly7ot+IhQMHPYLbvgvHxDzOP/nAwH0CwPJTX0QiCE69+q9h5PBN6c8uXZt0lqsbrbagvDqgt126q41i5J08Z3vZznbS5/SW+zARs4crLnZDpnT0y8j8ou7xm2eHr4mzXXf+yqYCaDvbDfvuLXrsWbRYLBaLxWK5Dgi+J7bbGHmLxWKxWCxF2O5wmcVL1zca+5XE5nL6ZXl1bK79s+1K+v/HDh1t/6xBh0DDAWJ7Flk8qHc8cmpw2WCxffViOjQxfeqOgdtKElAgJ0I6XE+f7+RMKhbEoycwFZs7CqUb2BkwWND1O04Al6u/tDcVnYhXRSD07lOeCb95wwCV4/dgChtYmj9feL8HSdhqYBxbcEYPD94YQEgqIAqBXHAOXyGK5a4FH0LjRJdiOzVxttNAeWwAQJIoHSLuIIFbqBf7pUBkIps/QGQbnkrvB1srerEd0S5aGNz5DAC18TQ5Y3s1X2x3RQShcCvPHrsRx266s+/nnHoDxXa6cxUb7pTyMTF+CgCw44wDAPyKFCnVr+/yhacAAKNHbmmL7XGH2A7WSgdFOmCa159HTXBBEAxIB+nC8eFqxHFSRmwn3kCxXbRSsV2+hkB6rzkf3Az/6sOF90WSCIwWf5+lffL6+54LVrhOoj48hhZ88OaWdhsPDOgR74fHpsAFQby9WuygO6A8xln3FjjgePpP/j3GnvkwnqjdCxy/H9NYM4vgz+GJL/4xbg8fwdp9/6Q9UCIrRXTXsTCIka/UhrCJOtim/r1b5Nq77Y3fj03UsfClPxi4TwAglx/EefcG1IfHcOhYOoS3dfW5Qr9rytXNZjsGfVBve7vH3ECUdR0KSvpj0OV6vusofisf36Vtl33veiYR9zXfARfqY5Mx8kXd42cKiu3mne2k/bt9a5VxtrsOwtjGyF9L7Fm0WCwWi8ViuQ60xXZCrdhusVgsFoulELvraX91S3jwN65vNPYricZ66qYbmdoTPKOhI+CCYOzQngAfOkNwI70oAagdnCpidwguGywqhCsXEAkHh+ZODNxWwuDkiu1scx6rGG0LCs7kDZjGGlqNweJ/J9INrOtEVyHcCjyhEduTFmID0Yl4VQTIEdtj6bzXH9/R298IALjy5JcL7/cgWVtMEwUq4/1R3ipi4oMonO1JwkCJACkQfyyJiA9onOhJdu6cQR3mXccWgGjWA2dIesTi1Nn+MomRz0TfQTHyY1kaRK6bNW6gRYsJxcOT6f2lsZbv6HVEDGEwSCGoB2fAua20lrAbTKsfm05rK1pB2gPvV+oAgERTO7B9NR3umjt1256g2emCZy3EPfdFRlwIhdgu4gZaPZHzgxDUg4MDFNsdH86gzvYwFc86PzcAYHPybhzdeaJwWgZNQjBFaoGOQRH3rkhAnOKx+RHx2sMmfftiDA4RfTHyjutii9SR7JYQ2wXDbmUaj05+J151/v/FGfYs+N3vQ3U6HfBYunzOeM1eBOfwPv9/4Vn3DO5+23vaP/eyAQ6ZetL3e1JsL3gfXaeTINs5gzI87kv06MUPKnhm4jtwcv5Tha6Zma3HsDqeDtiMThzCFuqIlq/N33tXN1t41eG0Ume1oNhu6kbXdqyzss52iijpj0I3dbZXvVTob0UK8ZmbufhvmR3GlY0mtlr6AZ5SMfJOeox9MfIlxfHU2a6OkTcZVLDosWfRYrFYLBaL5TogRPpHbuoAsWK7xWKxWCyWwTS2Umf7ef8MRhsvXuejeeUQbi4CAMam9oT1yo1vxhPV13SJb5E3DC/OdyeBhQM7WgEg8erwmbr/uBNV1/HAtYmbG89Ndxaw4Uy2/z00l0bRLrxYvDcWQDsC2jMQZIVbga9xtqeik4HY7lfhkQQsVosAUjD2FN3ZkkOHT2IJEwhffLDwfg+SzaVUbB/uSFDII6YBSNIvtsvIbhMneiqOa5ztbbG9+HqMBqCaeGvCGRL0xsi7IC+TGHkpsg2qfxgZnUBLeIg3ctys8S4iTYx8L/KeE27ldy67IoZwDOoaqAcH+WL7cLSMqKquLxg7egYAEFdS57svRcpQPUzBlp/HEiZQrQ93uIf3rgXC+nvJGfHUcehREyEp/lwBQLgBXE2MfCq2G9RTQA4r5F+bTjZ41fm5AQDVG1KH9sKlYm5jJ2khMRLbfe37DABcJEYJF3nVFHF2H6CKWPptMgLSXC+8H4nDY3DiYeYd/wjDpIkVjOH2t/wQJo6k19zG/PPGa/Yyf+Fp3MzOYufef9D12eln12aiSeDgLAITVFmtoGLbm4LfXNQ+XnTQY+ieH8EclnH24c/kbre+fBXH+RU4x+9r/2zJmQXdvFjoeE3gXGBxq4Vb50ZASHFnu7lgrBHbS4jPQCqA65zt0glehIqfCtnNWCE+M+niL7bezTPpwMKzOe72dLigXGd72OdsLxf7nna2a1IGbGf7gWDFdovFYrFYLJbrgODpfyAwuCCKniiLxWKxWCyWXsKt1GW2OXkX5tiV69pD/Uoi2V7Ejqh29R7f9bYfw6v/6We7tou9EQRsgNieFBXbhxDwwc52wcI+R+ggGJx2L64Kv7mEHX8vPvrQ8VsAABuXzaoHuEHkbhu3Al/jRneSlpHYTrO46lZTPbQgne3+gDjqK7VbMbz6WOH9HiSN1TSOfHymWHIBowGoQhiLw/Rn1EAcj6lebE9kRYDhelTjbKc8AqfdAhYn7svG2Q4eIxLOwKEWQinW6DjEjl5gc1gDkVPM2V6p1rEjqki2i4jtBvcB6g4Uiyf4CvjwnPKx2RPpPYHX0vtEUE2d7VxTO+A0ltqR9Hu92HvXAklCxD0CekI85bCFiBsIYSa2w/HhamLzKY+Q0OJObyBztus64DPceBtbqMHvGeY59uo3AQCuPPGFQvtyeITEJEaeBrmvrSr2PY+YeHqxPRuY6HW2A8By/UacXPgL7G5vFN4XkDrbBfVw4ua78NXpH8a5W38Gnh/g0JFTSARBY3H/Lu3l848DAA7fdn/Xz72sDoHrYuSTCPGAjvVOWpVp1EJ9bz3hMZICn9+33PcOLGECmw9+KHe75UtnAQDjJ1/d/tlW5Qhqu5cKHnFxVnZCxInA0fEaxmv+QLE9ygRuc8HYUXe2lxCfgVS8741VB4CwpLNdJbaz7Ls6r+AQ5OnpOhxKcHZR//dj6h43E7Sl8z/u62wvlwoQuI66s72keG/p55qcxStXruDHf/zHMTk5iWq1ijvuuAMPP7zXZSKEwC/90i9hbm4O1WoVb33rW/Hcc93TYGtra3jPe96DkZERjI2N4Sd/8iexs2MWd2WxWCwWi8XysiVztnNQEOtst1gsFovFUoB4dw0A4J98HeqkhZWFg3c7fVOys4wNOjZwMx6MosLzv3siLERcwKUo/CFUC4jthEWFxPtOkgFiez1aQVjZi4+emj2OpvDRWjJ0FGYR0I5BZDHxqvA1PetOEiJxikfSO14qaIYasV2wCFyQgW7l1sxdONE6C66Inr3WROvziISL0Ql1nHcvjAZwFM72tthu6Gx3BsTIuwaDFIlTgaNJLSCc9cUpJ3Bzr9OXEsEisIIi25YzCXdXL447rAFWUGwHgA06CrG7nLuNJ2LAwNkuHB8O9Ndzq7GDUezCHVPXF1RqQ/jq7Hswdff3AACCASIl7egdl1HdLGx1PN4flZ4QV9k9TlgLoYH4DABwfHiaGPlUbDd1tvtap7wkYFvYJGN9P5+cOYrLZA7Jha8W2pfDQ3Cj1AJ9xH3C0joJlRNdR1pNoYmRz1JDVPeV2R/8vzEqNvH4H/yTwvsCskqEbPjh9T/zn3Hf30x/3/MDLJMp8PX9p/K0rj6Nhggwc+SGrp/LwQg5iNVHEiEeEPvetXllDNVEXy1Dk6ivPkOF47p4YeYduGnlL7VJLUDHfTkbaAGAaPgYxqOcKPuSzG+m79+50Qom6j5WdvRpCkBnjLyZnBi4VNvZXkpsd2mf0xtIu9d9gyh0KbY3ov7PqPZzLSiOB66DG6bqub3tLBFwDRKMgD1ne+/5S/vfS8bIa5z8Vmw/GA78LK6vr+MNb3gDPM/Dpz71KTz11FP4tV/7NYyPj7e3+Tf/5t/gN3/zN/Hbv/3beOCBB1Cv1/GOd7wDrdbeh/R73vMePPnkk/j0pz+NP/3TP8UXvvAF/PRP//RBH67FYrFYLBbLdaHd2Q7HdrZbLBaLxWIpRLK7hl1RwdQNdwEAFjN3lyUfp7mKHXd84HaiMor6ILE9CcEKiOMkGEYVBZztibmzPRXb9ULRGFtBMjS7dyyUYtGZBVk/b7QfkUSIhGsUcZ/Xs+7wlpHoJAWHqKUT20NEGHx8wzfch2HSxKXnX/r3i9i+ihU6Ufgc6gTtOHMcG8W+OxVtHHVb1PGKDz8kTgVuohFjBUud7B1w6oJo3MgvOUkMVlBkawRTCEK9OO4mTTCnpn28lx1nHG4zv/vaAwMU7mIdgrq5zuyV+QsAgOqEWmwHgNf/3f+Im+5OXdqEUoTCA9fEb1MetYcp/EoWOd+xLVVEpeuc7YQ1+1zwgyCuD1/zfCmPwQ3F9tQpny+2V5Mt7LhjyseujrwaE+uPFtqVyyOj+57Icd3L2HeVE10HI746zh97VQBUEat++NQtePT038W9C/8Vzz3yxcL7oyKB0MTcr/mz8LYvF15Lu4/V53DFPdZ3X5UpJ7qEBrC48NANkNaieJrhMUA624utN3n/ezCBLTz1pT/RbrN3X967XsjESczw5VyRvgxXN9L37+GxKibqg53t7Rh5Q3e2rrO9jNMbSN3evU7v9noGgnEti5FvqZztSepsNxHHz8wO45kcsT2Nai8ptvd2tvNyEfxpZ/vBDT5Y+jnws/iv//W/xrFjx/C7v/u7eN3rXodTp07h7W9/O06fPg0gdbX/xm/8Bn7xF38R3/d934dXv/rV+P3f/33Mz8/j4x//OADg6aefxp/92Z/hv/yX/4L77rsPb3zjG/Ef/sN/wEc+8hHMz88f9CFbLBaLxWKxvOSITGDnhILAxshbLBaLxWIZjGiuY5sMY/bELWCCYnf+7PU+pFcEQbiKpj8xcDtSGcWQyO9ZJwoHp3qtYdRFc2DUP0niQp2vneQ52xPGMCE2QEe646PXK0dR3TGLohVJDAbH6HeIX4VPEiSs//g8Q4en0xbb1QJgGuk/WOg4dvsbAABLT3+p8L4PCnd3EVvu1OANM7hTgasQ21kkY+QNxHEawOFq0Ylnwo2Jsz09NrUgkwqe3dcxJw7oy8XZbhAfHVcPYTjSi+N+0kTiFhfbm/44/DBfbHdFDGKQWpCKxXpn++ZSmnoyPF2svgAAQuIDGpGSdAjant8vaNIk7ItKT6gHqhDbKWsiNnS2EzdIBxIUpBUGZvdQUUBsr/MtND315wY/ci9OxefQ2NkcuC9XhBAmznbHV94DgI7YdwNnO6OBduhGDvHoEjPu+ZFfxAX3JMif/MPCYq/b4WzvZbd6BEPN/Ws7IzvnsVk/2fdzx3URCwdC4+QXSfGECwBpLUqO2K667+m48dVvwCVyGK1HP6rdRortXkd1QXX6NDySYOmK2bDcIK5uthC4FOM1D5OFxPaSMfKOTuDdR2e7ytnOzJztFRkjH/Wvxbh08RcfBpgeDrDR0J/DqEyMfCb29z7fiPHCffKdBF4aIy96aixN++4teswKTQrwiU98Au94xzvwQz/0Q/j85z+PI0eO4Gd+5mfwUz/1UwCA8+fPY2FhAW9961vbvzM6Oor77rsPX/nKV/AjP/Ij+MpXvoKxsTG89rWvbW/z1re+FZRSPPDAA3j3u9/dt98wDBGGezfSra004iOOY8Rx/ofn9UYe38v9OF+p2PNbHnvuri32/B489pxeW+z5PVgSlp7HBA5cwe15vQbYa/baYs/vwWPP6bXl5X5+X67HZXl5QVsb2HWGMBtUcInOQqw8N/iXLKjFa1it3z5wO6c2hgqJ0WruopJ1GPdCkwiMDBbbncowXMLRajW6uuJ7IUlYaL1OEuKAaIS29ZV5TBGOYLzb0RoOH8eRpWIdw22YWeQusCcGt5o7qA+PdT3m8gjCIEbey8T2OMfZXiQVYHR8ChfpEfDLDw/ctpNWYyf3tStCpbWERmAgtrv5YrtjGPvuh+qkBp51trte8WuPO4FWBCSC9QmKnLx8YuTBGZKCgyN8aAZjK2vax33egvCKi+1xMIGx7Wdzt/HBQDRuYCXUg6uJVQeA5lrqHp6cMxDb4UNour0dHoNl790gc7bzqNXxeNTn9k+IB6oYznCSFhgtfh8AUrHdJwyC8z43s8MjRHRwckn3L/lwNeK9ZIRvYb1yUvnYodveBPepX8HZx76EV33bO3PX8URkJLYLJ9AOAuzFvpuI7X5OwkW6H6q59jw/QPLdv4Eb//j78fVP/Q5e+71/b+D+HMEAjQDNRo5harNY/L4OwTnm4hfx1JE3Kx+P4Gmv4zRGvvi5I14FviapBQCoiMELrkcoxUr1JPyWvgOet53te6/H+JEbAQBrV57F4ZM3F9pXEa5uNnF4rApCCCaHfLy4mp/EUzZG3tfEyEf7iJHfVUa/C7MYeV/f2R4nAg4lIKS4AK3rQ99b0/z5UkrgOUTpbDeNpE+PcS+WPnD3Pg9tZ/vBceBi+wsvvID/9J/+E97//vfjn//zf46HHnoI/+Af/AP4vo/3ve99WFhYAADMzMx0/d7MzEz7sYWFBUxPd3cZua6LiYmJ9ja9/Mt/+S/xy7/8y30//4u/+AvUasX/ALqefPrTn77eh/BNjT2/5bHn7tpiz+/BY8/ptcWe34Ohdfk5vAZpZzuLI3zyk5+83of0TYu9Zq8t9vwePPacXlterue30RgcN22xuOEGWs4IAGCtcgzVrYN1On2zMpKsY6U6WPD06qlgs7O5phfbebGOVrc6CgDY3d4YILZHSA7Q2b6xeBFTAOpTR7v3M3EKMwv/HQljcBSRwSoEN4vcBQDHT7+DC5u7fWK7JyII10Bsz3qkWai+P5r03S8OvwrjG08U3vczX/0UTv/l38b6338U44fmBv+ChuF4BQsjNxbenjsVeEqx3Tz2PU8c50x2thdfT7hV+EInxjJEpNfZ/nKKkY8KJ0g4w7MYxxaisNXugO4kEE1wT31/UO66NoXh9Qe0jwvOERBTZ7uX29nONq+iIQIMjRQXoeMcZ7vDI0Re+tmjiup2eIjIH+v6Ha5xtjtJqy3cF0UOIsRx1PeaOJyZx8i7gbYDXjIqtrBamVQ+duKWe7Ajqth67kvAILGdm9338lz3LBuSMblWklyxPf25kzN0c+Y1b8HVT0whXniq0P4cMAiN896ZOIGpSxvYbuTXteSxvnIVE9hFMHuL8vGI+FpnOzG4DwAAcSsIchIQKI/BDAZvOPXhx/o0BJ4ZMjrvy9PHbgIXBI2FcwCAzbVlXH3+kewACU6+6vWFhsJacYKtVozp4XTt+c0WZkfS/z9RDwrHyJcS2w8wutx3KGLWnwwZMbOYdtnZrhLbWcLhUjOnd9qHrhfbWUlBW5UMwEo60aXAHrJusd3GyB8cBy62c87x2te+Fr/6q78KALj77rvxxBNP4Ld/+7fxvve976B31+af/bN/hve///3tf29tbeHYsWN4+9vfjpGRkWu234MgjmN8+tOfxtve9jZ4ntl/YFkGY89veey5u7bY83vw2HN6bbHn92B57C83gOU0XrHiAO98Z/5/pFvMsdfstcWe34PHntNry8v9/Mp0NoslDy/eROilIm5z5JS5U/lbEME5xsQmyPD0wG39oVSY2t1cxdTsMeU2qdg+WOhwa8MAgOb2BjBzVLsd5RGYYQRyQhw4ms72nZXU0To+fbzr59XpG+E/nWD+8rni7rikjNieCnFRq18g90UI4VULr+UFqaCpE9tN+u753Gtw8unPImw1EFQGiyPb576KGgnx3ONfxPi3/3DhY+5lgq/h6nBxsV64VXiiXyhqd/kaONuFW4GrWAvYc7b7Jut5Vfi6GHlFdLSgrlbke6khSVzY2R6MHwYArC9fwczR0/2PixbgFxfYSP0QxsSm0pUNZAIyzARU4nhwcwYZRNxEk1RgYj+LiA+SaMR2EUNk9ynqOIiE2+UeVvWSC+qBKsR7N2mhFahFbB0067COwmaf2O6KSNsRroM4Hry888c5xrENMnRI+bjjujhfuQXVxa8N3JeHGDAYkiE5zvZ2x7pBjHxCA7ia15Vl4q7j5V97694MvJ1i8e+uYIDm9ajPpO+n5SsvFFpLxcK5xzABYOKEOq0mhgvoxHYeIzH4TCNeFQGJwZME1Om/fzg8Bje49rjjww31orYcEui8LweVGhbIJJK1C7j47COofOjduAV7yRtfefyncf///n8P3Pev/cVZfPyReXz5n347PIfi6kYTJ6fSz9jJuo/V3RBCCK2be09sN+xsdzRiO+PGa6X71zjlDWPk22K7xiVvKj4HHkXI9ANQUcIx7JlLsZ5L2xH+e2vtz9kexhzouCVZsf3gOHCxfW5uDrfddlvXz2699Vb80R/9EQBgdnYWALC4uIi5ub0/NhcXF3HXXXe1t1laWupagzGGtbW19u/3EgQBgqD/g8HzvJflFykqXknH+krEnt/y2HN3bbHn9+Cx5/TaYs/vwSD/NuagoGD2nF5D7DV7bbHn9+Cx5/Ta8nI9vy/HY7K8/KiyLazXUiGITN2EuYX/pnVffqtw5YWnEbV2cOq2e5WPb22uYZQkcIdnlI93Uh1Oxfbmtr5fmfIIzBnsag3qYwCA1m5+p28q3psJRRyOVmgL164gEQTj090x8uPHUoF97dIzRmJ7Yhgj77Z71vuj331EgIHDU4riSazubDdxKY6fuR/+MwzPPvUQzrxGHT/cibv+PACgcf5BAOXE9ubuNkawC3fUwBnvVRAoBHKWiZYmznbhVuEPcLZ7Bs524lbhQ72eI1hbjG3vg7hwhboC4KWG8LjwtVKfTN87m0uXlWJ7VbRA/OL1Au7INKokwu7uVl/aAwDEUSsV2w0i/eF42g5zwCz1oX0cJADRxciLblExjereuxZSwbv7WuLUA1WIxi4PkZg627NBBCk2d60nYnOxfYCzfWd7ExMkhjusFtsBYGf6Htxy6b9phygkgQhBTJztrq+NLk+YeYw8dwI4Gje1HOKhbv75a1RnUWuq04Z7ccFANANkE0fS99PWwjkABkkOHWxffgpMUMyduk35eER8gGkEbR4XSqaRyFqUKGwq3eOdQyhFEE4AJ8cpLzT35TV/DhOLX0b9Qx/FNh3Bc9/ze/ArdZD//l7Qhv7vFUnCBT7+yDyWt0N86fkVvOXmaVzdbOHbTqeJPxN1H3EisB0yjFTUzycq29mucbanUeblYuR7O8yFEMax9JQSBC5FM1LEyHPzTvRrESMPqIcVWMm1Ai8T23uGAmLG4ZcYfLD0c+AjC294wxtw9uzZrp89++yzOHEi7Yg5deoUZmdn8ZnPfKb9+NbWFh544AHcf//9AID7778fGxsb+NrX9qbDPvvZz4Jzjvvuu++gD9lisVgsFovlJUfw9A/mhLgg0P9RbrFYLBaLxSKpJVtIglQQrh++GS7hWHjxmet8VNeXxY/+EzQ+/n7t4zvriwCAYGSwk7KabRNtr2u3SR2cg4WdSj1NWQwHiu2xcQQyJw6oRmznW1exSsb7ouJnjt2ERBDsLjxfeD+pmF1ObI/DftEuEBGIibM9i/JPwjyxvdi5O3Hb6xAJB+vPfaXQ9qO7FwAAteVHCm2vYm3xIgCgOnFkwJZ7ELeCQCG0cRkjbzJY41bga5ztgkVIBClcKQAA8KuoaNajIlE724Xe6WfCgx/7TTz62Y+g1Swp3nNWeHBkbCZNtWisXulfJklQIyFoUDxGvjKaDvpsLF9VPi7fK9RAkCWODzcnRl4koVFcNiC7vdViu8vjLrdyRDwg3rsWVBURnPpwFHUXHm9BuMXvA8Ce8zqOFE75UmK7D58k4In6HG6vpq9VMKof0qrfcD/GsYXLLzyZu68AMYiJs92twNM522XH+gBxvBNOfbiaRApVR7iKeOgIxuPFQvtzkQCaYYBDh0+BCYrmUvkKHLHyLK7SWW1CCSOeNqGBJLFRbQvNRO9Qc99RDRnlIZwAnua1ANLEESZo3315t3YUN7OzWHemMPr3Po2b7n4TTtx6D5p0GISpPx87+eoLq1jeDjFccfGJR+fBEo6l7RBzY+nzm6ynr//ajv7YYnZwne1CiFLucbn/XvFZOr9NYuSBtLe9qYh+LxP5Hrj9ce+9x1i2oz7quU+lwv3+YuQ7sZ3tB8eBn8Vf+IVfwFe/+lX86q/+Kp5//nl86EMfwgc/+EH87M/+LACAEIKf//mfx6/8yq/gE5/4BB5//HH8xE/8BA4fPozv//7vB5A64b/zO78TP/VTP4UHH3wQX/rSl/D3//7fx4/8yI/g8OHDB33IFovFYrFYLC85QqR/4HJQQPR3TlksFovFYrH0Mix2QKpjAIDpk2mE6tqLxXpUv1kZaV5GkOgFuDgTaqUInMfwWOryihp6sd3hUSFxXLrk42Z+RQTlEXiJznadiEmba9il/XWKflDBIj0EvmYQ38uZUeQusNezHofdr4ngHBVERqJTpZo52yO92F5UQA0qNbzo3QA6//WB2wouMMcuYQs1HG890x6SNWVz6RIAYPiQupJABfFrCES/4JFkznYTJ7rwqlqHrGBRGrdsAPGqCBApz4dK8BTE1Q6FmLC5uojXPfp/4M4v/B0k/+oGPPzvfhDN3W2jNUyulfGpw0gEQbjRH5vdbKT7pZXizvbaeJrSurOmEdszAXlQlHcnxPHgEq4Vi8sMyjAawNHE/rsi6hIVI/hAhwve5xFETwx+2j3ef/35IjTqMAcA6kqxXeVs18eW65BO+ThWP9+dtdTFXR9XJ+wCwIm73gIAWHhCX+fCkwQ+YUbOduIG8DWpBTKRwjEQ29M6CZ1TPi60Hh07hkNiFQkb/H52BQM0ArTr+ViihyA2Lg5cR0d18xxWqye0jzPigySaugte/D4AAE5WFxFpBr5MBz2EE2hfCwAQifq+7L3qe/G1obfg0N//C4wf2ktKSd+z6sGCTv74kSs4MVnD337jDfjzJxZwab2JhAscHk2HXiaH0vfDak5ve+kYeYWzPS7pkgcAzyV9znYp5pvEyANplLyus90r0dmecAGmiLhvr1m2o74nRr6scN8VI9+1HodXImXA0s+Bn8V7770XH/vYx/DhD38Yt99+O/7Fv/gX+I3f+A285z3vaW/zj//xP8bP/dzP4ad/+qdx7733YmdnB3/2Z3+GSmXvg+cP//APccstt+A7vuM78M53vhNvfOMb8cEPfvCgD9disVgsFovlutAW24ljne0Wi8VisVgGkjCGEeyC1icAAIfmTqAhArQWvrWd7dPJVfhC/2VzW2z3Bzspa/URMEGR7G5otyn65XptaBQAwBr5znanoFO+k4Q4oArHKACQJESsGQZY8w8j2CouchBuHiPvZ2J7b896FLVAiQA1cLb7fgVcEHCN2G4awb9ZO4F6c3DvcNzcxAgaeGbiOzCObVx98dnC++gk2k57detj+ijqXjo7gjuRIptrEvvuVZXCPQBAI+rkQb0qHCIQKdzFjkJgE9RNf75PNlZSkfrB2/9PPD77/Xjt1l/iyvOPGq1BBCvsaHVcF2tkDHyrPza7uZsOz7hBcbF9ZCoVx5obamewFJCNxPZMHNWJxSapD5LEqYBqxHYHrEtMj0m32O4hAnrFduopX39fhBCeSZs84PgyRr7/XuAiNhbb9zrg1Z8drY30tR+e0DvbR8encIEeA7/0gHYbKdJSI2d7gIDEyqEWFqfvZ8egciBP4N27r+Rfe5WpE3AJx8rCiwP354K1r08V694s/J3+1IiiHApfRHO0v95BwoivvY6pYYy8k91vo5b6M0h138tDuAG8HLEdSYRY8Zl719t+DPf8oz/G6PhU18+ZU9GmUUhCluBTTyzge+88jO+96zB2owR/+NX0dZwdTZ/fhHS2DxDbPYdoO911BEoneibclxB4A5X4XNJ1X/UctBRie8wFXOPOdrVrXJK6x83d6OphBfOY+/QYNTHytrP9wDjwznYAeNe73oV3vetd2scJIfjABz6AD3zgA9ptJiYm8KEPfehaHJ7FYrFYLBbL9YfvOdupdbZbLBaLxWIZwPbGCsYAeEOp2E4oxWXvBJyVs7m/983M5toyRtFAk+sFXBlB7gWDRV5CKbZJHby5od3GVcQlq6jWhpEIgqSV78B1y8TIw4GjcT7SJNSKbLv145jafKLwfsqJ7ero97DVRACA+sVFNkIpmvAhNJ3tqUvRoLvYrcLVdJh3bbedirvD970X+NSf4OpT/wuHT91SeD8S2TUfVItHjtNsKCRsNVCtD7d/LrIO4sAgRp54VVQyJ3pvp7Qw6LuXOFk6RKvZ6ItwdnDtYuR3M0f4zB3fDs7eAPz3jyCJcwQrBWldQ/FredOZAG0s9f08zJztbrW42D42mbqjo0212C4FZGoktqevXRyFCKr9r2Pq5Dd7fTn14Wu6vT0RA87e8THiAR3uYV9E/e5tx4eriEMPEBrVSQB7zmtVZ7uPuO1ULwrN6YAHgHh7GVwQjOSI7QCwNHonptf1gx9hq4kKAKfA549EPpcoavW9z2Rnu2PQ2Z4n8PLsNRwkto/MngIArM+/gJmjeqFbcA6fJCCO/vh2a0cwunNu0GErae5uY5Yv4/L0zdptEqp3thMeGyXJ7NWiqNNzPBH3JToMWBAe8jvbYxQ/vsSpwIvz/8b43NllbLcYvu+uwzg1Vcerj47iww+mQ3fS2T5eS/e5uqP/fCwbNe67VCnuAijVE+45/XHt0tlu2gFf9R00ov6/pVgJMbvtGmccdcUlUbqzXRFPz3hZZ7t6ICBObGf7QWFHFiwWi8VisViuB9bZbrFYLBaLxYCdjRUAgD+052zaGD6DiZ1vXbF96WLq6q9A7+ySQpZXIEYeAHZJHWjpo9+9gs52Qil2SRUizP8i3CnRN8yJq3W257m9xdhJzLL5wrHoqdhuJtj5maiURD3O9lYqVpiITkDaDa0X22MjZzt3KvD54Mhdb3cesXBw491vwTyZRnzx4cL76Npf5gDXdQurkMMIvR3BslvZNzh/1K+CapzoSGJjZ7t87WJFf7Er+t3FOmezKa1MpB6bmmuLpDzRC1YqCGdGItuuPwm/udx/LFl8vV8d7ntMh+v5WMcwkp1+8R7YE3xNUguk+KwbOkjvA4b1FE4FjqZP2kPc5Vxn1AfpcA+resmF4ymHgioiAgzFdnluEoWT3xNxn6t+EDSnAx4A+M4y1jHc153dx/H7cCJ5Eduba8qH5X3PJNFD9oSrXPdcxr4bDGbArcDXxchnHfDugBj5ycM3AAB2li/kbsey48sT25ORY5hi/akROr76n/4OvvJffgEAMP/Ck6BEYOTobfr1qQ9HM1Tl8Bjc4H0hE3FiXYy8YaoCcQPtawEASGIwg/ty4lThDvhM+8Qj87htbgQ3Tqf3rO+9M3W313wHI9V0X65DMVbzcmPkS8egK8TiKCnnRAdSN3xfjPw+nO3NqP/voTgR8KjZWpW2s109YFZWbPec/udbvrN9byBAIoQoHUtv6ceeRYvFYrFYLJbrgPySU4CCwDrbLRaLxWKx5NPYSsX26uie2C5m78AxdlEbhfvNzvbV5wFk4o0G6S4uKlI26RBouKF93BMRULB/t4kqMMjZXkpsd+BA09nOIySOWojxp0+jTlpYWx4cpZ6uxYzcwMCei7s3+j1qpuJ7kTj/rt/r6YbuPr7IKBVAeFX4YrCzfah1FfN0Dp4f4Gr9NoyuPVZ4H53wuAUuCDyDyGd5flrNna6fCxYiFg6o4xRey5FrNRSuzBKd3k6QvrZha6f/MSSA07MedbUJDCbEW0uIhYPhsSm4XiqUSYdvUUyd7bE7DJ/1P8+4mb6fAwOxHQC26CjI7oryMdbubDdILXDyY+RpiUEZ7lbgaURKX8RdAmpnVLe2l9zx0/7uDhLGEJDYKOEC6BDbFeK4j7h9PoqS55QHANJYwQYZGbjOzG1vAiUCFx79vPJxGT/uGAxStPvpFQKvHLpxDIYL0g549XCKKBgjPzI2iW1RBVvNryGRwwt5MfLu5ElMYlM5OKFifPUbuO/S7+KZh/4S6xcfBwDMnb5Tu31CfVDN0AgVMYSB2C4TcXqTWiQumKHYXkGQ42w3vS/nvWcBYCdk+MunF/G9dx1u/+x77jwMQoC50UpXJPxE3S8QI1+uczzqE4v30dmuEJ9Ld7b76hh5xvfhbI/Vw4wsEaXc474mhn9/ne17z5nx8q+FpR97Fi0Wi8VisViuA12d7cI62y0Wi8ViseTT2kyFmvrYntg+cvJu+CTBpWcfuU5HdX2Jll8AAAQkRsLUop4UZ7yC7uLIqcJhDe3jnoGTrUlrQNQv2HVSSmwHBdU4hlMBWi0mjB4+AwBYzhIBBmEauQvsubh7xfY4c3i6BRMGJBEJQDTOdofHZn33Xq2Q2D4Zz2OtegIAEM/ejRPR8+2uZBMEayGE1xfhnoeMapfna2+tsLQTPWr1i+0kiZEYridfu6jV//5wwUB6O9udg3G2851lbJJhUMdpi6SCmTnbqTBztnO3Ck/hGJViu18rHiMPABGtgmruK1JANXG2UykWa65LYpj6AKTd3rq48bSHu9vZLsX2di957yCN4/dFZofS6W14H5BiMGPd79+EMThEgJg4vbEnfuuc7V5rFVsFxPZjN96BDQxh5/mvKB9nofmQkRy6iFRie9vZbnBfznG2iywhwi0wELTiTINsXc7dJs6c8jTH2V6fSV3y8Y56+KQXRzBQIhB86v2I55/ACsYwOnFIuz13fG1Cg6mz3ctqUXTOdk+wXBd/L8SrwCdMmy5Dktio3kO4VfhCP2z5lXNrCBnHd98x1/7ZzEgFbzg9hVNT3fUmU/UgV2yPyorFqs7xkk503Xry36Zie8Vz0FR1trMSne0K13jXMSbceE1A/XxZYn58gLpXXg4ueIbnzqLGnkWLxWKxWCyW64AU2DmojZG3WCwWi8UykGhnFQAwMj7d/tnRW+4FAKyd+1rpdS8//wQ214t96f1yg2y+2P7/jV119PtelHcxsYPRChym/mIdyByeBV2FIa2BRoOd7UTjRNchiAtH04Xt8gicqtebOXkrAGDn6nOF9kOFubOdUIqW8MB7BPJIik6GIltMAhCNs90x7LsnXhVBAbH9ML+K5mjaSzxy4+tRIyEunv1G4f20iVuIDIcV5FCIdMRKRBIjLulEV4ntKNHZ7mXr9Q4CAKnohB43K6EenAMYKqaNFWzRMQB7cddc08msw+FxX6d8HtytKisH5HOv1keN9h+ToCt2vRMWp/txDQRjmnV2yxjwXhzD1AcAEG5FKbanzvWk676X0KDtHg417m3i+ul10UGrsZNtW87Zznuc6G2h3zBGXsaw69zVlWgdu3RwegF1HFys3IzKyuPKx+Ns6MjkvicTKZgqRr4tjhtcK14FFRIrBV6RJUR4BdbbCmbgN/Lj32VKQ97rMXHkxvT/NIr93eGKGE/6d+BYcgl3Xv4wFv1judtzGujFdkNnu5/93ZBoBr48xLku/l5oNkgRasR7koRmYrtXhZ/jbN9qpdfL3Gj3e/M//Ojd+Nc/+Oqun03U/dwY+fgAxeJ2Z7tbxulNwLgA53vpkG3B2HAYII2RV4jt3LzDfK8P/drGyAsh0s52ejAx8jFLz6PtbD8YrNhusVgsFovFch2QznZBHFArtlssFovFYhlAsruGUHioVPfcSMOjE7hCZpBcVX/RPwieJKj8wXfj6Y/84kEd5ktKdfcymiL9ojvcVYvaPBOyisbIJ24VTk4Hqq/oJtYROXW4TCF0duAhhjD4sh6QMfJqx7DDI63be2hkHKsYRbzyQqH90BLOdgAIiQ/E3edQOjw9w872mPogifr1cEUEYeIq9GuoIF+k3d3exBxZhXMoTQE4efv9SATBytkvFz/oDMHCNAbfgD0nZc91w0LEMHst8pzohMdIDMV7vyrFdpWzPelzeIoDipH3WqvY9cYBAE7mwOWaJAsdVJg5WoUmBSHJaiEqdbMYeeYEcDTXsRR8vcCgsz0TR5lGLHZyEi60uOqahUgKqB2CLKd77mFdLzlxfHg9r3+Y1SOYDt1IcZn31AfIChVq6mzP7uFM42yvsXU0nMHOdgCIvDFl5QAAsJb5fc+RLv5YIbZnzn6Tagr5eRUpnitPYjBBB3fTA2jVDmMkzBfbE9nZ7uqvvUNzJxEJF15reeA+gdTZvj3xajw896OokRA7w6dzt+eOD1crtjOjJBk/ux+rYuQF531DKIOQVQthSyO2m9Y/eFUE0IvtIeNwKekTycfrPiaHuo97YsjH6o5+rZiV6wn33f4Y+XAfznb5O3HH8IgU8wNDd3bNd9BQxcgnAq5hZ3vgpdu3NDHyZc9f0HP+9hPB71ICSroHAqKk/Gth6ceeRYvFYrFYLJbrgOAciSAQICDCdrZbLBaLxWLJhzfWsU3qfZHUi7UzGNp4utSazz/6vzCFDQyvP3UQh/iSMxHO47J7HIC6RxpIo7wj4Rbuuk6cKrxE/UV4whhcwgu7KGO3mNhu8mU9kIntOme7iCBynPLL7mG4mxcK7YcKZuQGloQIIJhGbK/UVb+iJaZBO666F1fEEAbuXerX4JEEsaanGQAWXngCADBy9DYAQG1oFBedE8CVEukRrIWYmIntfuZsl+erTWIutu850RViexKBlTy2pOfYBOdwkQC94q7jpj/fJ0G0hjCYTJdsi+3F+p7bh2J6LXtVBIp4Zh7uggmKwHBoJKEBHM11LGPkPZMY+WywQXceTEVFQHZ794uU8v3S6eBNo7qzGHldL3kmtnc6qqNmVidheB9od2f3DBdI5zg16LsHOpzymmGFEb6J0C0mtnOvBp+rPzNYdnyewXCBPDbVIIB0tjsGYrscglAJvIJFYCj22chHjmAyWcrdRtYaODkDZI7rYpFOoxYWFNuRXsuv/vF/iefcm+Cefkvu9nl1CKbOdpmI05vUAgBx9lyJwfusXV+gdbabDUERr4ZA81yBVNQuKkBPXsvOdq2zvZxTHkDXmmUF44rnoKVwtu+rs13nbOei9PNVxb6bHh8AEEIQuE5Xr3xsxfYDxZ5Fi8VisVgsluuBSMBBAUJBYMV2i8VisVgs+ZDWOnYUsbbh5G04Ep7TdoDmsfrInwIADkfnS/3+9SRhDNN8CRtDaSRt2NCI7XHam12UtKtZLcDIyOKizvbEG4Kf6PvfgTSWvmgHvEQQB67GMZx2wOvF9p3aUQw38nt3Jab9tpJI4WyXzkAp2BYloRWtI9g1PHfUTwW+puZaAYDNy+ngycwNd7R/tjz6KkxuPlF4PxKShCXEdrWTkjCzeOF0LRlH3X8NUh4jMRykCOSxRd0DJEmSdir3xikTxzsQZ/sQ2wCrpGK7dPSadranYrtJCkIdFYXLW0Q7aCLoG3oaBHeCtjjd9xiTne3Fh26k2KrrbM9LuNDiVRGI/vMaK6LauRO03cO6XnLi+qBEIEn2roG45NCNn52bviGebBAgT9xV4Xo57vEkwbjYROQVFdvrysoBYC9+vGiyCtAhtqvc1Kx4x7pECryqhAskEWIUuw9448cxhh3sbm9ot0liGSOff3zr/hxGWTGx3RUMcHzUhkZx0y8+jHve+bdytxdukH42aNYySUPx/Qq4IBCK6yTOhiFIidciVtyTgczZbjhAViOh9u+3iPF2T/cgJrMYeaExgkRJObE4UMbIl3dnt53tyd5xlu1sr/qazvZEGB9bO0Ze4WwXQqQx/IafG0Aajd8ZI88SGfteTtYNPLV4b8X2g8GeRYvFYrFYLJbrgeAQyJztNkbeYrFYLBbLAJxwA01FrG312F0YxzaWr76o+K18JuY/jy3UMI4trC5dOYjDfMlYnj8PnyRIDt0CAIia6hh5wVqp+FsQ4dURaFyKUqwoGlnMvTqCRO9sF5zDByvnbNc4hj0RQeSsF4+exFQ8X2g/ZZ3tjPggPb33UnQKqmYiW+LoHcGuiHOfay9OJnhFOWJ7snQWS2Icw6Pj7Z+JmTtwjF3UCps6SBLtQ2zvvm5ImY71bC2m6FgnJSoCKrWh7Ni6X1t5XmiviEU9uJoEBhNG+AZQmwKwJzJKh29RzMX2GqroF7FE1ECTmLnaAYA7FbgDnO1+iRj5hKmvSVfE/UkDA6B+FQGJwZPu10yKik7HkJFw9gTNvV7y7vMi75NRx/UiO+9NnN7Anutf9DzfuB1xb+Zsl5H9qs727c01OEQg8YYKrSW8mvYzI8mOzzO470kXv2oQANl1X6RjXZIn8IokBivopK5NnwQArFzR15DIGHk6QIBuDB3D1ACXvMQDAxwDt3eOs90VDCRnGK1vLUoRwlM628sMesj3kM7ZTnlkdF+mfvo+ClWDFEhd1kWd7RNDASLGsatwegP7cLa7VNuxXkYw9ttie3+MvOl6VU8ttrMkjd83QcbIh6z/u72ECwhh3ikP9HfeR21ne0mxvWe9vZQB29l+EFix3WKxWCwWi+U6IDgHB4EgBNQ62y0Wi8VisQzAjzbR8kb7fj5z5h4AwNWzDxitt758FTfFz+LJw38j/f1nv77/g3wJWb30LACgdvTVAIC4qRG1WYjYoDdbaOKjASAOzYQd7g+jwvXOdsbizBFsJrYLQlO3nwJPxECOmOBO3YApbOS6EyWmAqUkjX7vPoc8E+QqxmJ7BY7GNeqCGTnbZU+0TpgAgGDzHK7Qua6f1Q7fAp8kWLz0XOF9AQBhLeOo9qCaRbVHPWIMj43FdulEZ71rIXW2m6YWBFkqQa/w1I5T7ulpJo6nTWAoCosjjGMbdPgQAMCV+yghtptcK05QByUCYW/CQLSLkJgJu0DqBPcUTnkAEJmz3TeIkXey88A1AyCDEi5UyPta7/uDtQXtvfOXiu3S2Z5Fpfc426W7OY72jlEOfviG9wHHdcEE7YvNl8fmGKQCAB1DGwqxfXdrDQAg3IJDFf4QqlCLp/K+J+PICx2bjLhX1F1wFiERpFDHusTJXhelwJvEYAWd7WOzpwAAmwvntdsUFaD56HHMiuVCiTquiI2i2uFW4EHjbEds5GwHgIh4fUktwN7fAyaf33IghWmqTNLEEQOxPasKaWkGyExj5AFoe9tTsb2cWAygq3d8Pz3hqhj5tlPe1NmujZEv42zXx8jL4ysVI+84Xc+VcXnuyonjget0d7az8ikDln7sWbRYLBaLxWK5HggODpp1tltnu8VisVgslnyCeAvM7xfbZ4/dhC3U0bz4mNF65776CVAicMM7fx5N4WP30qMHdagvCbtL5wAAMzfeBaDfCSwhLERsIFISr4YA+THyjldQOAmGtSJM53pFnfISQVw4mmQkH1Hul//DczcBABZfPDtwP6XFdhKAsn6xnQkKz1AU406gjfX3DfvuZU901NI72yeaL2LFO9L1s0MnbwcArFx4svC+gNSlaCKcAEAQVMEFaYt07bWSyCheGNhzovNIESMvzMV2Qimawu9bTwpHtOe1II4HnyT7qqjYWF0EAPgjM+1jiIUDYSq2wyylwckGM1q73YkZJN5FSM2d7cKt5ojtESLhGkXTu5kwznOc7aad7TQTZXvjxuXr63Y6290993C7l7wnGl5eD3FH97iMnA+qxVzjnUTw+pztUmx3jZ3tWRe3ovO+ub0OoLjYToM6qprXlmcibWAQIy9d/IlC4BUG4rjEbYvtiqElXny9Q4dPgguC1oo+RUcmTgyKufcnT2GYNLG5Ptjd7hkOVcH103oW1UNgZsI9gBBBX30BAMSxTHww+AzypdiucbaL2Og+JddrNfPE9mIx8hNSbNf0trMS0epAKhbLY5HErLxgLI+hW7xPsn2Zx8g34qQvOj9i5p3tct8qZ3vMyw8XeK46Rr6sOB5oOuCt2H4w2LNosVgsFovFcj3IYuQB29lusVgsFsu3InnuWhU1voUkGOv7OaEUl/wb4K8Ydko/9xc459yAmaOncdk9Drr8tNnvK0gYw6VfvhWPfva/7XutgftaPY8lTGBkfBoAwEL1l82EtYyivIlf0wonsaGLkgZDqIumVmyU4ofJl/VAfme7JxiQI0BPHb8ZALA5P9il7ZiKHBnMCUB7IrNF3EQEc+FeOBV4XP3lv2fY2e5XUoEvVsSqA6mL+khyBdtBt7N9+sgNaAkPzYXBAwqd0CREQs1eW0IpWvAhetzjlEdIjJ3tmRP9gJztABASv6+/OJEx8r1u28xByvchtm+vppUHlfGZ9s8YzMV219jZnl4rvSIWZQ3E1NzZLlz9dSxYWLg3u318XnpudTHyHuLc+4ByTU0k9Z57vON5uxX4mdguo9J7e8mls511uMeTbFBDDoKYEBMX6BHHZQy8Sd89gPbQT694DwDhTiq2k4JDVcSvwycMkULMFnELofCMBinagwCqGHkeG18rMjKfqXrCkwhJwRh5zw+wQsaRbFzSbiNfj97Bm16GZ08DAFYKpIV4YCAGUe3Eq8DXONvTz0ezz7SYeIBCbG/XZ5gMfGXXHdPEyDs8BjcYqmoPkOWJ7Z6Zs31tR31PiRJeLvb9AJ3owJ5A3ylAx6xcj3nVc5Bw0dX/DpRzthNCUiFb1QGfPXfTaHoACBx1jHxpsd2jXc52K7YfLPYsWiwWi8VisVwPhIyRB6jtbLdYLBaL5VuKxs4m1v7Vq/Hgv/+xwq7PIb4NUR1TPrY9egsO7RaPuOZJgtNbD2Jp9k0AgI3hmzC+YxaRrWLx0vM4JubRevJ/7nutQXhbF7HiHd4TFHXO9iQEM/jymgSpcKLq5267KP1iIoxTHYFHkr4o6r31MmGihNiucgwLzhEgAslxedaH0y7yJMfdLXFLdrYnNIDT60aPWwiJ2fMEMpFSM/xg6myXfei6yoGlyy/AJwni2mzXz6nj4KpzBGT1+cL7AgCHh8ZudEAK2gqx3XAt6jgIhde3Vnps5cT2CD4Q94ixTHa2dx8fzXqWmSKquyi7awsAgOGJw3v7gwNwQ7HdsPdZilhhTzyzw5qIHbO+cQCAV4EPvdgeGQ5SuJ4UizWiIswGUYA9MT3qeX/s3ff23mvEDdpR3VJA9yrd50XGzrMOEZpngm+lhLM9hgeRdJ/DROG6L4KM7FfFyEe7GwAA6hV7nd1siKfZk4IAAIK1EJYdklEcm2ARGCnmVG4fX5bSwKJ+wZgYdLYDwJo7A3d7Xvu4HP5wB3ymHTp2BgCws3Aud7uEMThEmIntbgCfMPCkX/T0SjjbY+KDKBIQ5GCBM8DF37X/bJBClVoAmIvtMk0i1na2F4+RH5die0N9n4oTc7c3oI6R309nuxSFpcAOAGHWsU4Nxeyqn76XenvbWcnI/F7XuGQ/wwW+S7vOnXS2l3kt0mN0EMb94n2Z18LSjz2LFovFYrFYLNcDwSEIhQC1YrvFYrFYLN9iPPpH/wbTYgWvW/+fePB//NuB2wvOMSx2QWsTysfp4VfjCL+Kxs5mof0//+gXMY4tjL36nQCA5NCtOBq/iITtr1959VLqjj+0/si+1inCUOMKdmtHQB0HDRFoxXaahGAG7mIn60BtKjpQpTPQLdit7FSGAQC7W+vKxyPZhVy0GzhDZGJLknS/XozFmTChf77SfSoU4kEvpj3XEu5U+sR2wZoIYb6W8KrwFWI7i6P0uRoMKgSZm5ZprpXmzka6T79fZFuvHUd950LhfQGAwyNww95sIBO0e5yUpl2+EpVwDwCOiEtVBISkAtKzXl6MPADEGkG4CK3NNEZ+dGpvAIIR19zZbiiy+VWZgtB9H3CTBphjHiNPvCoCoRaxkESIDVMfpJjJE13qg5kbGNgTZeOeJAQpoHYlcLhBO6qbZ/ex3l5yKYAnHaIxjxoIhQfqmAnGAMDgAb1ieyZauoGZ2E4dJ6sjUAxVNTYA7HWdD8LN7vOtxlbfYyJupe9nA7xMvFXeozkzjpFvC7yKhAvC48LOdgDYrc6i1ryqfZzH8lrJv56Hx6ewKeqIV/X978BemkzvIE8eNLvuop7hAsE5fGL+vohJAJIonO2yn97gM8jL3mOJYvAByO7LBp3y7QEyTVpLFBePkfcciopHsRuq/w5MO9vLxMj3O9v3484O2uJ9Z+84L9WHXvXSc9PqEdvjRMA1SKNoH5vnaMT2/Q0XRKrY9xLHB6hi5OUgQDnx3tKNFdstFovFYrFYrgNCCHAbI2+xWCwWy7ccm2vLeNX538XDh96Nrx76Idz95L/CMw/9Ze7v7O5swiMJ3LpabJ+44TWgRODiMw8XOobVb/wptlDHTa/56wCA+tE7UCURrl54xuzJ9NC4+iwA4ETyIrY31/a11iCm2FWw0RMAgBYJIGK1s4tyM2e7FNtDhUvRNLLYq4+mx7erHoKQva1FY+klgqZfEPe679sd8DnDAI7rIhFE2VXci6kbWJI4Fbg9MfIkbhrF+e8dhNoR3H6uJZztiaLDHNgTVlWibDh6Aw6F+vhkFW5ZsZ0EfYI25VE5cVwRSQ+kgxRl1ktdnj0x8lKMdbvXo9m/E0VKRFHY9jJawkN9aHRvf3CAxGwwyBVJO9a+CJ6mcsBLmkhcc2c78aoINM52JJGRuxgAPD+9RnWd7Wn0tmG0uhTbe1yybfd4h/hM3AoCxBCct+POe2PkpQjZlWwQN9Eqcx9AOmTRK7ZL97dXcACqkxiuUtBOmpuIhVNY4PVqmdiu+MwAayEyfL6EUoTCU8bIkxKd7f5Asb34+yKuH8ZovKh9fK+zffC1t0AOwdm8mLtNlF17JtcycdNrIWz1DAVlQz+mznZGfVDFdcLkoEcZZ7tGbHcFAwzuy157KEjnbE8KO9sBoO67aET9iQBA6iQ/qBj5iHFQAjglYtXbne0dzvaygwCVTGxv9jxnxsu5+FMhu//87We4oNfZ3hbbS4rjvccoI+5tjPzBYM+ixWKxWCwWy/VAJBAgEIRYZ7vFYrFYLN9CPPVHvwJPxDj9A/9f3PNTv4Vz/i2Y+J8/hbWlK9rf2V5fAgD4w5PKx4+euRtcEGxfLNbbXl19Aucrt7W/JJ676R4AwNK5bxg8k37E6jk0hQ+HCFx49Iv7WiuP5u42prABd/IUAKBFKoBGQKVJZNSb3Y6PVsSsS7HCC4o5HoNaKhA2tzeUj7O2iGUmFElne9wrtmfigjOgaziCp+wq7sUFAykhyArH74t+J0mIyLC/HNA7guMoiy43cBVWapnYruouxl5ygUqMcQ+dwQxWC6dHAIDLw1JieypodwtFpvHCkoj4gEK0c0UMUSK1IKZB37ElmYhFe0QneR73I7aLnWVskLGuzmsG1zhG3jQ+WqYgxD1dyD5vgheMF++EeBV4JFHWUxAWgh1gjDxPEngkMRpEATrixnveHzx7vf2O+xT1KqBEII4jCNZCJNw+t7oU2zt75UXcRAjz9wQAMOKB9DnbM7G94D25k4h4gOI+KJpb2CE1kIJCoBzMiBTOdsLCUkNGEVwg6Rd4RRIjMYyR99ux9ArxnjMjZzsZO4ZpvqKMaAf23PheAQF6xZlGrXE5d5uk3Yte/P0h6xDinvoW6ZInBuI4ADAagCqc7dLFb/L5LdMfhKIDHgAcxBAGnxlBVX6mqZ3tJp3tAFALHK2zPSopaAfKzvZyawF7Ueydne1lne21LEa+d8CAJead7UAmZMf93+3tJ/rdd3ud7dlapZ3tTo+z3YrtB4k9ixaLxWKxWCzXA8HBQQEQ62y3WCwWi+VbhJWFS7jz8ofxyJEfwdThE/D8AOPv/T1MYw3nH/qU9vd2N1YAAJWRKeXjlWodK2QcbD3fJSZxkhaYW2//e3L2GNYxjPDK4wbPRnEc2y/i2eqd2EQdO+e+3P75ysJFfOX3/nnhfvpBLF48CwAYmj0NQDqB1QKqw0OzDtRA3dUMmAs7lcyNqxJhgL0OXccw1haZ2MJ7hLZ25O4AATomHlDA2e4JBpgeGwDhVvvFdtYCK9HZTrwqqiTqu3Zk1DU16Gr2/Urq6tcMZuSJ7cNHbwEAXH3hycL7c0VkJJxIUkG7W4xxRQReQhyPSKVPHAeyioASgxSMVkB7RMB2d3HPtUIzJzkrMNihw2muYNsd694fMXO2C87hkaQda18E2SneKzwHvFVKbKeZK7zV7BfFSBKlEekGtKPGFTHoMvXBNC7br6gd0FyR6CHTM6KwCRG3ECqOvy22dzjbSdxAVOI+AKjFdinu+obpIEA6tKE6fyLcRoMUf42D+ggAIGr0O9tJEoKVEduJr3Tdm8a+A50d8CqxPQY3WC+YPAGfMKwtq4cD5WdSkfSXLe8QJiJ9/zuwl4pgMlQlr7u4570bh+U+bxMagPL+6yRpR+YbiO3Z3w6q1wKQQ1DF7wVSbGdRjtheMEYeAGpejrM94aXc1L4i9j1OyonjgDqWPk54Kde9rrM95mkHvCm9Qnbn8QHlY+S5ABKefmfI9tmxHnjUdrZfQ+xZtFgsFovFYrkeCNHhbLdiu8VisVgs3wo8/7H/C4w4uO1v/FL7Z1NzaRS6KuJV0tpKxfb66CHtNmvuDNytfJeYpDfemlCKef8UgrWnC/2+jonwEpojp3Chchvqi19r//z5j/0q7j//W1hZKDYMMIiN+ecBAFPHbgYARLQKynRie2zkLvazSOBI4WyXX5DLuOVBVOtjAIC4qXZDt/uGTSOQNc52KS44A9aLNSJTLy7MBEqJcCvwe8QJmoRgJZztUqQMe12K2b9NhBNCKVoIIDRiu3QHqhzBc6duBwBsXC7+HvFEBGHoLgbUgnbp2HeNK7Oss505AZxEEyPf4xhtx8jvQ2z3WqtoeOPd+yMuiIGzXb5PTMTnSuZs52H3faAimoA/VHgdiUybCBViO3hsVHUBpNdy2jnefx72orfN7iuyZqF3wEC+fl5HL7p8j0StBgRrIVQI6DLavTMym7BWabE9yRPbSzjbY6iHjmi0hSatK35DTbWWiu0sVIjtrIW4xPON4YEo3jeEx0gMBzNc10uHjBQCL+UREoP7yvDMSQDA2vwLysdlrUGRaPWGfwjTfEWZ9iCJs2vZpLPdyT4zWE9UexybR9IDAHd8OLz/OpFVLJ7BoAehFJFwIbRiOwMMnmslE9uFJq0lFdsPxtm+38723p7wsuKu/L2DcLbrOttZIuCWcbZ7Bx8j35sMINcq45KX63XFyO/DdW/px4rtFovFYrFYLNeDtrOdgggbI2+xWCwWy7cCw+tP4rnh12N0Yk80dz0/FU00X74CQLid9p8PjevF9t3qHGrNfJdYe58i6hPadkbPYKpxrtDvq0gYw2yyADJ5Go2Ze3Cy9RR4kiBsNXDz4v8EAGytLpRev5PW4vMIhYfJmWMAgJhWQBXuXUA6gk1iWVOxnTX1YnsQFBOxaiNj6fFpnO1ShOrsQi6CyJyIvSImC2WH7CCx3evrPu7bB+fwiVn0dhuvAh89YnHSMhYUgT3hJGx2iwms7eI3ExRbJIDQpCBw6ZZXRBaPTs5gHSOIFp8tvC9PxICh4AmoBe1UHC8j3AegishiF2aijiRxKnB493rSzdrf2S57xc361TupRuuI/InuY4CZ2C7dsSaDI0GlBi5IX+VARYQgvrmzXUa090ZbA1nVhaFbGQAYHGUdRHsQxcANDOzFjSdx9zGKuF/Qlu/LKGwCLEzvKT1Id3PnfYqwJmJq/p4AgIR6fQ5jzsKsX90sWh1QO+UBwIm2ETrFByqCuv4zgyYhkhL3PUY8QBU1zplxjDyhFCF85d8YhLP250kR6uPTAIDW1qp6g2z4wytw7bHqNDySYOnKee02ciCtd5Anjz1ne/fzlbUtxs52pwJXEem/N1hg9j4L4Wlj5D0wwOA+5Xo+IuGCx+q/f0zF9rrvohHrnO0H29lePkY+FYU7e8xDVs7ZrutsjxMOr5Sznaqd7e1e9BLJAD1OfhlJX/b86WLkyzj5Lf1Ysd1isVgsFovleiC4dbZbLBaLxfIthsNjJE6/0BDlfPkKAGx3FUxQDI+Ma7eJho5iPF4sdBwuVwh307fhSDKPliI+vQiLl56HTxJUZ27C8I3fhhHs4tKzj+CJz34Y40jF5sb61VJr9+IsPoaL7om2wMKcKhyN2O5xsyhvX8aytvodqFwhOuVRrQ0jEQRJs9/xCHTG0ht2tmfPO4l7Y+TTc+AOOD5GPJABMfKJjOku4WwnXhW+6D42h4fKa38QTvZcop7Xox3BbxgfHZIA0AgTPGpkwp1afFr0jsJbLz6Q4qGc2J7QSp+Tsmwkfdo33P9au4aiTvvYFMKTLk5Znkem6BUvylCygaQ62b0/4gK8uIAfR7L32TQFwYfoiGcWnKOGFohf3PUscTKxvfc6BqS72FyQjYm6u75dJ2EoKkqXLO9xBPM4BBcEbscwhRTb47AJEjcRK45fupt5R4x8OnRT3tlOe56vYCFimA8qAJmgrRDbPbaNyEBsr2Ux8okiDcXhYakhI92xkZKDGRHxlLH0lMfgBs52+dmnS+LhLAITtNjwQz2txVm7oh9gkq53aiC2y8GWXme7FNtVySV5CCeAK/pfC95OpjFbT1cRAKRDVabO+xbRp7VELEHgGcTI+w4aB+1s13W2l4ikBzqd7XvfoZVdr6aLkU9EuxvehIrnqDvbeXmBXP6OHC5gvLxwD/QPBMgIfkKs2H4QWLHdYrFYLBaL5XqQie0AAYV1tlssFovF8q2AylEOZF++agRAAOCNNWyTOgjVf41Dx4/hEF9BUsBFqhLuRk/eCYcIXH7u0YG/r2L14lMAgMnjt+HknW9CIggWn/oC/Ef/f3jeSbvVw82lUmv3Mrf1GFYn7m7/OxUA9c52kyjvqnQpKjpQBWshMnBREkrRQAUi1DjbpdhuHCOfXgdJzxf2rO2Uz1+PaUS6TtrxvSU624lXRYBuccLloVHCgMTx1SKlFE4Gufh7iUl/H7pERA20oH++2/UTGGm8WHhfgYiMhRMA4E4At8fZnrrkSzjRaQBH8d7wBDPu9E6PrQKv19meqKOj2872nJjoQYzyDWCoO9HDNEa+3fts+Fo0SaUrBaHZ2AYlAk51xGgdYK96Im71i2KUR0hIicEHuIBikEHeV6ihCOj5AZigfZ9FUtDu/PyR9xgWtUCSELGil1xuwzuOkSYtsBJDNwCQUL//dWdROnRQZj3NdeSzHTCvuNjuuC6awgdXfGbQpNx9LyY+iKInnAhm1LEuieArnfJUMCOxXXaE6zrHRRIXHn7w6lPggqCxoB9gkteyiXt879rsvo7lWiYueUDe8/TOdt9wWC6Gr6wvAAAf5mkyLQTavx+Nne2Bi928zvb9iO1Jj9he0pntUAJC+p3yB+lsZ0nZzvaDj5HvPX/Rfp3tPVH3acqAFdoPCiu2WywWi8VisVwPBAcnFIJQ62y3WCwWi+VbhLTDWe1s1335CgCkuYFdkv/lf2XqJDySYGVhsBio6pI+evM94IJg7fmHBv6+isbCc4iEg5ljpzE0Mo4L7knUz34Md4TfwPod/zsaIgDb3r/Yvrp4GUfFVbgn72v/LHFrfQKgxBORkbu4mnW2c4UDVWjikvMISaCtCJDuNlNnO8lihJMeoU2KC95AZ7uvjE/upN1zXSJqnHhVeCTp6uJNxXZzkU0Xv112UCEiAYgmBUHETWX3tISNn8YsuwzBiw3K+jB3KQIAdyvwRPf9wAMDKSHaJU4FrkIo8sBKHZtwq33HJjQx8vLffMC1pqPV3MUwacIZmu76OScuiIGzvR0jr6gHyCMkAdDhGG1sbQAAvFoJsb0ir2OV2G7mLpbEcCEUYnHROgkVEbx+4S6JEPUIqG1BM2yCJCGYQmz3M7G/08XrJq1SCRcAwKkHp9fZnkTG92SJ7j5YSXbBfLPXuEUqQNj/meHyCEkJJ39CfVDFsVHOjDrWJbEmlt4RZjHygawa0DjbkURgKDaM5rgulsgkkjV9jDxrC+TFz6HXdt/3DKOVWAsAhBukf0f0/jwT24tE5ncSa5JlBOdZjLzZZ25EAkBTjWLc2e47aEQ6Z7so1evdG4Mu1yrb2U4IgefQ7s72pFxnu0MJfJf2O9u5KNmv7hx4jLzXFyO/3872bvd9WRe/RY09kxaLxWKxWCzXgw5nO7HOdovFYrFYviXwNFHQEQnU/awZhLUQ54iAADA6dwMAYP3K4JjrNN66e72hkXE8790E9/xnB/6+CrF6Dot0pu1uXRm7E6+KHsW2qOL2t70PG3QUYme51NqdXHrsCwCAo3e8pf0z7lbhcfWX/z6ivueaB3UctISndCkKFiJSiEp5RHmx5Yax9O3joFJs7/5SnEu39wABOiHuQLG93YluKFACexHTrebeOfR4qBw0GYTOEcxkhK+pq5BWQDViO+Jm+nppqMyewQgaWFueH7gfFkdwCQcpIXiqnJSuiIESrwV3+8V2KeqUGaQQbgV+j/DEmfq6kw5SXjJGfmMlrZ0IRme692cotsu6BdOu5ohUugYzdrfXAQBebcxoHWBPAGRKsT0CLxE1nsBpd2R3ErcrFsyvvbRmoUcIZFEq1nawF9XdBE3UUelyEKZLbOf7Edt9OL1u7xIDUJKEun0d8ABQ5bsQ/rDRWk1SgYj6Y+TLJnokxFPWPxAel3K2x8RXCryUmznbXc/P0g/0znZmkNKw6s3B27qkfVymYvSmZuThVzKxvedzN2Gy7sLw9XArarE9ibLakeIx7YAc8uh/LZKEgRJhnDgSkwA019le/PjqgYtGqHG2l3SPq8T2aB/OdrlmfEBO+arn9IntLOGlxOzApWgpOu9l5H0ZUVsOEcjnK//Xy0m6GnSMvTHy+3ktLN3YM2mxWCwWi8VyPRAcAtbZbrFYLBbLtxKpYNb/RS8jPmie2M4jZSduJ1NH0qj2nSW9S0ziiwhEIXyuzr0ZN+483OVILkp1+wLWKsfa/6bHU+f5U1PvQLU+jB1nDE5zxXjdXpovfAVLmMDM0dPtn3GvBl/h3gUAX8TK55q7D1JRd6CW6AdORY4BznbDWFvpbJcxtpIkE0D8TAjTkVBfKTJ1bZMJpGVi5GkmMIedYruIwMuI7RpHsBwsMBVOmFOBo3k9CMt3to8ffxUAYPH8EwP3E2bDAbSE4Cm8fve4DwaUEO2EQrgvK+oAALwq/J5j45ng63lqZ3tvAkNRdtYWAADV8W6xPaEuqDCJkS/XYR7RCmiHYzTc3QAAVIbGjdYBAL+Sxm8nivuKw2PwEoMPjHjKoZn2IIrhfQUAQvgQPcMoIukXtPeGB1qgidq97bgumKBd9ymPh+Cu2XBR+zio1/e6kyQyEnc70d0H62IXqJg520NSBVG4i11Nms0gmObYaMkYeZ3A64gYwjE7fxE8CN3fK0lc2NkOALv1oxhuXtY+nsRSIC9+Dr1s2ItrY+TNxXYfame76d8DABBT9WvRrm4xPL6I6tNaQmbm+K56DnY1zvZUIDcXoCkl8BzSFSO/3+hyv0cwjgwd/J1UPacrRp5zAS7KidlpRLuqsz39WZlhhaCn8z5OBBxKQEvE3Mv1OmPknzDCEAABAABJREFUZWe75WCwZ9JisVgsFovlOkCEAG93tlux3WKxWCyWbwVSl3X/l8a6L18lJBnc6Ts0Mo5N1BGvDY6RDzTx1hN3vhMj2MVzX/+rgWv0Mh5eRnP4ZPvfJ177XZgnM5h5688BABreBLxw3XjdXkZXvo7LQ7d399d7NQRC/eW/j8jYXRxCE8uqcHgOItaIHEAqtofC634uRWg723scxpnINiiWPiHeQLF9r7PdXOCVrtfOnnVfhEAJka0tUvaI7XKwwDRGPnEqyg5zAKCsmZsgMXvyVnBBsHPlmYH7iVrpPhyvhLDoVrvc44JzBKRcJL1QuDLla1tGbCdeFUFfjLx0n3Yfn5Mdb1lneyMT24cn57r3Z+psl4MjhuJzTCugyd59JdzZBABUhsaM1gE6r+P+a88RMUQZZztxAMV5aLuBSwx6xMQHUcTIsx6Bt9M97PBQG5Uew4XoGAjwRAhRUmznjp8OrHWQRtiXE9s59fuuI54kqKMFaii2p4MZihh5TZpNkWNTiu2GTnQJo4HSKe8KBhiuFxJf62wHj8EMBGg2fAxTbEH7uKyg8Pzi5zDIrk3ek9BQtnqEeBUECmc7WNj3vihCQjzl3wRRWG4oiNGK8rUVwlyErgeO3tme8NJx475De2Lk9+em9hzSEyNfLvYdSKPzO93oMS8f066LkZfPvUwPvHxeIdtztpdZp32MXnqMQqTfQZYdorCosWK7xWKxWCwWy/VAOttBQIko3P1osVgsFovllUvqslY422mQK7ZTHhXqaV1xZkC39C4xIBXufMKUAvSNd70J6xjGxmOfHLivTlgcYTZZAJm8of2z6SOncPj/fBYnb30tACAKJlCL1ozW7SWOQtwQnUU0d2/Xz4lfQwX9X/4njMEnibnYTiv9ghMAkrQQG8bIxzTQphYIFvZ1IReBUOls7xaepNgue3V1cOoNFCulkF8qRr4ttu+dQ9M4//bvZc+lN36bt/vuzYS7tMNc/XpQ1gLL6VeuVOtYoIfAl58duJ8oO14TR6aEeBUEHU7KOBNPTR2PQOqS73WiR+1BipJie4/LU7Sd7d3rUTe9tlW94kUINxcBAGNT3WI7Jy6oMImRzxytpiKWU4HD9q471twAANSHx4zWAYCgml7HXCFSuiKGKOFsT4gHoji3chCltNje81mUuse7j6/tHo5bcHKi0mPiAh1ie8BDiDIDKABAPbi9z5ebxZZ3/Srx+mLpd7Y3QImAUzUT22On2nWtSDwRQZS473FHEZkPgIoYgpZwtlNfKchSMAhDsT2GBygi6QEASYTEQIB2Jk9hEpvY3d5QPi4F895BnjxkLUvve21vCMXs9ZD3vN7va0QSISpRYZC+Fv2vbdyubimR1qIYIGOZnyPwTDrbXTTipC3EShLp9i4paPc60eOSHeuSvs52lpRer+I5aESdTu/0ubslXeidrvHONQlJO+JN6Y2RZ/vou5fHKMTe84xZ+UEFSz/2TFosFovFYrFcDwSHIAQg6Z9jvf9BY7FYLBaL5ZsPX+MoZ9SHk2icYkAW0ztYjNkKZlHdze+TDjNnJVWIgI7r4tzIfZhe+MLAfXWyeOkcfJKgNntGu01SncJQsj9n+/knvooKiTF28xu6fk78OqpC5RTTP9c80q7mfuFEJToNIqF+lzu2C1YyAjkTM3pj5HkcggsCd4BAnqi6j3u3aUfumouAsme9UyAPRARSQmSTYntv/+5e373Za6vqQ5fQpIV4QJ/0SnAcw2tPDByUjaWz3Td/zsSrotJxPUsRplTsu1tBgO7ny0qKOkA62OKTpKtqQiQxYuH0JTS4++xsT3aWsC2qqFTrXT8X1AU1cLaztmBn+N51qnA73rtxYwsAUCsjtgdVcEH6oq2B/YjtrkZsl/UUJcR2GvTVXqii2tvu4agFl0dasZ3BBTpe/wAhSNkYeceHg+7nW/SzUYVK0G5spQNhbm3MaK3YqcFVCJ6+UKfZDDw2zT2acgZRxk2tEdvdMjHyxNeK7YQzI7d3ZSwdpNlYvqp8XN47TD6HqOMgEk67pmVvLfP+dyD9+8EhAoz1piqYufglCQ2UqQXyPmU6BJU4la77lCTOPqLMOtsdJFz0ubOl0FtW5PXdbmd7xPYnGPevVz4Kvep3d7az9nMt6WyP+/82kE5+QsqL7fL5RiX75DuPEUB7KMB2th8s9kxaLBaLxWKxXA8yZzuQ/qHMuTquy2KxWCwWyzcHLI7gEq50WSc0UDqdJJRH4AUEhbB+BKORPpIVAMJMBNT2mN/4NpxOXsDK/OA4esnapacBAJPHb9NuQ4amMMY3C68JAFsbq3j0X78d5596KN3PM19EKDycuv3+ru2oX4dHknY8tiSSvdmGIm9MK3AUMfJlxHZGK9rI9rQL2fzLemSiZq+IKVgLIQbH0gvqwRngNm535ZYQeHt71gXnqJJyYrsUWntFShld7hu6d7lb1YrtbtJCQvPXi171w3hV9Cge/H/eh4TpBd84O17HcBgASMV2n7D2+nEWL2zcNQwZ+94bI18urhjYGx5oNfciswWLlD3Nbra+7HQ3ZmcZm3Ss78ecekbOdvk+MR0uSJwqvI4UBN7aQlP4RpHWEkIpQnjgisSMNGq8pNiuOLdF6yRUqBzQJAn73Mqd7mE3z9kOD6JjvUCEQIkBFCAV2/tj5AdXrGjXox6cnuuouZ2K7UF91GitxK3BTfo/M8rUmAAAd4K+5woAjigXI5/QQCneOyIBDK+9mAQgmgEyYuhsdxWDWZ1Iwdw3fM/Fil55mYZimvggh/XCVvcxiiQuFSOfDlL0fwbtDbiZVqNUlWktrC22mznbAXQ5vQG0+9b342zv7Gzfr8DrO7TtzE7XE6Uj7qtet9jedrYfYGf7fnrRZcS7FNvZPiLzgb3roTOWvuy5s/Rjz6TFYrFYLBbLdYAIDgECZNOtSVL8CyOLxWKxWCyvPOQXtVTxRS93AuWXrxK3oNiOsWOYThZzXbdxKB236i90T9//feCC4IUH/njw/jIaC88iEg6mj96g3cYdnkadtNBq7BRe94WH/hx3Nh+A99/fi831FXhXH8Z5/6a+mHQZW97Y3e76eTTguepgTlXpRqdJWCjOvxPuBErXWboj8w54ACAki5HvdffGLUQF1uPUh6MQcjqRMfJlBF4vSAVyKaC00xRKiGyu5yMWDkSf2B4iEg6oU9y1B8hYdfXr4fIWkgHO9td+z9/Bg3f+Cl67+if4xm/+zS6Hdycse85eiecsz1OYdd63xfGSYnuVdEcgS1HHtMMcABw/fa91vY95nMaF926brS9KOtud1hp2nLG+nwvDGPkyUdQAwL1al9guWlvYJfkVDXnouq5dwYwFTyCN0yeK8yAdvGXE9oRW+j6LCI/7hoxS97ALwVq5veSsI0ZecI4KIhCv5Dl0g/RcdR4HP1hne2tnAwDgD40brZW4NfgKZ3sgYv1gWx6O3x+ZD4AKZuxEB/R/Y7hggGEsPaN+X/rB3o6Y0fCDFL4jjdi+19lumk7ja53tpsK9vOeFHQNGAEB4uUEPXUUAaw9VmV3P3FWntZRytmdi+27Y/T5jmQBdtttb2dm+zxj5KDkYZ3vFc9DqGC5g++ps18fIl3WjB9nfOO0Yeb6/QQVZKxB2OOXLuPgtaqzYbrFYLBaLxXJdEOCEQsgYedvZbrFYLBbLNzXSnUoVX7xzGsDNEdsdERcS2/3JE6iSCOsr6kjW9DiyLmnNl9fjh+bwnHcG7rm/HLg/iVg9hwVnNjeeNRidAQBsruY77ztpnv8K1jGMEbGF8x98D45uP4aNybv7tnMqQwCAsNEjtssob0ORjTkVZSRwGWEncfSvLUlCY6c8oO9sF0mU9ukOQPdlf9c2bWe7uZgghyGSKBPbm/KaK+doDeFDxP1ie5kIX3i11F2rwOUheAFh7HXv/jk8ct+v487Nv8JDf/B/KLdJMoFcOjdNcLJhBXne9u4d5udPDqLIgQcAYFkChFsiRl4eW9Th8hRJjETxWsgO97LOdj9cRdPvFz0FdfscyXnsRVGbXcvCrcLvENtJuI3mPsT2CD6gcLZ7iEE0YnUenLjK1Iy9igXz6yVxAjg9zvY0qr3/3EXwIFiY20vOiNd234dhE5SIUkM3AADHh9cbI89j4wGovV/2+sT7aDdNXzGtChBevW+IR3COgMSlnO3CCeCK/tfWFaxdI2ICpz5cxbWSXnuGaS1EHUkPpK8HL+FsT8L+9wWQpmYkgsBxzZ5zDLcv6r49hGIo3Mu/leKeY0yTbkq8Fk6gfC1Y29ludi8QrnqArFRne5D+bdHrbJdCb1mB3HedfrF9HwKv71LEB9QBX+uLkZeDBWU62x2EjPdVRO7Hyd+OkU/2xPF9nbvsOMJYxsjbzvaDxJ5Ji8VisVgsluuBjJEnNkbeYrFYLJZvBfJc1txVf/kqcXgEXuAL8eGZ1Fm+euWcdpu2sz1HAFg7/GbcuPOQ1rXbS3X7RawFx/K3GUvF9p01/SBAL6Mr38D5+t04/+Z/j1c3HsAMVuGfur9vO68ttm91/Vw6q11DcSdxq0o3usNDY7GdOxWlaAJIsb2Esz1zIore6gHWSvt0B6EQmXph7cjdEs72SreAEmfCrFNC/AOkI1jhbC9z7ryqVmz3eQu8oKB9zzv/Fs55Z+BuqusWWObE90o8Z0fjbHdKvBZtl3xzTxyX7+syTnn5fOJWh8szidUx8nL4pqTYXovXEVcm+35uLrbLrmZDEcurIegQsUi0jZZTz/mNfNKua4XYLmKgRKQ/px6IortesBBcEDhOuT5ppyeSWldjEhEPiMPs+NWfJwlckOw+FWZpCE6JARQAIK4Pr+d1d3gEUVJsVwnacWMDAFAbnjBby6+jwrtf23aiR4n6DOH46XntgaKcs1246s8hVyTG156qakBCeGwUI++3K0f0YnuZqpX0vdb9fMsK9/J6jVo9zvaSFQa6QYqyaTLCq8JX/P0Yl4qRT+/ju1HPEEombHslotUBRcd6sr/Ods8hXc72cD+d7Z7TNVwgBwtcWs7ZLgS6Iu7lmvuNkQ87YuTdfTnbZWd7FiPPbGf7QWLPpMVisVgsFsv1QMbIZ3+Ocetst1gsFovlm5o8R7lwKvA0giwAuCLWxvR2MnnkNABge/EF7TZtV2uOCDh513djBA08+7XPDtwnAIyGVxEOHc3dZmTqMACgubFYaM04CnEqPIvo8Gtx51//ITxw8u8gEg6O3/mWvm29aiq2Rz0xr7I3O++5quBuDT7v//LfKRrn34HQRLwCMp65hFCUOdt747kJKybep93H+YMUcu0yne1BVTrb03MoKxRkHK8pEXygN7a4oIu/F+LXUIH6ufsihDBwjzMnUNYNAECSDQeYdsoDe25PKWi3u3xLdaz3C0VJSQclALgVhfCUxMqUASn2ipJiez3ZRFLpFz1VXdt5tKOoDeOZiVdFgL33rhvvINyH2B6TAFQRv+2BgZRIGeCaOH3BIkRwQUoIYyrXLeWxsidcvi99RNqo9IR6QBaH3r4PBOXOIXED+D3O9qKpLyqE48FB9/lLGptggqJWHzY7Nq+GKrpfWzngoqqOGYgbwIW6s12UeL46gdcDAzEU7xMaKBMVAHNnuxzeSRSJD+kD5cT2NFFB9ZlhvpYc1pMJI5J0sKCs2N7/2sr7svGAW899SsL2ESPfCDXO9tJR6D2d7fsUeD2Hto8JyKLQy3a2+w5anc52nnW2l3G2tyPae8+fKH3uXIeCkr3XYL9998rOdiu2Hxj2TFosFovFYrFcB4jgEIRCtJ3tVmy3WCwWi+WbGdnH6Soc5cIN4GnctkAqthfp9B2fmkNT+IhW1W5bYM9xm+f2vvHOv4Y1jGDzsU8O3CcABLwJ7g/lbjM2NQcAiDaXCq154ckHUCURxs68AQDw+vf9S2z9vUcxNdvvoPcrqXgTN7v74Mv2ZutiWR0egxvGPaeDFJrI3aRc37DsKe+N5yZJiLiAs104fp/I1It02ZVxtgdBFVwQ8Oxai8PdbK1yzvaIBv0dwSws1XdP/Ro8kiCO+l8TX4Rah66KhAZah6eMkZcufxOk2C6HR5iMpC8h2sk0gbCjY32vw9z82pMpEqyzY1njZiWUIhYOhMJ9XQRfRIDKFVzW2W54LZOgjmrHe9dlO4j3I7bTAKTnehGcw0fJznbqgSp6vZGUS30A1MNBOkE7JpnYLmJAk5TCiAcqne3Z/dktK7Y7PnzCuurXiqa+KHGCPvc4b21hl1SNBxVIMIRKz2dGO9GjxPtWNVgAZDHyJRIL0r8xepzenMNFYhwjn9aQ6AbIGLhBB3x7MEvnbE+iUgNpjPjtRIX2WiwsJbZ7Qfr6sZ5e+bIVBqrXAuioHjGsHSCaapSYp98zHYSzXTq1y8fI9zrb9y8YR2zPPb4fwbjidcfI72ewQA42hKz7u7044ftyo3eev/0I9+kxdsfIp4MKtrP9oLBiu8VisVgsFsv1oO1sJ9k/rdhusVgsFss3M7kua7eijIyVeCLWduJ2QijFkjMNbFzSbtMWoAP9F7rUcfDCyH2YXvziwH0Cae/rIJHSDyrYQh3JznKhNVef+SIi4eLUHd8GIH1uKqEdAIJa6kKMWz1ie/ucGwqeXg2+QkxwRQRhKux4+teW8nIxtER+ndcnthdcz+0XmXqRPdduCTc1oRQhvHb0uxSdyvSXA6kjuFdsJyVFGBmr3upJQQCQChYG7vvEqSjrBgCAZ8JJUDEfMPDa0crpeUvi8mJ72yUf7j3f/VQE+Nnz6RSeSKKPjmZwSsfI+4iVju/UkVy8gkumNJgOFxC/Bp+wduy+z3bBvPyhojwY7Xe2MxanPeYlUgYE1TnbQ2XSQKE1nX4hUJfokbqHQ1RynO2ceCDZQIAcHikzgAKgfS3EHfUmrohLx8in7vGe89faxC4xHwagwRB8kiDqcD+3q2NKxMjDDdJhk94fgwFlnq9b6VsvSRgoEYChs51Tfe0NFTG4wX3Zy+5PPGqoN0hYSWd7f9R9WeHey4ZDWG9nOzd7rm0c9WtbdsCN+jXUSNj3fVLb2W7Q2V4P0nPd1HS2l41C913aJUDHCYe3D4HX63HKR2wfznbP6Xq+8b4627td43tr7t/JH3U40ctE3LePsTdG3jrbDxR7Ji0Wi8VisViuAwQCgux1tgvb2W6xWCwWyzc1eS5r4lbga6KtAaRxsgVF3k1/FsHuFe3jhYW7m96G08kLWJ6/MHCfgQhBCrixNsko0FgZuB0AePMP4wX/DIICwkylLbZ3C6jSKeYbCp7Cq6KCfhHV5bFxhC9xK8qIVyCLoS3hbCeUKB3DNAnBaIEv6h0/HZDIQexDkAWynvVsDSkae5VyjlaVSEmSCKxEjLyMsA57UhAApKKhgTCWOBW4XCO2Z+8zv0Rnu+wxloJ22/FYIhlACkWdncg8LtcNnB5bJjx1vNfSOgS92L4vZ7tCxCWGMfKiHSNv9nzltdLMUgGCZBd8v2J7jwAoBVlS4rXg1IejOLeElatYANJ7X6/YntaY9K/HqA8a72bDAvoYeem+lwMfZe8DJBuWiDquZadgxYpyPcdLXfkd0GgbTWp+fE72nJo7m+2fyftemfdt6mxnfQKqg8RYHN9br/u5ynQPajhQxd0KXI2znXIGYeBs9/0gTUGJ1fdRJJH23pJHQvud7Ujics727O8HWYsicXhUytlO3ED5+Vs2cYRmA2KypkESZ8Zvkxj5wE0jy/s629tu75JiuyJGfn+d7RRxj3hfVmyv+d3OdrYvZ3u3a7zr+PbpRpcDD+zAY+SFFdsPEHsmLRaLxWKxWK4HmbNdtDvbrdhusVgsFss3M0yK3Cp3r1dBkNOhnXbiFhMUmrXDGAkXtI+3460HuIxvvP/7wAXBha/+8cB9BogLiZQ77hi85urA7QDgyPbj2Ji4s9C2laxfl4fdYjuXvdmGgifx66goYlldEUEYxIwDyH1tU8doOVGMwenrwi7qlCeuD2+AWCnXLhM1DmR9ztn5TzLRyXToQcKo39eNTngEVmJQQb7/wkb3tRJHITySgBqI7VwRuS0RrIVIuO3IfxMq9dH0mBpbADodj+bP169mYnuHENOOVS8h8FZqqdjc1bHMmbanmRG3lLNdcI4KiZUirrGzPYnBBDV+LXoHMyqiAR6YdXl3ktAATs9wBmsLnuapBYK6yjoIkcSlKhYAgLhVBOh1tquHjBjx4UbpNarrJefUA80EbTmg4VfKDSzIc8Q6KiDc/YjtCtHTibYQOubH51bS66K5u9X+WVtsL+Hkp14FlAgw1n18njDvWM8Oos9NLRMCTMV24QTw8pztBp9pvSkofY8nEZISAnlCFVH3JYX7QA4Y9YjtlJdMVfAqfUMewF6ajGf494qsCmk1epJ92p3txeU/Qgjqvtvf2c7219mexqDvrRklYv9ieyY+cy4QJ6K0mF3p6WyXznbXsEoC6HeNSyK2P0F7rOZjZSd9z8V8f2vJ60E+Z+tsP1jsmbRYLBaLxWK5DhDBU6G93dluxXaLxWKxWL6Z2RO5FU5Nt4IAsbZWxhcxUFBsFyPHMJUsDjwOf4AAMDY1i+e8m+G88Je52yWMwSdMGyPcScufgB+tDdxu6cp5zGIZwQ33D9wW2OsIT0Kds91M7HCCOiokRsK6hSxPxMYx8tSrokLUr60unrkIqnhuyiMkBYQnnbOuE8HKuYElEQkAlooTrC22l3W2V/qEkzQy31w4cbNjiHoqB2SsPDWIkRdORdm9CwAibiEs6S4enZgGAMTbaQqEdDx6JWLk5bWfhJ1ie/n1KtVUiBQd61EeawWxpGSMvBQClUNG1O2P/85BsKiUo3VvMGMbAFAXu0AwYryOhDsB3B5ne5zFjjteiWuFenAUne0kCUvFZQMAvKCv/9mF+r7HqA+fpedGF5XOiQeaCbPyPlAkrUSFTGKIo72BBU/EQImqCyAdOvJJ0nVvduMdRK652O5XU7FdXitAfprNwGPLnmvUE13ugpVytlOv0ueUZ9l5NBXvhRPA1Q2QicRYgO5MQemD6ysq8kio377uJCTR36fykENivGcgwHSwoH0cmr/3RJbe4hmmyTh+NhTUk+wTlxDbAaAWOPrO9n3EyEd9MfL77DDPxHb5v/uJkY8Tseccz14Xdz/OdtYb6c9LrSc5NVXH+ZX09Y0Z31dne913UfEoFrfS6y1i+3PdW7qxYrvFYrFYLBbLdSGLkc/+HLOd7RaLxWKxfHPTFn4VriXpYuvsopUIzuGDFXa2uxPHMYpd7GytKx+XX+j6OZ3tkrXDb8ZN2w+142ZVSDGAFhAUosok6rH6uDq5/NjnAADH7njLwG2B1B3XRAARdX/ZLEpGeZNMZPv/s/fnUZKd9Z0n/HnuGhG5VWUtmVWqRSWVpFJpX0CVbMZCiyXBuI26vTQg2sN4urFM22iadnNexs1iGw4zA+0+lmkfDw3M60PTxoPfbgthqYwNbluSJQSCkoT2pSTVvuUed33eP+69sWVkZsS9kUtl/T7n6CgrliefeO4Web+/7/c32yCcQBrn3+F2yMjWxfPmOvfMuHvxPiNUVltneyc3/5XlzhGZWomjgEgrTCtf7+dAObXo9ywi2C3nE9tj08VscbYbsZ8rgj9z1QYtkbuZe9nsoq+8tss488TI67CKr/JtW8t2mKCPeDpJgcjWr1vHI7R3ZWbO9k7OAa2YloWvrSbhKWmHMF+MvAU5YuSzSOR2jmll2li6i0LlOEiKU7rETvcVf3YKHcf06VmMUn6xPWk70BIjn14XDKv7bTufw19FXkcJF+1QdnlO3LilA3Sb815sOLhRcs4159k3Y9OpFQRkxVBOJa+zPRPb62toE6AKONuhvg0AnHCKMIfYbleS/aJJbE+PubZpNouQufj9aqvYHqFyXDNUm+8YUeqkNrotqLLmLzIycwjQjSkoraicfdZj08Vsdd/nHCs7h7ZG3ZtxmKtYzrDdtqkFeQvcagVkLa1RghhMQ2F1KZBXHIuZ1p7tcTFBu1Ech+JuasdUTT3MIX8hQDl1o2dR8mGBwoJS5mxvEyNf5PNesLGPl04k2zeMddfbtBHDUOze3M9zRyd7MjehGVlJQRAEQRCEFUDpGFDibBcEQRCEc4Q4E7nbRGnP13MTIAyDBXvittI3sguAE2+82H4emfDZgXC38Zp3M6Bmef7xv5n3NX46Z7MDl6wub6Q/Gl/0df4rj3BIbWbj1p2LvjZjVpXmiO1xUMXXZteCseUmYktrLGs3cf4Z2XbzZuduW0v7xDnF9ghzjohpxT5xBz3bM7GmUWRqJa8bOCMwXFS6z2e9bvM6WtuJlEbUWWR+K5m7PmhxAWax8l0JY1YJh/aiE6FHQL5tCzChBtCzSQpE5mzPI45nBQ6NLRZqok6XDsqMqnKaYp/VAjHykcrpbM+KeNodb6bdlbOdMMglsmUR/N7sFNXZaSwVY5bzi+3aKmG1uMaj9Hxs5tgW2nAw28RRqzjf54VEbLdU3CRoWzqENuepyHCpxGmRyjzFVtqwMdOWFXF6HijnFNuzNWosHLEIwcr3WbP49MbPWoqmiJzuWwW45awwox4jX09W6b6QIrueNrr44yjCUnGuGPmsPUbjd4xaz/Zur0ELnPcMHUIXPduBpChpHme7yulsjw1njtied6ykwMhEt/Zs1wE6Z8oAzP2+F4c+oTa6/r5i18T25mtaqLt3tUPSw3zaa3G2h8UEbcec62wv4qZujJHPxs0bS1920lh1vx6rDmAZvXO2+2Gx2PxdG/t4/fQsXhila1dM0r148wDPH6uL90VSBoRmZCUFQRAEQRBWAh0nzvZUbBdnuyAIgiCsbeIFnO3ZjXWv5WYp1J3jqkO3U3lwAwDVyXmc7UEVT9uoDvpRXnjlWznJEOMH7p/3NXUH6uIiperfxHo9jo71gq9bf/IJDg1cueh4TfNQ7hx3nA6riWuuSzKnmNcqtncR55+ROT5bndSQOkZzxsi3E9vNuDPx3qhFFM8vtidu4Pxie2i4tT7rOpgl1EZucbddb/Qkwjd/D/OwpeVA4HUvtiu7jDuPw1OFXu6+2QAz5iBmNTmGdZQ60XPEvmcFDo1OdB36xFphmvm2r4/TJDwZ8fxu1hgTdPfO9uy8107EVaaN1U3P9pzOdicV1sPqNNPp+dSqDHU9Tm0epjvHEZxFeZt5otBNq63D34jypT5APUmg2nAtsgnaiu2x6dCnk3OkNY/YHht2rSAg9mcKnQeyNYqC+rnA0QHkdLZnomfQcB4sx9PEOVoFlPrr+0pGdszlaZ9Ri8xvmFuQfu48Ynv2HcNvuA7VCj3sLvcV223bcxzA1GHXaS2BclHhPM72OMhVVBVbLtacGPl8BVqQnvPC5uulpQPIESOf7Xd+y3cCHfn4OVqPzFdAFsT5xPa+ds72rI95ToHcbYiR1zrpsV7I2W4ZtTkVj5FProM1Z3ucfdYcPdtb+qFnFHa2b+pHa3j15AxBVCySHmD3SD8vHJ1KtkUozvZeIispCIIgCIKwAihiNCqNkodYxHZBEARBWNPooEqoDaw2N7ZrLjZvriCb3Ww3OuiJDvXesUFLT+raPMIqfociqmGavDR0A5uP/o95X5PNuRNnuzWwCVcFtZv8becXx5wfvEg4enVHc8zwVQkVtKxf4OHnuLnerq93Pc6/O8HTXCC1wJzHMdoJkbLmOIYt7aM77NkOEC7QHkCHPkEOF2BGIrYn4+tgFq+Ay7tdb/ROCwtayRyoUYvYnrkCLbdzYUzZZdx5HJ4q8ghyxsgDzFpD2F4qtocevjY7KpBpxTBNPG3XXMWQiDoBVq7xIC1saRDHDL2Qs91C5YiRDxYT21XcebFy5OcqHHEraWFGdZrZVGx3iojtdhknbhXbk2PEylFIgWFjtnH4G3F+UTHrvd4oBDo6aJvoEZsu/Tp5nT1f6kJDX3ntz1AlnzAO9TXK1qzbFitzp5aeBxvE+z5mIIfYXu7LxPZ6jHzkZYke3TvbLTv7rPXjLEwj4FW34jiN3zHq49Vj5LsbTy3gbLd0iO7S2R4aTq0wq5WkkKf7Y1cbzpxrhhEHhDnEcUj7yrcU81k66Oh624qZie2trWVCjzDHNdcut2+NEsYqlwBdcds426Ni7vHGnu1F+79n762NF+pCcys7zTHyRT6rm8XIL0HPdoCXjk8XLlSAxNk+6YUcmajiR1p6tvcQEdsFQRAEQRBWAp30bFeIs10QBEEQzgV06M3rWsrctEGbvt41h2eHzvZSGtEbVue65Gvz6EIE1Oe/gwujl5mZah//nokynTiC3XUjAETViXlfEwQ+rgowK8MdzxHAN0oYYYugndPZXosEbui/GwR+GuffZT/VVCwMvLnbw56nF3InhJhzRMxOb/7XXJMLxMgTh4l7PieR4WLGDWJ7AeFZWyXslvhtM87nbC+lAmrUUtiSuQKdLvrKK6eCraKmGOrac5FHmNNdDOC76ykFyTGnQ48gh+Mxo6qaeyIXbhGg6i0CANQCAltesb3m+G7jgs6cvY39pxdCRfli1UuVpHAp8qappuc/ty+/2K6sMg4tMfLp58wlts8Tp68WSBpYjFqqR4uzXbVx3mvTxVSpC3Se8782Hay0B7wOZqmqAmJ7et7K1qzeYqWYUz4raNNxTJ+ewSjlENvTfSVuKNDKWra0S7NZdG5txPEwSMXxXM727DpUP+9lRQvdpioop4yjIqJw7r6Xp4AsUC4qal/4ZeR0tmvLTZznDag4IM5ZhBIwN+reJMwVI59ti7AlWSYrguoWJ00vaS0gK+Jsn21xZvsF+6I7Zr1ne22sAtHlibM9Gy+qPZaHrGf7TC1GPr+Lf74Y+aBgjPzGfoeBksVLJ6YIoxi7oDh+0UjyHff5o1PSs73HyEoKgiAIgiCsAErHaAyoie3Ss10QBEEQ1jKJyD2P2O7MHzWeCQGdiu2Zwy6ax9nebS9pd2gTADMTZ+YZLhED7HlihBvpH94CgPbmF9uz+OJOYukbCcwyZmsUbVjN5S52ak6x+hp2G+efsVAhhTVPPHMnRMqCuFlMsLXfkXif7UsLOdsTN3B+gTcyS1iZgBJU8Qs4WrHLOK3Odh2gcwiKjlMi0orYbz7WMvG9G7E9E02qbdo/qMgjLFBgELnrqUTJcbLQuaMTPNymCGQdeoVSCwLDxWg41hYqfEjE9u57ti90XsnE9kZH8oLEQdI7vktqAqo3jTd9BoBS//qux6lhl+a0HQjDzNnevSCrTDvpp96CGQe5Y+TtNBkl+7w6jnFU1NY93ljYY88jKGvTqc8xmMUvIran7vlszWrn5DwR/NQF7TAVxaenxjGVxsyRXmCYJjPaJW4QPHVYxdcWhtn9vmel6xk2pMBkxVFd91inseirsQd8cly2S9tZiHrP8bnnPYuw62j1yHAw53G2qzjMVTii2rRsWKjdxWIEyka1iO1WzmQaM92Pg5Ye8ET5WrdkBZaR3+ps72HP9ijGUGDm6GMOiRDu1ZzomXM8v2Dc71pMVkOiWOOHxZzymdie9WwPC/RstwyFocAL5xYrFBG0lVJcsLGPl49P40caK2cqTca29RVKtsFzRydFbO8xPV/JT37ykyilmv7bs2dP7flqtcrdd9/Nhg0b6O/v58477+To0aNNYxw8eJA77riDSqXC5s2b+djHPkbYplpKEARBEATh7EWjlar3bG/Tb08QBEEQhDXEAi7r7Mb6nJuv1GNkO4lpByiV+4i1muNyyui2l7SVuvxmZ9oL5JlTzi4tLo4PbkjEduVPzvsaP+2TbnUZvRua5TlRtHkFTzcV2cIGF2Dm4M9iljvFLmU9wucWUji0j2fuhLiNY9jRPnQQc2904myPQsIcAmVtfqaLlTrbVVjFL+DyVnYJt8XZbsV+172BAZRhUMWdEwkc+amzvYv+yrUWAW3EdjPycgueALq8nv44PeZCv5Cz3VcONLZuyCnqZARGCaNBvDd0iJ5HvG+3n3bCQo5vlW73IOhMxFdxmMsda1pWGsE/gz+dONsrA+u6Hqc2D7s0p+1AXIuRz9Oz3cFu42w3Yz9X6gPUnfvedLLv+el2aCu2Nzw2r3vbdGoOY8Mb7ypVZc5Q6XkrW7OaMzuvs72l6Ghm8gwAdmVdrvFmVQntN7QeCapJqkQOsv0+aiiIisI0Rt7qfl/OYv4bY+mjtFjF6PIaZNRaDbQrIIugS7d3aJYwovYpFUbOoiqsEjbN5wdD5xfbfWNuX3mbsOvPCg0tAloL8CK/q+9mGaW0QKxVbA80uFb31/A+t03P9oJ9vZtj5Iu55AEu3NSPH8UcPDVTvGd7a4x8rLGMRNPsFqUUrmXiBS3O9ijGtoq50Xdt7OOlE9Ops72YpGsaigs39fPCsdTZXiBlQGhmSVbysssu4/Dhw7X//v7v/7723Ec/+lH+8i//km9+85t8//vf59ChQ7z3ve+tPR9FEXfccQe+7/PQQw/xta99ja9+9av8zu/8zlJMVRAEQRAEYUVQOoYGZ3scidguCIIgCGuaBUTuegzoXPGzFqdsdya2K8NgFrfppn/T810K0E4lczq2j5GP0pv38zkbGxkaHiHSCtOf39me9TY3u3S2R2YJO2q+2awijyBX1HgaH93gbK+5CrsUdrJ1aSe22zqAvGI75hzHsE1QEyIXot77eH6xXRXo+wxJ9LulM7F9lqCAo7Vdb3SLfP1ygSTKuqWwJXO2l7pxtrtz+1tnGLFPlHN+AEbfBob0ZNJqKvJz9fLNCJTb3GIhZw/zjNBwmwpbzAVj5Oe2O+jod9TOK3PPA0YqNkYdOttV5CdJEDmoKofYnyGaTc5/fYP5ne3KLmOpuKntQJQWQdg5YuSVaSfiZgt5Ux8ASmkyip8WV/neAue9hsIed57jRpkOFiE/+PafcN2J/87R9dflmhfU1yhORedgobl1gGk3nwdnJ04B4PatyzWep0rgNzjbg9lcbUyg/lmjJnE8Od93G/sO9YSVRoE3O36sLtcvK/yb03OcpJWJ6lKATgqz2l+LzLxudMvBaYmRL+JsD5UzJ+re1p1db1vJvhNEfmtxYL5rrmU7+NpC98jZXnZMpv1WZ3uxGHTHSmLktdaFI+mhMQZ9sibi90psD6Ni/dVd25jbs70HfdYv2NTPyyemCWNdOEYe4OKRAZ49OpluW+nZ3iuWRGy3LIvR0dHafxs3bgRgfHycL3/5y3zhC1/gxhtv5LrrruMrX/kKDz30EI888ggADz74IE8//TR/+qd/ytVXX81tt93GZz7zGe699158v7NePIIgCIIgCKsdRYxWBqQRUFpLz3ZBEARBWMssJHJnglLozxXtwhw9fROH3dyxsnl0I0DXxZf2bvQoveHeiSPYtCzOqEHsYH6x3a9mzvbORU+AyCxj98jZ3hgfnVHvId2dKFYrpGgjbDsdiuPtiJQJLW2IHB1AB0UZmVizkFipoqBQz3ZtlVkfneTQy8+gIr9QpLphz+0RbOkwl7MdwMdBB3Nj5GOtuuqvbLvJPhrMzi1sMSMvt7sYwOrfgKViJsZPpeuXv/AhMFp6rBccLzJLTbHP5gLbIlYWRpuo80V/R5o80G57GNn+G3bjbM8ptlOCYIZodoKqtnHcHL3VU9q1HYjTz9BJsVIrhuVgqXhO0bYZ+8Q5j41K/zoAwtnkHJ21v2jnfm48d7nzJZtYNkN6kmsf/Rg/Wncz1/2rP8k1L2gQKdPzVua6N6zu1y6ZWjL/OB1vduo0AO5AvoIKT5UxGs8roZc7kSK73sdBo7M9c6IXEXjrAnm273WbqlDvJz/3O0bibO9uvNhwMeP2mk9SyJMjRt4u4bQ4202dL5IesgKjFrGdMFcyTf37XnOxgipQVFVV7pzvfPl7tpvMeG1i0Iv0WDcNtIYw1rWe6HnFcYDNAy6DJYvnU2d29jvyUErnMVuLkdfYBWLaXcuYEyPfi6j2XRv7ODXtc2LS60ns++7N/TxzOPleLzHyvSN/GeMCPP/882zdupVSqcTY2Bif/exn2bFjB48//jhBEHDTTTfVXrtnzx527NjBww8/zL59+3j44Ye54oorGBkZqb3m1ltv5cMf/jBPPfUU11xzTdvf6Xkenlc/6U1MpF8KgqDjWKGVIpvfap/n2Yqsb35k7ZYWWd/eI2u6tMj69hgdJzHyqbM98H1Z2x4j++zSIuvbe2RNl5bVvr6rdV5C71AL9A935nE6QV1YsLsQeTzlwgJiezfuqVIaKxzMzuNsz0SxDmLkASaMIdxwfrE961ufCZmdou0KTos7Lm+Ud2N8dG1eqehkdZgwkOHOE/EaBj6W0l33gM+IlYXR4GzXcdxxLH0tojho7yZMfkFAlFOYANj8tg/i//kDrPvqO1BqkFPO1txjqZpIOUVfGuNtFUgF8I3SnEhgHcxSxenqJruV7vN+G9HJjH2qBZzt7uAmAKZOH02KRgrEyLc60ZMe5vlvCUdmCaehYGYhZ7vOGSMfL3Dey5ztnfZsV3FAnPPz+spFBbNob4JpVSG/1F5P6/CrMzA0DCR9vQFsJ8e+kjqIg6Al9SFnL2mox+SH1USECdOx27rHM2e4Nubt+62sEqbS/OOGf8Kbfv0/5+pfnuGka6TDLEY+a7GS7zjL+phnfdH9qTMAlPOK7UYZ1SC2q7CaK1kFGoq0Gvbx2rbIESPf7jtGlhDQrVO+3v99rrPdJuze2W6VsOP2x7KZM/pdWS6OComjqLbPmXH+xIeoRWzXcZzGyOcpfMiuvy1iexzkTpNp1xoljPMJ2hXHmuNsT5zZ+d3P2Tz8MO5JjLxSiotGBnj+6CR7tww2/Y5usUwDxzQaYuQLOtstc46zPenZXjxGHmDSCwvNL+Oizf21zyxie+/oudh+ww038NWvfpVLLrmEw4cP86lPfYq3v/3tPPnkkxw5cgTHcVi3bl3Te0ZGRjhy5AgAR44caRLas+ez5+bjs5/9LJ/61KfmPP7ggw9SqXQXPbZS7N+/f6WnsKaR9c2PrN3SIuvbe2RNlxZZ396wzfOoGkatZ/sPf/g4T79yfIVntTaRfXZpkfXtPbKmS8tqXd+ZmfbCqLB2WMjdmwmycTD35nUmiHbjbPdVGSNo37PdiHzCLgSAcn8itodt3LsAcSp4dBq/PW2tpxzN37M9qKa9s7uI8waI7Qq2bhaPi0R5Z/HRGXmd7ZnjM25xsfneLBbd98vNiJWFanAMh2GArTRGB8UAmViyoLM9DokK3Da84PIbmN75OD/5/36MNx/9Jkesi3OPVRcpZ2tiu02QW1D01dz+uzqYwVNuV5J2zaHYzuGp/dwx9wDloc0ATJ85npw7CrjkQ6PUJBQVdbbHposdNzvbmUfEio3m/bRTMlGwXRGPYWbJDJ0VqRk6f+FIIqBOo5ViVhW7v1xvO9DgbE+PQSdHjHzmcA5ajuMi+57tuEmhUSq2Z1Ht7fqiqzRG3see90xx4Tvfzw/6hnnzHb+GKuAWTeaW/L5MbM/OX3li1aHu6I5TETuYOQNA3+BwrvECs4wV1retirx5C+wWI0tQ0A2JFFE6zzw96uviff28p9M+6d22MJhPbI+jCEvFXTvvteli63mc7XEw77llIbLroO9Xa99NirRXiAwHs6EgIIrCpFgux76XFT7ELcetivKL7b5yoCWtJdQ5ne2uSTWIiWKNaaTGkCjGKnD8luyk4GHaD+ux7wUF3os293PgjfGexNKXbKPmbA/CYpHvrmW079neA2d7Ri/E8YtHBno6npDQc7H9tttuq/185ZVXcsMNN7Bz507+7M/+jHI5X6xLJ3z84x/nnnvuqf17YmKC7du3c8sttzA4OLhkv7cXBEHA/v37ufnmm7Ht/F92hfbI+uZH1m5pkfXtPbKmS4usb2959qkvoJ0KWVefq6+6iguuGFvZSa0xZJ9dWmR9e4+s6dKy2tc3S2cT1i5G7M8r+GQ3X7XfRmxPRaduYobbOXeb59H5zfpym/7ljcRBlUgrrA7ddlVnmP7pY/M+n/XO7tQpX8OuUNJzne2BPTDPGxYmi4/OyHrddhv3bNsOkVbELS7yov2GI6PZMex7s9jQkVM+E5kWEtuN2Ceex63cKX0D69j363/Cy0//r4yU820HqMdvew0ipaODXEIHQGCUMFqPj2AWD5f+LsbJCkLaie12XExs71+fONtnx48XcjwCRKbbFPuuCjrbtVXGboh9NgnR87hZY2Vhxu3PRQv+jvR4aRcjb2Y928PO2o2qOETn/LyB4WKkgmfVKCa2Z32z/WqD4Bl6+NrEyeH4rveub3W2B/Nuj06YUWW0lzrb/fkTPTJB01MO863MxtHtbHzPv8w9l0ZMyyLURs2RHfppz/EchQrQ0Bc93dfCmXFirejrHyKKu2/xFpplzKi+bVVYJVT5zgFOLUa+wYke5e/ZXi/6ahDvw0xs7248O23xErWI7UHg4UItcaFTtFWaX2wnX7uQrBDEq87WxPbkuMjZtsUs4Xj170D1YrkcYvs8rWUW+o64GIEq1c5TtcfixGXdLRUnOVfO+CEDpTQ9I4oLxb7vGU2u/0++Mc76SrJmtlXMnX3RyAB/8aM3qKbu7CLzqzhWvWd7XEwYT3q2N8fI96Jne59rMTpY4shEtSc927cPV9LI+xin4LYQ6ixJjHwj69at4+KLL+aFF17g5ptvxvd9zpw50+RuP3r0KKOjowCMjo7y6KOPNo1x9OjR2nPz4bourjv3Ambb9qq8kdKOs2muZyOyvvmRtVtaZH17j6zp0iLr2xsUGqg72w1DybouEbLPLi2yvr1H1nRpWa3ruxrnJPQWI/LmFblNy8LX5hxBFuo3222nC7G9xWHX9Ltij9Dq3DVuWhYz2iX22rvRdTCLh0OlQ9dTUNrApqkX5n0+8pN5l8rdyJ6gnAol3SweF4ny9owSym/o2Z4lDHQZI68MAw9nTsRrXWzPJxS19sL2q7P0Aaa9+H5it+kH3EqRPtet7Nr7pkLvz0TKoEFstzuMzG9H2NJzHEAFs3hdFKEAOKnoFFbnHmtFne1Dw0nKpz9xvJAIA3Nj34uK97FVakqRsBZwtmvDwgxyxMiHHoE2sa25+6Bhd9ez3YyD3AkXgVnGjGZQOsQzu0vbaKXdfqwjnwCbPBJgtv/PEdsJocC+N6vK4CVzXChGPnssb1/yPPjYdWe7333qSyNZ4VTWu1xXx5lSZQZNM5fYHlkV3Go9ldeI8ydSGKaJr83aZ4VGJ3/3621Z9pyiL51uW6vLgq9s3Vqd7WHg45JDgLZKOLr9tShv4Ui9r3x9jgslcCxGbDb3lQ/8LNI/v7Ndt3zfS9pd5HS2G3PTWsJY4dr5nO2Q9DDPxPaiMeg7hiuMDLr848uneNee5NpWVHy+aHM/Xhjz4vE0DanAeGXHrMfIR3pVxsgDXLCpLxXbizvRTUNx4aZ+nj48Ic72HrLkKzk1NcWLL77Ili1buO6667Btm+9+97u155999lkOHjzI2Fji5BobG+PAgQMcO1avct6/fz+Dg4Ps3bt3qacrCIIgCIKwTMRoVRfbdY4/6AVBEARBOHsw44X7h/s4TZGxGbWY4S56trc67Jrn4RN3KQAkTsf2znYdVPG6iMrV5fUM6flj5DO3nNtljLxy+ihTbfpOVUTw9FVzOkCcuijtUvepjZ5qI7YH88czd4JWFkaDsz3wO3fKZ+JUHC7kbM/f57rXtDqC4yjCUVFusT1qJ7aHswRdulCzfbS19y6QODWt/B2+S5V+ZrVDNH0SI/KLieMtse9GHBRLLbDKOLrR2R6BOX/PdiNHjLwOqvjziLiG2Z2z3dD59+XISPYVO5jEt7orAGrFadN2QIc+Qc65ZesQtojtNgHkPDYAqqqMESTn+4XamNSiunNGpechVBZkPdtrc8uXpGvXesAn4+jqBDPkL6iI7D6cqL5tFyqw64TkO0GD2J7u71aOHvW1oq+G7xg6dcrbdnfbzyllbUhaxN30GtltT3lll3BoXzhj6Xx90bPratBwrBVxtifu+/q2qF1vcxxnpmURaHPO9deI87e7CI35nO35erYDTPt1d3bRGHSlFG/etYFHXz7Vsxj5LAb96UPjAIXE7JJtUk0/bxjFWEYRsd2YI7b3IkYe6lHyVo/E8YtGkmuaiO29o+cr+W/+zb/h+9//Pq+88goPPfQQv/ALv4BpmvzKr/wKQ0NDfOhDH+Kee+7hb//2b3n88cf51V/9VcbGxti3bx8At9xyC3v37uUDH/gAP/7xj3nggQf4xCc+wd13393WuS4IgiAIgnA2orROhHaVfB3TcbTIOwRBEARBOJsxY594gRu97QRZqPenbRenPB+RVcGaR2y3Yp+4SwG6qkrgtxfbCav43fgy3UEqzB8rnfVJd7uMkTfdPkyl8RuiWYtEebdGjUe1hIHuBVQfpyYQZdR6wOd0tuuWXtiZqNBJT/mscGMhZ7uhQ+ICbupeYqf7QpC6bbMe1UXEdqtFbDfCKkGXwlgWTxy3af+QCJ75xXaAcTWInjmVRvrnFzS1WWqKfTcKOtuVXcalvu/YhKh5zm2xYecT20MPf545mjVne4diexzm79VslbGiWexwmtAuJrZbbcR2Qi+3MzwTNcOWc4ujA1SBGHnPrNTE9rDmHp97bGTtHbotUimCj13rNZ71Wre6jEHPcGo94FOXsjfBrJFfbNdWGach8WGxArvFCJTdJLbrMH+MPJAcT43O9sgn0Caqy17ctptF0rcWkCXr2O15Wdll3Hlj5KOuY+mhvm+GDd8HksSHnGK76WI1zDFMr0F528D42HOc7UaBnvJJWktL8UPOnu0VJ+2v7jV8vyjYxxzgzbuGOfD6OOOzaZFHwfFGBl0GXIunDk3gmAZK5RfIy7bBTCa2x73o2d58by/oQYw81MV2pwcueagXLIjY3jt6vpKvv/46v/Irv8Ill1zCL/7iL7JhwwYeeeQRNm1Keg198Ytf5N3vfjd33nkn73jHOxgdHeVb3/pW7f2maXLfffdhmiZjY2O8//3v56677uLTn/50r6cqCIIgCIKwYqjM2U7mbBexXRAEQVh6Pve5z6GU4rd+67dqj1WrVe6++242bNhAf38/d955Z62dW8bBgwe54447qFQqbN68mY997GOEYfcCyrlM4iif/8Zs0EaQhcR9HGoDs02c8nzEVhknrrZ9Lo/b2zMqGA39y5sIqwRdOBuNUj99yiOO2n/3iYNZZrXTtQBgpgJAdbrumi/ibA/MEmajsz0T27vs2Q7gKxc1xwVYzNneGiMfep3H3NdFpgVi5HWILtizvVdkLRQykdIv2O8+NktNTm8AM5olNLoTxy3bSaKe/bnHhqN9yDm/jGlzEGP2FKYOFizUWYxWV2bibC/gRrbLlBqEp8R9ukCMvM7xd84CInQWox13GiNfoHAktsrYsYcbTxMXFNuzAqImR3DkE+QsfMjOHa0x8jZh7kIUgMDswwqm0+mlfdHbnFdqgmaRfalLQixIxfYiBVCQRLU3OoyNYJJqgVYB2umnFDfElsc+kZm/4CbAavpOUHO25xTbA1rE+yhIfkeXuKmzvbXtTU2A7lIcV3YJVwVtk/5sgnkLeRbCqkXdt4rt+Y41bblNfeWjmtiet/BhbpJR8h0xZ1FQmwKyIM7Xx7zes73Z2V7UiX7DrmHCWPPoyyeBYk50SNzyF430c3i8eA/z5hj5uKcx8nGsiWJdeP0ALtyUXIOsLr8fz8fuzcl4vZibkNDzb83f+MY3Fny+VCpx7733cu+99877mp07d3L//ff3emqCIAiCIAirhsTZbtSd7Vpi5AVBEISl5bHHHuOP//iPufLKK5se/+hHP8q3v/1tvvnNbzI0NMRv/MZv8N73vpd/+Id/ACCKIu644w5GR0d56KGHOHz4MHfddRe2bfP7v//7K/FRzkqs2CdeQAAJlI1qI37q0MPH7uoGTmxVFhDbg64FaN8oYwTte8AbYbUrZ6PpJk6a6akJ3NJcIUIHVarKpVtJ23STm4azM5MMbUh7ghaI8o5aovgzYaFbxz1AqBxUy431LHI3b7/hVhEzSF2GVgfFAJnIpBdwBptxgL+MItpCOFlce9piIOvDmyfCF+oCaiNG5BHmEMY82idSuAV6ymfMWoNY3hnMOCiUMqDtSlNPZCMOCO180dsAZnkIVwVUZ6YoVfqxiOZ3UhsWBjnF9vmc7em6LpTM0PT6nH2fITuXzuJon9gZyDVGht2yHwOoyCfKeXu+FqffILbHUYRdoMUCQGhVcIIkmjkTou02bUyyc1e4rDHydk1sr88t/74cYNUEaCuYKtQqQLl9lGgQdyOv6xSZprkpGxrO0VlxiZlT4A2UA43XochPYvm7xHXbi+1RkMyvWwHaSM9FXnWGUqV5/e0FCnkWIkuMaXS22zpE5SxUSPrKNzjbs+K2nMdZUkjRfP014zB3EVRklih7x5seC+NE+O2WrGf7tF8v5vOjGNsqJmjv3tTP+orN379wAgA7RyFAKxdtHuCHB8/kKipopGxbVIMsRl4XErNd2+DMbH3bBmkRSREBP6MeI98bZ/sNu4a5/YpRzt/Y/fdaoT1StiAIgiAIgrACKGI00rNdEARBWB6mpqZ43/vex5/8yZ+wfv362uPj4+N8+ctf5gtf+AI33ngj1113HV/5yld46KGHeOSRRwB48MEHefrpp/nTP/1Trr76am677TY+85nPcO+99+L7ncX4CqnIvVDPdsOdI8hCEnE7X5zyfGinDzeeKwBCIkDrLm8QB2YFK2wvtqvII+jiBrFVTgSr6vSZeX7ZTHex9Cl2OblJ783U4+4diontje7nTNjrtr8tQGA4qKhZGIyyeOa8PduNFmd7Le65s8/bKDK1w9AhepX0bK85glMHeTf96duh7XKT0xvAiqvEecR25c6JA056yoeogjHynr0ONziTiMUFnegODTHyBeKKAUrDWwE4dfR1dBwnn3Ue92nrftopKvLmTcww7W6d7RHk3Je1XcbRHmU9A24xsb1UzvbjRrHdyy1Wt3O2+wWPDYDQqvcezxy87dzjNbF9OZ3tykbVYuSzFisF3OOqLno64SSBnX8bK6ePiq7W/q5PklWKxMg3Xzey+Pw8PdvbjUcYENK9GKsMg6qeG4OeOdu7jbk30v3Im537HcNaoEXFQmTFIWHDsbZQu4vFSPrK9zBGXs1NMipWFDS3gKxoz/YZr3c92wEMQ/Gm84d58XiynXvhps56jhcW2xud7XExF39rz/Yg0kBvotp3DFf4lz9zATfs2lB4LIB1FYc/et91DJRWR8ugtcDq+NYsCIIgCIJwjqFIerYrEdsFQRCEZeDuu+/mjjvu4KabbuJ3f/d3a48//vjjBEHATTfdVHtsz5497Nixg4cffph9+/bx8MMPc8UVVzAyMlJ7za233sqHP/xhnnrqKa655po5v8/zPDyvfuNvYmICgCAICILOBJKVIptfr+dp66Rn+3zjhqnrrPV57c8SYHc1H22VKTF3LEjirbUx/zzaEZiVRIho8x4VVglV5+MZbuLMmRo/1fY92p/FU27X65+546pT47X3OjogNrtbu4zILGFHs7X3xkGVqrYxowjmicCfj0AlhRSN8/CryQ1nbVrdbYtsPsrC1GHt334mVHT4eX1lEwfevK9N3NTdzW2pMFLxJpydJggCZtOCCpVzftos4ermz25FVabNUtfHv68ctD/T9PrqzBQDgF7geO+EwF3PuplXUWjiLo/ZJkwHV/u195txQGTkOy4AyutGATh1+GXWj2ynDGhlth0vViZmKrZ39fsWPK8kokXgtz/HtWLqJBkg775S0lX69Aw4/YW2p1ImsVZE3nR9nNAjVDm3hcrWIU18CAK8mUlKgFb5j93I7sONk3261l++zbGWuYSjIvtml4QqiZEPgqBWtKDm2fc6IcAmDpL9qBRNM2n1NX1P6Wpcu4KlYqamp3BLSUFPbHZ/LcsIld30nSBLQwGVa8ygZbw49AnJt5/4yiHyZ5ve61fTfaWDfa9xfbMUhumpCSqDw7XXJIU8ETrHeV6lxURBNdmPdRxjE+YaC5Ke7a6u7xd+NRXxc+57ScpA8/qZOiDOeS5IWqN4TesaxmAp3fV4tkruS03M1sfzwwhL5dvvGrl+5zoefDptUxVHBEGxe2AXbEi+99lGsbmVLMXJqeS84gURpjH32O/0nOCYiqof1V43U02KNAzinpwn/81Nuzuax9nGUv3t1Ss6nZeI7YIgCIIgCCuA0lnP9ixGXnq2C4IgCEvDN77xDX74wx/y2GOPzXnuyJEjOI7DunXrmh4fGRnhyJEjtdc0Cu3Z89lz7fjsZz/Lpz71qTmPP/jgg1QqZ0dc4f79+3s63g2xx6nxmXnb5p0fGVSnTs953jp5BF9bXbXbi09OcJ322r7nnTrg+KnxrsYb9DSbw4m279k4PY4Rq47Hq546yFXADx97mJ++fHTO85XTx/C6/LwA1TOHuQR44vF/5JnXzwBwGz5Hjs9d005wZwI2R/Xtpd84iI/N3+YY67wQgpnmNa++8SRXAo899kN+/NNXuh5zYmqGzZFfG7P6xoGuxnuLtjh57NC8a3Np5DMxXV0VbR51rPknwGuvvMDh+++nevoNzgd++uwLvHym+/np05Nc3nJ87A1nGJ8Jasd9p8f/Fdpm8uTRprECb5p/Crz6+mGOFFg/c0ZzfjROVbmcmZrNvS3CY6cYUz7/v/u+jTIUl4QekzPtzw+dEMxOsRt4+of/wLOHprgTOPjGobaf1ZqYYkec3KTu5pw6OHGaamS0nWMwO8k/BV58/llery7+Ga6LA05PTOX6vPHpSd6kp7FVxOvHznCs4PFwMw6HX3ulNpfByTNUujh/NuKNH2Y38NSTP6E8sof9+/cTzE7wT4GXD77OoZxzNad8dqXnPv+VF3kz8Dd/+31Mq1lG8CaOcwEw7etlO0/sjgxmJpJzevTaq/ja5Dt/9Ve5x3uzNjl14ij33XcfbwtP8exM3PRZutlnq28c4wbgr77937HLA1wXeZyanP+avxi7I4PZifr1K3jlJW4A/vpv/hbD6N6RfmFkMjt+qjaedfIogTZzze8t2ubkkdebr2knXuYi4CdPPslzh6fmf3MD+/fvp3rkFa4B/v7v/hZ3sP5dMwpD3gu8dugoR7ucoz99hu3AM08f4JVxkziO+AWlef3Qsa7HAgiOnGBMBfzFffdhGAazR5/lUuBHPznATw+e7Hq8PbHBdMO2ALg69jmTc38xJ2c5P65fI7SGQFu8+Nwz3D/+067Hs5TJD370EypHfgzA4SMGJZPCx7k/BWBhoHngr75TaCyA014ynl/Nf30EGJhUPHPE5D/+l/t5/YiBF83/WRc7J7xx0ODkmfo5fdxP5vjjH/2Q8BWde47nCr3+26tXzMzMdPQ6EdsFQRAEQRBWgMTZ3hgjL1+8BUEQhN7z2muv8Zu/+Zvs37+fUpv+2EvFxz/+ce65557avycmJti+fTu33HILg4ODyzaPPARBIrjdfPPN2HbvohUnf/QbDG8e5U233972+ad/+h/pN03e0vL8D964n6jqcPs872vH4//tJdwnA2695ZY5Akn4w4DNW7dzfRfj/eC1/07l1Ktt5/DUT+9Fq4GO5/faC0/Cq3DJBTu4/G1z3/PDl79BFFe6+rwAx954CV6Giy88n8vfcTtRGOL8KGLrjl1c1+VYAI8d/VvKh35Qm8djJ/+BYNruel4ATz77x1TioOm9P/nrM3AM3vGz72J405aOx8r2z4GhYewTujZmNt7P3Pgu1m9cfLwTP/rf2DA0MO/++MaP/z/0Dw3zzhyfdymoPmGzdfMw199+Oy89+Qi8Alddex0XXvX2rsf6wf/7U0o/9Zq2x5En/h396zfztptv7ur4f+Unn2Zdn8O1DWOdOHIQnobdl1zKFe/Mv36PTf2YoefuJ1Y2g8Ob5t1Wi/Gj+16HH8O7bvwZSpV+Xv/x/07f4Hp+Jud4Oo7xfv832T5cZs873w5PwvkXXMTVt84d77Fj38eeTdyL3ZxTf/z8V8Fvfx6YHD8Nz8Cundu5+ucW/wynfvRR1m3YnGv9Hv+L57CfToqiL7jkcq58V7HjYepHDiMbhmpz+fHzX0X55VznlcOvPgMvwcUXXshrU8n6nj72GjwDF+25jMvfkW+uj515jMrLVW6//XYe/4vn4TS8+93vRrX0MT555DV4EZy+oVzzz8PzT36egZLN22+/nR/81ycIxvOdkzOOPPHvGB7sxy1PsUmd4fx3foCLrrsx1/eAp/7eh+/DDW+6ltEdFzH+o3/N+o1bch+3zz31f9Lv2rwtff/jf/Ec8WnFHbffMWdbdMKzT/1fDDhWbbzHDj1AVM23fsef+DdsGOpv+mzP/fBv4TW4/k372LHn2gXf37i+r/ykBIfhuquvanrf9OQ4HICduy7kmtu6m+PE6ePwHFywcxtX33I7s9OT8GPYcUH3YwH88NtvwBNw043vpFTp56cPxXAI9r3lrWw9/9Kux3vxyc8yWLabzsHHn/g3DOU8zz926hFKr/q1bTk968Ej3+fqKy/n9uu2dz3eJ3/8t+y66Hxuf8cuAL5+5DE2D7jcfvuVXY/VSBjFfOm5vyWKNbfffmuhsQC01vwfT/0Nw0Nlbr/9LbnHuU1rHv1P/8jfTyo2bnaIteb225v34U7PCc/89fM89+PD3H77OwA4dGYWHv8f7LvhTbx998bcc1zrLNXfXr0iS2hbDBHbBUEQBEEQVgBFDA092xFnuyAIgrAEPP744xw7doxrr63fNIqiiL/7u7/jD//wD3nggQfwfZ8zZ840uduPHj3K6GgSFTw6Osqjjz7aNO7Ro0drz7XDdV1cd24vS9u2V+VNlHb0eq6ODjCc8rxjxoaLFXtznjdin1B1Nxc77Yse+LOUys2xrCYBhlPp7rO5/bh6tu17LO3h2es7Hq9vKOk1GXvT7ceLqoRmqeu170/jZ3Uwg23b9R7mbpefNUW5FVz82ntV5BPg5BorMkuUw6nm96Zu30pff779zLQxCWvv1XESVdrXP9jReKGyMXQ472tNHaHM1XO8zigHonR7RMnaueW+XPMz3T4cFRHoGDvtf+zqKqrhuOj0+A8NF6PluNVpL3GnlG9+Gc7AJsrKx9dTKMvNPZZVTlo3xGGyfpYOCo0HcFitg6mjiYWSpH93u/GUZWOS/J3TzTnV1D6R0f54y9JRlI46Gs8kQln5jl2rVO/hXRrcUPh4CLBRUX1/MXRAPM/nXIxSOelXnPxdmawvcRLZb7vdn0MzzPIgfXoWwzRRcYCn7bbX83Jfsjbayv+7uiUyHEwdpOcBH1/Z9BX43cl5MKD8wz/mGetS9u5rFgC72WdLfesAiP3kWumw8DV/MSLDwYyD+jVIR4SYOG22Rcfjab9p34u6/G6RESgHI/ab3qvi5Dh3Sp3vD7Zt46T7cRw2n0dVen8kz77c158UdaooWb8ZnRwj852nFsNpOYfq9Dgr5bwGhYaL2bJ+lg5Rdr7zsuH24TZs27iafr9w823fimNRDXXtvWEMrm0VPs5tG67fOcwPD57u2Tnjos0DxFoXHu/f/twe7vrPjzJQsnjLhfOf6xc7J1QcG69h7bRKvpuVnXzn+XON1fp3Yqdz6r4MShAEQRAEQSiMoTVaGSikZ7sgCIKwdLzrXe/iwIEDPPHEE7X/rr/+et73vvfVfrZtm+9+97u19zz77LMcPHiQsbExAMbGxjhw4ADHjh2rvWb//v0MDg6yd+/eZf9MZysOPsqaP10gNpObr62oyCc0nK5+l5XevK5ONzsxwjDAUBrD7vJmvdNHWc+2/12xT2x2npqQ3QSPZifbPm9EVUKj+xSGTPiJ0h7DWf9Y08mX6KCcPkq6Wv935Cc9b3MQm0khRdNjQfJvx82ZOGHamA3Fmro2Xrmjt4cqEf3mw9IB2uxuv1tKPFwIkn0wSj+rlXPbmm4i1lazPveAi4eyO1u7RkLDxYyqTY8F6T5oOd2P14g9kLjghpgGK/+2MJ3k83rZMUGINovdzJ6wNmDNHCMK0n601jx+LsPCIux6fCP2iec571l28ngcddZD1SaAnPuy4fbVfnb7hnKN0YivXAjr+4sRB0RGTlHcSoW1oH4ch15aZGTnT7IxSwOYSlOdnUaHHsE8Xj23lOzf2swn/uYhNmxUWqhE5BNQbD+OlMWGUz9ir3+Amev/VaGxnEpybfPSa5ujfVjgmr/o3AwHs+G6oUOfkO7j4zNi08VoOOeryCdS+XyYoXLmXD/iMDkXmF3ue3YpOcZCv/k7RpDu11lP927IroNxUE3HTv5v5BgLwEivDb43m46bXoO6/S6VEikbo+X7nk2Y+zyl7DIV5dXuKXlh8n/Xzre/VByTab9+3g6iGNvsjYx406Wb2TpU7NrYyJt3DfdkvLdftJEbdg0zWQ2xCnxW1zbwwvp3syBKtoVjqcJzFFY/4mwXBEEQBEFYARRx4mpXWc/27m9CCYIgCMJiDAwMcPnllzc91tfXx4YNG2qPf+hDH+Kee+5heHiYwcFBPvKRjzA2Nsa+ffsAuOWWW9i7dy8f+MAH+PznP8+RI0f4xCc+wd13393W7SbMJY4iHBUteNM4MktY7cT22CdUXYrtbiI8V2eaBW2vOoMNGF3eDDfcASq62vY5K/aIuxBbHLdMoE0ir73YbkVVAnug7XMLYdsOoTaIvURAzW6KGzkEVADDqVBWPnEUJQ7PyOt6O2Roq4Slm7etjpJ/OzkF41YRMw6qRFphWZ2JT6Gya+76dphEUFCQ7SW+ciDMxPZkX+xW1MkwUwHVm51mYChJRHC1D3nEdrPURmyfTX9PMQGgPLS59nMewSnDSUXimYmTcN4uLJ1f1MmYdjfhVo8RBAuLWKqlKKRTzNgndPrbP2cmt7OzBIHFsHSEMvPdAs+EQIDywLpcYzQSKBejQWw3Yz/X+Q7qxSa6oeggTEXAvEVGkIjtANOTZ9ALFBllguZyiu2R4WBlx1vkE+YUizNC5bAn/ClvqBGuuun9hcZyU7Hdn5lAxzElFXR9rW1EGzZG0CBARwFBgc8bGS5OUL/uqjgsJraHzee9KBXbs2KYTnHSoo3Qa+6JHKaFPGaOQiPDNPG1iQ69dKzk/0bOoqXsXO5XU7E9PffkLfhqLXwAsHWAyj2/tKDKm6VU7quL7VY+0bjiWsx49fO2H8Y4Zm/E4vfv28k/v2FnT8YC+Hc/t6cWFlkEpRT/9ucu4c4vPYxt5B/Qtcza+gP4qdjeq2IFYXUjW1kQBEEQBGEFqPVsT/utSc92QRAEYaX44he/yLvf/W7uvPNO3vGOdzA6Osq3vvWt2vOmaXLfffdhmiZjY2O8//3v56677uLTn/70Cs767KIu/M5/Y1abzhz3M4AR+V07H+3U2e63iO2Z27tbAUC5/bgqIPDnzs/WProL954yDGYoob2pts9bsUdkdi9SKsNgFhftp2J7elM8r+iUOVqrs8k8VeQR5nSgatPF1s1rp0MPX1u5eu8CaYx8g7M99PCxOx4vUjZGNLe4IyNx2a0esb1RpMyc7XkLFaxUmPBTZ3scRYkwljrAuyE2S1gtokmYCtB2QbG9b11vxPb1Wy8EYPzwS8m8erBtg/ImBvyTREEiOhnzifemjUU+sX0+Z7syDHxtLlgs0ohNiMpZXGA1iu3963KN0UhgNIuUZhojn4daZHTDcVxrn+Hk31/sVDSuTo1D6M/rbE8ETauQe7tbtGHXEmBU6CVFQwWIjOSzvX7Jr2LOl87QIW4lue6G1Wme/Pu/BKC8+cL8czNdzIZ9XMcBYQHfZGt6jooD4rxiu+HOcWZnxS/diu12ej6OvGZne1QTyPPtywE2Osyc7WkCR5dzy8hSSoK0mC8T8d2cyTSR4c4prixynqqJ7TPJ9xUvKCa29y2hs10phVlAzG7FMBSqF2o7cN3OYd53ww6u27k+9xiuZeCHMTptsRJGaauVvN/1hLMKcbYLgiAIgiCsAImzvTFGXnq2C4IgCMvD9773vaZ/l0ol7r33Xu69995537Nz507uv//+JZ7Z2sWrzlICjAXEQW2VsPVc8XOhOOX5cFOxPZhtFrQDP58j2Ep7wM9MTTA0vKnpOVv7XTsbZyjBPGK7HVeJc4o3VVVC+0lBQVgwyttykzWcnZ6k0j+UxPnnFHa0VcKZI0wk4nhuf7FhJQ7ljKCKr2w6/bSRYaMWENtNQtRqEtsNtyZSxjUxO6fYngqofjXZB6uzU1QAw+1ebE8SKZrF9sjrjdg+MNwgthdwom/acj6+NqkefxlIWgQUGQ8g7h9h3YlTTGTR0fMkKqicYrsV+8QLiGwhVpOjez50HCe/P+fntUt1d33fYH4BJiMwXIyo2dke5y0ESCOsdRiQpYtnAqWZM94awKkkSQjV6XGIvAXbZ/jYyyq2x4aDoZPtriKfsGiMvOEwTh9XvPvXC8+tkrZICWcnqDzyBZ61LuHyt70n93jacJoTUaKAqECMvDabx1NxmLuFQWg4c5zZcZhv33PTfuhR0Cy2h2lx33znlsXwlTPH2W7lFO7rYnvqbE+vnXbOgi9tOk2FDzqOC8XIm069OHCIkeLOdsdixm+MQtfYOcc62/i9X7ii0PtdO1knL4wp2abEyJ9jnBtHiSAIgiAIwipDaY3GgExs1+JsFwRBEIS1SuAv7rKeT2w3Y5+oS7HdSR12QbVFbK+5vbsTAa00Vnh26szc36W9ruO3Z1QZFcwjtmsfbeUTKT1VqvX1ztbcyil4NkaNAxiR1/V2qGGXsJkrtheJBMa0MKlHleou+xdHho2xgDPY7kHUeC8JG0TKrDdwXrHdSQXUzNnuzaa9zHM425MWAS1ie7rv2TnE+0YGBtcT6ERcK+JsNy2LY8Ym9OlXk3kVEHUyrMEtrGcCPy3oMeYR2JRpY6uo6xSvxYp4QmVCB2J7FIUYSqNyCnZOKgT62sItFdueAJFRahIpTR3mjmG3U5eubiiayVos5C0ygnpven9mAhUFCxYZHbjw19h8/c/n/l3dEpsOVia2xz5h3nNyin/Fr/D89Z+k0j9UeG6lcj+xVthPfZOLw+cI3vmJ/MklZGk3zWJ7ESd/63cMIw6Ic44Xm+6c9hlxejxmiQudkh1XcUvP9ixGfr5zy2IEWJCJ7VnP9pxj1frKp0V8OvCItMqdhhCbblPhQ3aeyju/WgFZej7Oeobndra7JtPe0jjb1zqulVyzs4IHiZE/txBnuyAIgiAIwgpQ69meRWjl6GUoCIIgCMLZQRZpbiwkIlulRLhuwYx9fLs7IaCciiVhtTlGvib6dylSOqmz3ZuemPscQddCYJUSRjDd/nfF1a5i6RvxlYuRivhh6kCzc4pOdiayzSZraOQoeshQdjnpCd5I2J04PmdMw27q2U5YTfqad0hsOHNigBuxiFaVsz0R25PjI85i5HMWUtipuBNUM7E92WesHOK4tso4rc72zHlfoG82JHHp42qAjZzJLcJknHFGcaZeS+ZFmLs3cIazfisAU8cPAgs72wF0l3/rWDpAL1AQEGFBFM77fEYY+FgsEHO/CG4l7V+uKvlTKBqIWkRKS/vonO5iZRgE2mxy+Gfu4rwtFgDKqfAczI4n7TMWEGTH7vpM7t+TC9NhIDxD4HuoyCcqGCN//R2/1qOJJbH6MzhcVX2MA+41XPG2/6nQeNp0sahvWxWHBZ3tbrPYrgNiI5801Nr/HUCH+dzetu0QaVVLLKn9joIpDb5yIJ1T0bGylJIwTS1Jitus3FtDt4jtvjeLBbnPy3ZNbE+vaTVne74ZVhyL2aDZ2d6rnu1rnazAISl4sAnSGHkR288NZCsLgiAIgiCsAEbas10hPdsFQRAEYa2TRY9aC4jcynJxmOvUNOOFRad2lPoSgSisNgvamQBtdRkj76TivTc7Oec5V/uoLp3tVVXCmk9sx4cu55cx5WzAnj0OQFhztudzo9o193MixJpxQGTku1GvrBJui7OdRUSsRcc0bRwVoePkpnq3/Ytjw67FMbei4xhbRYWjxntJZJawotRVGCauwm57A2dkbRZCLxPbk/839ufumDZFMlkcslMqFiMPMGUkx7KR85jImKmcx0D1MFEYYipdWGzv37gdAO/EKwCY82yLmtjeZcssW/sLxpOHmOgOerb7aRR1Xmd7Kd1XplVxVztkvZrr+0tSVJC/kCLAanK2Z4UoeVMfACoD65KxZyd7Imj3kqEb/jkb9Cke/79/AyMOcsegLxUzKjnm3Vs/WXgsbbk1Fz8AcUBUJA1ljrM9LOZsb22NkhZ9WF0ea8ow8HDQLTHy2b6c9zwfKgeVpaEUHMtJC7RqUfep2J6X1sKHIOspn1tsby4g88MsurxAz/YWZ7slYnFH1JztQbINQnG2n1PIVhYEQRAEQVgBlE57titxtguCIAjCWieLMF0w2tcq4bSJkbd09z19XbecOMW8ZkE78vP1knYrSS9af3q86XEdx7gqQHUpBHpGGStqL7aXtIey8wlb1cpWBqqHgfpnzSt41vveJ/M0Y484r7PdKWOrqBaLC0m/4YV6IS86ZipiRqm7V0UeQZfO9laxJCNI57manO1e/3Y2eq8D9X73ecm2bewn4n3WbsHOIbZru5QUiDQQp/teL2LHZ8yk0KWosz0a3M7G8ChBFqdcsJBi3eZtyQ/jiVt+PseoMhNBqlux3SFALSBCJ872DmLksyjqnDH8WeFS1chRiNGG2HSbosEtHUKBwockTr8uimUOXsvJv79U+pLzfTw7mUS1d3FeWWr2XP8ufnjpx9h37M/YNfmDVVUIADBlDPKjvrdx8bXvLD6Y6WI3iO1J4UN+gTcp6Gt2tuuczvbW/u+QONt9beaKzveUg25xtodhsX05VDYqLUQpOlZNbE8LFgmDQtdvrOZtWzsv5zxPZa1Rspj74j3bzZae7RIj3ymNPduBWs92W5IBzgnkKBEEQRAEQVgBVOpsR2U92+NF3iEIgiAIwtlKdgN0oRu9hlOmpIKaUznD0gG6S5FXGQazlNB+i7M9Zy/pcn8ivgQtznavmnwuo0tnu69KOKlLuREdx7h075TPiAa3sTE6BkCcuYtzRo2X0vjo0Es+c56EgQwjLbLI1gsS4aSIs51UCM8E/G4dqLHhYM3jDM5u/KucLsClwBi9jK36KNOTZ6Bgv/tSJRFOo/S4DNPtkqfHurIrlFqc7TqoEmojt4uyES9tIWEWdKLbG3axngkmTifJD0V6wAOs37iFQJs4U28sOL8sHaF7Z3sACxQYhMqCDpztYSo+Gzl7KztOiUgrPLM3znZtlbAa9heboHYs5yFsKTrIorzznvcgiUOf1iVibzLp651TkF0q3vyLv81jQ7cwzETuAqilwn7/N7joX/5pbwZrEcdVHBZzttslnAaB14hD4pzJAK393yFxtoc53d4+DoQtPeDTa1ve6Pfm1iPFxnLTor3se4WO/NyfFUjE9oYko7BgzL1Tbu4pX1hsd605znaJke+M5hh58CVG/pxCtrIgCIIgCMIKYGQ92zNneyxiuyAIgiCsVWrO9gXEvCwm2vOao1QtHaBzCGNV5aL9ZkE7yilAV9IevlG1VWxPe9F32aPVN0q4bcT2IPCxVIzh5Ix+H97JeiaYmRpvcLbnG8uppE6xNJY1SRjIdyPcTIsHsrhySJzoRVyZRuoYzlzoRuQRdhFzr00bc54Y+TAI0t+xelyj63ddDcDrz/4QHXqF+t1nAmomtgdpAkQmWHSDssuUld9UJKPDaiHnfSOBuw4As2D/9/6RCwA49sqTyXgFnfKGaXJaDTHgHQHmj2c2rHwx8g4+aoEY+UhZqLiTnu2Z2J6zBURauBRY/bne34q2yjhxs9hepPChVWyPA49Yq66jvFuZUWW0N4UR+USrTNBWhsHl/+t/5nlzN35lZKWn08R5F1xG/+D6noylLAdb1/fxomJ70s6kXtBn6gDdQ7GdyE+KYHIQKAfVGiOfFo5YOc9VUYOzvehYjlMi1orYz2LkC7aBsUu4DeuX9YLPncCRfl+JstYoqdCbV2zvS53tWmu01gSRFrG4Q2ox8pmzPZQY+XOJ1VWaJgiCIAiCcI6QONtNlMp6tkuMvCAIgiCsVeJg8fj2mthenaXUIPrZ2l8wTnk+qqqM8qda5pGvn69bqhBqg6jaPJ6fCtHdCoGBWaLUcmMdoDo7jQO5xfbK5l0AHH/9xVokbV6HZ7l28zpNJdB+bme7mTrb/YZCChUHheKZs4j3OEyF8dgn7EIU04bT3A+4gaKRtkvB9ouvIdKK8Vd/nPbLLSB0GAZVXHSQOduT/TiLl++GWmqBVz9udVDFUw698EJHpQ0AmAV7tg9vuwiA6UPPAvl7Azcybm1gOEySJOYV27Oe7V20zIqjCEdFC4rQESaqgxj5LPmhSGx+VbmEVm9i5Fv7Zjs6gAI921sd/kkhioWbI8q7kaoqo7xJjDh/kdFSUu4b4PzffogLzbUrbSirhNPgflZxQFxAbDfsEobS+IGP45YwdZg7Rr51PwYgCgkxcw0XKBcVtSSEpEK5nbPQKDQczLSwJU5j5POOlVwzbHTqvldRkLuwAJJkEZu57R/MnGko5coAkVaEM2eAROg10Ln7rFccizDW+FGMIjGHiFjcGTVne9azPZYY+XMJOUoEQRAEQRBWgHqMfCq2S4y8IAiCIKxZar3SF7jRa6aicDDbHP1uE6BzCGOeUUKFzYJ2Xre3MgxmVAntt4rtyfhml+J4ZJQo67nOdn8mGd/K2Wd9eOuFAIwffok4qOJrEzNnfLTtuPjarEXxWzpAm/lu1GeJBkG1vm0Tx2jxnu01Z3vsdxepbDqYur0zOAozgXL1ONtLlX4OGVuIjzyVOiiLzc1TDqQuxSzxIXMHdkNWSOHNNuzPBZ33jahK4pK1CjrbN47uwNcW+sQLABg9iLifcjaxgXFgfqd85myni8LirCjFWKDAIFIWzLP/Nr2uoIgF4CmXyO6Rs90u4TZEg9uEhZztc3rXRx5+D7x1VaOCCqYxdZA7anypsR0Xw8wn7p4NKNvFUnG9YEQHha4ZWQJN1s7E1GHuArLW/u9QLFo9MBxUS4x8dh2ynXxzjA0HI252tucdC9JrRpCJ7T5RkYIvu4Stotq2LRojb1oWJ9V64vGkrYcXxuQ0tQPQ5ybH1YwX1XuOFxnwHKLes70eI28ZCqVEbD8XkKNEEARBEARhBUhi5I1apbASsV0QBEEQ1iy1+PYFRO4satxviZG3db6Y4cAoYwTNgnYRt3eVEtprFtuz+G3L6W680ChT0dU5j9dEgJzO9o1bdhJqg9kTr6RR3sUExcPmFozDTwDgaB9yuoGtdL2z4gTIIY63kDmTa8J4l+Np00n6Yrch9NMxV1HPdoDjld30TzxfvN894DU423WaXlDK4Ww33cTx7M02HBuhh18gtaBp/L7M2V489v2osZnSxMs9GQ/AL2+q/Wzb7bdHtp92k+JVa0+xwBxjZXXkbI8yobKAk//g9p+ndNltud/fiLLLuGnP9jDwMZVGFZhbEqffsA5hQFDw2ADwzQpmMI0ZB6uuL/q5QpYskn0nUHGILuCmrn3HqGZpLQHkFe+t5hh0AOL8bu/G/uoZOigW/R6bLmYqtuuwmEsekr7ymbOdOCAsUviQFhJl2za7jltO/vPyaWsz1uQhIHFV2wVUv4qTbMdpP6yJ7dKzvTPaxchLKsC5g2xpQRAEQRCEFSBztisj+aNFnO2CIAiCsHaJU0e5u4DYngnWgdcskDuEuWKGA6OE2dIXPQ49gpxu71mjgvKbXfdBeqN4oV707YjNEq4KCPzmm+t+NXO254tstmyH42oD8emDEHj4BUWnQ+fdxp7T36M6O504UHPGKWftA8KGbWvGQaFeyJnrPEr7q1vdiveWi0V7sTIKsz7Xq0tk8zbsYav3Uk/Edr8h+SH2Z/C0ncslmyVS+A2JFCryCrUIaMTqT8T2IiJRxhlnlA3Vg0BvxPa4r94ve7751ZztXcTIB2nigLFAEU+kLFQnzvZUxCryecf+5/+Dq2785dzvbyTpm+2j47jBwV/A2d4ituuoN6kKgdWHFSbO9rzuZ6EYWXuWIOvnXTBGvj5emkhDhM6ZXmLYJUqq3v8dkmj1KKezPTScuWJ7FiOfs+grNpwmsT3WCsvKf2wEyoawvi2iAteg7HyUbdsw/Y5Y5Dw1XRqhXD0CgN8jZ/usH+FH0nO8G2ox8pnYHsUSIX8OIUeJIAiCIAjCCmAQQ9pLL9Kq6Q9VQRAEQRDWFjrrF7rATWMrFeKDBme7jmNclc/ZHpplzJYYeR1U8XMKMb5Rxgiane2ZeLxQL/p2xFZy039m8kzT40E1Gy9/f+TTzij21BvQA2f7eW9/PwNqlp/+3Z8nLvCcN8KzzxM2bFsz9tFFnHGpaBCmaQVW7HXVW1mZDvZ8YnsWabvKxHZ362UMM0Fp5nAhoQNg3BmhNPEKADqYpZpTHK+1CPCaxfagR2L7xWPv5uEL/jWjOy4qPNZs33lsiRMxphfb1hgYrf08n4hlZmJevLgwnlFrT2HPf16JDQujgzHjzB1bQGTrJYZTxlSaMAwI/OKFAHOd7X6hXtK1Yaw+7GgaK/bR4mxfEYwWQdbQYaFIf7OloM/SAeSNkc+c2X5DQk0cJO0dchAZbq2/eoYOfXxtoox88lVsudjpmDryCbByjwVpX/mwIUa+wHFmtCQZxek111qgdcZi+H1bGPKPAYnQaxfQdzNn+0Q1IIw0IGJ7p2RiezVICszCWONIBP85g2xpQRAEQRCEFaDWsx2IMUCc7YIgCIKwZomDKlVtL3ij13bmup9r/bhziDGRVcGOWsT2sJo73to3KnNi6cNUBLC7dKLrTGyfOtP0eNbT3CnnF9uny1vomz0EYbWw4Lnj4qt5wbwQ/ZM/x8HP3Vs5+zyh3+Bs18XimfuGtwAwcfy12nhdOVAtB3venu2JeFekz/VSsOnCawA4b/bZQhG+ANMbLmfr7HNAIrZ7FCukaCySMSKvUGpBI30D6xi76zM96U0dD+7AUsnfHHmjmRtxh88DIFhAEKulI3QRIx+mznZzgUjlWFmoDsT2MCzWC7nXZG796ux03cHfQ7FdxX5PUhUiuw83msEkf19voRiG1SzIGjpEG/kF3qydSSbeW4SonOfRTCz2GlqjqDjMnTgSm6W5YnuBHvAAev0utoavEwY+OkzE9iIEykGl7nsjDogKFT6kxQrV3sXIM3geG+MT6DjGC6NCzvZdG/uoOCaPvHSqFiNviTu7IyzTwDJUzdmepAyIBHuuIFtaEARBEARhBTC0RqViu0aJ2C4IgiAIa5kORO7MIZsJTdBwkz2H2ymyKzhxs9hOgRvOgVXBaomlj1Lx2Cl12QM+Fdur0xPN43nZePl6tgOEA9sYDo72LMr7xK73cNnUwzgqQln5XGdOKnJEDS5AM/aJC4hYm7dfRKwVM0deAMDWProbZ7vlYtNerAyD1SVQZmzddRmz2mEjZwqL2e72a9jMKU4cOQjBDL4qVkgRNMTIG5FHuArdwNbG82s/92Lb9m1IxfYFzik1R3kXf+vUxMAFYuTjDmPkda1wZHU4200nObd5s9O1Ag0jZxEPzC066EWLBQBt9+PGs9gSI79iZMUmQRYxrqNCaSjZ8ZR9x7CIIGfiQ619RrX+nUBFPrHKVxQUmy5WS4w8oU9QwD0+eOE+Ksrjted+hI6CQmNB2lc+a7GiA+ICx1nmYM+2ReZsL9IuxBneTln5jJ86ljjbC6h+JdvknZds4oGnjjT0bBcZsVNcy8BLne1BFGNbUqhwriBHiSAIgiAIwgpgEKNV8qU7FrFdEARBENY0OvQWjW/P+rk3CrLZjew8Yru2Kji62vxg6OV2todmBTts7tmezdXptsd6Klp70+Mt4yXjl8r9ueYIYK7fwUZ9CsOfIuiB4LnrnXfVROm8DlQ3FWTjBmd7kQhfALdU5pjaSHTypdp4ugvRTpkOtoqIo7mO4zgTKFdJ9HaGaVm8bu0AKJQKADC6ZwyAN55+BCOYzS+2l7Iimfq27aWzvZf0j1xQ+7mQgzJl3ebtAIQLCGyGncPZnsVcLyA8acPCjNu3QWgkc4zaBeKZe0kmtvvVGSZPJpH+dmUw93iRYTfF6avIKxRvnaGdfsp6JjlPFSgGEPJTF8czsT0o5Gx3K8l11Zs6nYyvQ8gp3mctHoKGJB4Vh7nbe8Smi6X9pseS6Pf816Cdl48RacXxZx6Ggi55AN/qq/VEN+JiyTRmLWUgFdtTEb/Ieblv004ATh5+Ba9gz3aAW/aO8pPXx3n1ZNreR8T2jnFts6Vnu6zduYJsaUEQBEEQhBVAoVHpjakYA93FDShBEARBEM4yQm/Rm8Z2TWxviJFPb7LnEnntCm7cLLarqJrb7R3ZfXOc8pl47HbpbM/6vQYzrc72ZHy3QIx8edP5mErTP3OwJ872kW0X8ox7OUBuZ3tWSBE3pBZYOujKid6Ok85W3IlXAXC0Xyti6IRsn/K92TnP9aJ/7FJxZiDpXV6kdzHAlh0XMU4fM68+joqqBEbebTu3kMKMfSJj9QmUG8+r933vhdi+ftNWYq0WFLFqveF153/rRJnL051/m8TKwtCLi+3xKmuJYGciW3Wak4/9GacZ5MIr35Z7PK0sjIaiAyPqTYy8cvup6FlsAjBXV9HNuUJWbBIF9Z7tRZztI9svwtM202/8NBmfEGXl21es9NhsbJ+h4oA4Z6GHtkrYutnZrqKgkEDeN7COg+YO9BuP90Rs9y68jUurP+bIay9gxkGha1B2Hsic7TorCipwXh7emhRTTR5LxXalc48F8LN7NmMZim8fOJzMTQTjjnEto0Fs15IKcA4hW1oQBEEQBGEFMNBQc7ZLz3ZBEARBWMuosLqoyzoTrOMGZ3vN0ZZDbNdOHyVaxfb8EcPa7sONm2Pk46BKrBVOl9GnWb/XYLZZbK+L9/lj5NdtSW44jwav98xdPHnRPwHqfVa7xTBNfG2hw/r26EU883TfdgZnX0/GI0B1MV5WOOD73pzn4lUWvd1ItOlSoLizXRkGr7kXUTp+ACOsEuYUx7PCkKhBdDJjj7hgIcVSMDyyDU8n29TuQYy8ZTucUkMLilhWDmd7lApQtjv/eUAbFkYHAr7ugWO0l1ilzNk+za7Df8VzG24sJLDFht0Up68K9pLOMEoDVJSHq32UONtXhGyfDdNzi1lQbLdsh9et7RjHn0bHcdIaJec1KHPdBw0x8obOv+8lYnuLsz0OCAumNBwfvIwN40+hQq9we4W9t/wqHg4v7//jNGWgeIx8lF5/M7G92+9SjQxv3kagTbyTB/ELxsgDDJVtxi7cwP6njiZzkyj0jknE9nqMvPS7P3cQsV0QBEEQBGEFUMSQ9myPlcTIC4IgCMJaRkU+4SLO9qyvdxw0iO1Z7+IcDmPD7aPcEiOf9JLOJ5xop59Si7NdB7N42Ciju9tLZtavdHay6fE4mGVWO12P18imbbsBWM8EUY8Ezz03foBnrT1sPP+K3GNUlYMOGpztFI9njtadz+bocCKc6AC62E+MNCI+aOdsT2/8W6usZztA3/YrgeJiO8Dk8OVsmXkWM5olNIumFjS0CIj9nsyv1ximyVFzM9A78fmMuYGI+WPka60IunG2+1nP9oVi5Jvj0+d9XZQUjtirxtme7C8nfvIgo5xg8M3/vNB4sbIwGxz+Ro/2PbM0AEBFeSK2rxCZoJ0525PY92Li86n+3QxNPE8QJOd4lTO1wMoSGvxGZ3uY29mOVUrSWRpQUZA7lj5Dn3cd54cvo/zJwu0V+gfX8+Twzew6+C2s2EMXSHyw0+LKrLAoDn0CbWKY+XreQ9Jm5aQaJj7zOl4YFY6RB7j1slEmveQ8K872znEtEy+QGPlzEdnSgiAIgiAIK0DibE++imnp2S4IgiAIaxoVeYSLCCCGaeJpu0mQzWLk8ziqldOHoyKCBuey0cE85h3P7aOsW8T20MPLEVlsGCZVbRNXm8V27c9Qzdk7O6NU7uME64DeCLIAQxtGuOQT/8i23ZfnHsPHQTcUUnTrRG+Hs2k3g8xw5uRRHIKuRLFawUPQxtkerV6xfcvuawEKpwIAONuuYZQTDHhHiXKK7YaZ7suNhRTaR+dsObDUnHG2AGAXcFA2Mu1sWNAxaqViu8oRI+8skHChDQuTDsT2Wjzz6tgemdi+7eU/5wgbueT6mwqN11p0UDTeOsMq1/vIi9i+MjiZIJseD6YOC5/3og172Ba8UmsfonIWodhZIYBXv6YZBfY9ZZdwaBXb/QULeTphw8X7sFTMxvEDhZ3tAENv/RCjnGBX+FIhZ7uTngeyQgodegQFY+4BTtubsKcO4fXA2Q5w896R2s8iGHeOazfHyMvanTvIlhYEQRAEQVgBDDQqc7ZjoHWxnlqCIAiCIKxeOnWUe8puihoPM0dbDheq6fYDMDNdF7SN2M/tFFNOPxWq6LihQDCYxSffzfoZVUZ7zTHyhNXc4zVyykrcu71ytvcCXznQFCMfFna2D6U9uI++dABTaYxunO2pyBL61TnP1Z3tqy9GfsPodk4z0BOxffMlNwCwK3yJyCznHsdTzYUUlvbRq2jfa2S27zygd05vr7SJSM0viFUG1hFrhRFMdzxmVrjgLNCzXRs2hl5cbI+jgFgrTKu4kNULnHIism3Xh3h5y88VcrJCEiPf5GzXQU+KjOxKg9jeg2NN6J5M0I5T97NJBAXc1ADl7VfSp6oceflpAIyc47U6s4E0Wj3fcabsMqUWZzs9aImw89I34WmbXeErhZ3tABdf+05eNs7HVLrQOd5Oz221JKPILxyZDzBTGqVcPZr2bC88HCODJa7ZsQ4Qsb0bXMugGiQFZn4US8/2cwjZ0oIgCIIgCMuMjmMMpcFodLZ37vYQBEEQBOHsolORu9X9nPXztBboXTwfVinpJe3NNIjtUf5e0mZpAFNpvIYerYReIiLnYFaVwWsW4FQwi1/Q2Q4wVUrcu6tJ8AyUi2oQ2xMnejERa/POpH/5+MEDAF2J7VlrgtCbK7brtGf7anEDN6IMgxff9O/Z9LZfLTzWebv2MqnLmEoTF3Cie7jQ4Gy3tY9epW7geGgnnu6+9cN8DL/z1zn1pv9t3udtx+WUGsINTnc8ZtZn3XXnL4DQhoXZgdiuQ78njtFe4aTnZYDNY+8rPJ42bcyGvyPNHsXIuw1iu7EKEy7OBZyaIJscDzYhqqD4PHpRkgxy6oVHATBynqfcdD+OGr6vGDrK72y3SjgqJArrx7QRF4+Rtx2Xl+3dGEoXHguS68/Ri34JoFCMfK39SOZsj3z8RVoNdULQt4Wh4Bhe0BtnOyRR8gBOL3LpzxHO39DHTw8nxaSh9Gw/p5CjRBAEQRAEYZmpudgbnO0SIy8IgiAIaxcj9jtyWbe6nzPXWB7R0yolznZvpu4et2KfKGfPdjMdb3ryTO0xFc4S5hTbq6qCEUw1PabCWfyc82vE798GrDax3amJ7VEYYqk4t9CRMbhuQ+LyPv4M0J3YnrUmaBcjr9MY+dXS57qV6+/4NS688i2FxzFMk4PubgC0ld/Z7isXFdSLUGwdwCqNkb/k5/4VT7/l/+rZeLuvehvX3rZw4cMZcwOVbsT2oLp4QYDRLDLPSxysKrG9VE5EyleN7Vxw+b7iA7b0bLd0QNwDJ3qpf6j2czfnFaF3OG4W1Z5cJ01CsIoJspu37mKCPvShJwAwchZ81SPuG5ztcYDO6c42Uhd/Fm8PoOKgJ270M8NXABAX7Hefcemtv0ZV22B3XwSZYVk2kVYNzvaAsBfnqaHz2BSfxAvCnvRsB3jfDTv4wi9exVB59SXdrFbeunsjzxyZ5PikJzHy5xiypQVBEARBEJaZOE5uDKmmnu0SIy8IgiAIaxUz8jpyGyaCbF38zBxtVg6x3akMAM3OdlMHuZ3tWaxwtSGWXkUeQU5x3Dfbie1VAlVc2FHrtgOrS2wPDRcjSrZnrV9uD9zPx6yt9I0/D9T7sHeCmbpV28XI6ygg0GbP3M+rmcn1lwOg7fxi+9zUAn/V9rke3nwe19z6wWX9nZPOJgaibpztVfxFhKdueraHC8TcLze27TCjXQ7teHdPji9t2k3rYMUB9KBne6mvUWxfnfvyWse0LF42zsd44wcAWDoqvG2VYfC6vYt14z8FwMgp3meFALHf6GzP31M+K/7yZutpN0bsF46RB7C2XQfQE2c7wNDwJl55z3/lkjv+de4xlGHgNSYZhb2JkXeGd+CqAH/yeM+c7QMlm/deu603g50jvOXCDQA89OIJAomRP6eQLS0IgiAIgrDMxFmv00Zneywx8oIgCIKwVjE77KMbKgcV1cX2KIuPXSBOeT6cciK2+7N1QduKvdw3w52a2D5ee8yIqrmd7b5ZwWrp42xGVcIeCOTuxvOTH1aRuzg0HIwoubHup9HtvRCxJivbGfFeTcZzOh/PSl8bhf6c53ToE7J6BMqlxDrvagBUAWd7YDioqEFs1wGsUrF9JfDKI6yLu4uRX7Q9hWljdRAjTxz2xjHaI5RhcPSXvs11v/LJnoynDacpTt8kyH2Ob6RvYF19zILtLoT8HN14A9vPPIaOYyxCVMGe7QCTg7vZGbwE1IuuusWyHQJtohuc7ZYOIad73HASl3izsz0k7oFAPrL3rQC5I+7bsef6dzG8+bxCYwTKgrS4UnXYamgxBjbvBGBdcAzbEDPHSrF5sMRFm/t56IWT+GGMLTHy5wwitguCIAiCICwzmbOdBme7khh5QRAEQVizWHFnvdJbHbI6/dl1uxeN3UoS+x42iu3az+32dlPxPmiIpTcjjzCnsz20+rCjZrHdiKqERnGBfHD0guSHVSW2l2rO9iBtD9CLeOZwcCebOQWA5XQuGGc92yN/bow8cZAIAecAmy5+c/JDF2vXSmCUMNJjVccxLgFqFe17K03cN8IG3bnYTugRsIjAa1iYdFCsHPmrSmwH2LX3TbV+3IUxraaiA0sH6B4UerilCqFO/lY1cySrCL2hdMmNjHKC1196CkdFqF4UPoxcRkklrQeMAuK9j113ZgMGITqnoJ3tY36Ds92Mg54I5NsuuCyJzu+h2N4LfBx0JrZHPmEPxPb1W3YBsEWdwhJ9d0V56+6N/MOLJwhjjSXO9nMG2dKCIAiCIAjLjE6d7Vl0YKwMtIjtgiAIgrBmseLORO7IcGqCLNRj5J0czvZyGiMfeo1ie34hxk17+Pqz9Rh5I/I66kXfjtDqw4lmmh6zomrumPtGNm5L+nCziuKPY9PBjFOxPXXv5XUVNmJuvKD2czftBuxU7IvD2blPhgHRKhMol4ptu6/kZeN8KlsuzT1GaLiYqbM9CHwMpaXPdQPG0FY2qAm8apt9rQ0q9AgWE55MB6uDGHmisCfxzKsW02kqOrB1AD1wtivDYEYl151u2lMIvWX3m24l1AZvPPaXAD1xtg/uvKr2c5FrkK+cWkEgpN8vcs7PchNne1aIBmDooCcCuTIMnln3M3jDlxQeq5fMGhVU9QzQu/70w5u24muLLepkz2LkhXy8dfdGXj89y8snpqVn+znEGv62IQiCIAiCsDqJouTGkFIG6Kxnu4jtgiAIgrBWsQjQHThdQ6MuyEISpxxoE9vsPtK71JeI7VG17hRztA85xexy2sM3nG1wtscevj0031sWJLb7cONm8c2Kq1TNzbnGa2Rw3QaeKO9j4PzrC4/VKyKzRMlLHOhZn/ReCLL9Wy6CJ5Kf7S7c2XYqzEdBMOc5HQcE58gtQ9Oy2PU7Py40RmSWsKJkX/aqMziAIW7gGqXhJG759NHX6B+4bNHXq8hbtD2FMq2kh/ViY8V+T0SsVYthNRUd2PRGbAeYocwg0z0pChLy0T+4nmecPZRf/RugN2L71ouvg+8kP1tdtB5pxcOpxaADmDrKve/Zbh8AQbVegGfEYc+i39/8W/+lJ+P0klOlHZQnkjh/FfUmRt4wTY4bG9iqTvGy6Lsryg0XDGMoODXt40iM/DmDHHaCIAiCIAjLTGvPdo0BWnpqCYIgCMJaxY79jvroRmYJM2oR23OKno5TItAmcYOz3SZ/L+lKf9KzPaw294DP60TXTj+luNnZbscecY/it6/+7Qe47K139GSsXhCbJWydbNswSPqkmwWEjoxN2/fUfra6iKbORJa4wZlYI/KJzpGe7b0gNl2stEjGT8Ui084fS7/W6N+4HYCJ46939HoVeYSLiWyGjdVBjLyK1nZKg7Kcphh5W4eoHsTIA1SNZB/uJjFD6D1nRsa4eDYpCFI9KKQYWr+RI2wEwLTyC7yBcqDR2U7+nu1Z0kro1b8TmDpA5xzvbKA6eAGbvIMAGHFA1KPCgnF7szjbVwGDJZsrt60DEGf7OYRsaUEQBEEQhGWmFiOfiu0xCtWBM0MQBEEQhLOTTkXu2HRbnO1VvEUcnvOhDINZ5aL9urPd1T4qp5vadlw8bRNX6zHyVuznF8fdfso0O9tt7XWUAHA2ok0XK05E9szZbvXA2b5hdDszOtm37DSKtxOy1gQ6Ff4bUVFvIm3PFWKrjB2nMfJpiwBD3MA11o/uBGDm5GsdvT7pX7yYs93uLEa+R/HMqxbDxm5xtvdKbPeM5Hxii9i+ogzsvYmySs7TRgFxvJGjpaS3d5EWAaFyUA3OdoswdzGAU0qc7VFDjLyp8/eAPxswN1/CaHyM6sxUGiPfm886UxphizqJJarfivPW3RsAsGVjnDPIlhYEQRAEQVhmdJwK60ajs11i5AVBEARhreIQdCRyx4ZTE2QBCH0C8t+ArVJC+3WnmE0x1+OMKqH9Bqe89jrqRd8O5fTTp2drRYgATuyhrbXpCNZWueZsj1KxvRciljIMjpqjXY9n24koohvEkoyBU09ysrSj8NzOFWKzhJ0WyZw+nMQCD2zatpJTWlUMDG1gVjsEZw519Hoj8giNhUU7w3IwlSaOFi5YNnooYq1GlOXUHP5xFOGoCGX1JkbeN1OxvYvEDKH37L72nczqZJsaPdq2M+uT/uWWnX+8wHBQDUk8tg4hZ8y9nRZ/NTrbkx7wvfm8q5GB7ZdhKM0bLz6JEQc9i8wP+reyhVPYkly+4rz1wiRBwjZkY5wriNguCIIgCIKwzMSp2J4527VSgMTIC4IgCMJapdNe6doqYekGsT3yCAsIRZ4qoYLk5nUY+Ngqyu1sB5hVZWiMpdd+bie6URrAVJrqbIPzHg964PZeldilZD8AgjSKv5vY94U4U0p6YjulzgsVlGHga2uO2D45foqLvSepnn9jT+Z2LtBYSDFx8AChNth64RUrPKvVgzIMjqv1MNmh2B77xIuI7ZmoFwRzi0WafnccEK/hKGrDtLFUTBzHBGlKRa+c7aGVuI0tSWlYUdxShefLVwK9c7bbW6+sjZ2XUDkYUWOMfP5CD7ec7GtxUB/P1CGsYWf7lguSa8SZg09i6KBnLn5jaBsj6hSWEjPHSnPtzvWUbIOSI215zhVEbBcEQRAEQVhmWnu2xxgQS4y8IAiCIKxFdBxTUgFGByKyNt2aaAdJnHJQQGz3jRIqSMRsvxZvnV/g9VQZI6iL4472IafYbpUGAJiePFN7LIm5z3/zf1VjlXBIxLCpl3/AtC4xsv2ingztDSQx3Vk0fKf42OioOUb++Ue+ja0itr3p53syt3OChkIKfewZDplbColYa5HTahhn+mhHrzVjn8hYWOBVqegYtmmD0IixxmPka+JmHOF7iVDZqxYGmdguzvaVZ+a8twJg9KiQ4qpb/wUHfvYrDG0YyT1GZDiYjc528ovj2fmyMUZ+rTvbhzaMcJIh/CPPYMZ+z5ztzoYdOCpinR7vyXhCfkq2ydd/bR+//CZJCjpXELFdEARBEARhucl6tjfEyCuJkRcEQRCENUnNbdiJ2G6VsBti5JPexUXE9jJGmDjbg1SIMQsIMZ5RqTnlARx8VE6x3a4MAlCdSm4I6zimhIey12aMvLJLuKkgWzn8j7xYvrxQhG8j5pYrmKAPq0vXY6DmOtvDZx/goHEe511waU/mdi6g7HKSygD0TzzPyfKuFZ7R6mPcXE/FO9bRa83YI15EZDPMTGwPgKRo58hrL8x5nYpD4rUstqfrEMchQdqeoleCbGwnYnu3RTxC7xm59g5irais29ST8WzH5YqfeW+hMSLTxUi/r0RhiKF0rQgmz3xCbaCDRqd8CGtYbAc44uzAOfMCZhwunubRIZu2JtefzZzsyXhCMa7dsZ7hvrW9Hwt1RGwXBEEQBEFYZuJUWJcYeUEQBEFY+3jVRJzuyG1oudgEtX+qyCvUbzgwy5hh4hSrO9vzCyeBWcYK6zHyrvZzx747lcTZXp1OxPYg8DGVxnDWpiPYsMuUlU8Y+Fw4+yQzozf0bOxr3/0v8f/VP9YKOTslwIaovr/pOOb8U//AoY1v69nczgWUXaaUFlKMeK9SXX/xCs9o9TFtrmMwPNHRa604WFR4MlIRLkxj5H/yZ5/B/fLPMjPV7OY0dO96Ia9GslhxHUWEfnaO75HY7vQDYPeoKEjIz67LbuDkv3yCXXvftNJTqREZbs3ZXiv0KCCOezjooMHZTv4e8GcLUwMXsG7mFcweuvi3XXQVx//Zf8Me2taT8QRB6JwlF9s/97nPoZTit37rt2qPVatV7r77bjZs2EB/fz933nknR482RwkdPHiQO+64g0qlwubNm/nYxz5GGIZLPV1BEARBEIQlp9azvcHZjjjbBUEQBGFN4qdiu9mByK3sMm5DjLwReYQq/w3Y0CxjRanYXk3+bzr5I4FDq4KVivf1ePx84r1TGUrmNTMBwOxMIuKvVbE9SzZ44Ym/o1/NMnTpz/RsbNOy2Di6vev3hcqGBmf7Kz99jM2cou/y23o2t3MBZZdxVMiZE0fYxGnsUUkFaKXqrGdjfBIdL/43j6V99CKJGZmDNgqTYhFj+hjrmeDAt/9T0+uMOESv4Z7tWX92raNa4UGR9JKmsZ0BfG11XcQjLA2btp6/0lNoIjZdzNTZXkvwKdBT3lcONDrbdZi7B/zZgt5wEeeFr2Nrr2c927HLrLv4rURmb84DgiB0zpJeLR977DH++I//mCuvvLLp8Y9+9KP85V/+Jd/85jf5/ve/z6FDh3jve+vRJVEUcccdd+D7Pg899BBf+9rX+OpXv8rv/M7vLOV0BUEQBEEQlgWd9WdXZvJvlIjtgiAIgrBGCbzORW5ll3AbnO1G7BMViBaNrDJ2KrZnrkerQM/20OrDjpKe7V76uTqJx29HqS+JkQ9mU2f7bDKuVVqbkcWmk3yu0z/5Kzxtc8FVb1/hGUGoLFRDz/ajj9/HjHa5+M23ruCszj6MdNu+9tRDAAyff9VKTmdVErjrKamAidPHF32tpf1FXZ51Z3uy/1rBJADnPfMVogazVuJsX7uCXRanr+OQ0EvE9iLn+Eb6L7yBp/re3JOxhLVHbLpYaaJH6Cf7XpEWBh4OhHWx3SZErfEY+cqWSympgNHoyJqPzBeEc4ElE9unpqZ43/vex5/8yZ+wfv362uPj4+N8+ctf5gtf+AI33ngj1113HV/5yld46KGHeOSRRwB48MEHefrpp/nTP/1Trr76am677TY+85nPcO+99+L7/ny/UhAEQRAE4axAx0lkfD1GXnq2C4IgCMJapRav2oEAoqwSjgqJo6Qwz4iDQmJ7bFWw4+T310T/Av13Y7sPJ07G8WpO+XzjlQfWJfOanUzHm0rHW5vO9mzdhw//D15w9+CWVv5zhthNYvvA69/juco1q2JuZxOmm/S2nn75B0RasfXCy1d4RqsP7Sb3hk8deWXR19o6QC/iyjRqzvZk/7WDKQ6pzWzTh/nJ33yj9jpTR+g13LPdyCLe44gwyK41vXG0Xv72n+eaf/udnowlrD206WJnPdvTohfDyn+sBWqu2L7WY+Q3XXAFACXVuxh5QRBWjiX7tnH33Xdzxx13cNNNN/G7v/u7tccff/xxgiDgpptuqj22Z88eduzYwcMPP8y+fft4+OGHueKKKxgZGam95tZbb+XDH/4wTz31FNdcc82c3+d5Hp5Xj76amEhiyIIgIAiCOa9fTWTzW+3zPFuR9c2PrN3SIuvbe2RNlxZZ397hpxF/sU5Ed41C61jWtsfIPru0yPr2HlnTpWW1r+9qnZdQnNBLYuStDpztmUPWq85Q7hvAiH1Csy/379Z2H27c7Gy3C4nt/ZTi5PNkTnQjp9heSXu2x6nYnsXtW6X8n3c1k7UR2B08y2Pb/+cVnk1CZNioVCyZHD/Fxd5T/PCyf7fCszr7yApOnOM/4ZCxhe3ltbkPF0GVE7F98vjrwA0LvtbWPizikDVTsT1ORT43nOT1oesZn36V0mN/BLe8P3mdDtBrWLAz05htHYe1tejkWiMIRdGWi522vQmyQo8CzvZAOahUbI/CEFPpNR8jP7JtN7Paoax8cbYLwhpgScT2b3zjG/zwhz/ksccem/PckSNHcByHdevWNT0+MjLCkSNHaq9pFNqz57Pn2vHZz36WT33qU3Mef/DBB6lUzo6K3P3796/0FNY0sr75kbVbWmR9e4+s6dIi61uc6vgRzgeee+55SqN7CKKYmalJ7r///pWe2ppE9tmlRda398iaLi2rdX1nZmZWegrCEhF4yc1jy1383kQWNe+nYrsZ+/jO+kXeNT/aruDq9Oa1XzxiWA1uYdOhk4SBj5865a2cYrthmkzrErGXiO1BNRHvbXdtCpXZ9jeVpu/i3vVrL0Ko6s72F/7xfq5REdvf/PMrPKuzj2zbbp1+hsOVi9m+wvNZjVjldQB4p15f9LU2ASzSs92wshj55LxWiqc57QxQ3fvrXPPQ3Tz7g7/hkutvxNBh73ohr0Jq/dkbnO2WI72ahWXAKiWFMUCUFowaBQTj0HBQUZrE41cxC453NmCYJoesbVwYvbTmXfyCcC7Qc7H9tdde4zd/8zfZv38/pdLyVdJ9/OMf55577qn9e2Jigu3bt3PLLbcwODi4bPPIQxAE7N+/n5tvvhnblhNrr5H1zY+s3dIi69t7ZE2XFlnf3vHa8z+Bl+CSSy/l1dMaw3LoL5d42+23r/TU1hSyzy4tsr69R9Z0aVnt65ulswlrj6gmgHTgbE/dzzUhOy7Wb1g5FUpkYnvqbC/QE71/22U4z4YcfPlpdBp1n1dsB5hRZbSXxMcHqbPdWaOu4EyQDbTJhde+c2UnkxIZDkaciCTVNw5wmkG2nn/JCs/q7CPbtqMc5+X1717h2axOTMviJEOE44cWfa2jA1SHzvYoTPbfcjyNdge58sZf5rWHf4+h+36Nhx//OS6Mxjm+hsX2rGc7cUgc9LZnuyAsiOXikBx/UbrvmXb+7yuB4WJEyTi+71GCRc8Da4HTlV0w+dKad/ELwrlAz8X2xx9/nGPHjnHttdfWHouiiL/7u7/jD//wD3nggQfwfZ8zZ840uduPHj3K6OgoAKOjozz66KNN4x49erT2XDtc18V1556AbdtelTdS2nE2zfVsRNY3P7J2S4usb++RNV1aZH2LYxoKAMuyAR+UgULLui4Rss8uLbK+vUfWdGlZreu7Guck9IYwdbZ3Et+e9fX2U5d3EoFcRGzvo5zGvGaiv9OBw34+Ri+6Br4LJ14+wODoLgCsAv29q6qMSp3toZd8ZmeN9gvPtv9L9m4u6R9a4dkkxMrGSGPkrfFXOWZtIX+OwrlLY4GIPXrpCs5kdXPa3IAxdXjR17n4i4vtqagXpz3b+/U0qjSIaVmE/+z/4fD+L7Ln8H9nPRO86A4Un/wqpeZi98YJH/sKsVaUV8n5RVjbKLuMkzrbw7ToxSggGEdGqSa2h34WS7/2vxsH63fD5HfPicICQVjr9Fxsf9e73sWBAweaHvvVX/1V9uzZw2//9m+zfft2bNvmu9/9LnfeeScAzz77LAcPHmRsbAyAsbExfu/3fo9jx46xefNmIIn6GxwcZO/evb2esiAIgiAIwrKidQyAYRjJvzEg7d8uCIIgCMLaIgoSR7nTgaM8i1CvTo0n/9Z+IbHd7B/GVhFHX3+ROBPbCzjbN2zexjh9eIefIlyXtPuzCzjbq0YFFSQie+wnzvZSuT/3eKsZO+1Ff3rj9Ss8kzqRYdec7X3TrzFZkQD0PDS2Pli/84oVnMnqZsrehDtzdMHXhIGPpTRqEXd2o7M9DHwqysMsJyLzrr1vYtferxMGPs8deIi9uy7vzQdYhWTr8AtH/4CqKvH4Nb/LmzZtWeFZCecCyiq1cbbnF4wjw8FMY+TDIBHxjQLjnS04o5fAQVBrPDJfEM4Fei62DwwMcPnlzV9i+vr62LBhQ+3xD33oQ9xzzz0MDw8zODjIRz7yEcbGxti3bx8At9xyC3v37uUDH/gAn//85zly5Aif+MQnuPvuu9u61wVBEARBEM4mdJzErqJSsV0pFPEKzkgQBEEQhKUiE7k7EaU3bLsIgPHDL8KVb8HSPtrMHwl8ydvuZPLR/52Xvv0fsEaSeHCnA4f9fCjD4JB9PvbJ5wj9xDCRich58M0KZiq2R14itrtrNEZ+YP0mZrTLwBV3rPRUamjDxkiLQTYGh3hp5IYVntHZiZumMURacd7uK1d4NqsXr7yZDRNPL/ya6gwWi4tsZuoCjcOAqfFTrAOsvnVNr7Fsh4tXScuGpWJg/QhVbfOYdR0X/+p/4k3bdq30lIRzBGWXsFVEGPi1hAmrgBM9Mks4YdJWJvRT8f4ciFYf3nk5PIrEyAvCGsBYiV/6xS9+kXe/+93ceeedvOMd72B0dJRvfetbtedN0+S+++7DNE3GxsZ4//vfz1133cWnP/3plZiuIAiCIAhCT4njxMWuDBNInO1Ki9guCIIgCGuROI1DdTtwlG/YfB5Tuox/7HkAbB1AgRuwA0PDPLXlvVx2+P8lmjpBpFWhm+EAEwMXsn7mJcK0B3wR8T6w+rDCzNmejOeu0Rj5gaFhzI+/wmVvXT1ie2w4mHFAdWaKzZzC3HjBSk/prMSpJGkMh41RSpW1mczQC6L+UdZHJxZ8TZC23TDshc8rZtp6JY58pidOA2BX1hWf5FnGuo2jxP/2FU5d+esMj2xb6ekI5xCGkxQC+t4sUepEL+Jsj00XK07b3oTJ/88FZ/uWCy7ndbWFgS0Xr/RUBEEoSM+d7e343ve+1/TvUqnEvffey7333jvve3bu3Mn999+/xDMTBEEQBEFYfjJnu2pwtkuMvCAIgiCsTWrx7R2I0sowOGJtxTj9EgA2IcosdrP5/Dvuofx/f4PzXvyveDhUjGK+C71pD9tOfocnq4kDzS7gRPdKmxg58yMgiZGf1Q7lgvNbzay2QoLYdDB1wJFXn+F8oH/LRSs9pbOSUnoMHC/vQuTO+TGGtrLhtXF8r4rjtk/s8L2k6MZ0FouRT4qQdBgwO3kKALd/fQ9ne/ZgO2tfkBRWH2ZaEOPNzhBHmdiev5hPWyWsrAd8Jt6fA27vUrmPbf/+mZWehiAIPWDt/gUjCIIgCIKwSsl6tquGnu0SIy8IgiAIaxMdevjaxDDNjl4/Xt5O39SrQHFnO8Do9t38eOhn2a4PEajinou+8y7HVQH+kZ8CnTn258O84O2cH7/GiUOvooNZqkpEo+VEGzaWDjjz+nMAbNq+Z4VndHZi2w6RVlTXSbHCQrjrk1KEE4dfnfc1QdpOYjGHrG0n58U48vGmzgBQGjg3xXZBWAkGRpKWBa//9BHiMOndbtv5295o08XWqbO91gN+7YvtgiCsHURsFwRBEARBWGZ0nIrtqbMdpUBi5AVBEARhTaLDKj6d3zD2h3ax0X8DAIcAZRUXoNe966PJ2F3MYz5Gd18FQOXEAQDcAjHy519/GwCv/OA7qGC2J/MTOkebLqYOqB57gRntsmF0+0pP6axEGQaPbvsXjL71fSs9lVXN1kvehK9NDv79f5n3NWEaI285i8XIZ2J7gD+dxMj3DQ73aKaCICzGhVeM8ZraSvWH/7XWs72IOK6tEnacOdszsV0K8ARBOHsQsV0QBEEQBGGZyWLkM4ebxpSe7YIgCIKwVgk8fNV5tKq1aTcjnGRmahxHhT0R23df9Taecq4kUMXF7I2jO5igj/Nmn6Wq7VpST76xtvOysZP4pe9DWMUXZ/uyok0XSweo0y9z1BwttC3PdcZ+7T+w67IbVnoaq5rhkW38eN3N7Hrh/yHwvbavCfzOYuQtux4jH86cAaB/aEPvJisIwoIow+D1bbez5/T3CGcnALCKtDSwSzgkYnucxshb4mwXBOEsQr5FC4IgCIIgLDNZjDxGKrYriZEXBEEQhLWKjjwCOhfbB7ZcDMAbz/8YoCdiO8DgP/tDjr3t04XHUYbBIXsnGzmD1wPx/ujGG9hx5jFUOItviNi+nCjTxtYB5amDnCmdt9LTEc4BNtx8DyOc5McPfLXt82Has91eJDHDzhyvUUA0O05V2/P2gRcEYWnY+rYPMKBmMZ+7H6i3d8iDssuUdRUdx0RZz/YCsfSCIAjLjYjtgiAIgiAIy00aI29kPduVQmm9kjMSBEEQBGGpCKtdOco3nb8XgNOvJGK70aMY1e0XXcXV7/rlnow1MXAh0JtY+tIl72KU4wyMP0eg5Mb6cqItB4uQYe8NvIGdKz0d4Rzggstv4IB7Leue+ONaa61GwiCJkV9MbDcti1gr4ihAVyeYUn1LMl9BEOZn5yVX84J5IZdPPQSAvUgixUKURi6mojyOvv4iceil40kBniAIZw8itguCIAiCICwzsW7p2Y4B4mwXBEEQhDWJ0aXYPrxpK5O6THz0p8n7V6GzK954CQB+D5ztF15/C6E2uMR/itCUG+vLiTIdStpjJD6GGt610tMRzhXe8hF2Ry/y9MPfmfNU5Gc92xc/74WYEAWo6jizqtLzaQqCsDgndr0HR0XEWmFaVu5xzts7BsDhZ/6x1gPekp7tgiCcRYjYLgiCIAiCsMzomrO9IUZeerYLgiAIwprE9M4waw12/HplGBy1tlI581zy/lUotvdtuxygJz3gB4aGecG+BFNpQmP1fdY1jeXSp6rYKqI8snulZyOcI1z+9n/Cy8b5BH//H+c8FweJo9VxFxfPQ0x0FGD4k8ya/T2fpyAIi7PrnXcRa0VAfqEdYOPoDk6wjurBx2vO9kI94AVBEJYZEdsFQRAEQRCWGa2j5AdDpY8oFBIjLwiCIAhrEccfx7OHunrPeGUHI9WXADBW4c3mkQuvBiBQvZnb6dHE0RaLs31ZUVZ9vYe3XbKCMxHOJZRhcOzSu7h69hHGT59oei4Kkp7tTmnhGHmAQFkQBVjBBJ6I7YKwIoxsu5Bn3MuTpIkCKMPgjfLFVE4+iQ4DQGLkBUE4uxCxXRAEQRAEYbnJnO1KnO2CIAiCsNYph2cInHVdvccfPJ8RTgJgrUJn+6YtO5mgQmgUd7YDDF56EwCRufo+61pGWcn2C7XByI6LVng2wrnE6OXvBOD1p/+x6fE4jZF3FunZDhBioeMAO5gisEVsF4SVwrv+X/F83zWFx5nZcDnnzT5HHCUx8rbEyAuCcBYhYrsgCIIgCMIyo7Oe7Ub6VUyJs10QBEEQ1ip90QRRebir91ib6pHeZge9i5cbZRgcsnYSGr25Eb77up9lVjvE1uICm9A7jNTZfszYJA5CYVnZdtFVzGqHyZcfa3pchx6RVliWvegYESZEIW40RWgPLNVUBUFYhGtueT9X/9u/KjyOu/1aNnKG6NSrRAV7wAuCICw3csYSBEEQBEFYZrKe7ZnYnjjbo5WckiAIgiAIS8RAPIGqdCe2D2y9BJ5IfrZWodgOMH3N/4KOgp6M5ZYqPHLxR+jbflVPxhM6w0id7SedrWxd4bkI5xamZfGqfSHWsQNNj+ugio9N2VjcHxYqC+KAUjxN7Awu1VQFQVgmtl66Dx6GvuM/IsAqGEwvCIKwvIjYLgiCIAiCsMzUnO0qE9tNlBZnuyAIgiCsNQLfY0DNYvRt6Op9m3ZeWvt5tYrt193xv/R0vH3v+52ejicsjpG2KJjp37HCMxHORcbX7WX0VHOMPKGHr2w6ybiIsFBRQCWeRpeGlmSOgiAsHyPbLuQ0A5xf/SkBFqvz248gCEJ7JEZeEARBEARhuUld7IaR1WorFNKzXRAEQRDWGuOnjgLg9G/s6n3Dm7YyqRO5ye6gd7Eg5MFM++Hqdeev7ESEcxJ13tVsj95gauJ07TEdevg4Hb0/UibEIf16GlUSZ7sgnO0ow+C10sUMMkOoFm8lIQiCsJoQsV0QBEEQBGGZ0XHiYjdqPdsN6dkuCIIgCGuQqdPHACgNdie2K8PgiHUeAPYqdbYLZz9Zz3Z384UrPBPhXGTD7jdjKM1rP320/mBYJehQZIuUhRHOUFIBZlmc7YKwFpgevgyAQAKZBUE4yxCxXRAEQRAEYZnRcdqfvalnuzjbBUEQBGGtMXPmOACV9Zu7fu9EZTsgznZh6egbHiHWig27rlrpqQjnIDsuuQZP24y/9IPaYyryCVRnzvZYWVjeGQCsyrolmKEgCMuNs+1aAEIlYrsgCGcXIrYLgiAIgiAsM1pnzvY0Rl6c7YIgCIKwJqlOnABgYP1I1+/1h3YB4LjibBeWhvMvvZ7jv/Y4Oy6+eqWnIpyD2I7Lq/YuzCM/rj2mIq/j+OgIi5KfRNDbfeJsF4S1wOiefUByfAuCIJxNiNguCIIgCIKw3GQ921X2VUx6tguCIAjCWiScOkGsFYPrN3X93v6L3s5raiuOxMgLS8jINomQF1aO00N72Tj5TO3fidjeobPdsOiLzgBQ6h9eiukJgrDMbD3/Eibok57tgiCcdYjYLgiCIAiCsMxkPdtJne1aGRhanO2CIAiCsNaIpk4wqSqYVvcOrSt+5r1s//c/xTDNJZiZIAjCyqO2XMWO6CCz05MAGJFHaHQaI28yGE8AUB4QsV0Q1gLKMDjoXkQkMfKCIJxliNguCIIgCIKw3GTO9rRnexIjH63ghARBEARBWArU7GkmlMQbC4IgtGP97jdhKs2rP30UACPyiToW220GdSLS9w2uX7I5CoKwvFQv+2WOb7t5pachCILQFVIiJAiCIAiCsMxonUTG18R2w5Se7YIgCIKwBjGqp5kxB1d6GoIgCKuSHXuuw9cm4y/+gIndVzNYfYMpd3NH740NC1Mlf0OJ2C4Ia4fr/6cPr/QUBEEQukac7YIgCIIgCMtN3Cy2awwMLT3bBUEQBGGtYftnqNribBcEQWiHW6pw0Dqf9c//OdX/cD1bw9fRV7+/o/fGacz0jHaxHXcppykIgiAIgrAgIrYLgiAIgiAsM5mzXaU921FKnO2CIAiCsAYpBWfwnXUrPQ1BEIRVy6mhvVwcPsfh8kVMfOgfuOaWzsR2bSRi+5TqW8rpCYIgCIIgLIrEyAuCIAiCICwzOm7Xs12c7YIgCIKw1uiLxhkvXbnS0xAEQVi1nH/nZ3jypX/GlW99D8ro3BemU2f7rCFiuyAIgiAIK4uI7YIgCIIgCMuMqvVsz5zthjjbBUEQBGENMhBPQnnDSk9DEARh1bL5vF1sPm9X1++LDRuAqojtgiAIgiCsMBIjLwiCIAiCsMzUYuSVSh5QBoYWsV0QBEEQ1hJxFDGoJ1F9wys9FUEQhDVHFiPvWf0rPBNBEARBEM51RGwXBEEQBEFYZnQcE2tVj0lUSmLkBUEQBGGNMTl+ClNp7H5xtguCIPScVGwP7IEVnoggCIIgCOc6IrYLgiAIgiAsNzomRtX/LTHygiAIgrDmmDx1FABncOMKz0QQBGHtodMY+VDEdkEQBEEQVhgR2wVBEARBEJabOWK7iSHOdkEQBEFYU0ydScT2ytDmFZ6JIAjCGiR1tmtHxHZBEARBEFYWEdsFQRAEQRCWGx2jG7+GKUPEdkEQBEFYY3gTxwEYGB5Z4ZkIgiCsPbSZONt1aXCFZyIIgiAIwrmOiO2CIAiCIAjLjJYYeUEQBEFY8/gTJwEYHBZnuyAIQs9JY+SN0tAKT0QQBEEQhHMdEdsFQRAEQRCWGx2jG8V2Q5ztgiAIgrDWiKZPMqNd3FJlpaciCIKw9jCTGHmzsm5l5yEIgiAIwjmPiO2CIAiCIAjLjY6JW2LkxdkuCIIgCGsLPXOSCSXxxoIgCEuBMh0ALBHbBUEQBEFYYURsFwRBEARBWG50TKzqznalDAwtYrsgCIIgrCWM6mmmTBHbBUEQloS0Z7vTt25l5yEIgiAIwjmPiO2CIAiCIAjLTdwcI6+Vkhh5QRAEQVhj2N5pZi3pJSwIgrAUqFRsd/vXr/BMBEEQBEE41xGxXRAEQRAEYZnRLTHySpkSIy8IgiAIawzXH8d31q30NARBENYmRiK2lwdEbBcEQRAEYWURsV0QBEEQBGGZUVo3OdtRBqY42wVBEIQl4Etf+hJXXnklg4ODDA4OMjY2xne+853a89VqlbvvvpsNGzbQ39/PnXfeydGjR5vGOHjwIHfccQeVSoXNmzfzsY99jDAMl/ujnHWUw3FCd91KT0MQBGFNoqxEbO8b2rDCMxEEQRAE4VxHxHZBEARBEIRlRuuoydmOMsTZLgiCICwJ27Zt43Of+xyPP/44P/jBD7jxxhv5+Z//eZ566ikAPvrRj/KXf/mXfPOb3+T73/8+hw4d4r3vfW/t/VEUcccdd+D7Pg899BBf+9rX+OpXv8rv/M7vrNRHOmvojyeIy8MrPQ1BEIQ1yaZLxni8/50MDIqzXRAEQRCElcVa6QkIgiAIgiCcc7Q425VhSM92QRAEYUl4z3ve0/Tv3/u93+NLX/oSjzzyCNu2bePLX/4yX//617nxxhsB+MpXvsKll17KI488wr59+3jwwQd5+umn+eu//mtGRka4+uqr+cxnPsNv//Zv88lPfhLHcVbiY616dBwzpCdRFXFcCoIgLAW79r6JXXv/20pPQxAEQRAEQcR2QRAEQRCEZUfHc2PklTjbBUEQhKUliiK++c1vMj09zdjYGI8//jhBEHDTTTfVXrNnzx527NjBww8/zL59+3j44Ye54oorGBkZqb3m1ltv5cMf/jBPPfUU11xzTdvf5XkenufV/j0xMQFAEAQEQbBEn7A3ZPMrMs+ZqXGGVIBRWb/qP+9y04v1PZeR9VtaZH17j6zp0iLr23tkTZcWWd+lRda398iaLi2rfX07nZeI7YIgCIIgCMuM0vGcGHlIXHDKkC4/giAIQm85cOAAY2NjVKtV+vv7+Yu/+Av27t3LE088geM4rFu3run1IyMjHDlyBIAjR440Ce3Z89lz8/HZz36WT33qU3Mef/DBB6lUKgU/0fKwf//+3O/1pk7wi8DLh05y+P77ezepNUSR9RVk/ZYaWd/eI2u6tMj69h5Z06VF1ndpkfXtPbKmS8tqXd+ZmZmOXidiuyAIgiAIwjKjW5ztKhXb4zjGFLFdEARB6DGXXHIJTzzxBOPj4/z5n/85H/zgB/n+97+/pL/z4x//OPfcc0/t3xMTE2zfvp1bbrmFwcHBJf3dRQmCgP3793PzzTdj23auMV468DA8D1e96S1ceNXbezzDs5terO+5jKzf0iLr23tkTZcWWd/eI2u6tMj6Li2yvr1H1nRpWe3rmyW0LYaI7YIgCIIgCMuNjtFqrrM9jiNM+XomCIIg9BjHcdi9ezcA1113HY899hh/8Ad/wC/90i/h+z5nzpxpcrcfPXqU0dFRAEZHR3n00Uebxjt69GjtuflwXRfXdec8btv2qryJ0o4ic/WnTgIwuGHrWfN5l5uzaV9Yjcj6LS2yvr1H1nRpkfXtPbKmS4us79Ii69t7ZE2XltW6vp3OqefWqS996UtceeWVDA4OMjg4yNjYGN/5zndqz1erVe6++242bNhAf38/d955Z+0P9YyDBw9yxx13UKlU2Lx5Mx/72McIw7DXUxUEQRAEQVgZtG6KkVcNYrsgCIIgLDVxHON5Htdddx22bfPd73639tyzzz7LwYMHGRsbA2BsbIwDBw5w7Nix2mv279/P4OAge/fuXfa5ny14kycAGNwwssgrBUEQBEEQBEEQhLOZnluntm3bxuc+9zkuuugitNZ87Wtf4+d//uf50Y9+xGWXXcZHP/pRvv3tb/PNb36ToaEhfuM3foP3vve9/MM//AMAURRxxx13MDo6ykMPPcThw4e56667sG2b3//93+/1dAVBEARBEJYdpaOmGHlME4A4ErFdEARB6C0f//jHue2229ixYweTk5N8/etf53vf+x4PPPAAQ0NDfOhDH+Kee+5heHiYwcFBPvKRjzA2Nsa+ffsAuOWWW9i7dy8f+MAH+PznP8+RI0f4xCc+wd13393WuS4khBPH8LRNX//QSk9FEARBEARBEARBWEJ6Lra/5z3vafr37/3e7/GlL32JRx55hG3btvHlL3+Zr3/969x4440AfOUrX+HSSy/lkUceYd++fTz44IM8/fTT/PVf/zUjIyNcffXVfOYzn+G3f/u3+eQnP4njOL2esiAIgiAIwvKiY2IlznZBEARh6Tl27Bh33XUXhw8fZmhoiCuvvJIHHniAm2++GYAvfvGLGIbBnXfeied53HrrrfzRH/1R7f2maXLffffx4Q9/mLGxMfr6+vjgBz/Ipz/96ZX6SGcH429w3NjINqPngYKCIAiCIAiCIAjCKmJJm4JGUcQ3v/lNpqenGRsb4/HHHycIAm666abaa/bs2cOOHTt4+OGH2bdvHw8//DBXXHEFIyP1qLVbb72VD3/4wzz11FNcc801bX+X53l4nlf7d9a0PggCgiBYok/YG7L5rfZ5nq3I+uZH1m5pkfXtPbKmS4usb+/QOkajamsZ6+Rxz/NxSrK+vUL22aVF1rf3yJouLat9fZdqXl/+8pcXfL5UKnHvvfdy7733zvuanTt3cv/99/d6amsae+oNzjgjbFvpiQiCIAiCIAiCIAhLypKI7QcOHGBsbIxqtUp/fz9/8Rd/wd69e3niiSdwHId169Y1vX5kZIQjR44AcOTIkSahPXs+e24+PvvZz/KpT31qzuMPPvgglUql4CdaHvbv37/SU1jTyPrmR9ZuaZH17T2ypkuLrG9xSmfOsDnWtbV89eBr3AD8zd/8Nbbbt7KTW4PIPru0yPr2HlnTpWW1ru/MzMxKT0HoIf3VI0z071rpaQiCIAiCIAiCIAhLzJKI7ZdccglPPPEE4+Pj/Pmf/zkf/OAH+f73v78Uv6rGxz/+ce65557avycmJti+fTu33HILg4ODS/q7ixIEAfv37+fmm2/Gtu2Vns6aQ9Y3P7J2S4usb++RNV1aZH17xw9e+++oUxY333wz+/fv5/xdu+AEvPNnfoah4c0rPb01g+yzS4usb++RNV1aVvv6ZulswtpgfXiM0/1vXelpCIIgCIIgCIIgCEvMkojtjuOwe/duAK677joee+wx/uAP/oBf+qVfwvd9zpw50+RuP3r0KKOjowCMjo7y6KOPNo139OjR2nPz4bouruvOedy27VV5I6UdZ9Ncz0ZkffMja7e0yPr2HlnTpUXWtzgGMVoZtXU0zeQrmWkYsrZLgOyzS4usb++RNV1aVuv6rsY5CfkIfI+N+jSvrN++0lMRBEEQBEEQBEEQlhhjOX5JHMd4nsd1112Hbdt897vfrT337LPPcvDgQcbGxgAYGxvjwIEDHDt2rPaa/fv3Mzg4yN69e5djuoIgCIIgCEtL2rO9hkq+ksVxtEITEgRBEAShG6YnzxBH7a/bxw+9gqE05Y07l3lWgiAIgiAIgiAIwnLTc2f7xz/+cW677TZ27NjB5OQkX//61/ne977HAw88wNDQEB/60Ie45557GB4eZnBwkI985COMjY2xb98+AG655Rb27t3LBz7wAT7/+c9z5MgRPvGJT3D33Xe3da4LgiAIgiCcfWi0qtc8KiP5Wet4pSYkCIIgCEIXnPnCm/nJzvcy9i8+N/e5wy+xFRgcvWD5JyYIgiAIgiAIgiAsKz0X248dO8Zdd93F4cOHGRoa4sorr+SBBx7g5ptvBuCLX/wihmFw55134nket956K3/0R39Ue79pmtx33318+MMfZmxsjL6+Pj74wQ/y6U9/utdTFQRBEARBWBFUi7NdGclXsvkccoIgCIIgrB7OnDjCefoo9iv/lTD4NJbtND0/c/wVADadt2sFZicIgiAIgiAIgiAsJz0X27/85S8v+HypVOLee+/l3nvvnfc1O3fu5P777+/11ARBEARBEFYHOkbT6GxPhHeJkRcEQRCE1c+Rlw6wDtjMKZ74u29x9bt+uen58NRrnGaA9f1DKzI/QRAEQRAEQRAEYflYlp7tgiAIgiAIQgO6JUZemcnDIrYLgiAIwqpn4rWniLXiFWMH+vGvzXleTb7BKXPTCsxMEARBEARBEARBWG5EbBcEQRAEQVhm5sTIq+RnHeuVmpIgCIIgCB0SH3+Ow8Zmju75AFdMP8LxQ680PV+aOcSEO7oykxMEQRAEQRAEQRCWFRHbBUEQBEEQlp242dlupM52Lc52QRAEQVjtlMZf5ERpJ5fe8iF8bF548D81PT/oHcWvbFmh2QmCIAiCIAiCIAjLiYjtgiAIgiAIy0yrs51UeI/jeIVmJAiCIAhCp2ysvsLs4IUMrtvAU+tvZOer3yKO6gVzG6Nj6KFtKzhDQRAEQRAEQRAEYbkQsV0QBEEQBGG5ae3ZbiQ/S892QRAEQVjdVGen2RIfxdh0MQADb/kQW/VRnn742/D/Z+++w9uqzgeOf6+25b33trP3dgghhJCwdyllldlBKAXaAm1pS+HX0gJdtJQuZimFUlaBQAgrrCxnT4947ykPyda8vz8U21EsDzl27MD7eR6eJ7733HOPjmVJ6D3ve4B2SzOhShf6qLTxHKYQQgghhBBCiBNEgu1CCCGEECeYwrF7th8pIy+Z7UIIIcSEVlt6AK2iEpo6HYDJC86ggSg697wJQHN1MQDBcRnjNUQhhBBCCCGEECeQBNuFEEIIIU4wRT12z/aeMvKS2S6EEEJMZC1l+wBIyJoFeN/DyyKXktT0KQDt9eUARCZmjs8AhRBCCCGEEEKcUBJsF0IIIYQ40VSVoz+GKRrJbBdCCCFOBo76Q7QSSmRsYu8x3ZSzSPNUU11ykO6mclyqhpiE9HEcpRBCCCGEEEKIE0WC7UIIIYQQJ5iCB1U5uoy87NkuhBBCnAz0rcXU6X33Y89dci5OVUvVttfxWCppVKLR6nTjNEIhhBBCCCGEECeSBNuFEEIIIU401YNK/zLyqiqZ7UIIIcREFmEtpSPEt0R8aHgUhcbpmMo+QN9ZTas+fpxGJ4QQQgghhBDiRJNguxBCCCHECdZvz/bezHYJtgshhBATlcftJslVhSc6t9+5jpQVTLLtJMxWgS0oYRxGJ4QQQgghhBBiPEiwXQghhBDiBFPwAEeVkZfMdiGEEGLCa6guwazYCUqa1u9c/IILCFIcTHIV4gxJHofRCSGEEEIIIYQYDxJsF0IIIYQ4wRRV9cls12i0AHhkz3YhhBBiwmos3QtATMbMfucypsynnmgANBGpJ3RcQgghhBBCCCHGjwTbhRBCCCFOOA8ofZnt9ATepYy8EEIIMWFZqw9gV/UkpPUvI69oNJRHLQXAFCPBdiGEEEIIIYT4spBguxBCCCHECaaoHtSjPoZptJLZLoQQQkx0SnMR1dpktDqd3/P6KWcBEJE06UQOSwghhBBCCCHEOPL/f4hCCCGEEGLMKKh92ez0lZFXJbNdCCGEmLBCOkqxmNMHPD9n1ZUcDI9l6pR5J3BUQgghhBBCCCHGk2S2CyGEECcRl9OB2+Ua72GI46SoHp8929F4S8qrqmS2CyGEEBNVtKMGe1jGgOcVjYapi9ecuAEJIYQQQgghhBh3EmwXQgghTiL7f3seW5/63ngPQxwnBRXo27Ndo3gz22XPdiGEEGJicti7iVWb0EZljPdQhBBCCCGEEEJMIFJGXgghhDiJRNqrcLcZx3sY4jgdm9muaLz/VlUJtgshhBATUUNlMSmKijk+e7yHIoQQQgghhBBiApHMdiGEEOIkEuSxYXC2j/cwxHE6ds/23mC7ZLYLIYQQE1JrTREAkcmTxnkkQgghhBBCCCEmEgm2CyGEECeRYNWGydUx3sMQx0lRPahHlZFXFMlsF0IIISYyW/1hXKqGuJSs8R6KEEIIIYQQQogJRILtQgghxEnC5XRgVuyYPRJsP9kpeHwy2zWaI3u2q+5xGpEQQgghBuNpKadBE4veINv5CCGEEEIIIYToI8F2IYQQ4iRh7WgDIETtHOeRiOOloPru2a7VAaC6JbNdCCGEmIiMHeW0GBLHexhCCCGEEEIIISYYCbYLIYQQJwlrewsAYdhwu1zjPBpxPBT12Mx2b0l5KSMvhBBCTEyhXdXYzCnjPQwhhBBCCCGEEBOMBNuFEEKIk0R3p6X33x2WpvEbiDhuCqqUkRdCCCFOIrHuOjzh6eM9DCGEEEIIIYQQE4wE24UQQoiThN1q6f13pwTbT2qK6gGU3p81Gu9HMtUjme1CCCHERNNuaSaCTnSxmeM9FCGEEEIIIYQQE4wE24UQQoiThMPa2vtvW3vzOI5EHK9j92znSGa7lJEXQgghJp7GigIAwhJzx3kkQgghhBBCCCEmGgm2CyGEECcJp62999/d7ZLZfjJTOGbPdkX2bBdCCCEmqvbaIgBiUiTYLoQQQgghhBDClwTbhRBCiJOE29bW+2+HtWUcRyKO14B7tksZeSGEEGLCsTeWYFVNRMYkjvdQhBBCCCGEEEJMMBJsF0IIIU4Sanc77QTjUjW4jyopL04+GtU3s13pCbZLZrsQQggx4SiWChq0CSga+QpFCCGEEEIIIYQv3XgPQAghhBDDo9rbsWLGpWjx2CSz/WTm3bNd2/uzVntkz3aPe7yGJIQQQogBBHVWYjEljfcwhBBCCCGEEEJMQLIsWwghhDhJaOwddGuCsSohKF2W8R6OOA7ePduV3p97ysjLnu1CCCHExBPhqMEemjbewxBCCCGEEEIIMQFJsF0IIYQ4SWicnXRrg7Fpw9DY24a+QExYx+7ZrvQE3mXPdiGEEGJC8bjdJLjrISJ9vIcihBBCCCGEEGICkjLyQgghxElC5+zAoQsGVUXvkGD7yUyjqig+e7Zr8KiK7NkuhBBCTDBNdRXEKS6C4rPGeyhCCCGEEEIIISYgyWwXQgghThIGlxWnLhSnIRyDq328hyOOg4IHVfH9GOZBkTLyQgghxATTVFkAQETSpHEeiRBCCCGEEEKIiUiC7UIIIcRJwujuxG0IwW0IJ8jVMd7DEcfh2DLy4A22S2a7EEIIMbFY64oBiE+TYLsQQgghhBBCiP4k2C6EEEKcJEweG6o+BNUUQbBHgu0nMw0e6Nmn/QgVjQTbhRBCiAnG1VxGI5GYzCHjPRQhhBBCCCGEEBOQBNuFEEKIk0SQakM1hUFQBKFq53gPRxwHBRVF0foc86CgeiTYLoQQQkwkGms9Fm30eA9DCCGEEEIIIcQEJcF2IYQQ4iQRotpQjGFog6MwK3Yc9u7xHpIYIQ0q6jGZ7R40oLrHaURCCCGE8EfrsuHQBo33MIQQQgghhBBCTFASbBdCCCFOAvZuG0bFiTYoHH1wFADtrY3jPCoxUgoeFNmzXQghhJjwtK4uXBJsF0IIIYQQQggxAAm2CyGEECcBa3srADpzOIZQb7Dd2tY8nkMSx0GDChrfj2GqInu2CyGEEBONzt2FW4LtQgghhBBCCCEGIMF2IYQQ4iTQ1WkBQB8cjjk8xnusTTLbT1aK6gF/me2yZ7sQQggxoeg93bh15vEehhBCCCGEEEKICWrUg+0PPvggCxcuJDQ0lLi4OC666CIKCgp82nR3d7N27Vqio6MJCQnh0ksvpb6+3qdNRUUF5557Lmazmbi4OH7wgx/gcrlGe7hCCCHESaGrwwKAMTiC4CPBdnunZLafrDSo/YLtKhpUyWwXQgghJhSD24ZHJ5ntQgghhBBCCCH8G/Vg+8aNG1m7di2bN29mw4YNOJ1OVq9ejdVq7W1zxx138MYbb/DSSy+xceNGampquOSSS3rPu91uzj33XBwOB59//jnPPPMMTz/9ND/96U9He7hCCCHEuHK7XGx66m6sR4LpA7EfyWw3hUQQGuENtjs7W8d4dGKsKH6C7R4UFFUdpxEJIYQQwh+D2o1HL5ntQgghhBBCCCH80412h++8847Pz08//TRxcXFs376d5cuX09bWxhNPPMHzzz/PypUrAXjqqaeYOnUqmzdvZsmSJbz77rscOHCA9957j/j4eObMmcMDDzzA3XffzX333YfBYBjtYQshhBDjoqJgO3nlf2F3/gJmn/6VAds5bW0AmEMjMZlD6Fb1uKwtJ2qYYpRp8KD0y2xXUFX3OI1ICCGEEP6Y1G7QB4/3MIQQQgghhBBCTFCjHmw/VlubNzgQFRUFwPbt23E6naxataq3zZQpU0hLS2PTpk0sWbKETZs2MXPmTOLj43vbrFmzhm9/+9vs37+fuXPn9ruP3W7Hbrf3/tze3g6A0+nE6XSOyWMbLT3jm+jjPFnJ/I6czN3YkvkdfSfjnLY1VAFg72gZdNz2Tm9g3RgUgtPppEMJwWNtPaGP9WSc34lKg4pH9Z1TDxpUj1vmdxTJc3ZsyfyOPpnTsTXR53eijuvLzqTaUQyS2S6EEEIIIYQQwr8xDbZ7PB5uv/12TjnlFGbMmAFAXV0dBoOBiIgIn7bx8fHU1dX1tjk60N5zvuecPw8++CA///nP+x1/9913MZtPjv8x3rBhw3gP4YSyV24js+VjamZ/74Tc78s2v6NJ5m5syfyOvpNpTp1lW5gDVB4+SO26dQO2c5cWYFd1vP/hRgBmEExHQwXrBrlmrJxM8ztRnYNKTW0dDUfmcsOGDSxSFVqamsbld/pFJ8/ZsSXzO/pkTsfWRJ1fm8023kMQx1A9HoLoRjFIZrsQQgghhBBCCP/GNNi+du1a9u3bx6effjqWtwHghz/8IXfeeWfvz+3t7aSmprJ69WrCwsLG/P7Hw+l0smHDBs4880z0ev14D+eEyf/7Oma5DzD7rLNQNJqhLxihL+v8jgaZu7El8zv6JuKcNlSV4Oi2kpIz0+/5bf/Oh1ZIjAph4TnnDNjPtuc2YWsP4pwjbYr3/Zook4c5g1wz2ibi/J6sNDs8JKekMOvMM3vntG2nhqjIiEGfByIw8pwdWzK/o0/mdGxN9Pntqc4mJg6HvYsQRUVjlGC7EEIIIYQQQgj/xizYfuutt/Lmm2/y8ccfk5KS0ns8ISEBh8OBxWLxyW6vr68nISGht83WrVt9+quvr+8954/RaMRoNPY7rtfrJ+QXKf6cTGMdDfruJoyKE5uzG3NI+Njf70s2v6NJ5m5syfyOvok0p/X//T4mZyv6H/lfeKaxNgKgODoGHbPisGJVgok80sauD0PvHPyasTKR5vekpahotLreedTr9aiKBkVRZW7HgDxnx5bM7+iTOR1bE3V+J+KYvuy6bB2EADqTBNuFEEIIIYQQQvg36unEqqpy66238uqrr/LBBx+QmZnpc37+/Pno9Xref//93mMFBQVUVFSQl5cHQF5eHnv37qWhoaG3zYYNGwgLC2PatGmjPWQxToz2ZgDaWxqGaCmEECevOFsREc76Ac/rurzBdo198Gw2jaOdbk3fF71OfThGl2TAnYxUjwcARfH9GOZBAdUzHkMSQgghhB92WycAWmPIOI9ECCGEEEIIIcRENeqZ7WvXruX555/n9ddfJzQ0tHeP9fDwcIKCgggPD+fGG2/kzjvvJCoqirCwML7zne+Ql5fHkiVLAFi9ejXTpk3jmmuu4aGHHqKuro57772XtWvX+s1eFyenEGcrAJ2tDZCWO86jEUKI0ddl7SDJU4cTHarH43fLDJO9CQCto2PQvrTOTuxac+/PbmM45o7BrxETk8fjQQuoxwTbVTQSbBdCCCEmkJ5guyEodJxHIoQQQgghhBBiohr1zPbHH3+ctrY2VqxYQWJiYu9/L774Ym+b3/3ud5x33nlceumlLF++nISEBF555ZXe81qtljfffBOtVkteXh5XX3011157Lffff/9oD1eMo1CPBYDu9qbxHYgQQoyRqqJdaBQVo+Kk3dLst02I03tc5+octC+dsxOHru+LXtUUQbBHgu0nI7fbBfTPbFcVBUVVx2NIQgghhPDD2e39rKUPksx2IYQQQgghhBD+jXpmuzqML4lNJhOPPfYYjz322IBt0tPTWbdu3WgOTUwgbpeLSLUNFLB3SLBdCPHF1Fq6q+/f9eWER8X2axPh8Vb5MAwRbDe4OrEFJfb+rDFHEqpaB8yYFxOXx+MG6Pd7k8x2IYQQYmJxdFkBMJgls10IIYQQQgghhH/y7bwYF5bmOrSKd2GGq9N/tqcQQpzsPHX76Vb1AHQ0Vvc7b++2EUEnNtWI0T14sN3oseI29H3RqzVHYlScdB/5ElicPHr2bKdfGXnZs10IIYSYSNx27+czkwTbhRBCCCGEEEIMQILtYly0N/UFnTzW0Q+2b//NxWx++kej3q8QQgTC3FZEYdAsALpb+wfbWxtrAKjRpRDkGTxoHuSx4Tkq2K4PjQagwyLVQU42PZntHJPZ7pHMdiGEEGJCcXV7P58ZJdguhBBCCCGEEGIAEmwX46KzuQ6ALtWA0tU66v1ndGwnqD5/1PsVQohAJHSXYI2eRTvBuNpq+51vP5LtbjFnEKwOHmw3q1Ywhff+bAyNAsDaJsH28dJUV8GhrRsCvs5zJLO9/57tGhTVPSpjE0KIk0Wbzcmmw828sqMKq9013sMRwofH7v18Zg6WYLsQQgghhBBCCP9Gfc92IYbDbvEGnWp0KWjtllHtu6OthWjaaLfXjWq/QggRiLaWRuJooSJpOq21USid/V+TbC3ezHZnZDYh7R8MuP+66vEQrHahMfV90WsO82a2d0mwfdwc/s+PyW75GBaVD9imcMdHpE1ZgMkc0ntswGC7lJEXQnyJON0ervz7ZraV9S28zYot5s9XzWNKQtg4jkyIPh6HFYeqw6A3jPdQhBBCCCGEEEJMUJLZLsaFq6MBm2qk3ZiAwWEZ1b7ryw4CEONuGNV+hRAiENWF2wGIzpxDhz4ag62+XxuHpRa3qqCPyUarqFg72/z21d1lRa+40Zr6gg8hEbEA2DtGfysOMTzJrduIwUKXtcPv+S5rB5mvX8Led57wPXGkjPyxCytURQOoYzFUIYSYcD4qaGRbWSsPXDSDDXcsZ8MdyzHqtFz4p8/499YKVFVeD8X4Ux02uhTjeA9DCCGEEEIIIcQEJsF2MS7UzkYsmgichghMTv/BpZFqqy4EIFTpoq1VMj6FEOOjo2IPTlVLcvZMuo2xBNn7vx65O+ppVcJ791+3trf47cva4c360wVH9B4LjYgBwGkd/a04xNDqqw6TonqrtDRUFvlt01BRiF5x47JU+xzvyWxH0focV1FQJLNdCHGSaGjvxuMZeUD8P/mVzEgO45ol6eTGh5IbH8qrtyzl0vkp/PCVvdz+4i46pay8GG8OK92YxnsUQgghhBBCCCEmMAm2i3Gh62qkQxuJxxSJ2d0+qn07GvuCHs3Vh0e1byGEGLaGg1RpUzAYTbjMcYS6+mega6wNtGkjMR4Jond1+A+c244E4Q3mvj3b9QYjrYThqT84+mMXQ6rYvr733221JX7bWGq970caW6PPcU9PZnu/MvIaKSMvhDgptHU5Oe3hj/jhK3tHdH1DRzcfHGrg8gWpPsdNei2/vHgmj35tLu8dqOeCP37KgZrR/X8FIQKhOG3YNRJsF0IIIYQQQggxMNmzXYwLQ3cTNkMUalAkIar/8rsjpW0tpYEo4mihvb4UJs8b1f6FEGI4QtuLaAnOJhMgNIHo2pZ+e7Lruxqx6qMJC40EoHuAYHv3kfLyxpBIn+MF8ecyre41rB2/JDg0YiwehhiAWvoJZZpUUtzVdDWW+m3TVe8Nwuu7fKsaqD0BdX9l5KVsshDiJLC5pJkup5sX8ytZkBHJV44EzXdVWnhzdw23rcolzKQf8PrXdlaj1ShcMDvJ7/kLZicxMzmcW/61g2uf3MqWH52BVqP4bfv79wqxuzxMSwwjMyaYqtYuDtS2U9ZkxXPkNdVs0PLQZbOP81GLLyPFZcOhSLBdCCGEEEIIIcTAJNguxkWws4Xm8OlozFGEqZ143G40Wu3QFw5DiK2SytDZRLR/jL2pbFT6FEKIQKgeD0mOUg4mLQNAH5FEkOKgvb2VsIjo3nZmRzMd5jSCjgTb7VaL3/4cR44HhUT4HM8493uYn3iR7ev+wuKv3jPqj0MMLKUtn4rYFRgaP8LTWuG/kaUcgCCHb1UD9UgZ+f6Z7VJGXghxcvi0qIn0aDOLM6P4yev7mJEczmfFTfzq7UO4PCqbS5t55vpFRIf03+taVVX+k1/FmukJRJgNA94jMyaYn18wncv/uon9NW3MSono16a5087v3ysizKSjvbuv5Hx0sIHsuBAMWu/rrNMtr61iZLSuLhyaoPEehhBCCCGEEEKICUyC7WJchLlbaTLHYgiNRquotFmaCI+OH5W+YxzVlMQtorHzAB5L5aj0KYQQgWiuqySGTkxJMwAIikoGoLWu3CfYHupqptW8gOCwKACcNovf/nqOm4/JXk9Iy2V72AqSDz2F2/V9tDp5Wz8RakoPkaQ2UJ9zGq2WQxg6/b/XGDu8QfgQl2/FgoHKyHsUDSABISHExPdZcRPLcmL4yXnT2FPVxkWPfYbd5eHmUzM5f3YSNzydz+V/3cRzNy0mMdw3ULmz0kJxQyc/O3/akPeZmxZBsEHLJ0VNfoPte6q9lV/e/M6phJh0lDZ1khppJjbUiKL4z4QXIhBaVxcurQTbhRBCCCGEEEIMTPZs/5KwdljY8c7T4z0MwJvRF6G2oYTEYgyNBaC9tWFU+rZ1thFHC9qYbCz6BAyd1aPSrxBCBKK2aDsAcTlzAQiL9ZbX7Wiq6m2jejxEeiwooXEEh4TjVhXctja//Tlt3v1qg8Mi+50LPf27pKh17PnghVF9DGJg1TvX41EVshaswWZOJqSrxm+78O4aPKpCuGrxOd6b2a459mOYRjLbhRATXrWli5ImK8tyYjDptTx+9XzmpEbwj2sX8ONzpzErJYKXvpVHt9PD1f/Ygsfjuz3GS/mVJEcEsTQ7Zsh76bUaFmdF81lxk9/zeyrbiDDrSY0KIirYwPz0KOLCTBJoF6NG55ZguxBCCCGEEEKIwUmw/Uti//onmbf5u1ia6sZ7KLRbmjEobnRhCZgjvF+yWS2jE2yvLz8EQGjSJGxBiQR3jf/jFUJ8+Vir9tGlGkhMnwJAVII32N7d0heUtXa2YVbs6MITUDQarIoZtct/sN3T1UaXakBv6F+Od9K8FRzUT8e47fExeCTCH6XsE0p0WYRHxeIKSyXaVd+vjerxEOeup1ybRhg2urusvec8R4LtKL7bp6iKlJEXQkx8nxU1oSj0BsszY4J58Zt5rJrWV6UqMyaYP145l8ONVjYWNfYeb7M5eX1XDZfNTxlwD/ZjLcuJIb+slS6Hu9+5PVUWZiaHS3BdjBm9pwu3ToLtQgghhBBCCCEGJsH2Lwl382EAmqoPj/NIwNLozTYPikwgOCIOAHt782CXDL/vKm+wPTZ9Kq6wFKL8BECEEGLMtVfTqI1Fo/UGU80h4XSqQbja+oLtrQ3eLPegiCQArJhR7e1+u1PtHVgV84C361rwbaY597H10as5lP9+b+a0GH2qx0Na+3aaYhYBoItKJwYL3bZOn3aW5npClC4aw2d6f26s8ekDQDkm0KSiAQm2CzHuyput1LV1j/cwJqxPipuYlRxOuFk/aLu5qRFMTwrjuU3lvcee31qBy61y9ZL0Yd9vWW4MDreHbWUtPsdVVWVPdRuz/ZSXF2K0GDzdeCTYLoQQQgghhBBiEBJs/5Iwtnv3je1sKB+i5djrbPYGHEKiEwmL8gbbHR3+S0MGyl5fTKcaRFRsEtqIVGLUVhx2+bJUCHFi6W0NdOiifY61aKOgs28BUEeTd+FRaKx3P/cuTTCaAYLtir2DrkGC7XNWXcmm9G+R1rKJKW9eQvEvF/UL/gpwOR2UHth2XH1UHd5LHC0ETV4JgDkuC4CGqmKfdo2VhQAoqd6gfHvT0cH2nj3bj81s16DInu1CjLvv/Hsn//fWgXG597q9dbxwWIP7mNLrgehyuKlqtY3iqPp4PCqfFzdxSs7QJeAVReHqJel8UNBAZYsNh8vD05+XctHcJGJD+1dqGUhuXAhxoUY+PaaUfF17N40ddmalhAf8OIQYLoOnG1UfPN7DEEIIIYQQQggxgUmw/UsivLsSAHtLxTiPBLottQCEx6ZgCgrGphpxW0cns11jKaVOl4Si0RAUm45GUWmqLR2VvoUQJ87W//6Wba/8YbyHMWImeyNdxlifYx26aPS2vmB7V4v3tTAi7kiJeW0IWkeH3/40dgvd2oG/6NVoteRd/2viflLI1tn/R66riOriPcMa6+bHv8mhrRuG1fZkt+3fD5Dy4hpaG2tH3Efdgc8AyJq/CoDIpGwALDW+lWM6aosAiJu6DABba989VfVIsP2YPdtVFFBHHmATQhw/m8PF/pp2ihtO/IKlbqebB9YdYlODhj99OPJqVA+tP8QZv9nI9vKWoRsH6GBdO81WB8tyhw62A1w4J4kQg45/b61g3d5a6tvt3LgsK6B7KorCspwYPi3yDbbvrvRuvTJLMtvFGDKq3aj6gRc8CiGEEEIIIYQQEmz/ElA9HhJc3i/5PZbqcR4NONvqcag6wsKjAGhXQlFto/NlYHBnBe1BKQBEJHq/yGuvKxuVvofL3m2js731hN5TiPFQUbiLzX+5ZUxKlqfs/wuhB18Y9X5PlDBnMy5znM+xLmMsQfa+QIGzrZZuVU9oWCQADl0IOlf/4I7TYSez9XNawqcPeV+NVkvW4gsA6BhGJZPO9laW1L9Ax2d/G7LtRKR6PDTWlNFl9b9I4Whul4uMkn+jV9yUbl8/4nu6W6toJZTQI+9hccmZuFQNXY2+C7scTaW0E0xS9gzvz5a63nOeIxmrxwbbUTS9e7a3W5qxd49NZqoQXwRuj4rF5hj1fndXtuH2qJQ321BP8OKXF7ZW0GJ1kBfn4bGNJWwsbOzX5mBtO/e8vIeK5oFfHz4pasLlUbnxmXy/iwZsDhc/e30f9/1vP//ZVklR/dCvoT0+K27CpNcwPz1yWO3NBh2Xzk/hP/mV/O3jEk7NjWFyQuiw79djWW4MB2rbaeq09x7bW20hLtRIQrgp4P6EGC4T3SgGCbYLIYQQQgghhBiYBNu/BFoaawhWvKXU9daaIVqPPbWzgVYlvDfIYNWGoem2jErf0Y5q7GEZAMQme7MNbY0ntnT+zqe/T+2jZ57QewoxHqo3PsWSun9RX10yqv3WlheQpNYT5awbuvEEFelphdB4n2Mucxyhzr4qHmpnPS2ayN7XQpc+BIOfYPve958nllbiVt4yvHvHJeNUtdhbKodsW1WwHYCMtm0n1T7vBza/w94HV2C5P53Yv81m/1+vG/KafR//l0QasaomnMUbR3xvpaOaFm1f1QKd3kCjEo2n1fe9RttWToM2Ab3BSCuhuDsb+k72lJHX9C8jDyptLY10/X4hO5+4bcTjFOKL7qnPSlnxyEd0O92j2u+OCu+CyS6nm/p2+xCtR4/d5eavH5dw/qxELs/ysDwnhttf2Mn+mjaqLV0UN3Ryz8t7OPfRT3hhWyXPbfH/+baho5vihk7uu2A6caFGvv7kVhra+7ZUcrk93Pr8Tl7aXsXHhY3c/coeVv/+Y/LLhrfw9aOCRhZlRmPUaYdufMRVi9No6nRwoLadm04NLKu9R0/Z+s8P972P7qlqk6x2MeaCVDuKQcrICyGEEEIIIYQYmATbvwQaKw4BUKrJwNw1/sErra2Rdm1fNkyXLgyd/fgzwbttnSTQhC7GG2Q3mUNoJhx36/GXzt/68u+pLN47rLZmSyG5riKa6sa/ZL8QYymscScAdYe2jmq/lTveBSBGbT0pM3ttnW2EKF3owhJ9T4QmEO3pCxJorQ10aKN6f3YbwjC6+wfbjTuf4qB+GpnTFw/r/lqdjiYlCo+lasi2bWW7AIillbJD24fV/0Rg3fQkCfYyDqVdwe6gRcR1Hhz6om1PUKzNZn/0mcS3jHzfdpOtlg6Db9WCFkMChg7f+Q6yVtFuSgagTROBYu3LUPUcyV5XlGPLyHsz2wufuZV4mklr2nhSLYIQ4kR6Z18dFpuTjwr6Z38fj50VrSRHBAFQ2mQd1b4H8/L2aurau/nW8kw0Cjx82QzMBh3nPvopp/zqA1b9diPv7K/jp+dN4yvzU1i/v85v5v2mI8HoNdPjefr6Rbg9Kuf98VP+s60St0flx6/u4+PCRv5y9Xw++P4K9t23hvQoM89vHfpz63+3V/H54WYunZcc0GPLjQ8lLyuayfGhLB9m+fljxYeZyI0LYeOR37eqqkeC7bJfuxg7bpcLveJGY5RguxBCCCGEEEKIgUmw/Uug88i+sQ1R84l01g/Reuzp7S3YDH0BJoc+HIPDctz91pcXABCcOKn3WIsuDm3H8ZXOt3ZYmL/nPmrefmRY7cMd3gUNZVvfOq77CjEaVI+HLS89QruleejGAXA5HWTavQt5uip3jmrfStknOFUtGkWlsWp0s+YHcmDzOzTfl4a1w3LcfbXUeTPKTVFJPsd1EUmYFXvvNhPG7kZshuje8x5DKEEe38BO+aEdTHfsxjrruoDGYNHHorMOY1/y+v1UK/HYVT31u94J6B7jKdRaQXnYAvJueJjurDUkuWtx2LsHbF9TeoiZtm20TLsWTdZyMjyVI14QFeJowG5O8DlmC0ompMu3ckykoxZHaCoAVl0k+q6+LQR6Auj+MtvTuw6wsO0dtoesIEltoLJ4z4jGKcQXWYvVwY6KVhQF1u0dxmvdMKmqyo4KC+fPTkKjQFnziQm2O90e/vxRMefMSCQnLgSASLOBN76zjH/euIh/3riI525czMYfnM51p2RyzqxEypttFNb3X6C1uaSZnLgQ4kJNJEUE8fItS1mcFc1dL+/hlF99wIv5lTx02SyWT/JW6Ag26vjKglTW7a2lo9s54BgP1bVz72t7+cr8FC6cE1iwHeDPV83juZsWoyhKwNf2uGhuMq/urGLT4WYqWmy0dTkl2C7GlMftrW6hlWC7EEIIIYQQQohBSLD9S8DZVEIz4RA7mRi1BbfLNa7jMTuasRv7slqcxkiCXO3H3W9rlTfYHps+tfdYhzERc9fxfQlbtvdztIpKcsuWIduqHg+xbm+pYPXwR8d1XyFGQ9nBbSze/wAHXvvNqPZbfjAfs2KnjWBMTftGrV/V4yGtLZ99wUsAaK05PGp9D6a9dDvRtFFVsOO4++po9i7wCY1J8TkeFOkNTrTWe4O8wc4WHEF95cgxhROs+gZ2at//My2EMfPMawIag82UMKxKJqFthdSFTKfINJ2gyo8Dusd4indV44zwliIOTZmOTvFQUzLw87B8w2N0KkHMWHM9GQvOAqBshPu2R7sbUUN9A02usFSiXX3z7Xa5iPc0okRlANBtjMZkP2oLgd4y8sfu2a4QSTu7gxYx9VvPYlf11OS/OaJxfllsX/cEts628R6GOME2FjbgUeGaJem8d7B+1ErJlzfbaLE6WJwVRXJkEGUnKLN9w4F6qlq7uHVljs/xqGADp+bGcmpuLMtyYwgP0gOwNDuaEKOO9fv7v85vOtzM0uy+hVzJEUH88WtzeeWWpeTGh/CT86ZxyTzf96dL5iXjcHl4a4//z8yddhe3PLeDjOhg7r9wxogeY2SwgdhQ44iu7fHN5VkszozmO//eyXsHvZ+3pYz88Dz44IMsXLiQ0NBQ4uLiuOiiiygoKPBp093dzdq1a4mOjiYkJIRLL72U+nrfhdoVFRWce+65mM1m4uLi+MEPfoBrnP/fciypziPBdlPIOI9ECCGEEEIIIcREJsH2LwFdWxmNuiSM0WnoFTctDUOXFu6hejzsev+FUQ3Qh7pbcZv7gu0eUyTB7uMPtnc3FGFTjcQkpPUec4QkEe4YPJu/rbWJPR/+F4/b/xe1HcWbAEhRa6kpK/DbpoeluR6zYqdaiSe9bauU/x1n3V1Wdn/40pf699Cw37s3dULF/0Z1HpoOfYpT1XIo5iwSbUWj1m91yQHiaUad/TXcqkJX44nJbKfNGyBvKz/+LGJbszfDOSI+zed4aKw3QNt+5DU43N2CJ7ivHLnGFEaw2tX7e7J1tjGt8S0KEi/CaDIHNAZncCLhzsFLK6seDynOEhwxU+lIWkaubfeg2eETRVtrE5G0o4/zBqUSc+YA0Fzqf6sPe7eNKTWvcSDuPMwh4cQkpFGuScV9OPDFBV3WDiLoRBvpG6jSRqUTg4XuLm9grqH6MHrFTVCsd0GA0xRDsKtvP2R1gDLyHkVPO2YSr/4b5pBwCk0zMVd8FPA4vyxqywuYv/VO9rz22/EeijjB3j/YwKyUcK5bmoHN4eajgoZR6Xd7ubfyyLzUSDKig4dVRr7V6uCTouMrZb+7ykJyRBBTE8OG1d6o07JicizvHvANttdYuihrtpGXFd3vmnlpkfzzxsXcuCyz37nE8CCWT4rlP/mVfu/34LqDNHTYefzq+QQZhr9X+2jTaTX84WtzUBT45bqDpEQGERVsGLfxnEw2btzI2rVr2bx5Mxs2bMDpdLJ69Wqs1r7n+B133MEbb7zBSy+9xMaNG6mpqeGSSy7pPe92uzn33HNxOBx8/vnnPPPMMzz99NP89Kc/HY+HdEJ4XN5gu16C7UIIIYQQQgghBiHB9i+BUFsVHcGphMalA9BSM/zgVUH++8z55JvsePOvozIW1eMh0mNBCekLMCnmSMLUjoD6cbtc7Pnwv2z/zcXU3pdD3X05zCh8nHptom+mYHgKsZ5GVE//PS17HHz9t8zaeCMlv1zIvs/e6HfeUL+Tw9os3KpC1fZ1g46rqcobdKxIv4Q4Wqgo3BXQ4xKja997zzF7403s2fjyeA9l3GirttClGsjwVFKyb/Oo9aup3kaZPgttxhISaMTSNHQW9XDU7HoXl6ohd8m5NCrRuFvKR6Xfoehs3kU5nvoDx92Xs62GblVPWHiUz/GoBO9rcFdLFZv+dhuxtGJKmd17XmsOR6d4sFm9i4/2v/dPQtQu0levDXwQ4cnEeJoGXWBRX3WYMGyYU2cRM/sszIqd4h0fBn6vE6yhzPs7Ck+eAkBkbCKthOGo879ve9H294mkndhTb+w9Vhe1kKTW/IDv3XTk/dMck+5zPDjOG1RvrCoGoLmq0Du2lNyeBoR7LL3tByojH3vOj6m74AXikr3BMGvaCiZ17aLb1r9UtICmsv0AxJa+Ps4jESeS0+1hY2EjK6fEkRUbwtTEMN7aOzrvQTsqWsmODSbcrCczJnjIMvLVli4uffxzrnliK//cVDbi+xbWdTAlITSga9ZMT2BfdTtVrbbeYz37tS/2E2wfyuULUtlRYaG4wfczeZfDzWs7q7n51CwyY8a/lHZcqIk/fW0uALMlq33Y3nnnHa677jqmT5/O7Nmzefrpp6moqGD79u0AtLW18cQTT/Db3/6WlStXMn/+fJ566ik+//xzNm/2fn589913OXDgAM899xxz5szh7LPP5oEHHuCxxx7D4XCM58MbOz3B9iAJtgshhBBCCCGEGJhuvAcgxl6Ms4bW8GVEJ3mDAdbG4QevLEWfAxC271m4aAQBn2NYO9sIURzowuJ7j2mDowlWunHYuzEYTUP2UVtegPLUOcyiiTJNKuUJq1F13rKUIZNW+LQ1RGcQpDhw2QcO5uuaD1GpJOFWdMzYcDWbd3+VJbf8rfd8inU/hxPPwdWoR1u2EbhjwL466r2BmIzTr8fx5N+p3fk26VPmDfmYxMjUlBUQHB5NeGSM3/POI8G3kE9/gWf5JWi045eNNV6S23ezJ+4CJjW+S+Pnz5E9a+mo9JvYvofqmGUk5C6CfKg6uIWIUy887n615Z9Qos9hUngUlfoE9B3+s+xGm7nbG2wPaRu8esVwqB11tGgiSTqmRHhIWCQ21Ujy9odJpJHNOXewZPXVvef1wZEAWNtbCQ6NwFO1nQptChmZUwIegzEqBZPipLW5nsjYRL9t6ou3kwDE58wnNikTy2shtO/fAHlnB3y/E6mt+hAA8ZnTe4/VGtIxtBb6bd9ZvptuVe/zWqzPXk5q0yvUVx0mPiV7+PeuLycVCI/3DbZHJnn7sNQcJjV3Nl31JXhUhbhUb7BdExpHJB24nA50ekNvZrtG47t3cfrU+T4/J847D1PRb9mz5R1mnX7ZsMf5ZWGr9f69ZrtLKTuYT8bUBeM8InEi5Je10tHt4owp3s+S581K5LEPi+l2ujHph36f311p4aH1h7hqcTpnz0jw2UN8R4WF+ene1+KM6GBe3FaJx6P2+1sFKGns5Op/bEGjUbhsfgo//d9+YkNNnDUjIeDHVFDXwYVzA9sHfcXkWAxaDRsO1HP9Kd4FOptKmpmSEDqibO8zpsYRadbzUn4VPzynb0umDQfrsTrcXDQ3KeA+x8rirGj+fu18kiMCq/oi+rS1ebffiIryLgzcvn07TqeTVatW9baZMmUKaWlpbNq0iSVLlrBp0yZmzpxJfHzf/8etWbOGb3/72+zfv5+5c+f2u4/dbsdut/f+3N7uXVDodDpxOp1j8thGi9PpRHV7K/5oDUETfrwnm575lHkdGZm/sSXzO/pkTseWzO/okzkdWzK/Y0vmd/TJnI6tiT6/wx2XBNu/4DrbW4nBQllMFuFRcdhUI46W4Qev9LU7sKlGJrsOUbz7M3JmnwJ4y/Ie/Ox/dFXsxNh0AGfaKSz+6j1D9mdpqCYEMIX3fUmjD/UGStub64lJSh/gyj4VW99gvtpC4YX/I3fOqWQcu+ftUULjMwBwW5sHbBNpK6UmcgGLbn2GTf+4nfnV/6Kt9ZeER8bQUF1KHC1UZyyiRaNnSvXLeNzuAYO2juZyulQDCam5HDBOx1T5yZCPJxBNNeW4PS7ikjL77/U7Srq7rLTUV5GUMXlM+h+uw3s30/72/bhy1jB11bWEhEX6nG+qKSf46dM5FLOGxbc+5bcPo+UwDUSR7S4l/62/s+CCb52IoU8Y9VWHSaSRupzlFKoqWXVv43a50OoCf+mvrzrc+7xrrq8iRa2jLn0xKdkzsKlGOst3wAiC7QX5H9Dx8WMkXfJLEtNySe/YQVHiBQBYzUmE2Ia/7cXxCHM24lI1JNjLjrsvnbWBdm00/sISLZooEj11bJ31c5ZcervPOWNwBABd7S2QnElI+2FazJlkjGAMwbHeq5prSgYMttsq99COmfiUbBSNhpKQ+UTWfTaCu42d2vICav57N7k3PkFYhDdT09lQTAthREX0ZW52hGYR27rbbx+axgNU6dLI0fcFnzIXnAVboGL7euJTbqG5vgqTOYTg0IhBx9PVVAFATLJvGebY5EzcqoKtoRQAV3MpjUoU8UfK/xsivME3S2MtMUnpeHr3bB88MJg2eS51xGA7uB6OBNtrywtITA/s9Vn1eKitKCImMX1Yi9pOGs3FVCmJhKrt1H7yrATbvyQ+OFRPXKiR6UnekuvnzEzk4fUFfFTQwFkz/L/e9ShrsnLD09vwqCq3/GsHC9Ijufe8acxJjaDT7qKgrp2v53k/i2bGBGN3eaht7yY5Isinn/r2br7yl01EBht47sbFxIUa6XK6ue2FnTx7wyKWBJBZ3t7tpKatm8nxgWW2h5r0LM2JZv3+ur5g++Fm1kwPPNgP3tL0F81N5uUd1dxx5qTehQuv7axmbloE6dHjn9V+tJVT4oduJPzyeDzcfvvtnHLKKcyYMQOAuro6DAYDERERPm3j4+Opq6vrbXN0oL3nfM85fx588EF+/vOf9zv+7rvvYjZP/MUSisubsb995172FlWP82i+mDZs2DDeQzipyfyNLZnf0SdzOrZkfkefzOnYkvkdWzK/o0/mdGxN1Pm12WxDN0KC7V949eUFhAAhibkoGg1N2hhoG37wKqlzP3viLiCr8X1aNj4Os0/B43Zz8A8XM6drM20E48CAraAUGDrY3tlSC0BwdF8YyhTmDbZ3WBqGFWxXGwup1SQwad5pQ7aNSfbu6at0+Q+2u10ukl2VNMZcgqLRkHXOdzH84xl2b3yRhRetpWrfp8QByTOW0xgaS2T1UxTv29y76KAfSyUN2jjSNRo6kpYxo/RJnA47eoNxyLEOZdf7LzDl41sxKU4shFBpzEV7+j1MW3LWcfftsHdTsutj2rY+x9TmDcSqdkovf5uUSeOTlW/vtqF99WayPM2E7v4c++7/Y0vsecy56TGMJjOqx0PVc99kDlYiLAOX/Y7qKqM0ZgXVtjqSdv4Wx5rrxiTQ1G3rRKc3oNOP7r6hxbs/pfnjv2OcdjazT7884AUWVbs/JB5Inb2SpugU4t58mX2b1zFj2QUB9bN93RPM3fI9Nqd/g7wbHqJyz8dEA0kzTkOr01Ghz0LXsC+gPgGa66uIfPNGctVWOp8+nS3ZN7EECzWTVwDgDk0lum3oUt9ul4vOtmbCo0f2xbvq8RDjaabIMIWpzgO0NFQTFRdYhuHRjPZGbEb/1RYaFt1NiymURX6ylE2h3gUlXZ3ePYPjHeUUxY8smzkqIQOAzoZywP/rlaHpIFX6LKYdeV45008jZ98DtLU2DVgt4kTyuN00P/8N5tt3sXPr28w9UgVAbymhQZ/C0UX61ZjJJDet87uYJKKjiNbQST7HImMTKdFkELLvOfYcfIXpXfk0K5E0ffW//bLLj+ZqraSVMCKDfINOeoOROiUGT6u3coy+o5JmfSI9z0hzpDf41dZU7X2f8/jfs/1YikZDRVQeSU2fYetsY/8/vslCy9vkL3yEBefePOi1AE11lRS//yTxh18h01NGkTYH81XPkpw1fchrTwZBHWU0BmVRbYomo2YdHvfvvpQVTL7oup1ufv7GAaYnhXH+rCTeP9TAyilxvdnmmTHBTEsM4809tYMG2xs77Fz75FbCzXpe/tZS9tW08Yu3DnLRY59xwewkTs2NwaPCvJ7M9iMl08uarP2C7ev21tLR7WL9HcuJCfF+xvvNV2Zz3VNbueJvm1mQHsll81NYNS2+9/xAiuq91ZcmBRhsB28p+R+/upeH3jlEUkQQ1ZYu8rIDLyHf49q8DJ7bXM7fPi7htjNyabE6+LiwkZ+eP23EfYqJZ+3atezbt49PP/10zO/1wx/+kDvvvLP35/b2dlJTU1m9ejVhYWFjfv/j4XQ6efPJbQCsPHMNYZGx4zyiLxan08mGDRs488wz0ev14z2ck47M39iS+R19MqdjS+Z39Mmcji2Z37El8zv6ZE7H1kSf354KbUORYPsXXHuNt8RqbJq3DHGbPg6DtXZY1zbVVZJIIzWZeRwOimJ2+dO0W5rZ//pvyevazM6ljzFn1ZVs/e8jzNv/q2GVgbcUe/f8i4pP6z1mDvcGdbramoY1LnP7YZqCMkgdRtuI6HhsqhFDV4Pf83UVRSQrToKTvYGH+JRsDuqnoS/4H7AWe9lWGogiLjmT8Oh4bOuNNO1+Z8Bgu9FaTZvB+0Vv1KzVhJQ9xqGdG5myeDW2zjbMIeHDeozHyn/jr8zO/yH7gpegzL2arqrdRFd/QPbbV7Dp0LdYfM0vAg4wdHdZ2fXkd4lt2U6qq5wpips6Ytif/FVSatZje/17qN97f0TjPV47nr2H+e5qqi9/m66waErf+zvzy/7Bod9XkHPrK+x/7zkW2jaxzziHrO6DfgNsLqeDJHc19TFXEjl7LfEvrGLbi78gc+V1qKpKe2M1lpLteOoPoM/MY/45Nw4wmsFZOyy0/DaP2vA5LLr936Px8GmoLqX8P/cw37KeGCWYiE9eY9/Wxwk698GAysC7yjZRpSSSkpBKdFwyVW8lYMv/NwQQbN//2VvM3HIX9UoMC8r/weE9F9FVuolGIklM85bIbouYSnzLtoAeo9vlovbJq0jAQ+XXPqDljZ+w5PAfcKpachZ4S5hqItOIqWwd8LWlvGAXNR89QXbtm4SoVrruOozOEPhiiraWBiIUJ5ak5VB+gNqiXccVbA91NNMQ5X/h0Lyzrx/wuqAjwXZ7ZyttzfXeqiQJgZeQB4iKT8GharEPUskk2lpMfVRfJnDaovPw7PsFXX9YwsGUC0hdeeO4BmW3/fcRFtt3YVONdJduArzB9lBbBe3BvpnlwckzMBY4qSo7RErOjN7jbpeLVGcZLbHn9+u/Pn4ZebXPcZBp5E//EXGH/kXEixdSdOHz5M5d7ndMms5amrWxRPo512JIILV2Pfm/vYyM9nxKw5f0nguN9r4vWI8sOOspIz+cBTS6yWtI2/QGVb9ZzHRPCyXaDBLzH8ax6hq/fxcOezf7PnwBze5/M8O2lXlo2Be6lMbsG0na8xhhz5zB9sUPMv+cgZ+LJ0q3rROTeeT74MbYKylPOJPw2eeT+M7/OLBtw6gsQBuMy+mgud77d6UoGmIT08es0ozwenlHFS9sq0AB7n/jAA63h3vO8n1tPHNaPE9/XjZgyXeX28NNz2yjy+nmlZuWEhls4NTcWN66LYaX8iv5zYZC/re7hlCTjpxY73MyJTIIrUahtMnKKTm+C5A2FjayMDPSJ5Bu0mt55oZFrN9fz3+3V/GjV/dyzyt7iQ8zMi0xjO+tnsyM5P6fAwvqOtFqFLLjAs8cP3dWIp8WN/HKjmrq2rsx6DQsyowa+sIBZMYEc+OyLB77sJiL5ybzUUEDKnDuzMErBoiTx6233sqbb77Jxx9/TEpKSu/xhIQEHA4HFovFJ7u9vr6ehISE3jZbt2716a++vr73nD9GoxGjsf+CE71ePyG/RDmW5sie7aHhUSfFeE9GJ8tzYaKS+RtbMr+jT+Z0bMn8jj6Z07El8zu2ZH5Hn8zp2Jqo8zvcMcm3g19w9obDWFUTUbHeTPKuoERC7P7L/B2raq+3BHrS9GXknHULelwUPnEzi0oeY1Py9cxdfTWKRkNo6kz0ipvqw3sH7a+loZpphY+zNfJcnwzU0Ejvv7vbhxdsj+0upzs8Z1htFY2GckM20d1lfs83lnrLDsdmzeo91pZ5LtNs22hrbSKseRdVwd5gk9FkpihoFsHVA2eBhNnr6Ar2znX2rGW0E4x5/e3U3ZeN+ZE0djx8Ht1d1mGNvce21/7EvPy72RVxJjPveI05Z15J3vW/Juvuz9iWegOLS//CvofPpMs68L70x3K7XBx47ArmNLxGc9g0dk67m0PnvULcTwrJu/n3WFb8gumOvexa7788+1gq3LGRRdXPsj3jZjKnLyYhNYe8639N4ZlPkdO1l8rfr2byrl+QH3Ym6il3Ylbs1JTu79dPbXkBBsVNcPI0MqYuYHvk2SwpeZT4f8wj4Yn5TPrfBczfez9pTRuZv/VOtv7hyoDmsMe+Z+4gVa1hTut6muuPv+T5oS3vYvr7UrLbPmfb9B8R8uNSdp36V8KcjaS+fD4N1aXD7iu6ZSe14XMA799CZcp5TG39cNiPs3T/FlI33ESBaSZh38unSpsKr99CZGM+lcEzegNMSuIsUt1VAc3ftqfvYmr3burO/BPpU+Yx53tvsGXaj8nPuLl3UYo5LhONotJYfbjf9ZXFe0l8fiXTal+mNigXs2KnobJo2Pc/WkudNxs5YtpKHKqOjgr/5ciHK8LTgick8Cz74DBvgMRps1Bb7B1DVPqswS4ZkEarpUkTjWeASib2bhsp7iqI7wumJ6ZPpvTCV6mIWsL0yudJeOYUNj11N26Xa0RjOB41pYeYeeA3bIm+kEMhiwlv2tV7Lt5VjSvSN9gen+2dp6bSPb79lB0kSHEQnDq73z3mXvsQ9TftYOqPN7H48ruIuvU96nUpJL32FQryP/A7LpOtlk5jnN9znVMvp00fS1B3HfWGNAxz+qoSRMZ5Axp2i/f9V+3JbB+ijDxA7pJz6Vb1OBUDjV97B81XniDB08DOV3/nt/3Ov97MvM3fxexsYfu0e+i67QDzvv8Giy6+jfDbN1EYtoT5W29nx/p/DnnvsXRwy3o0v05n96/PpPzg9oCvt3fbSPA0oI3JZcrCM6kjlo5tz4/BSPu0W5op/9Vi4v8xj/h/zCPu73PY/MwPA+rD5XSw7ZU/sHP9M6M2Lo/bPWp9jbVupxur3YXV7sLl9gzZ3uNReeLTUs6ekcDmH57B99dM4qI5SZya65thmpcdTVuXkwO1/lcb55e3sruqjT9+bS6pUX2lq7UahSsWpfHR91dw+6pcvrMypzdYr9dqSI0MoqzJ93Nbt9PN5pJmTpvUP8vVqNNywewknr1hEZt+eAaPXTmPy+anUNJk5cev7kVV1X7XFNZ3kBkTjFEXeFWGMJOex66cx+YfncGOn5zJ+3eeRnjQ8f2P6XdW5hBh1vOLtw7y6s5qlufGED1Edr6Y+FRV5dZbb+XVV1/lgw8+IDPT9310/vz56PV63n+/b6FtQUEBFRUV5OXlAZCXl8fevXtpaOhbxLxhwwbCwsKYNu2LWf1A47HjVLVfrC1YhBBCCCGEEEKMOgm2f8EpljLqdEm9QTF3aBKRrsZhXdtVtpUmIkhIzSU2KYO9oaewoON9Dppms+j6R3rbJeXOBaClbM9AXQFQ/MLdAOR87WGf42GRsXhUBVfn0MH2LmsHiTSijZs0ZNselojpZLj8Byi7aw5gVU3EJ2f1Hss67SoMipvCD/9Fhr0QR/zcvvunnkpu994BA+Yx7no8Yd6gilanY3/GtVgMiZQmncPmnNuZ1rmZ4t+fg7XDMuzxJ+7+E7tCTmX+bc/7lCnX6Q0suem37D/jKaZ07Wb3v382rP5Uj4f8v36T2R2fcPCU37Pou/9i8VfvZsqCM3qz42eedgk7gk8lY8evcTm6hj3W4+Wwd2N4cy0lumwWXHW/z7kZyy6g6sL/EO+qwoGe3K8/RvIUb1ZuQ9GOfn01l3nLmscdWUgx95an2bvyafac9gR7TnuCwgtex3l3FYk/KWDr7AeY2bKBut+cQn1V/8DuQPZ9+j8WN73CprRv4kFD4Tt/HulDB2DPh/8lfd1VVBqy0X53J4svvwud3sCcM67AfNPbGBQXVXs3DquvzvZWMl0lqKmLe4+lr7wZAy52P/uDYfWhefkGGrUJZNzyCsGhEbgvfIx0VzlTnAdwJPaV2o7MXoBWUak4OLzs9oNb1rOo8km2Zt3CjFO8GceKRsPiy+8i7/pf9/V7ZBuI1urifn3U7fkAHR747h7irvgjAG11w1+IcLSOBm+wPTIpm0pdKkrjwRH1A97ncCTt6MICzwIMDgnHrSq4bW20V+3HrSokZc8Y+sIBtOli0Xf6r2RSVbgLneIhPGOOz/FJ805j0W3PoburiK1pN7K47K8cfPgMmuoGzpA/Wretk83//gWVRSNfsKB6PLT++xu0KWFM//ofcCQtINNRiNNhp625ngg6McTl+lwTm5hOhxpEV63v766x2BvETZrcvzS8KSiY+JTs3p/Do2JJu309TdpYOjb+ye/YQu0N2M3+f7eLLr6N6T/69Mh/nzD79K/43KtDDcLdUd/7GAE0w8iIDg2Povnrn5D4/c9JnzKPjKkL2BF5FjmHHu/3XuJyOpjS8j6bkr7OpHu3sfird/subguPYt4dr7A7aDFJm34e8AKj/Lf+ztaXf0fRzo/ptnUGdO3RmuuriH77W1To0onpLif5hVVs+ePX6WxvHXYfdaUH0SgqIclT0Gi1lCadzZTm9yjZt2XE4xqMvdtG5Z8vJtZdz/ZFv2fPaU+w27SQuKr1w+5jz4f/perBeSzc81PmbrqNzc//34jGYu2wsO21P7Htd1/l8ANzcd0fx45Hzg94Md+J0tHt5IWtFXzlL58z5SfvMP1n65n+s/Ws/M1GPJ7+weejfVjQQEmjlRuXZREXZuIby7P5/RVzCTL4BqbnpkVg1GnYXOJ/26CNhY3EhBhYlOE/6zvYqOP2VZP4xvJsn+MZMcGUNfvO69bSFrqdHk6b5H/hTY/4MBPnzkrkB2um8MCFM9hd1cYnRf0/6xbUdQS8X7s/UcEGn4UEIxVs1PHjc6fxzv46dlRYuGjuyCu9iIlj7dq1PPfcczz//POEhoZSV1dHXV0dXV3ez/nh4eHceOON3HnnnXz44Yds376d66+/nry8PJYs8VZqWb16NdOmTeOaa65h9+7drF+/nnvvvZe1a9f6zV7/ItC47XQpX8zHJoQQQgghhBBi9Eiw/QvO3FlBm6mvRKA2IoVo1YLD3j3ktSFNu6gyT+0N1IedeTd7TPNJuP45n5LdETEJNBGBo3bgvbMLd2xkQfObHJx6W7/yzFqdjg7FjNvaMuSYqou9Af3w1OGXNtYkzyNVqaetpX8peW1zIdX6NJ8SsHHJmRzUTydx7+MEK92EZveVAo6fcxYmxUnRtvf69dXZ3ko4VvRHlY/Ou+5XzLrnffK+8UeWXP1zDq95lozuAqr+sJqd7z5HbXlBb9DFn7rKYlLUWphxyYBl4mcuv5jtKdcwt/JZqkv6Z3gfa8vz97O48b/kT/9x7x7I/iRe/hvC1A7Mh98Ysk+AneufoeG+TLavG3k2fFH++2R4KvGc/bDffe4nzVtB940bcXx9PeHR8UTFJdNAFI7q/oG97tqDdKpBxCZ6fx96g5GZyy9m1umXMev0y5g0bwUmcwiKRsOii2+j/oq3ifY0UfKO/yDbsawdFqLe/x77DbNY/PUH2Ru5iozS/4w4C3jn+meY8tE3KDDPI/v2d/rtmR2TlE4jkdgr+i8s8Kd010doFZX4Gaf3HkvKnMLOnFtYVPcCh7ZuGPT6hupS0j1VtC+6ndBwb3AiZ/Yy8lO9pacjJi3rbZs6eR5OVYulZOjsVJfTgXH9XRTrc1l89QODto1NzsajKtga+gfRPTW7qNQmEx4ZQ2xSJm5VoauxbMj7+2NvqcKtKkTHp9IanE14R//g/nC1NHgzyQ2RSQFfq2g0WBUzalcbnoZD1GoSMAUFXla4h9WUQFC3/0omLaW7AEjxE4QGCAoOJe/G33Bg1TMk2Mtw/PWMIZ/b5QW7qH1kKUsKHiLhudPZ/NhNWJqGV0nlaHWVRUx37KZm4T2EhEUSMekUghQHZfu3UHekikV4sm8JaUWjoUafhq65wOe4vXovTUQQHZ/CcJhDwqmJP52Mju1+X5ujPY14QkdWTtmiiQSrN9Cmqt5MZEUZXiZrctZUn3LrqZc8QIhqY89Lv/RpV7j9A8KxEr3g0gH7UjQaYr7yO6LU1mEv0gLY+uqjLNj2febv+Tm5r5+P9tdp7HroLHauf2ZYnyl69GwhocVN+I2vEHP3LvIn3c6Mpndo/d1SDu/dPKx+Wiq9CyviMryfB9JW3YITPVn/XU3xA/PY/Pi32PXQWTT/Ygo5O39OY03ZkH067N1seeFBNv/zp2z+50/Z8sKD7P/sLSxNdex77Epy7AeoOutJ5p9zPbNOvwzXzCvIdpdSV+n/NcPW2camJ+9i50NnU3dfNrM23ohVF0HRRW+yKfFalhQ+zKYnvj/o54CjNVSXsu13X0V5ZBLzd95LRGcxzWHT2J5+A9M6NlH8+3MCWrDQw+N2s/Pd50ZUYWAwNoeL379XyOJfvs8PX92LSa/lwUtm8sevzeUHayZT0WJjf83g+17945NS5qZFMD/d3+YNfYw6LQsyItl02H+w/aOCRpbnxvotMT+YjOhgSo/JbN9Y2EhCmIlJ8cPfAuHU3Bhmp4Tzxw+KfLLbVVWloL5jRPu1j6XzZyWyODMKs0HLmdMCr9QiJp7HH3+ctrY2VqxYQWJiYu9/L774Ym+b3/3ud5x33nlceumlLF++nISEBF555ZXe81qtljfffBOtVkteXh5XX3011157Lffff7+/W34h6Dx2upGsdiGEEEIIIYQQg5Ng+xdctKMGe1jf/uhBMeloFJWm2vJBr/O43WR0H6Irbk7vsZzZy5h1zwfEJPTfLb3ekI6xpXDAvlj3fUp1Gcy/5E6/bTqUUOgaOthuqfQGWhKyh19aOW6yN1hedaD/F/hhnSW0BWf1O96WdR4pai1uVSFjVt/+7BlTF9JIJNYD/TPZGqu8X7aHxGX2O9dj+tJzqL34JcJdLcz9fC2JTy2i9oHJA5Yfr9zuvU/mgsH3oJ39tZ/TqoTT+N/vDdquu8vKrKI/szn2Kyy+fPDs5sT0yexIupLlXe9h7x48u33rq39k1uffxY2WOVvuYOvL/ssbD6WjZAs21UjOHP/7JQMkpOaQlNkXaKs1ZWNu6b/QQ9NcRI0+ddh76WZMXcBh82xCG4cOZre1NlH0568S4Wkj4oq/odFqCV/+LRJpZO/G/w7rfkerLj3A5M9/wL7QZUy/438D7mFcHTSZ4JZ9w+qzs+gzWgklLdf3b2Xh135KkX4ywW/fNmhWa9WejwBInbnC5/j8ax9k16l/ZfKCM3qPmYKCvSXm6wavbgGw/eXfkOEuRzn3NwMuIOlhMJpoVKJwt/Z/vYqw7KcxxPs80OkNNCrReCzDy74+lruthhYlAr3BiDN6CsmO0mEHv47V3uj9Ww6JHlkmoBUzqr0dc1sxTUEZI+qjhys4gXCn/0om7tp91CjxhIQNHsCaceqFNKz5C0lqPSV7Px+wXf5bfyf2+dVo8FB04RvkZ32bGQ1vovxpHjveebq3nbXDwtY/XMm2310+YF+Npd7neMJU72tv5sylOFQdzYc+paPGG0xPyOxfrrYtJJsIa4nPMVPLIWqNA78m+xMy5XRisFBRuMvnuK2zzbugKrL/e+BwdOoi0HZ5fx/qkWxeJcDAX4+EtFx2JlzGrPJnaGuu7z3etvsNmoggZ/ayQa6G5KzpbE+9dtiLtA7v3cysXfezNfJcHHdVUnjB62yffCdmRzNzN92G9cEctvzpBop2fTLk387WZ+5mavdualf9idikDIwmM0uu+hkt17yHQ2Mi5b/nsfmfP+Xw3s2DBvHtdQV0qEFEH1nAl5w1lbAfFrBz6WN0GBPIqH8PjcdFScIaotVW1KfPpbpk8KoV+z96kcWHfsW0w/9g6uF/MPfgI0zfcCURf5rM3PaPOLD0Nz57wucsvQiXqqF806t++9v90i+ZX/4PtB47pYlnsee0J5h2z8fkzjmVvG/+kU2Zt5JX+Xe2PP6NYZWCL/vvveS2fcrujOupv2ELuT/ZzqLv/ou8Gx6m5OznSO8uoObR1Wx56Tdseek3bHv9z0Mukjmw+R2KH1zC3M/XEvXCuRzY/M6Q4xiO13dVc/ojH/HnDw9zzZJ0Pr9nJf+8cTFfW5TG+bOTuPnULEKMOjYW9l8I2WNfdRubSpq5aVn/z2n+5GVFs6W0pV95+vr2bg7WtnPa5P5l34eSGRNMZUsX7qMy8DcWNnLapFgUZfh/v4qi8J2VuWwra2VzSd/n3aZOBy1WB5MThh+4PxEUReGPV87lnzcuxmzQDX2BmPBUVfX733XXXdfbxmQy8dhjj15Ex0wAAFmjSURBVNHS0oLVauWVV17ptxd7eno669atw2az0djYyCOPPIJO98V9jmg9duyKBNuFEEIIIYQQQgxOgu1fYE6HnThPI5qovi8pw+IzALAMUW65smg3oUoXIVl5w7pXZ1gO0V0lfs8V5L/HJFchXaff71MG/Wg2bRja7lZUj4eC/A8GDD476wtoIqJf1u9gkjKn0a6asZX5lrhWPR6SnRW4ovuXpM8+7Uo8qkKFNp3g0Ije44pGQ2lEHvEN/fdtb6/zlh+PTM7ud+5ouXNOJf6nhTTcvIudSx8jwdNIyWcv+29c9gklmgwiYwfPpDSHhFOz5CfMsW1i9wcvDNiuYPM6zIqdhJXfGrS/HvFLryJY6aZoy1sDttn8/P+xaPe95MdcQOyPD5AfezGL9t7Hpifvorpkf0B7yRrqd1FmyPWpnDAUW9RUErr6ZxWGdZbSFpwx7H4AuuPnkdl9aNDgROGOjVgfXUpW116KTnuU5KypAOTOWU6RNgcl/4mA7unxeLC9dAsWTTiTv/ms34z+Hl0xM0ntLhwymKV6PITVb6XMPLPfYgOtTkfQ5X8l1tPI7me/P2AfjrIt1BJLTFK6z3G9wcicM67o129T6GSi2gcPZDXXVzH10B/ZFn0+uXMHXlBxtBZ9Avp23yC6y+kg3VmCK75vH+5WfRz6Dv+vG0PRdtbQqvMGYYJSZhKqdFFf7f/1bCjWJu8YwuNGFpDt0gSjsbcT111OV3ju0BcMJjyFWE+z3+dLSOt+6oMGf63qkTt/JVbVRNMe/0G4blsnM7b+kEMhi4m98zNy5y4n7+u/wH5LPodD5jNv83e9gdidH9P8u6Usan2L+ZZ3aWmo9tufreYA3aqehDTv4zeazJTqc9DV5ONsLKaJCL+LBDzRuSQ7K3web6ytGGvElH5tB5M9/wwcqpa63b7VH5pqvO+bQdFp/i4bUpchGqP9SNZtT2b7MPZsH0juJfeiw82BNx/tPZZYv5GSiKVDLmQBmPO1+2lVIoZcpNVuacb4ynVU61KYdfPfCAoOZdK8FSy58l4m3buNsq++T0HCBWQ1fUDua+dR8OApA26V0m5pZn7FU2xNuY4Zyy7wOZeaM5Pk73/KrtjzWVT8KNkvr4FfJrHlT9f77UvTepg6fYrPa5HBaGLu6quZe9c6Eu4rZtY977Hwxj/wce69qGgwPHs2ZQfzB3ysjsIPqFISCbuvhvD7atDcW0v5Vz8gf/5DHFz9L+au+bpP+/DIGAqMMzCV+q8UElu1gb1hy5l1zwfkffMxZp1+mc94877+C7ZMu5dFDf9l+6Nfw+V0DDg2gGTLNgpi1pB3/a9JTJ/sc27akrOov+S/hLlaWLDvARbse4CFO3/Invf/NWB/m575EdPe+SqK6mHPaU9QYZxE5tvXsPvDlwYdx1Be2FrBd1/YxYL0KN7/3mn88JypJIYH+bQx6DQszY5mY+HAWxs9+WkpKZFBrJk+vMzqvOxoOu0u9h2TLf9xYSOKAstyhv/ZsUdGTDAOt4cai3fRYVWrjeKGzhEF7s+YGsfUxDD+9GFR77HCeu+it8kJYQH3N9biQk1DVhQQ4otOp9pxaCTYLoQQQgghhBBicBJs/wKrqyhEp3gITsjpPRZzZG9yW0PZoNfWH/wMj6qQPmvw7LhecVNJdtdg77b1O2XZ8zathDEt79wBL+/ShZNi2UbNA1OY/ObFVDxzs992htZi6g2BBTo0Wi2HNRkENfpm3TbWlhOidBGU1D9DMjYpgz3mxdTF93/82kmryPSU99vbu7uxDIeqJSYhvd81x1I0GuKSM5m7+mqK9JPQlrzvt12KJZ+GmEVD9gcwd/W17DXOJfqTnw0YLO7ev44aJY70yfOG1WfqpDmUk4Bj/5t+z9dVFrOo4BE2x32VRWufRqc3sOiWJ9iUfD15FX8l+dml2O5PZusfrhrW/RKsh2iPmjmstj30ybOIp9knu1P1eEh0VeCODCxYGZZ7CsFKN+WH/JfS3bvxFTJev5hObTid133I7JVX9J5TNBpap13DTNs2tq97ij0fvcz+z94aerFByftMc+6jZdVvfRZ2+BOUPp9IOgbdV750/xb2/foMpjt248hc5bdN2qQ57Mz+NgvrXqSprsJvm4jmXdSEDv93oaYtJctZ7PN7ONbhF+5CBSZ97aFh92sNSiK4q8bnWGXhTkyKk9DMBT7tzAOUTB+KqasBq8EbOInLngtAfdHwyvUfy9FWh0vVEBkzslLj3doQDLZ6EmhEFz956AsGYYhKxag4aW3y3be9tbGWyd17saeeOqx+9AYjxebZhNZ85vd84ZZ3MClOos+7D3NIeO/x6PgU5t75Olum/oi5ja+T+/r5uNBzYM0LaBSVw5+/5rc/pbmIGm2yz6Kb1ug5JHXuRW8ppUHvvyR8UPI0zIq99+/D2mEhRa1DkzD8bUfAu3jpsGEy+krfRVVtdd4KCxGJGQH118NpiibY6c1o7duzfeTB9uj4FHZHrSG79Hkc9m6qSw6S4alEN/WcYV0fFBxK9aIfM8e2iQOb3h6wXeGT3yDcY8H4tef8Vt3ImLqAJd/6M5E/LmTXsr+Q6ijh4N9u8LvIo/DTlzEobjLXrPV7L1NQMItvfQrb90o5dPZL7Iy7mIWNr1JbXtCvbWhnGW3mod9vAYyhMehvfBubJoSuV24bsF1yyxaqoxb3/qzTG0ifOp8F53+T6af4/wzTkXYGk207+lUKqS0vIMd9GKacN+jYFl/+A3YsfIg5lvfY+7sL/X6OAqirKCJZrceQe9qAfeXMXkbCfYfR/tyC9ucWSjXpuPf73wpG9XjILP0P28LPIvtHW5l1+mVk3/E2BcHzmfbRN9n0zI9GtAf8+wfr+fFr+7hmSTp/unLuoHuInzY5lh0VFtq6nP3ONXbYeWNPDdctzUCnHd7/rsxKicBs0PYrJb+xsJFZyeFEhwS+73JmtHcrj55S8h8XNqHVKJwygsC9N7s9h8+Km9lyZG/5groOjDoNaaOw17oQYvTpPRJsF0IIIYQQQggxNAm2f4HV7n4ft6qQOq1vz/Hg0AjaCcbZOni5ZbUqn0ptCmER0cO6V2jaTHSKhxo/5Whj6j7hcNiiQTPtusIyCfe0Ux0+ny2xlzHTutlvEDDKVkZn6PDKiR6t1phFss0367b+8C7v+DL8BxTn3L2evG8+1u94zuLzcKsK5Vt8v8BWWyto1MQElJUN0JK4nJzO/H4ZbTWlh0ikEWPOwF+sH03RaNCvupcUtY5DW9/td171eEhv+oTKmOXDLq2uaDQcMM0np/UTvwH8so+fx4mO6Vf9qrdPRaMh7+bf0/StfexZ8SQHolayoOWtIfdubm2sJUmtR5fmfw/pgcTmLASg8tDW3mMtjTWEY8WQODWgvjJnnYJL1dB48BO/551bn6JCl0HGDz4hKaN/IHTmWTdiUUKZv/V2Zn10A9M3XMnOdwbew7669ABr2v/D5uhLmHHK+UOOL2mq92+55qD/PY03P/0j0v6zhghHHTuXPsaiS+8YsK9p592GGy3FHzzT75y920aWswhn0gI/V/qXvvh8tIpK8Rb/CzOaaspZ0LKOg5NvHbJSw9GcYalEOX2fO42F3t912vS+1zZnSBIRzoED/YMJdTTgMHszJxPTcrGqJrqq9o6oL097Ha1KeMCvAz0cuhBSbN5tEcLTAlt4cqzQOG8gsqXWt5JJ4Yf/REEld+W1w+6rK3U5k7r3+d16wHZwPXXEkDZ5br9zikbD4q/eTcUl/2NT1m0kff8zpuWdTaFuEtri/ttxAIR0lNBqzvA5pk9fQpLaQErHHjqD/S+4isnwVjpoKPEurKoq8C6YiMrqP66hWOKXkNm502exTFez9z0peoTBdk9wHOFu737aqnok2K4c38ewuNV3EEcLu995ksotr+BQdUzKGzy4e7R5Z32dEk0G7o/8L4ApPbCNBe3vcXDmXaTkzBi0L53ewJxVX+Pgov9jQcf7bP3vI/3aKIfeokib01u1YCAhYZFMWbyaGdf+hm4MlL3fv2JInLMKZ8TwPw9ExafQOP+7THXup7Jod7/zNWUFpKi1GCatHHafAMmLL8akOCnY5PvaV/7ZS97fx7JLhuxjwXnf4MBpf2a6dSs7Xvw/v20qd6zHoypkzl8z7LHVJ61iUvvnOB32fucqCneRQCOGOZf1fj4zBQUz/fbX2Z5wOQtK/oLl17PJf+OvQ2bc99hZ0cra53ewamoc910wfcgy66dNisXtUfm8uKnfuf/kV6LVKHxlwfCrhOi1GhZmRPH54b7+3B6VT4qaOG1S4JnoAEkRJvRahRe3VVLc0MHGwgbmpkYQHqQfUX9nTU9gTmoE97yyly6Hm8L6DnLjQ9COcEsJIcTYMqh2nJqgoRsKIYQQQgghhPhSk2D7F5iu9H2K9FMIj/Ytv9msiUXTUTPAVV7Rlr00hA4/GzApZw4ALaW+X2A31VWS6y5GzT7Dz1V9Fn3zL+h/VM6i2//NlCt+6Q0Cvuf75brb5SLJXY0a07/s+1A6Q7KIo4Wmmr69n63VB7CrehIzAisxHB4dT5F+CrpS32x0fWc1Fn3CAFcNLHL22YRhpXjnRp/j1Tu9X6xnLRj+F+uT56+kjlg6d/QvAVt2cBsJNGKeMXCFAX/ao+cRTRtF2z/oP/bStzgQvJDQ8Kh+52ISUpm14lLSL33Am8W6deDMSYDKfd6s2YTJw9u6oEdK9gy6VAOdZTt7j9Ud9gbbotMDz2gt02WiqdrW75zD3s3kzq00pq7GYPSf4RIUHIrhzj3U37SD+pt2UKCbgm7ffwa8X/P/fkorYUy56uFhjS82MZ0mIrBX9M+8tzTVMaf0b+THXkz8PTuZu/rqQRdVhEfFsj94MdElr/c7V7pvEwbFRfSU4WU+A8SnZHuzKAvf83u+dKt3ccrkVf5LQg9EG5lGrNris3ezWr2TSiXJ53mniUgj1tM85P7E/kR5mvCEJgHe4HCVPgNt86GA+wHQWOtp0/b/exgulz6EWLwB2aScWSPuByDySFC4s8F34VJY0avsD5pPdLz/DHF/EuaehUFxUbKzfxWOpKbPKI9aOujzLWf2KeRd+0BvZnRz8kpyO7b63ZM73lGJIzLH51jKLO+2Awk04o7K6XcNePcx71IN2Mq8fx9tZbtwqwopkwIPtodOOZ1IOnxKjrstVbQQhikoOOD+ADQhcUSo7Xjc7t5gO8Nc+DSQjKkL2GNaSNSevxNctoFDQbP9ltgfiKLR0Lrgdmbad1CQ3/81vuXtX1JHLHPOv2XYfS4492a2xFzC3P2/pmjnx73Hu7usTOnYTFOK/4ob/gSHRrAv8gzSK1/1WfjQ1tpENG3o4wP7PDBj5ZW0E0zVh/2D91Xb1+FWFbIWDq8yQI/U3NlUKknYD6zzOR5atp6DQXP9vj/6M3vlFeyKOoucI5UK+in9hFJdBhExw/+cEbPwUsKwcsjPPuy129/EruqZtOgsn+N6g5El3/4LdVd/SK05lwXb76L1F5PY9Ne1VBTuGvBeLreH217YyfSkcP5wxdxhBY9TIs3kxIX0KyXv9qg8v6WCC2YnBRzUzsuOJr+sFYfL+ze2u8qbOX/a5LiA+umh02r43urJfFrcxKrffsy7B+pHHLgH0GgUHvnKbKotXTzybgEF9R1Mig8dcX9CiLGlV+24tBJsF0IIIYQQQggxOAm2f0G5nA5yOvNpTeq/L3K7MQ6jrdbPVV7WDgvprjI8ycPPMI6ISaCJCJy1B3yOlx7J/s5cPHjWrkar7Q1ghkfHsy/sVBJLXvYpQ1tXUYRRcRKcFFi2sneAGQBUHfi895DSVED1MaWKh6s1qX82ekh3LTZzUsB95c45jTaCsezxDUYrZR9zWJdNeNTwv9RVNBrK4leR3fRBv6BjXf7r2FQjkxafNcDV/hlismkiAsuOV3z7qyhisusQ7qkXDXp9fEo25ZoUXMX9AzlHs5Zto41gkrP6l/UfjFano1Kfgbahr6pCZ/UBXKqGxMzA+gJojpxNQvuefscLtqwnWOkmbv5Fg14fEhZJfEo28SnZWHIvYZot3+/e1K2Ntczs+IStoWcSHBrup6f+FI2G6qBJBDfv63fu0Dt/QYNKzlceGHAxwLHUmV8h11XUL8vTUvAZXaqBjOmLB7jSv/q4ZWRaNvktH605/D7F+tyAstoBgmKz0CgqjdV9pfPDLQeoD/F9HTDFpKNX3DTX+y+LP5AuawfhWNFFJPceawvNIattC9t+dznbfnc529f1D8wNxNjdiNUQeHnhHm6Dd9/eOmICCpr6ExWbjEPVYm/pm5Oa0kNMdR7AOe2ygPpKnzyPRiKxHfINtteUHiLNU41+8uqA+ouddwGhSheF23yrcLS1NBKDBX2C7yKo+JRs6vFWWjHF+w+2a3U69kWsZE7p3zi05V3Uun1UaZNHFBzPmbcSu6qnYU/fXtyajhpatCMPsunDE9ApHizNddBbRv74P4YpS9eS7S5hpn0nXRlnBnz93DXXUq5Jpev9X/scryjcxdz2Dymf9o1hv6b0mHPTY5TpszD975u9ZdELNr1BsNJN4pKvBNRXWN71JKkNHNj0Vu+x+lLv631ESmCfB0xBwRyMWUN2zRv9srW1ZRs5rM8N6D23R3XccjJbPu197WttrGWKfS/2nMAC93Gr7yCWVna/86TPcdXjIbUtn8bo4W0r0yN7Zh61xGLb81q/c+bKjygImkVQsP9Ab2rubObe9TbFF79FSewZTK19jcR/raRwx0d+22842EBlSxc/v2A6Jv3wt0c4bVIsGwsbUVW199iHhxqotnRxzZKMYffTIy8rmi6nmz1VFgA2FjQSHqRndsrw3mf9+dZp2Wz98Rn8+ap5XDYvhUvnD3+hkj85cSF8f/UknvyslP3V7UyWYLsQE5ZRtePWSbBdCCGEEEIIIcTgJNj+BVW040PCsBE9p/8Xvd3mJELtA5dbLt72LnrFTeKcwIIndcYMDK2FPseUw+9TrM0mJmH4ZUABDAuvJd1T6fOlblOZNyAYmxV4tqchOJoWwugu68tYDu0ooTU48JL0ANFzziEMG8VHjS/aVY8rNPAvYLU6HcWhi4iq6ytdrno8pLXvoDk2sGAnQOTCy4nBwqEtviWaI6s+pCBkIUZTYPuCajQaiqOWk9rwgU8QteyT57GreqacdvmQfdRFLyG1dcugbUyNe6gwTh52ifujWUInEdXZ99xTGwup0SYGHCAC0KYtJlWt6Vf23rrvTeqIIWv68IMdk46U6S768J/9zhW89yQK4E5ZGtD4uqJnktJd4PO78LjdpBx+gT3hKwLKVp624nI61CCqPn7W57ihNp9SwyT0hsD2tw2ZvoZYWinZv9XnuNvlIrtjK82J/Rf/DCUyKRuA1uri3r7SnYdxxfuWWA9P9P4tt9aUBNR/U20ZAEHRffNmnv9V6vWphNiqSGnbQcK2Xw9wdX/BjibsppEHZD0Gb9ClwZQx4j56aLRamjTReCx9iz3KNz6NTTUybeXXAupL0WgoC19IfJPv33Hltv/hVLXkLA4sqJg9M48Goujc+5bP8drD3tf5yNT+VSmqQry/84iUgauRzPzWk5QYp5D49nUkNW+iyew/MD8UkzmEYuNUjFV9+9SbbLV0GOMHuWpw5gjvtbVFu/rKyB/Hnu09Ziy7kFJNBgCpiy8O+HqNVkvjnLXM6dpM8e6+x1v/1oM0KxHMPt///uqDMZrMGC/9Cwmeena8+AsA7HvfoEpJJH3yvID6mrxwFZVKEt1b+7a8aK/ybguTkBlY9RKAqGU3EEcL+z95rfeYx+0mq2M7zfGnBNwfQMjMc4mjhYNHtnAp+vQlFCBrWWALC46uVHD0a3xN2UESaMI06fSA+lM0GsrjTiez6SPfLRGsHUzu2oMtdcWQfeTMXsbitU9guruQMl0mxjdv9buX+1Ofl7MkK4oZyYEFtU+bFEttWzdFDZ29x/65uZzZKeHMHEGAfHpSGKFGHQ+vL+C+/+3nv9urWJYbM+x93wdi1Gk5Z2YiD39lNkkRxx94u3FZFnNTI3C4PUxOkGC7EBOVBNuFEEIIIYQQQgyHBNu/oCx73qaVMHJm+ykDHTeNNFc5rY3+s9u7Ct6njhhSAyxhbA3LIaarL9DldrnIbt9CY0LgAbZpS8+njlgsn/ftd91VcwibaiQuKTPg/hSNQoVpCuamvozlREc5jsjB940dSM7sU2kljNa93mz07i4rMVjQRqWPqD9P9ipynEW9GdBVh/cSRwtBk1YE3NekeSuOlJLvK1/e2ljLJMdBXNmBLaDoYZx+PslqPWUH+xYreEvILxpW9q1x0hkkqfVUlxwcsE2K7SCd0SPbo1pNmEmqq7y39K65vYRm08h+F4kzTgOgfM9Hff17PKQ2bqQ8ellAiwEiYxPZb15IeNFrvuP1eIgr+g97g/PQB4UFND5j2jyiaKehpm8f7v2fvk6KWkvIKd8MqC9TUDAHI08nreoNn8BOcuc+2mLmBNQXQO7CM7GpRhp2+gZQi3ZtJIJOImedHXCfsSlZeFSFrsYyACqLdhGkOAjJ9N1PPjrJG2y3NZUf28Wg2o9kwofH9z1fZiy7gGk//oypP/6curyfkKzWU1teMKz+wl3NeIJHHpDF5A0u2cKyR97HUSy6OPRW77YhqsdDUsUbHAg/FXPICLI8s04n212Co6u995Ch7EOKjNMIi4gOqCtFo6E0ahkpDRt9nnvtVQfwqApJ2f1fC5zJi3GqWhIyBq5YYQoKJvlbr9KqiSZVrcERHdg2IUdrT8gj27art0pImKMRhznwrUJ6JE9ZQJWSwKR3r8G07TEAlFEItisaDe3LfszWyHNJyhzZ451z9o1UKQnY37qb3R++REH+B8y1vMvhSTeOuGx++tT5bE+4nNklf6e2vICc1o+pil8Z8IIqRaOhKvMyZrRtpK3Vuxe3s7GIRiJHVP0hZ9Yp3n3qt/ctgirZt5lI2gmbFnhlAIBJC1dTqskg4+1r2fbaY+iL3qbAMDXghYbQV6lg/1GZ/NU73/WWuF8Q+Ht46OyLiKOF4t19C/oKt76DUXGSuOCCYfdjCgpGd+lfSHTXsvPZe3zOlXbAzso2bloW+ALGRZlRmPQaNhZ4S8mXN1v5uKiRq5aM7D1cp9Vw3SkZtHU52VzSTFiQnisWBv57GGvaI+XkV0yOZW7a8VUxEUKMHSN2VF1gC5WFEEIIIYQQQnz5SLD9Cyqm7hMOhy1Co+3/RX7OiqtQUCn0k20LEN+4iYqIRYFnGMdNJcld21sy9vCez4ikg4gRBNi0Oh1lKRcwvXkDXdYOADTNRdToUvw+puGwxcwk9UhGcEtDNZG0Y0wcQUl6vJmAh8MWEXMkG72x2rvIwByXMaL+Mhedj0ZRKdnyJgDV2/6HS9WQvSDwL/57SsnnNH/YGyQq/vxVNIpK5tLAsx4BJi0+mw41iLpPnwOgtryAya4C3NMuGtb12YvOwqVqqNr+lt/zDdWlxNKKMX3hiMYXljEXg+Km6kg59NjuMrrDR5bRmpQxmSYisB3e3HusonAXyWo9pumB7XcP4JpxGVNcB6ku6Stzf3jv52R5ymDuVQH3lzh1CQA1Bzb13WPLPyjVZDB54fD3Qu5hXvA1ktV6CnZ8CEBdZTHxNGPKzAu4L6PJTKF5LmFVH/kcb939Nm0EkzMn8IU3RpOZRiUKpexjVI+HxgJvZnXadN+KAKHhUbQTjKslwDLyzd720Uf2Nz9W5vw1eFSFyh3v+j1/NI/bTaTahhI28oCsxuRdfKGJG3mQ+Gg2Uzzmbm8lk8N7PyfdU4V+7hUj6iujZy/rRu92IQ57N5Ot22lLDvz3CmCcdg4pai2VxX2LoNwNBdRpYv2Wtp578e2UXfTagGWve4RHxWK6/lX2GucSv/CSEY0NIHzaSsKwUZD/HgDRnkY8oYFvFdIjNDyKmLt2kJ+9llRHKR5VQacPbD/qgcxeeTmLvvv8iK/X6Q00Lf0ZqY7DzN54E5PfvJh2JYTZF95+XOOafuUvsSlB2J+5jCjaiZg/st9Hzqob0ePiwKu/xuV0YLCU0GAYWSlvRaOhIecrzOj8rHeBW9Pud7CpRnLmB5Y53sNgNBF/58fsjzidhbt+xGzrJtrSR7a4radSgevTP/Ue05R/Sok+J+BFLQCTF51JK6E05/dtBdN1YD21xJKWG9iiysxpC9me9U0W1fyTQ/l9W0p8VKshM9rMyimB74tu0mvJy4rmD+8Xcc0TW/j+S7sJM+k5f9bI/9a+t3oy79y+nHduX87b3z2VU3NHXm1kLGXFhvD09YsC3pdeCHHimFQ7ql6C7UIIIYQQQgghBifB9i+g5voqct3FqNln+D0fHZ/C/qD5hBW92u9cU10FmZ5yNDmBf+EcljYTneKh5vBe7zh2vUU7ZnLnjezL69SVNxOidLH7mTtxOR2EdpZiCQ48q72HKW0+kbSz7dGraPrbRQBEZYwskxpAzT6DXFcRWx67keot3rmMTBxZgDcmKZ3D2iz0+18i/7eXsqTwEfYG5414z+aoxVcQTRsHt7xN0a5PiNn9Vwp1k4hJSBtRfwajif1x55FX+yy7f7WKijd+5S0hv3x4JXJDw6MoNkxBX77R7/nq/d7SxcnTAyup3iNlijdIr3nlJrY+ejWJNKKLnzyivhSNhkrzdMIad/Qeq932Gl2qgclLAiuVDTB9xRVYVRMVG/tKtTd/8gSNRDL1lAsD7i8+OYsWwrBXeMdXV1nMLOvnNEy5akQl+KcuOYcGouj49O84HXaq93p/R6mzTgu4LwB7xulMsu+ns72191hU7ccUhyxEpzeMqM/ymd9hQft7bH7uZ7ird1KlJPoNOjVq49B0VPvpYWBOSw3tBA+Y6R0Rk0CpLhOl7BO/54/W2lSLXnFjiBh5kEhr9o4j1E8Z9ZFwhiSS5Cgl/7eXYX7teloIY/qywJ93ALFJGZRq0kiw7MDldFCYvwGzYid2TuCLUAAm551Ht6qnZutrvceC2g7TZPSf0Wo0mcmdO7zAfkJqDjN/+BFZMwLfiqNHztwVVCkJZL99NZsf/xZhWNFHHl+GrCkomLxrH8B+Sz4HznyW4NCI4+pvNM0580pCf1pNzXVb2ZH3J5oven7IhQ1DCQ2PomzePWR4Kmgigkkj/DwQm5TB9sizyav4G5Zf5JLVsQ1rSMaIxzX5zBsBqPvHV9m+7ilCqz6iOGhWwNusHM0cEs7CO15k25xfUK5NJ+O0a0bUj6LR0DjzJuZ0bWbTMz+i29ZJRns+zTGB7dfeQ6c3UByxjOS693A67AAkN31GRfTSEb1nLLzyPg7rc4l58wY2PXU3u/ftZXezwnVL09FolBGN8ZeXzOTGZZmY9Fpq27r5xvIsggzHX/VBCCGOVxB2kGC7EEIIIYQQQoghSLD9C6h0yxsAZC4+f8A2zmmXMdV5gJoy39LIZVu9mccZCwLPRk/KmQNAc9ke6iqKiK1+j+LgBSMOsCVnTWVzzh0srH+JwodOJ9lZhjNyZMFsgNRZy2kigvj2PXQEpbB58t0B7x17tNln3cCmpGvJbnyPJUW/wa0qxCaPfDFAQ/wyZndvI6M9n60zfsasO/834r5y5yynllhiNtxO7mvnoeCBcx4ecX8Ai7/9N3Ys+QPR9koWN73CgZDFAS0GaE04hezO7b3Z9kfrLs+niYgRbREA3oBO/rxf0Rg6lRjLXtoJJn7ashH1BWBPmE+m/RAupwOAsMoPKAiej8kcEnBfQcGhHIg4jZSK/1FVvI9uWydTmtZTnHT+iP42FI2GKtMkzE272Pnuc7T88zq6MTL9rJsD7gu8VSRKMr7GQsvbtP8yl6j8R6lR4kdU/hggZeH56BU3RZu9ryWWpjpynYW4B1j8MxyLLr2DTak3kVfyKJMb36E+2P9Cig5jAiar/+0xBqJpr6ZFM3i2aGPMIlLbtvuUO/fH0lAFgDlq5MH2qIzZVCkJvQtIjpcpYxEaPITaKqmMWkrD2U+M+DUZoDb1PE51b8b60DRMH/yMJiLImrFkRH0FBYdyKHgB0aVv9B6L7irHFhZ4KeqxYDCaiLxzCztTr2V23csABMWMbMHSsaLjU5ixbPglvE8URaMhKWMy89ZcQ+4cP9vQjMD8877JbtNCipIvGnFlGoCFt/2L4ovXURx7Jk70aDJG/hofGZvIvqV/QOtxMn/r7Ux37MGWOjqPd+FFt5L5090kpI7888rcc7/B5rjLWVDyFzoemkEMFsyTV464P/PCa0hx11Dzq3ls+c/DpKo1GCaPLPNepzcQes1zlEbkMbvsKRa8fjp/MvyJi+eM/HUvMTyIO86cxN+vXcCnd69k7ekjnzshhBhNQXSjGCTYLoQQQgghhBBicLrxHoAYA8XvUazNJmeQYNnU06/Atv2nVHz0DEnX/bL3uHr4I0o0GWSNINAWHh1PExHM2XoXum3eoNTOWd8NfPxHWXL1fRzYvISYd75NGFaMCSMvrRwRnYD+vnJigJHtBOrLYDSR940/4nL+ht2fvo6zs4UFRtOI+8u94C62bExh+tnfYNEIM9p7KBoNZWmXkFvxIlum/4T5F912XAG2nj7nnXUd9hWXs23d34mfEVjmc8SMMwmv/DtFez/vl50a3LyHqqApxIwgy67Hggu+DXy79+fAdkL3FTbpFMwlj7LjD5dij5vDQvt+tufeO+L+QpfeRPy6KzA8dwp2VU+44iTl9JtG3J81egZ51U/D59sp1mZTeMpvmHscz5kl1/2Sw3vOo/HTp5nU8DZFMasYadgkOWs6VUoihvy/0ThjGeU7N7BAUclcfHyBxSXXP8zWP9ayqPUtnHH+Sx/bzUnEteQH1K+hq552w+Alhk25K0iof4GqkgOk5MwYsF1b9SEAwuNGnv2cNWMxzBje/vDDMXfN12HN14/r7+FoC668jxf/lUCabQ9Tmt6lMOZMYo4jgMq8r5P76bco3LGR9GkLSfTUURM7aZRGe/yCQyNYctNvqa9ay57PXmL+CLZq+LJTNBpm3/PeqPSTM/sUcmafAkDgBct9zVtzDay5horCXdRse52pZ99y3GMcLXqDkSW3/J3KoltpevUeNLb9ZC8Y+XNv+inncjh0HV1v/ZDFB/4Pp6olZ3HglVp6JKZPJvH2F7B2WNj63rNoq0okE10I8YXjdNgxK24UY/B4D0UIIYQQQgghxAQnwfYJxOV0sOMvN2GacR6zTx+6PHdrYy0anZ7wyJjeY13WDrLbt3Io+RIGywsKDo0gP/xUEiv+h+r5PxSNBtXjIb1tKyXxaxhpXmHZwntxNhQTlDaXxMkLmZuSPcKe+kxbchYtWZ+y6e3HmH3qyPffHSs6vWFYv6+hxCSkEvPVu0dhRF5LrvsV8KvjCmD7YzSZWXhJ4IsocuauwLrORPOmf6KqHjweN511h3FW72VW1372pH99VMd5PHLnnc7mnVcQ2byLKYf/ihstmUtH/tybsng1LZl7qT64BWvFLtAZWZI7G6fTOaL+0s+8hU0fGIlfdCk5x1Em+2jZs5aSPWspqsfD4uN8zjTm3UvG5/dg/Osi4rQx3gU8SRnH1aei0TDvlqfZ/NKvmbTqBr9t1PAUYhrXBdRvsL0BS8jgWZRZC1bj/kShZte7AwbbLU11JG1+gEO6qUxKnhiZ2WNB0WgwRWew4Jpb0Gm1x/1cmbniK9R9+hMsH/8FY1AI6YqH0JTRKaE/muJTson/6j3jPQwxBtImzSFt0pzxHoZfqbmzSb3rbVSPZ0Ql34+WPWsp6owP2fXhf3B2NLEwPOq4xxccGsHc877NunWBve4KIcTJoNvagRnQGiTYLoQQQgghhBBicKMebP/44495+OGH2b59O7W1tbz66qtcdNFFvedVVeVnP/sZf//737FYLJxyyik8/vjj5Obm9rZpaWnhO9/5Dm+88QYajYZLL72UP/zhD4SEBF7C+WRyaNNbLG5+DTa+xuaCD5l/w+/QG4w+bawdFgo+ew3NnheYYd1CvSYW5zff7y35vO/vNzND7Sb5tOuHvJ9+7hWkb7yJ4r2byJl9ChWFu0inhbopI8+eWnDuyEpZDyUqLpm8r/9y6Iai1/F+MT/a9AYje0MWsqThP/C///QeryOGwuB5pC6/dhxH50tvMLLk238FwO1yYbO2E3ecgYmouGSi4i4Bjn/BSFLGZJJueOi4+/FnNJ43c1dfTdvCs9jz4k+ZV/si29OuG/ECnqPp9AaWXPmTAc/ro9MJPdyF027td67d0kyQOaTfa2qEq4mWkMHLR4dFRFOoz0VT/ilwZ7/zHrebin9cTSoOIr7+3HGVyj6ZjMZzRavTUZZxOXNK/8aeA4tIB+KzZh7/4IT4Ahmt93NFo2HOGVeMSl9CCPFF193VAYDWJMF2IYQQQgghhBCDG/Vgu9VqZfbs2dxwww1cckn/oNJDDz3Eo48+yjPPPENmZiY/+clPWLNmDQcOHMBk8pbgvuqqq6itrWXDhg04nU6uv/56vvGNb/D888+P9nAnFNfu/1CuSaE26zIWFD1K2a830xrqLaerdXYSZysmyVPHPEWlUDeJ/Em3k1P0JK3/uJig777HgQ3PsNDyNtvmPcjCYWRpTV92IS0b76Tj3V9SG/Fbane+TaKqI2fhmWP8SMWX1ZRv/4uSskO9P0clpJMQk0DCOI5pKFqdjtBRyAD8sgmPjGHJt/5MW+v9LAgOPSH3DI7LAMBtbe49ZutsY/d/fsHs8qep0CVhuOIZUnNnA95qItFqK6XhQxfNb45dRG7tm34zTLc8+yMWd+Wzf+WTzDyOfZq/rHLO+jaax/9C+t4/0kYwUbEj3/tZCCGEEGI02G2dAOhNX+wF/0IIIYQQQgghjt+oB9vPPvtszj77bL/nVFXl97//Pffeey8XXnghAM8++yzx8fG89tprXHHFFRw8eJB33nmHbdu2sWDBAgD++Mc/cs455/DII4+QlPTF/BLe5bQzve1jdmdcT97VP+fQtlNxvvd/hFrLvec1Bqpil1OTOJOE6acy6UgwvXj3KpJeuYSKR89mpqOILdEXsPjC4e07qtMbKJp2GzP3P4z5qUWEqEEUGacxPSR8rB6m+JIzh4R796QWXxpHb3Mx1qKTvNtWKDZvsH33B/8h8eO7ma+2syPuYpKbPiPqudXkz/85EekzaDrwMUsUFVN0ypB9B086nZja5ygv2gOqh9pPn8PctJuk7mLysLAp7WbyTpt421ycDGISUtkedhrzOz7gkH4a4ROsKocQQgghvnwcXd5gu06C7UIIIYQQQgghhnBC92wvLS2lrq6OVav6ypSHh4ezePFiNm3axBVXXMGmTZuIiIjoDbQDrFq1Co1Gw5YtW7j44ov99m2327Hb7b0/t7e3A+B0Oke8L/KJ4nQ68dTswKzYSVp2FU6nk+w5p8Gc0wa9BiB92iL2t/yZ6R/dTLkunenX/TGgxzvv4tuxrrqevR89j6nwfzimf3XCz1egeh7PF+1xnQgyd2NL5nd0hUUl4FC16OzNVJUcJHvjbZSYptH9lT8wP30KnR0WDjz1TRbuuBt2QJaqUKpNJzZ7/pC/g7TZK3B+pCXo3xcTRwsRBFMSNJPC5EsoT5vPvNMu+1L8HsfqOWtYfCO89wFtwRlfink8mrwOjC2Z37El8zv6ZE7H1kSf34k6ri8jZ/eRzPYgCbYLIYQQQgghhBjcCQ2219XVARAfH+9zPD4+vvdcXV0dcXFxPud1Oh1RUVG9bfx58MEH+fnPf97v+LvvvovZbD7eoY+5dMvn7FNyOXyglF0HSgO8WkdB+n1ozVHoP9w4sgFo02Hqd8ADNevWjayPCW7Dhg3jPYSTlszd2JL5HT3ziSbI3kTrC98miCCKsm9Gt7+EnftLAFCzrqWkYTFodegiUtHpjbDrgPe/IYQYlhPitvBR1FXoE+eg0em9J7qhav36sXxYE85oP2dVj0qHdiGVulzqvqDvQUOR14GxJfM7tmR+R5/M6diaqPNrs9nGewjiCNeRYLtRgu1CCCGEEEIIIYZwQoPtY+mHP/whd955Z+/P7e3tpKamsnr1asLCwsZxZENrqCknfsdetk7+Aeecc854D+cLx+l0smHDBs4880z0ev14D+ekInM3tmR+R1/B/kdY2r2RcMXKrhX/4IJlF/lpde7IOj/y+jxvxKM7+Y3pc/a8c1k4uj2eFOR1YGzJ/I4tmd/RJ3M6tib6/PZUZxPjz9VtBcBolmC7EEIIIYQQQojBndBge0JCAgD19fUkJib2Hq+vr2fOnDm9bRoaGnyuc7lctLS09F7vj9FoxGg09juu1+sn5BcpR6v47EXiUMg5/eoJP9aT2cnwXJioZO7Glszv6LEFJRLu2MOWyPNYfPpXxns4X1jynB19MqdjS+Z3bMn8jj6Z07E1Ued3Io7py8pt9wbbzcETe+G+EEIIIYQQQojxpzmRN8vMzCQhIYH333+/91h7eztbtmwhLy8PgLy8PCwWC9u3b+9t88EHH+DxeFi8ePGJHO4JE1nyP3ZoZxEZkzh0YyGEEANyx82kgnhyr/rdeA9FCCGEEEKcpDx2K25VwWAMGu+hCCGEEEIIIYSY4EY9s72zs5Pi4uLen0tLS9m1axdRUVGkpaVx++2383//93/k5uaSmZnJT37yE5KSkrjooosAmDp1KmeddRY333wzf/nLX3A6ndx6661cccUVJCUljfZwx53b5aIlZiGVnrgvdWliIYQYDQsuv4c335zBeeGR4z0UIYQQQghxkgpOmsIHJWewQnNC8xOEEEIIIYQQQpyERj3Ynp+fz+mnn977c88+6l//+td5+umnueuuu7BarXzjG9/AYrGwbNky3nnnHUwmU+81//rXv7j11ls544wz0Gg0XHrppTz66KOjPdQJQavTsfDG39G4bt14D0UIIb4QNPKlqBBCCCGEOA5T886htHW8RyGEEEIIIYQQ4mQw6sH2FStWoKrqgOcVReH+++/n/vvvH7BNVFQUzz///GgPTQghhBBCCCGEEEIIIYQQQgghhBgVkv4nhBBCCCGEEEIIIYQQQgghhBBCBEiC7UIIIYQQQgghhBBCCCGEEEIIIUSAJNguhBBCCCGEEEIIIYQQQgghhBBCBEiC7UIIIYQQQgghhBBCCCGEEEIIIUSAJNguhBBCCCGEEEIIIYQQQgghhBBCBEiC7UIIIYQQQgghhBBCCCGEEEIIIUSAJNguhBBCCCGEEEIIIYQQQgghhBBCBEiC7UIIIYQQQgghhBBCCCGEEEIIIUSAJNguhBBCCCGEEEIIIYQQQgghhBBCBEiC7UIIIYQQQgghhBBCCCGEEEIIIUSAJNguhBBCCCGEEEIIIYQQQgghhBBCBEiC7UIIIYQQQgghhBBCCCGEEEIIIUSAJNguhBBCCCGEEEIIIYQQQgghhBBCBEiC7UIIIYQQQgghhBBCCCGEEEIIIUSAdOM9gLGiqioA7e3/396dh1dV2Pkf/9ybYICQyGItBBFRlmAA2ffNLjhSGX1QLEUsfR43FkGwHWFQFi0Oo1OnoB0UwRkdEXA644Z7B61SF5AdEhaVYREwgBCCCUKS+/39wS+3UheynG9Obni//hFu4Hm+vD3nJt9zbm7yQ57kzIqKilRYWKj8/HzVqlUr7HFqHPpWHO180Td4NPVF3+DR1Bd9fdE3eDT1Vd37lu6upbtsTcOOjlL0rRz6+aJv8Gjqi77Bo6kv+vqib/Bo6qu69y3rnl5jb7YfO3ZMktSsWbOQJwEAAAAAoGyOHTumc889N+wxAseODgAAAABIRGfa0yNWQ182H4vFtG/fPqWlpSkSiYQ9zvfKz89Xs2bNtGfPHqWnp4c9To1D34qjnS/6Bo+mvugbPJr6oq8v+gaPpr6qe18z07Fjx5SRkaFotOb9xDd2dJSib+XQzxd9g0dTX/QNHk190dcXfYNHU1/VvW9Z9/Qa+53t0WhUF1xwQdhjlEt6enq1PJhqCvpWHO180Td4NPVF3+DR1Bd9fdE3eDT1VZ371sTvaC/Fjo6/Rd/KoZ8v+gaPpr7oGzya+qKvL/oGj6a+qnPfsuzpNe/l8gAAAAAAAAAAAAAAOONmOwAAAAAAAAAAAAAA5cTN9mogJSVFM2bMUEpKStij1Ej0rTja+aJv8Gjqi77Bo6kv+vqib/Bo6ou+KCuOFV/0rRz6+aJv8Gjqi77Bo6kv+vqib/Bo6qum9I2YmYU9BAAAAAAAAAAAAAAAiYTvbAcAAAAAAAAAAAAAoJy42Q4AAAAAAAAAAAAAQDlxsx0AAAAAAAAAAAAAgHLiZjsAAAAAAAAAAAAAAOXEzXYAAAAAAAAAAAAAAMqJm+0AAAAJqqCgIOwRAAAAAACA2NEB4GzFzXYALsxMsVgs7DFqrMOHD+vQoUNhj1GjfPrpp1q7dm3YY9RYn3zyiV566SUVFRWFPUqNsW3bNo0bN0779u0Le5QaqbCwUHl5eTpx4kTYowBlYmYys7DHAABUU+zovtjRg8eO7osdPXjs6L7Y0ZFo2NHPLtxsT1AHDx5UXl5e2GPUWDt37tScOXP0m9/8Rv/93/8d9jgJZ/v27fr1r3+tq6++Wvfff78OHz4c9kg1yo4dO9S9e3f94Q9/0P79+8Mep0ZYv369OnfuzCLvZOPGjerdu7deeeUVHTx4MOxxaoQNGzaoU6dO+s///E8tX7487HFqnOzsbA0fPlx9+vTRiBEj9Nprr4U9Uo2xbds23X333Ro1apTmzJmjDRs2hD1SjbBlyxaNHTtWf//3f68ZM2bonXfeCXsk4KzEnu6LPb3i2NF9saMHjx3dFzt68NjRfbGj+2JPDx47+tmHm+0JKCcnR82aNdPo0aN17NixsMepcTZt2qT+/ftr2bJleu+993T99dfr97//fdhjJYxNmzapX79+2r17t5o0aaKZM2dq3rx5YY9Vo7zxxhvasWOHli1bpqeeekq5ublhj5TQNmzYoD59+ujmm2/WzTffHPY4Nc7u3bs1ZMgQ/epXv9L8+fOVkZER9kgJb8OGDerVq5duv/12TZw4UU888QTPAwHKyclRv379dOGFF2rcuHHav3+/lixZEvZYNUJ2drZ69uyp7du3q3bt2nrooYd000036fHHHw97tIS2detW9erVSwcOHFBGRoYWLVqkKVOm6L777gt7tBph//79ysnJCXsMJAD2dF/s6RXHju6PHT1Y7Oi+2NGDx47uix3dF3t68NjR/VXLPd2QUPbv32+9evWyyy+/3Bo2bGjDhw+3/Pz8sMeqMXbu3GmXXHKJ3XXXXVZcXGxmZvPnz7fGjRvbJ598EvJ01d+OHTusefPm9o//+I/xx6ZNm2bjxo2zoqKiECerWdatW2ejRo2ye++91zIyMuz++++3vLy8sMdKSNu2bbOUlBS75557zMzs5MmTtmzZMlu4cKG9/PLL9uWXX4Y8YeJ78cUXbfDgwWZ2qu+0adNs6NChdtttt9nTTz8d8nSJZ82aNZaenm5Tp041M7NnnnnG6tevbx988IGZmZWUlIQ5XsIrKCiwq6++2iZOnBh/7LnnnrOhQ4fagQMHeE6ohGPHjtmgQYNs8uTJ8cd27dplDRo0sMaNG9vs2bNDnC5xFRcX2x133GEjR46MP/bZZ5/Z5MmTrV27dqf1Rvnl5ORY3bp1bcCAAbZly5awx0E1xp7uiz294tjRqwY7enDY0f2xoweLHd0XO7ov9vTgsaP7q657enLYN/tRdmamdevWqUWLFpo0aZKKioo0ePBg3XrrrXr88ceVlpYW9ogJLRaLafHixWrdurWmTp2qpKQkSVLPnj2VnJzMzzY7g5KSEv3xj3/U4MGDNWXKlPjj+/bt09atW9WnTx9169ZNV155pX72s5+FOGniMzN9+OGHevLJJ1VSUqL58+crLS1Nf/7zn3XppZfqt7/9bdgjJoTi4mL94Q9/UL169dS5c2dJ0jXXXKPPPvtMR48e1Z49ezRs2DBNmTJFHTt2DHfYBLZ27dr426leeeWVKikpUbt27bRlyxatXLlS27Zt45gto4KCAvXt21djxozR/fffL0kaMWKEFixYoGnTpun111+Pf+5CxaSkpOiLL75Q165d44+9//77WrdunTp37qw2bdqoZ8+emjVrVohTJqZIJKIjR46oU6dOkqTjx4/rwgsv1I9+9CPl5eVp2bJl6tSpk6644oqQJ00sSUlJ2r17t0pKSuKPNW3aVHfeeadq166tZcuW6aKLLtLo0aNDnDIxHTx4UKNHj9agQYO0atUqjRkzRvPmzVPbtm3DHg3VDHu6L/b0imNHrzrs6MFgR68a7OjBYUf3x47uiz09eOzovqrzns7byCeQSCSiLl266Oabb1bXrl3Vq1cvvfzyy3r99dd16623Kj8/P/5nzSzESRNTNBpVr169dNlll+ncc8+NP56VlaWkpCR+7tYZJCUlafjw4frlL3+p9PR0SdKsWbP01FNPacCAARoxYoQ+/PBDzZkzh7dSqqROnTqpefPm2r17t+69916NGTNGU6dO1fLly9W/f/+wx0sYycnJGjdunIYOHaoHH3xQF154oSRp6dKl2rJliz744AO9++67evjhh0OeNLH17t1btWvX1hNPPKFoNKpnnnlGjzzyiP74xz/q6quv1vLly7Vly5awx0wIqamp2rx5sx566CFJin/h/otf/EK7d+/Wxo0bJfE1QEXFYjF9+eWXqlu3rtavX6/HHntMU6dO1b/9279p2rRpeuyxx9S3b1+99tprevnll8MeN6GYmY4dO6Y9e/bEv56qU6eO9uzZo61bt+rGG2/UsWPH9Pzzz4c8aWIpPde7dOmiwsJC7d69O/6x888/X7fccotat26tF154QSdOnAhrzIT1f//3f2rRooVmzpyp1atXa9u2bRo7diyfs/AN7Om+2NMrjh296rCjB4MdvWqwoweHHd0XO7ov9vTgsaP7q9Z7ejjfUI/KKH37mdL/vvfee1a/fv34W9WdPHnSHn30Ufvf//3fMMdMWLFY7LT/FhcXW4sWLU7ruXz5cjt48GAo81V3pd0OHjxoEyZMsNdeey3+sU2bNlkkErE33ngjrPESXul5379/f1u0aJGZmd10002WlpZmjRs3toceesj2798f5ogJZ8uWLXbDDTfYz372M9u6detpH3v++ectGo3axx9/HNJ0iW/jxo3WpEkTa9eunQ0aNOi0j+3cudPq1q1rS5cuDWm6xPS3b0N39OhRa9q0qU2YMCGkiWqWd9991wYNGmTDhw+31q1b27//+7/HP7Z//35r1qyZPfjggyFOmLgeeughi0Qidsstt9j06dOtXr16duutt5qZ2dKlS+3iiy+2w4cP81aL5bRq1SqrV6+eTZkyxb766isz++vXY2vXrrVIJBJ/G0uU3dGjR2316tXx4/Gzzz6zxo0b28CBAy0nJyf+50rf0hpgT/fFnl5x7Oi+2NGDx47uix09eOzovtjRfbGnB48d3U913tN5G/lqbufOnfrggw+Um5uryy+/XC1btlRqaqqKi4uVnHzqf1/v3r316quvavDgwbrttttUp04dLVq0SDk5OSFPX/2dqW9xcbG++uorRaPR+CvBp06dqgceeEB79uwJefrwfVe/WCym8847T7Nnz1bdunVlZjIzxWIxderUSRkZGWGPnhC+q68k9ejRQ9FoVBMmTNBrr72m9evXa/HixZo+fbqi0ajGjx/PW1V9i683HThwoC655BJlZmZq5syZ+uSTT3TxxRdLOvVKxEgkoqKiIrVp00Y/+MEPQp48MfztMXvxxRerffv2euSRR3T99dfr0KFDWrlypXr06CFJaty4sXr06KEGDRqEPHn19V3PAyUlJUpKSlJJSYnS09M1efJkzZ07V7/61a/ib/+FM/u254R+/frp2WefVWpqqvr373/a2/82atRIbdq0iT9W+lyBb/rbtq1atdKdd96p1NRULViwQI0aNdI999yjyZMnS5Jyc3NVv359ng/O4OjRo4pGo0pLS4u/ar5bt256/PHHNXLkSNWpU0cTJ06Mf93aoEEDZWVlqU6dOmGOnZDS09PVpUsXSdLJkyfVtGlTrVmzRl26dNHYsWM1b948XXLJJZozZ46aNm2qG264IeSJUZXY032xp1ccO7ovdvTgsaP7YkcPHju6L3Z0X+zpwWNHr1rVek+v8tv7KLONGzfaeeedZ/369bP69etbu3bt7Nprr7UDBw6YmVlRUdFpf/6dd96xSCRiDRs2tDVr1oQxckI5U9/i4mIrKSmxwsJCu/jii23t2rV23333WWpqqq1atSrk6cNXln6lr9gqNXXqVOvRowffbVAG39U3NzfXzMzmzZtnkUjEmjRpYh999FH87/3TP/2Tbd++Payxq7Vvazp06FD7/PPPzczsxIkT3/g7v/nNb+zv/u7vLD8/v6rHTThn6vvkk09aJBKxK6+80v7rv/7LPv30U5syZYplZGTY7t27Q56+eirL82ypVatWWdOmTe2xxx4La9yE813HbOnz7OHDh6179+42c+ZMy8vLsy+//NKmTZtmTZo0sR07doQ8ffX2t22zsrLsuuuui7fNz8+Pv7q71O23327Dhg2z48ePf+PrB5ySnZ1t3bp1szlz5tjRo0fN7NR30ZT2WrBgQfw7El599VXbvXu3TZkyxZo1a2b79u0Lc/SEkJeXF/98/23HYOnutW/fPmvcuLH96Ec/smHDhllKSopt2bKlSmdFuNjTfbGnVxw7ui929OCxo/tiRw8eO7ovdnRf7OnBY0f3l0h7Ojfbq6kvv/zS+vbta7fffrsdP37cioqK7PHHH7d+/fpZhw4d4l8YlX4SP3HihI0ePdrS0tIsOzs7zNETQln7mp06iTt27Gjdu3e3c845x1avXh3i5NVDefqZmeXk5Ng999xj6enptmHDhpCmThzf17d9+/aWm5trR44csbvuusvWrVtnZt98yyqcriLH7N13323p6em2adOmkKZOHGfqW/q2iS+//LL17NnTzj//fMvMzLRWrVrZ2rVrQ56+eirrMfv1C/ojR460tm3bWlFREUvQGZT1mH3qqacsEolYZmam9ejRwy688EKO2TP4rrZ9+/a19u3bx9uWft7asmWLTZw40dLT023jxo1hjl6t7dq1yzp06GANGza0rKwsmz9/fnyZ//r5/uqrr1q3bt2scePG1qZNG7vooos4Zsvg2y6SfJvS3Wvnzp3xm6f0Pbuwp/tiT684dnRf7OjBY0f3xY4ePHZ0X+zovtjTg8eO7i/R9nRutldTBw8etMzMTPuf//mf+GNFRUX21ltvWZ8+fax37952+PBhMzt18q5cudKysrLO+ldyl1V5+ubm5lpaWprVqlWLTy7/X3n67dixw6655hrLysqy9evXhzVyQjlT3759+/Iq7nIqzzH7ySef2BVXXGEtW7aMXyjB9ztT3169esW/WyY3N9e2bt1q69evj7/6G99UnmO29IvKlStX8mruMirPMfv222/bfffdZ4899hh9y6A8x+6RI0ds7ty5NnDgQJ5vv0dJSYktXLjQBg8ebNu2bbObbrrJWrZsedoyX1JSEr8w8vnnn9vmzZvtww8//MaFanzT910k+TaFhYU2fvx4q1evHjdPz0Ls6b7Y0yuOHd0XO3rw2NF9saMHjx3dFzu6L/b0YLGj+0vEPZ2b7dXUyZMnrWfPnvbrX//6tMdjsZi98sor1r17d7v33nvjr5LJz8+3L774IoxRE1JZ+5Y+IS5ZssQ2b94cxqjVUnmPz02bNtmePXvCGDUhnalv165d7b777uNVseVQ3mN23bp1tmvXrjBGTUhl6Ttz5ky+u6McynrMlj6G8inrMfv1twFE2ZT3+fbQoUPxpR7fbfv27fbSSy/Ff//1ZT4vL8/MTn+7OpRNWS6S/G3Tjz/+2Lp3724rV64MY2SEjD3dF3t6xbGj+2JHDx47ui929OCxo/tiR/fFnh48dnQ/ibqnR6vup8OjPJKSktS3b1+tWLFCK1asiD8eiUQ0ePBgdezYUW+++aYikYgkKS0tTQ0bNgxr3IRT3r7Dhw9XVlZWWONWO2XtV6pdu3a64IILwhg1IZ2pb+fOnfXGG2/Ej0+cWXmP2Y4dO+rCCy8MY9SEVJa+f/rTnxSN8mVHWZXnmOW5oPw4Zv2U9/m2UaNGatCgQRijJpRWrVppyJAh8d8vXLhQAwYM0L/8y7/o2WefVX5+vqLRqBYtWqT8/PwQJ00s0WhU/fv31+jRo9W6devTui5dulRHjx79xnNss2bN9NZbb6l79+4hTY0wsaf7Yk+vOHZ0X+zowWNH98W+Ezx2dF8cs77Y04PHju4nUfd0np2qqWg0qrvvvluFhYW66667tGbNGpWUlMQ//uMf/1hHjhzRkSNHQpwycdG3csraLy8vL7whExjHZ/A4Zn1xzAaPpr54TvBDW3+lPb++cC5evFg333yzJk2axPNCOZXlIokkPf300zp69KhSUlKUmpoa1rgIGZ+ffdG34vj864tjM3gcs744ZoNHU188J/iiry929OAl4p7OzfZq6uTJk6pfv77efvttHTp0SOPHj9dzzz2noqIimZlWrFihRo0aKSUlJexRE1JZ+9auXTvsUasljk9f9A0eTX3RN3g09UVfP7T1EYvF4r9OSkpSUVGRpFML58CBAzV27Fg9++yzevPNN9W8efOwxkx4Z7pIwsUn8Bzniz294jg2fdE3eDT1Rd/g0dQXfX3RN3js6FUnUfb0iJlZ2EOc7czstLc9KCkpUVJSkvbt26evvvpKDRs21PXXX6+DBw8qNzdX7dq100cffaS3335bHTt2DG/wBEHfyqGfL/oGj6a+6Bs8mvqirx/a+viurgcPHtTHH3+s3r17n/b4xIkT9fTTT2vFihW69NJLwxo7YcVisdPejrKoqEi1atWSJN1yyy164oknlJqaqnfeeUedO3cOa0yEgOc4X/StONr5om/waOqLvsGjqS/6+qJv8NjRq14i7uncbA9RcXGxkpOT4wdOLBZTLBZTcnKydu3apd69e2vKlCkaP368CgoKtHbtWv3lL3/R+eefrwEDBqhly5Zh/xOqNfpWDv180Td4NPVF3+DR1Bd9/dDWR1m6Tps2TaNHj47/nSVLluiGG27QRx99pC5duoQ4fWLgIgnKguc4X/StONr5om/waOqLvsGjqS/6+qJv8NjRq0ZN2dO52R6SLVu26JFHHtHBgweVkZGh4cOHq1evXpKkvXv3qk2bNho5cqQeffRRmdlpr+LAmdG3cujni77Bo6kv+gaPpr7o64e2PsrT9etL6IkTJ3TgwAE1a9YsrNETAhdJUFY8x/mib8XRzhd9g0dTX/QNHk190dcXfYPHju6vpu3pnFUhyM7OVp8+fWRm+sEPfqDc3Fz1799fCxcuVGFhoT7//HONGzdO8+bNUyQS4cmvnOhbOfTzRd/g0dQXfYNHU1/09UNbH+Xt+nUpKSks8WewZcsWTZgwQcOGDdOkSZP0wQcfKBqNKjk5WXv37lVWVpaGDBmi22677bS/N3ToUO3atavaLfDww3OcL/pWHO180Td4NPVF3+DR1Bd9fdE3eOzo/mrknm6oUl999ZVde+21Nn78+Phj+/bts8zMTDvnnHPsd7/7nZmZxWKxsEZMaPStHPr5om/waOqLvsGjqS/6+qGtD7r62rx5szVo0MBGjx5tY8aMsZ///OeWnJxsCxYssIKCAlu9erXdddddVlJSEvaoCBnnoi/6VhztfNE3eDT1Rd/g0dQXfX3RN3g09VdT93RexlLFioqK9PHHHysrK0vSqbdKaNKkifr06aOf/OQn+od/+Ae98sor33hFDMqGvpVDP1/0DR5NfdE3eDT1RV8/tPVBVz8nTpzQjBkz4m/tN2/ePP3+979Xy5YtNW7cOD366KPq0qWL/vmf/5nv7gDnojP6VhztfNE3eDT1Rd/g0dQXfX3RN3g09VWT9/TEmrYGSElJUfPmzfXRRx8pPz8//vMHXnzxRU2cOFGjRo3S7NmzVVhYGPaoCYm+lUM/X/QNHk190Td4NPVFXz+09UFXP1wkQXlwLvqib8XRzhd9g0dTX/QNHk190dcXfYNHU181eU/nZnsVicVikqRatWrpxz/+sbKzs3XVVVdp6tSpysrK0nXXXaef/vSnuuKKK7R3714VFRWFPHFioW/l0M8XfYNHU1/0DR5NfdHXD2190NUfF0lQFpyLvuhbcbTzRd/g0dQXfYNHU1/09UXf4NG0atTkPT057AFqury8PNWvX1/RaFTFxcVKTk7WHXfcoQYNGuitt97S9u3bdf/99+uOO+6QdOpgS09PD3nqxEHfyqGfL/oGj6a+6Bs8mvqirx/a+qCrv1gspmg0Gr9IsnTpUl111VXq27evHn74Yd1444366U9/qi+++EJ//vOfuUhyluJc9EXfiqOdL/oGj6a+6Bs8mvqiry/6Bo+mVeOs2NPD/qHxNVlOTo61aNHCpk2bFn/sxIkTp/2ZkydPnvb70aNH26BBg6ywsLBKZkxk9K0c+vmib/Bo6ou+waOpL/r6oa0Puvo6cuRI/NdFRUXxXz/11FM2atQou/baa23OnDnxx5977jnr0KGD5eXlVeWYqAY4F33Rt+Jo54u+waOpL/oGj6a+6OuLvsGjqb+zaU/nZruT3bt3W8eOHa1Vq1bWrl07u/fee+Mf+/pBFYvFzMzsvffes3Hjxll6erpt2LChyudNNPStHPr5om/waOqLvsGjqS/6+qGtD7r64iIJyopz0Rd9K452vugbPJr6om/waOqLvr7oGzya+jvb9nTeRt6BmWnJkiXKyMjQxIkT9d5772nJkiWSpOnTpys5OVklJSVKSkpSJBJRLBbToUOHtHbtWr377rvq0KFDyP+C6o2+lUM/X/QNHk190Td4NPVFXz+09UFXX3v27NGIESOUnJys559/XsnJyZo+fbrOOeec+NsASor/9/3339fixYu1ePFirVixQnXq1AlzfFQhzkVf9K042vmib/Bo6ou+waOpL/r6om/waOrvrNzTq/be/tlj//799uSTT5qZWW5urs2YMcMyMzNt5syZ8T9TUlJy2t/Jz8+v0hkTGX0rh36+6Bs8mvqib/Bo6ou+fmjrg64+YrGYPfDAAzZ48GB78803412//l0JxcXF8V+XlJTYiy++aL169bL169eHMTJCxrnoi74VRztf9A0eTX3RN3g09UVfX/QNHk39nK17Ojfbq8i+ffu+9YR9/vnnTzuwUDH0rRz6+aJv8Gjqi77Bo6kv+vqhrQ+6BoeLJKgMzkVf9K042vmib/Bo6ou+waOpL/r6om/waBqss3FP523kA7J//37t2bNHR44c0U9+8hMlJSVJkmKxmCKRiJo0aaJbb71VkrR06VKZmY4ePaq5c+fqs88+U0ZGRpjjV3v0rRz6+aJv8Gjqi77Bo6kv+vqhrQ+6Vp3GjRtr1KhRkqTzzz9ft912m6RTXSVpxowZikajeuGFFzRkyBAlJSUpLS0ttHlRtTgXfdG34mjni77Bo6kv+gaPpr7o64u+waNp1Tor9/SqvbdfM23YsMGaN29urVu3tnPPPdcyMzNt8eLF9sUXX5jZqVdoxGIxMzv1Cpnp06dbJBKxBg0a2OrVq8McPSHQt3Lo54u+waOpL/oGj6a+6OuHtj7o6mvfvn22cuVKe/3117/x1nOlXffu3Rt/5fyMGTNs4sSJFolEbO/evWGNjRBwLvqib8XRzhd9g0dTX/QNHk190dcXfYNHU3/s6byNfKUdOHDAMjMzberUqfbpp5/a3r177ec//7m1bdvWZsyYYQcOHDAzix9QZmY33nijpaenW3Z2dlhjJwz6Vg79fNE3eDT1Rd/g0dQXff3Q1gddfXGRBGXFueiLvhVHO1/0DR5NfdE3eDT1RV9f9A0eTf2xp5/CzfZKys7OtosuuugbB8XkyZOtffv29uCDD1pBQUH88YULF1r9+vVt7dq1VT1qQqJv5dDPF32DR1Nf9A0eTX3R1w9tfdDVDxdJUB6ci77oW3G080Xf4NHUF32DR1Nf9PVF3+DR1Bd7+l9xs72S1q9fbxdccIG9++67ZmZWWFgY/9iECROsRYsWtmHDhvhjn3/+ue3YsaPK50xU9K0c+vmib/Bo6ou+waOpL/r6oa0PuvrhIgnKg3PRF30rjna+6Bs8mvqib/Bo6ou+vugbPJr6Yk//q4iZWdg/Nz7Rde/eXfXq1dNbb70lSTpx4oRSUlIkSd26dVPLli21ZMkSlZSUKCkpKcxRExJ9K4d+vugbPJr6om/waOqLvn5o64OuPjZs2KCrrrpKixcvVr9+/XT8+HHVqVNHknTHHXdo2bJleuGFF9ShQwdJUm5urgoLC9WiRYswx0aIOBd90bfiaOeLvsGjqS/6Bo+mvujri77Bo6kf9vS/ioY9QKIpKCjQsWPHlJ+fH39s/vz5ys7O1ogRIyRJKSkpKi4uliT1799fBQUFksSJWgb0rRz6+aJv8Gjqi77Bo6kv+vqhrQ+6Vp3LLrtMTZo00YwZMyRJderU0YkTJyRJc+fOVaNGjTR79mxJUklJiX74wx/WyAUe345z0Rd9K452vugbPJr6om/waOqLvr7oGzyaVi329L/iZns55OTkaOjQoRowYIDatm2rZ555RpLUtm1bzZ07V3/60580bNgwFRUVKRo9lfbAgQNKTU1VcXGxeBOB70ffyqGfL/oGj6a+6Bs8mvqirx/a+qCrLy6SoKw4F33Rt+Jo54u+waOpL/oGj6a+6OuLvsGjqT/29O9Rle9Zn8iys7OtUaNGNmnSJHvmmWfszjvvtFq1asV/tkBBQYG99NJLdsEFF1hmZqZdc801dv3111tqaqpt2rQp5OmrP/pWDv180Td4NPVF3+DR1Bd9/dDWB119ZWdn26BBg6xTp06WkZFhixYtMjOz48eP25IlS+y8886z6667zk6ePGklJSVmZjZy5EgbPny4FRUVWSwWC3N8VCHORV/0rTja+aJv8Gjqi77Bo6kv+vqib/Bo6o89/fvxM9vL4PDhw/rFL36hzMxMzZ07N/745Zdfrvbt2+vhhx+OP3bs2DHNmjVLhw8fVu3atTVmzBhdeumlYYydMOhbOfTzRd/g0dQXfYNHU1/09UNbH3T1lZOTo/79++uXv/ylunbtqjVr1uiRRx7RypUr1alTJxUWFmr58uUaO3as6tWrp8zMTJ1zzjl65ZVX9OGHH6pdu3Zh/xNQRTgXfdG34mjni77Bo6kv+gaPpr7o64u+waOpP/b0M0sOe4BEUFRUpLy8PF133XWSpFgspmg0qhYtWujw4cOSJDOTmSktLU0PPPDAaX8O34++lUM/X/QNHk190Td4NPVFXz+09UFXP4cPH9akSZN0ww036F//9V8lSSNGjNDatWv1H//xH+rUqZPq1q2rIUOGaODAgaddJFm1ahUXSc4ynIu+6FtxtPNF3+DR1Bd9g0dTX/T1Rd/g0dQXe3rZcLO9DH74wx9q0aJFatWqlSSppKRE0WhUTZs21a5duyRJkUhEkUhE+fn5Sk9Pjz+GM6Nv5dDPF32DR1Nf9A0eTX3R1w9tfdDVDxdJUB6ci77oW3G080Xf4NHUF32DR1Nf9PVF3+DR1Bd7etmcPf/SSio9UWOxmGrVqiXp1AF04MCB+J+ZPXu2Fi5cqOLiYkmcrOVB38qhny/6Bo+mvugbPJr6oq8f2vqgq4/SiyT9+vWTdOoiiSQ1bdo0vqRHIhFFo1Hl5+fH/x5tz16ci77oW3G080Xf4NHUF32DR1Nf9PVF3+DR1A97etnwne3lFI1GZWbxA6X0YJo+fbpmzZqldevWKTmZrBVF38qhny/6Bo+mvugbPJr6oq8f2vqga/DKepEkJSVFEyZMUHJy8lm3xOObOBd90bfiaOeLvsGjqS/6Bo+mvujri77Bo6kP9vQz46iqgNKTNTk5Wc2aNdPvfvc7Pfjgg1q9erUuu+yysMdLePStHPr5om/waOqLvsGjqS/6+qGtD7r64CIJyotz0Rd9K452vugbPJr6om/waOqLvr7oGzya+mFP/25n57+6kkoPoFq1amnBggVKT0/XX/7yF3Xu3DnkyWoG+lYO/XzRN3g09UXf4NHUF3390NYHXf1wkQTlwbnoi74VRztf9A0eTX3RN3g09UVfX/QNHk19sad/O35meyVcccUVkqT3339fXbt2DXmamoe+lUM/X/QNHk190Td4NPVFXz+09UHX4P3tRZJZs2ZxkQRnxLnoi74VRztf9A0eTX3RN3g09UVfX/QNHk19sKd/u4iZWdhDJLKCggKlpqaGPUaNRd/KoZ8v+gaPpr7oGzya+qKvH9r6oKuP1atXq3v37tq8ebMuvfTSsMdBAuBc9EXfiqOdL/oGj6a+6Bs8mvqiry/6Bo+mftjTT8fNdgAAAABAtcZFEgAAAAAAqg/29L/iZjsAAAAAAAAAAAAAAOXEz2wHAAAAAAAAAAAAAKCcuNkOAAAAAAAAAAAAAEA5cbMdAAAAAAAAAAAAAIBy4mY7AAAAAAAAAAAAAADlxM12AAAAAAAAAAAAAADKiZvtAAAAAAAAAAAAAACUEzfbAQAAAAAAAAAAAAAoJ262AwAAAAAAAAAAAABQTtxsBwAAAAAAAAAAAACgnP4fj3SOJA5iVJUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from etna.analysis import plot_forecast\n", + "\n", + "plot_forecast(forecast_ts={\"new_ts\": new_ts, \"old_ts\": old_ts})" + ] + }, + { + "cell_type": "markdown", + "id": "874eac40", + "metadata": {}, + "source": [ + "## 2. Fitting and saving pipeline " + ] + }, + { + "cell_type": "markdown", + "id": "b6d06498", + "metadata": {}, + "source": [ + "### 2.1 Fitting pipeline " + ] + }, + { + "cell_type": "markdown", + "id": "9b46975c", + "metadata": {}, + "source": [ + "Here we fit our pipeline on `old_ts`." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "d3e88b45", + "metadata": {}, + "outputs": [], + "source": [ + "from etna.transforms import (\n", + " LagTransform,\n", + " LogTransform,\n", + " SegmentEncoderTransform,\n", + " DateFlagsTransform,\n", + ")\n", + "from etna.pipeline import Pipeline\n", + "from etna.models.catboost import CatBoostMultiSegmentModel\n", + "\n", + "log = LogTransform(in_column=\"target\")\n", + "seg = SegmentEncoderTransform()\n", + "lags = LagTransform(in_column=\"target\", lags=list(range(HORIZON, 96)), out_column=\"lag\")\n", + "date_flags = DateFlagsTransform(\n", + " day_number_in_week=True,\n", + " day_number_in_month=True,\n", + " month_number_in_year=True,\n", + " is_weekend=False,\n", + " out_column=\"date_flag\",\n", + ")\n", + "\n", + "model = CatBoostMultiSegmentModel()\n", + "transforms = [log, seg, lags, date_flags]\n", + "pipeline = Pipeline(model=model, transforms=transforms, horizon=HORIZON)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "81eca26c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Pipeline(model = CatBoostMultiSegmentModel(iterations = None, depth = None, learning_rate = None, logging_level = 'Silent', l2_leaf_reg = None, thread_count = None, ), transforms = [LogTransform(in_column = 'target', base = 10, inplace = True, out_column = None, ), SegmentEncoderTransform(), LagTransform(in_column = 'target', lags = [30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], out_column = 'lag', ), DateFlagsTransform(day_number_in_week = True, day_number_in_month = True, day_number_in_year = False, week_number_in_month = False, week_number_in_year = False, month_number_in_year = True, season_number = False, year_number = False, is_weekend = False, special_days_in_week = (), special_days_in_month = (), out_column = 'date_flag', )], horizon = 30, )" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pipeline.fit(old_ts)" + ] + }, + { + "cell_type": "markdown", + "id": "06463075", + "metadata": {}, + "source": [ + "### 2.2 Saving pipeline " + ] + }, + { + "cell_type": "markdown", + "id": "af7228f8", + "metadata": {}, + "source": [ + "Let's save ready pipeline to disk." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "6aaa98c3", + "metadata": {}, + "outputs": [], + "source": [ + "pipeline.save(SAVE_DIR / \"pipeline.zip\")" + ] + }, + { + "cell_type": "markdown", + "id": "4ec4fa37", + "metadata": {}, + "source": [ + "Currently, we can't save `TSDataset`. But model and transforms are successfully saved. We can also save models and transforms separately exactly like we saved our pipeline." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "3bbb4b74", + "metadata": {}, + "outputs": [], + "source": [ + "model.save(SAVE_DIR / \"model.zip\")\n", + "transforms[0].save(SAVE_DIR / \"transform_0.zip\")" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "6ced03ff", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "model.zip pipeline.zip transform_0.zip\r\n" + ] + } + ], + "source": [ + "!ls tmp" + ] + }, + { + "cell_type": "markdown", + "id": "4b2813a7", + "metadata": {}, + "source": [ + "### 2.3 Method `to_dict` " + ] + }, + { + "cell_type": "markdown", + "id": "f7a5b6a8", + "metadata": {}, + "source": [ + "Method `save` shouldn't be confused with method `to_dict`. The first is used to save object with its inner state to disk, e.g. fitted catboost model. The second is used to form a representation that can be used to recreate the object with the same initialization parameters." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "6f96b659", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'model': {'logging_level': 'Silent',\n", + " 'kwargs': {},\n", + " '_target_': 'etna.models.catboost.CatBoostMultiSegmentModel'},\n", + " 'transforms': [{'in_column': 'target',\n", + " 'base': 10,\n", + " 'inplace': True,\n", + " '_target_': 'etna.transforms.math.log.LogTransform'},\n", + " {'_target_': 'etna.transforms.encoders.segment_encoder.SegmentEncoderTransform'},\n", + " {'in_column': 'target',\n", + " 'lags': [30,\n", + " 31,\n", + " 32,\n", + " 33,\n", + " 34,\n", + " 35,\n", + " 36,\n", + " 37,\n", + " 38,\n", + " 39,\n", + " 40,\n", + " 41,\n", + " 42,\n", + " 43,\n", + " 44,\n", + " 45,\n", + " 46,\n", + " 47,\n", + " 48,\n", + " 49,\n", + " 50,\n", + " 51,\n", + " 52,\n", + " 53,\n", + " 54,\n", + " 55,\n", + " 56,\n", + " 57,\n", + " 58,\n", + " 59,\n", + " 60,\n", + " 61,\n", + " 62,\n", + " 63,\n", + " 64,\n", + " 65,\n", + " 66,\n", + " 67,\n", + " 68,\n", + " 69,\n", + " 70,\n", + " 71,\n", + " 72,\n", + " 73,\n", + " 74,\n", + " 75,\n", + " 76,\n", + " 77,\n", + " 78,\n", + " 79,\n", + " 80,\n", + " 81,\n", + " 82,\n", + " 83,\n", + " 84,\n", + " 85,\n", + " 86,\n", + " 87,\n", + " 88,\n", + " 89,\n", + " 90,\n", + " 91,\n", + " 92,\n", + " 93,\n", + " 94,\n", + " 95],\n", + " 'out_column': 'lag',\n", + " '_target_': 'etna.transforms.math.lags.LagTransform'},\n", + " {'day_number_in_week': True,\n", + " 'day_number_in_month': True,\n", + " 'day_number_in_year': False,\n", + " 'week_number_in_month': False,\n", + " 'week_number_in_year': False,\n", + " 'month_number_in_year': True,\n", + " 'season_number': False,\n", + " 'year_number': False,\n", + " 'is_weekend': False,\n", + " 'special_days_in_week': (),\n", + " 'special_days_in_month': (),\n", + " 'out_column': 'date_flag',\n", + " '_target_': 'etna.transforms.timestamp.date_flags.DateFlagsTransform'}],\n", + " 'horizon': 30,\n", + " '_target_': 'etna.pipeline.pipeline.Pipeline'}" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pipeline.to_dict()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "16eda79c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'logging_level': 'Silent',\n", + " 'kwargs': {},\n", + " '_target_': 'etna.models.catboost.CatBoostMultiSegmentModel'}" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model.to_dict()" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "b638be23", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'in_column': 'target',\n", + " 'base': 10,\n", + " 'inplace': True,\n", + " '_target_': 'etna.transforms.math.log.LogTransform'}" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "transforms[0].to_dict()" + ] + }, + { + "cell_type": "markdown", + "id": "944e981a", + "metadata": {}, + "source": [ + "To recreate the object from generated dictionary we can use a `hydra_slayer` library." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "1a7e7860", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "LogTransform(in_column = 'target', base = 10, inplace = True, out_column = None, )" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from hydra_slayer import get_from_params\n", + "\n", + "get_from_params(**transforms[0].to_dict())" + ] + }, + { + "cell_type": "markdown", + "id": "12347982", + "metadata": {}, + "source": [ + "## 3. Using saved pipeline on a new data " + ] + }, + { + "cell_type": "markdown", + "id": "2463313d", + "metadata": {}, + "source": [ + "### 3.1 Loading pipeline " + ] + }, + { + "cell_type": "markdown", + "id": "9dfd6a50", + "metadata": {}, + "source": [ + "Let's load saved pipeline." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "2ae4003f", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Pipeline(model = CatBoostMultiSegmentModel(iterations = None, depth = None, learning_rate = None, logging_level = 'Silent', l2_leaf_reg = None, thread_count = None, ), transforms = [LogTransform(in_column = 'target', base = 10, inplace = True, out_column = None, ), SegmentEncoderTransform(), LagTransform(in_column = 'target', lags = [30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], out_column = 'lag', ), DateFlagsTransform(day_number_in_week = True, day_number_in_month = True, day_number_in_year = False, week_number_in_month = False, week_number_in_year = False, month_number_in_year = True, season_number = False, year_number = False, is_weekend = False, special_days_in_week = (), special_days_in_month = (), out_column = 'date_flag', )], horizon = 30, )" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from etna.core import load\n", + "\n", + "pipeline_loaded = load(SAVE_DIR / \"pipeline.zip\", ts=new_ts)\n", + "pipeline_loaded" + ] + }, + { + "cell_type": "markdown", + "id": "59012669", + "metadata": {}, + "source": [ + "Here we explicitly set `ts=new_ts` in `load` function in order to pass it inside our `pipeline_loaded`. Otherwise, `pipeline_loaded` doesn't have any `ts` to work with.\n", + "\n", + "We can also load saved model and transoform using `load`, but we shouldn't set `ts` parameter, because models and transforms don't need it." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "68f76bf7", + "metadata": {}, + "outputs": [], + "source": [ + "model_loaded = load(SAVE_DIR / \"model.zip\")\n", + "transform_0_loaded = load(SAVE_DIR / \"transform_0.zip\")" + ] + }, + { + "cell_type": "markdown", + "id": "f760abfb", + "metadata": {}, + "source": [ + "There is an alternative way to load objects using their `classmethod load`." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "75aa560d", + "metadata": {}, + "outputs": [], + "source": [ + "pipeline_loaded_from_class = Pipeline.load(SAVE_DIR / \"pipeline.zip\", ts=new_ts)\n", + "model_loaded_from_class = CatBoostMultiSegmentModel.load(SAVE_DIR / \"model.zip\")\n", + "transform_0_loaded_from_class = LogTransform.load(SAVE_DIR / \"transform_0.zip\")" + ] + }, + { + "cell_type": "markdown", + "id": "61486ffc", + "metadata": {}, + "source": [ + "### 3.2 Forecast on a new data " + ] + }, + { + "cell_type": "markdown", + "id": "65af79a6", + "metadata": {}, + "source": [ + "Use this pipeline for prediction." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "33896779", + "metadata": {}, + "outputs": [], + "source": [ + "forecast_ts = pipeline_loaded.forecast()" + ] + }, + { + "cell_type": "markdown", + "id": "80267dfd", + "metadata": {}, + "source": [ + "Look at predictions." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "7d8e085a", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB9sAAAPzCAYAAAAXr2wFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXhU5fn/8ffMJDPZEwIJSSAk7Pu+iSKgIihq1Wqtra3Szdal1vZrbf11U7vYWtu6tLVVa9VWa1u3uiIgAorIvq8JZAGyQvZ9MjO/P87MhEASssyW5PO6Li6SmTPnPDM5mcxz7ue+b5PL5XIhIiIiIiIiIiIiIiIiIiIinWYO9gBERERERERERERERERERER6GwXbRUREREREREREREREREREukjBdhERERERERERERERERERkS5SsF1ERERERERERERERERERKSLFGwXERERERERERERERERERHpIgXbRUREREREREREREREREREukjBdhERERERERERERERERERkS5SsF1ERERERERERERERERERKSLFGwXERERERERERERERERERHpIgXbRUREpE/Kzc3FZDLx3HPPBXsoIiIiIiIiIv2GZz7+yCOPBHsoIiIifqdgu4iIiISEX/3qV7zxxhvBHoaIiIiIiIiIoHm6iIhIZyjYLiIiIiFBk3gRERERERGR0KF5uoiIyLkp2C4iIiIiIiIiIiIiIiIiItJFCraLiIgEWXV1NXfffTeZmZnYbDaSk5O59NJL2b59u3ebTZs2cdlllxEfH09UVBQLFy5kw4YNZ+1r7dq1zJo1i4iICEaOHMlf//pX7r//fkwmU6vtTCYTd955J//973+ZMGECkZGRzJs3jz179gDw17/+lVGjRhEREcGiRYvIzc0961idGZPn2NnZ2SxfvpyEhATi4+P5yle+Ql1dXavx1NbW8vzzz2MymTCZTCxfvrzTr2FFRQXLly8nPj6ehIQEbrnlFioqKjr9eBEREREREREPzdN7Pk/3+MMf/kBGRgaRkZEsXLiQvXv3dnkfIiIioSws2AMQERHp7771rW/xyiuvcOeddzJhwgROnTrFxx9/zIEDB5gxYwZr1qzh8ssvZ+bMmfzsZz/DbDbz97//nYsvvpiPPvqIOXPmALBjxw4uu+wyUlNTeeCBB3A4HDz44IMkJSW1edyPPvqIN998kzvuuAOAhx56iCuvvJJ7772XP//5z9x+++2Ul5fz8MMP89WvfpU1a9Z4H9vZMXnccMMNDB8+nIceeojt27fzzDPPkJyczG9+8xsA/vGPf/D1r3+dOXPmcOuttwIwcuTITr1+LpeLq6++mo8//phvfetbjB8/ntdff51bbrmlaz8IERERERERETRPh57N0z1eeOEFqqurueOOO2hoaOCxxx7j4osvZs+ePQwePLhL+xIREQlZLhEREQmq+Ph41x133NHmfU6n0zV69GjX0qVLXU6n03t7XV2da/jw4a5LL73Ue9tVV13lioqKcp04ccJ7W1ZWlissLMx15p98wGWz2Vw5OTne2/7617+6AFdKSoqrqqrKe/t9993nArzbdmVMP/vZz1yA66tf/Wqr41977bWugQMHtrotOjradcstt7TzKrXvjTfecAGuhx9+2Htbc3Oz68ILL3QBrr///e9d3qeIiIiIiIj0X5qnG7o7T8/JyXEBrsjISNfx48e9t2/atMkFuL773e92eZ8iIiKhSmXkRUREgiwhIYFNmzZRUFBw1n07d+4kKyuLL37xi5w6dYqTJ09y8uRJamtrueSSS1i/fj1OpxOHw8Hq1au55pprSEtL8z5+1KhRXH755W0e95JLLiEzM9P7/dy5cwG47rrriI2NPev2o0ePdmlMp/vWt77V6vsLL7yQU6dOUVVV1YVXqm3vvvsuYWFh3Hbbbd7bLBYL3/72t3u8bxEREREREel/NE/3jWuuuYYhQ4Z4v58zZw5z587l3Xff9dkxREREgk1l5EVERILs4Ycf5pZbbiE9PZ2ZM2eybNkybr75ZkaMGEFWVhZAhyXRKysraWhooL6+nlGjRp11f1u3AQwbNqzV9/Hx8QCkp6e3eXt5eTlAp8c0YMCAdo/lua+8vJy4uLh299MZeXl5pKamEhMT0+r2sWPH9mi/IiIiIiIi0j9pnt6zebrH6NGjz7ptzJgx/Oc///HJ/kVEREKBgu0iIiJBdsMNN3DhhRfy+uuvs3LlSn7729/ym9/8htdee8278vy3v/0t06ZNa/PxMTExNDQ0dPm4FoulS7e7XC6ATo+pK/sUERERERERCRWap4uIiEhnKdguIiISAlJTU7n99tu5/fbbKSkpYcaMGfzyl7/kD3/4AwBxcXEsXry43ccnJycTERFBdnb2Wfe1dVtPjBw5slNj6iqTydStx2VkZPDBBx9QU1PT6uLBoUOHfDU0ERERERER6Wc0T+/+PN3Dk3F/usOHD7cqlS8iItLbqWe7iIhIEDkcDiorK1vdlpycTFpaGo2NjcycOZORI0fyyCOPUFNTc9bjS0tLAWNF+uLFi3njjTda9ZTLzs7mvffe8+mYOzumroqOjqaioqLLj1u2bBnNzc08+eST3tscDgdPPPFEt8YhIiIiIiIi/Zfm6S26O0/3eOONNzhx4oT3+82bN7Np06Z2e9aLiIj0RspsFxERCaLq6mqGDh3K9ddfz9SpU4mJiWH16tVs2bKF3/3ud5jNZp555hkuv/xyJk6cyFe+8hWGDBnCiRMn+PDDD4mLi+Ott94C4P7772flypVccMEF3HbbbTgcDv74xz8yadIkdu7c6bMxd2VMXTFz5kxWr17N73//e9LS0hg+fDhz58495+OuuuoqLrjgAn74wx+Sm5vLhAkTeO211866OCIiIiIiIiJyLpqnt+juPN1j1KhRzJ8/n9tuu43GxkYeffRRBg4cyL333tvlsYiIiIQqBdtFRESCKCoqittvv52VK1d6e7+NGjWKP//5z9x2220ALFq0iI0bN/Lzn/+cP/7xj9TU1JCSksLcuXP55je/6d3XzJkzee+997jnnnv4yU9+Qnp6Og8++CAHDhzg4MGDPh13Z8fUFb///e+59dZb+fGPf0x9fT233HJLpybxZrOZN998k7vvvpt//vOfmEwmPvOZz/C73/2O6dOnd2ssIiIiIiIi0j9pnt6iu/N0j5tvvhmz2cyjjz5KSUkJc+bM4Y9//COpqandGo+IiEgoMrlcLlewByEiIiL+c80117Bv3742e6WJiIiIiIiISGBpni4iItJ3qGe7iIhIH1JfX9/q+6ysLN59910WLVoUnAGJiIiIiIiI9GOap4uIiPRtymwXERHpQ1JTU1m+fDkjRowgLy+PJ598ksbGRnbs2MHo0aODPbwucTgclJaWdrhNTEwMMTExARqRiIiIiIiISNdoni4iItK3qWe7iIhIH3LZZZfxr3/9i6KiImw2G/PmzeNXv/pVr5vAAxw7dozhw4d3uM3PfvYz7r///sAMSERERERERKSLNE8XERHp25TZLiIiIiGpoaGBjz/+uMNtRowYwYgRIwI0IhEREREREZH+S/N0ERGRsynYLiIiIiIiIiIiIiIiIiIi0kXmYA9ARERERERERERERERERESkt+mzPdudTicFBQXExsZiMpmCPRwRERERERGRdrlcLqqrq0lLS8Ns7nvr4jVHFxERERERkd6ks/P0PhtsLygoID09PdjDEBEREREREem0Y8eOMXTo0GAPw+c0RxcREREREZHe6Fzz9D4bbI+NjQWMFyAuLi4oY7Db7axcuZIlS5YQHh4elDFIaNK5IYGic03ao3NDQonOR2mPzg0JlFA416qqqkhPT/fOZfuaUJijQ2j8rCU06dyQQNB5Jh3R+SGhROejtEfnhgRCqJxnnZ2n99lgu6csXVxcXFCD7VFRUcTFxelNR1rRuSGBonNN2qNzQ0KJzkdpj84NCZRQOtf6aon1UJijQ2j9rCW06NyQQNB5Jh3R+SGhROejtEfnhgRCqJ1n55qn971GcCIiIiIiIiIiIiIiIiIiIn6mYLuIiIiIiIiIiIiIiIiIiEgXKdguIiIiIiIiIiIiIiIiIiLSRX22Z3tnuFwumpubcTgcftm/3W4nLCyMhoYGvx2jr7JYLISFhfXZfoUiIiIiIiLSmr/n6KB5ek9oni4iIiIiInK2fhtsb2pqorCwkLq6Or8dw+VykZKSwrFjxzQZ7YaoqChSU1OxWq3BHoqIiIiIiIj4USDm6KB5ek9pni4iIiIiItJavwy2O51OcnJysFgspKWlYbVa/TLJdjqd1NTUEBMTg9msiv2d5XK5aGpqorS0lJycHEaPHq3XT0REREREpI8K1BzdcyzN07tO83QREREREZG29ctge1NTE06nk/T0dKKiovx2HKfTSVNTExEREZqEdlFkZCTh4eHk5eV5X0MRERERERHpewI1RwfN03tC83QREREREZGz9euZpSbWoU0/HxERERERkf5Dc8DQp5+RiIiIiIhIa5oliYiIiIiIiIiIiIiIiIiIdJGC7SIiIiIiIiIiIiIiIiIiIl2kYHs/lpmZyaOPPhrsYYiIiIiIiIj0e5qji4iIiIiI9D5hwR6AdM2iRYuYNm2aTybgW7ZsITo6uueDEhEREREREemHNEcXERERERHp3xRs72NcLhcOh4OwsHP/aJOSkgIwIhEREREREZH+SXN0ERERERGRvk1l5DEmv3VNzX75V9/k6PB+l8vV6XEuX76cdevW8dhjj2EymTCZTDz33HOYTCbee+89Zs6cic1m4+OPP+bIkSNcffXVDB48mJiYGGbPns3q1atb7e/MEnUmk4lnnnmGa6+9lqioKEaPHs2bb77pq5dZRILgfzsLyK8J9ihERERERLqmN8zTNUcXEREREfG/XS/sonB7YbCHIdIuZbYD9XYHE376flCOvf/BpURZO/djeOyxxzh8+DCTJk3iwQcfBGDfvn0A/PCHP+SRRx5hxIgRDBgwgGPHjrFs2TJ++ctfYrPZeOGFF7jqqqs4dOgQw4YNa/cYDzzwAA8//DC//e1veeKJJ7jpppvIy8sjMTGx509WRAJqW14Z97y6l0SbhW8FezAiIiIiIl3QG+bpmqOLiIiIiPhX8e5i3rjlDaKTo/nu8e9iCbcEe0giZ1Fmey8SHx+P1WolKiqKlJQUUlJSsFiMN5YHH3yQSy+9lJEjR5KYmMjUqVP55je/yaRJkxg9ejQ///nPGTly5DlXwS9fvpwvfOELjBo1il/96lfU1NSwefPmQDw9EfGxT7JPAVDWaKK0ujHIoxERERER6Vs0RxcRERER8a+aYqNsa21JLdnvZQd5NCJtU2Y7EBluYf+DS32+X6fTSXVVNbFxsZjNba9riPTRKpxZs2a1+r6mpob777+fd955h8LCQpqbm6mvryc/P7/D/UyZMsX7dXR0NHFxcZSUlPhkjCISWFvyyr1f7yusIi0xJoijERERERHpvN4+T9ccXURERESk5+y1du/Xu57fxdjPjA3iaETapmA7Rh+0zpZy7wqn00mz1UKUNazdSbyvREdHt/r+nnvuYdWqVTzyyCOMGjWKyMhIrr/+epqamjrcT3h4eKvvTSYTTqfT5+MVEf9yOF1sPy3YvvdEFZdOTAviiEREREREOq+3z9M1RxcRERER6bmm2pbPy4feOkTdqTqiBkYFcUQiZ1OwvZexWq04HI5zbrdhwwaWL1/OtddeCxir6HNzc/08OhEJFQcKq6hpbPZ+v6+gKoijERERERHpmzRHFxERERHxn9Mz2512J3tf3sucO+YEcUQiZ1PP9l4mMzOTTZs2kZuby8mTJ9td0T569Ghee+01du7cya5du/jiF7+o1e8i/ciW3DIABkQZmTB7FWwXEREREfE5zdFFRERERPzHk9luspgAo5S8SKhRsL2Xueeee7BYLEyYMIGkpKR2+7v9/ve/Z8CAAZx//vlcddVVLF26lBkzZgR4tCISLJ5g++dnDcWEi6KqRk7WNAZ5VCIiIiIifYvm6CIiIiISLE6HE6ejby/g9GS2j7lyDOYwMwVbCig9UBrkUYm0pjLyvcyYMWPYuHFjq9uWL19+1naZmZmsWbOm1W133HFHq+/PLFnncrnO2k9FRUW3xikiweNyudicY/RrXzhmEK9tPkpJA+w5UclFY5ODPDoRERERkb5Dc3QRERERCYaGigb+NOFPJE1I4survozJZAr2kPzCk9mekJnA6GWjOfTmIXY9v4vFv14c5JGJtFBmu4hIH5N7qo6TNY1YLWYmp8WRHmNcpNt7vDLIIxMRERERERERERGRnsr/OJ+awhpyPsihdH/fzfT2ZLaHR4cz9ZapAOz+x+7QyOi318PGP4PaQ/V7CraLiPQxnhLyU9PjsYVbSI82gu17TijYLiIiIiIiIiIiItLbFWwr8H594NUDQRyJf3ky263RVkZfMZrIxEiqC6o5uvpokEcGHH4f3r8PTmUHeyQSZAq2i4j0MVtyjGD77MxEAG+wfa+C7SIiIiIiIiIiIiK9XuG2Qu/Xvgi2lx8tJ+vdrDZbGQWTN7M9KpwwWxiTvjAJgF3P7wrmsAylh4z/G6uDOw4JOgXbRUT6GE9m++zhRrB9SLRxe0FlA6dqGoM1LBERERERERERERHxgYKtLZntxbuLOZV1qtv7crlcvHj5i7x0xUv89/r/0lDZ4Ish+oS9rqWMPOAtJX/w9YPBH2epe5FDk4Lt/Z2C7SIifUhJdQO5p+owmWDGsAEARIZB5sAoAPYWVAVzeCIiIiIiIiIiIiLSA9WF1dQU1mAym0g/Px3oWXZ7/sf5nDpsBOsPvHaAp2c9TfHuYp+Mtac8me3WaCsAabPSGDR+EM0Nzez/7/5gDg1KDhr/N9YEdxwSdAq2i4j0IVtzywEYlxJHfGS49/aJaXGASsmLiIiIiIiIiIiI9GaeEvKDxg1iys1TgJ4F2z0l2YdfPJz4YfGUZZfxzHnPsPP5nT0ea095erZ7MttNJpM3uz2opeQd9pZe7Soj3+8p2C4i0odsdvdrn5M5oNXtk9zB9j3HFWwXERERERERERER6a0Kthkl5FNnpjLumnGYzCYKthZQkVfR5X3Z6+zs+88+ABb8dAG3br+VUZeNorm+mf8t/x9v3foWzQ3Nvhx+18Z3RmY7wJQvTcFkNpH/cT5lR8qCM7BTR8BpjI0mZbb3dwq2i4j0IWf2a/fwBtuV2S4iIiIiIiIiIiLSa3ky29NmpREzOIZhFw4DjBLwXXXwjYM0VTeRkJlAxoUZRA2M4ovvfJFFDy4CE2x/ejvPXvAs5TnlvnwKnXZmZjtA3JA4RiweAcCuF4KU3V7qLiFvDodGtW7t7xRsFxHpI6ob7BwoNP6wz85sHWyfmBYLwImKesrdH1BEREREREREREREpHcp2NqS2Q4w/rrxQPdKyXtKsU+52cgWBzCZTSz8yUK+9P6XiBwYSeH2Qp6a8RSH3jrki+F3SVuZ7QBTlxul5He/sBuX0xXwcVF6EKIGQVyqeraLgu0iIn3F9vwKnC4YlhjF4LiIVvfFRoSTOTAKUHa7iIiIiIiIiIiISG9UXVhNTWENJrOJlGkpAIz/rBFsP7bhGNUFne8fXnWiiqOrjwIw9eapZ90/8tKRfHPHNxl63lAaKhp4+TMvs/bHa3E5AhfcbiuzHWDcNeOwxdmoyK0g76O8gI3Hq+QAJI0DW5zKyIuC7b3NokWLuPvuu322v+XLl3PNNdf4bH8iEjxb3P3az8xq95g0JB5QsF1ERERExFc0RxcRERGRQPKUkB80bpA32ztuSBxDzxsKwIHXO5/dvvufRlb4sPnDSBzZ9jXl+PR4lq9bzpy75gDwycOfcOwvx3ryFDrN5XJhr2s7sz08MpwJN0wAWrLzz6W6sJoXl73IX6b+xbvfbis9CMnjwBoDjZ1f4CB9k4LtIiJ9xGZ3v/Y5wwe0ef9kd7B9r4LtIiIiIiIiIiIiIr1OwbbWJeQ9xl/ftVLyLpfLG6T2lGRvj8Vq4fLHLueqp68CoPLTwFxfbq5vBncS/ZmZ7QDTbpkGwP7/7vdmwLcnd10uf53+V7Lfy6Z4dzGF2wu7PzCHHU5luzPbYxVsFwXbwXhTaapt8ss/e629w/tdrs6X21i+fDnr1q3jsccew2QyYTKZyM3NZe/evVx++eXExMQwePBgvvzlL3Py5Env41555RUmT55MZGQkAwcOZPHixdTW1nL//ffz/PPP87///c+7v7Vr1/rhFRYRf2tsdrDrWAUAs9rJbJ+szHYRERER6SV6wzxdc3QRERERCTRPZnvarLRWt3tKyeety6O2tPac+ynYUsDJAycJiwxj4ucmdurYI5eOBMBZ7+xSbKu7Tg+gh0edHWxPvyCdASMH0FTTxIHX2l5k4HK52PDwBl645AVqi1tel4q8iu4P7NQRcDZD8niwKbNdICzYAwgF9jo7D8U8FJRj31dz31nlL9rz2GOPcfjwYSZNmsSDDz4IQHh4OHPmzOHrX/86f/jDH6ivr+cHP/gBN9xwA2vWrKGwsJAvfOELPPzww1x77bVUV1fz0Ucf4XK5uOeeezhw4ABVVVX8/e9/ByAxse0gnYiEtr0nKmlsdjIoxsqIQdFtbjMxzQi2Hy+vp6KuiYSozr33iIiIiIgEWm+Yp2uOLiIiIiKBVrC17cz2AcMHkDojlcLthRz63yFmfH1Gh/vZ+fxOAMZfOx5bnK1Tx46IjwDA1eyiuaEZq9W/15fttUap97CIMMyWs3OHTSYTU2+eytqfrWXX87uY+uXWGfoNFQ28sfwNDv3vEABTvjwFR6ODff/ZR0VuRfcHVuoO7Hsy2yvyu78v6RMUbO9F4uPjsVqtREVFkZKSAsAvfvELpk+fzq9+9Svvds8++yzp6ekcPnyYmpoampub+exnP0tGRgYAkydP9m4bGRlJY2Ojd38i0jttzikHYFZGIiaTqc1t4qPCGZYYRX5ZHXtPVDF/9KBADlFEREREpE/RHF1EREREAqm6sJqawhpMZhMp087+vDj+uvEUbi9k/yv7Owy2Nzc2s/dfewGYekvHJeRPZ42xgglwQWNVI1FxUV1+Dl3h6aveVla7hyfYnrMmh8pjlcSnGwlnRTuL+M/1/6H8SLlRBv+Jy5nxjRmse3AdQM+C7SUHIWoQRA8Cayw01nR/X9IndDnYvn79en7729+ybds2CgsLef3117nmmmu897tcLn72s5/x9NNPU1FRwQUXXMCTTz7J6NGjvduUlZXx7W9/m7feeguz2cx1113HY489RkxMjHeb3bt3c8cdd7BlyxaSkpL49re/zb333tuzZ9uO8Khw7qu5z+f7dTqdVFdVExsXi9ncdsX+jt4kOmPXrl18+OGHrV47jyNHjrBkyRIuueQSJk+ezNKlS1myZAnXX389Awa03dNZRHqnLe5+7bMyO/7dnjwknvyyOvacqFSwXURERERCVm+dp2uOLiIiIiL+4ikhP2jcoDYrMY2/bjxrfrSGnA9yqC+vJ3JAZJv7Ofz2YRrKG4gdEsvwS4Z3+vgmswlbrI3GqkYaKxthaPeeR2d5ysi31a/dIyEzgYyFGeSty2P3P3Zz4f+7kO1/2867d7yLo9FBQmYCn3vlc6TNTPNuD1CZ14NWq6UHjBLyoDLyAnQj2F5bW8vUqVP56le/ymc/+9mz7n/44Yd5/PHHef755xk+fDg/+clPWLp0Kfv37yciwigxcdNNN1FYWMiqVauw2+185Stf4dZbb+Wll14CoKqqiiVLlrB48WL+8pe/sGfPHr761a+SkJDArbfe2sOnfDaTydTpUu5d4XQ6CXeEY422tjuJ76mamhquuuoqfvOb35x1X2pqKhaLhVWrVvHJJ5+wcuVKnnjiCX70ox+xadMmhg/v/JuoiIQup9PFVnewfc7wjstMThoSzzt7Ctmrvu0iIiIiEsJ66zxdc3QRERER8ZeCbW2XkPcYNHYQyZOSKdlbwuG3DjP15raz1nc9vwuAKV+a0mZ59o5Y46w0VjXSVN107o17yFNG/lzzgqm3TCVvXR47n9tJ2ZEydj67E4DRV4zm2heuJTKxZdFBQkYC0MPM9tJDkHmh8bUtFpqU2d7fdXlmefnll/OLX/yCa6+99qz7XC4Xjz76KD/+8Y+5+uqrmTJlCi+88AIFBQW88cYbABw4cIAVK1bwzDPPMHfuXObPn88TTzzByy+/TEGB8Ubx4osv0tTUxLPPPsvEiRO58cYbueuuu/j973/fs2fbB1itVhwOh/f7GTNmsG/fPjIzMxk1alSrf9HRRt9mk8nEBRdcwAMPPMCOHTuwWq28/vrrbe5PRHqfwyXVVDU0E221MCE1rsNtJw8xyujsUbBdRERERKTHNEcXERERkUDxZLa3F2wHI7sd4MCrB9q8v7akluz3soGulZD38PR3b6hs6PJju6ozme0AE66fQHhUOGVZRqDdZDZx8S8v5gtvfqFVoB1aZ7a7nK6uD6q5CU5lQ/I443urO7Pd1Y19SZ/h057tOTk5FBUVsXjxYu9t8fHxzJ07l40bN3LjjTeyceNGEhISmDVrlnebxYsXYzab2bRpE9deey0bN25kwYIFWK0tq1WWLl3Kb37zG8rLy9ssr9bY2EhjY6P3+6qqKgDsdjt2u73Vtna7HZfLhdPpxOl0+uz5n8nl/uXyHMsXMjIy2LRpE0ePHiUmJobbbruNp59+mhtvvJHvf//7JCYmkp2dzb///W+efvpptm7dypo1a7j00ktJTk5m06ZNlJaWMnbsWJxOJxkZGbz//vscOHCAgQMHEh8fT3h4z0rb+4rT6cTlcmG327FYLMEejk95zskzz02R7vg0uxSAaekJuJwO7M6Wi3Nnnmtjk40+OvlldZysqiM+MjR+3yXw9D4koUTno7RH54YESiicazrPe6fMzEw2bdpEbm4uMTEx3HHHHTz99NN84Qtf4N577/XO0V9++WWeeeYZtm7dygcffMCSJUtazdHHjx/v3d/777/PoUOHQm6OLiIiIiLBVbDVSFhNm5XW7jbjrxvPugfWkf1+No3Vjdhiba3u3/PSHpzNTtJmp5E0PqnLY/AE25uqQiez3RZrY8L1E9j1wi6ikqK47l/XMeKSEW1uGzc0DpPFhKPJQU1xDbGpsV0bVNkRcDZD0jjPwQEXNNUaJeWlX/JpsL2oqAiAwYMHt7p98ODB3vuKiopITk5uPYiwMBITE1ttc2b5NM8+i4qK2gy2P/TQQzzwwANn3b5y5UqioqLOOl5KSgo1NTU0Nfn/DaG62nf9Gr75zW9y++23M2nSJOrr69m1axfvvfce999/P0uXLqWpqYn09HQuueQSampqMJvNfPjhhzz66KNUV1eTnp7Oz3/+cy644AKqqqr4/Oc/zwcffMCcOXOoqanhrbfeYv78+T4bb080NTVRX1/P+vXraW5uDvZw/GLVqlXBHoL0AW8eNgNm4hpLePfdd9vc5vRzbaDNwqlGE8++sZqx8Vpx19/pfUhCic5HaY/ODQmUYJ5rdXV1QTu2dN8999zDLbfcwoQJE6ivrycnJ4cNGzbwgx/8gCVLltDY2EhGRgaXXXYZZrOZuLg41q9fz6OPPkpVVRUZGRn87ne/4/LLLwfgG9/4BmvXrmXWrFnU1NTw4YcfsmjRouA+SREREREJuurCamoKazCZTaRMS2l3u+RJySSOTqQsq4ysd7KYdOOkVvd7Ssh3J6sdwBZvBNsbqxrPsWXPdTazHWDxw4tJnpzMpC9MIm5I+9VfzWFm4obEUZlfSUVuRdeD7SXuigFJnp7t7sc31SjY3o/5NNgeTPfddx/f+973vN9XVVWRnp7OkiVLiItr/YvV0NDAsWPHiImJ8faR9weXy0V1dTWxsbGYTCaf7HPGjBl8+umnZ93+v//9r83tZ8+ezcqVK9vdX1xcHKtXr/bJ2HytoaGByMhIFixY4NefUzDY7XZWrVrFpZdeqiwF6RGXy8Wv9q0HGvnipXM5b0Trnu1tnWvvVe1ixb5iooeOY9mF6gvZX+l9SEKJzkdpj84NCZRQONc81dmkdxkzZgwbN2486/bXXnutze3Hjx/PihUr2t1fUlJSh3N4EREREemfPCXkB40b1GGmt8lkYvx149nw6w0cePVAq2B70a4iinYWYQ43nxWE7yxPpnwggu2dzWwHiBkcw/n3nN+p/SZkJniD7enz0rs2qNJDEJ0E0QON763uAHtjNcS2vwhC+jafBttTUowTqbi4mNTUlp4RxcXFTJs2zbtNSUlJq8c1NzdTVlbmfXxKSgrFxcWttvF879nmTDabDZvNdtbt4eHhZ10scTgcmEwmzGYzZnOX29Z3mqd0vOdY0jVmsxmTydTmz7Cv6MvPTQLjWFkdxVWNhFtMzBo+iPDwtlsunH6uTUlPYMW+YvYX1ej8E70PSUjR+Sjt0bkhgRLMc03nuIiIiIiItKdgm1FCvqN+7R4Trp/Ahl9vIOvdLOx1dsKjjLmGJ6t97FVjiRoY1dEu2uXNbK8Mrcz2rkjITCBvfR4VuRVdf3DpgZYS8tCS2d7ouwrX0vv4NAI8fPhwUlJS+OCDD7y3VVVVsWnTJubNmwfAvHnzqKioYNu2bd5t1qxZg9PpZO7cud5t1q9f36pn3apVqxg7dmybJeRFRPqrLbllAEwaEk+kte1A+5kmpcUDsPdEpd/GJSIiIiIiIiIiIiK+4cls70ywPXVGKgmZCdjr7GS/nw2Aw+5gz4t7gO6XkIeWnu2N1YHLbPd1sD0+07g+XpnXjevjJQfPCLafltku/VaXg+01NTXs3LmTnTt3ApCTk8POnTvJz8/HZDJx991384tf/II333yTPXv2cPPNN5OWlsY111wDGCXTLrvsMr7xjW+wefNmNmzYwJ133smNN95IWloaAF/84hexWq187WtfY9++ffz73//msccea1UmXkREWoLtszMTz7Fli8lDjA8TeafqqKy3n2NrEREREREREREREQmmgq1GZnvarLRzbmsymRj3WSMgfOBVo8f4kfePUFtSS1RSFKMuH9XtcVhjjZLugcxs70wZ+a5IyEgA6Hpme3MTlB2B5NOD7e421k01Phmb9E5dDrZv3bqV6dOnM336dAC+973vMX36dH76058CcO+99/Ltb3+bW2+9ldmzZ1NTU8OKFSta9dx+8cUXGTduHJdccgnLli1j/vz5PPXUU9774+PjWblyJTk5OcycOZP/+7//46c//Sm33nprT5+viEifsiW3HOhasH1AtJUhCZEA7CtQdruIiIiIiIiIiIhIqKourKamsAaT2UTKtM71BZ9w3QQADr91mObGZm8J+ck3TcbSTivSzvCWkQ9gz3Z/lJGHbgTbT2WDsxmSxrfc5u3ZrmB7f9blnu2LFi3C5XK1e7/JZOLBBx/kwQcfbHebxMREXnrppQ6PM2XKFD766KOuDk9EpN8oq20iu8T4Iz4ro2stNiYPiedERT17T1Ry/shB/hieiIiIiIiIiIiIiPSQp4T8oHGDOp3lPfS8ocSmxVJdUM3+/+7n0JuHAJh2y7QejcVTRr6puqlH++kMe5072B7ln2B7ZV4lLpcLk8nUuQeWHjT+Tz4t2B5mA3MYNFb5dIzSu/i0Z7uIiASOp4T86OQYBnSxlM7koUYp+T0n9CFARERERERERERE+qFTR6CD5NJQUbDNKCHfmX7tHiZzSyn5Fd9ZgaPJweApgzudGd8eb8/2AJSR92S2+7qMfNzQODBBc0MztSW1nX9g6UGIToKo06rMmkxgi1UZ+X5OwXYRkV5qq6df+/DOl5D3mOTu2773hMrIi4iIiIiIiIiISD9TVQh/nAWbnw72SM7Jk9nelWA7tJSSry+rB2DqLVN7PBZvsD0AZeQ9Pdt9XUbeYrUQN8Totd6lUvIlByBp3Nm3W2Ohsdo3g5NeScF2EZFearO7X/ucLvRr95jsDrbnnKylqsHu03GJiIiIiIiIiEjn2R1OVh8oockR7JGI9CMFO8DlhHW/CflAacFWI7M9bWZalx437MJhRCVFAWCymJh80+QejyUYPdt9ndkOrUvJd1rpwdYl5D1sserZ3s8p2C4i0gvVNTWzz52V3p3M9sRoK0MSIgHYp1LyIiIiIiIiIiJB8+TaI9z20k7eP67L9SIBU7gLbHFGoP2TPwZ7NO2qLqymprAGk9nU5RLwZouZcdcamdijLhtFzOCYHo/HFtv7M9sB4jOMZLROZ7Y3NxptB9rKbLfFqIx8P6e/3r2My+Xi1ltvJTExEZPJxM6dO4M9JBEJgh35FTQ7XaTFR3iD5l01yV0qR6XkRURERES6R3N0ERHxhRV7iwA4WGkK8khE+pGi3TB0Fsy9FTb+EWpKgz2iNnlKyA8aNwhrTNczvC964CJm3zGbyx67zCfjOT2z3eX0b7/7QGS2dzrYfuoIuBxtZ7ZbY6BRCW39mYLtvcyKFSt47rnnePvttyksLGTSpEnBHlK3ZGZm8uijjwZ7GCK91pYe9Gv38JSS36Ngu4iIiIhIt2iOLiIiPVVU2cD+QiNIc6IWqhuagzwikX6icBekTIH53wOTBdb/NtgjalPBNqOEfFf7tXvEpMSw7I/LSBzZ/evIp/P0bMfVknnuL/7MbO9ysL30gPF/m5ntKiPf3ynY3sscOXKE1NRUzj//fFJSUggLC+vS410uF83N+sAm0tt5g+3d6NfuMdEdbN9boGC7iIiIiEh3aI4uIhIa1h4q4af/20tjc+9rer7ucIn3axcmdh6rCN5gRPqL2lNQdQJSp0JUIsz/Dmx9Fspygj2ys3gy27sbbPe1sMgwsBhfN1b6t5R8SPVsLzkI0cnG+XImW4zRjqCXaaxu5P3vvU/u2txgD6XXU7C9F1m+fDnf/va3yc/Px2QykZmZSWNjI3fddRfJyclEREQwf/58tmzZ4n3M2rVrMZlMvPfee8ycORObzcbHH3+M0+nkoYceYvjw4URGRjJ16lReeeWVVsfbt28fV155JXFxccTGxnLhhRdy5MgRALZs2cKll17KoEGDiI+PZ+HChWzfvt37WJfLxf3338+wYcOw2WykpaVx1113AbBo0SLy8vL47ne/i8lkwmRSeSSRrjpaWgvAJHfAvDs8me05J2upadQFPhERERGRrtAcXUQkdPxmxSFe2JjHBwdKzr1xiPnwoFG62mI23n+35lUEcTQi/UTRLuP/1KnG/3Nvg6iB8OEvgzemdhRsNTLb02amBXkkBpPJhCXKiLb7u297oHq2u1ydKIdfegCS28hqB7DF9cqe7et/vp5P//ApH9z3QbCH0ut1bcl1X9ZUBycP+3afLheW2hqojYH2JquDxoA1qlO7e+yxxxg5ciRPPfUUW7ZswWKxcO+99/Lqq6/y/PPPk5GRwcMPP8zSpUvJzs4mMbFlhc0Pf/hDHnnkEUaMGMGAAQN46KGH+Oc//8lf/vIXRo8ezfr16/nSl75EUlISCxcu5MSJEyxYsIBFixaxZs0a4uLi2LBhg3fFfXV1NbfccgtPPPEELpeL3/3udyxbtoysrCxiY2N59dVX+cMf/sDLL7/MxIkTKSoqYtcu4w/Ya6+9xtSpU7n11lv5xje+0bPXWKSfqnUHx2Mjuv82PijGRmp8BIWVDew7UcncEQN9NTwRERERkZ4L8Xm65ugiIqHB5XKRd8pISjhYWMWyyaGR/dkZTc1OPs4+CcD1M4bw763H2ZpXHuRRifQDhbvAGgsDhhvfW6Ng0Q/h7bvh/G+3BOGDrLqwmprCGkxmEynTUoI9HC9LlAVHtYOGyga/HcNhd+C0OwH/ZLbHDzOC7fY6O3Un64hOiu74AaWHYMRFbd9njel1ZeSrC6vZ/MfNQBdK6Uu7FGz3OHkYnlro012agdhzbXTrOkib1qn9xcfHExsbi8ViISUlhdraWp588kmee+45Lr/8cgCefvppVq1axd/+9je+//3vex/74IMPcumllwLQ2NjIr371K1avXs28efMAGDFiBB9//DF//etfWbhwIX/605+Ij4/n5ZdfJjzcWDU0ZswY7/4uvvjiVmN76qmnSEhIYN26dVx55ZXk5+eTkpLC4sWLCQ8PZ9iwYcyZMweAxMRELBYLsbGxpKSEzh8Ikd7C5XJR12SURYu29uxtfNKQeAorG9ijYLuIiIiIhJoQn6drji4iEhrKapu810kOFfeuMr5b88qoaWxmUIyVW+YN499bj7PreCVNzU6sYSpKK+I3hbshZTKYT/s9m/5l2PhHWP0AfPm14I3tNJ4S8oPGDcIa4/uAc3eZI43XzZ+Z7Z4S8uCfzPYwWxixabFUF1RTmVfZcbC9uRFOHYG532r7/l5YRv6jX35Ec72xcLemqIbmhmbCOkrsszdAeESARtf7KNjuMWiMMaH2IafLRW1tDdHRMZg7WjHfTUeOHMFut3PBBRd4bwsPD2fOnDkcOHCg1bazZs3yfp2dnU1dXZ13Yu/R1NTE9OnTAdi5cycXXnihdxJ/puLiYn784x+zdu1aSkpKcDgc1NXVkZ+fD8DnPvc5Hn30UUaMGMFll13GsmXLuOqqq7rcv05EztbkcNLsNErbRNksPdrX5CHxrNpfzN4T6tsuIiIiIiGml83TNUcXEQmOY+X13q8PFfWuYMfaQ0YJ+YVjkhmVFE10mIvaZid7TlQyM2NAkEcn0ocV7YZRi1vfZgmDS34K/7kZctbD8AXBGdtpCrYZJeRDpV+7hyXaXUbejz3b7XVGsN1kMWGx9uwaeHviM+KpLqimIreCtFkdlOk/lQ0uBySPb/t+Wyw0VYPL1X71rBBSkVvBtqe2Gd+YABdUHa8icVQb/egBDq+EV74C39kF0YMCNs7eRLMqD2tUpzPMO83pxFFVBXFxrVdIBUF0dMuqnJoao5zFO++8w5AhQ1ptZ7PZAIiMjOxwf7fccgunTp3iscceIyMjA5vNxrx582hqMnpopKenc+jQIVavXs2qVau4/fbb+e1vf8u6devavTggIp1T1+jwfh0V3vNgO8AeBdtFREREJNT04Xm65ugiIr6TX1bn/TqvrI76JgeRfgrM+NqHB40e8xeNS8JkMjEi1sWechNbc8sUbBfxl8ZqI3g6/3tn3zf+MzBkJqz6GXxjTdADp57M9pALtkf6v2e7t197VDgmP/0cEjITOL7x+LnLqJe4F84mtdOz3RoLLifY68B6jnL0IWDdg+tw2p0Mv2Q41SeqOXnwJJX5le0H23f9y+hJn7UKpn0hsIPtJVSLphcbOXIkVquVDRs2eG+z2+1s2bKFCRMmtPu4CRMmYLPZyM/PZ9SoUa3+paenAzBlyhQ++ugj7HZ7m/vYsGEDd911F8uWLWPixInYbDZOnjzZapvIyEiuuuoqHn/8cdauXcvGjRvZs2cPAFarFYfD0dauReQcapuM8i62MDNhlp69jU9yB9uPnqylxt0HXkREpLMcdgc1xTWU7i8l76M8Dr5xkB3P7uD4p8eDPTQRkYDTHF1EJDiOnRZsd7kgu6R39M09VlZHVkkNFrOJC0clATAizqhkuCW3LJhDE+nbivYa/7fVl91kgsX3Q8F22P+/gA6rLQVbjcz2tJkdZF2fS00JPH8VvHkX7P4PVBX0eFyezHZ/9mz3lJH3R792j4TMBAAq8io63rD0IMQMhqh2gtE2d6OqXtC3/eShk+x6fhcAF//yYm/v+sr8dpLx7A2QtdL4+vCKQAyxV1Jmey8WHR3Nbbfdxve//30SExMZNmwYDz/8MHV1dXzta19r93GxsbHcc889fPe738XpdDJ//nwqKyvZsGEDcXFx3HLLLdx555088cQT3Hjjjdx3333Ex8fz6aefMmfOHMaOHcvo0aP5xz/+waxZs6iqquL73/9+q5X2zz33HA6Hg7lz5xIVFcU///lPIiMjycjIACAzM5P169dz4403YrPZGDRIpSdEOsvbr93W87fwpFgbKXERFFU1sL+gijnD2/nAICIi/d6xjcf46JcfUVtcS92pOupP1be7it0cbuY7R79D3NC4AI9SRCR4NEcXEQmO4+V1rb4/WFTF5KHxQRpN5609bJSQnzlsAPFR4djtdkbEGsH2rXnlOJ0uzObQL0cs0usU7QaLDZLGtn3/8AVGifk1P4dxVxrl5YOgurCamsIaMEHKtJTu72j9b+HEDqgphe3PG7cljoCMCyDzQsi8AOKHdmmXgejZ7s1sjw6H3f+FiDgYs9Snx4jPcAeac89R9bX0YPtZ7WD0bAcj+5vBvhmcn6z92VpcThdjPzOWoXOHEjfMuG7T7oKDI2uM5zXpeiPo7rCDRZWxzqTM9l7u17/+Nddddx1f/vKXmTFjBtnZ2bz//vsMGNBxmaGf//zn/OQnP+Ghhx5i/PjxXHbZZbzzzjsMHz4cgIEDB7JmzRpqampYuHAhM2fO5Omnn/aWl/vb3/5GeXk5M2bM4Mtf/jJ33XUXycnJ3v0nJCTw9NNPc8EFFzBlyhRWr17NW2+9xcCBAwF48MEHyc3NZeTIkSQlJfnp1RHpm2rdGehRPiqJ5slu3328wif7ExGRvmndA+vIeieLgq0FVORUtEyqTRAxIILEUYkMmTuE2LRYnHYn257eFtwBi4gEgeboIiKB5ykjnxBlvCceLu4dfdvXukvILxrX8r6bHg0R4WYq6uxkl4Z+hqRIr1S4y+i93VHA8JKfGaXmd/wjcOM6g6eEfNL4JKwx3czuLsuBrX+HBf8Hd3wK3z8CN7xgLCY4sR1evxX+MBEemwpv3AHZqzu1W0uU/8vIt8psX/ljeOkG+PeXfJKZ7+HNbD9nGflzBNut7mB7Y5VPxuUvRbuK2PfvfWCCi35+EcC5M9v3/8947uffaTy//I2BGm6vosz2Xubuu+/m7rvv9n4fERHB448/zuOPP97m9osWLcLlcp11u8lk4jvf+Q7f+c532j3WlClTeP/999u8b/r06WzZsqXVbddff73362uuuYZrrrmm3X2fd9557Nq1q937RaR93sx2q2/ewmdlDmD1gWI+PFTC1y8c4ZN9iohI31O8qxiAyx6/jLRZaUQNjCJyYCQRCRGYT2trsvffe3n1xlfZ/vR2Fvx4AZbw3tEvU0SkOzRHFxEJvmNl9QBcNDaZ13ec4FBx6AepG+wONhwx2n1cNLZlcZTFDNOGxvNpTjlbcssYMzg2WEMU6bsKd8OQGR1vkzoFJn8O1v4apnwerFGBGdtpCrYZQeUe9Wtf+xBEDYQ53zS+jx4EE642/gHUnoK8Dca/o2th10vwpVdh5MUd7tYbbK8MUGZ7Uy2MXgL5m+CPc+CSn8Lsr4G5Z9cbTg+2u1yutnvDNzdC2VGYd3v7O+olZeQ//MmHAEz6/CQGTzEy8BMyEgCoym9joUBzExx6D+Z+E1KmQkwKHH7fqP4grSizXUSkl/Fmttt8E7xYNsn4wLbxyClKq/33AUlERHqv2tJaaoqMSeP0r0wnfV46A8cMJGpgVKtAO8D4a8cTPTiamsIaDr15KBjDFREREZF+wuF0UVBhBNsXjzcCB4eKQjuzEGBTThkNdicpcRGMS2kdUJ+VYVRD2ZKjvu0iPtfcCKUHjGD6uVz0I6g7BZue9P+42uDJbO92sL14n9GjfeG97S8WiB4IEz4Dl/8GbvsERiyCV74GFcc63LU5yv9l5Fsy28PBXgtjL4c7t8Dk6+G978PfLoWiPT06hieru6mmiYbydvrPn8wClwOSxre/I2+wPXQrqxz/9DiH3zqMyWJi0QOLvLd3mNmesx4aK41zxGyG0Ze29G+XVhRsFxHpZXyd2T5sYBRThsbjdMGKfUU+2aeIiPQtJXuMEpcDRg44Z/k6i9XC9K9NB2Drk1v9PjYREQm++iYHT68/Skl1OxcpRUT8pLCynmanC6vFzIVjBgFQXNVIRV1TkEfWsQ/dJeQvGpd0ViblTE+wPbc84OMS6fNK9oOz2cjSPZfE4TDrq/DxY1AX+MUvBVuNzPa0mWnd28EHP4cBmTDj5s5tb7bAdX8zSqL/58tgb/9zXSAz2yNiAJfTGFdkAlz1KHx1JTTVwV8XwsqfGJnv3RAeGU704Gigg1LypQeN/5PGtr8jT7C9yf+Z7RV5FWx4eIM3IaKz1vxoDQBTb5nKwDEDvbefHmw/qwLX/jdgwHAYPMn4fsxSOHnYyPSXVhRsFxHpZTzBdl/1bAe4coqxQvLtXb7reSMiIn1H8W6jhPzgyYM7tf3MW2eCCXI+yOHU4VP+HJqInMNDDz3E7NmziY2NJTk5mWuuuYZDh86uOrFx40YuvvhioqOjiYuLY8GCBdTX13vvLysr46abbiIuLo6EhAS+9rWvUVMT2mUSJXD+8Wkuv3z3AD/7375gD0VE+hlPv/YhAyKJiwhnSEIkAIeKQje7EGDtIXe/9tNKyHtMS4/HYjZxoqLem7UvIj5SuBtMZhg8sXPbL/i+kdX80e/8O64zVBdWU1NYAyZImZbS9R3kfwqH34OLf9xxb/ozRSXCDc9D8X5Y8YN2Nwtkz/bIWKdxgzW65c5hc+Gb6+Gi/webn4I/nwdZ7fSbtzdAeR4c2wwH3oLNT0Pux967z9m3vfQgxAw2Xpv2hEWAyRKQzPaPfvURq3+wmr/O+Ct5H+V16jE5a3LIWZODOdzMwp8ubHVf3NA4MEFzQzN1pXUtdzia4eA7RssBz6KwEYvAYoXDym4/k4LtIiK9TF2TUUY+2uabzHaAZZONYPvm3DJKqpSNIiIirRXvMYLtyVPOvhjYloSMBMZcMQaArX9RdrtIMK1bt4477riDTz/9lFWrVmG321myZAm1tS3ZHxs3buSyyy5jyZIlbN68mS1btnDnnXdiNrdcMrjpppvYt28fq1at4u2332b9+vXceuutwXhKEoL2FRglmz88VOKdr4iIBMJxd7/2oQOMIPtYd0n2w8WhG2zPOVlL7qk6wi0mLhg16Kz7Y2xhTEiNA2BLrkrJi/hU4S4YNKbzPdhjkmD212H7C/4d1xk8JeSTxieds7rcWVwuWP0ADJ4MEz/b9YMPmQFXPALbnoPt/2hzE0+wvaHSf9eRvZnt0UbiWatgO0CYFRbcY5S/TxwBL14HL95glMF/7kr442z49TD45WB4bIpRdv7fX4L37oUXroaCHcBpwfa8irYHUnIAksZ1PFiTCWwxAQm21580/u7VFNbw/EXP88nvPjk7I/00LpfLm9U+85szvT3aPSxWC7Gpxt/OVqXk8zZAfZlRQt7DFgsZF0DW+755Mn1Ivw62d3QCSvDp5yPSttpG32e2Dx0QxfRhCbhc8O6eQp/tV0RE+oaS3UbmTWcz2wFm3TYLgJ3P7cReb/fLuETk3FasWMHy5cuZOHEiU6dO5bnnniM/P59t27Z5t/nud7/LXXfdxQ9/+EMmTpzI2LFjueGGG7DZbAAcOHCAFStW8MwzzzB37lzmz5/PE088wcsvv0xBge8qI2kOGPra+xlllxhVDhrsTtYeKg3kkESknztWbmThDUs0AmeeYPuhEA62e7La5wxPJKadRIrZmUYGpYLtIj5WtBtSO1FC/nSJw6GxCpxO/4ypDQXbjM/Y3erXnr0a8j+BxT8z+mx3x4ybjX/v/B8U7Dzr7oD0bK8zriNERLmD7eHRbW84cCR8+Q249imoKYbqIohOglGLYf734Jq/wJdfh9s2wvePwo+KjMoGr34DmuqIzzDKqHeY2Z7cQb92D1tcQMrIe66vDBgxAJfDxap7VvGf6/7T7sKHrHeyOP7pccIiw1jwowVtbtNm3/YDb0J8OqTNaL3xmMuMygCNqnJ2Ot+lRfYi4eFG2Yy6ujoiIyODPBppT12d8WHZ8/MSEYM/MtsBrpicyo78Ct7ZU8jyC4b7dN8iItJ7OR1OSva5g+1TOh9sH7l0JPEZ8VTmVbLv3/uYtnyan0YoIl1RWWlcQElMNC7il5SUsGnTJm666SbOP/98jhw5wrhx4/jlL3/J/PnzASPzPSEhgVmzZnn3s3jxYsxmM5s2beLaa6896ziNjY00NrZcfKuqMjKf7XY7dvvZC3BcLhc1NTXeAL+/eILFLpcLZwAvmPYVNTU13tfQ83N0OF3eYDvAO7sLuHTc2Zmaoc7zfNo6P0V8ReeZ7+WeNN5/0uJt2O12Rg4ygu4HC6tC9nVec8CoGrVg1MBWYzz9/Jie7s5szykL2echfVuffL9yOggr2otz3FU4u/C8TGYrYYC9oRrCO5kR30MFW4xge/K05K79DFxOwlbdj2vYPBwZC6EnP79Lf4WlYBemf3+Z5q99AJEDAOOcOL1nu7/OkcZqYy5htbnPRbOt4+cz4bPGv3NxAZ/5C2F/uxjniv9HbPqNAJQfLT/7uTQ3EFZ2FEfiaFzneJ5h1mic9ZVdOre6o6nOyPhf+OBC6svrWf1/qzn4+kGK9xTz2X99lsFTW67buJwuPvjRBwDMvmM2toG2Nn9esUONhWplR91/c1xOwva/iXPiZ3E2n1G1asTFhDt+QHPWB7jGLvPTswyd96DOHr9fBtstFgsJCQmUlBgXDaOiojB5eg74kNPppKmpiYaGhlbl96RjLpeLuro6SkpKSEhIwGLxXfauSF9Q6w62+zKzHeCKKan84p0DbMktp7CyntR4LUYSEREoP1JOc30zYZFhDBg5oNOPM1vMzPzmTNb8vzVsfXKrgu0iIcDpdHL33XdzwQUXMGnSJACOHj0KwP33388jjzzCtGnTeOGFF7jkkkvYu3cvo0ePpqioiOTk1m0kwsLCSExMpKioqM1jPfTQQzzwwANn3b5y5Uqios6+SBkbG0tjYyMNDQ1YrVa/zNFPd+rUKb/uv69xuVw0NTVx8uRJysvLycrK8t53sgEam1suL63eV8j/3j5OeC+9DLJq1apgD0H6AZ1nvrPnqAUwUZp7kHerD1BSCxDGvuPlvPPOu/j5z0mXNTpg4xFjzKai/bz77v6ztlm1ahVVTQBhHC6u5pU33yWqX17Fl1DQl96vYutPcHFzPZ/m1nHy1LudflxKxUHmAqvfe4umsFj/DfA0x/YcA+Bo1VFOvnuy048bUraRWSV7+Wj0Tyh/770ejyNy4C0sOvgTyp++jk9Hfs/od09LGXl7nZ133noHk8X3b7b5B/MBKC3NgSHw4YbN1NtyfLb/zJQbmLr979Q5bUAUx/Ye4913W58XcfX5XORysjG7jLKijs+ZC+uaqT5ygJ3vdv7c6o6TBcb5sGv/LuLnxDPylyPJeTiH8uxynr3gWYZ+cygDLxkIQPnH5ZTsLsEcZaZ6avVZz8/jVLMxN9q1fhcnR58kseYQF9aW8En5IMraeMzFtlTKPvwbO4/46UmeJtjvQZ6k4HPpt3+mU1JSALwBd39wuVzU19cTGRnp9wsFfVFCQoL35yQiLercZeSjrb59C0+Nj2R25gC25Jbz7p4ivjZf2e0iInJav/aJyZgtXYuczPjaDNb+bC0nNp+gcHshqTO6UQJPRHzmjjvuYO/evXz88cfe2zzZ3d/85jf5yle+AsD06dP54IMPePbZZ3nooYe6daz77ruP733ve97vq6qqSE9PZ8mSJcTFxZ21vcvloqSkxJsB7y8ul4uGhgYiIiI0T++GpKQkJk6c2Oq1+/BQKezYwZjkGKoa7BRVNRIzchaXjE/uYE+hx263s2rVKi699FJV2BO/0Xnme7/YsxZo4uqLL2DSkDgam538bu8H1Dtg5oUXkxIXEeQRtrbmUCnNm3cwdEAkyz87v9X76Znnx99yPyb3VB0Dx87morFJQRy19Ed98f3KtPe/cBDmXP0NiIjv/OOORkLOYyxeeAHED/XjCFvkfi+XBhqYf8l8hp7XyWM67IT99Wc4Ry9l3g3f8dlYTEfTSf7XDVwZuw/ngh9gt9t5/92Wnt0XX3AxkYm+T9p6/cXXKaOMEaMGQz1ctPRKiBrouwO4Lsf5nwIWHvsv26I+h6PcxrJlrTO1TftehYNw3lVfgciEDndnqfw7CdZY0pb5L9sb4MSPT1BHHeddeB7DLzGu39d9qY63vvIWR1Yc4dgTxxhYO5DFjyzm2XufBeCCey7gws9f2O4+t+ZuZeUbK0m0JLJs2TLMqzbgihnMeZ+7y7vA4nRm66fE7HuVtMsvx1+r2kLlPaiz89N+G2w3mUykpqaSnNzFMhxdYLfbWb9+PQsWLOgzf5ACJTw8XBntIu3wZrbbfP87csXkVLbklvP27gIF20VEBIDi3e5g+5SuB02ik6OZcN0E9r68ly1PbuEzT3/G18MTkU668847efvtt1m/fj1Dh7ZcsEtNNRbBTJgwodX248ePJz/fyCZJSUk5a6F6c3MzZWVl7S6QttlsbZaEDw8Pb3d+PHToUBwOh19LBWqe3n3tzdNzTtUDMCYllkExNp77JJeVB0u5bMqQQA/RJzo6R0V8ReeZb9Q3OSitMcrpDk+Odb+uMHxQNNklNRw5WU/6wMBkoXbWR9lG9uBFY5OxWq1tbuM5P+YMTyT3VB3bj1WxZFJaIIcp4tWn3q9K9kFCBuGxXWx3E2G8j4S77BCg16K5zrj+GxkX2fnXf+cLUJ6L6cYXMftynGOXwMU/wrLmF1jSZ8PwizGHmwmLCKO5oRlnvdMv54ij3kg4i4h0Qj2ER8X7/vW/5s+4/jyPz3xmJS+/fDWOWgcRCact0jqVBTEphMd1YsGTLRaaanz72rehud44NyJiI7yve3xKPDe9cxMf/eojPvzph+x8difZ72ZTU1RD5MBILvi/Czr8GSUON1qMVR+vJjwsDA6+A+OvItzaTouvcZfDpj8TfnI/pE3z6fM7U7Dfgzp77H4bbPewWCx+C+paLBaam5uJiIjoO3+QRCTo6pr8k9kOsGxyKg+8vZ8d+RUcL69j6IDA9CESEZHQVbLH3a99cuf7tZ9u1m2z2PvyXva+tJcljywhIj60sotE+jqXy8W3v/1tXn/9ddauXcvw4a0XVGZmZpKWlsahQ4da3X748GEuv/xyAObNm0dFRQXbtm1j5syZAKxZswan08ncuXN9Ol5/ztE9+9c83bc8/dpHJ8cyb+RAnvskl9X7i2lqdmIN66W15EWkVzhebpR2jbWFER/Z8p4+dnAs2SU1HC6uZtHY0Kmy4XK5+PBgKQAXjTt34GZWZiL/2Xqcrbll/h6aSP9QuAtSp3T9ceHurG17rW/H0wF7nbH4NDyqk59Xm+pg3W9gyg0weKLvBzT//+D4NnjtG/BVowe4Ld5Gc0MzDZUNvj8e0FRrLKayhjcZ2dVhfriWEJOM6eo/Mbbu88ycuYeK3ApSpp22mLj0ICSP69y+bHFQ3XaLLV/yBNvPPDdMZhMLfryAoecN5dUvvEpNkfEZff4P52OLaydo7hY/zKj0UJFXASe2Q9VxmHB1+w8YNs94voff93uwvbfQrEdEpJepbfRPz3aA5LgI5mQaK9ne3VPo8/2LiEjv48lsHzyle8H2YRcOI2liEvY6O7v/sduXQxORTrjjjjv45z//yUsvvURsbCxFRUUUFRVRX29kI5tMJr7//e/z+OOP88orr5Cdnc1PfvITDh48yNe+9jXAyHK/7LLL+MY3vsHmzZvZsGEDd955JzfeeCNpacq06++y3MH2UckxzMwYwKAYG1UNzWw8eirIIxORvu6YO9g+NDGqVTn2sSlGFurBouqgjKs92SU1nKioxxpmZt6Ic2fWeq7P7D5eSYPd4e/hifRtLhcU7YbUqV1/bLg7Gcle79sxdcATbLdGt10B4yyb/gJ1ZbDoPv8MyGyGa/8CkYmEvbIci7MRW6wRwG2savTLIe217gUHYXawxvitXDljL2N/3jyWLl1L3aFdre8rOQBJ4zu3H1sMNPr/74693v26RLa9EGPE4hF8c8c3GX3FaEYsHsHs22efc5/xGUawva60Dsee141y/cPOb/8BlnAYeTFkvd/+Nv2Mgu0iIr2MN7Pd5p/iJFdONS6YvrNbwXYRkf6uqaaJ8iPlACRP7l5WkMlkYta3ZgGw9cmtuFwun41PRM7tySefpLKykkWLFpGamur99+9//9u7zd133819993Hd7/7XaZOncoHH3zAqlWrGDlypHebF198kXHjxnHJJZewbNky5s+fz1NPPRWMpyQhxOVyccST2T44BovZxNKJxuKs97R4V0T87FiZEfgadkav4DGDjWD74eLQCrZ/eMioGDVvxEAiO5FAkTEwikExNpocTnYfr/T38ET6too8aKiElG4E262eYHudb8fUDofdgbPZCXQys72+HDY8CrO+Aol+bAsamQCf/yeUZTOi5H1s8e5ge6V/gu2ezPYwSyNYo/1yDI+DtV+isjKW5MM/Aoe7pZW9AcpzIGls53biLiPvb56FGGGR7ccG4obG8cW3v8iXV325U+dQREIE1hgr4IJ9/4NxV4DlHLGHMUvhxDaoKel4u35CwXYRkV7G27PdD5ntAJdNTMFsgl3HK8k/FZgPkSIiEppK9hmTppiUGKKTuj+5nfLlKYRHhVO6v5T8j/J9NTzpRZobm/n00U9Zfd9q74UjCQyXy9Xmv+XLl7fa7oc//CHHjh2jtraWTz75hPnz57e6PzExkZdeeonq6moqKyt59tlniYmJCeAzkVBUXNVIdWMzFrOJzIHG34nLJ6UCsHJ/Mc0O/b6LiP/klxnXLNLPaIE3zp3ZnlVcg8MZOgs9vSXkx3ai9y/GotU5wwcAsEWl5EV6ptBdZa1bZeQDm9nuCaYah+5EsH3DY0aAeMH3/Tgqt5RJuAaNJbLpFNY4I+ve75ntZv8H22MyknnttcuJaj4Kax8ybjyVBS4nJHcys93q/8x2l9OFo9FIxOt0i4FOMJlMxA+LZ/DgUiw1+TC+gxLyHqMuBUyQtcpn4+jNFGwXEell6hr9m9meFGtj3siBALyjbBQRkX7NU0K+u1ntHhHxEUy+aTJgZLdL/5L1XhZPTn6S97/7Pht+vYFDbx4694NEpFfIKjEuKGYMjPL2Z587IpGEqHDKapvYrOCQiPjRMU+wPbF1sD09MYqIcDONzU7yTgWux3JHqhvs3oB5V/rIz8owSskr2C7SQ0W7IWYwxKace9szeXu2ByjY7g4ymywmzOHnCOFVF8Gnf4HzboeYns3bO80WS7iz3tsH3F/Bdk9mu8Xc2LLgwU8SMhMoLExhb9FV8NHvIe8TKDlo3JnU2Z7t7mC7H6v5NTc0e79ur4x8d8UPi2fChCyaTTEwfMG5HxCTBENmqpS8m4LtIiK9jL8z2wGunGKUkn97d4HfjiEiIqGvZI+R2d7dfu2nm3WbUUp+/6v7qSn2f2k1Cb7yo+W8fPXLvLTsJcqyWi4Q53yYE8RRiYgvZXtKyCe3VDkIt5i5dLzxd2PF3qKgjEtE+odj5UbgK/2MMvIWs4nRyaFVSn5D9kmanS5GDIomc1DnMzTnDDeC7dtyy0MqS1+k1yncBSndyGoHCIsw/m8KzOIdT2Z7eFQ4pnP1KV/3MIRHwAV3BWBkbrZYwhwtwfaGyga/HMaz6MBCg5E17kcJGQkAfLrlPBh2Hrz2TTi+GWJTjfL5nWGLA5cDmv3zekDrqgcdlZHvjviMeMaPz6LUORvCrJ170JilkL0Gmpt8OpbeSMF2EZFexOF00WA3SjFGW/2T2Q6wdGIKFrOJfQVV5JwMjVXgIiISeL7KbAdInZ7KkDlDcNqd7Hh2R4/3J6HLXmfnw59+yJ8m/IlDbx7CHGZm3v/N4zPPfgaA3A9zgztAEfGZLHewfVRy6wugyyYbpeRX7C3CqeCQiPiBy+XiuDuzfVji2RmPY92l5A8VhcYiT08J+a5ktYNREj/aaqG6sZlDRaGxcECkVyrc3b0S8gAmk5FZHeAy8ucsE15VANtfgPPvgoj4AIzMzRpDmKPBr5ntLpfL+zpYXPV+LyOfkJkAQHluFVz7V6gvh81Pd75fO7QsCPBjKXl7vfs1sVowW3wb3k1NryQpqYz80qmdf9CYpdBUDfkbfTqW3kjBdhGRXqSuqaVUTJTNf5ntidFWLhg1CIB3lN0uItIvuVwun2a2Q0t2+7a/bsOpPr59jsvlYv8r+/nT+D+x/ufrcTQ6GLF4BN/a/S2WPLKEsVcZFypK95WquoFIH9GS2R7b6vbzRw0k1hZGSXUj2/PLgzE0EenjKursVDca10iGDmgj2D7YHWwvrgrouNricrn48JDxufqicZ3r1+4RZjEzI0N920V6pLoYaoogtQtBxDOFR4G9zndj6kCng+2f/tkY1+yvB2BULVy2WMJOLyNf6ftge3N9yzVws9P/wfb4DGOxQkN5A42WFLjiEcAFSZ3s1w5gc38e9mew3X1u+DqrHWBI7DYaG8PJOjys8w9KmWJk/2et9Pl4ehsF20VEepG6JqNfe5jZhNXHq9fOdKU7G+Xt3erbLiLSH1UXVFNfVo/JYiJpfNcuCrZn4ucnEjEggsq8SrJXZPtknxIaSveX8o9L/8F/P/dfKvMriR8Wz+de+RxfWvkl7/kTNSiKwVONhRu5a3ODOFoR8ZXsdjLbbWEWLhlvZG++p1LyIuIHx8qNoFdSrI2I8LOTEcZ4M9uDnw2+v7CKkupGIsMt3rLwXTE7U33bRXqkaLfxf3fLyEPoZbbXl8PWv8Ocr0NEXEDG5WWLJdzPme2efu0AJof/g+22WBuR7pYkFXkVMOXzcNmvYcbNXdiJ+/Nwk/8WlnsWIZxzIUY3JDZ9zOHDIyjL7UKVW5MJRl8Kh1f4fDy9jYLtIiK9SG1jS7/2c/bs6aGlE1MIt5g4WFRNdknwJ6ciIhJYnqz2gWMGEhbhm1XT4ZHhTFs+DYCtT271yT4l+HLX5vKXqX8h54McLDYLC366gDsO3MGE6yac9Xkl86JM4zEqJS/S652qaaSstgmTCUYmnd1H87JJLaXkXS6VkhcR3zpWZgS92iohD0b5dYDcU3U02B0BG1db1h4ySshfMGoQtrCuVyk8Pdiu91ORbijcBbZ4GJDZ/X2ER4ZWsH3zM+BshrnfCsiYWrG6M9vj/ZfZ7unXHhYRhsle6/dgO7SUkq/IrTCCyOfdBoMndH4H1gBktrvLyIdH+jjYfuoI1ppDHDgwmqpjVbi60gZqzGVwKhtOHfHtmHoZBdtFRHoRT2Z7tM1//do94qPCme8uJa/sdhGR/sfTr91XJeQ9Zn3LKCWf9W6WMYmVXm/709txNjvJWJjBHfvv4KIHLmr3wtDwi4YDCraL9AWerPahAyKJtJ4dPFo4JonIcAsnKurZc6Iy0MMTkT4u392vPX1AZJv3J8faiI8Mx+F0caQ0uO1rPjzYvRLyHtPSEwi3mCiuauR4eWCCfSJ9SpG7X3tPEpfCI0OnjHxTHWx6EqZ/CWKSAzKmVmyxhDnqscZaAf9mtodHhxuZ4oEOtneHt4y8//7m+K2M/IE3cYVFcuToCBxNDmpLupDdPnwhWKxw+H3fjqmXUbBdRKQXOT2zPRCunJIGwDsKtouI9DuezPbkyb6dvA8cM5DhlwwHF2x7aptP9y2B53K5yF2XC8CCnyxgwIgBHW6fsSADk9nEqcOnqDoR/B6qItJ9WZ4S8m1ktQNEWi1cPE6l5EXEPzxl5NPbyWw3mUzevu2Hi4NXra+yzs72/HIAFo3t3ufqSKuFSUOMfsKbc1RKXvq3TU9s4k8T/kT50fLOP6hwV89KyENo9Wzf8U+or4Dzvx2Q8ZzJZYvF4momMtYILzZUNvj8GJ7Mdmu0FZoCk9ken2m8z1bmdXORqKeMvB8z2/1WRn7/m5hGLyYiyaikUpnfhdfAFgOZF0KWgu0iItJLBDKzHeDSiYOxWsxkldSERJ8zEREJHH9ltgPMus3Ibt/x7A4cQS7r2V0ntpygZG9JsIcRdOVHy6k+UY053Ez6vPRzbh+REEHqDKO0tLLbRXo3T2b7aHcwqy2XTUoB4L09hSp9LCI+dcyb2d52sB1grLuU/MEgXs84Vl6H02X0lh+S0HYWfmd4SslvzVOwXfq3fS/v4+SBk2z9SyfbktVXQHkupE7t2YGtIRJsd9jhk8dh0nU9K4vfE1YjqGyLMrLP/Z/ZXgfhAchsz0gAepDZHh4FJjM09bIy8hX5ULAdxl9NfIax4KAir6Jr+xizFHI3+HWhQahTsF1EpBepbQpsZntcRDgLxhhlzt7ZXRCQY4qISPA57A5KDxi9JQdP9n2wfexnxhI9OJra4loOv3XY5/v3t5riGp5b8BzPLXwOR1PvXCzgK3nr8gAYMntIp1fXe/q253yY469hiUgAZJ8jsx3gonHJWMPM5J6qC2qwS0T6Hm+wvZ3MdoAx7mD74SC+/9S7F5bG9DBpwhNsV2a79HeeIOyBVw90biFf0R7j/9SeZrYHvme7Ndp69p17X4XKYzD/7oCMpU3uDO6ISOM6tT97tlujwyAYPdu7w2Qy+rYHoIy8TzPbD7xllIEfs5T4Ye7s/q5ktgOMXgJOOxz50Hfj6mUUbBcR6UXqGt2Z7dbAZLYDXDXVyD57e7eyUTyOl9ex6Lcf8sc1WcEeioiIX5w6dAqn3Yk11upd2exLlnAL074yDeidpeRz1+bS3NBMfVm9twJAf+UJtmcszOj0YzzBdmW2i/Ru3mD74PaD7TG2MBaMNhbvqpS8iPiKw+niRIUR9EpPbD9bvKWMfPB6tte7F2ZGhPcsaWJWhtGq50hpLadqfB/YEuktmmqMYHv50XKKd3ViLla0G8IiYODonh04PCrgwfawqDOu/zqd8PGjMHopDJ4YkLG0yWq8t9ps/s9sj4zzHDNwwfZul5EHYyFCAMrI+7Rn+/7/wYiLICKu+8H2xOEwaGy/LiWvYLuISC/izWwPUBl5gEvGD8YWZuboyVoOFCobBeD17SfIPVXHMx/n4HBqAYKI9D3eEvKTB2MymfxyjBlfnwHAkZVHur9yPEhODxKf2HwieAMJAZ5+7V0Jtg+bPwxzmJmKnIpe97MXEUNVg52iKqM/56jk9oPtAJe7S8mv2Fvo93GJSP9QXNWA3eEizGwiNf7cwfYTFfVUNdgDNbxWPO0Ae1qhcEC0ldHu99uteV3oVS3Sx3gyngH2v7r/3A8o3A2DJ4Glh9dSwyMDVkbeW0L9zOzlrPeh9ADM/25AxtEel80dbLcaQXZHk4PmhmafHsPzc46KcRo3WDv+vOkLnkSDupN13kUdXWaLhaYAZLb7qoz82t/AsU0w7YsA3mB7VX5V1/c1ZgkcXmksCumHFGwXEelFvJO0Hq6I7ooYWxgXjU0G4G2Vkgdg3WGjtHJFnZ09J3qw2jFIXC4Xv3j3IP85ala1ApEONFY18o8l/2DTE5uCPZSAK95jBNuTpyT77RiJIxMZsXgEuGD737b77Tj+kLs21/t1fw62V+RVUJlXicliIv38c/dr97DF2kibnQaolLxIb+XJah8cZyMuouOLfYvHDybcYuJwcY33cSIiPeEpIT9kQCQWc/sLQ+OjwkmJiwAgqzg4yQMN7jLykT64jjPL07c9V6Xkpf/yBKLBKCV/ToW7el5CHozM9qYg9mx3ueCj30P6eZAxLyDjaJc72B5uafDe5Ovsds/POcIbbG+/ZYivRMRHEJFg/M3ocs9yD2sMNHYjUN1Jnp7tZ1U96I71j8DaX8HFP4GJ1wB0v2c7GBUXakugcGfPx9YLKdguItKL1DZ6MtsDF2wHuGKKUUr+nT0qJV9ZZ2d7fssq8vXuwHtvUljZwPMb89lQbGZTjlbEi7Tn2CfHOLrqKB/+5EMc9v7Vl7tkdwkAg6f4vl/76WbcamS37/jbDpzNvWP1c3VhNacOnfJ+35+D7Z4S8mkz07DF2rr0WJWSF+ndPEHz0cmx59w2Piqc80cOApTdLiK+ke/p1z7g3MGXse6+7QeD1LfdkzQR2cPMdoA5w41S8ptzNY+X/snlcrXKbD954CSl+zu4Lmevh5OHIcVHwfYAl5FvFWzP+wSOb4YLvxeQMXTIHWw32Wuwxhp95RsqGzp6RJd5XoPIaE+w3f9l5MEHpeRt/u3Z7ikj3+PM9o8fhTU/h0X/Dxbc472522XkAYadB7Z4yFrZs7H1Ugq2i4j0Ip5JWiB7tgNcMj6ZyHALeafqgjZBDRUbjpzk9MrxH2X1vmD7/oKWFZYvbz0exJGIhDbPyuzGykaObTgW5NEEliezffBk/wbbx109jqikKGoKazj8zmG/HstXPAFmzyT85MGTPr+w0Fvkre96v3aP4RcPByBnTU6/X8gn0ht5+7Wfo4S8h6eUvPq2i4gvHCs/d792D0+w/XCQrmXU231TRh5gVoaR2b7vRCV1Tb4t2SzSGzgaHbjcF+XSLzAqa3VYSr54P7gckDq15wcPYBn55jp3QPX0YPvHf4DkCTB6SUDG0KGwSFyYMDVWY4szFl37OrPds6giIsr9XheAMvJwWmZ3d9ud2WICUka+Rz3bP/kjrP4ZLLgXFv2g1V2eYHv9qfpWVSQ6xRIOmfMh/9Puj60XU7BdRKQXCVZme5Q1jNnDjUndp0dPnWPrvm3dISO4vnSiEYDanl8RtN5v3bW/sCXYvnJ/MWVd/fAk0k+c3qOrtwSCfaG+vJ6qY8b7RPJk/5WRB7BYLUxbPg2A7U/1jlLynhLy4z47zgi4u6BwW//M1PQsPOhOsD39/HQsVgvVJ6opy1YpVJHepqvB9ksnDMZsgn0FVeSfCsyFahHpu467M9uHdiKzfYy7b/uhIJWRr3cHxX1RRn7ogEiGJETS7HTx0qb8Hu9PpLc5Pfg39WYjgN5hKfnCnWCyGEHqngpmZnvRHsheZfRqN7XfOiNgTCbslkhoqiEi3ii77q8y8rZIT7A9sJnt3Q62W2Oh0X9/bzxl5FstxOiKT/8CK38E878HF/2/s+6OiI/wLqDwXBfqkuiBfi2jH8oUbBcR6UWCldkOMNcdbN90tP9eEHe5XN5+7TfNzWDEoGgcThefZPeuBQinZ7bbHS5e267sdpG2nB5sz3onK4gjCaySvUYJ+fhh8d6Jsz/N+LpRSj7rvazulSoLME+wPXNRJkPmDAH6Zyn56gIjSG4ymxg2f1iXHx8eGc7Q84YCKiUv0htllRgXEUd3Mtg+MMbG3OEDAVixr38uUBIR3/GUkR+WeO5g+zh3ZvuhouqgVNPxZLb7ooy8yWTi9otGAvC7lYe1eEn6HU+2s8VqYfx14zFZTBTvKqbsSDvXKot2Q9I4CPfBvNaT2R6A95Gzgu0f/wEShsHEz/r92J3VbI6ExpqWzPZK/2S2W23uYHu4/3u2gw+C7aFcRn7z07DiB3D+XXDJT9tduNGjvu1+XmwQyhRsF5F+qb7JQVMv6Q17ulr3imhflB/rqvNGGMH2zbll/bbc6+HiGoqqGogINzNneCIXjjZ6T/a2UvKezPbpA43fgZc25/fbn6lIRxqrWyaLJw+cpPxo/+iNWLzbXULez/3aPQaOGWj073bBjmd3BOSY3eXt126CjAszSJuTBsCJTf0v2J67LheAlGkp3V6UkXlxprEvBdtFepX6JgfH3SWcO5vZDrBsskrJi4hvHCt392zvRLB9VHIMJhOU19kprfFtMKgzvD3bfZDZDvCF2cOYOzyReruD+17frbm89CuebOfw6HCiBkaRuSgT6CC7vXC3b0rIgzvY64Jm/7cQaxVsLzsK+143AqSWwCdftafZEglN/i8jb7O5q4kGqIx8z3u2x/g3s/3MhRidtfVZePceOO8OuPTBDisk9Khvu03BdhGRfuNUTSPn//oDlj3+ESeDMNHqibpGd2a7LfAfriYPSSAi3ExZbRNZJf5boRfK1h02sj3PGzGQiHALC8YkAbA+q7TXTHCrGuzeLIDPZDiJslo4WlrL5pz+W7FApD2nZ7ZD/ykl7wm2+7uE/Olm3joTgB1/24EzhBfDecqmp05PJSIhol9ntntei2ELup7V7jH8Inff9g/Vt12kNzlSWoPLBYnRVgbG2Dr9uKUTUzCZYEd+BYWVgSnDKiJ9T4PdQbE7qJM+4Nw92yPCLWQONMoPHy4K/LWM+ibf9WwHMJtN/Oa6KdjCzGzIPsV/th7zyX4DZXt+OTc98yl7T4R+RSsJPd5s5xgrAOOvGw+0E2x32KF4H6RO8c3Bre7FPQEoJd8qoPrJExCZCNO/5PfjdoXdEmn0bI83Pgs2VPp2EYJ3YYW1CczhEGb16f7b0/Oe7bHQ5L9gsyezvUs927e/AG9/F+Z8E5b+8pytCHoebO+fcQMF20Wk33l3TyHldXayS2r42nNbvH3Qe4NgZrZbw8zMzBgAwKZ+2rd9rbtf+0J3kP28EQMJt5g4VlZPbi8p33aw0PjAlxYfQaINrnRnGP1rs/q9iZypqdrdI8y9Uru/lJIv2WMsLApUZjvAuGvHETkwkqrjVWSvyA7YcbvKU0I+Y5HRozx1Riomi4nqgmqqTvSvvmSeYHvmwsxu72PI3CGERYRRW1zLyQMnfTQyEfE3b7/2pK5lGCXHRTApzbh4t707ZSlFRIATFUagK8pqITG6c8GXse6+7QeLAv95zVNGPsJHme0AmYOi+b8lYwD4xTsHKK7yf6atr7yy7Tgbsk/x/17fo8WW0mWeAKzV/bs//trxYDIWP58VGDx5GByNkOKjYHu4e3GP3f/X/zzBdpulEna8COfd1nL8EGGUkfd/Zrs13B6wfu3QktleW1Lr/Tl0iTXGCDb76f3NuxCjs2Xkd7wIb94Fs74Gl//mnIF2aAm2V+V342+mLcZYbOAM3SQKf1GwXUT6nbd3t/QI3HW8ktte3N5rSsp7e7YHIbMd8PZZ/LQfZkHXNjazJdd43ovGGtme0bYw7wKE3lJKfn+BMfkYn2pcbPj8LKNf7rt7i6ioa2r3cSL9kSezfdy14wAj0OqZ3PdVLqfLG2wPZGZ7mC2MqbcY5f22PbUtYMftqtP7tYNxkSd5kvE69afs9priGk4eNILjwy7sfmZ7mC3M2+8958Mcn4xNRPzPG2wf3PVyniOTjIuleWW1Ph2TiPQfp/drN3UiaAAwxt23/XBx4Evb1nkz2317HeerFwxn6tB4qhua+fEbe3tN4NqT8LL7eCXv7ysO8mikt/EEYMOjjUBjTEqMdz5x4LUzstsLdxn/p0z2zcHDA5/ZPqDoX2Cxwuyv+/2YXdVsiTDKyMf7p2e7N7M9rDGgwfaIhAjvAoJuZ3Y77dDsn2q69voulJHf/yb87w6YeQsse6RTgXboYc92W6x7oP3vs76C7SLSrxRXNbDZHTD90xdnEBluYf3hUn7w6m6cztCfmHgmJcHIbAeYO9zo277paP/r277xyCnsDhfDEqPIHNjSF85bSv5wLwm2u/u1j3dfbJg8JI7xqXE0NTt5bXv/CRSJdIYn2J42O42E4Qk4Gh3kfNC3A4IVeRU01TRhsVoYOGZgQI898xtGKfmsd7JCMku8uqB1v3aP/lhKPm+9kdWePDmZqIHn7pXakcyLMgHIXZPbw1GJSKBklRjBqtFd6NfuMcxdyjm/l1SFEvE1l8uFo3es9Q9Zx93B9qEDOv8ZxJPZfqgo8MH2Bndme6TVt5fhwyxmfnP9FMLMJlbtL+adPYXnflAIqHW3RwT4/apDOHrBtTgJHZ45uvW0qhbtlpIv3A2JIyAizjcHD3Bmu83WSFTev2D2VyEywe/H7KpmS2Ay28MsTQENtptMpp6VkvcEm5v8U0q9S2XkN/4JRiyEK/4A5s7/DepRGXmr+/n3w77tCraLSL/y3p5CXC6YPiyBK6ak8ucvzSDMbOL1HSf49YqDwR7eOXkz2328IrqzpqYnYA0zc7KmkaMn+9cKtXWHW0rIn756fsFoI9i+8cipXlEhwRtsd2e2m0wmvjgnHTBKyfe3RRQiHfGWkY+1MfqK0UDf79vu6deeNCEJiw9LXXbGoHGDyFiQgcvpYsezOwJ67M7IXZcLtPRr9/AE2ws2FwRjWEHhKSGfsTDjHFuemzfYvjYXly62ivQK3sz2bgTbMxKN4Fiegu3ST/1p7VHu2Wxh93H1q+6uY+VGVml6YudLKo/1ZrbXBDzRwnMdJzLc99dxxqXEcftFowD42f/2Ud4LqnDV21taOR4uruGtXf3nM7T0nDfbObolq3f8Z41ge/6GfGqK3AFOpwOOrIG06b47uCezvSkwwfbJkw9iam6A8273+/G6w26OwNRUQ0S8MTf2V2Z7mCmwme3QUkq+W8F2q/vzcaN/Egg6XUa+oQqOb4EJV3cp0A6nlZE/XoWzqysEPYsN+mHfdgXbRaRf8ZSQv3JKGgAXjU3mN9cZvXueWn+UZz46GrSxnYvL5Wrp2W4LTmZ7RLiF6ekJgJHd3l+4XC7WHjbKKnv6tXtMSI1jYLSV2iYH2/PLgzG8TrM7nBx2Tzw8wXaAq6cPISLcTFZJDdvyQvs5iASSd9V8jJUxVxg9EbPeyerTi1KCUUL+dDNunQHAjmd2dH1S52dn9mv38Ga2bznRb4LFvujX7pE2Kw1rjJX6snqK96iUqEioa2p2kusOlI9Ojj3H1mfLcFfD8JSBFulv3ttbjNNlYvWBkmAPpdfyVMYYltj5zPbMgVFYLWbq7Q6Ol/u/BPTp6r1l5P1zHeeOi0YyZnAMp2qbePDt/X45hi95MtunD0sA4A+rD2MPsc/9Erq8fbxPy2yPT4835mQuOPC6O7t918tw8pBvA9UBymx3Opw0NzQTE1OLKyoJYlP8erzu8ntmuzuoHGZqaAlgB4g32N6TMup+CjZ3uox83ifgcsDwhV0+RmxaLCaLCafdSW1xF5PtbJ7FBspsFxHpswor69nqDiQum9zyQeW6mUP54eVGP95fvHOA/+0MzTKwDXYnnvhOsDLbAeaOMMoKb8o5FbQxBFruqTqOldUTbjExb2Trsspms4kLRw8CQr+UfHZJDU0OJ7G2MIYmtGQBxEWEc5V7AcpLm/ODNTyRkNNYbUwWrbFWMhdlEh4VTvWJaop39d2AoCezffCUwUE5/oTrJhAxIILK/EqOrDwSlDG0J2+tEWAeftHwVrcnTUgiPCqcpuomTh46GYyhBVTdyTpK9hoBgowFPc9st4RbvH3fcz/M7fH+RMS/ck/V4nC6iLGFMdh9cbUrhrmD7QWV9TQ2O86xtUjf0mB3eCvEHQhCOfO+4li5EehK70IZ+TCLmZHuahwHiwLbrqjeW0beP8F2W5iF31w3BbMJXt9xgg8PhvZCjjp3Esnti0YxKMZK3qk6Xtl2PMijkt6ircx2OKOUvL0e1vwCJlwDQ2f57uDh7uxqP/ds95QJDw+3Y7L2rGWXP3mD7e6e7Q2VDT7dv2dhhZmGlqoCAeIpI1+Z282e7RD8MvI56yB+mNFKoYvMFjNxQ432C11ecOB9/v3vc46C7SLSb7zjzmqfnTmA1PjW5ca+uWAEX7kgE4B7/ruLj7JCL2jqyWoHiAxwad/TndcP+7avO2RMVmdnJhJtO/vDzIXuUvLrQ/C8Od3+AncJ+bS4VqXwAb4w1wh0vLO7kEr36lGR/u70zPawiDBGLDYmKX25lHywM9vDIsKYevNUALY/tT0oY2hLdUE1pw6fwmQ2MWz+sFb3mcPMpM5MBfpH3/a8j4xFB4PGDyI62Tfl/Dyl5HPW5PhkfyLiP6eXkD/z82RnJMXYiLJacLkIeHapSLBll9TQ7K6Co2B79x1zV8ZI70JmO8A4byn5wL72nuCyP6/jTB82gK9eYCwI/dHre6huCN05vSezPSnWxm2LjBL4j3+Q5e1tL9IRTwC2vWB77tpcmtY8DrUlcMlPfXbcirwKsla753p+DrZ7MrqtVjvYAls+vSvs5khMTTXYYo2fha8z2z0LKyyuhl5aRt4/f2u8ZeTPldl+dC2MWADd+LwOPejbrp7tIiJ93zt7jGD7FZNTz7rPZDLxkysmcNXUNOwOF9/6xzb2hFgPtbrGltJjZnP3/lD6wvRhAwi3mCiqauBYWf+4QHZ6v/a2XDjGyGzfe6KKUzW+/XDpS55+7RNS4866b3p6AuNSYmlsdvJGiFZ3EAm004PtgLdve9Y7WUEbkz/Z6+2cOmxULQlWZjvAjG8YpeQPvXWImsLQ6PPl6deeMj2lVb92D28p+f4QbF/vu37tHp5qAXnr80KufYCItJZVbLwvj+5Gv3Yw5l2e0s/56tsu/YxnPgZQXNVIWS/orx1qKuvsVDUYweuhAzrfsx1gzGAjAHCoOLCfLz1l5P2V2e7xvSVjGJYYRUFlA79ZcdCvx+oJz+KDaKuFm+YOIzU+gsLKBl7apCp7cm6eAOzpZeQBEkcmkjIthQhrHZZPH4NZX4OBI31yzH3/2ceTk57kpWteM27wcxl5b7A9woEpwEHmrmi2GPPiyGhj/ubLnu0OuwOn3div2VkXvGB7j8rI+z7Y7HK5WsrId9SzvboYSvbDiIu6faxuB9tVRl5EpG87Xl7HjvwKTCZY1kawHYxy4I98bgoXjBpIbZOD5X/fTO7JLvYl8SNvv/YglpAHY4I4ZWgCAJ/2g1LyDXYHG48az3Ph2LaD7cmxEYx3B7A/zg7dEsKezPYJaWcH200mEzfOTgfgX5vz+03VgmBqsDv0Ooe4pmpjIm+LNcqijV5mBNuPf3qc2tLQ+fvgK6X7S3E5XUQOjCQmJbA90U6XPDGZ9AvScTlc7Hp+V9DGcTpPv/bMRZlt3u8JthdsLgjQiILHl/3aPVKmp2CLt9FY2UjRjiKf7VdEfC+7tCWzvbs8wfa8U33vb6lIRzzzMY8DhYEtZ94XeErID4qxtll1riOezPZDQSoj76+e7R5R1jB+/dnJAPzz03w2HQ3N6zW1nh72tjAiwi18+2JjjvXntdnUNjZ39FCRdjPbwchuX7BgE85mByy8t8fHcjQ5eO877/HK519xL8Q34TTZApbZbotwtPSJD0HNZmNsEZHGdRNfZrZ7fs4Apua6oPVsrymsobmhi+9L1mjA5Jdgs6PRAe7LiB2Wkc9Zb/w/fEG3j+Utpd/VYHuYDSw2v/WsD2UKtotIlzU1O3l7d0GvWoX9rjurfU5mIslxZ2ekedjCLPzlSzOZmBbHqdombn52M6XVoZGp7F39awteCXmPuaeVku/rtuSW0WB3MjjOxlj3Svi2LHD3bV8Xon3bXS6XN5NiYhvBdoBrpw/FFmbmYFE1O45VBHB0/c+HB0sY95MVvLRZq/dDlbPZ6Z1UeTLb44bGkTItBVyQvSI7mMPzC08J+cFTBnerNLAvzbx1JgA7n92Jyxn8RSmefu3nCrYX7Srq+mS8F2moaKBopxEM92Vmu9li9gbvVUpeJLRlucsvjx7c/YueGe6+7XllymyX/sUTXLeYXK2+l87zlJAf2oV+7R5j3MH2o6W1NDUHppKO3eHE7jB+3oFoB3j+qEF8YY6xiP6Hr+0JudLsdofT+9pHuxcffG7WUDIGRnGyponnPskN4uikN/AEYc/MbAeYuDSa2bN38tFHs2iw9yw4W3mskucWPsfmxzcDEJloBJYd2MDu38WCLZntzQHvVd4VzRbjNbFFGONtrGr0WUKJp4KByWIyXu8AZ7ZHJkZ6F3R0OdhsMhnZ7X7o2e7JaodzlJE/uhaSJ0JM99sDejPb87rTtz4GGvvfZxwF20Wky97YcYI7X9rBIysPBXsonfa2u1/7lVPTzrltbEQ4f//KbNITI8kvqwuZ8lu13jLywc1sB5g7YiAAm/pBZvvaQy0l5DsKPi1wl5j/KOtkSGYrF1Q2UFlvJ9xiYnRy24sG4qPCuWKKUfnhXyrh5lev7zBKTa8P0cUZ0lJCHsAa2zKR78ul5It3FwPB69d+ugmfm0BEQgSVuZVU7wpu+bGO+rV7xGfEE5UUhdPu9Aaj+6L8j/PBBYmjE4lNbX8BWnd4+rbnfpjr0/2K9Babc8q4/8193gW2ocjhdHHUXflrVFL33wOGDTQumKqMvPQnpy9+njTAmC+emeku5+bJbO9qv3aAtPgIYm1hNDtdHD0ZmIy7+tOC3f4uI+9x37LxDI6zkXOylkdXh9acpa7p7Ncj3GLm7sXGHOuv645QWR+6/eYl+Lxl5GPODrYPzPsT9Y0xbNwwncNvH+72MY6sOsJTM57i+KfHiUiI4MY3b2TMVWMAT7A9UD3bmwMeZO4KuzvYbg03ktRcTlerjPQe7fu0RRUmex1YA7vowGQy9bxvux8yu5vrjXmCyWLC0t4CLpfL3a99UY+O1e0y8uC3xQahTsF2EemyPSeMN9miyoYgj6Rz8k/Vsft4JWYTXDYxpVOPSY6N4NHPTwPgrV0FVNYF/8P+6X2tgm1mxgAsZhPHy+s5UdG3+7a39GvvOPg0K3MAEeFmSqsbOVgUen1pPBdyRiXHYg1r/8//F+cYgaS3dxdS1RD8876v2pZXDkBBRe94H+2PPMF2c5gZy2nvu55g+5H3j+AMUEZMoJye2R5s4ZHhTP6SUQbz1MrgLuw6V792MCbj/aFvu+e18GVWu8fwi9192z/Kw9GJLCyH3UHB1gL1eJc+45fvHuC5T3J58dPQXfB4rKyOpmYnEeFmhnSxV/LpMhKV2S79z/Hyeqobmgm3mJgxyB1sV2Z7l+W73zeGJXb9PchkMnmz2w8FaM7e4A4uW8wmrJbAXIaPiwjn51dPAuCFjbkhld3u6V8fdsbr8ZmpQxidHENVQzNPrz8arOFJL9BuGfkT22DvqxyLuJnm5nAOvHqgy/t2OV2se3Ad/1z6T+pO1pE6I5Vbt93K2KvGYos3Wss5nNYABtvtoV1G3h1sDzPVGxno+K6UvGdRRXh0ODTVBryMPPS0b3uMX8rIe86NDvu1lx2FquPBDbZbY9Wz3Veqq6u5++67ycjIIDIykvPPP58tW7Z473e5XPz0pz8lNTWVyMhIFi9eTFZW65V2ZWVl3HTTTcTFxZGQkMDXvvY1amr632oIkVB0xN2nr6aXlEl9e4/RP3XeyIEkufvudsaMYQMYlxJLY7OTN3YG/8K5N7O9i33J/CHGFsakIcYf3VDtA+YLx8vryC6pwWI2Md9dJr49tjAL57kz/j/KCr1sZW+/9tS2S8h7zMwYwOjkGOrtDv63s+/3Hg6GExUti1QK+vhild7ME2y3xlhbVbUYMmcIUYOiaKho4Ngnx4I1PL/wZLaHQrAdWkrJV26upKY4ePMAT6Z1eyXkPfpDsN0f/do9kiclEzkwEnutnYKtHf/9KdpZxDNznuHp2U/z6R8+9flYRAKt2eHkoDvo9t7ewiCPpn1ZJcZ78cikGCzm7rcb8ZSRzy+rwxkCrUJEAsFTMn5kUgzDYozzPrukhsbm0AmE9gbHyoz5U3o3ysgDjHG3hjtcHJgggCeTOzLcEtA2TZdOGMyQhEjqmhwhVU2t1p1EEmVt/XpYzCb+b4mROfzshhxO1oRGO0cJPd7M9tPLyLtcsPKnkDSeAZ+9HTDavp1ere5c6k7V8dIVL7H2Z2vBBTO+MYOvbvgqA0YMAMAWZ1xPbnZYwe7fxYLegGq4HcJDN7Pd07Pd1FTtfX0afJSY51lUYYuxQHNDUDL8PT3Lu5XZbouFJj8E292VPzouIf8hmMMg4/weHcsTbG8ob6Cxqy12bbHq2e4rX//611m1ahX/+Mc/2LNnD0uWLGHx4sWcOGFceHr44Yd5/PHH+ctf/sKmTZuIjo5m6dKlNDS0/DLedNNN7Nu3j1WrVvH222+zfv16br31Vn8MV0S6yBtsb+wdwfZ33CXkr5h87hLypzOZTNw42+h19a/N+UEvDR5Kme0A5/WDvu3rD58EYHp6AvEdrRp0WzA6qdXjQsn+QmMl4oR2+rV7mEwmbnRnt7+0KfjnfV+0Nbfld+ZUbVNIZRpIC89k4vQS8mD0lh51+SiAHpWmCzU1xTXUltSCCZInBr+MPMDgyYNJnZkKDshZGbw+3rlrc4FOBNvn9u1ge2N1I4Xbjc9U/shsN5lN3te4vb7tjiYHax9Yy9Ozn/aW6z95MPT+5op0Vc7JWhrd1VK251dQWBmai/Gy3cH2Uck9yy5KS4jEYjbR1OykuFpVfqR/8GSxj0+NZYAV4iKMcuZZQVxQ2Bv1pIw8wNjBxvtXoDLbvcH2AF/HMZlMLHVXdnxvb+i0OKpzJ5FEt5FEsnRiCpOHxFPX5ODJtUcCPTTpJTwB9FaZ7VkrIe9juPRBBk9NY8DIATQ3NJP1bufaKJzYfIKnZjxF9opswiLCuPq5q7nqqasIi2g5Tz3BZLs9PGCZ7eFh9oCXT++KZou76ltjNRHxxte+zmyPinNfkwxCsN2T2V6Z253Mbv9ktnvKyIdFdpCId3QdDJ1tZNf3gC3WRsQA4+fa5ex2P2X2hzqfB9vr6+t59dVXefjhh1mwYAGjRo3i/vvvZ9SoUTz55JO4XC4effRRfvzjH3P11VczZcoUXnjhBQoKCnjjjTcAOHDgACtWrOCZZ55h7ty5zJ8/nyeeeIKXX36ZggJl2YkEU1WDnWL3H87aEO4n6JFzspZ9BVVYzCYum9S5EvKnu3b6UGxhZg4WVbPjWIXvB9gFtU2h07MdYO4Id7C9D/dtX3fYKKm80N2P/Vw8fds355Z5y6OFCs/FnXNltgN8dvoQrGFmDhRWsft4Nz5USoe25pa3+l7Z7aHp9Mz2M/XFvu2eEvKJoxI7XiUdYImjjb819WXB+T2pOlFFWVaZ0a/9wrb7tXsMmW0E28uyyoI2Xn86tuEYLoeLhOEJxKfH++UYnlLybfVtL9pZxNNznmbd/etwNjuJSzf+ntWf6nuvtfQ/Z5aSfj+EAiOnyyoxLpqN7mGwPdxiZkiCkQ2Vp77t0k94MtvHp8RiMsE4dznzAyol32lOp4vjPcxsH5tifH4IVOs3T8/2yPZ66/rR5ZONa2CrDxTTFCLtr07PbD+TydSS3f6PT/NCduGZBNfpvbwBcDTDqp9C5oUw+lJMJhPjrxsP0GEpeZfTRc6aHF770ms8O/9ZKvMrSRyVyNc3fZ1pt0w7a/uWYHuYUdbcjzzB9jBLU0iXkXeZLLjCIqGxJbO9sdI3wXbPzznScwkzCBn+nmB7eU55xxu2xU+Z3d6FGO1ds3E6IGc9DF/ok+N1u5S8LRYa+9/nG59HbJqbm3E4HEREtO5nGBkZyccff0xOTg5FRUUsXrzYe198fDxz585l48aN3HjjjWzcuJGEhARmzZrl3Wbx4sWYzWY2bdrEtddee9ZxGxsbaWxs+WWuqjJ+mHa7Hbs9OD1nPccN1vEldPXmc+NwYcuba3VD8H6/OuvNHccBmDcikVirqcvjjQqHZZMG8/rOQl78NJfJqYHvEeNRXW8EfiLDO/88/HmuTRsSi9kEuafqOH6qmsFxbfex7a3sDicfZxvZcheMHNCp13BYgpXU+AgKKxv4JLuEBecoPR8oVfV2b7m90UmRrf42tvW8YqwmLpswmDd3G+f9hJSJAR1voJ2qaeSRVdl8aW46E8+R+e8LW3JbV4M4dqqG9ITOt7joi0Lx72KdO2vGGmM9a1wZF2dgspgo3V9KaVapdxLWmxXuNDKWkyYmhdTPITzOmETWnqoNyriOfmD0jEyZnoIlytLhGMJiwxgwagDl2eXkf5rPiEtHBGqYAXF0jfFapM9P99vPYuj8oYAR2K+vqSfMFoajycGGX2/gk19/grPZSeTASJY+thRM8MZNb1B70jfnRii8D4XS754ElifYHmW1UNfk4L29RSy/YHiQR3W2Iz7KbAejlHx+WR35p+q8rZhE+rL9pwXbyyqMDPfNueXq294FJdWNNDmcWMwmUhO6d/0h3d3rvcRH2ZfnUu9Nmgh8sH3msAEkx9ooqW5kw5GTXDQ2+NWrvBUb22mPuHBMErMzB7Alt5wn1mTzq2snB3J40gu06uUNsOslKD0I1zwJ7tYEE66bwCcPf8Lhdw5jr7e36m9dmV/Jzud3svPvO6nIqfDePv6z4/nMs5/xZmifyRNMbmoKC1hme5i5KaTLyAPeoLItzrj+6avMds9rEBnjTmQKQmb74MlGe73CbYU0VjV6z4FOscVCne+T07xl5Nurvlq0Gxoqetyv3SN+WDzFu4q7F2wvO+qTMfQmPg+2x8bGMm/ePH7+858zfvx4Bg8ezL/+9S82btzIqFGjKCoyVmgPHty6F+TgwYO99xUVFZGc3PoDQFhYGImJid5tzvTQQw/xwAMPnHX7ypUriYoKbrmNVatWBfX4Erp647mxudQEGJOE6rom3n333eAO6Bxe3mUBTKS7Sro91mF2gDDe2nmC2ZZ8OqrU4k/7cs2AmcJjebz7btfK6frrXEuLsnC81sRTb3zIzEF9q9x4dhXUNoYRHeYib+cGju3q3OMybWYKMfPCqq3UZIXG6vHsSoAwEm0uNnzY+lxo79zIcBiPeWPHcWZa8ogIje4FfvFarpl1hWZ2Zh/j2xP9+zOrb4ZDRcb70pAoFyfqTKz4aDMVh/rW7093hdLfxfKPjdXLVQ1Vbf79iBoXRe2+Wv73yP9IWta56hehLP+9fAAqIypD6m97YbmxCCBrdxb17wY+u+XYP48B0Jze3LnXJQ3IhrUvruWg/aB/Bxdgh9802iZUJFT47RxxuVyEDQijubyZ1x57DXOUmfzH82nINcpMx58Xz9BvDSU3JpfqXUZGWmleqU/HE8z3obo6Zfj2VwcKjfP5lvMzeXLtEbbklnGyppFBMaGzGM/lcnl7to9Kju3x/oa5S0Dnlfk3O0wkFFQ1tCx+HpcSyycHjaA7KLO9Kzwl5FPjIwi3dK9Ya2yEEaBocjhpbHZgC/PvRNeT2R4RhMx2s9koJf+PT/NYsacoJILttY0dLz4wmUx8f+k4bvjrRv6z5RjfWjCSYQNDt4y2BF6rzPamOvjwVzDpehgyw7tN2uw04tLjqDpWxZGVRxh12SgO/e8QO57dwZGVR8B9+cUWZ2PSFyYx/avTSZudhskdrG+LN9jeYPF7sL2ptgmTyYnFHNpl5AF3ufAqbPFGlTdf9Wz3lpGPcV+jC0KwfeDYgQwaN4iTB09y+O3DTP5iFxb/2GL9UkbduxCjveDE0bVGCfuhs9q+v4s8feu7HGz3Uxn9UOeXkNE//vEPvvrVrzJkyBAsFgszZszgC1/4Atu2bfPH4QC47777+N73vuf9vqqqivT0dJYsWUJcnP+z1Npit9tZtWoVl156KeHhoVOOU4KvN58bB1ZlQbYR6LW7TFy69LJuT3L8LbukhsKNnxBmNvG9GxaT0M2yuC6Xi3ee+ITs0loaUiZz3Zx0H4+0cz75334oPM7k8WNYtqhz2XL+Ptd2mg7x90/yaErIYNmyCT7ffzD9blUWkMMlE9K48orOf6Ay7S1i4793c7w5lmXLLvDfALvguY15sP8QM4Yns2zZdODc54bL5eKdxzdw9GQdjSmT+ezs4Jz3/uZ0unjod+uBRnJqLMxbdDEDos4uG+4r67NO4tqynWGJkcwbMZB/bz1O0rAxLLt4pN+O2RuE4t/F7Se2k0ceqRmpLFu27Kz7Pz3wKWvuW4Mtz9bm/b3Nsw8+C8D5157PuGXjgjyaFp/s/4Ti/xaTHJcclNf5L/f8BYCLll/EqGWjzrn95iObWb1+NbGVsX3ivPBoqm1i95HdAFx5x5UMGDHAb8eyL7Gz/9/7qX6lmtK9pa2y2cd/brz3IlhRahFHfnYES5PFJ691KLwPeaqzSf+zv8D42S+ZMJgN2SfZfbySlfuK+eLcjttXBFJBZQN1TQ7CLSYyfBD48Oyjt5WRdzpd7DlRydiU2KAEz6R3OuheUJMWH+G9LuEpI7+/oAqXy9VhkEcMx8rc/dq7WUIeIOa0jOraRv8H2+s6KJseCJdPMoLtK/cX8UvHJMKCfP3Om9neQXvEOcMTWTAmifWHS3l09WF+//lpARqdhDqXy9U6s/3TP0PtSbjkJ62285SS3/ToJlbfu5o3v/pmqzZfmYsymf616Yz/7PhOt1Dz9iRvsIDdv59d7HV2wsLcrVvDQzvY7rLGYjq9jLyvMtvdiypsUZ7M9sBXmvWcRx/98iP2v7K/a8F2P/dsb/e8PboWMs4Hi2/ms94y8nldzWyP80sZ/VDnl2D7yJEjWbduHbW1tVRVVZGamsrnP/95RowYQUqK0S+muLiY1NRU72OKi4uZNm0aACkpKZSUlLTaZ3NzM2VlZd7Hn8lms2Gznb3qOzw8POgXbUNhDBKaeuO5cfRk6w8UTU4TURGh+RzeP1AKwIWjB5EU37MPJ1+Ym8HP397Pv7ee4JbzhwdlItzg7rEVG2nt8nnjr3Nt3shB/P2TPLbklve6c/lcPso2yv1cND65S89t4dgUzKbdHCmtpbS2mbSE4PdXOlRsZAxNHJJw1nPp6Nz44twMfvHOAR5ZmcV5I5MYM7jnWUyhZnt+OUXuyYDD6WJ9djnXzxzqt+PtPG5cTJ+VmchQ90WiourGPvf7012h9HfRUe/OQomPaHNM4z4zjjX3rSFvbR6uJldLz7heyNns5OR+o23GkBlDQuZnABDlDsY0VTUFfFxVJ6ooyzb6tQ9fNLxTxx82zwiMFWwtICwsrM9cOD+27ZjRJ31oHEljkvz6vEZcMoL9/95P8c5iAMZfN54r/nwF0cmtsxni3D1X68vqffpaB/N9KJR+9yRwSqobOFnTiMkEY1NiuWxSCruPV/Le3sKQCrZnu7PaMwdG+2Sx9bBE43c6v6x3Bdtf2JjL/W/tJzYijM9MTePzs9OZPCS+z7zfi394+7WntiQDjUqOIcxsoqqhmYLKBoaEwLwx1HneLzyVMbrDYjZ5W3bUNDST6OfP8A1B7NkORuB6QFQ45XV2NuWUccGo4La682S2R55j8cE9S8aw/nApr+88wXcvHUN6D37m0nc4mhy4HEZautVUBR8/CnNuhQGZZ2074boJbHp0E6cOG9f2YofEMm35NKZ9ZRqJIxO7fGxvMLnODHb/92y3Wt3tpUI82O7J4LbF+7Znu2dRRYQ32B6c18ETbM9ekU1TbVPnr/vY/BNs77CMvL0B8j+FS37qs+N1v2d7/8xs9+tytujoaFJTUykvL+f999/n6quvZvjw4aSkpPDBBx94t6uqqmLTpk3MmzcPgHnz5lFRUdEqE37NmjU4nU7mzp3rzyGLyDkcKW29KqmmsTlIIzm3d3YbpWevnJLW4319dvoQrGFmDhRWsft4F//A+IhnUhIdpBXRbZkz3PiAeqS0ltLqwPQ8C4SS6gb2uTOMLhzdtfLQ8VHhTE1PAOCjrFJfD61bPNlSE7rYj/xL52UwY1gCVQ3N3PLsZgoqAl/C2d/edb9PhFuMC6Tv72u7XY2vePq1z85M9C7EKKjwTZkt8a2mGmNyZ41pezI1aPwgEjITcDQ6yFnTtdYeoaYsu4zmhmbCo8L9mrHcHRHufpwN5YH/PclblwdA6ozUdnv3nSllWgrmMDO1xbVUHes7Wcqe1yJjYYbfA0qjLhuFxWYhalAU1//7em545YazAu0AkQON91Cn3en9fRXpjTwl5IcPiibKGsblk4ykhI1HTlFRFzrndlaxMc7Rg32TWdRbM9vz3MG+6oZmXtyUz2f+uIHLH/uIZz/Ooaw2dH5eElramo/ZwsyMSo5pdb90zFOK39N3vbs82e3VjfYej+lc6po6F1z2lzCLmSUTjMS19/YWBmUMp+tMZjvAlKEJnDciEZcrNMYtocGT7Qxg3f4YmMyw4J42t00/P505d81h0hcm8cV3v8jdeXdz8S8u7lagHVqC7Q21gQm2h4e7n2vIl5F3B9v9ldke4Y47BKGMPBjz+4ThCTTXN5P9XnbnH2iLgybfZ3Z3WEb+2CZoboDhC312vO4H22ON3xOnw2dj6Q38Emx///33WbFiBTk5OaxatYqLLrqIcePG8ZWvfAWTycTdd9/NL37xC95880327NnDzTffTFpaGtdccw0A48eP57LLLuMb3/gGmzdvZsOGDdx5553ceOONpKX1PGgmIt1jdzi9F0PM7uusngBwqDlUVE1WSQ1Wi5lLJw7u8f4GRFtZNsmYoPxrc36P99cd3vJjtiA1jW9DQpTVW/5uc05ZkEfjOx8dNjI8Jw+J71avTE+Afr17P8HU1Owkq8S4ODohtWvB9ohwC3+7ZTajkmMorGzg5mc3h9RF355yuVy8t9cIrt++yCgP/VFWKfVN/nlfszuc7DxWAcDszAGnBdv73iKGvqCp2h1sj2072G4ymRh9xWgAst7JCti4/KHUXQkmaUISJnNoZeZFDDCC3PXlgf89yV2bC0DGooxOPyY8MpzBU4zPHSc2n/DHsILi9GC7v8Wnx3PXkbu46+hdTLxhYrvbhUeFY7EZF67rT+l9VHqvMzNehw+KZlxKLM1OF6v2FwdzaK14Fl2PSvJNsN2TmVpZb6eyzv8BL1/xfE68YnIqV09Lwxpm5mBRNQ++vZ/zfvUBd7y4nbWHSnA4XUEeqYSSA0XuYPsZ8zHP9+rb3jmenu09zXL2BNtrGvyfPOIJtgerjDzA5ZONa1nv7yvGGeT3Ju/rYTv367FssrH4zDNnF/FkOw9MrsS8/Vm48LsQ1Xbw3GQ2cfljl3PdS9cx+vLRmHtYlccbTK634Gry79yjua75tMz24ASZO81dLt2zON3XPdtttuC+Dp5S8gAHXj3Q+QdaY8DRBM2+TUzrsIx8zjqIToJk37V5TchIAKDqeBVOh7PzD/SU/ffDgoNQ5pdge2VlJXfccQfjxo3j5ptvZv78+bz//vvesnj33nsv3/72t7n11luZPXs2NTU1rFixgoiIloyRF198kXHjxnHJJZewbNky5s+fz1NPPeWP4YpIJ+WX1fH/2XvvODnu+v7/NTM723evF/XerWZLVnFvsi3jFjv8TCCUEAjEBBwCwSSEUEOABAiQwJdOAFOCwTa2LFvuRbJk9WqVUz1d73tbZ3fm98fMZ3bvbvduy3xmPnOa5+Ohx8OW7nb35mZn5/N5vV+vV1pW4HcLukjEqrP9qYNtAIBrFzYgbFDM/TuuVGMcnzjQZsnPHU2x52wHgHWau33nmV6LX4lxvHRCFZ6uW1iaq51w3UI1mu21Uz2Wb7Sd6hqGlFEQ9rowvaZ0B0BNwI2f/9WVaA57caprGH/98916FJ7dOdg6iIsDcfjdAj503TxMr/EhIcl4+QSdRIIjbUNISDKq/SLm1gf1qMi2wTgUxdmQZY2JnO0AsPBtCwGoYrudf4fENZ7PPWw1Pu19YlQcXSmcffEsALXTrxSmXqkOB7fubDX4FVlDOpHWf5bZ18025TnD08LwhMYfduM4Tq8ZiNnMGevgkIvueM0R4Yi7fStDAsPJTk1sN6hWKOBx6UOt5/roOsSMJK7dB6+eWY3/emA13vynm/HFu5fhsmlhpDIynjrUjvf+9E1c/dUX8KNXT9v6/sDBGNIZGW91qMPPS0aJ7eT/HWd7cZDO9ukVdLYDQNCrie0m7OtYHSMPABvn1SPkdaE7ksSe8/2WvQ4gK7ZP5GwHgFuXqUMC+84PoH3QGax0IG5nBXe+7TkgNBVY9yHTnpsM4UuSy5TOdlEkne1sV4wonhCQyjrbU0PGGHSIs93tkQCXFxCsM54tvV8Vr088eQLpYoe0PNr9ssG95SRGPq+z/fRLqqudN07yDTYHwYs8lIyCSFtxsfAnt5zE+T0D6v9cYr3tVMT2t7/97WhpaUEymUR7ezu++93voqqqSv93juPwhS98AR0dHUgkEnjuueewcOHCEY9RW1uLRx55BJFIBIODg/jJT36CYNCYCWoHB4fyID19cxsCCGkCNotiu6IoeFKPkJ9i2ONeOacWcxsCiKUyeGJ/m2GPWywx7Vj7i1iUmMm6uXUAgJ2nJ4ezPSMrevz7dYvKE9tXTq9GyOvCYFzCwdYBA19d6Rxtz0YWlhv9O63ah5//1ZUIeV3Yfa4fH3lkH9KlTDQyypZD6nXixsWN8LkFfTH/7FE6G9u7tQj5NbNqwPMcmqo84DggIcnot5Gj61KBONvHE/xmXz8bol/EUOsQOg+y4z4slaRWA1LIxW8lnmotrs/kGPmh1mxf+8yrS+tMnnblNABA2y7z7xVo0LqzFZlkBsHmIGoXlBe7SAsSJe842x3sDHG0jhDbNRfiqyd7EElYf4+gKApOamvBBY3G7cvYMUp+dCR0lV/EX26YjSf/7ho89dGr8d6Ns1HtF9E+mMCXnjqG109NnoFkh/I43RNFKi0j4BbGdI2TWHnifHcoTDKdQceQej9YSWc7kONsN2E/K3vNsG4fx+3iccsSNXnp6UPWDnFFyb5WEc72prAXV8xSK66eYWj4zME6UtEUrrjiIGbNOAfc/R1ThWhBFODyuSBJIpCOAxSH6WwZI691thvlbNfFdjFleW/9tLXTEJ4eRmo4hZZtLcV9k4c4u43tLScx8mOc7fEBoG0fMNe4CHlATYgIT1fvVYqJku860oVH3vYInv/cLvUvLrHedqqd7Q4ODpOL3OjAoHZjHGVQbD/WHsHpnijcLh43L608Qp7AcRzesVbdcLciSl6fAC5iUWImpLf9eGdkUvQUHmwdwEBMQsjrwmqte71UXAKPq+ap7naro+SzbqmqCb5yfBY1h/Cjd6+B28XjuWOd+Mxjh23t1FEUBVu07jcST7dJu148f6wLEoVhAtLXvma2+p7xuAQ0aI6uSz1Kfqh1CPGz8eKnhE2gGGe7y+vCnJvmALB3lDzpVWNRbCcx8ulE2tTz4+zLZwGU1tdO0MX23W2Q0/YfTDKzr71UfFpnq+Nsd7ArCSmjr7Fyu5wXNAYxtyGAVEbGC291WfXydHqGUxiMS+A5NebeKGZpgtn5Pvu8h8dzqS6bWoXP3bUMb3z6Jty5Uk05eeqQ0zV8qUMGahZPCYMfVddDnO3nemNMDNawTNtAAoqivvfqx7k/LwYzxfY4A852ALhNq0Xcerjd0nV8Kc52ALj9MtI374jtDoDccxa33PIKDp9aC8y93vTn94Q9kCQXOEVWI8IpIcUkG8XI0+lsJzHyLlHKRpJbBMdzWPxniwEAx35fZJS8mzjbjRWb9Rh53yix/exrgCJTeV+QKPlixPaXPvsSoACJmHaNd8R2BwcHh/y0dKnxfvMagqYuTkrlSS1C/oZFDfrrNIr7rpgOt8Dj0MVBHGqd+EPGSKIpNp3t9UEP5msOl8nQ204ixK9ZUA9XBZ1O12oR9MQlbxVH29XzNHcDt1zWza3Dtx9YDZ4DfvPmBXzzOfuKi4cvDuFCXxw+UcANixoBqCJ4bcCNwbiENw0+lxVFwZ5zamTf2tk1+t9P0SKyL17iYvuPr/wxjj90HH2n2LmGFCO2A5gUve26iz88fmy3FXhCHn3Fkhgwz91eTl87oX5xPdwhN6SYhO5j1n4GGIGZfe2lQmLk432X9jXUwb6c6IxAVoDagBuNOUkqHMdlBQaLXYgAcLJL3SibWeuH10DBaKbubLdPjHwx/cteUcCfXzEdALDtaIfltVIO1pKvKoJQG3CjOawO9R3vuLQ2pEslGyHvq3j4T4+RN2GQM85AZzug7k8E3ALaBhM4YPJeVi7Zfa3ijgdJn9t1tg/dEfNrpRwYQlFQe+RfEY978ebJuyx5Cd4qrxojD1CNkh8RI28TZzsZUDeq/o0420UhCbitHzhYep8aJX/8iePIpIqo1qQVIx8rECN/+iWgZg5QXVoqXzFUzVTNWxOJ7W172nDsD+owQjKprWsMdvazjiO2Ozg4FA1xXcxrDCLgMW9xUgqKoujugbetmGr449cG3LhV2/j69ZvmuttjSTad7cDk6W3vGU7qG5rl9rUTrlmgOtv3XRjAkEUuBUVRxt3cKYfbLmvGF++5DADw7edP4pdvnDPkcc2GuNpvWNygx4AKPIebl6jC+zNHjN3YPtsbQ89wCm4Xj8umZVMGplWrC5JL3dnurTZ2YWYExUarL7xDrUJqfaMVsR77OPNyIT/rRB3ZVsDxHAS/+h6N95v3Pjn3knptm3PDnJK/lxd4TF2j3oNc3HXR0NdlNplUBhd2XABgXl97KTgx8g52J/c+bbR4RHrbXzrRhVjK2jVXixYhP9/ACHnAnjHy8SIjoTfMq0OVT0TPcEpPN3IYnzdO9+KdP3oD5210PhQDqfUa3ddOIEPR5OsuJaSMjE/83wF8+g8HMRgff81MEjBmVBghDwAhM53t2jXDa7HY7hUF3LBYXes+fdi6xI3svlZxJpIZtX6smF4FRaFX9+ZgE/b8DP6hXfjTnzZlhUyT8YQ9SKU0R3GKtthOnO1si+2KJwRkUvAE1PtYw53tPBti+4yrZiDQGEBiIIEzL56Z+Bv0GHljxXbd2T46Rv70S9TSHsIztRj5c+OL7S9+5kX9v5NJ7fU5znYHBweHsSiKom+y5DrbWYuRP3xxCOd6Y/CKPG7UFhJG844rZwAAHt930bSfP5WWkdJirVlztgP2720fjEn42ta3cO3XXsTxzgg8Lh7XLazs/JlR68fc+gAysoLtFnU1XhyIYyiRhihwhm6OvnPdLHzsJtXN+y+PH8ZWCxfr5aAoCp4+NDJCnpDtbe80NF6PbLKunF4Fjyu70TK1ShWKzBDbZVkdvpAZdFcRsd3sXu7xKNbZHp4eRtPKJiiyghNPnjDjpRkOcbazGCMPAEJAfc+YdX5U0tdOIFHydhfb+071IR1Pwx1yo35JvdUvZwxEbHdi5B3syjFdhBu7abxsahgzan1ISDJePm5tSsZJXWw3dnN7Zq26eWqnGPliI6FFgcctWkXRVif+uCi+/3ILXj/Vi1+8cdbql2Io5H1eKGmMvP+PXYJi++/3tOL3e1rx610XcNd3X8ORtsIb+Rf61etEpX3tQNbZHjHBPBLTrhl+i2PkgewQ19bDHZZFyZfqbAdyI/Cda+kly8B54NnPoDd4B06fngV3wJp1qxojr4mIEr09HBIjr/BugLf+2jEuWsS716/uKRgltusObj7JhLufF/hslPyjRUTJ6852Yz/bJW0wbUSM/OBFoPckNbG9GGf7+dfO49TWU+BdPKpnVyOV0t6jBjv7WccR2x0cHIqiO5JEJJkGzwGz6/3ZGHmLXRajefKQGiF/0+KmoidlS2XD3DrMrvMjmsrokfW0iedE1FgdP5aP9Zqz/VjH0IQT6SwxnEzj28+fxNVfewH/81ILYqkMVk6vwi/evw7NJXb05mOl1vluVTQmcUstaAzB7TL2I/+hmxfgHVfOhKIAH/3Nfrxx2j6pBkfbh3C2NwaPi9cj5AlXza+H3y2gfTCBQxeNi9fbPaqvnTBVi5FvG6QvIv5+Tys2f/tVfO/lFurPVSqkl5spsZ1Eqxfh9l7652qk2GtfeQ0ZqYhIMcYo5We1AiForrNd72u/YkrZ0fp6b/suc+4TaEE2S3y1lUe20kCPkXec7Q425eg4IpwaJa8KI1Z31Z7SxPYFlJztHUMJvQuddUqJhL49RyBicdiRJRRFwWHt3nv/hQFrX4yBdEUS6BlOgeeARU35h1WWTlE3scna7VIhIWXw7efVGiafKOBcbwx/9j/b8bs3L+T9+latMmZ6ja/i5w6Y6GxPMBIjDwDXL2qAx8XjXG8Mx9qtcRtmqziK368jn4U7WnoxEKPXk+3AKIoCPPFRwFuFs54PAADEgDjBN9GBdLYDMCFGXoLisl5knhDNwe3xqHvBqeEUZM0sVgkkRl5AwvLOdgKJkn/rsbcgpyf4GUXNjW9GjPyZlwFwwJxrDX0uwkSd7Yqi4Pl/eh4AsOqvVqFxeSNkWYAMt+Nsd3BwcMjHKS1CfmatHx6XwGyM/PPHugCMdasaCcdxeOBK1en2yK78C0GjIdO/bhcPsYIecVo0hr2YUx+AomRFRZZJSBn84JUWXPPVF/CNbScQSaSxuDmEH757DR578CpcOad24gcpgipt0tCqAYTxNnArheM4fPHuZbhlaRNSaRkf+N/dtol8JFUBNyxqHDOU4xUFXL9IrRB49kinYc+5W+trXzOrZsTf62K7Cc72fRfU1/DkQfaSCEi/V8KEoYNiKdbZDgDrProO/gY/ek/0Yt+P99F+aYZTbGS+VRCx3azOdtLXPvv62WU/BhHbOw916gtiO8JyxQCgDgEAjtjuYE9kWdHFjkLx0sTN9/yxTkvF6JOUYuTrAm4E3AIUBWjtt8d9JIn0L6a7/uoF9Qh6XOgYSmDfJBKQadAxpIrSAHCwdRCSARv1LEAE9Dn1Ab26ajTE2f5WRwTpSfJzF8Ovdp5H+2ACU6q8ePmT1+PGxY1IpmX846MH8Y+/PzDmmkclRt4UZ7t2zWBAbA94XHpdnlVR8iQdspThgzn1ASxuDiEtK9h21Lg1uoNN2Pu/wOkXgTu/jURcXa9Odmd7KppSY+RdlQ8XUcetfoa53VlHOxnmrwQSI6+K7dbHyAPArOtmwVfrQ6w7hnOvTlCpyfPqkIDBYnPeGPnTLwNTVgB+Y/ayRzORs73l2Racf/U8BI+A6/7lOj25Ms35nc52BwcHh3y0dKvO3HkN6gYLizHyg3FJd12sn0vnA4Zw/xXTIQocDlwYGDfqzCjIpk6AgQVaIbK97eyK7cl0Bv+74yyu/dqL+Lctb6E/JmFufQDfecdqbPnoNbhlaZOhzr2wJrZb1dl+xOC+9tG4BB7fecdqrJxRjUgijV/tYr+/XVEUbNEi5G9f3pz3azYtVf/eqN723uEkTmvX0CtGie3TTBTbOzQh+1j7ELoj7HSjA+w52xVFKUls94Q8uO6z1wEAXvrcS/r32gXmne0mx8j3HOsBAL13vRxC00IITglCySho38fegEuxsF4xoHe29zliu4P9aO2PYziZhlvg9TXWaFZNr0Zz2ItoKoPXTvaY/ApVBmOSft8wz2CxneM4zKxTN1DP9thDbCcx8sUIRR6XoFeb2a12yWwOtmbX1Mm0jOMdk2NzdqKBGgCYVReA3y0gmZZx1qJENLOJJtP4nxdPAQA+etMCNIa9+NG71+CTty4CzwG/292KP/uf7SMS4mjEyJvhbNed3AzEyANZY4pViSkkHaTUJEoyfGZ10ouDyQxcAJ75Z2D1u4AFN+sCrFXOdnfYTd3ZriiKFiOfZiI+fSIULS7dJccgeLR1uwEmCuJs5+U4M2K7IApYdPciACVEyRvc2T4mRl5R1L72OdcZ+jy5hGeo9zDJweSY362iKHpX+9q/XYvw9LC+v5eWvY6z3cHBwSEfel+7tsGSjd1iJ+7vgOYWmFXnR12QrmBQH/TogtxvTHC3R5OlR22ZzTptwGEno3Hih1oHceN/vIzPPn4EXZEkptf48PX7V+DZv78Wd66cCp43Ph43rC3ih+LWDKUQJwUNZzvBKwr44DVzAQBPHmi3rPutWI53RnC6Jwq3i8dNS5ryfs0Nixvh4jmc7BrG6e7Kb4yJq31hUxDV/pGC1RRt4rMrkkRqohiqCmnPuSne3mLNhn0h9M52k5zLE5FJZvRYsGJFxis+eAVq5tUg2hnFjm/uoPnyDId1Z7sroF5LzYqRTw5mo9PLheO4SdHbzrqzncTIO53tDnbkaLsqLi5sDhZMruJ5znKBoTeqXgdCHpc+cG0ks7X38Tkb9LZLGRlSRr3XnaiznXB7zu+P9ftkKzk8qr5p3/l+i16JsRSTNCbwHBY1q2LFkUskSv5n28+iN5rC7Do/7r9iOgD1evfgDfPxi/evQ13AjaPtQ3jbd17Ds0c6EElIGNCSgoxwtgc9qkgRMTFGvlCygdncuKQRosDhVNcwTnWZK4IoiqKnNpZqJCFDAq+d7EHEIjPDJYecAToPQ0xbJJYpCvCnj6mC5aYvA8gKsFaJ7d4qb46znc59SyaZARSoznZGROZx0bvJI3piYaW97Yqs6OlwfCaWjWRngCX3LQEAHPvDMSgTVQRRcLaT46I727uPA8Md1PraATVJggy5j3a3v/XYW2jb3QYxIOLqh68GkN3fk9KO2O7g4OCQlxZNcJpPnO36JDA7N7mk222V1pNNm3doUfKP7buoO89poS9IPGws0PKxbk4dAOBw25ApE+Kl8sWnjuLiQByNIQ++ePcyvPAP1+PP18yAi2Isv5XO9sGYhIuaW3o8J4UR3LSkEQG3gIsDcexlfGNsixahft3ChoIbxlU+ERvmqefzswbE1O3RxPYrZo1N3KgLuOF28VAUoHOIrtDckfP4r1rkjisEa2J7rjO92Ig6wS3gxi/fCADY/rXtiHbbx5nEvLM9aK6znUxre6oqOx6TobfdNs52J0bewYYcJY7X5vHv04hY+9yxTkuitXVXJqV1yExNbD9vA0dvPCfWuljh7LpFDfCKPFr745eMkFoOhzSxvUG7F5kssfvHNLF9ovUYSSKzqkfbTAbjEv7fyy0AgL+/ZeGYYaOr5tfjqY9egytm1SCSSOODv9iDhx89BACo8YuGDP2YmdQYKyENwwzCXhFXz68HkK1XM4tkWgbRpvwl/h4XNAYxtyGAVEbGC291UXh1DmOQMxB/dD2aBw9Y8/z7fgm0PA/c+V+ArxpANlq8mPQ5GpgRI6+LqaIEzsOOyFyQHLHdE1Y/w8nwerlIOVWcXIYdZzsAzL15LjxhD4bbh9H6Ruv4X+wJUYuR1zvbz7wMCG5g5gZDn2c0+Xrb5YyMF/9FdbWvf2g9Ao3q74ns76Ukj+Gd9azjiO0ODg5FkXW2qxfOoLbZEmXI2U6m31ebJLZvnFeHGbU+RJJp6h3IsSSZhmbX2T612ocZtT5kZIW53vaLA3HsOtMHjgMee/Aq/OWG2XC76H8Ehr3WdbYTF8X0Gp/eHU8Lryhg0zJ1I/iJ/WyLSls0V9jmAhHyBPLzPGtAlPyb2vth7eyaMf/GcZweJX+RYpR8QsrobhAAePVkN1PuKtZi5Imb1+VzgS/hWrHsz5dhyhVTkBpO4ZUvvkLr5RkOmTxnVVA1u7OdHA+yWVAuRGxv3TnBIpxh7OJsTwwk9DQKBwe7UGwC0ZrZtagPujEYl7CjxfwEqWxsOp11yKxadX1pB2c7cajyHOAp8v7A73bhhkVqlLxVHcmsoyiK7mz/C22gff/5AQtfkTHEUxk9JWvZBGI7EePJGm4y88NXTmMokcaiphDuXJG/sqe5yovffHA93n/1HADAU1oNmBGudgAIec3rbCex6V5GYuQB4PbLrImSzx1uKDYdhMBxXDYpxOQhAdocaRvEnnNs7aEBAFxuKIIbLtmCodbBi8Az/wSseiewcJP+18TZbm1nO90YeSK2uz1pcDaIkYfLB3A8kBzKiu0VOtvJ71n7H6bEdpfHhYV3LgQAHH306Phf7AkaHyMfGxUjf/olYMY66pUD+XrbD//mMLqPdMNb7cXGT2zU/14X21Nux9nu4ODgMJpoMo02zeU1t16LkXez1dmuKIo+/b565lhBiwY8z+GBtepmwG92naf6XOVGbZnNlbNVNzBrve1EAF43pxZTq8uPBS4VInIPWSi2L6MYIZ/LXSvVjZKnDrUjbYHrqhhOdkZwqmsYbqFwhDzhFu3f954fQFcFjvOElNE3D9fOHutsB4Cp2o0ozd520tfucfHwuHh0DiVxqoudCVPd2W5At5cRlNLXngvHc7jla7cAAHZ/fzf6Wti6FuZDkbP99JWKy7Qws7NdkRV9c4DE4JUL6XwfODNgq6SDXFh3tpNBHcC8mgEHB6Mo1vEq8Jw+BGiFWEuc7aUKI8UyS3e2sy+25x4Ljiu+guq2HIGIpWFHVugYSqBnOAWB5/T0uNM9UQzEUhN8J9sc74xAVtQkq4YJhtbI0M2xSS629wwn8ZPXzwAAPr5p4bhVbqLA41/ethT/887LdSf6rDpjBJegXotIdz8rIytIasOALFUC3rK0CQLP4Wj7EM6ZmCqSew0VyqjxI0MCL53oop4uaRayrOCdP9qJd/xgJ/qjDF7zPCG4Miav0Ul8vDsA3PrlEf9kdYy8ul7mkM6I1J3tHq89OtvBcbqDmyTDVbqvQxIMXD4XuBRbYjuQEyX/6LHx7+vcxjvb9c52vwhk0sDZ14C59PraCeGZ6n3K4Dl1fzMjZfDSv74EANj4yY36nh4A+Gq09Lm4aPiwAes4YruDg8OEnNY2iOsCbtRo04MkRt6MjqtiONsbw0BMgtvFU4/MzuXP10yHi+ew9/yAHrVPAz2+kaEFWj5Ib/ubjIntj+9X+3LvWTXN1OcNa7E+QyZMzI9Gd0tNqTLl+a5eUI9qv4ie4RTeOM3W759AHBHXLKjXUwcK0Vzl1Sspth0rP0r+wIUBSBkFTWEPptfkH/SYWqX+fTtFoZk89rRqH66co75PWYqS18V2Rpzt5YrtADDnxjmYd+s8yFI2UotlUjmbOqy6l4mz3QwxNRVNAdp6udIYeW+1F3WL1CG0tjfZTv0oBHG2syq2C6KgD4nE+xyx3cE+lFr3Q9x8zx7pRGaifkiDiWuCBq0I5JmaU/VCf8z0n61UiMu/1LSxGxc3wi3wON0TxYnOS2vTsRgOtqobtwsag2iu8mJOvbqpvt/mUfLHcvraJxrOWNwcAscB3ZEkuiOVOQJZ5n9ebEEslcHK6VXYtHT84WfC5uVT8MRHrsJ7N87GgzfMM+R1BHLEdpnidSeRWz3BkLO9JuDGhrnqPaqZ7vZK6xGXTQ1jRq0PCUnGS8e7jXxpljEYlzAQk5DKyDjJ0DC8jjsIl2zyGn3/I8CpbVp8/EgzlR4jb6GzHYAmttN2tmeY6iofF08YSA0b7mz3hgRAltTuc4aYf+t8iH4Rg+cG0b5nnEFYT8jwGPURMfJt+4DkEDDnekOfIx+jne37f7of/S39CDQGsO6j60Z8rb6/F3Opr+8SwhHbHRwcJoSIyPMasx9uZnZcFQOJkF8+rcqUeHBCY8irb5CdoehaI8eZ5c52AFjYpHb10BQNS+VY+xDe6ojALfC4ffkUU5+bCLpWOtsniiY1ClHg9UnzJw5cNOU5S4XEzW0u8jzYtEzdAHrmSPli+26tr33NrNqCm2xTTYiRJ33wTWEvrlmgdvS9doohsZ3EyLPS2V5hh/nN/34zwAGHf30YbXvYFlnJz8rxXLb3izF0Z7sJ5wfpl+NdPFzeyo+H3aPkK30vmIHT2+5gR451qPdp06qLq/tZP7cO1X4RvdEUdpk81Ko7ESmJ7VOrfRAFDlJGQfsg2+/j7LEobb0Z8or6/ZcTJT8WkgK1fJq6kUsGXu0utmeHnydej/ndLszRXNuT1d3ePhjHL3eeAwD8w6ZFJaVDzG0I4nN3LcPiZmPWtqGce7woRYc0uWZwHOAV2dqC1xM3zBTbk5WZSNQoeWsi8GnRG82KkjQNPGXjDsKVMfGzOZ0Cnvk0sOIBYOGtY/6ZDWc71N72FGWx3Z0GRPOSOStCc7aTZLhKO9vJUIW/ShuGYszhL/pFLNi8AMAEUfKeIJAyztmekTJ6dZroE9UIeU8YmLrasOcoRG5nezqR1msTr/701WNMKkRsjw8LTme7g4ODw2h0sb0hK7aTSeBYKkN1ErhY9mmdbmb1tedSp32o9FGMfLKLsz2sLVqtEJcL8Zjmar9hcQP17vLRhLXnS6blEVPttEmlZZzqUm/ozBLbgWyU/NOHO5BMm/fzFsOprmEc74xAFDjcXKSL4lYtsnVHSw+GEuWd06SvfU2evnaCGTHyZABmSpUXV89vAAC8cboXKUY6jomDODnAhpOnEmc7ADSvasaKd64AADz/8POGvS4a5DqXS9n0NBMzY+RJ5J2nymPI8Zh5jRqHu+f7e2wZJc96jDyQ7W2P2SCC2mFyoSgK/vvFU/jRq6dL/t5i+9oJosDrFTdbTRZro/o6hI7YLvAcptfYI0qedC/7xdLXZETY2jpJBCIjOUTE9umq2L56ZjWA7BrfrhRbFUFYMnVy97Z/+/lTSKVlXDmnVh8+sQqPi4dLizGnGSUfL7N6wgw2LWsCx6lJbDTXobnEDEhKIdfSF451mrrHQoue4ew+4mkGxXbFEzK3sz0xACQGgaV35/1nfZ1ulbNd27eQUi7qznbRLTEXn14QTWx3h9Xfi1HO9kCYiO3sHYcl9xcRJe8xNkaeuNoBLUb+zMvA7GsAgb5WkOts3/393RhqHUJ4ehhrPrRmzNcSsT02JDid7Q4ODg6jyYrt2Q834mwH6E4CF8t+k/vac6kLqDdbvRTFdrt0thMxO5JMMxEDKcsK/qT1tZsdIQ8AIY8LZE1drlhbDie7IpAyCqp8IqZW2DlcClfOqUVT2INIIo2XGYt1e1qLkL96fn3RQxfzGoKY1xCAlFHw4ltdJT+nLCvYoznbC/W1A1lnO93OdvWxm6u8WNwcQn3QjVgqg71aKojVEGd7ajiFDAObJkZEZ9/wxRsguAWcfu40Wp5tMeqlGY4dnMuuoHrPYUaMPNkYMKq/fuW7V6JhWQOiXVFs+dsttuvqJe8Fls8Px9nuYBV/3HcRX3/mOL701DGc7CxtI6lUEQ4Abl+uibVHOkwdds7GyNPbyCNR8uf6GBfbtXsUbxlrsluWNsHFc3irI8KkoGIViqKM62y32+cmQZaVETHyxUAc8JPR2X6uN4r/230BAPDJW0tztdOA4zi9GnGYYuWbXj3BUIQ8oTHkxdpZ6hrVrCGgrLO9/OOxano1msNeRFMZvMZQLVq59AxnRcnTLA7muoPmdrantGNQwMlMHM9WO9tTKRf1znbRJQEiW47ugnhCQHJId7ZX2tlOjoEvpJlDGIuRB4AFmxdA8AjoO9mHrsMF9gvdQUOd3aSvHRwgcAngwk5T+tqBrNgeuRjBq//2KgDg2n+5Nm8aoO5sj7qgOJ3tDg4ODiM51TU2Rt6sSeBiiKcy+oJ0lTYFbybE2d47TM+RGSOLEg/jzvYcETNiorhciF1n+9A2mEDI68INixtNf36e5xDyELe/ee+T3MhCMzcyBJ7D21ao7vY/HWQrIpP0tZdaJbBJc7c/e7T0KPkTXRFEEmn43QIWN4cKfp0eI98fp7ah2DGUdbbzPIer5mtR8oxsUHhzhkJYiJKv1NkOANWzq7H2wbUAgOc+9RwUBgaQ8sF6JzeQ7WxPRVJ6bBotSOSd16BBJZfHhXt+fg94F4+jvz+KI789YsjjmoXjbHdwyE93JIkvPJmNjfz93tKqIvS6nxLE9qvm1yPkcaFzKIl9F8wblqMdIw8As7T38TnG38e6K7MM4aza78aGeeZ3JLNOx1ACPcMpCDynD58sbg7D4+IxGJdwpodB8akILvTHEE1l4HbxmFtfnCOPXA/IWm4y8a3nTiItK7h+UcO4Q8hmEszpbacFuWbQvH5WAhniMqveIi6ResTy97V4nrMkAp8WvbnOdhavd+4ARDNj5IlbvIDITBzPVne2p5ICZMox8qIrZZ8YeXcQSEayx2eoMjMaGarIiu3sOds9IQ/m3zofAHD09wWi5A12tuvnhk8E17YXyKRUZ7sJBBoDEDwCFFlBrDuGmnk1WPW+VXm/1hP2AByQTLrBSTEgY71J0ywcsd3BwWFc0hkZZ3vUG4j5OTHyHMfpN8hW97YfbhtEWlbQGPKY6uIl1AXox8jbxdkuCrw+pTzIQJT841qE/O2XNcNr0TQ5GUAw09ludl97LndqUfLPHe3UNxes5nT3MN7qiMDFc9hUZIQ8gUTJv/RWV8kxdW+eVTfCL59ZA5dQ+JZrapW6gIqmMhii5KzoGMx2tgPANQvUKPlXGelt5108eJ96jFgS2yt1817zT9fAE/agY38HDv36kBEvzXDs4GwnMfJA5VPyE6E726uMOx5Tr5iKa/5ZXQRveXALhjvsM91tB2e7t1abnO9znO0O5vG5J45gICbpvb+P7btYdKqTlJFxslO9DpQitntcAm5cog6PPn3IPIEhG51O716aONvP9zEoNORA7gXLdWWSrmEnSj7LwVbV1b6gMaiv19wuHpdpLne79rYTwXxRU2jcdUAuZNjgdE90UsRjE050RvRqt09sWmTxq8lihtjOsrMdyEay7z7Xj64I/TWYEc52QN3fAYBtRzuYqUUrl1zTzvm+GHs/jycEl2zi+py4xQuI7ZY720PZznY5RmdNR35Gl5BiUmTOiyYqkzV0xc52bajCG9DeD4w6/Jfcl42Sz4snBGSSQMaY/WASI+/yuYColiZaNd2Qx54IjudQNaNK///rP389hAKfbRzPwVvlRTKpDcUY2FvPOo7Y7uDgMC6t/XGkMjI8Lh7TqkdO1GUXJ9YuBPdpMcirZ1ZbEkdWq4ntPTQ7223ibAeAsFcTl010cucjmc7gKc1dbUWEPIEcDzOHD3Kd7WazcnoVZtX5EZcy2FaGG5wGZOJ94/x6VPtLm4BeMa0KTWEPoqkMdrT0lvS9e4roawdUpwO5jrQP0hGLsp3t6nX8as3ZfrB1AAMxeteuUiDuZTN6uSeCCNBisLJFvL/ej6sevgoA8OJnXkTa4uG0fNjB2c4JnJ4yQPv80DvbDYqRJ1zzz9egeXUz4n1x/OmDf7JNLK6e8sDw+UGc7U6MvINZbD3cgacOtUPgOfz8r65EtV9E51ASrxU5wNbSPYxURkbI48L0mtIcS7pYe8Q8sTZGubMdAGbVqZvJpTrb3zzbh6v+/QU8f8yce05yLMqJkQfUjmSeUzvKLzAemW8WoyPkCSRK3q697dmqiMLpVqNpCntQG3AjIys4UWI1Bct849kTUBRVIL1s1O/ZSkJmxMibcP2shClVPqyaUQ1FAZ49Qv86GtNNJJXta62ZXYv6oBtDiTR2nC5tjc4aufuIGVnBecY+GxR3EC4zne0TxMhb7WwX3AJcXhckyQUlQWdAUIpJ4DgZAp9mVmQegycMJIf1NXSlne26s92v6Q0MxsgDwMI7F4J38eg+0o2e43nWAeR1G+Ruz3W2q4/JmXpsSJR8w7IGXPbAZeN+rbc6R2w3MEqfdRyx3cHBYVxIX/vchiB4fqSQrYvtFBcnxUAW4Fb0tQPZGPm+KL0Yebs424Fsb7vVzvaXjndjKJFGU9iDdXPrLHsd5HgMmXQ8FEWx1NnOcRzuJFHyB9iIkt+iRchv1ibgS4HnOWxaqn7fMyVubBNn+5pZE0clTtU6jWj0tksZGd3axHyzlv7RXOXFgsYgFAXYXuIQAS2Ie9mMXu6JMCJGnrD+Y+sRnBLEwNkB7P7e7oofz2h0JzfDzmUA8NZo7mXK54fRMfIEQRTUOHmRx4k/ncCB/z1g6OPTwg7JB05nu4OZDMYk/MvjhwEAf3PtXFw+swZ3aak+j+4pLkqeiHCLp4TGrK8mYv1c9Z6itT9umvstGyNPb+iXxMif742VNIz0/15uwcWBeMn3aOVCXKrluvzrgx49Qtus18w6h4jYPn2kCLtaq4ezrbO9jKoIjuN0cX6yRMkfbB3A1iMd4Djg47cstPrljIDsZ0VMcLZblbJXDOu1vRJSH0kT3dnuqex4CDyn171tNSkCnxaj6yhPdzMmSrmDJjvbC8fIZ1IZvVLMKmc7oA5lp1IiVbFdFLXrUoGhA+bQnO1kDU3W1OVChio8PnIc2HT4+2p8mHPTHAAF3O0ebeDOKLFd21cW/SKQGFIfnzdP3l3wtgUQ/SJu/eat4CdI7fFWe5FKEbF98gwQToQjtjs4OIyL3tfeMPaDLaDdIFvd2a6L7dr0u9nUBdQN6L5his52fSLaBs52n9ZRbnFnO4mQv2vlVAglbmQaSfZ4mPM+ae2PI5JIwy3wmNdgzfTnXavUTeeXT3RhMGbteXCuN4ojbUMjFuSlsmmZGj3/3LHOoiNi2wbiuDgQh8BzWKVtFo4HcZxfpBCh3h1JQlEAUeD02gsAuHqB6m5/lZHediK2sxAjb2R0tugXcf3nrwcAvPKlV6jHoJeKLqYa7OQ2Gq82kEL7/CDDB+6w8W6JpuVN+rmw9WNbMdTK/ka6HZIPnM52BzP58paj6I4kMbc+gI/etAAAcN/lanzjM0c6irr/rSSBKJiTcmVWlVe2Y5d+jHwkmUZ/kfeOkYSEV7R7mKhJSWtxA/rrNy9X0wkmQ9dwpSiKMqGz/Vj7kC0j1Y+1qxvLS0p8n5PrAhnKsTv/8ewJAMC9q6ZhQVPxLn8zCJhgHjEjGaRSavzmmQOMcrYD2Sj5Z48Uv0ZnkR5tH5FUDbR0M1an4gnBlWFDbE/lpABY5WwH1LqxdNoFhWJnuyhq70fbONtDIzrbjXK2u73sH4el9y8FMIHYnjJmiGZEjHwyoiYKmMiGv9+Ahwcfxrxb5k34td6a3Bh5xoaIKOKI7Q4OlwDJdAadQ4myOsWJs31+41jRLqjFY1vZ2d4+GEfHUAICz42ZhjeL3Bh5WrGw5BjT3OQyChac7UMJCc8d6wIA3LPaugh5IDdW35zjcUTbwF3QFITbZc3H/MKmEBY3hyBlFGw9Yu2k+Rat03TD3Dr9vVoq6+fWIeR1oWc4hb1abcVE7D6nft3SKeERG+OFIDUdNJztJEK+MeQd4aC7Rhfbu5mItHYF1ePEQoy8NKzF0xngbAeA1e9bjfrF9Yj3xvH611435DGNwg5iKgB4qrX+N5Ni5I12thOu+uRVmHblNCQHk3ji/U8w8d4rRDqZhiyp7hHH2e7gALx2sge/290KjgO+ev8K3am4YnoV5jcGkUzLeoXReJQrwgGAS+Dh0e7vSPIVbXRnO0VnplcU0KRt0J7rLU5oeOGtLt3dT9OZmosRYvut2vDnnnP96GBsAM9sOoYS6BlOQeC5Me+HadU+NIQ8SMtZQd4uDMRSuKjd0y8pMWmMHIejk0Bs33WmD6+c6IaL5/DQzWy52oGcGHmaznYbmCbM3L+JGng81s+tQ5VPRG80hV1n+ip+PEJfNEVlTV4I4my/fFY1APac7Qpxtpu1ZkkVFtuJ25kXeQgWDrB4wh5IkpgdDDAYKSbB7WZfZB6BJwSkIvCE1etJpWK77mx3S+oxMNG9XSqL7l4EjufQvrcd/adH7RdSjZEfyor5JsIXuc88Mkbe/vc0xcLumerg4FAUUkbGb3adx38+exz/8thhfOSRvXjXj3bijm+/iqv+/QUs/exWLPrMVqz7t+ex5kvbsOdccUIRgUxV5nPIBhlwtu/XXO2LmkKWLWBIjHwqLeuLB6OxlbPdZHE5H1sPdyCVlrGgMWhJb3kuYZNj5MuJLKTBnVqk6hMH2ix9HU9rsXLERVQOosDjpsWNAIBni4z8JH3tV8wqrt6CZox8h97XPlI8XDenDqLAobU/XnJHKg1IZztTMfIGCdC8i8dNX7kJAPDGN9/A4Hl2No2Js511sd2nDaTQPj9SQ5rTv4qOuMy7eNzz83vg8rrQ8mwL9v5wL5XnMQJybgDGDZ7QwFernhuOs92BJrFUGg//4SAA4N3rZ+lR4IAa/Uzc7RNFyRtR90PcmGa5uc1ah8yqVZPUiu2r3ZrjDDdr+DsmVT540FzlxeVa6tGlHiV/sFW9H1rQGBwTs81xnO5ut1uUPHmPT6/x6WvjYiHXhWPtEcg2dusCwI9ePQ0AePvaGZhZx55gpNciXuIx8vp+hQnJhDEDTSSiwGPTUjWB7mmDouT7oinc9q1XsOmbr5hmHunV1p1Xzlbj/E/3sOZsD4KDAkgmvS4pBghuQBh7z6G7nS10tQNEbHcBaTrr0hHOdkbj08fgUTUDEvteaZqf/rv2pJk/BoGGAGZdNwsAcOKpEyP/UY+RN2aIZkSMfDICeK3d9x0Pp7PdwcHBlvzgldN4+A+H8J0XTuEXb5zDkwfb8dqpHhxpG8LFgbi+OQIAsgI8svN80Y+tKEpOjPxYsZ1EP1kptu/TFt6ri4hppoXf7dI3XGhFyetxWzZwtocZcLaTCPl7Vk8Dx1kXIQ/kdLabFKt/srN8t5SRkN72HS296IpY49rpj6ZwsHUQHJeNgi8X4kJ65khnUU5U0teeuxk/HlMpOts7htTj3zRKbA94XLh8pjoM8Oop66PkWYyRN1JgXHT3Isy8ZibS8TS2fmyrYY9bKUZG5tOEdLab5WynGatfv7geN375RgDAs//wLAbODlB7rkog54bL5yp6gt0KSIx8vM/6QR1W+cpXvoK1a9ciFAqhsbER99xzD44fP573axVFwe233w6O4/DYY4+N+Lfz58/jjjvugN/vR2NjIz75yU8inba2Tsosvv7McbT2xzGt2odP3rZ4zL/fu3oaeE5Ntjk7zkZ5VySJvqjq5F1YZqQyWQ+Y5WyPmxSDTMS4YgYA46kMXjrerf8/zRjo0c8LVH4sbr+MRMnbu2u4UgpFyBPIGp/UxtkFkl5RzvDzvIYg3AKP4WQarQwMoFYCSde6eUmjxa8kP0GPuk6PXOIx8lY42ytJB8nl9uWkt73DkOGUL/zpCLoiSQwn00WnrFRCQsroySxr56jrctac7XAbKxZOiBQr6OYmbmcr+9qBrLOdoxSvn46lc2LkfVSew3C0OHOvFvueSWaQrkAr0H/XYop5sR0Amlaq+42RtlEOdm0IASljnO0jYuQTg5Y424vF6Wx3cHCwHYNxCf/v5RYAwB0rpuCjN87HZ9+2FN/8/1bip+9bi8cevAovfeJ6HPjsJvzfhzYAALYebtc3CSaiN5rCYFwCxwFz83a2E1eFhWK7Fum8emZx7lFaZKPkK4vKKQRxrhjRbUUbMyej89ExmMD2ll4Aal+71YS1eLqhuDnvk/6YOvBRb7FwNrPOj1UzqiErwJYiIlVp0Kcdi5DHhfpgZcfj2oUNcLt4nO+L4XNPHMGFcVxXkYSEtzpUR8ua2cU624nYbvyCrWNQ3aibEh4bi02i5F872T3m38xGF9sZiJHXne0Giu0cx+GO/7kDvIvHW4+9heN/yi90mY1dnO262E67s31Q/RynFSNPWPexdZh59UykhlN4/H2PQ2HQvUbODdYHMUiMfDqe1qf9HUby8ssv48EHH8Qbb7yBbdu2QZIkbNq0CdHo2I3kb33rW3kHFTOZDO644w6kUils374dP//5z/Gzn/0Mn/3sZ834ESxlz7l+/Gz7WQDAv/3Z8rz1MM1VXlw1X/1M/cPewu520tc+tz5QttORrAdMc3Nror5R4kghZtUWL7a/fKILcSkDQavHMWv4OxsjX9ma7Data3jXmT49QvhS5BAR2wvUwdnW2a69z8sZfhYFHgua1M15u0fJRw3s56ZB0Ev/WpqQjBWXaWCm2E6uoUadE1fNr0fI40JXJIl9F0pL8RzNC2914rH92VS+zgpjsIuBVH2KAoeV06sBAP0xCf1lVIBSw2CxcEJSsYLiKkvO9lRKBC/Tc7a73dp1yU4x8gDcYvZ9U0mUvC62u1LZKHaG8VYX2KugFSNPnO0md7aXgrfGC0XhkZY9l5TYzuYdj4ODQ1H88JXTGEqksbApiG8/sFrfbMjHmlk1mF7jQ2t/HM8d69QjnsejRXO1T6/x5d0MMqPjajykjKxHz1npbAfUKPmLA3EqzvaMrOjxYyxPRBOIuDxokrg8mj8daIOiqOf8jFrrb0zNHj4g70fy/rSSu1ZOxf4LA3jiQBvee9Uc05+fuBRCJcY35iPgceEvrpyJn20/i5/vOIdfvHEOty5rxl9fMweXz6wZIUzsOz8AWQFm1vrRlEfgzgfpbO8YSiAjK+Nez0uFuEqa84iHVy9owH88ewLbW3qRzshwCdbNYZIYeRac7bRExsbLGrH+4+ux/Wvb8fTfPY05N86xfLPALoIqiXWnHSNPNgVoOtsBgBd43P2zu/H9Fd/H2ZfOYtd/78K6v1tH9TlLRU94YHwQwxP2gHfxkNMy4r1xiNOtdbuwyNatI9M0fvazn6GxsRF79uzBtddeq//9/v378Z//+Z/YvXs3pkwZWb/y7LPP4ujRo3juuefQ1NSEVatW4Ytf/CI+9alP4XOf+xzc7rHnSTKZRDKZ3WgbGlKFI0mSIEnWDUaQ5y7mNSTTMv7x9wegKMC9q6di45zqgt9376opePVkDx7d24oHr5sDPs9n+aFWVQxY3Bws+xiQ9cBQLGnKcSRClJtXqD7ftGrS2T484fM8dVAVRK6ZX4eXTvRgOGnMOTXRuRFNqn9f6bFoDom4bGoYh9uG8PShNvx/a6aX/Vh2RVEUHNLW8kuaAnmP55KmAHgOuDgQx8W+YTQyfq9CONqm/lyLGvP/XBOdZ4ubgzjSNoTDrf24aVEdvRdKGXLt8AjFXW/NxudSr9FD8RS11zec0O6zSzgGpXxGGYFP2zYYitP/bB7WrqFGnRM8gOsX1eNPBzvw5IE2rJhansszkkjjn/5wSH1MTk0FbR+IUj8enQPqcFltwA03r6A57EHHUBInOgb1uhGrSfNeuABkogOACeckn4yAd3mRzvNccS0F0OV3WXpNEYMiJMkFXklCSqUAg9M0k8NJ3dkucW5Tjns5jLhWCT6IAOTEIMSACCkqIdobhbu6vHVkUjOyubgEZJcPGUaPAUEMqevPeF98zLnpEgOQ44OQDfgZktqApuARICcGgaqZzB4bckykjBdcBT+/2Z+JE72OibB+J97BwaEseoaT+MnrZwAAH79l0YTCDMdxuHvVVPz3iy14fP/F4sT2cfragayz3Sqx/a32CJJpGVU+EXPqrI2VqdPEkl4KznYitAPZY84yVSZ3lI/mMS1C/u7V0yx5/tGQnj6zYvWJwBxmQGy/Y8UUfPGpo9h7fgAX+mKmDz8MJ4wdPPjXO5fihsWN+NGrp/HqyR48fbgDTx/uwKoZ1Xj/1XNw+2XNcAk8dmt97WuK7GsHgPqgBy6eQ1pW0BVJYEqVcXFhnUOks33sYy6fVoUqn4jBuISDFwf1WHkrmOzOdsJ1n70OR35zBIPnBvHKl17BzV+52fDnKAW7CKqmx8hT6mzPpXZeLW7+2s14+iNP47lPPYf5t85H3UJ2NtXtMojBcRx8tT5Eu6KI9cYQns7uhD8rDA6qQlBtbbbqJBaL4S/+4i/w3//932hubh7zPTt27MDy5cvR1JStZbn11lvx4Q9/GEeOHMHq1avHfM9XvvIVfP7znx/z988++yz8fusHIrdt2zbh1zx1nkdLN4+QqGCtcB5bthSu5MpkAK8g4OJAAt/57VYsqBqbWPHiCR4AD27gIrZsGb/fvRCxQfUxtr+5F+mz9FMxhqICAA5v7ngdFyj+2lojAODCibZ+bNmypeDXpWXg2SPqa5qDTrwEAZG4hKee2mLYfnehc6OtU33etw4fxJb2AxU9x2wXh8MQ8MuXDiPUdbCix7IjA0mgN+oCDwVn929H26H8X9fkE9Ae4/CTx1/Ailr2UmBGk5aBE9p50vHWbmw5W/hrC51nch8HQMDLB05hQfJE3q+xA9lrx2s4x2AS8sle9ThfaO8e95pTCafOqNfrcy0nsSVR2u+ymM8oI4ilAcCFuCTjiSe3gGZzUGePek4c2r8HqTPGvJ8bk+rv8ZdvnEX1UAtml6G3/+40j44hHnUeBXPDCt7s5vH63iOo6i5wYTKII/3qaxczCWzZsgVhjkcHeDz2wg50NLJxvfMnO3ELgD07XkbPYfppeCsuHEdNPI2X87wnB7YPAACGk8PU3rPF0N7djiZJBM/JePKpP0Hhjd1767jQgVma2P7Mi68hI9BNXKuUbdu2wZfqwSYAu159HvBwQBR4fsvz8M8r78axq7ULABAZ6kCGT2OHhb/vYug7p+4BXjh1Ycy5eaviwplDe3Gip/KfoeNABwCgrbsNsb4OdGSm4Aijx6ZP2xdNJAW0vnUARyOVvU6zPhMLEYtNnLwFOGK7g4Nt+d5LLYilMlgxvQq3FtlFfM+qafjvF1vw0vFu9EdTqJnATTdeXztgfYw8iYlaNaM6r3PETGoD6kZ0L4W4p5h2fHkO8DDcmUqwsrP9VFcER9qG4OI53LF8ysTfYAJVfnOHD4jATDrorKQp7MX6OXXYcboXTx5sx4evn2fq85PJ+Xxxr+XAcRyuW9iA6xY24HhHBD957Qz+uP8i9l8YwN/9eh+mVfvwno2z8JrWf76myL52ABB4Ds1VXrT2x9E2EDdUbM8628cKZgLP4ar5ddhyqAOvnuihIrYX69QnznbazuVi0MV2CgK0O+DG7d+5Hb+5+zfY8R87sOJdK9C4zLouS7sIqj4t/YG22E6c7bRj5AlrP7wWb/3hLZx54Qwee+9jeN+r7wNvYcJELnYZxADUKPloVxTxXuuvH6wjyzIeeughXHXVVbjsssv0v//7v/97bNy4EXfffXfe7+vo6BghtAPQ/7+joyPv93z605/Gxz/+cf3/h4aGMGPGDGzatAnhsHVDEZIkYdu2bbjlllsgioXvl461R/DCzjcAKPi3+1bhtiLWXG9mjuB3ey6izTMDH9t82Zh//9aJ1wDEcM8Na3GNFjtfKlsG9+OtwS7MX7wMm9fNLOsxSuETu7YBUHDbzTfotTc06I+l8I3DL2FI4nDDzbcWjF1+4Xg3kjv3oSnkwd/9+VX46ZdfgAwON226texofsJE58YPzu0AIhFsXLcG1y9sqOi5lvRE8eR/vY5TEQFX3XCTPrB8qbDtaBewdz8WNoVwz50bC37ddukIfrv7IoTGedi8aaGJr7A83uqIILNzB4IeF9517y15azkmOs/qzvThjz/ZjT7Fj82brx3z73ZAURR8fOdzABTcfsuNRad9mUnoZA9+emIvxEAYmzdvoPIcT//mANDdidUrir9eF/sZZRQZWcGn31RFjI3X31Rx/dp4fP3YK0A8gRuu3qDXRFTKrbKCU7/ah5dP9ODnZ3z4/d+sw4ya4gW+nWf68PqO3QCAb/3FWrx5rh9vvtCCqqYZ2Lx5mSGvsRDxvReBt45gzpR6bN58Bd6Uj+HEzgsITpmHzbeycb2TBtqBo5/EmuWLwC/dTP35hCeeBAZi2Lx57HMd7DmIsziLphlNef/dLHYc2YGOI68CAG6/+TrAm78KpVx+/pWfw51S97JuveNugGcz4XTEtSodBY58HFeuWoK9DW3o7evF2hVrMeu6WWU99o//9ceIIor6Wj/8zTWW/r6L4bh0HOe/fR5hMTzmtbrOfR4LZ0/B/Jsq/xlefO1FdKAD8xbPQ8AlY87ilZh1DZvH5qR8Euf/6zzSGT/mTmvE7DJ/h2Z/JhaCJLRNhCO2OzjYkPbBOH7xxjkAwCc2Lcq7gMvHgqYQlk4J42j7EJ461I53rR//Q6+lWxXb5zfmF9tDFjvb958fAGB9hDwA1GvuRxox8tGcXqtif9dWUmVhZ/tj+9RIyesWNqDW4mhmAnG2DyXMeZ9EDHZzV8pdq6Zix+lePHGgzXSxfYjisVjUHMJX71+BT962CL984xx+seMcLg7E8W9b3tK/Zm2Rfe2EqdVq1cfFgQSuKG9NMgZZVnRne3MBAf/q+Q3YcqgDr53qxsduXmDME2tsP9WDzzx2GJ+4dRE2TzAAozvbLY6RV2SFqrMdABbdtQiL7lqE408cx5a/3YL3vPQey67vRFxmXVA1u7Oddow8geM53PWTu/C95d9D645WHPzlQax6zypTnnsi7DKIAQC+WvX6Fu9zxPaJePDBB3H48GG89tpr+t898cQTeOGFF7Bv3z5Dn8vj8cDjGXv+iKJo6WZJMa8jnZHxz48fRVpWcNuyZty5qriY7z9fOxO/23MRzxzpxJfuXQ5/Ti9tLJXG2T7VFbF8em3ZxyDkU6/XiTSoH8d0RoaUUd11Yb+X6vM1hF0IeV2IJNJoj0hY1JxfnNt2THXW3b58CqoDXnAcoChAIsMh5Dfm9RU6NxKSDAAI+TwVH4uFU6qxqCmE450RvHSyD/dfcWlFyR/rVPcalk+vHvdYXj6rFr/dfREHLw4xcd2YiBNd6nt86dRw3nqNXAqdZ8unqwO7FwcSiKVhy0GMhJRBRlavHdVBH0SRjbVpLlUB9RoTTaWpnVvJtHrNCHjdJT+HWZ+VIqBfe2OUP1di2jW0KmDc54kI4L/feQXe/v0dONo+hA/8Yh/+8OGrdNPDeMRTGXzm8aMAgHdcORPXLGrCRW0t0BOVqB//gYS619cQUo/H/EbVln+2L87O9S5QDQAQMnG4zHhN6Tjg9oPP81xyUj1/PMHKP4MrwVfjgySp1zRRkQCDX0s6nobolSDzHoge9gaVRiOKIkSPuvflSsf0/vJ0tPxrK+kmd3EJ8J5Q3vOBJYL1qm6SHEyO/Zk9IQhSDIIBP0NG0wfcATe4ZASCv9qQx6VBUDNuJhMiBCla8eu0ev1Y7HOzYZtwcKCAoig42DqA3mHjY72t5jsvnEIqLePKObW4ZkFpjoh7tWjtx7Wo7fEgYvvEMfKZvP9Om30XBgDAsInYSqjVY+QpiO3aMIPfw+Y042h0cdlkZ7uiKHj8AFsR8gAQ1krQhuISFIVuFFgynUEqoy5AgoyI7bdf1gwXz+FY+xBOdUVMfW7d5W9AZ3sh6oMePHTzQrz+8I342n0rsLBJvV5Or/EVvHYWgvS2tw0YJxb1xVKQMgo4DgV7LsnnyL7zA4YOTymKgq8/exyne6LYebp3wq93BdVz1uoYebKwA+iJ7QBw27dvg+gXce6Vczjwv5VF0VYCcS+bJS6Xi6eafmd7JpVBWrtumBEjT6ieVY1r/ukaAMD2r22HIrMRG2knZ7u/TnUwxXqLi3e7VPnIRz6CJ598Ei+++CKmT88Key+88AJaWlpQXV0Nl8sFl0u9Ht933324/vrrAQDNzc3o7Owc8Xjk//PFztudH712BocuDiLsdeELdxfvbFszqwaz6vyIpjLYenik4/+tjggUBWgIedBQwRBLQHN8m5EuFsupsyrkNDcKjuMwS3svn+uN5v0aKSNj21H1vLvtsmbwPIeA27y0tbi2yemr0EFPuO0y9b2z9XC7IY9nJw5dVOsslk8f3xG4WktdOtg6qIu3LHOsXXU+LZ1SfnpHlV/U1wXk8exG7vvRqPeL0ZCB7GGKQ/Ex7Zrhp3z9rJQqk9IJ9b0tg49H0OPCT967FlOqvGjpjuJvfrkbyfTE+5Tfeu4EzvbG0Bz24tObFwOAnsJABtZpQvar67V7grna/sFpbS+WCVxeyBDApUx6TVIcEPMnE6S0/VYxYK246Al7IEnaa5CMX3ukoimIYhqKwGD/RiEEF+DyAcmIvq9AhvrLQYqq1yJBSQBu66unJoIMGJBKuhF4QkDSmL1Qslfl9nLqYIqH3fo0ckziMREw6/rBAI7Y7jApURQF//70W7jru69jw7+/gE/9/iBOdJor8tDiXG8Uv3vzAgDgk7cW72on3LlyKjgOePNsP1r7C98UxFMZXNQEn3kN+fvQAx7zNnpG0x9N4UyPugkz2cX2WI6z3Q5kY9PT1MXlXPae78eFvjgCbgG3LCmuWsEMyPBBWlb03yUtIjkbBUFGzpdqvxvXajGbTxwwdyORCMdGxciPh1cU8Pa1M/DMQ9fisQevwm//ZkPJ9RZTtZtRI8X2Du1mvz7ogVggmnpGrR+z6vxIywreaJlYFC+WF97qwr7zA/CKPB68cf6EX5/rbLdSbCQCIzhANMghl4/qWdW47l+vAwBs+8Q2y0RCu7iX9QUsxWGM3A0Bs4/Hmg+tgTvkRvfRbpx4io1+VnJu2EFs99VpznYnRj4viqLgIx/5CP74xz/ihRdewJw5c0b8+8MPP4yDBw9i//79+h8A+OY3v4mf/vSnAIANGzbg0KFD6Orq0r9v27ZtCIfDWLp0qWk/ixmkMzIe26cOcP7L25aisYT4Y47j8Ger1UGG3+8Z2clORLMlFYhwQE6VV8o8cdmsOqtZteq683xf/s/EHS29GIxLqA+6sVar6wmamLZGhg+MEoruWKGm/rx8Qq15u1RQFAWHidg+bXyxfV5DEEGPC7FUxhZ7OkcNENuB7HXCrmJ7LGcwpZg6KSsw49oRN/iaQQszDBPpjJx1+lPYq2iu8uIn712LoMeFN0734eFHD427H3XgwgB++OppAMCX7rlMPwZkGK4rQt+41aulqdVp+4lzG7KfgWnNRGE5HIe04AWSJollqRjgzr8HTQTYyS62SzEJbrekitd2whMCksN6HRtJjCsHMljBy/GC5wNL6HsV+VL4PCHDxOZ0XP288vqk7GMzin5MogKUpD3vZcrBEdsdJh2yrOBfnziC//eKetOUSsv47e4L2PTNV/Dun+zCyye6TRUAjeZbz51EWlZw3cIGfYOhFJqrvNgwtw4A8Pj+toJfd7pnGIoCVPvFgnHcIa0T2gqxfb/map/bEEC13/pNYNJr1Rc1/oacbKTZx9muLpxSGVmPWjQDEiF/67Jm6s6bUvC7Bbi0DQba0fqRRFZcLlXopcldK6cCAP50oM3U6y/ZOAmb6PLnOA6rZlTrbpRSID3tbQbGZJO+9ikT9E9frfXGvnqy25DnlWUF//GsKhi+Z+NsNIYmFiqI2J4b424FuRHytKPd1//9ejQsa0CsJ4bnP/081efKRyaVyUaRMS6o+mq0zvaBBLXrCJlEFwMieBNEpVy81V6s+fAaAMDr//66qc9dCN3ZTjHhwSiI2O442/Pz4IMP4pe//CUeeeQRhEIhdHR0oKOjA/G4OpzQ3NyMyy67bMQfAJg5c6YuzG/atAlLly7FX/7lX+LAgQN45pln8JnPfAYPPvhg3qh4O+MSePzxb6/Cl++9rKxo7z+7XE1Y2nG6Vx9eBoCjbcaIcLrYboa4bHKd1Uzd2Z7/vfy0lhZwy9JmXcAjaU4REyqbyPBBpd3whIVNISybGoaUUfDEgcJr88lGx1ACPcMpCDw34fCJwHNYOUMV5PdpNXKsoiiKYUM1S6eq30+uG3aD7GEEGN7DINcOKaMU5YIuB6OvGbQww9luRlLKkilh/M87L4fAc/jjvov45nMn835dKi3jU48ehKyoexU3L82aNYizvWc4SV3w7tac7XXafuLUKh+8Ig8po+ACxTSvUknzXvOcqVIUEPPvpRAB1uq1iSq2a3tMkvG/JykmQRQlKAUc/sziCQHJIbjD6u/HCGc7l4kB7tISI61Aj86Pp5EefX/uDhrmbCdiu9urHVsv+872RNwNxNkfljQKR2x3mFRkZAWf/sMh/O+Oc+A44N/uXY7ff2gDblvWDJ4DXjnRjff8ZBdu/dYr+M2u80hI1sSfl8uJzgge0+LfP7FpUdmPc8+qbJR8oQ3rlm7VNT6/IVhwY4UsnGjGbhVi3/l+AMDqGaV1ItNCd7ZTEIhiSTINzYZTeSKCHheIzmtWb7uUkfHkQXWDiqUIeUAVX8O+rNufJsOM9bUTblnaBK/I40xPFIcvmrdhFNHOPzOc7UZAI0a+g/S1T+DKu2aBmj7w6qkeQ553y+F2HGsfQsjjwoeunVfU9/AeHoL2uUIzKnwizHR6C6KAO753BwBg7w/34sL2C9SfM5dkxDond6mQGHlFVvTfkdGQ6XvvBMMptFj/0HoIbgEXtl/A+dfOW/IacrFL6gGQjZF3nO35+d73vofBwUFcf/31mDJliv7nt7/9bdGPIQgCnnzySQiCgA0bNuBd73oX3v3ud+MLX/gCxVduHT63gHeum1WWwDyj1o91c2qhKMAf92bd7VkRrjIXih4jTzkxCVB75gH6EfKEWbWa2J7H2Z6RFWw7qortt1+WrS4wa/ggIyu6K9NIl+p9l6sDHY/ubZ3gKycPB1tVV/uCxmBRIiRJstt/oZ/my6qYjqEE+mMSBJ7DgqbKxIGl2nXi0MVBnOuNjvuntT/GnKEkaoM9jFx3Na09rWyMPLvHAciK7TSd7WRfS+A5qkkp1y5swJfuUYcGv/38Sfzf7rHrq++/3IK3OiKoDbjxr3eOTOepC7gh8BwUBeihPACuO9s18ZjnOcyuU128LEXJpwWfiWJ7HBDHd7a7CxjCzMIsZztng/j0EWhx6WQtnTdSvQgyqQxk7X6LSxdOOmAJT9gDaEuGMY5+CjHyXncy+9iMIgZEcAKHVEqEkrDn4GA5sP1p7+BQAlJGxif+7wAe398GngO+fv9K3Kc5EdbMrsX53hh+uv0MfvfmBZzoHMbDfziErz9zHO9aPwvvWj+rot48s/jGsyegKMBty5on7DYbj9uWN+Mzjx/Gic5hHGuP6FPTubR0jd/XDmQFrGhKjQs3w+1AIH3tq2dWm/ac45EbI2/0sdCnwhlya48HEZcHYhKG4pI+GUyTV050oz+mRkpeNa+O+vOVStjrQl80ZYKznU1xOeBx4aYlTXjqYDueOHCxoutXKehOf8aGDwoxlYjtg0bGyGuuxQnEww3z6sBzwOnuKNoG4vprKYd0RsY3tqmu9vdfMwc1JSyGvTVeRDuialT4rLJfQkXkOtvNYNY1s7Dqfauw/6f78dSHn8IH93zQNFc1EVNdXpfpTu5SEX0iBI+ATDKDeH+cSsc8mb63qr8+NCWEFe9egX0/2ofXv/o6Zl4905LXQbBVjHytFiPf54jt+ShHhMn3PbNmzcKWLVuMeEmTnvuvmI6dZ/rw6N6LePCG+VAUtbMdAJblWXuVgt9EZ3vc5L5h4mw/n6ez/c2zfegZTqHKJ2JDzv1+yKQY+dxBfSOFs7tXTcW/bTmGg62DONkZwYImdjdOjaLYCHnCKm3AnnVnOxmomdcQqNjJvHSKemze6ojguq+/NOHX/9VVc/DZO9mp9CCDOizHpws8h4BbQDSVwXAyrbuLjYRcN1jtrSeEfeo1bYhqf332nKC9d/iOK2fiQl8M//NSCz79h0OYWu3DVVqS24nOCL7zgup4/9c7l475vfM8h4agBx1DCXRFEhOuoyuhV0vGrA9kX8O8xiDe6oigpXsYNzFSj5gWvOAMEgsnJBUr2NHNSoy8t8pLzdmekTKQJRkuVxpwm7NvZhiaqFxpZ3tKr9VRtKQD9ocOOJ6DJ+xBcjCJxEACgcacAQFP0LBhFUkbiHKLRGxn9xzhOA6+Gh+SSY9hwwZ2gO1dNQeHIkmlZXzkkb14fH8bXDyH77zjcl1oJ8ys8+Nf71yGHf90E/558xJMq/ahN5rCfz1/Eld/9QW8dtIYNx8tDrUOYuuRDnAc8A+bFlb0WGGviJsWNwJQ3e35aNGmKOc1Fp4gIwKWrGS7qMxAlhU9Rp4VsZ1MoqbSsuEbPbEkiZG3h2AImBNDlstjWiXCnSunwlWgl9pKiLN9MEZZbE+y6WwHslHyTx5sN815YWZnuxGQzvaBmGTYBjqJkZ9ok6DKJ2Kl5hqq9PPwj/su4nR3FDV+Ee+/es7E35CDPgVtYJR+qZgttgPALV+7Bb5aHzoPdmLnt3ea9rx6TLgNxFQgJ0qeUm87mb73VFk3gHnVJ68COODEkyfQdbhr4m+gCDk/7OBsdzrbHVjj9uVT4BMFnOmJYu/5AZzriyGWysDj4nXXWrmQ+xriEqSJ3rtskitzlnZsWvvjY+J7t+oR8k0Qc+739bQ1ymJ7LCdJwEhXZl3Qg+sXqWvz318i7vZDRGwvcgCXONtPdQ+blpxWDj3akFo5dVKjmVHrwy1LmxD0uMb9Qwbyf/vmeV3MZAHibA8wvg6jXUMRM3lgqVxMiZHPqSUxg09sWoQ7V05FWlbwoV/uwYnOCDKygn/8/UFIGQU3L2nU9yhG06SJhZ0VxGBPhKIourO9PmctNq+eONvHDp1ZBXMx8gw421Mp9T0jJ4w9LnpMuFsC52Xf0T0CT1gV27W1dLmd7fpQhUcBp8i2iJEHxtnLouBsF12J7GMzjLfai2TSrb6vLxHYUyQcHEokIWXwN7/YjWeOdMIt8Pj+u67AHSumFPz6sFfEB66di5c/eT2++xersXxaFZJpGQ/9dj96h+ndSFXKfzx7HABw76pphky7361HybchI48Vvk4V4Wz3iYIeF25mlPzpnmFEEmn4RAGLGJn897td+rRyX9TYqKmovihhe4GWS9irxZCZsBkynEzrkZKkIoE19Fg2szrbvdZO+uaDdIK3DyZGbFbSJKLH6rN3PPIR8or6oES7Qe72jiI72wHgGu139EoFve3JdAbf0rrxPnz9vJKPvbdGfZ1WxshbIUD76/24+Ws3AwBe/OyLGLwwaMrz2ikmHMieH7SGMax2tgNA3cI6LPmzJQCA179mbXe7nZztJEbe6Wx3YIWgx6VHnT+6t1XvXV7cHKp4MJSINrTFZcB8oag57IVb4JGWFX1gEFCHrZ8+3A5gZIQ8AAQ96r2GWc52nyiA5411Zd5/hbqG+ePei9Q7gq1GUZSSne0NIQ+m1/igKMBBk+6RyoGcg0YIzBzH4YfvXoPDn791wj+z6/yIpjL6QAoL2MHZDmR/VzSuH4qi6KYU23S2UzQHRHUTiTnHguc5fP3+FVg7uwaRRBrv++mb+M9nj2P/hQGEPC588Z7LCjrsG0LqmqMrQm8AfCieRlrbi63NEY/nanuwLIntEmMx8lY7290hN9Jp9dqRjhgbj62LqW4JnMduYnvQUGd7oFrTKmwQIw/kdJSPjs93h4CkMe8ffRiDiO0Md7YDWbGdl5NAht1hSSNxxHYHWxNLpfFXP3sTLx7vhlfk8eP3rsHNS4uL2XEJPN62Yir+70MbsLApiJ7hJD716EHmuq4ANTLv5RPdcPEcHrq5Mlc74YbFDQh7XegYSmDnmd4R/5aRFZzp0TrbGwuL7RzH6VOpZmz2EPZq8XHLp1cx5WIm7vZeg8X27EKV7anwXMx0tu8914+EJGNGrQ8rTIonLxV9+IDy8RjWxHwWne1+twC35gLqj9HtPiOw2mE/HsQJc9EgMTHb2T6xw+Zqrbd9e0sv5DxDWMXw2zcv4OJAHI0hD969YXbJ36+LqZScy8VghbMdAFa/bzVmbJwBKSrhmYeeMeU57eZsJwtYWsMYVne2E6761FUAgMO/PoyBcwOWvQ7H2e7gUBkkae3JA2161/SSKZVviuVWedHGbMFM4DnM0GohzuUMz+y7MIDOoSSCHheuXlA/4nuCxNlOefg76/I3/ljcuLgJNX4RXZEkXjvFduJepXQMJdAznILAcyW9H1bPVKPkWe5ttyJVi+M4/Nnl6rXmUYaSEaImu5jLRa+hoHD9SEjZwRnWhw7CJpgDzHa2A+qQww/+cg3m1AdwcSCO/3mpBQDw6c1LMKWq8PrYDGd7jxYhH/K64HFlz4+5DZqzvYehznbea04MtJwB0omCMfL6Ot1iZ7vL4wLvFpFOC0hHjD0uRGz3eDLgbCIy63hCQCrb2V6u2E6OQYBs79rkOOhi+xhnexBIx4FM5Z8zJEZe5OIA7wJc1u5bTITubAcumSh5dlQqB4cSiSQkvPvHu7C9pRcBt4Cfv+9KXKMJBaXgFQX81wOr4RZ4PHesC7/aeZ7Cqy0fRVHw9a2qq/3ta2foPXaV4nEJ2LxcTQB4fF/biH9rG4gjmZbhFnhMrxn/+UjsVtSEGEMC6WpjJUKeUEd624cNdrbrEWxsL9By0Tu/4vQ3AYlwO6PGT737q1zM6EADsk7uMIPiMsdxqNYW8QOU4/QJdouRB7IO9PaBygUjRVF0Z3sxXXOrZ1Yj4BbQF03haHvpE9rxVAbfeeEUAODvbpxfloODiRh5i9zeHM/hju/dAU7gcOwPx3DiqRPUn1N3cttATAUujRh5AJi2dhrm3DgHclrGjm/ssOx12NHZHu+LQylzWMjBwWg2zK3D1CovhhJpPKKtMZdW2NcOZJ2YZqy/dIHZRFcmiZI/15d19W3VXO03Lm4cIUoA2fUo7eHvOMXuZbeL1+OMH92bv+ZtsnCwVXWmL2gMlnSvSKLkWe5tjxrobC+Fe1eryQjbW3rRZsAawghiJruYy4Xm9SM31p/1znYzzBJRi9IOagJu/PS9a3X3+Ia5dXjHlTPG/Z5G4mwforcm7dGGWutHdcbP0WLke4ZTptUyTkRa8IEzw9kuaUN2BTq6iePZamc7oCahSZILmaixx4UIzW5PumCcPrOM7myvMEbeF9YGluwSI19QbNcSeVOVi83k/BC4mBrbz+geOMFb40Uq5YjtDg7MMxBL4Z0/2ond5/oR9rrwy79eh3Vz68p+vCVTwvjU7YsBAF966ihOdbFzAXjlZA92ne2D28Xj726cb+hj36MtyrYcbtdj8QC1Cw1Qb/KECSLyyEIykjTvJnDfeXWaffWMGtOesxjIzXtf1NjpV8fZPj5DusBs/Q13Ichro308WBeXa/zqe8SsReMQw07/QkzVnO1GbJQNJdL6JnlzeGKxXRR4bJinfpa+WkZv+//uOIvuSBLTa3z4/9bOLPn7ATZi5MnEvBg0/5rStKIJ6x9aDwDY8R/0RVZ9sMDC2PRSuBRi5AnE3b7vR/sQ67EmGt1WznbNCavIStkuCgcHo+F5Dvderq63iMtzqQHOduIKjJqQLBa3oG94Zq26yX5ec7YrioKntXjszcubx3y9WTHyZE1Gw9kOZJMQnj3SwXQveaWUGiFPIIP2+y8MMJlGCBgbI18KM2r9WD+3FooC/HEfG8MaUcbXpYSgvp9l/PWDDOh4XLzh1RNGY8Z+RUw3kZh/TsyuD+CRD6zDh66bh/96YNWEJg3ibO+K0LunJImYdaNc2iGviEbt3vt0NxvudtXZbobYru0BFBDbiQhrtbMdIGK7CDlGSWx3SwWPA7MQsb3KmBh5f4jEyNvjOBQU28mwgAHvIRIj70KM+b52YJSz3awqCotxxHYH26EoCt7/89042DqI2oAbj3xgvR4pVgnv2zgb1yyoR0KS8dFf70cybZ5TuxCKouA/ta72v1w/a9yYo3K4cnYtplZ5EUmk8dLxLv3vW0hfe+PEUS1mOivU50njRKc6DMGcs12bSDU6Rt7Wne1miO1x9gVVPZaN8vEYYryjvMpvnrNdUZTs8AHD58ZophoYI9+pTeJX+8WiN4av1nrbXy2xtz2SkPC9l9VYvo/dtECvDCiVggsUEyFiu1UC4+J71OE/M3rbnRj5kZDpe6ud7QAw95a5aF7dDCkmYdd3d1nyGuzkbHd5XRC1zxint92BJUi8M2GxEWK75hSNSxlkKCc5ZKPTzbuXmqUlVZztVZ3tR9qG0Nofh08UcN3CxjFfT2LkaQ8f0B48WD6tCgsag0imZTx1sJ3Kc7DAISK2l1j/tXRKGKLAoTeaQquFQ5njkRWYzV+330ei5Pe0MjGMENXfL2yvw8iwDo3rhxXDSuViRoy8Vc52wuLmMB6+fTEaixhCb9K+ppOis713WF131OWpLpvHWG97WvAZ4sqdkJT28xaKkWfI2e6t8iKVEpGJ0xHbRTFtm/h0HU94hLN9THd5kZChCm9A0xlschw81drPPcbZrt37G+DsJjHyghJjvq8dcGLkHRxswbneGPac64cocPjNB9fjshInogvB8xz+889XojbgxtH2Ifzns/TjWyfimSOdONg6iIBbwN9eP8/wx+d5DneuUuPqHsuJkm/RpifnN0wc1WLW5gbhYOsgZEXtNW4q4ibZTGjFyOuLNManwnMJm+psl0Y8J4uYsXgF2He26zHycfqd7bFUBmSfKeRh99wYzTQDne3tJEK+hGsl6W3ffba/pPfvj187g4GYhLkNAT3Kshx0sd3CznZdgDa5s53gr1c3F8xwM9tJTAVynO2Uzg8yfW91ZzugVm8Qd/uu7+zSN5fMQlEUywdPSsXpbXdgkXkNQX1AeFad35B7tFxXYIxyb3tMMl8cIWI76WzfckgVnq9f1JB3eHAyxMgD6nWfuNsf3cNO9/ZE/N/uC/j3p99CKi1P+LWKopTtbPeKApZOVb9n73k2e9uHNQNC0IK1x+3Lp8AnCjjdE8VeBqL2ybWJdcMAGdin0dlO+5phJHoyIcWh+JiNhg8aQvSd7T3affboGHkg29vewpqznfYgjx4jn19cZc/Z7oKSMHYggojtLlfKnjHymRS8QTU5IjmULGv4i6x7fbrYbpMY+UKViB7t9Vfo7JYzMjLafYYgD2dFfIYZKbazcT2jjSO2O9iOHad7AagR4gubjI3MaAx78dX7VgAAfvDKabxWRoyuUSiKgm9uUwX/v7p6ju6aNpp7VqmiyAtvdenCSkuXerMwr7EYsZ1e7FY+9l1QF9arGHO1A7kx8kZ3tpOFKpsCaj7MEpeBbC882zHy5nTYRxiPTa820dlO+utdPAevaJ/bHT1GfrBysahDe4xi+toJ8xoCmFHrQyojY/N/vYrXT038OdgfTeFHr54BAHz8loVwCeUfb9piajFIw9oi3iqxvUEVGZKDSWQkuqkxdooJB+h3tuvOdgZi5AFg6X1LUTOvBvG+OPb9eJ+pzy3FJL373C7DGKS33XG2O7DGX1ypVqtcObvWkMfzuHi96ouIF7SwJkZe3WQ/3xeDoijYqkXI33bZ2Ah5ILtGoh8jT1z+9I7FvaungeeA3ef6cbaHDUfjRHzxyaP4/sstePgPByfcVO8YSqBnOAWB57CkjJSH1Vpv+/4LA2W8UvpkO9vNFxODHhdu194jj+61fliDJB+ybhgg+1l0OtvpXzOMIuzL7uvJlBJTyPuD9bQDIOts7xlOIp2ZeJCoHHqjxNmeT2xnz9nOKRkgTXmNrsfI5xeZWXK2kxh5o8V2/Wd0pQoOHTCLJop7POrPoGQUfXigFHRnu99eznZiHEkOjBrS0WPkhyp6/HTOUBifidpDbK/JFdsr+/ntgn12nx0cNHa0qGL7+nnld7SPxy1Lm/DOdeqGyD/83370m+wkIgzGJRzX4tL/+uq51J5nyZQwFjWFkMrI2HpYdQ2Q6cl5RTjbszHyJont2pQ2WWizBLlJ7hk2urOdLFTZX6QRzO1sJ852dhdtZjn9h/UYeTaPRbWJne3DSfU5gl7XhJ1sLDFVu0FvH0hUvNHRoQmHU0oQ2zmOw7cfWI3pNT5cHIjjnT/aiX/646FxN6C+/3ILhpNpLJkSxubLplT0mkl8t5Ux8lZHq3urveCIiELZ3W5bZzul84NE3bEQIw8AvIvHxk9sBADs+M8d1IcvciHnBsCGe6QYHGe7A6vcf8V0/PoD6/GZty015PE4jtPFb7MEZjPFkRm1PnCc+tw7WnpxuicKt8DjxsVjI+SBHGc7BWdqLgmJ/uBBU9irpwz9gQHBdCJkWdGH7v+w9yK+/fypcb/+YKvqal/QGIS3DLcvSYnYx4BzOx8kJtuqlDGSjPDkgTb9fLUKuzjbyX5WhKaznfFjAGT3bxSFnpGGfJ5YMYxSKnUBNwSeg6IYXxNJ6IkQZ/vY+2zibD/dw4YTNC1o+wm0Y6DHiZHPSBnIkjr4YNVQfC7E2a4PCBiEFJPAcTIEPmObrnIdrUNcFBL6fkY5ve1k4MDjSwPgAJf1qXPFoKc0jo7PJ93qFTq7cwcXOClim872VMqJkXdwYBZFUbBdE9s3UhLbAeAzdyzF3IYAOoeSRU1o04Dc7HtFXu85psXdq7NR8v3RlH4zSW7wxiNootiuKEpWbGfQ2V5Hy9mesqGz3SQnN5B9r7DsbK8yyekfYb2zncTIx+gPMZFjwWqkfiGawl5wHJDKyOiJVja40zEU1x+zFFbPrMEzD12Ld2+YBQB4ZOd53PrNV/KmvXQNJfDzHWcBAJ+8dSF4vrLBBiKm0urkLgYSnW3VIp4XePhqVdHQLLHdLs526p3tQ2w52wFg5XtWItAYwOD5QRz+zWHTnje3ToGr8H1tFsTZHu9zxHYHtuA4Dhvm1en3QUZA7m9iycnnbPe4BEzR7l2+/8ppAMC1C+sL3t+SuiCzBg/KEYlL4b7L1eS5R/depOYwNYpEOjMiVfibz50YNwK/3Ah5wipt4P5o2xCSaWvF5HwM6852a9YfG+bWYWqVF0OJNJ471mnJayDYxtmu11AYv07Xr58i28cAUK+7JA1uiNJgfCxlH2c7z3No0Mw0tHrbdWd7YOy6Y169anw62xtDxuLPAUVRkJK110hbLBsnRp64nQE2BoHdYTckScy+ZoOQYhJEUftZRXuK7VxqWF9Pk+S4UtDrAjxp1RVuE/OMLraPNgYQZ3uFMfJpbX9d8AjgUhHbdLYDHFJpT8U/v11wxHYHW9HSPYye4SQ8Lp6q2OpzC/j2A6shChyeOdKJ3+2+QO25CmGmaHbXSlVsf+NML15vUcWUadW+om6CgxQngUfT2h9Hz3ASosBh2dTyFug0qQvSEdvJJpoduq0Ipjrb4zbobNfex7QWrgQSI8+qwExi5PtNiJFnvb++EKLAoymUdbdXAulsL8XZTgh4XPjC3ZfhkQ+sw4xa1eX+rh/vxKf/cEg/zwDguy+eQkKScfnMatywKL/jrBR81XRjwouBhZ5qEiUf66Yrtlvt4i8Vs2LkWehsJ4g+EeseWgcAeP2rr+vR7rSxW+oBAHhr1d+bEyPvcClgnrNdfXyznZkzteGZV050AwBuGyc5h7gkqXe2mzR4cOuyZoQ8LlwciOONM71Un6tScmsM/uY6NY3v4T8cxPaW/DVEh4jYPr28tfzMWj9qA26kMjKOtrEXRxq1eP3B8xz+7HLV3T7e0IMZ2MXZHjIhRt7L+DEgkD0LWns4UeJst8nxaAoTsZ1Ob3uvtuasyzPgPa3GB7eLRyot46KFQ+j7frIP/+77d1x4ZED9C9pimS62j42RJ25n3sVDYOAcIs52zuBofSkmwe22q9iuib/JSFZsr8TZ7pFsEyEPjCO2Cy71d1nhsIqkXZtFnwgkhmzjbAegutsdZ7uDA3uQCPkrZtXA46L74XrZtCp8YtMiAMDnnjiK093mTuCQm/2QCQu16TV+XDm7FooC/NdzJwEU52oHzI2R36d1sy2dEqbuKCgH0tneO5wyNA1Bd7bbSDQ0tbOdxMgzGp0OmNOBRh4fYDhG3qfFyJvY2c5y4kEhSJR820BlC+sOTWxvrsrfeVYMG+fVY+vHrsV7NJf7r3edx23fehWvnuzGhb4Yfr3rPADgE7cuMiSu31NtfYy8LjJaGE/nr9fEdsfZPgLaMfK6s52RGHnC2g+vhTvkRveRbpzcctKU5ySDGHY5N4AcZ7sTI+9wCWBWuljMAmc7AMyqza5FXTyHW5Y0Ffxa4kyNJtNUE+n0SGjK61CvKOCOFepwwaN7LlJ9rkohQ+E+UcCnbl2Mt62YAimj4G9+sQcnO0duqiqKUrGzneM43d3OYm87cXNbuW7/My0Z4ZWTPeiKWHc/HbWggqIc9M52ijHyfgb3rvKhp/HRcraTznab7Gs1aAPwtN5HpH6yPk9nu8BzmK3d17ZYGCXv8rmgyAoSEe13Rj1GXlv75hFYiduZhb52QB3OliQRnGx8jLzubLdpjDySkWw94OhI9SLQf9dianKI7YDqbjcoRt7lc6nvRRuJ7cmE6IjtDg4ssuO0KrZvmEsvQj6XD1wzFxvn1SEuZfCx3+xHKi2b8rxAjkPVJNGMRMmf7Cq+rx3I2ehJ0Rfb9+sR8jXUn6scSPxTKiMbNhmtKEq224qB6c1iIQu1SCJNPfaKRNXbwdlOswNNlpWsm5tRsb1Gc7YPxOnHyJMNE1aPxXhM1dzdFysV24fKd7bnEvC48Pm7L8OvP7AeM2v9uDgQx1/+eBf+4kdvQMoouGp+HTbOq6/oOQhETE0n0kibkJiSD6tj5AHzxHYiLtvFvUyc7TRi5BVFYTJGHlAXqWs+tAaA6m43A/19YJNzA3A62x0uLQImrcHiJvSU54M42wGoEfzj1KqR9aisZF8vDbIuf/r3lqR7++nD7aYMtZdLdihcAM9z+I8/X4krZtUgkkjjvT99c4RI1TGUQM9wCgLPYcmU8qNPV2tiO2u97YqijDgeVjG3IYjLZ1YjIyt4fF+bZa8jlrT+WBRDNkaegtiux6azfQwItNMJs852e6zPaTrbU2kZQ9paN19nO5Ddk23psk5s1yu8Ito5XKFYOCFSDBA8AD/2PUPczixEyANZZzuvGO9sF0XtepQnTp9pcsX2Cpzteoy8mLLVwMG4YrsnCCQrS+QhMfKin4jt7MfI68mECRGKI7Y7OLCFLCu6s33jfHPEdp7n8I23r0KVT8Shi4P45nMnTHleIMfZbpJQdMfyKRCFrCtxXmNpYvsw5b5AANh3oR8Am33tgBqvSBZSRkXJJ9OyLlbbZQIYGOkmpjElngtxtrPq5gZUh4rHRbkDTcp2JrLq5iYbpQNmONttGiMPqDUeANBWgXs3nsrox7nUzvZCbJhXh60PXaO73C9ovcgkBcYIPCGP3g9tVW87C9HqJEY+2h2l+jy6e5kxcbkQZAGbSWb0GDWjSA2n9Ih2lmLkCesfWg/BLeD8a+dx/vXz1J/PbqkHQNbZ7sTIO1wKELdolPIajAi9PpM7h2fliO23jxMhD6iuau3Wgeq6I55SB+/NEM7WzKrBrDo/YqkMth7uoP585UKGwknNgFcU8MN3r8HsOnU4869/vlsfUjjYqrraFzQGK0qpW6XtBbDmbI+lsmsxq9cfZFjj0b2tVNMexsN2znYqYrt6zbBNjDzldEK9s53xAQxCo+Zs76bgbCd97S6eK7h3Q9JGT/fQXQ+OB1kTxQe097EZMfJ5IuTVp1bXJqw421WxXQSvGDuMMTJGvvyEQksQfQDHA8kh/dwpq7OdOLhdqWzfuQ0gbn4pKiEzevjTE6r4/UP2P7wBDpAlW4jtWWe7G3KUvfofGjhiu4NtON4ZQX9Mgt8tYMX0atOet7nKi6/etxwA8MNXTps2WU4ikM1aqFX73bg+p293fpHO9oAeu0VXPEumMzhyUb0wr57BprMdyEbJ9wwbI7bn9uDRjiw0EreL118vzd72hJTREydYdrYD9BevJA1DFDhd2GeNar/6/hiIS9Q3fiI2GMIoxFRdbC9fbCaudr9bMLRiwe9WXe6/+eB6XDGrBh+8dq6haSMcz2UjxyyKkr+UnO12E1TdITc4bTDQ6N52MnXPCZwazcYYoakhrPjLFQDMcbezMHRSKo6z3eFSIqiJFTHaznaLYuRn16kiA88Bm5YVjpAH1GhxsmamlSAFAHGJDB7QPxYcx+G+y7OCKatke7mzn5u1ATd++r4rUeMXcbB1EB/7zX5k5Moj5AkrZ1SD44DzfTF0R+h0KZcD2SfiOevX7W9bMRVuF4+3OiI4YkG3vaIolvfXFwtZK9IY1Ilp1wy7xcjT2r8htROOsz3b114bcIPn81exza1X92TNrjTNRXfqDvFQNBGVKqlYwdhw3e3MmLNd4IxNbbR1jDzHqaKyQZ3tIm+zGPmcgf0xP7c7ZFiMfCCs6QRe9sV2l9cFwSMgmXRDjg5a/XJMgc3deAeHPBBX+5rZtRAFc0/d2y6bAq/IIy0rhjmWJ4KI7SETHar3rJqm//e8xuI+0LJ9gXRdFUfbhpDKyKgNuDGjlt3pvjrtxs+o84QsUr0iD6HATTirkJ5ymr3t5LE5DggyvmgjgieJvTea4ZwBHSO6s2lQrS3gU2kZCYluLYedY+RJ7HvbYAViu97X7qVyPqyfW4dHP7wR/7R5ieGPrUdNGSymFkNGyiCjfZ5ZKUAHNCdDvIeuaGg3QZXjuPHj2SqATN17Kb1njGDdx9YBAE5tPUV9YMlugxgA4NPuD+N9jtjuMPnxU3Rj5hKzKEZ+6ZQw3rNhFv5p85K8fbajMaPDPj7KxU2be1era/Mdp3srrhaiBdkDGH1+zKkP4IfvXgO3i8e2o5340lNHcYiI7dMrE9vDXhGLm9UN5je0mkEWIO/FgNv6tViVT8QtS9UhFSuGNVIZGWk9nY9toTlbi5gxvP4uYfI1o1LIfgW9GHl7xeo36mK78WtS0tdeN87nm+5sp5x0Nh5kCD4TlVXR04wYeTG/wKwLsIw52128sRpBOpbOcbbbR2jW8YSB1LAhne0Cn7CV2M67eN2wMWavQhtCqAQSI+8LStnHtAHeai9SKTeUuCO2OzgwxXYSIT/PnAj50dCe8hzNcFLrbDdxEvimJY1YMiWMkHlJZQABAABJREFUDXPr0FDEpgZAt+MqFxI7t2pGteWL1/EgN8u9w8ZMv8Zs1muVC4nDovmeIcJ1yOMqOBHMCmHK15AhCwZ0SsXvFvS6Ctq97XoVB+NuinxMNSBGvmNI3ZRtNihC3kxIb7sVzvZUTioJC852mjHyiqLoP6+dBFW9O9DgmgG9r72K3WNRO78WACBLclkugVKw2yAG4MTIO1xakDVibgoWDUbHhJsFz3P4/N2X4a+vmVvU1wcpulMJ+rEwyaU6o9aP9XNroSjAHxl1txO3f76o8DWza/GNt68EAPz09bN49WQPgMqd7UB2T2h7S0/Fj2UUZPAgwMja434tGeHx/W16EpxZxHKMGKy7unN/X1GDk0Ksun6WC9nzpGUOiBUYzmEVEiPfRSFBgzjbC/W1A8BcLW20K5LUU/vMhqy7IAOKGLQ0Rp5NZ7uoRp0byMjOdnaNZgUx0NnuQsJ2AwcFjQGeyt8/xNnuC2jnhw1i5AHVTJNMuukP6zCCI7Y72IKMrGDnGVVs3zDXGrGdCIe0+pZHk3W2m7dY84oCtnz0avz6g+uLFrRJhCFtsZ1Mfk6vYftmg8TI9xrlbLdZr1Uu2cUavfcMWXSwHiEP5BwPSgulYRtE9XEchyqfFiVPubfdinQQoyCd7T3DSSRGdz0VSXuOs91u0BJTi4GIz7zIQ7BwI8iMGHkpKgGagcdOgiqt5AMydc9yf73oE3U3h1kVA7Y6N7QY+VQkhQxlAdLBwWqIWEFzDZaRFV2kY713OWCC0z9hgcs/GyV/0bLu7fEo5GwnvG3FVHzqtsUA1PNJ4DksmVL55vBV84nYzqCznZF1+zUL6tEQ8qAvmsJLx7tMfW6yh+Fx8XCZnEpZKh4Xrw+DGz2sQ5JBrK4VKBaa5gBFUfTjwcpAykQ0aUPrPcNJpDPGDqyQzvbxkluqfKIuxp+xqLdd9It6hZcsBCp25k7IODHyzDnbq7QYeV4GMsa9Z0bEyBdw+TMNEduryhfbyWAFD3s524FxxHZ3sOIaBtLZ7vPb09mOFOXrByOwfdfj4KBxtG0IkUQaIY8Ly6ZaM7ljurPdArEdQMmu8UBOZB/NDQAinIUZF87qgsbGyNut1yoX2k5uIOvmZv28AOgP7Nilo7zarx6H/hhdZ3vEBsMHhaj2i/qmTEcZsVsA0Kl93xQbiu1WxsizEp3tb6AvthPnMsdzEP3sX0MJJPnAcGd7Tow8y5gxiAFkzw+r3wul4K32AtptrBMl7zDZ0Z3tFMXl3D541p2IQRPEdrOd7QBw+/Ip8IkCzvREsff8gGnPWyx6Z/s499sfum4u3nHlTADAsqlheA04fmtn10LgOZzrjaG1n400E9Y6yl0Cj3tWTQVgfpS8ns7HyLEYD47jqF0/SIw869dPAs39m2Ra1mP67XI86gJuCDwHRTHOTEMgzva6CVzaxN1uVZR8boWXzPvpi+1StKDArDvbLUyfy4U42wFAThjn2JViEtxuCTLnAXgbynaeEJAcyjrbB8t3tgtKfPKI7Z7KO9tJjLzXp12PvJUnBZmBt9qLZNIDPm1dJYaZ2PBd63ApQuLB1s2ttWwy1myxPSsUsb0BThYmaVlBkmI8GREoWRcSyc2yUTHyduu1yoW2kxvInhekH55lsh32dDvbWX+PkN72QcrO9mHtvLNjZzvHcZiq3aS3ldnRqTvbbRgj76nW+r0sjJG3ehGvC6rdMWqDbLpzOehmup5lNPowhtGd7SRGnmFnO5ATle4428fAC7x+fjhR8g6THeI0H07SS3EgHeU8p7o/WcaUznbJ/EjooMeF2y9rBgD8fg97UfLFxGRzHIcv3r0MX7tvBb5+/0pDnjfkFbFS635nxd0eLWLwwGzuu0JNRnjhrS70GywWjgd5H9plD4OsFyNGO9v19wc758R40Ny/ya08YT0phcDznF6vaXRve3cRne0AME/rbW/pti5+mTiU0/CZECMfLxidzpyzPaw62wEgNVCZYzmXVDQFUUxDEdhOdS2IOwgkI/oAeyXOdi4TVx/PRuhd9fnEdoNi5D3eZPYxbYAqtovg5Utjfc72isnBQWPHaXUBtd6iCHkgO+VJUzjMJWIToSjXcU3TSaA7mBmPC68NaJ3tRjnbGVy0F0tYO3fpOts1sd1xttsmNp042wcoDy7pne2MX0MLQXrbL5YptncMkRh5+y3SiFhmZYy81QIjEdszqcyIHnkjsWMnN5AzjEErRp7hznYge27Ee+m+P1hJeSgVX612/XCc7Q6THBJVTVNcjumuTBfzQ1lEbI/QFNtzjoeZEMH0yYNtZdcL0UJ3ME8gqroEHm9fOwOLmo3bGN44rx4AsP0UG73t2Rh5dtYei5vDWDY1DCmj4IkDbaY9b/a8YOdYjAcxuBh9PY3bLEaepsGIHFuvyEPg2f48yaUxTMR2Y3vbdWf7BAPec+utdbYD2dSvtOy1NEaetc52l8eFjKKeH1L/gGGPS2LkbSu2j+5sr8DZzmdigNteUfrjO9sre/+QGHmPJwW4fIDA9t4vwVujOdshAWljr6UsYo87H4dLGikj480zfQCADfOsE9tNj5G3iVDE8xz8bgGxVAbRZHrczqFKGLJJRLbRMfIT9eCxTLazneIQRtweQxgA/Q57fUCHoQ2efFT7Te5sZzwdpBBTNZG8rUz3boeNY+RJTLgVMfK6AG2xs90dcMPlcyEdTyPWHaMieNpWTKU0jKE7220itpsVI2+3YQxfnQ84RX8YwcHBavQY+RR9sd1MJ3e5kAF1ozuXc7EiRh4ANsytw9QqL9oGE7jxP16Ce4KUgfmNIXz/XZebkgiYdTCbv/7YOL8O333xFLa39EJRFMsHQliLkSfcd/l0HGk7ikf3tuI9G2eb8pz6ecFIf/1EhCjFyMftFiPvpbd/Y7cBDEJjyAtgEF0RY9el2c72iWLkGXK2Z7xAcpDuk40TI8+asx2ALgSnBo1ztpMYecWOfe0A4AkDyeGyO9sVWdHi0hUgbd8Y+TFDBu4gIMUAOQPw5X0mkBh5j5i0jasdUI/JcEp73yaHARfb+y2V4jjbHZjnYOsgoqkMqv0iljRb09cOmNM/nYseCc3YYi0fARM68vS4cMZdu9kYeYOd7TZblADmpEHYZQgDoH88IjYZ0CEx8gNxulGG5BrKejpIIYizvX2wdMFIysh6NF2zHcX2QtPAJkBc5CwI0LRFVbvEpo+GDGMkB4ydiiYLYtaPh69ei0k3KUaehfdCKegx+06MvMMkJxsjTzM23T5R0LRj5BVFsSRGHlCH29+5fhYAoG0wgbO9sXH/PHesE291UHYfasT1bm7zz5HLZ9bA4+LRFUlaKkQRyNrDimMxHnevmgoXz+Fg6yBOdppzXthNWKU1rEOuGV67ONv9WXOA0TVWej0iY++PiWii7GyfyKxEOtvP9kYhy3SqxSaCiKaptMekGPkJOtsZcbYDAOdVheD0oHFDCMTZXug4MM8oZztJjysWEpUuimlwUGwXI1/Y2a79HBW428mxcYtJwGudPlYqpLMdAJAy5z7ESuxx5+NwSfMGiZCfUwfewrghEolN06WbS8RGQlHI40J3JEnVSRCxTYx81tluxIS97my32aIEMGdAxS5DGADdSXHAPtcMEiNPs7NdlhUMp9h0lxQL6WwvJ0a+K5KEogCiwKHWz85itFj0Tm4LnO25PeZW46/3Y+jCED2x3abOZbKANdzZrontXsYHVBxn+/j46rTkA8fZ7jDJyTrb6cWKW+XkLgfaMfIJSdb/2wqn/4evm4frFjZMGCP/8d8dwPm+GLUkrdEQAc2KTmqvKGDN7Bq8fqoX21t6Mb/RWpfXcJIMHrC19qgLenDD4kZsO9qJ3+9txadvX0L9OXVh1QaDOkD2d2b09SNmM2c7SeJLZWQkJNnQa10saa8BDILqbAe6DXS2K4qSEyM/vtg+o8YHUeCQkGS0DcYxvcZ8AZasjVJJN5A0zsGdl1Th2HAitrPkbOd9mtgeMdbZLooSOHeVYY9pKprYXm5nO0kwcLs1c45Nne15Y+QBdWDFV13WYxNnu+iK287Znkxqewq0qygYwHG2OzDPjhZVbLcyQh4wP0Y+61Jl50aiEGRxEqUYY2gXB3Od1tmeysiGOE1s7Wyn3FEOAEM2GcIAgLCPbof9sE0626tMiJGPptIgw/isXzMKMa2axMiXLhiRCPmmsNfSIbVyIc5lSzvbGRDbA1psYJRSR59dncu0hjHs4vQ3S2y37fmhie2Os91hskMGcWk62+0kFAUoO9vjOSK3FcMHPM/hsmlVWDO7dtw/Ddo1m2ayWC7FdrbTgvS2v85Ab7seI8/guv2+y6cDAB7bdxEZE9yxrEbqF4K8TqPNIwmbdbYH3ILep270NSQ7mGOPY0Gg4WwfSqSRyqgDXHUTuLRdAo+Zteq9v1W97Z5qLQ486VYjoGlSRIw8S852wa+6ldPDxhwXEqEuihLgsZfIrOMJAakIPCFteCeSgpyRJ/imLMS97a/SPqts5vAvKLa7NXG8gvcQ6WwX+YQa128T1M52R2x3cGCCZDqDN8+qfe0bGRHbzVi4JtMZpNLqh5EdFigBfbOHjrNClhV9I4l1B7PPLegbUkZEyUf1TS72z4PRmDGgQnrKwzYQVGlfQyJJexwLM2LkyfVCFDh4Jui1ZJWp1dnO9lJj/Ozc1w6wESPPgpuXeoy8TZ3LtIYxSMSd09muYtfzg8TIx/scZ7vD5CbX2W503C8hprtT2b63BLLDlbSGD8ixcLt4XYxiEXIchigmzuUSs3itSvaI3jjdZ4qIPB4kVYs1ZzsA3Li4ETV+EZ1DST05kiZ2S+fLXj+MW6cripJzDbXHceA4Tt9LMHoPJ26zagFCoy62G7cu7dXq3oIeV1EVA/O0KPnTFtVlkEHkeMxlaYw8Wacz5WzXxPZM1BgBMa19drvdafBeu4rt6jHxeLPXkFQJe+MkwcAf1j7TJ02MPBHbK4+RF/mYjZ3t1tf+0MaeO9AOlwz7zw8gmZZRH/RgfqO1F1gzO9tzJ2rtILYHPeqxoRUjP2wzlyqJku+NVi4mxpJsdr8VA3Fy09zs0WPk7eBsp+z01zvKGb9mkBh5ms723GNRaZWDVZCu9biUKflYkZ73prA9xXYrY+R1gZEBZ7u/ga6oqkfm20xM1c8Pg4cxiLPdiZFXXRVko8N2zvZaJ0be4dKAiDcZWUEyXbxjqBT0GHkbCEW0nKkE4lBlXTQj642ISWI7cTBbdVyWT6tCyOPCYFzC0TbK8cYToLu5GdyvcLt4XD6zBgBwoY9+8ovd0vn064eBwzrJtAwy/+Fl/LqRC619T7tVCxBIjHxXxDhnO9knrCtyvUl621sscrbr4mHMBWRSQNrY/nodOQOkExPGyLPkbHcFVcEzEzNGQMz2lUvgvPYSmXU0x7ULcQja+53UtRUDSTDwh4jYbq+hAzK4X7CzvYLOchIjLyAOeO1TM+Ct9iKVImK7tfdqZuCI7Q5Ms4P0tc+ttVww0V2pZojtRGDNiXFimaAmBNOK7SObBW4XX9Tkp9WQ3iUysVoJjrN9fPQYecYTD4DswjWayiBdQoxSsURsEiNf7aMfIz9kk2MxHl5RQL22AC+1t51M3tvW2V6T7fcqJXLMCJh0tnfTdbbbTUzVN3yMjpEfdGLkCbnuAxYGT0rB6Wx3uFTIXRtQi063YYw8PWe7PeKgdWe7SdV3eoy8RYPhLoHHurm1AIDXW6yNkmc9Op12+kMudtvDyIrtxiU1JnKqJ/yMXzdyobXvqXe2M/r+KAQZXu8ZThq2h0P2CSeKkCfM1arFTvdY5GzXxMP4sHYe03KmStraZoIYeZac7e6wH+m0ACVurNju9qTBFRg6YJ6cbnKyri6lt50MVfhC2jXUZmI72asYM2BAHPoGONsF2M/ZnkqJqomSdjoGAxgutmcyGfzLv/wL5syZA5/Ph3nz5uGLX/ziiGgzRVHw2c9+FlOmTIHP58PNN9+MkydPjnicvr4+vPOd70Q4HEZ1dTXe//73Y9igDgwH+7Bd62snXVxWkr3pTFOL6iMQ0YzFqeh80N7c0N3LNjke5Ka5zwhne8rOznatoyctj1hsGknW2c7+uZGbykDD7R9hfIOHoDvbTYiRZ/1YTMTUMnvb27U47OYqn+GvyQzIAgUobQraCHS3NwMCI21R1a7OdjKMkRpOIWPgZ4vdYuTjvXEolCJzySAGx3Nw2eDzNRcSI+90tjtMdgSe04XfKKUqLzt1ttNwpuZiF5c/WX+Z5Wy3OkYeyO4Vkb0jqxhmXEwMmii22y2dTz82Bta9kfeGW+DhEuzjc6NlmLCrs70u4IbAc1AUY5IrAaBHG2qtDxa35phHxHarnO3aAH90UDuPK3DmjktqfLGdRWe7J+yBJLkgJ4z53ehiuztd0OHPPDlx6brLe7D4IXkyVOELaMMtNhXbC8fIV97ZLshRe3W2V3sBcEil3JDjjrO9ZL761a/ie9/7Hr773e/i2LFj+OpXv4qvfe1r+M53vqN/zde+9jV8+9vfxve//33s3LkTgUAAt956KxKJ7In4zne+E0eOHMG2bdvw5JNP4pVXXsEHP/hBo1+uA8MkpAz2nx8AAGywuK8dyBEOMzISEl2nnV0cqgSyOKHlqsiK7fY4HnUGxsjrfWc2mQrPJeh2gQQz0HJXDCXsc26IAo+AtrikcTxIfz3rVQtEbE9I9IYwhm02sFSIqZpY3l7C4gTIdrY32zRGXhAFfWLd6F7uidCd7SyI7SbFyNvO2V5FZxiDTNwz72zXxGRFVkrauCiF3EEMq5OlSsVxtjtcSpjn5mb/foqI7bQGD+I2iZHPdrab5Wy3XkDbOF/dK3rzTB9SlCoViiHrbGfzHAlQrlrIxW7O9hCFaym5ZnhF+wjtQHZfxWixPZuCYY9zgsDzHBqCxva29w6TGPni1hxz61VHbPtgQr/mmgkRTHWxvQJn7rgQZ3sBkZmIsCys0wmeKlVs1wcFKkSPkXdLgGgvkVlHF5WHKnK2e/w2d7aPTmkURMDlrcjZrcfIy1HbOdsBIJl0IzM0YO2LMQHDP/W3b9+Ou+++G3fccQdmz56N+++/H5s2bcKuXbsAqK72b33rW/jMZz6Du+++GytWrMD//u//oq2tDY899hgA4NixY9i6dSt+9KMfYd26dbj66qvxne98B7/5zW/Q1tZm9Et2YJQ95/qRyshoDnsxu876ia7cSHfave12c2UG3XQ3evThAxv0cgNArXbz1ztsoLOd8Y2dfPA8pw+M0NjwSaYz+uCLHcR2IDu0Y/TxkHKGgFgX24MeF/VraSRhrzSMQlTubLen2A7Q6+WeCCK2syBAmxUjbzdnO+/i9dds1DBGRsroi1fWO9sFt6D//LQGMexaMQBkhxHifXHqSVQODlZDRD1am+9xGyVs5bp2ZQqpH3GbxMhnO9vpi+2yrDDhbF/UFEJdwI24lMH+CwOWvY6o7uZmc/1BQ1AuhN3S+cj1w8hEiDgD741yCOckehoJeX+wPrCUj8YwEduNGfLt0WLk64sUjWsCbtRohgUr3O1EbB/u1/6Ceox8fnGViLAsxcirznYRkIxZk+pR+aIEiPZMKcx1tpN1dTmd7V5fBuBdgGCvvYoRxoDR1wxPqKLOcnUYQwGXHraV2E7MNMmkG5nIgNUvhzqGf+pv3LgRP/jBD3DixAksXLgQBw4cwGuvvYZvfOMbAIAzZ86go6MDN998s/49VVVVWLduHXbs2IEHHngAO3bsQHV1NdasWaN/zc033wye57Fz507ce++9Y543mUwimcyexEND6skrSRIkyZyp3tGQ57Xq+Qshywp+/sZ5rJpRhdUzqq1+OQV57UQXAGD9nBqk0+ZP7+Uj7HWhPyahLxJHnb/8m8SJzo2BqCouBNwCc+dPPryiKpxF4nTeb/3a8Qja5HhUa4u1nkii4tdLFiVuobxridXXobDXhcG4hN5IArNqjBUw+oez13yPoNji3Ah5XGgH0Ddc+bmRS38sO9jh4Ys7FlaeG1U+F/qiEnqGYqj1Gb/gHoyp54ZftMc1oxDNYXVh0doXK/rnkGUFXRH1mtkQcNnm5x99PnqqPEArMNw9bOrPQBZEvJe3/Ni5q7KCKo3XQlzRLj/b50m+a5W3xotUJIXh7mGEZ1ceoZYbOc77rP/dT4S/3o9UJIWhjiFDfv7RxPrV4yEGReaPxWhcIfUeLJPKIDYQK8n9YvU9k9XP7WA//JQHnu0SnQ6MHFKPSRnDh9Z1sZ1x4Szb2U5//ySRzqYIWCmqchyHDfPq8OTBdrx+qgdXzqm15HWQ92GA0XOEvCciZnS22yydj0ZKCHG22+H6mQutGHnd2W6TcyKXxpAXwKC+xq6U3mhpne0AMLchiD3n+nG6J4rLplUZ8jqKhYiHkV4t7YpW57IeIz9WZJbTMjKkmoG5GHkRUIwR23Vnu0uynaNbx50TI1+Js92XVo+BzVLWBLcA0S9CiklIDCR0EwkAtbe9whh5t1sCBwXw2idGHlDd7cmkG4HooNUvhTqGf8o9/PDDGBoawuLFiyEIAjKZDL785S/jne98JwCgo6MDANDU1DTi+5qamvR/6+joQGNj48gX6nKhtrZW/5rRfOUrX8HnP//5MX//7LPPwu+31hW9bds2S59/NIf6OPzouIAqUcHnrsjoMc+s8fQhAQAH33Artmy5YPXLAQAIsvqatr74Ck4acF0rdG7s7OAACIj2d2PLli2VPxFlTnepr/dMaxu2bGk1/PHfaNeOx4A9jkdrt/p6T5y7WPG5OzCsnnN73ngdFyu4lFl1HVJS6ut//tUd6Kgx1mXSFQcAF7yCgme2Pm3oY9MiHVePx0vbd2HwuHHHoycBAC64eQXPPrO1pO+14txwZci19FWconCPuO8CD4BHb2fl70Erae9VryVHzrYXfW0dSgFSxgUOCna/+gJsVBEIIHs+xhR1sb3jhR04ljxm2vP3dfYBAPYd2YeT3EnTnjcf0oC60Iz3x/HUn54CJxh7w9bT1gMA2H9sP05vOW3oY9Mg91qV4tUBo1eefQXh7sovIskObcjCw2Prs6VdQ60g5VJ//le3voqqPuM33AZ3qovgeCZui/uuXBRFAefioKQVbPn9FrgbS9+Qs3LtFos5XfMOxUPEMyJiGE2MRKcz7uYGAI+Lh4vnkJYVDCfShovt5Fj4GI+E1jvbk/QHd3Ij+70ua8+Rq+bX48mD7djR0ou/v8X8509nZCS1CHtW0wmDWuqBGTHydkvno+H6j9kkDWM0YR+dKgpiIrHb8AEANBnubC8tRh5Qe9v3nOvH6W5KQvc46DHy/dpatAJn7riMEyOfyqnoZM/Z7gLHGRcjz/MZCHymYHc98wguwOXTOtubAZQmtut1AR5JFadtiLfaq4vtI/AEK6phSMfT8Hq0Y2mjznYgK7bLscnf2W74XeDvfvc7/OpXv8IjjzyCZcuWYf/+/XjooYcwdepUvOc97zH66XQ+/elP4+Mf/7j+/0NDQ5gxYwY2bdqEcNiaE1CSJGzbtg233HILRJGdD4PdT70F4DwGJQ4NS9djnUWTv+MxnEzjH3a+CEDBB+++HtNr2IhP+fH5N9BzcQhLV63BTYsbJ/6GAkx0bpx/+TRw5hTmz56BzZuXVfKSTYE73IFftxyEv6oWmzdfafjjn3npNHD2FBba5HgETnTjV6f2gfNVYfPmDRU91ifffA6AjNtuvkGPlC4Fq69Dv+3cjdbTfVh42SpsXjnF0Mc+0DoI7N+J2qAPmzdfa+hj0+Lxvn04fbwb85csx+Y10w173KPtQ8C+N1Ad8GLz5uuK+h4rz42fte5E14VBLFmxBrcsLf9aWoj9Tx8HWs/hsoXzsHnTAsMf3yymtQ7ipyd2Is4X/3s9fHEI2PMGGkJe3Pm24r6HBUafj//3w//DyaMnsWTuEqzevNq019GitCCJJK65+RpMudzYa1apyGkZR957BFCA69ddj0CjsdPtZ//+LBJI4Oqbrsb09cZdj4wm37Wq75t9OH/2PFYsWIGlm5dW/Bwd+zpwDMfgr/Vj8+bNFT8ebSLfj6DlZAuWzlmKlZtXGv74h/sP4wzOoHFGoy2Ox2haGlow3D6M9SvXo3l1c9HfZ/U9E5BNZ3NwKAa/5iam5Wy3Uwwyx3EIel0YiEkYTkoAjE3UStjkWIRNdLbn9rXzFjs4Ns5Te9v3XehHLJU2/feUO3jAaox80MQYed3ZzuixGI1eQ5FIq0N7BjgpSQ2H3cRl6s52m1QL5KI624Fuo5zteox88WL73AZVdGyxMEY+ldIGWC2IkSduZ07gIDD0niLOdt5lzLkhxSSIonaNtmuMPKDFpQ/rznaSqFcMurPdLdl24MBT5UGkLZJHbA+XnQyhKAqkmISq+lT2sWyEr8anXkMSk3+ta/idzyc/+Uk8/PDDeOCBBwAAy5cvx7lz5/CVr3wF73nPe9DcrG54dHZ2YsqU7CZmZ2cnVq1aBQBobm5GV1fXiMdNp9Po6+vTv380Ho8HHs/YDypRFC0Xull4Dbm8cbpP/+8tR7pw9cKmcb7aGvaf7kdaVjCj1oc5jexcQKr8WqSrpBjyOy10bkQl1fEa9rmZOncKURVQbz6jKZnK641qN+bVAY8tjkdjlXpD0B+TKnq9UkZGSpuQrwp4K3osq65D2feM8edGPE3eJ2xdY8ejWjseRr9XyH5a0Osq+XGtODdqAurndSSVoXrNCPvtcQ0txMx6dVHdFUkCvACxCJt6T0w9GaZUVXbNsApyPpLeZWmosutoqZDOdn+13/rjJ6px6Yn+BKRBCeI0Y19PKqL+rIGagPU/axHkXqv8Ndr5ETHm/MjE1WuGJ2yP+4xAg7oJlexPUnm9en992J7XEX+dH8Ptw0gNpsp6/Vau3ex4vB2sg4h6MWox8vYSiwJuIrYb7/QnQpGXcZeqmZ3tLPS1E2bW+jGt2oeLA3G8ebYf1y1sMPX5h1Ok+o2H28Vm+kEoR1CmTVQ7HkGbCKtkECEtK0imZUPe5yRG3m4d5fTEdjKcY/31olSMdrb3as7dYjvbAWBuvXrvb4WzXRAF8B4eclKG4gqAoxYjrw0S5BGZdbdzwG3IMIxReMIeRCQXXIIx54YqtmvvPbvGyAN6NzkZ1CgpRp5E6Yv2jdL3Vhfoqq8gRj6j3dt6vcTZbp/OdiDrbKdWQ8EQht8FxmIx8PzIhxUEAbKsCkZz5sxBc3Mznn/+ef3fh4aGsHPnTmzYoDpAN2zYgIGBAezZs0f/mhdeeAGyLGPdunVGv+RLiq6hBE52ZU/spw+1Q8rIFr6i/LzR0gsA2DC3zuJXMpIwpRvP0QxrsW9kQcQ6ZHESpbTRE9EWhGGbHA8SB9UbTUJRyo8Kz42EtOOiBMhZrMWMf88QxwZ5X9oB8lqNjmUjmyYhrz2ORbV2HAYonBdA1rFhl2toIeoDHrgFHooCdA4VNw3cMaj2hTVXGevoMhtvjfr64/3G9J8Vg6IoutjuCRXvNKAJEVWjFFwMyYi6UHOH2Om9Kxajzw+yEPba5H3jr1eHDWI9dCLHySCGHc8NAPDVqZt08V7zrh8ODlZAIpqjlGLks852e4hFNMVEuwhnZC0wpDl0aZLrbLcajuN0d/v2Uz2mPz/ZB2HZtWumsz1mt872nNdp1PGxbYw8uYY4ne06jbrYXrl7WcrI+h5IKTHyxNl+pidK/dqeDyGgnsey4K8oBntcJO2+PY/AStzOLEXIAznOdhgntrvd2nvPpq5uAJrYntPZPlp0HgcyWCGKSVvHyAPI42wPlV3DQIYQPB7N2W7DzvZUyg0u7YjtJXPnnXfiy1/+Mp566imcPXsWf/zjH/GNb3wD9957LwD1Jvihhx7Cl770JTzxxBM4dOgQ3v3ud2Pq1Km45557AABLlizBbbfdhg984APYtWsXXn/9dXzkIx/BAw88gKlTpxr9ki8pdpxWRezFzSHUBz3oj0l47aT5i5GJIK9zwzy2xHZaU56jiSTsJRTRXrgRYdIuQmJdQN2cljIKIhUcE7KBIQocsxPyE0FLXM59zLBNzgsgOzBi9DWE9DLaZSClyq+J7ZSupeQaympnYrHwPIcp2o36qa7ibkrbtYiu5rA9RMNCFFygUCSdSEPJqJsX7hKcBjShJapmpIw+Hc3KYEEpELE90W/M+UGi7cj0PevQFtvtPIgBAL5aTWzvc8R2h8lNgPLAMxHxbeNsp7gmjTMkLI8H6VvOyIo+IEALPSqckWNy1fx6AMB2zbhhJsO62M7u2oPm+yOXVFpGSjP02EVY5Xkuu6dl0LBO3GbXTwLZ8zRabCdpB36GB1IKQWLkuyKVC6p9mpDIc1kDQjHMrPVD4DnEUhl0GCD6lwrvV/cjM3yAotgeAwQPwI89R8hAvDvA1trEW+WFJLng4lNQ5MqHIEbEyOfprrcNmthOBtlLcraTwQohZXtne97O9jKd3ZJ2Tfb5SYy8vZztnmoPkkk3+Ayd/QuWMFy9+c53voP7778ff/u3f4slS5bgE5/4BP7mb/4GX/ziF/Wv+cd//Ef83d/9HT74wQ9i7dq1GB4extatW+H1ZjeGf/WrX2Hx4sW46aabsHnzZlx99dX4wQ9+YPTLveR4XZvyvWZBPd62Qo3xf+JAm5UvaQyDcQmHLw4CADbMrbf41YwkO+VJd4EybDOhKEC5L1B3tvvscTy8oqA7Tfq0m8JyiNpsIjwfNAdUyALQLucFkDN8YPA1xG7XjBotTp+Wsz1iM6f/eBCXzh/3XSzq68niu7nKxh1fMF5MLYZUzvWalal5fwMdUZU4lwF7Cqq+GvX8NmoYg2wAkOl71iFie7yHjphMzg87DmIAWWd7rHfyL+YdLm1op4vZqbMdoDsAbpcYeZ8oQND602nvWWQ7mNk4P8g98+G2QQzEyl+DlwN5D7K8FtOTH5J0Uw/iOUkbdhKajb5+2C0ZhEArzZOkHdhlACOXJm2IvWc4iXSFybA9Wl97bcADni8+Dt3t4jGzVr3/P21BbztxtmfgoxcDnYoW7CnX3c6MrNEJxNkuiukRewnlMiJG3tbO9nDZznYitrv4pG0HDgqK7e5g2cMqpObNF9Q+Y932Ett9NT4kk24IyuRfnxsutodCIXzrW9/CuXPnEI/H0dLSgi996Utwu7MbeRzH4Qtf+AI6OjqQSCTw3HPPYeHChSMep7a2Fo888ggikQgGBwfxk5/8BMGgPeMjWIJM+W6cX487V6opAc8e6UCC8tRzKew60wdZUTtpWIvBNc3ZnrSXUBTyqK8zlc52jBsJEVXJ89iBWs0V2Rstf/qVONsDNlug5UKc1jQ2e2zpbKfk9B+yWRpGtZ9cS+lshA3bYMOrWN5x5UwAwNOHOtAfnfh4dWgO3SmMfX6Wii6mmim2awKj6BfBC2ykiegO5m5jFyXEuSx4BAiMCwf50BewBp0fZAPALs52XUx2nO158ddpwwhOjLzDJIeI4DQ6ygG2YsKLIajHyBu/VrdLjDzHcfr6i3ZvO2vnR2PYi/mNQSgK8MZpc93tURs428m6KCMrSEj0qiSjNuivzwcxkESMcrZL9hjQGQ3Z84ymMhULy7lEGbtelEJdwA2B56Ao2b71cukdLr2vnTCvwcLedk1sT8teujHyBZzMRIBlzdkueASkMyJEUSrJvV2IyRMjr4rK5XS2k8EKgUtOQmd7uOzOdhIj7w9KqtDO2+fzFch2tru4OGBBFYaZ2Os341AR53tjaO2Pw8VzuHJ2LS6fWY1p1T5EUxm88FaX1S9PZ4c2ELCesQh5ICdSifLCVY9AtolwlttNRsNZMaQ72+0jqtYGtN52I5ztDC/aJ4LWZDSQ09luk/cJQK8DLSsu2+M9UkW7s91mwwfjsXxaFZZNDSOVkfHo3tYJv56I7U1OjHzJ6PF0jETIA/Tiwu3uXDa8s92mznZazm27nx9OZ7vDpUJQW4MR0dNo7NY5HNSGD2h02MdtdCyyve109yyiDDp3ryK97SZHyZOBF5bFdr9bAKcZaUkFGQ1iNo0LD2rvG6M721l6fxRD7t7KkEGDB7kDHiy/RwrB8xwagsb0thMzTn0Jfe0E0tv+2qkevHi8a9w/e871G5pgQcR2KeMtWyycEClWUGBm1dnOcRxk3gtRlPRaskoY4Wy3qdAMYExneynHhgxWCFzCtp3tZMiATox82nZ97UBWbOe5DJCufDCFZez3KedQNttb1Aj5VTOq9RucO1dOxfdfbsET+9uwefkUK1+ejt7XPpc9sZ3EVdN2tg8nSUe5Pd6iLoGHx8UjmZYxnEyjxuBpQzKVb6e48HrtGPRVMPk6KZztZnS222gIg9Y1hLxH7HLNqKYeI2+v4zEeHMfhHVfOxGceO4zfvHkB7796Djguf+Scoih6jLzdne1Gi6nFwKKbl1aMvN3E5dEYHSNPNgC8Nnnf0O5s1wdPGHovlAJxtjsx8g6Tnayz3XixPSMrSKbtJY4EdUc3hc52yT79y2S9YZRQVoi4vlZl5/zYMK8eP99xTq9PNItsjDy75wfHqb3kkUQaw4k0Gikl0EZtGhce0mPkjVmf2mlAJxeXwCPgFhBNZTAYl1BrwN5e7kCY3YYPCI1hDzqGEuis0L1MzDh1FTjbnznSiWeOdE749f/55ytx3xXTS36efAh+9feWSnvoxsgXiA3Xne0MDcUTFJcPopjGoAHO9nQsnRMjb+NaQE8ISOXEyJfjbFcKJx2wDjGOjInP94TU948sl+xMJzHyXn/Kdn3tgHpMUint/ZuMAKI99l3KwXG2X0K8nhMhT7hLi5J/4XgX9cnnYuiLpnCsfQgAsJ5BsV13ttMW24kr0yYbG0BOZyAFZwVxMNslVh+AviipJGYqarOexHyY0tluo/Mim45Bp7PdLuJyNcXzIiMr+ntnMsTIA8Ddq6bCJwo41TWM3ef6C37dUCKtuyhYq2EpFaPF1GJg2tlOKUbermLqpR4jr3e298UhGxjxSZg0zvY+x9nuMLkhIniMhpM7p2bOLuJIgGKHvZ1c/qR6jfaeBRFVWRpA2DC3DhwHtHRHK3aglgIZeGFdYA4Z3EueD7vGheud7QbHyPsYPyfyYfS+J7l+8hzgsVG1QC6NIXXt0RWp7LrSrXW21wVKv8e+dVkzbljUgOXTqsb9M1sbOv3BK6cNc7cTZ3sqKQLJIUMecwxSfEJnO2sx8gAATWw3PEbeZXOxPRnRB9nL6Wzn5cLnA+uM29kOlDWwQmLkvV5JjaO3GcTZDgBIUaqiYAT7feo7lIWiKNihOds35sSzL5kSwvzGIE51DWPbkU7Dpt7KZafmal/YFEQDgxt8ZojtiqLYLkYeUF9rbzRl+OZGQsogpW0k2ykuXO9sryBGPqZ3v9lroZoLrdh0IOtasVPiAa3jEbGb2K51tvfHjO9szx34sdM1dDxCXhF3rZyK3+6+gF/vPI+1s2vzfh2JkK/xi7brBxxNrpiqKEpBN7+RELGdJYHRiZHPz6UeI++r1TZfFPU9Qs4To7D7MAY5Pk6MvMNkh6wR6IjL6mNyNhJHaAqJCck+Q9BkbUTD4Z+LnsLG0HBrlV/EZVOrcOjiILa39ODe1ebsbw3boLMd0NZGg8YJyvmI2bQKj6wbSSVApdhpQGc0YZ+ItsGEYYPx0ZxhFDPWdDRoCpMYeeuc7dV+N376visn/LrBmIT1X3kexzsj2HG6Fxvn1U/4PRNBnO3JhJtijHy0oLhKBFjWYuQBgHMH4HJlkByMVvxYqWgKITGNDOeFYLNO7hF4wiNi5NOJNDKpDIQihrDIYAUvx20bIz9uZzugOrtLjIInMfIebxLwNFT8Gs3GW5Mjticnt9hu43euQymc6BxGz3AKXpHH6pnV+t9zHIc7V6ju9icOtFn06rLsPNMHgM0IeSArlNGMkU+mZaRldfrQTk5uMsVt9KKeJC5wHPuT4rnUk872aPk345PB2a5v9iTTkGXjOqOAnBh5G71PSOR9Mi3rm3ZGoA/o2KSzvdqn3mTFUhkk08a6scixcLt4eFz229woxANXzgAAPHmoHQMFhhTaB1Vhye597UBWTJXTsr64pg0RoFlytge0uEDDY+TtLqbmJB8oBny2kGl7u8TIC6KgL+JpRMnbfRjDiZF3uFQIUEwWIxHIflGwjTgSoCi268KZDdy6ZnW2s9pJvXG+1tt+yrze9myMPNvrdprvEULUplV4QYNj5LMDOvY6DoDxVYD6tcLGJhLibO+u0NneO0w62+mtwar8Iu67YhoA4KevnzXkMYmzPR53UYyRjxWMkWe1sx0A4FFfszRYueOfdLYrvD3WpAXxhIBMihwaAMVHyUtRCRwng8skbB8jn7ezHajI2e5xJ23c2a7tLdAa2GEER2y/RCCdVWtn144RH+5apYrtr53q0T/4rYK48uY3sjm9RJzt0VQGEoXYTiArFHGcurlhF/QYeYMmgQmRnEh9nrfHRg+QjZGvqLN9EjnbFUUV3I2E1AvYqbM95HGB7FcauQFGjq1dnO0hb/Y4GD28ZMcajmJYNaMai5tDSKVl/HHfxbxf0zlJ+toBQPSL4EX1NtWsKHkWe6qJYznaXfmkfC52F1PJAhZKdnCgEuzmbAfo9rbbfhijLjuMQSNm38GBFcggstHrLyBXXLbP/ZTuTKXg2rWTS5Wsv+g729kUE4mLc3tLr2ERyhNhG2e7GWI76Wxn/FiMJmTw9YMkP9hhQGc0RlcBkmuFncwzozHM2a7tD9YH6a453rtxDgDguWOdOG/A8ClxtieiLnqu1HFi5PXOdgZj5HmvKginh4wR291uCYpg4wh5QHek85koRC3VshixXVEUpKKpbG/9ZBPbiVO/DLGZdLa7xaSNO9vVcyETHbT41dDFEdsvEbaTvvY88TFz6gNYPq0KGVnBlsMdZr+0EUS0KVJWHd25QhatxWtEE+CCbnuJy2Rzw+gYQxK3zeo5UYg6A2LkJ4Oz3SsKevSk0dHpdnS28zyni8BkWMAI9OuGTcR2nueyi/iYwWJ70l7Holg4jsNfrJsJAPj1rvN5Nw/btYG15iqbL86g/rxkkWJUVPhE6AIjQ852Iqim42l9mtkI7C6murwuuLT3uBG97QntvWOXznaArthu92GM0TH7Dg6TFbox8mwKqeNhTow8+8eD7FnQ72wn3dxs3XOvnV0DUeBwcSCO833mJJxkne1snx+6oExRbI/Z3NlulEEgLqnDfnYY0BmN0WI7STuwtbNdF9srdbaTGHm699jzG4O4dmEDFAX4+Y6zFT8ecbbHhgQgnQAyFK4hdo2RJ2J7pPIhBN3Zbue+diArBieH9PU1WW+PhyzJUDJKtrfe7mL74KgUvpzjUiokRt7tStiys90T9ujOdmmgz+JXQxdHbL8ESGdkvQv9qvn549nvWqm62/9kcZT8MOO9wy6B12/CaUXJD9vMoUoIGLw4IQwl7OdeBoA6A2Lk7bpQHY3RizUAkDKyvglop852wPhYNiB73Qjb6LpR41dFvgFK/fWsxziWw92rpsEr8jjROYy95wfG/DtJh2meBDHyQE5UuElime5sZ0hsd4fcereZke52PTLfpmI7YGxvu91i5AF6YruclpEmdRw2PT8EUdBTCuJ9Tm+7w+SF3Osk0zLSBqc4xG0otuux+gavRxVFsZVLlewj0Ha2xyXiYGbrmPjdLqyeWQMAeN2kKHni5mZ92FcXlCmeG1GbdrbrEfsGHZs4EZhtcM0YDTEzGGUOiCXtbyIhMfJdFSRqKYqCbi1Nts4Eh/b7rpoNAPjdmxcqHrDhA6p8FB3SZKQUBXd7KlZQXCUx8iw62wW/6lbODBsltqcLDh3YBl1UHtbXZMU42/Xfs93F9qoCKXzkuFQQIy/aVGznBR68PwBZ5pAe6Lf65VDFEdsvAQ63DSGSTCPsdWHZ1Kq8X3PHiikAgDfP9umdr1YQsUHXFQ3hMBddKGJ8oTaaICVnRUR3L9vreNQGszHy5cbX2XWhOhoa4nLuBgHL14t8ZBevxhwPRVGydQs2cvmTa+mAwc72CONDW5VQ5RPxthXqcNyvd50f8+8dkyhGHhgnfosSLMbIcxxHRVQliz67OpeBkb3tlaAoii1j5ElUutFie+6GgK3PD83d7vS2O0xmcoULo6PkozYSlwlGO1MJqYwMYkyyw/GgsfbKB6vOdgDYOE/rbW/pMeX59Bh5Bo9FLkGPem44zvaxGO36J8YAr+Ns1z9P7HZO5NKkDbP3DCfLHm4bTqaRSqvfW2fCcPd1Cxowtz6ASDKNR/e0VvRYxNkeHdDSV2lEyUtxQMzv6CbrdBad7XxQFVAz0cp7qImz3f5iuyYGJyO68FyM2E4SDLx+7TpsU7Hd5XVB0DQSMtQPICdGvvT3D4mRd/FxW3a2A4C32odUyo1MxBHbHWwO6WtfP7cOQoFY8qnVPlw5uxaKAjx5oN3MlzeCYRsIzbRj2ezqygxSchKQaVo7iYhAdlJVyihlb/jYdaE6GrJYM/I9Qx4r4BbgEuz1UUac+EYtXhOSjIy2A2in60a1n4jt5Vct5GNYH9qy1zWjWN5x5QwAwJMH28acQ7qzfbKI7QY6l4tBd3sz5GwHAH+D8WL7pHC2k2GMCpMPpKikx7vZMkbeYDGZnBuCW9BTFewIGUaI9zrOdofJi9vFw63dBxMxwyjs6GyntR4lxwKwRyR02CRnO8tVA1fNV+sTd7T0Qpbp97ZHbWAaAbL7bEa5t/OhR4YzPngwGqP77OM2qp4YDdmvMGr/JkYGcxh/f4xHXcANgeegKNne9VIhEfJ+t2DK+4PnObxn42wAwM+2n63oWkg624f7iNheubA8hiJi5Fl0toshVfiU48aI7W63ZFuRWUd3tkeyzvbB4p3t/rB2rhJx2obkNY643IDgKev9I8UlcJwMF2fPznZAPSbJpBuZ4dJj9O2EvRQKh7Ig07xkwVGIO1epbrknLIyS1x2JDIsktJ3t2Rh5do9BPmjFyOvOdptFhXtFQRfJy+1tnwyd7UB2w8fIjnK9r91m9QJAzvCBQZsc5D3Cc/ZazFdTupayXkdSKZfPrMHCpiASkozH918c8W/tk0xstypGnjU3ry6qdhvobLehk3s0Rg1jkGPBCRxEv30+U8h5Ee8xVkwmznY7D2IAgL+OzjCCgwNr+CmlixEh1Sfa536KCImxVEYfRDUCIpqJAgfRBkO+RqdoFYJlUXXl9Gr4RAG90RSOd1JwYI6CvP8CjIuJIYMF5XyQyHDW6gUmImh4jLx2DbXR+pxQZXA6BtnXsrOJhOc5NAQr620nFZNmuNoJ910xHSGPC2d6onj5RHfZj0Oc7Ym4do0rIwZ7QoqIkWfR2e4KqcKnkqis8k1RFD1GnvTA25Zcsb2q+Bh5MlThC2npETZ2+BdMafQEy6phkGISPB7tGNpcbJejA1a/FKqwv1JwqIiElMHus2o8A4nSKsTmy5oh8BwOXRzEmR7jekGLJZ2R9YUsyyIJ/Rh59XFZdvfng5qzXY+RZ++maiKyUfLl9TrF9EW7fRclAJ33DBnMseN5YfQGWG79BsflTy9hkWqts73fYGc7uYay/DlSCRzH4R1XzgQAPLLzvF5TEU9l9PfYZBHbPdXqwsy0GHlWne0UYuTJz8raYEEpGDWMkdCGVDxhj62uobQ62yfDuQE4znaHSwcSWx1NGRsjH7Nh33DumslIMTE7eGCPY0GG9ql3tqfYFVXdLh5XzqkFAGxvod/bPmwTsT1ggtjO8hDGeAQNjJGXMjLS2sCP30YDSwSj929iNj0nRtOoDSl3FSEa5qNHG+yuD5p3jx30uPD2tWoy3k+3ny37cXgvD07gkExq6+Skwc5UOQNkkgVj5Jl2tlepdb1ysjIdRZZkKBkFoiiB99hcbBd9AMcDySF9uJ+suceDDFX4gprYbmOHf2GxPVR2jLzHo+2d2rCzHVD3b5JJN5QE/SFIK3HE9knO3vP9SKZlNIQ8mN84fvxGXdCDqzX3+58scLfn9syxvEih3YGmuzIZPgb5oB0jb7fOdgCoC6g3FT2XurOdwnuGCNV2SzwAjD8eduxrByh2ttskxrES7l09DR4Xj7c6Ith/YQBAtq894BZs9/lRCCKmmhYjP8yo2E4hRn4yuJeJs73SYQwSaee12ZAKLbF9MpwbQI7Y3ueI7Q6TmwAlZzvLQmohPC4hG6tv4PGwm0NVj4Cm3tmurVUZFROJ2WQHZbFdURR93c76+sOMGPmYDa8dQDZd0wixPZZbPWGT60YuYaM725P2jdTPpTGkrhU6I+WtPXqGNWd7wNyB1vdsmA2OA1450Y1TXeU50jmOg7fKmyO2G+xsl7T1TAEnMxFhWVunA4BYRfrJK1uTSdq+mNstgfPZNz4dAMBxuqhMnO3FDMjrne2BSSy2u0PlxcjHJHi99hbbvdVepFJucGUMG9gJR2yf5JCFxcZ5dUW5de5cmY2SJ245s4gk1Yuqx8XD7WL31DQvRp7thdpo9Bh5gxduERvHhZPe9r4yO53iKcfZXgg7Jx4Y7Wy3a2y63tlOKUbebukgpVDtd+OO5VMAAL/edR4A0D6oCkrNVV5buXPHQxdTTY6RZ01kJKJqtNu41KHJ4F4mC1ijYuTtFqnvONvHx1eriu1OjLzDZCdAaeA5JtkvRh4w1p1KyHYv2+NYkAHcWCqDdEam8hyyrGSPC6Nr1SVT1M3o1n66nwPJtKzXFrC+bjcjRp5ci+zyfiEYWUOR0N4bAs9BFOy3LtNj5A1ap2eHt+x1ToymKUxi5MtztvfqznZz15oz6/y4eUkTAOBn28+U/TieKg9SKe21Gx0jn9Ku0wXEVSLCshgj76kOIpPhAamyNSkR20W3BN7uMfKAKginhlG3QB18a9s9salTd7b7M2q3ucDe77tY6DjbtWuP155iu6faow7spM1P0zYTdhVNB0N4/ZTW1z5v/L52wq3LmuB28TjVNYxj7eZOmkRsIhhlbzzpLFBIj3OQ4d76fOjO9pTRMfL2OC/yUResTGyfNM52Cr2BeuKBDYcwqojbxKBriF1j04nYPmi0s92mTv9Secc6NUr+TwfaEUlIenfcZImQB8ZZoFBCd/QyNjFPo5t7MriXjRrG0GPkq+wlLjvO9vEhne1OjLzDZCcbI0/H2W43JyIRO2nEyHttEyOfXRPQipInQjuQPQdZo4ZSZdVocs81Vo8FgcYwymh0Zzvjx2I0RtZQkGPgFwVbDkFnO9vThpiwojasJckHcbZ3l+ls7x02v7Od8L6rZgMAHt1zsez9F0+VB4rCQ+Y9ZYmF46I72/PHyOvOdgZj5D1hDyRJBJcxRmx3u9O2dnTraKLynBvnAAAubL8AaYI9YTJU4fGlAbd9+9qB7N7CmPh8T7CsYRUpLuXEyNu7s513xHYHuzKcTONA6yAAYMMEfe2EkFfEjYsaAajudjMZtkn0L4kzN1I4zMWuznaycMutAzCCiI0dzLV6jHxlne12X5TQdbbb630C0IuRZ/3aORrS2T4QN3YDTL+G2ux4lMqaWTWY3xhEXMrg8f1taNdu4pvD+ReodsSoTu5iIc521hy9gQZ1se10to9EPz8qjZG3ubM9MZBARjLu3msynBuA09nucOmQFZfpdLbbLQKZDKwbGZNtt8EDUeD1fnlaYjsRzzgO8IpsbivWaA7I/phENbUxmrNm53m2hdUgpTTCXKI2TefLraGoVGwn1wyvTa4ZoyF7bxk5W5FQCXYdwBhNpc72Hk0wNjtGHgA2zK3D4uYQ4lIGv919vqzHIOJhhgtQjJEfKzLLGRkZ7R6HSWd7lQeS5AInx6FUkIpBBgpEUSo4dGArNLG9blEdQlNDyCQzuLD9wrjfQo6BxysBbntH6ReOkQ+WNawixaSss92mMfK+Gh9SKTcEeXInz7F5V+xgCLvO9CIjK5hZ68eM2uIngu5apUbJ/8nkKPlhm7gRq/yUY+Q1Ac5uEcjkxtnohRtx/7J+XuSjkhh5WVb0+EbbO9v13kDjzo1sZ7v9zgujnf6RpD3fI9VOZ3tFcByHB9bOAAA8svM8OjSxfcpkcrb//+y9d5gkV33u/1Z1Vec0cWdzDlrtKqdVTkjaFcYYYWxMBl+uucI2iB+28eViwsX42thcfI3xvTYgbJBNEhjEIrSSQGm1SiBpVyuttHm1E3Yndu6u7qrfH6dOdc9Mh0o90+d0fZ6HZ9B0mOqzp6rrnPf7vl+XenKbhYqMnepsdytGXtO0jo3Mt4JbznZWe7YHe4KAvqfvZl9y3pztXoy8B+/QWN6c2zHyjAnMlGgbetjnFb3wgBFnO9D+vu25Yuc7d6mzvVRWZ/XQdhsqzLIQkR01YuTbMy+AqvmChfGYi1s97ek1g7XrJyUoi0bhgRv7nkZBCmMFGHMZ1MX2Mw6d7f2LUNAqCILhbv/m3hO2WowE42StVEEIKLnsbDdi5OdrF9TtDHSys12CLJUNsdgORoy8rDTsXc8UgRhQTEEQBKy9ibjbjz3cvI0B/bf2B9h39zcU24NxoDBj+f3K+TKCwRI0+JgtxqDOdp/A9/rcE9s55onDpF/7VRvMudopN24ZRMTvw+npPH51croNR1YfVgSShMuu1LkYEcgdPg5zibapX6DhYA6xNR6Asxj5QrkCWuvCWlX4XOJtcbazmQABuD8eaUYLdKiz3e0Y+Qyjsfp2uOOiFfD7RBwcSeHhV84AAJYwJhg2w62e3GZQK2o1uq3TxPYBd+PClZxiVN2z7F52a36wGiMv+sRqX/I2pB6wLrZ7znaPbsGIkXd5Dcaam5tiOHfdFNtLRJRgyeVPi3DbJrbT+dHBexZhvw9+iWx5tjNKnorLnb6PBVTXRwVFtSW2mSHLcDqfW8UI9PxgqUCnFkEQjP03N9bqvDjbaYy8457tiyQY/+YFy9ETlnF6Oo8HXx6z/PpAkqyVympwQWPkqYAtiAJ8Hbg3KgUlKIoMWVaMxDQ7KDkFoliBT1SZF5oBzHJw0yj5Yw+1ENvpfoxcYn4M6F5FcXrOnIgMAtmzlt+PxMgXoUpREivEIFRsl8WFMdMsFp7YzjF7jxCxfYfJfu2UoOzDLecOASDu9oWCFcGIulLb5mxn1KVKBeG8UkHFQXTOXGjxAZsx8uQmejxjfXFPF+2CAASlzruhtEJ7eraz216gtgeaG2QYLTygzvZ0sQzFxc0eI1afsfGwQ0/Ej53byff167rguDTOj9i+kDHySs1GUqeJjEbP9gln0XQUKqZC6MwoPrO4NT9YjZEH2tOX3HC2d1jRiVWMsXHR9e/h0YlQ96gbUb+1GGIRY+JINOh+jLwRqc+QcEZbbbUrLjzHQA9mQRDQS/u2Z9vp5GYnNr3Wbe52+z8AKFdUFMtkXceisFoV252NTd64fnb+nGiEm63veOnZvkRfZ49niraKVcaNnu2Ls+YIyj783uWrAABff+K45dfTwmSlElzQGHnqdpYjckcmqQiCgLIagCyXjcQ0Oyg5hbjaAWady7PQY+SBqtg+/Mzw/B7mNVSj9PkR2+c522NLgMwYoFq7hpAY+RI0md14fUNs9xWBBUzSXmg8sZ1TJjJFvDySAkB6s1jlTeeTKPn7XhxpW8XrXDKMOLrb0X+6FlaFotrjpTfTTqmoGrM97IFqL6bJrPUbLmMDQ+783m+taMc5YxRhsBgjT2Md8+70D2S1IKX2387NQoxqz3a2xsMub79s1az/HuLQ2a7kFFTaGP8JVAVoQRQgddj3DRUNNVVzxeVviMuxQEduWJilts2Ak2sp3RRhzdkOVAsx2uFsZzn1AIDh+ldyCspt7E3r4bHYRPzux6YDs9ciLNGOGPmCwp7LP9aGYudasiU22p0l9RaAk210thsx8h0+FgAg+0QEdLd/ug1R8rQNHsBmZLh7MfJsO9sBd/dwcgy3FqilL+KHTxSgacCExfTKckXFlF7c3beIBa3vumINfKKAp49N4qVha1HWtOVWSfEDJZfF9pLeLq1OjLzR/qwDI+QpKvyuONv9fiq2sy00AyB9xfWijMSqBHo39EJTNZx49ETDlxiFFVKJ+TFoKLZHhwC1DOQmLL1fOV9GIFCE5o+5dYgLTjAZRKnkhyiqgMJvQbwntnPKvqOTAIDNS2IYsLFZdvXGfiTDMsYzReO92g0roqpR4emSUDYXw+HP2I1oQPJB9pFNe7ecBLXvw5rTH5gdI291rtBK806O5jMLPWeKZdXYrHKK0V6AwXlBj7msasZC3AkZRlpwzMUnCobrZsqlKPmKqhlOLNYKluxy+dperOuvLkR4Ettrxc92922v7WHeaQK0z+8zxsINUZWXntx0AVspVVDO27/vYNrZ3kaxnfX5EUgEIOj3pV7fdg+eabeznSWBGah1prrpbGfPpUrXX+1ytudLVGDu7DGhSXPTbY2RZ2stRvfb3DxHKFRUlUTB6PnNEjGXYuRZbcNRi5uJntSMw9I1tB6iKGBAd6WPpaytTWnBjyAAPeHFu8ceSgSxcxtJxrvborudrkeLRX8bYuR14a1Or3LD7dzBiWwVBImz3aHYLsv6dblO0QFz1DjbAVT7tjeJkqdiu+TjwNmeaORsJ+cfMqOW3o862xFgWGzvIc52ANDcvoZ0EOzd/XiY4okj4wCAKy32a6fIPhE3bhkEADx7YmHEdlYc3bTCU9XcX6BoWtXJHe/wcahHxOW+7VRQDcqi0W+NJejiXqloliPDc4xsYJghFpCMljJu9Q00YuRD7J0nYb8PPj2twI3Fa4rhHuVG3/a8OxtgtQU6rGx4OUUQBPzuZSsBAH6faMRl8oDoE41Ffbv7tnd6dLYhqp51Lhry4lz2R/2GmOpkflBne5DBQpVQv/s92+m5wPr8EATBcLd7fds9eCbSBic3wKbADFTXo20R2xlyqdJ1Qbt6ttPC8E6fH1TUmrToQrWC4WxnZO1hFKS0oRCjNi6804pXzRB1qf0Cq204akmE3EnH0DTNKD5gIf2hFYN6ce4Zi6Iq7dfeG/Ybe0GLxfuuIqLnf74wjImM+c9h9KAutENszwG+ACDO/06hAmwnO9s1MeCKs70aI8+h2E77tj/cWGynhRWSWGRfbKfO9rmx+VRsT49Zej/Ss70EIZhw4/AWBRojDwDl1NQiH037YE+98jDFk3q/9qss9muvZam+6TjtkuOwFYbY3uHRv0HZZwi/bkfJ50oV0HasnV50UA+3nQQsu5cBMlfomFhd4LMSzWcGURSMKvGUA/dhLSlGo9MBIgBUF6/Ox4NVZztQjXZ063uGxiEGJDYLdOzy2xevxLr+CHZtH2K+7cRcGsZvuQx1tneqwOimg5kXZ7sgCK70bacLYC9GnsCLsx2otmDwnO0ePON2sTMlr7C5FmmHs53FGHm6Rmp3z/ZOF896dCekWyla9WBObKeCchud7ayMxVzcKtapxsizux51S2wvVVSU9U1OFlsLzGUwRtamY2lraw8qtvcvUr/2Wi5alcT5KxIolVXc89RJ06+jKWCFnNSeGPkGbm4qwHZqUTwAqL6QK872aow8J2J7KW30Jl9zwxoAwJn9Z5A9k637ElpY4RMKgJ/d3uTA7H2sWUm3EWJsteJsrygVaBUNgUARCMXdPMwFxR/1o6SQ60hpYmGMvYsBu9/8XciUySjq4ek8jo1nIQrAZet6bf89WgU81cbIrVpoVBMLInM86J5QVgu9qfeJAlOV8xTXxfY8G60FmkHd7VYqRgEgZyza2ZsH9UiE3YshK1fUagIEgz3bgWpyhRtuE7qJxmKrBepsd0tsZ6Udidv0RPx46GPX4X//7oWLfSiu44aYagYjRr5DF/GRAVLZ7YaoyouzHZjdt90uXoz8bHhxtgNAqE93tk96znYPfqFiJ3WUukWuxqHKEjGXei7XQl2qQYbW54azvU092402Ax2+VjX2tNrobK/GyHf2WFAWytnOIjGXxibPgXGCJgg63b+hBRgAEGboGtoI6mwfsyiqjuv7gYvZr50iCILhbv+3fSdQKqumXhdI6olzWV97YuQbCMxGH+8OjpGHFHLX2c5FjLwuluuFGZGBCJactwQAcOwX9d3ttLDCpxWYHwMqtmsVzZjDAADJD4T7gPSI6fdS9P3SYLAEMcyus10QBCMGX5m01rOeJTyxnRH+5bGjuPBze/DOrz2F18aaf6k9cZhEyJ+3IunI9Zk0xPaFcbazFJ+ecOnGcy5Vd7/EZOxWu2LkWRVUgRqxvYud7UBNgYoL4nJtMQeromrcpUpxoLoZwOJYJPVxmHbpWspy4YFTWPzOMAMVU9sdI2+4eTtgA6QeVFTNnq1fBW4FXpztQHUR260x8p6zvTlejHyVL3zhC7j00ksRi8UwODiIN7/5zTh06JDx+OTkJP7wD/8QmzdvRigUwqpVq/BHf/RHmJmZmfU+J0+exO23345wOIzBwUF8/OMfR7ncHueshzmq6y/3erarqoaCQjbfWRPN2hEjz6LLv90927OM9KReCANJhjE3N02SbEvP9hK7iWuAe+YRFgt05mI42x1eQ2gBRkASIfnYlyCW6M72sxad7VWxvTOKWXdtX4rBWADFsorDZ8y51OlaKZf2AUWXne1KrqHYbjjbOzhGnojtLvZsl9mOUAcABHQHtoW+7YazXSswHyMvhSSIerrJPGNAdMhSjHxZNyIGAkUIDIvtACCEybxQpr0YeY9FpKBU8I+/PAIAeOLwBHZ++TH8z/sOIt1AtKIR8leut9evndJjxPsukLO9wM6NOb3xdF9s1939DIxBPaqLE3c2e9IMR4VT+qP2+sQZ0XyMVMi3wq0YMvIeZGxCsg8yows2OqfduIakme7Zro+DS98zLH2PeJhjoWPkO1VgdLM3N0/OdjeSDzxn+2x4crZ7MfJVHnnkEdx5553Yt28f9uzZA0VRcMsttyCbJQU8w8PDGB4exhe/+EUcOHAAd999N+6//3584AMfMN6jUqng9ttvR6lUwt69e/HNb34Td999Nz71qU8t1sfyQHt6tlNxGWBLYAbaEyOfN/ovs7PucDNFqx5GCluHzw9a+N5OsT3LWEuvdqQ/UGjRD2vXDYpbEft5BltPzMWtPU9aeMBKMUorlth0tlPzTV+HCMZ+ScTX33sp9n3iJmxdZi6Wmrbcys6IgJIFVPeK/JrFyDPhbA+E4fcr8/tzW2B2jHzIpQNbRHQHc23LgVZiOy2sENUc8zHygiA03suKDVmKkVfyVWe7EGQ3Rh6A4cyvpKYX90DaCB/fdpzz4+eHMZktYVkiiHOXJ7Dn4Bj+5fFj+NHzw/jEzi34rQuXGz1aNU3DE0eIs/2qDfb7tQNVEWShYuTTDIkkhivV5cUr6xHI1Ugyd8aFCrOsjgdgP0ae9YXqXKqtF1wQ243EA3bHxq3ig4qqGc4SFq6dc3Hd2c7YZpdHa4yY8DbHyBtu7w51ttMY+fy4c4cuV852hzHyFaVixLJ5PdvJOoIrZ3uf52yn3H///bP+++6778bg4CCee+45XHvttdi2bRt+8IMfGI+vX78en//85/HOd74T5XIZkiThgQcewMGDB/Hggw9iyZIluOCCC/C5z30Of/qnf4pPf/rT8PvZnzMsYsTIuyguU3FEEIAgYz2Ho23oYV/tv8zO/WXbe7Yz4vane1qT2falNbImttMCnXY427OMt8Jz6/qRL1XNAazi1v4NHUuWCw9qoTHyZyz3bCfrr/4OWmtuW27NIUvXSrmUfl9QygBBl1y2TWLkqQDbyWK7EIhALisoTjqPkdcgQOBJbK9xtq++ZjUEn4Cpo1OYPj6N5JrkrJcoWQWiWIGgKcw72wFiHMmdzdUX28dfM/0+dL/CHyhVEwMYRY5HoaoCKpnpxT6UtsHG3WAXo2kavv4Eqfh5z5Vr8F+vW49fHjqDz/7kII6OZ/Gx772Abz91Ap/9zW3YtjyBo+NZjKWK8EsiLl7d4+hvG71027gwqcUQSRgQVt106dbCchw0UOOsKLnsbGc6Rp7ckFqNkTec7ZwsStxMgzDEdoYTD2ihgNNYttpNEhaunXNJuNyznWWXv0d9qHO57THyHe5sdzNGnicx1WmMfG3UH5POdt257ZaYXClWoOp9G3lwtntie2NoPHxvb2/T58TjcUgS+U598sknsX37dixZssR4zq233ooPfehDeOmll3DhhRfOe49isYhisXqepVIpAICiKFCUhVlj1oP+7cU8BrcI+DQARPwsFktGEb4TUjmyKRiSfcy1CQjqS6d0oWzr37fe3KBikd+nMTNnaE3yTL7UlmPO6Gu6gNTZ51E8QEShqWyxbcdJ1x9BSTD9NxbzGhTWC2hSbZgbqTy5xwxKYkfPi0aEJHL9TOedfUdVrxn2/o074Tsq4idjMZ1zNk9SOXIPEJZ9TM6JufTqF9exmYKlz0Nj53tCEnPjQI/XFyZfsMUiWUMq2WnA505fbV8xA0ghVOqMDV2vSZ08doEQ5FIZhWlr86KWYrqIuFyGigBURu69ml6rfCHIAMrZKWj642JIxLJLl+H0vtM4vOcwzn/v+bNeUsqWDHd/WQwYr2MVur+QGc/MGiMxPAAx/SjKJj9fIV2Az1eG5KugLIWZHhd/PIBi0Y9yepqJe6Z6x9EKbze6w3ny6AReGU0jJPvwu5euAgBcv3kQV67vx9efOIa/f+g1/OrkNH7jHx7H2y9bhaVxsul48aoex/2BaH+rdLEMpaK2Pa45w1BkeLvEdpbc/fVwu/9XigPhjFauTmQs9mynznZG58Jc3BKXgWqMPMtFGG5VitPNHb8kIiCxV5hBne1uJagYMfIMXzM8ZrPgMfId5DaoJTzgnoOZ5dj0uThNPqjdvPEx6D6iRRjFVBGVUgU+hwV6NPUA6NxzwQpGMcKkJ7bXoqoqPvKRj+Cqq67Ctm3b6j5nfHwcn/vc5/DBD37Q+N3o6OgsoR2A8d+jo/WjEL/whS/gM5/5zLzfP/DAAwiH3dmgdcKePXsW+xAcQ5YMEjQN+M+f/gxuGEqHs+Q9Ra2M3bt3O3/DBYSYyiSk8kVHx147NyamfQAEPP/s00i/6vgQF4SRHABImEjl2vJveOyUCEDE0Vdfxu6Zg66/v1tMFABAwkS60La5PHyWzI+DL/4awinN0msX4xp0+nUBgA8vHz6G3buPuPrez+vvPTE2jN27X3f1vReCQ9Pk+IfHpxzNl1PD5Px47eUD2D2+3/b7LOZ31KkMAEg4M51xNBb7J8mYFnNp5r5P6pEqAYCE8UwRP/npbvhM1rcdPU2uE8de2Y/dZ15s4xG2j4cfeRiCX0CpRNYIjz74U2SCy1157yuGT6AiBvBMnTny+kFyLTkxfKJj51Dv+DTWRSo4ffSk7WM8ffw0+oMKSqqEBzr0czai3rVKLmexC8Cv9j2CkVeqexjllWVgH7D323txevD0rNcU0gVEA2SP85kXDuLMMbb39dJl4up/6tGn8JpQdbKvPTuOc1Mj2P3Tn5IYqRZkXsogECD7Vc8deBWjp9iaH7WczZxFsejHxOljeN7iPF/sdVsuZ24vju1Z2wV8/fHjAIC3XrwCiXBVWPJLIv7guvV48wXL8YWfvYz/fH4Y9zx10nj8qg3O+rUDRFAWBEDTiOtwoI0Ol3JFNeLZWBCa3ey3XEvaiJFnU0SM0kgyl+LqqBDJQgFGI2iMvO2e7Zw4241zxgUHc9XZ3vnXikbEXXL608IWVsfC6Nnu0rXUaMXBwPeIhzkWKkbecHt3qMBoxIWf9Xq21+K0Z3txhojLwUTQtWNaSILJIARRgKZqyE3kEFsac/R+tOhECkkQJbaio+sR6iXzw+vZPps777wTBw4cwOOPP1738VQqhdtvvx1bt27Fpz/9aUd/6xOf+ATuuuuuWe+9cuVK3HLLLYjHFy8GUVEU7NmzB294wxsgy+yuMwCShPenz+yBpgFXX3+TK2v2X5+aBl58GsloGLt2XeP8IBeQ6ZyCz/zqF1BUAW+49TbLhoF6c+MvDzwCFIq48dqrca7J3raLzchMAX/1wqMoqiJ27rwFgonNXCt858yzwNQkLrvoAuw6f6mr7+0mmWIZn/31w1A0ATfcfCtCbVhbf+nVx4FsDtdfdQUuXWMuXXIxr0ET+07ip6deQc/AUuzadX7rF1jgpQdeBU4dx5YNa7Fr52ZX33shWHZqGv/48tMQ/SHs2nWt7ff5t+GngZlpXH7JRbjt3CWtXzCHTviOOjWVwxf3P44SfNi161bb76O8MAIc2o/lg33YtesSF49wcaioGj796wdRUYHLrrkRS+Lm1hB//fKjAAq45boduHBlsq3H6Da18/Fw32HD2X7d5RdBW36xK3/D96//CCRWYteuXfMeu++H92Ec4zjn/HNw5a4rXfl7bjNy9hjwOtAbDtf9DGa45+/vgQwFoj9q+z0WmqbXKrUM7P8QLjp3I7Tzq5/nePg47vnePSgdKmHnzp3G/Ymmani+9Dz8MbI3eOlV10NbecWCfZZ2cO+/3otXXngFW9ZswSU11z/hlQp8P/gWdt14JRBqfd9wVDqKB4LPAAAuvvJ6aKuvbtsxt5uHHn0IxZwfvT0BbDc5zzvhOxGoJrS1wtuN7mBOTGTx0CtjAID3XrWm7nOGEkF8+XcvxO9dtgp/8eOX8MooqZpx2q8dAHyigHhQxkxewXSu1FaxvdYJHWFAJHEzErsW6lJl1ZUZcblHHh8x8rqz3aLYTqP4O70PnllosRAVyp1gFGEwPC/osTsdj3SB7QIdKra7FyPvOdt5wxBTF8jZ3qkCtJu9ub2e7VUMlz+D/doBQBAFhPpCyJ3NITfugtjOUSEG4MXI1+PDH/4w7rvvPjz66KNYsWLFvMfT6TRuu+02xGIx/PCHP5y1oTE0NISnn3561vPHxsaMx+oRCAQQCMyfT7Isd4TI3SnH4ZSIX0KmWEZRFVz5PKWKYLwva+OTjFbF1JIqIGzzHrl2btD+5LFwgJnx6IuRf8OyqqECn+u9o/MKaTkSC/k7ekySkgTZJ0CpaEgrGuJt6PlL1+2JiPX5sRjXoESYXJOziur63y6UibM/FmTz2toTJfeVmWLF0fG7dX4s5ndUX4ysPQqKClWwn6JHO0xGGJ0Tc5EBDEQDGE0VMJmvYEVf68+kaZqxHziUiDA7DrIsI5gIojhC1pBSJQ+49VnKeSAQhVjn/co5sscTjAc7duz8cdK7XstnbB9jOV+GP6EAUrhjP2cj6l+rZEAKQSrnZs2TtdeshRSUkB3NYubIDAbOGQBQkzTop8XfCffm1yJBC7+VtDJ7fBIkEUIuTADxwZbvoyma4WyXIr1Mj0u4N4zStB+iYv1cWex1m9m/zb5lgWPu3nscmgZcv3kA6weiTZ97+bo+3PeHV+Ov33oePv9b23DhKmf92ik9VAhxWVSeCxVIApIIPwNOGiNG3iUHN8Xo2c5AwUE9qMDldow8q65dAOiP6j3bM8UWz5xNTh/DiBtZkB2AEZvuhtjOUMuJRtA5TSPx7ZJhvPVE0ujZ7k6MPOvFBx7zMWLku9zZHhmIACCL0LLDew+eBFWnPdsLM2ResRyp7xViNIbGyHvOdrLR++EPfxg//OEP8fDDD2Pt2rXznpNKpXDLLbfA7/fjxz/+MYLB2W6tHTt2YP/+/Thz5ozxuz179iAej2Pr1q1t/wwejaHrBbcKnmnCVjtcwO1G9okI6PsJbq1JCwotgmZnPMJ+H3wiEdzdWH/NJae3PIt0eGG4IAhGe8Qpi8XvZqHnHSvrMWPPpg3zgvVWeLVtETXNWkuAWvK6wux2kctCEgtIRrqxE5MRb4mNADCorxvOpMzt8eVKFRT0Aoy+Dl1rmiWYDBox8ihl3HvjUg7wR+o+pGT11omRzh07KUYKnis5+2Oi5BTIsgJNWvw2S64RiAHF9KxfSUEJK69aCQA49tAx4/cl/Tvar8fIN5oPLNGwJWJMTzxJj5h6HyWnIBDQrzcBZ8X1i00wGUSx6IdQzi72obSNzlc1u5R0QcH3niV9Sd5/1fzNkHpIPhFvu2Ql3nH5ateOI9nmhQklw1h8Ou0/7bazvToOrC5O3BXb0xyIqtTZPpUrWVqwZfVFCTfOdhfTIKrOdnbHxi1nO309q9eMZE3hUkW1v6FByRT1dBBGN3g85kOdy3bFVLMYldQdKjIGEgEIelNAp6IqT4Jqt8fIA+6K7TwVYgA1zvbJvKNNcx6488478a1vfQv33HMPYrEYRkdHMTo6inyeXFup0J7NZvG1r30NqVTKeE6lQkSDW265BVu3bsW73vUuvPDCC/j5z3+OT37yk7jzzjvrutc9Fg4qeLoltucZFJdriblYAK5UVCgVcv1gSTgTBMG4H063Q2xX9LUqA4Xhtetxt1FVDTldWGUhoRGoGjvc2rOphXVhlRYiVFTNEEftUL2GsjEn6iGKgjFXnBgEWC/AqMdgjKwbxtLm1h8T+jozKIvMfq9SAomAESM/V0R1hJIH5FDdh6gIK7chmcQtJL01klawLyBSsb3RODBJHbEdANbeRHSuWrGdFlWEY/q1l2exPaongqXHTL2PklcMZzsCCbcOb1EgYnsAPpXfYnhPbO9Qvvfs68gUy9gwGMU1G51Hwtulx+WI30awJjK71W95LmnGXapub/SwLiQC1cW9UtEsJSFUF+1s34xTqDDu1MkN1CYedO7NdiuMHvYu9Wxn9ZqRqGkFkHLhesrad4lHaxouUFzGENs71G0gCIJroipPgqprMfKesx0AX4UYQNXZrlU049+6W/nqV7+KmZkZXH/99Vi6dKnxv+985zsAgF/96ld46qmnsH//fmzYsGHWc06dOgUA8Pl8uO++++Dz+bBjxw68853vxLvf/W589rOfXcyP5oGaVl4lt5ztbIvtbrY2o6IZwJ7Tv2oQaIOoWmRnjtC2VZNtMJDUnnOsrMeq50elxTOtw3orvLDsM9zcTooR6DU05Gd7y522AvSc7bOhzvYxk/eW41nyvP5owOhPzSrBZBCq6oMKGSi66GxXsoBc39FtONs7dJ0OAHJCj5Ev5WwX+BKxvQz4+Xa2A8DaG4nYfvyXx6FWiLhOiypCUX38eBDb9YL+4vSca4UcBIJJIDNq6n3K+TKCQT6c7aGeEEolGT7wK7azeQfEORVVw917jwMA3nfVmkX9MjYit9pQBVwLa1HIRiS222I7Fc4YFREjLldJ89CbOyj7EA2QPooTmeIscbEZdHOI1YXqXNx1trOVhFEPoxWFw/FgPTZd8omIBSSki2VM5xX0OIwGq44HH+eNx+ye7ZqqQRDbc09kiIwdvIiPDESQHct6zvYa6PxwHCPPaM92wHO2N0MKSpDDMpScgvxEnukEA6e02vi7/vrrTW0Orl69Grt373brsDxcohoj7454lmNcMKs6ul0Q2/Wx8IkC/D62hLNYQAaQb4uzPWsIaJ0/R2jxezsMJPSc84mC0b6g06Hu7bYkHhit8Dp/XtRDFAVE/WRtmimWMWDzfogW6YQYOD+aQfY98472LHhLbASAJbqz/axJZ/u4vvbqi7J/f03XTGWE4C+56GxvEiNvxIt3cIy8vycJAJAlBUpWsbWnQJ3tAgcis0EDsX3ZxcsQiAdQmC5g9NejWHbJMqOoIhTV72UbFF+whGEcmalzrYgNmXe254izvaLK8Emdex6YIZgMYqIYgCScaf1kRmHjbrDLePiVMzg5mUMiJOMtF65Y1GMxYuTb7GynTlVWxHY3hcNaMow7uelxu7HRo2kaFzHyQHWBb6Wa3nC2c7Ioof+G6YIC1WFcON0YYDtGXt/kKJYdjUeGA3E5YSSoOC/qqhZusX3N8KhCFyjQ0FZnKnW2zxMZNQ3497cDz/xL2/62Waiomj3rrL8VT4IqnR9KVkFFsX7vQWPkPbGdwFMhBiXUSwoyvL7tHjzjeoy8IY6w6UR0s7VZbe9l1hyJRrKYC0UHtdRGbLMwR+ieVjuc7XSORfzszI/aGHm3W6xkOUjnq/a0t3feVFQNpTI5P1hqPVGPhAut72gKBstzYi5LLDrbJ/RrT38Hi8VmoWuvshp0L0ZerQCVYsP4dCrCdnSMvN6zXZbLtvcslJwCv1+BEORJbI/XnSeiJGL1daQF8rGHSZQ8LaoIRiqAFAJE9q8ZTVMao0vM92zPk57tZY39FgMkRl6G7GtvcuVi4ontHcjXHycXmrdftmrRo8p6XBRBmsFa9C8Vh4plFQUbm7uNMFyZjBQdzMVNZ3teqaCsi5CszItG9OlVjeMZ8+eR4WznZFFC0wlUDcg4jLhMcVCEQY9dczgeacYLdIBqtKMbbpM047H6HvORghIkfX63M0qeCtDzqtBPPwcc2g3s/jjw6gNt+/tmcENUrSgVlPVrKA+Caq1IbqdvOw8x8kZf8nF77v5ajPOAg7lBMcZnwvn4eHh0KtUYeXed7Yu9F2GXqIsx8iyPRaym2NlNaqP1WXAw94aps70NMfIMrj2omKxqs/8t3YCHdD4jGaNo77ypHVMWilGa4YbJiEdnO42RP2O6Zzt1trN/f01TopRy0L0YeUVf2zZwMrPgbBf0Y5dlxZbYrlZUVIoV4mwPRt0+vMUjEG1YlDG3bzstqgiGKlxEyAMtxPbYEJCx5mwvg/1xoT3b/XLJ9YK/TsET2zuMl0dSePLoBHyigHfvWL3Yh4NkZIFj5BkRjKJ+yejl5KTKcy5G/2VGxmEuRoRhyXmVNC088IkC84uUPovOdk3TuHO2B2Uf/Hq0ntPodF7aC9DxmHEgMqcZa8FRj2RI3wDLO/+e4aH4wGM+tC+33ahwMxg92+eKjPu/B0SHgI23AD/4AHD2UNuOoRXhAediOxVTAZvOdk0DshO2/77biD7RENztFGNQZ7vtePGD/wkcedjea13CKMJwwblNne08pB5QaN92z9nuwTPVGHmvZztQG5PtRgE4eQ8WHarV1nfuOttpVLgggInodNqmarItMfLsxaaHZB9oVya77u1GGP25GTYMGAYSm2NDx4CV86MZ9BriZL+C9e+TegzqMfKme7br60weYuSpeFhS/O4520v6PXoDgZUFZzsMsb1cPzK8BWX9e9rvVyCGeRLb68fIA9W+7SceO4FKqWIUVQSC5e4R29Pme7YHAiVURA6i9XuCKJX88PtLKKXbl1y5mLD9zc8h33iCVPTs3DaEZcnFj4dI6mJWu2PkDWc7I4sUURTa0rc9w3j/5Vig6tbNOXRW0HGNBSVmItkaUY2RN/dFUqqohqufF2c74F77BVrgEmdcUHUjli1dZPuaAdTGyDubF0pFNSItPbGdL4y+7Tacy2aolCqo6N9Zs5ztagU4cC+w7Q7gLf8MxJcD9/wOkJtsy3G0whBVz9oXDamY6gv44LOz6fXkPwB/u4k4/jsEuoi1U4zhyNn+xN8D33038K23EtF9kWhHz3bP2e7hwRZGjLzD9ChKnvGe7YbT34XWZvkSO3Hpc4m1qTd3bVE4C+v0dqY1ZhgU2wVBqHFvuyu203OOZcMAPW/spjWy3HpiLnSd7mS/goe0g7lQZ/t4pohyRW35fCNGngOxnRY5F4t+oNR+Z7taUaupbB3sbIdPhqqKtp3tir4XJstliCHOxPZSfbF9cNsgIoMRlPNlvL7vdWMM/MEy4OdjDGrF9nmGxKgutpswKtIY+YrIfhGCFJSgVIIQRQ2F8anFPpy24IntHcREpogfPT8MAHjfVWsX+WgIPW2M3KolzZizHXC/b7uqakacNKsu1aAsVqukHS7ceIgKp9AKVrMx8rmajaEwgy6KRlBx3Im7QlU1Y26x7GwH3BkPunnG0rVzLrSoy6nYXuvmYmnDy6M1TSuCXaBUc22eJbYfexTIngG23wEE48Db/x0ozADfew9QaW8RYj3cdLbbci5PnwR+8ZcABOAnfwxU3N2gtYuTYgzqPLDUs13TgIc/D+z5H8DVdwHn/hbwvfcBL/3I8t93g3aI7Tw52w2xfdIT2z34JexibDoA5JSqWMQi1Z7Uzr+rqUs1yOBYxF0o7K1HNRaajTHpsZgyZ4Uso/s3tFDbTWd7RdWMCHVW5kY9og5bI/IwBhS6X+Fkz9MozuHIRNIXCcAnCtC0qpDeDBoj389RjHwxL7vnbG8itis1e0Qd7WwXBJRVv+2e7dTVLfsVI5KeC5o42wVBMNztxx4+ZiQYBAIK4OdjDOg+lqqoRnqBQWwJUM4DxVTL9ynniLNd87FfhCAIAjSJfI7S+PgiH0178MT2DuKep06iVFZx/sokLlqVXOzDAVDtpdtuZ3uaQUd3PORcKKuFRK+T/8+qK1MQBNf6tqc4ioO2GiNPF+0BSYTk4+cy7UaBSrrI/nlCcWMDzEgFYXgsaFGX08Il+j0Skn2QOTpvPNofI0/Fdl/AB1/tZvr+7wO964BlF5H/7l0LvO1fgRN7gfs/0ZZjaYYboip1tttyLv/sz4BgAnjnD4DRA8BT/2T7ONzEyfywHCOvqsD9fwY8+tfAzZ8Bbv4L4Lf+L7DtLcD3378ogrubYruj+dGhhHqJ2O7FyHvwTFQXMXIuOLkBIM+YmDqXqljmgrOdYeEs7mKcfi2sxULTtcZUG8R2OsdYExKdCsr1qO1VznLhs+H6tx0jT8aBxQKduRhJfA72PHOMJ6XUwycKGNANNWOp1sW+47Rne4T9YlajCD4vtSFGvo7YrguwEIgjtpOpqH6HznYNfpkfoRkAEIg3nSdrblwDgPRtNwoO5BI3MfJyRIbgI47EecaR6BD5mW7dt13JKwgGi1Al9sV2AEBAF9snOqc9oZt4u9EdQqms4l/3nQAAvP+qNR0TN0SrgKdzJcc9uJtBq85Zqgh229lOb+Zln8B0b6eYS84Koy83QwUYjeiLWhPbq9W/7JwPZnBDXKbzIiiLCEhsL2CNHmhOig+MBAh250rSpWhHFhNSPMxhOJfb5Gw3BMZat4FSAF7+MbD9t0nTRcraa4BdfwM888/AM19ry/E0wo0YedvO5UM/Aw79FLjtC8C664DLPgj84vPE7b7IOJkflmLk1Qrw4z8Envq/wO1/C1z9EfJ7nwS8+Z9qBPcfWj4OAEDmjK14fjovlKwCxeE9KY/Odtqz3YuR9+AZKmK4JZzRtUiIETF1Lm4VfwO1kfrsjUU72t4B7IlnvVRs93q2G9DiADfF9pz+XiLjvcrpWtLuflaB4WvGXOIu7HnSdBDWClJaQaPkz5gQVieMnu3sF7PSNLB8RlqQGHkqwPoj/o7RSRpRQQB+v32xXRRViKIGyHwIzQCIs71SAsr1x2TdTesAAK/vex3ZM1kAgCwp3MTIC4JgFPXTRD2DmC62Z1r3bac92zVOxgWhOABAmfZi5D3ayE/3D+Nsuogl8QB2bV+62IdjQPtbKRXNcQ/uZrDoznSj33ItdAyiATZ6nzXC2NxwWEFviIghduZEI3oj1Z5OZqj2teJrQVKtjHYgthuJB+wXYbgxHvQ8iwbYHQ86DtMONwKN7xHGNrs8WhNIkmtou3q2U2f7LIHx8B4S6bXtrfNfcMn7idj8sz8hUfMLRGSALLwX3NleygK7/wRYfxOw9c3kdzd+Eggmgd0fN9VnrJ04mR+mY+TLJSKkv/DvwFv+H3Dp789+fJbg/gFrgruSBx77W+DvLwS+dgvp3WaBQDwAUd/UdiooO3K2qypw+CFSqNJBeD3bPboBWrDuVs/2LGNi6lyoWJZxYZ1O3bosulRj7XK2F9kSz5J69HBeqaCguLunVV2LsXWuRNsQI0+vGxE/2/tZMYfFOrmanu2s44bYni1W5wVPDMaIgDaWbn7fW1E1TOb4Edupsz2bFqEVF0Bs19fpHR0hr6MKAdsx8kpOgd+vn2dyyOUjW0SoONzA3Z5cm0RidQJqWcWR+48AAGSpyI2zHWjSEpGK7SbW/kqO9GyHP+724S0KYph8jkrKE9s92oSmafjGE8cBAO/esaaj4m9Dsg9+fQNvqo1929MMLlIMV6pLFdIsRunXw/0YebbHA7AeI58r8bkgccNdQSPMWHZyU4xWFA42OarXDXbHIxmmCSpOxXb2+9d71Ic6l9sWI6+7eWc52/d/Dxg6DxjYVP9Ft34BWH0V8N13A5NH23Jcc6mNC7ebNmTLufzo3wCZMeLop5unwTiw66+BV+8nCQCLiN35oWmaOWd7KQf8x+8Bh3YDv/NvwHlvq/88n1QTKf8B4MC9rQ6AtCr4h0uBX/wlcME7AFEGfv0tS59DEATXouRtO9tLOeC77wK+9Rbgq1cCxx5zdBxuQp3tXoy8B89EjGQxL0YeqCk+cGE8WItMr6V9Pdtp8gEb99yxgARJJPcvbu9pZRh1tjsVlOthGAYYKcJoRLVYx1nPdlaTQWpxajCqqBrTrTiaQZ3tYy2E1alcCZpGllA0ZYNlZvdsb91r2hQl4mhuFiPvj3T+2Gli0FGMvCzr5xlHQjMCMfKzwVwRBAFrbyJ928dfIf27JbFLxHZ/BPDHzInteQWBQInswXCAGE0CACrpmcU9kDbROapuF/PciSm8+PoMApKIt1+2arEPZxaCIBjudqdCSDMyDArN7sfIsxelXw8q+jl1VlTjsdmZE42ojZE3I5DwslCdiys92/XzhG4esYzT4oNiuYJSRQXAtsDsdow8y4UHHvWhPbmL09YXrmagFfOGm7eQAg7dTyLkG+GTgN++Gwj1APf8LnlNm6GCqlpWjV7jVrHsXD7zCrD3/wDXfAzoWz/7sXN+A9h8O3G9FxZvoUTnh9UYeSWnQKuQ7+SGPdsLKeDbbwVOPAH83neBLbc3f1PRpwvudwA/+P3Ggvupp4F/uRn4wQeApecDdz5Nihe2vQX41b8Sl7gF3BLbbTnb02PA3bcDRx4Gbv87IDoIfPONwH/eCeQmHR2PGxjO9knP2e7BLxFdxHDaxovCeoy80XPZhfGgTmgWXartcrbTYowII/NDEASjPaLZ4nezZIvsmUaA9vRs56UVXsTh9SPPeDJILU73b/I1SRKsz4u5LNGd7WdbONtphHxP2A+pg4x1dvFH/RBEAcWin4jkbiScKfo9erMYeQZSAVRfCJJUtrVOJ2K7fs2pMw7MYojtjVMQ1t64dtZ/S2KBqzFoKLYDQGwJMTW0QMmVuBLbpVgCAFDJTC/ugbQJ9q/0HPD1J44BAH7rwuXo7cBqrR6jx1Ubne0MLlLcrhQ3YuQZF4qoG9tpJBkVIHkQzuh5XVY1w5ndDG6d7S44uVMcFWHEHcbI126cRRmeK0mXYuRZTEjxMAddoLTN2Z6Zs4h/5adApUiEz2aEe4G3fwdIjxBhVW1fux0AkIKScYx2RVXDxW9GTNU04KcfA5Krq/3J57Lrr0m/voc+Z/1gxl4CvnYrcPwJ66+twVjAWoyRpxshgijUjybMTQL/+iZg9ADwrh8B628w98aiD/itf6oR3H9QfWzqBPC99wFfewPpX/ee+4Df/Xa1kOGi9wDTJ4Bjv7T0WRbN2T52EPiXm8g58L6fAZd+AHjvbuCNXwIO/hj4ymXEvb+IrQa8nu0e3QAVMdxq+5ZnfC1Sdfo7FxJzjLm4a2lXz3YW2wy0y0CSZazwgBJtQyFGdSzYmRf1iDpsi5hnuEBnLvQaki6UUVGt38vRlhOiAAQkvuSHJbqzff/pGZyabHz/TVtJ9nXgXr8dBFFAIB5AseiHAK3qSneCkgN8AbKGmvuQ7mxnIUYecsiRs92Ika/j8GeWgC4ON4iRB+aL7T4UuenZDrQS25eacrYLSg6iqEEI8yG2+3tiqFREqPn2G1YWA7bvgjjg9akc7j9ATqz3XbW2xbMXB+o6nFoQZzs7U9KN/kW1ZAwRkZ0xqEc1Rt7ZZo8hqnLgYA5IPkQDEjLFMiayRSTCzT9TlvHoxka44Wynm0U8zAunsWy1PQJFkd2+ePR8mMkrUFXN9mcxCpYY7l/vUR8aE96unu2Gm5eK7fu/RyLiEytav3hgE/DWrwP3vA24/8+IwCqI5H8QSGagIFZ/QgB619qORgv3h1HKlJA9m0Xvhl7LrzcVm0554T+AE48ToVlq8PzECtK//f5PAOf9DrDyUnMHcuh+4uouZUiE+vt+au51dbA7P2rHYl5v0ewEcWtnzwLvvQ9Yep61g6KCuyAAP/gvJGZ94jCw76skDeE3/xE4/+2AOGfjceVlwMA5wHN3A+tvNP3nqHvbSVS6pmnzUx6aceRh4LvvIcUYv/cdILGc/F4UgUveD2zaCdz/p+Tf+cXvALf/LZBc+ASvUC8Zm2KqiIpSgY+DzW8Pj7nQ3tluuVRZjk4HqnsKbowHy/2Xq4lzFZQrqmuuSiqgsTQ/qIHEbWc73fOIMlYIXnW2u7fHl2VwXtTD6fWD9WSQWhI1ey6ZQrnlPtZcagtz5t1rM87afrKWO3A6hWv++he4akMf3nbJStx67hCCNd8XhtjOgDPbLMFkEKWS/nmKaSDgUBgtZRsKzIaznYViBTkMv38MxQmHMfIcubqrzvbGYntsaQz95/Rj/GUSI+9DgasY+UCS7KPUFdujS0yJ7WKFJAOI4aSbh7ZoBJMhFCf8EJrMC5ZhW9XjgJdH0gjJPly4qgebh2KLfTh16TH66bbH2a5UVKP6kyVHovsx8ny4Mo1FvcPNDSMunPHiA0pf1K+L7SWsG2j+3FyRjwi2ubjSs52jeVEdD3vnCi+x6ckQ+Y7RNPKZrC7iKfSawfp4eMynaTWwC1CBMRALAJmzwNFfArd/0fwbbHwDcMv/BH7+58DT/6/18/s3A3/wOCBZ3zQI94cxfXzatoOZFha0dC7nJoEHPkmKB1o5ui/7IBHm7/sI8MFfAr4m57CmAU9+hbz3ltvJ/370IWD418CyCy19FgqNkbeafFCYIfMpkKgzFgd+QMTxD+0lBRV2EH3Am79K/v+PPwxIIeDqjwJX/VHjDQRBAC5+L/DAfwcyZ0gkuwnccLYrOQWa7lpqOT+euxu47y5gw02k2CRQZw0TXwq87V+BV3aThISvXE4KMy7/g7rOldkHkyefP7bU1nlSS7AnCAgANBIlH13Cj1PCw4NSdbY7F5fVmh67rIpFTp2ptRQY7jdc26IvUywj6VK/YKMYg6GWZ+1Ka6zGyLMzFkCNoOyis52XPQxauG1XbKdtFlgs0JmLXxIRkn3IKxXM5BXrYjsnBRj1uGxtL/7pnRfh20+dxOOHx/HE4Qk8cXgC8aCE37xgOX7n0pU4d1nciJHvi5pMjWKAQCKA4pT+fVJqHA9uGiUPyPXXRiw524VA2B1ne5eJ7QCw9qa1utiuQVTzXInttF1d3fYCsSFg5PmW7yFWSIKEGE24eWiLRjAZRHHY7871owNh+y6IA96wdQme/PObMOVyha2b0EXZVLY9zvZaUZalCHUq9tkVyuaS5iVG3iVnRTVGvvNvqszQG/HjxETOuNluhudsbww933hwtldj9e3GyJPXsV6g45dERPw+ZEsVTOdLtsV2FhNSPMxhV0w1C43OlqMycPBHRPDc+mZrb7LjTuCcN5EYPE3V/6dV/z/0/58eA77zDuDZrwFXfMjysYYHnImqpmPkH/osiTm/9S9bv6noA37jy8A/30CE9EaR8+USsPtjpCf51R8FbvwUAA345V8Be/8BeOvXLH0WiuFst1iM0dTln3odiC+zL7RTqOC+7gZg7bVV93czznsbsOdTwPP3NB7LObghttO5AQByo+uwqgIPfRp44svApf8FuO2vAF+La+6WXcCaq4GHPwf8/L+T5IhrPkZcLJkxck5kRom4ntZ/FmfIa8/7HeAtJgpYmiD6RASTQRSmCshPeGK7B5/QOG+loqFYriAg2V9DFMrVdDJW1yJU7CtVVMfjQQsYggyOhV8SEZRFFBQV6YJ7YnuWwTYDtGe723tadC+LNYHZrTTCWnjZw3Dazz7PcIFOPeIhyRDbrULHgrXzwwyCIOC2bUtx27alODWZw/efex3ff+51nJ7O49/2ncC/7TuBc5bGjUKcfhac2SYJJoMojNY4252i5AA5VPchlpztQiACWS7bFtsNZztHQjPkEEn3KzaPC1930zo88w/PwOerQECFqzFoahyJLiFr4RZIIGt8X6zH1WNbLILJIGlFUfbEdo82EQ/KHd1/uBoj356CAOrODMoiZJeizRYCt53tVaGoc+eCGSIOFyeUtBEjz8dlqi9CNvPNRNcZPds5W5TEHcam1762k6+ZZqGfwe41hBbo8CAuJ8N+ZEt5TOcUrO6z9x5GwRJn543H7JhwTdNcjyGc5Wzf/z1g/U2kH7tVkivNPe+idxOB+bzfsfx3DFH1rDOxvalz+fVniXN55/8i1dZmWHYBcPmHyOc6981Az5rZj+cmge+8Czj1FBGfL/i96mNX/DeSCnDzp82PYQ1Oe7bTavNZpEeJ2O4Gog+44O3mnx/uJWP4q28CV/0xKf5o9RJ9XuTH7Rek1LZTEOq181DywL0fBF7+CRHZL/8DU8cGAAjGgV1/A2x/G/CTPwK+807y+0CcbDLEhsjPofOA2BIgOgRMHgUe+Svg4vcBq3fY/lwA6dtemCogP+n1bffgk9p+0bmiU3G5Kr4FHbzPYlJ7L5h1OB55RQUAhBl1qcaDMgpK0dH6ay45BkXVnjbtaWUYFdvbESOfY7AIox5OXf90HIKMXjPmkgjJGEvZu4bw7GyvZWVvGB99wyb88U0b8cSRcXz32dfx85dG8fJIVWDs58jZHkwEkSq5KLY3iZFnydkuhqKOnO3VGPn6hQdMIgjE3d5inqy+bjUEUajpW98lYntsKVBKA8VMw3YMakWFJJI1rBTnR2wvlfwQkV3sQ2kLbN8FeSwIdGHSrhh5VvvsGv2WXYuR58OlSo/faYw8T6IqAPTplZgTmdY3XrwuStzs2c6DwOz0GmK0nuDgHEmEZJyezmPawdxIc1Kw5DEfukCplCooF8qQXU62oGJ7LDJFxOC3/Iur7z+PG/47sP/7wKN/A9z2BUsvdepsNwTVRs72SpnEwS89D7j09629+Q1/Dhz8TxIZ/o7vV4XYs6+SnvbFFPCen8wXTi98J/DLvwSe+ifg1s9b+5uoJh8UZgrQVK2+UFyHpjHyqWGy+F0sLn4v6XN+/DHiiG+Bm872unMjcwb497cDZw4Cv/ttEv9vh5WXAv/1MSA9DIT7G26sASAu+tceAH72ceCDj7SOnm/CW7/7Vvj8PvSs42ODwsNjLpKv6mDOFMuGi9cO+Zoe5aLJ62mn4RMFI/o4Wyyj19F4sL0uiwUlnEkXXUvjA0gBA1BNVGABOgfaFyPPzlgA1TRFpwaJWow9DMYi9edC/y3zSgXligrJoiGIO2e7A4MALwUYZhFFAddsHMA1GwcwnSvhP58fxneeOYWj4xlcs6lFL0mGoK5UAG2PkafOdhbEdl84Spzt9eLCW6BkFfj9ZWiaAEGqUwjOMoF4y3kS6gnhnDvOwdRzL5BfdI3YvoT8zIw1FNvL+TKCQXIeSAkbhpAOJNQTQq7oh8/PZyE8OzZij0XDiJHPtSdGntW+w9Slmy6WUdF7XDqBLnRY70XtNHaLYsSFcyKc9UZ1sd2Ks52zRQn9tywoJNLRDkYRBhcx8uQzZEtkIW+VDEc9ypMuFHVljOID9sfDYzb+mB+Cj2z4W3Uvm4GKjEvlvaSv9uadrv+NWUQHgWvuIv3dxw9beqlTUbWls/2ZfwZGDwBv/JJ1cTMQJb3uDz8IvHQv+d2Rh4F/uRmQgsB/ebi+QzkQJe7lX/0rUGgeMVcPmnwADZacBE1j5NMj7jnb7bBqB9C/iSQMmMANsZ0WYtSdGz/4ADBzCnjfbvtCO8UnAclVzYV2ABBF4oYf3Q889w1Hf3LphUsxeO6g64U6Hh6dBF03ZB32bTf6cTMuFNH7wbTDntRUOGMxRh6o2bNw0dmeV6ibm50xoT3bzaTMWSHLaJ/yWMCZe7sevOxhROYkY1jFKFhi9JoxFycGAV4KMOyQDPvxnivXYPcfX4OXP3sbLliZXOxDco1AIlAV24tuiO3Zhm5u6mxnIUbeF6k62zXNmkZAne0VIWg+OYwVTDjbAeC3v/vb+P3H9TQ4Pz9tv5rHyOspgunRhq9X8goCAbJOl+JJtw9vUaAFO5Lgie0eXQpdmLTP2c6moztRs2HnxuI1zYlQ5EaMvFJRjY0NfmLkzYvtvC5KYkHJuG+0664w2gswfp4As0VyOxuBPI1FVWy3fy2l15wYY98lHq0RBMFYpLSjbzt1tg9Ufkn6SzeoKnaVK/4bcU4/+BeWXuY0Rr6psz01Ajz8eeCS9wPLL7b1/ti8k/Su/9mfkb7e33orsPIy4AMPzI+Wr+Xy/0r69f3qXy3/SZ/fZ/QYtzI/qOtgnrNd08hYLKazXRCAi95DItuzEy2f3nZn+8iL5N9o2YW2398WKy4BLngn8PD/JK0IPDw8GhIx0sWc9WCmEeGsC0X0ftC14gNGI6Fp4lPKRVGVzrEQQ2PSE3E/Rr5UVlHSC6ajjAnMnrO9MX5JhF8iW+VpGzH7dB+LpfOjGU7SCXkpwHCK2y3QFptgMohKxQdV87XsxW2KUq5hES5TzvZYDLKsQFM1KBb3tajYrgr8tBswMCm2A4BY0dfycouibIYw52xvIrbnFAQCJRSLMgSJj2spjZGXfCSZkDc8sd2jJdX+Vp6zvRbZJxoV/27EsqUZjdOfixsx8rXCI2tFGI3oi9Jq+tauO14XJaIoGP+edvsG8uRsr72G2Fm8ZhiNLaxHIkSLupyL7awXLHnUp+kixSHFdBEDA+MIKUeB7b/t+vvXRQ6RHuWv3Acce8z0yyIDJFKtLc72n/85IAeBmz5l670Ndv4vEge451NEoP2975Ce3c2ILwO2vZVEyVes3z/Y6dve0NleTBGHhdl+9e3ifL2y/4V/b/nUWrHdqpOC0tDZnp8GCtNAcrWt93XMzX8BqBUiuHt4eDSE3lM6beXFi7M94pJzt8C4SzVuOPzd79nOkpubGkimsu6NQ+25xpLLH6iuH50mP9TC0x5GzIGBpHoNZX8cgOq+i539iizjbTg86kMKlQWU1WDbY+SVDEPO9nAUslwBoFnu267kFPj9CjSRo37tlEDMfFEGnU8cxcjTwv66+1iBOCksSI81fH05X0YgUERJ4ae9AHW2B/wlo7UfT3hiu0dLkm13trMrGDnpXzQXXiKhoy64KuhmQMTvs9wjq1PpjZAv2ImMCWc7J46Sejjt285bewEjls3GBliKox7lhrM9b/97Js3JNdSjPjQqvC0x8pkStm9/BRVfHFh/k+vv35BtdwDLLyEit2qulQQVVbNns7b+ZENne7kEvPRD4JqPAaGkrfc2iC8D3vZN4K1fJz3pzcbRX/lhElV+8EeW/yTt227F2U4XdsHEnIVraoT8XMwYeQCI9AHn/AaJkm8hoNN5US6ULTspKA2d7dMnyM9myQTtJDoIXP9nJEp+5MXFOQYPDwaga7CcS07uEONCkSEmOi0+YLz/suFsd7FnO4sFGYbY7uKeFt3HCkgic3sWMd3gUSyrKJWttzOrR5bBIoxGGM5/G8UI1Rh5tuZEI+IO9ityjLZZ8GgOLXIulQNtj5GnznZ/tPPFdkEXiGW5bEtsl2UFqsiPoGrgj5p2tqOUq76GE+j5QlP1ZiEIQHQJaWHXABIjX0JJ4Sf1wOf3oayGEAiU2mKmWWz4+Pb3aCvU2Z4qlG31FW4Fy/HpToXDWoxxYPxGNBJwXj1PNwN4EBEpg7pT7PhEFsPTzcUAY1HC+CZXPeJB+z2/VFUz5hUv7QXiDjbAWC5UmkuSXksdONt5uYZ61IeKqe24GS9liti27RXklrwBkBZwIS8IwK1/CYy+CLz4H6Ze4iQuXNO0qrN9rps7PQJAI33C3WDDTaSYwApD24G11wFP/kNLcXkuRjGGhfnRMEY+PUx+LmaMPOXi9wITrwEnn2z6NDkiw6eLHvkJe60WGjrbpxZZbAeAyz5I5ubP/sTy3PDw6BbChhPTnRj5CENCaj0iLqStAVVhOchoJDRdM7nrbGfPudujuyJzpQoKirNzhELFZRbXHrVOfKfnCKW6h8HmuVKLk2Kdaow8e/OiHtU9T+tjwbOJpJuhhcqKEjAvojajlGvoZKY921mIkafR57RvuxWI2F6GJvETn25gIUYeJd1QwJGznYrt5UIZ5XoFXLEhINPY2a7kFASDRZTKfKUeVHwRT2z36F5qe5O7ISrPhVaLsthn14krdS5Gv2EGiw5qMZztpYrtKNMUZ4IqAGxeEsOFq5IoKCr+x48ONB0bI26LsTg6M9B/Uzt9A7OlMmg7F16c7dXxsH4N4cnJTd0m0za/Y0plFUXdlRFjvBWHR33a2bO9L3QUPT0plNa8yfX3bsmqy4Fzfwt46LPVxWUTwgNkAV6cKaJicbNYySlGT6x5gmpKF5jjyy29p+tc+YfA8K9bistzcTVGnjrbO0FsX3MN0LuOuNubIAiC477tTZ3tcgQI99l6X1fwyaQ9wckngf3fW7zj8PDoYKL6usGpsz3PoGu5HjEHzlRKRdUM1y9LwnItRmGvi2K70ZuboTkSD0rwiaRvspO2VbXQcWDRtSv5RARlsh3sVt/2jNGznb3xmIuT1oh5xltPzIW2orCzF5wv8VOA4VHFWHcV/C7GyDfv2c5CjDx158tyub6LuQnU2Q6JL0EVAIlKN5uAUMoAEBomHbBIIBYAyO1H/cj06BIg3bhnezlfht9fgqLylXqgSbrYPmVv76KT8cR2j5ZIPtG4wWpH3/aqyMyeQEKFMqdFCBVVMyrEWRyHWmhCQUXVDPHLKlURke2xqEUUBfyvO86D7BPw0Ctn8JMXG8fE8NTvbC5O0iCoQO+XRGbdJXNx0orCKFTiQGxP0Bh5m9GOtZtELKakeLTGcLa3IUZ+46oXkEpFgNVXuv7eprj500BuAtj7f1o+NZgMQtA3i62KqlRMhVDHHUDd3PFFFpg33AwMbAH2/oOll9mJkaebIPNi5NPDQKiX9K9fbAQBuOg9wEs/AnKTTZ/qWGzPNBDbp44DPavJsSwm664HznkT8MD/cMdF4+HBGVQMdiqc8RIjT527TsYjX1PUxpKwXEu1Z7s7gmrtGp8lkVkQBCOx0a0o+QzjEdlRvUDZLbGdl1QMwFmxTp7x1hNzMQxGtnq2s5eC4dEamgpWLEju3JM3iZHvJme7368Afs/ZDn9k8dedLiKIgrHfUNfFHVva3NmeVxAMllBWOZsb/hgAoDQxtcgH4j6e2O5hChq71Y6+7SzHyMddipGvvYmPMO5mDteIoHYX9dW+3OzNiWZsWhLDnTdsAAB85scvYSpb/3xi0S1gFicx8vQ1vLjaAWeL1zRPPdtDtGe7vWspvYaG/T7DteLBF0YFvcsxU1pFwZaNL+Oll7bAH1+kCuqeNcAVHwKe+HLVYd4A0Sci1EuO06qoavRrj/ohzF3ApkaIezkQt/SeriMIwI47gUO7gYkjpl9mp81AQ2d7enTx+7XXcsE7AE0FXvxu06c5FdubxsgvZoR8Lbd+HihMA49+cbGPxMOj4zB6tjuMkTeEIsYLW90QEqkrUxBIX24WibnsbK9NTmBtrWr0bW+wBrdK1mjpxdY4UAxB2SWxnSdhNRqwPzb0HAkxfg2lONmvyBnpD3yMhQfBSJzLuSS2N4mRZ9PZbj9Gnqf4dAMrYrvSeC6wTNO9rFiLnu05BYFAEWXw4/YHACFExHZlqrmhgEXYXDF4LDhJujBpg7OduphZ7HXl5MazlnSRvN4viQhIbN+IiqJgVDPb7f9VjZFnX0Scy4euX4+Ng1FMZEv43E8PznucVbeAWZycM1WxnZ9xiTtoRcHytXMu9DvGbs92eg3lYSw86mP05HbZ2V555ReIRnPYv3/LfJFxIbnmY2SB/vD/bPlUGiVv19le93OmhomrvROqyLe/DYj0A09+xfRL7MwPGuM2r2d7aqQzIuQp0QFgy+0kSr5JC5q2xsgnV9t6T9dJrgKu/iiZG+OHF/toPDw6Cjec3ECNUMSYkDoXN2LkjTho2Te/SI0RYi4722nygchgAQIV2yddc7azGyMP1AjKbs0NjoRV+m9q9bxRVQ0FhezlsH4NpTgxGBntETkowPCoYrh0sxI0s/HgjVArQKXYMEaeKWe7LhLLctmm2K5ACHDmXgaI2F5KA6qJ5NtSpvvE9ugQUJgh7RTqUM6XEQiUUAFf4yKEiMlDmZle3ANpA67fHa9ZswaCIMz735133gkAKBQKuPPOO9HX14doNIo77rgDY2Oz4xJOnjyJ22+/HeFwGIODg/j4xz+OctmdG0APe7gduVULy73KnURA10LHgBcRMeqwSjrFUTz2XAKSD391x3kQBODeX53GI6+enfU4y24BMzgTl/V5wVERBj3naZqDFdIMXzvnkgxXne1aEzGpEWmOrxkeBDsx4WbQ9n8PExNJjIwMQg4v4rUlmABu+HPg+XuA4eebPtUQVc/adLbPFVMBEp3eKW5uOQhc9kEyFi2i0ym2erY3i5Ff7Dj9uVz8HuDsy8Cppxs+JdRvL/GAUrcYQ1V1Z3uHiO0AcNUfk3+f+/+safGBh0e3QcUMu8XOlBwnPdtp8XfGQQ976vJn2aEad8kcQKltd8ZaAUJPhO5peT3bgarYnnbB2a6qGnIKR852m/tZhTL7rSfmkqjZv7G6TjeuFxwUYHhUMWLki35ohZSzN1P0dUuDGPlucrb7/QqEYLQdR7a4BPTPVDJRmFHKkrQ9zjDOmZk68yK2hPxsECVPne0Vka9CDDGSAABU0l6MfEueeeYZjIyMGP/bs2cPAOC3f/u3AQAf/ehH8ZOf/ATf+9738Mgjj2B4eBhvectbjNdXKhXcfvvtKJVK2Lt3L775zW/i7rvvxqc+9Sm3D9XDAkbErye2z8JJ/+lajCh9Rhdqc4k4iN0Cqo5dnuLCa7l4dQ/es2MNAODP790/a1OMLkh8osCcW8AMznq28+tstzoeqqoZ5xeLLTjmQudFRdVsbfhkjHYkfF4zPNoUI6/kIR3Zjf37t8AfDRi90BeNi94L9G8CHvhkUxExMkAWoO4620eAWIeI7QBwyQfIz2e+ZurpVosx1LIKRd9snxcj32ljAQBrryfu8l99s+FT3IqRn1WMkRkjbpNOiZEHyEbWrX8JHN4DvHr/Yh+Nh0fHYMTIlxzGyHMittN7QieuXR5c/m472412ZwyKZ22LkWdUXI66kP5AKZQrxq0rD8JqzKbrv/b6G2Q8sZJC9yuUimYUIJml2h6RzXPEoz5SQIIUlFAq+YGCwxj5kr5uqeNm1lQNZd2UwoSz3RDbrTnbNU0znO1iiEexXW9TZyZKnvZs54zmMfJ6kX96tO5rac921cfX3PDFkgCASnpmcQ+kDbiu5AwMDGBoaMj433333Yf169fjuuuuw8zMDL72ta/h7/7u73DjjTfi4osvxje+8Q3s3bsX+/btAwA88MADOHjwIL71rW/hggsuwM6dO/G5z30OX/nKV1AquS/0epijnTHyhkgSYODLcw5Vl66zBUqG4b719aCbPbZj5PP89KJuxMdv3YzlyRBOT+fxxQcOGb+v7dfOmlvADPGQfSe3ESPPk7PdptM/p1Q3NHgoSgnKPgRlcktiJ0reKNripGDJYz5tiZF/7QEISgYHDmyBP9oB1fI+ifSkPv4Y6VneALsO5tbO9g5yc0f6gAveDjz9/4By639zY36YLMao3QCZJbZXykD2DBAbsna87UYUibv9wL1AfrruU9yKkZ9VjDF9gvzslBh5ypY3AutuIO52xd3WEh4erELFcecx8rqbm3FxhPbRduL0r42RZ5V40L4rtR45hvty90TonpY7+4ppTpztmaLzPb5skcwLQeBDZLbbs51eM4KyCHGxi3hdIuL3wad/Fqt7OLVJGB58EUwGUSz6zbmVm2E42+e7dpWafSE2nO3kM/j9itGuzAzlQhnQiEjPp9hOenN7YnujGHnd2d5AbC/nivD7Fe7EdimRBABoeYfpGB1IW7/xSqUSvvWtb+Guu+6CIAh47rnnoCgKbr75ZuM5W7ZswapVq/Dkk0/iiiuuwJNPPont27djyZIlxnNuvfVWfOhDH8JLL72ECy+8sO7fKhaLKBarG2epFPnHUhQFiuK+QGwG+ncX6++7STxIbpgnMwXXPw8VmYI+9sYqKpObzulc0dKxz50bU1lywY36fcyNQT1obN+MxXGhzOSK+vsIXIxHPfwi8Lk3nYP3/+uvcPfe49h17iAuWJlESv/sYZfmQqddhyK6oDqdK1k+pqksGRtezhMAiOjXkBmL4zGZJtcM2SdA1CpQFBP9j+bQaXMjEZJRUIoYT+UxFLNWQDBtXDPEjvk8HtZoNR+lGLllzU/lXfs3Fg//ApXwWkxM9KJng9wZc2f1dfCtuwHCA59Eec31gG/+xgJ1cafH0paOOT9NXN/+qH/26zQVUmoEamQIaieMAeWSD0J69htQX/gugP6mn1WK6vNj0tz8yEyQjSEpKEEVVKj0GpoahqypKIcHoXXSWADAuW+D9PDnoT7/HaiXvH/ew4EkEcmzZ7O25jItQBBD1euoMH4EEgAluhTotPF4w+ch/fO1UJ/4e6hXfdSVt+yE78WOuA55MEnV2e7FyAPVQn4nxQd5hf2xoM52paKhWFYRdFg4kCtVC8NZw2iN6LaznVEnd1VQdpaGAdTMC9nHhchsJGNYFds5aD0xF0EQkAjJmMyWMJNXMDS3/VIT6DnCcjqIR30CiQCKRT+EcpYkstk1CjUR22mEPARACjFQsOHzQ4OoO9vNf8/QogK/X4EY5ktQBQAkVgAQgGOPAoNbmj+3G8X2UA/gCzSMkdfyKcAPqDJfc0Pu6QGygJZ3mI7RgbT1avWjH/0I09PTeO973wsAGB0dhd/vRzKZnPW8JUuWYHR01HhOrdBOH6ePNeILX/gCPvOZz8z7/QMPPIBweHH7GtAofZYZHhUA+PDy0VPYvfuEq+89k/MBEPDsk4/hmPn7to7gSAoAJIyMz2D37sYutEbQubFvjIxvdnrC1vt0GpkpEYCIfc89D9/rv7b8+uPD5PVHXj6A3Wf3u358ncSl/SKeGRfxR//2FP6/8yo4ngEACVqp4Opc6JTr0FH9nBmdsH7OvHCczIvx4ZPYvft4G45u4Xlthpz7w+PTlsZjNAcAEvyCip/97GeOjqFT5oZYJt8FDzzyBE4mrTlvnj1NxnH67CgX19BuptF8LA4TITAznnHt3/jSo/uhZfWFj+ruNdcJMf/NuGHyk9h/z1/gVN818x4/c/YMAODI/iOWjvnM0+R1Z1NnZ73Or6SwU1Xw7KvDGD3TGWNAuSxxASK//Ftgy182vVblj5NCgtSZlKkxyR/T4+aDmPX8nuwRXAvgsReOIPVaZ40FAFwavwCRR/4Pfjm2ZN6mVorclGLs+JituZyaIK9/+vmncSB1AACwaeRBrJXi+PmDjzo88vZwbt/NWPPo3+Ch8SEU5YRr77uY34u5nL1kAg+PsEvCGctiai12ey7XUnX5szsWEb8EUQBUjaSEORfb2XWq9ric1kjd3Mw6212MkWd9LObi1NnOYvJDM+JByRDbreD1bOeXYCKIUt4PQasASh7w29RdjBj5OmJ7hgjWclhmI/VTEKAKAciygpSFGHkitmskRj7An9CMxArggt8DHv1rklxHne71KGWB6ODCHdsC0VRsFwTibm/gbNcKRGyHv8m4MUigJ47ycR+Ekie2W+JrX/sadu7ciWXL2t/38BOf+ATuuusu479TqRRWrlyJW265BfF4vO1/vx6KomDPnj14wxveAFlmO+ZXfXEE3z+2H8F4H3btutS191UqKpQnHwQA/MZtb0AyzNY4HRpN4+9fehIVnx+7dt1g+nVz58bpx48BR1/DhtXLsWvX9jYe8cLwcG4/9k+NYO3Gc7Dr6jWWX/9Px54EUmlcu+NSXLux3/0D7CB25Eq47e+fwEhWwYnIZpy3KQ689GsM9iawa9cVjt+/065Dr53J4Msv7UVZtHbOAMBjP3wJGDmNC7Zuwq7r1rXpCBeWl4ZT+IeD+6D6Ati163rTr/v1yWnghafRGwtj1675YpwZOm1u3DP6DEaOTWHz9guxa7u1COeX97wGnDyGLRvWYNeuFtWyHh1Jq/mYG8/h5f/2MtS8ittuuQ2i5LwTku9f/xEz2koAQP+yfuzatcvxe7rGP/4Lzl/mx/ab5h/TgakD+PHXf4yknLR0zI8+8yiGMYy1W9bitl23VR8YfRE4AFx8/e3Qll3kxtG7hnAyCenf3oTB9H6cf8fHGl6rUq+ncOgjh6BmVezcubPlhszJx07iEA4hPhCfNYbCK/cBrwJX7/xtINJ59x/CkQCk//gd3H7BUmjLZ/9bjS4dxdHPHIVUkmzN5ZdKLwEAbtp5E3rW9wAAfD/5GSBu7Kxzo5bsZZD+9xbcvM4HbbvzY+yE70WazubhYRXqrnXL2c66M5OOhxvOdpbHQhQFRAMSUoUyUoUyBh1ujbHsVO11OUaezi1WWwG6GSNPrzu8iO0xm4UIuZoYeZ5I0NZ3FsT2UllFWSUF9LwVH3joMfLTegJbKWNfbG8WI5/VHd+d0O7NJJovZLlnu5JT4PNVIIoal65uAMD1nwD2fx948ivA9X/W+Hnd6GwHSAu7BmK7IUY3K1JgEKMVheKJ7aY5ceIEHnzwQdx7773G74aGhlAqlTA9PT3L3T42NoahoSHjOU8//fSs9xobGzMea0QgEEAgEJj3e1mWF11E6IRjcEp/nPTCTBXKrn6WrFJd6CSjQcg+tm5K++i45MuQJMlytR2dG7kSuQmNh/zMzxUAiOk34/myZuvzZPTFWk80yMV4NGMwIeMvfuNc/PF/PI+vPnIU/+36DQDIQtXNz94p16G+GL2WKJbPGerUSXI0L6rjYe3amtdNS7Gg83/XTpkbPWHyHZ4uqZaPJ6dHQCc4uYZ2M43mY2ygurioZCsI9M+/57NMfhKKLrYH4x12XelZDd/MKfjqjcUQGYv8RN7SMZdz5Ls1mJjzWXNnAQBSzyqgk8YAANZdC3XpBVh/5meQ5T9r+HkTSxMQfALUsorcSA7J1cmmb1vJ6Zuh88biDODzQ04M2Y9DbCeb3gAkVkI6+H1gzeWzHooPEQUlP563/P2qqZqxoRXpjVTHZOYk0LsGYqfNC0pyKTBwDqTXnwIueodrb7uY34sddR3yYAoqZjjpUQ5UnZmsi2ZGjHyhDE3TbLnieHGpxkOyLrY7F1VpAQKLTtWk7myfdD1Gns35EXMh/YFC34P1RAyKXWd7QeHjmjGXuL6/Z8XZXlv4xcu88KgSSASQLeoieDFt341sIkaeiX7tOkRsV1Actya2y7J+bsmhNh3ZIpNcCVz2X4C9/we45ANAdKD+8xQ+xfZAguxdNRbblwCZBmK73uteCLmX4tYJULFdLGcX+1Bcp23K5je+8Q0MDg7i9ttvN3538cUXQ5ZlPPTQQ8bvDh06hJMnT2LHjh0AgB07dmD//v04c+aM8Zw9e/YgHo9j69at7TpcjxZUI7fcWZhQ0nqlaFAWmRPagWqFZ1nVjIWnHVivip4L3dywu9mTypPXxTkZj1a86fxluHHLIJSKhn/85WEA7G9wNYKeM6pmffFKN4h4mhd04Vosq8bi3AxpfSxiHI0FTTaZsfE9Q79LYkFPpOAVURKNqvaGixSrZMdRrJDeVx1XMZ9cBUyfrPtQeIBsRuTGrcVNF9Nk0R+IzSlUSJ0GBF9nRrYJAtSL34/B9EtAfrrh06SghOWXLQcAHHv4WMu3LcyQOUQXvgbpEVJZ3olCOwCIPmDl5cDo/BY74X4yLyqlihG7aJba5/tjNefC1AmgZ42tQ10wVu8ATuxd7KPw8Fh0qDiUdRojr7DrXK6FisFllfQqtwNd3zuNXl9s6P1x2sW4cBbFROpsn3YtRl53czM4FkD1muHGvGC5vUA9IsbY2ItNZzkNox52xPasPhZ+ic29Xo/mBJNBlEo1YrtdSrrQVscZTwuB5QhDezyyLrZbdLb7/fp1WOZPaDa45mNkz+HRv2n8nFIW8PPVmxyoOtuLMw3mRXQISNfv2S6UM/qb8OVsD/WEUCr54dP4a6HWlm88VVXxjW98A+95z3sgSdWbrUQigQ984AO466678Itf/ALPPfcc3ve+92HHjh244goSl3zLLbdg69ateNe73oUXXngBP//5z/HJT34Sd955Z13nusfCQEWQqZwCTbPWS7cZ9MaeirOsEZJ9kESyIWu1f1EtvAlFRmyfjYWbpmnGoibOyXi0QhAE/M83b0M0IEGp0KgtvhZolIAkwq8vtlIW5wc9T3iaF7GAZGg6VjY6MsY1g48NDQBI1HzPWMX4LuFoPDzmE+whi5T8VN75m1XKQH4K+SJZzMnRDruuNBPbdVE1dzZn6Z6slNbdAbE5hQVUYBY783tHW7INACBMHm76vLU3rgUAHH/4eMv3pBsggfjcwoMRINb+9leOGNgCnH0FmPNvL4dlSCFyDbRbiCH4BEj0OloukUKM5Grnx9xOVl0JTLwGZM4u9pF4eCwqVBzKKxVUVPvr9aqbuzO/E8xSK/rZde7mOBkLWqhsJQK6EdStyuKY9OhrjUyxjJLNAoxa6LxitUjernu7HrTwIMxg4kE9al3/Vu61jdYTDJ4fzTBi5C0UH+SMYhS+xsKDEEgESAQ0QGLk7cKZsx3+sK0YecPZbjeOnwXCvcDVHwGe/TowebT+c0rZunOBdUzFyDdwtou62C6Gk+04tEWDOtslsYCKA/NqJ9IWsf3BBx/EyZMn8f73v3/eY1/60pfwxje+EXfccQeuvfZaDA0NzYqa9/l8uO++++Dz+bBjxw68853vxLvf/W589rOfbcehepiEOttLZdWRg3su9MaeVaeqIAjGjaczsZ28ltUIsrnQBWfGRs/AbKkCuj9EK2i7gWXJEP70ts3Gf/NSFT4XQRCqldEWRVXD2R7iZ2xoH0XA2jWEtwIdAEiG7LtNaK9BXq6hHvUJ9ZBYNVec7flJABryBVI9Ps/tvdgkV5NjrOMUsOtgpmL7fGf7CBBbav9Y203vevJz4kjTp629iYjtRx862nJjlFaVBxPB2Q+kh4F4B48FAAxsAvJTQHZ83kNGIYZFsb12bhhRyzOnAGhAT4eL7atJOhpOPrm4x+HhscjUip9ZB33bDYFZZvueShQFQ+Sxm7ZW4EQ4c9PZnmM4Wj8elKH7JDDtQmIjdfmzuv6I2uxLXg/enO3031TVYGn/M89wMUoz7Ox5Zhm+Vni0xui3DABFJ2J7HvAF6hZ9s+hsFwJhyLKCwkzBdKFOV8TIUy7/AyDSDzz8+fmPaVp392zPTZBi9zmIagaqKsAX4cvZHoiTgp1AoNTY8c8obRHbb7nlFmiahk2bNs17LBgM4itf+QomJyeRzWZx7733zuvFvnr1auzevRu5XA5nz57FF7/4xVkOeY+FJ+z3GW5UO67DRhgCCaNiO1BT5Zm3v0ihRQe8uFSrMYbWx4RW3Ms+AQGpu+Km3nH5aly6pgcA0MNS9aZFqFhutW8gnRs8OdsBe5XivBXoADUx8nknMfL8jIfHfIxFypQLYrsuVObyRJzsyBh5AJg+Ne8hf8Rvy8FM3cvznO2p050tMPsjyMu9ECaaO9tX7lgJKSghM5LB+CvzhehaGsbIs+Bs79cL88YPzXvIrthed25MHSc/Oz1GPrGCnC+e2O7R5QQk0Uhcy9mMktc0jStnJt1jsCsyUxc365HQdtde9aBjwqJbVRQFw0Qy6YrYTp3t7I0F4LKznTOROez3GelzVooRuI2RD9ro2c74+eHRnGDCxRj5Bm5uFp3tQjAKWS5Dq2gom9QISIw8Fdv5E5pn4Q8D138COPB9YOSF2Y8peQAa1zHyDcX2qK6LZuZHyfvUHHGAh/naBxclEWU1CL+/5E5yZQfRXUqWh20EQahGyWfd69tejZFnVyCJueBs51Vst1MlXRsVLnRqz9Q2IYoCvvJ7F+GPbtqI91zZ4U4yB9ipjNY0zYid5y3xgC5erUQ7pjm7ZgBAUv93teds5288PObjaox8joix2TSpHp8nQC82htjeOkreLA2d7ekRIL7c+jEuIJnAUMsYeSkoYeVVKwG07tveMEaeRup3Mr3rSL+7s+6J7XXnxvQJ8nfiK+wf60Kx6krgxBOLfRQeHouKIAiG0GVXPCsoqtGhggfRzKmYyE+MPHW2OxfbqZub1WKM6p6Ws7HQNM0QmFndy3JTbKcFPqxG6s9FEARb48NTsVItdgxGnrOdb4LJIBRFgqoJQMmB2K7kGgrMLDrbxVDEcKmbjZLvmhh5ygXvAPo3AQ9+evbvS1nyk2Nnu5JTUCnVKYiNLSE/64ntWg7FYgAyZ/vgAFARwggESu4kV3YQntjuYRq6MLEjhDSCB7HdnRh5tnvXzyXiYOFGK+67VTQbjAdx1xs2YWmC3/ggO+JyrlTtP8mbs73qNjF/vvDYo5z2bJ+2cS3NcHYN9ahPy4pgK+jO9nSKiIsd52yPDgGi3FBsjwyQRagdZ3v9PuUd7GwHkAkubelsB6pR8sceaiG261Fls5zthRTpORjvcGe75CeC+/ir8x5y3dmeWAH4GPieWb0DGN1P/g09PLoYuqbO2YyRr30dD85MJ2lrAD8x8tWe7S7GhTO6f9OrOySnHDrb80q19R2rYxG12Ze8Hrw52wEgZkds59XZTvcrLO3f8DcnPKqQNZQApRxwHiPfIDqdOttZEtsFOYxAUAVgVWzXrzMc9iufh08CbvoUcORh4Mgvqr8v6fOIQ7G9dv+FJuzNgu7FpOf3bZeEHAoFP2TOnO0AUBE9sd2jy0mG3VmY1FJ1I7J70ahWebohtrO5UJsLXbjZ6RdoRIVzWLXlQbBToEKLMGSfgKDM11eXnVi2DIc922mso52CLi9GngM0DT61+YKUOttdiZHPTQCijOwMuZ50nNguikByJXEX18GOqErdy7ME1WIGKM50vMCcCSwFJo8CavNo5LU3ErH9+C+PQ62oDZ9niO21hQfpEfKzwwsPAAADm9vvbJ860fn92imrrgQ0FXj96cU+Eg+PRSXskpM7KIsQRfYTxmrFRDvwEgkdc9HZzrqARve0Jh2mNdI5JQjsjkVML1LWtOpctwtvznbAXk976mxndU40wk7bO5qC4Tnb+YQWwZdK/rbFyFNnO0sx8pBD8AfJNcOK2F6Nke8CsR0AtrwRWHEpcber+pqdY2e76BONPZi6/clDvYAoVfcjapDFPIrFgNFGkCc0KeqJ7R7dTY/hbHdRbOdAIKGV4s6c7Xy5ud2IkedlLDzmY8fJTZ0YPLYXsFOwky7S/vX8nCe1PdutuCuK5QpKuqjGk9O/2xAf+gtce+jTTZ8T6iFV767EyGfPApF+lDLkXJoXrd4JJFe1jJHPns2afjsjOj3GnsCcDg5BqBSBmfk97GtZdvEyBOIBFKYKGH1+fmU4hY5FMBGs/jI1TH52cv96Sv+mumJ7qE8/RyasnSN1ne3TJ4AkI2J7/0Yg3A+c8Pq2e3Q3VOiy27O9KhTxcT8V8TsT2w2XKuPCmZ21VyNYj4buNYp7ne1pUSEx4peYXZsGZRE+vajGaZQ8NVlEGD9XaqHX07SFsTEKljgaB8CeWYIW5ng92/mErqGKRX/VkWyHJjHyLDrbIYfh91sU27MkRl7TBEDqwD2JdiAIwM2fAUaeBw7+iPyOY7EdaJHSKIpAdEndGHnZl0exyKezXZN1sd0NM00H4YntHqbpMZztbsbIk/di2dHtNEa+VFZRLBOhiBeBOWJE9lnf6KHVsrxFhXtUsSMuG/OCw8SDuI1K8QxnaRgAkAyR7xilollyV9QW9UQY3fjzABAbQrg0DjQptKALlOK0uYVrU7Ljutiuu707zdkONBfbB6w5mNWyirJ+rswSVA2BmQFnOwCMN4+SFyURq68jAnGzvu00vm1WjDwjhQcAgIEtQHp4Xmy6u87240DPGidHuXAIAomSP+mJ7R7dDRW67KSLAdW4ddad3BQ7ztRaeHGpuulszzMuqiZ10WbSYc92eq6wLCTW9iVPOyzEoGu3MEdrUzsGEuOawck1lGIniS/HeGGOR3MM4TAvO3O2K7mGznZjnc6Usz1sRMLXjQuvA42RryBI1jTdwpqrgE23AQ99FqgogNLFYjtAxPY6MfKyr0DEdg73woVgDH6/gsKUeQMJC3hiu4dp2hEjT6tEWXYj2hHKaqntIcdL7BZdmJQqKopla4I7Xeh5Yju/2OnZzlv6Qy3V8bDes52nGPmgLMIvkdsSK98z1IkR8fsMd4YHe2iJlZDUIpCfbPgcGiPvirM9Nw6E++tHq3cKydUtne1mRVXqXAYaONs7XGzP+/ug+QLAxGstn2umb7vh8q+NkU8NA6Gehn0DO4qBTeTn+OzxcK1neyEF5KfYEdsBEiX/+rNA2YViHA8PRnFS8AxUndysi8uUmMOe7XkjVp/t8bCz1miEEQ3N6L6FW852Y/3B6DhQog5bT1Cq6zG2x6OWmI02FHlOBWZqlsiVKlCatGmqhce0A48qtGC5WJCh5lMtnt2EUq7h2suIke/EovhGyCFIEjluqzHyqtAlrvZabvoUKfB+7u4aZ3t0MY+obbQU22NL5znbNU2DXy5wGyMvhOIAAGVmenEPxGU8sd3DNDRGfsZFZzsPMfJOe7ZT0Swk+yD7+Dgla2+orW720HFkeU54NMdWz/Y8v0UYRrSjpRh5/pztgiAgGaLtSqwUYvBXeNCNaImV5P80iQmnMfKuxExlJxhwtq8mxQd13AKGqHrWnKhKiwp8fh98tZteqWEgmOx8gVkQgd5188TletC+7ScfO4lKg5QM2ittVox8ehSIdXbRgUE/FdtnR8k7dbYbYvv0CfKTlRh5gDjbK0Xg9K8W+0g8PBaNqENxmTd3qp0Y6Fp4cWbSdbXXsx3o0R2Sk45j5PlYizlp/1eLMS8YdvrPxU4hAh0H3mLka/fmzO5Z5BgvzPFoTiAWAAQSI69mHYjtTWLkqdjOWoy85CPfL1bEdllWUBGCrZ/MG0vOBc5/O/DI/6oKzZz2rW8tti+Z17O9XCgjEChxGyMvRhIAgEpqenEPxGX4UPY8FoSeNjjbMxwsUpzGyNPeyyy7++ci+UQEZXJ5sbrZQ3vJ8RgX7kGwkwZRjZHn5zyhJGyMB69O/2rfdutiO0/X0K4ksQoAIDQT2/V+1JlRB33hKLqz3XD0dqTYTsYE0/PHxGqMfN2e3AAR2zvc1U7R+jaYcrYPbhtEZDACJafg9aden/8+mlaNkY/Pcfmz0K8dIPF6iZXz+rY7dbYbqQdTx8lPlpztS7YD/hhwcu9iH4mHx6JBBVC7LtUcZxHIXow8ga69nEaFA7UFCGyOiVutEXlxckdtuLfrkavpYc8L0QA5byw52xXi+ublGkqRfKKxZ2t2ne452/lGEAUE4gGUSn5oTpztzWLksyzGyIcgiSUAmmWxXRM7vPi9Xdzw5yRV7Ym/BwQft33rW8fIDwHp2c72cr6MYLCIQiHAZYy8GNXF9vT04h6Iy3hiu4dpqAjibs929p3tTmPZeHD318PO4gSoCo68jYdHFXvOdl1s59C9bDVWX6moKOgLed7OE9q33YqznYeiLQ8AoR6UxQCEBrHpADBwzgAAIPV6qvEixSzZcaihXpT17+5Z0eqdgiG2n5j3kF1n+7zPmR5hR2zv3dCyZztAUjKou71elHw5X4ZW0QDM6dmeGmajXzulfxMw/uqsX9WK7ZqmmX4rw9lOi06mThBXQaTfnWNdCHwSsPIy4ITXt92je6H3QjmbPdvzjLuW52I4/W2PBxEQWe9hbzjbi2VUVPPfDXMpV1QUy2QNwqqo2qs7JKeyTp3turjM+PrDrRj5LGfXDsBesQ69hoY4GgdK1SBgbjw8Zzv/BJNBlEp+Zz3bS7mGTmZWne0AIEllyzHymq9LxfbkSuCy/0L2PPxRbvvWm3K2Z88Cleo1VskpCARKKJUDECX+JFwpngQAZ+kYHQh//1IebYNGbjntb1VLVSRh6MtzDo6d7VRs5+wmNKpHiFl2tnMsqnoQ7BSo8Jx4ELe4cK1d8PMmMCf0oq7pvPnvGV5d/l2HICDn7wdm5juRKcFkEIlVpPr1zIEz9v+WWgFyE6hIPcavOtLZHl0C+Px1+7bb7dle19nOiMCs9W0A0sNAsXWywZob1wAAjj08X2ynrnYIc/7dGSo8AAAMbAbOvjLrV+E+Mi+0imZE5Zuhbox8cjV7mx2rdwCnniLnuIdHF0LjzjM2e7ZT1zIvQhG9T7bj6FZVzXC2sz4etffITkRVmnwAsDsmSepsdyy2030sNseBUhWUnRlqcpwUH9QSs1GIwMs1ox70OuI52z0owUQQxaIfKDlInVMai+1MOtt1l74sWxPbZbkMTepSsR0ArvkYEEiQ9DZOoUX+xl7EXGJLAWhAtrrPpWQykKQKyhqf0frhZUsAAL2r+Ll3ADyx3cMCPZ6zvS52IqBrMQoOGB6DetjtkZfmWFT1INg5Z6pFGHydJ0A1Gt/swpWeIyHZB8nH19c4/Z6x42xn+XvEg5Dz90OYaexsB4DB7YMAgLEXx5o+ryn5KQAaFIEI96IkwteJm6WiSKLC64jtkQGyEM1P5aHqLrNmGM72+BxnO0Mx8ujbQH5OtHa3r7tpHQDg9X2vGxs1FLrxEYgHIFAxuVImfeJiQ+4db7sZ2Ezi3pXqgl0KSkYBgZUo+box8ixFyFNWXQkUU8DYgcU+Eg+PRSGif5fZdbazHhE+l4iDHvbFmu9W1p3tAcmHgO6IMpukVQ/q9PeJgvF+rNGri+3pYhlKpfX9UyOMGHnGxWU7gvJcNE3jUliN2CjW4SUNox5WTUa8fZ94zCeYJGK7UM7af5MmMfJsOtuJYC7LiunCZxojz2uvclOEe4E3fAZYd91iH0nboM724nSDeRElwjPSo8avKukZAEAZfM6NVTduBQBc9vvnLPKRuAubd8geiwKtAk4VFEfxY7VkaL9yhhcpVCjLlSq2FmxUjI4x7O6vh93NDS9Gnn/snDPVnu18nSdATfFBXjEV+5su8nuO0O8ZWz3bGf4e8SDk/f1Ne7YDwJLzyCJkbL8DsT07DgAoaXEAxN0sdKqDN7mqbox8qFevfNeA/GS+5dvME1MBIjBnz7DlbAdMie3JtUkkViegKipOPj67WIFufAQTweovs2cATQVijBQeAED/ZnLMk0dm/dpO3/Z5zvapE0DPaneOcyFZfjFJg/Ci5D26FCfiMlAVisKMRoTPxYmQOMvFzYFw5kbfdjqvwn5f5943tSAeko3QlikHiY28tLGK2jRI1FIsq6DbgzxFhlf72Ztfl+Y5Fphr9yzMUL1e8DMnPGYTSJCe7WLFgdjeJEaeSWe7bNfZ3uViOwBc8j7gt/5psY+ibbSOkdeL/jPVfa5KapL8FDh1/Adi5KeJ5EKW8MR2D9Mk9ZsrTbMfmV4LL32HYzVx53bGhUYg8+Zsj9nc7DGc7V6MPLfUnjNmF2s0cp7HeUE/U1nVjArwZhjiMmfXDKC6iLfSrqSakMLf3Og2cv5+4uJuUnRCne1nXnQQI58jYnuxTG7u50WrdxLJVXWd7aIkGoK7GVGVLvZnfdbMGBFr48vdOdZ2E0wAkQFg/LWWTxUEAWtvqt+3nUa3zXL5p0bIzzgbhQcAiLMdAM4emvXrUJ8+LyZsOts1rRojzxpykAjuJ/cu9pF4eCwKVbHdi5EH7PVcphR0sT0giRBFNoXlWuh+i900PoAPp6pPFIx9LStJWnPJcuJsd3KOUGr3e8IcFKZQrBbraJpmFOnwUKAzl7hFZzuN1I90YnqYhytQZ7uIMlA2377KQK0AlSJnPdvJOszvVyz3bEegy8V2zmkptkcGAEGc5WxXs8TZroqciu0+GXjbvwFrr1nsI3EVT2z3MI3kE40bTidVwJTaG3qWFyk+UaguXm2I7RlOXZl2YreA6hiyXIDh0RyfKBjXErOLNZ4TD8J+nyEyvzqWbvn8DMfictJGuxIeElI8CDn/AIRSBihMN3xOrbPdTBJEXXRne1HRxfZO7NdOaSC2A9YczPOcywDpUQ6wJTD3bQQmWovtALD2xvpiuxEjn6gR29PD5CdLzvZwLxDuB8Zfnf1rp872zBhQLrAZIw8Aq3YAJ/Y2Ldrx8OAVGuGctRkjn1d0JyInQlHEibOdA2G5Flrc68TZTsckwrhTtUd3SU466NvOS4x81IUY+dpzhYfCFIrVQoRiWTVuPXgpWKrFaitAWvTlOdv5JZAIkJ7tgD1nqqKvVerEyGuqBkXfE2LT2W5NbJdlBUIg2s4j81hkWortog+IDM4R26fJTx+nYjsAbH0T2fPiCE9s97BEMmLdddgIekMflEXIjPcdpotXe8526tjl6ybUjrOiWK4Y/fF4jAv3qBI3FmvmFq/GecLhvBAEATvW9QEA9h6ZaPl8GiPP2zUDAJIhPUbeithuFB/wNx7dRs5PzoNG4jIA9G3qgyiLKKVLmDkxY+8PZc8CooR8nsy3zhbbV5Me84XUvIeoqJo92zq6r26MfOo0+cmSwNy/wZSzHaiK7SO/HpkVtV83Rj41AogyEO5z71gXgoHN85zttsT2DLmvD8QCJEIeYDNGHgBWX0nO8YkjrZ/r4cEZTmPkeXO21zpTrRboFThzqDoxB1BoEUeYcadqj962ysmeVtZoBcj2+iPq8JoB1MwLzkRVq4UI+RJfrSfmYjVGPqfPC9aLczwaE0wGUSpRsX3+WrUlJX2tUsfZrtTMM7ac7XZj5MsQgxwLqh6txXYAiC0BMlWxXcuT80qVY209Ng93YVvh9Fhw6MJkKus8Rp6n6N+ExUilWox+X5wJRXRBb8VZQeeEILC/cPVojtUYMrqo4zFGHgCu2tgPAHj8tfGWz+U1DQOoOtun83Zi5Pkbj24j5x8g/6eJ2O6TfRjYSp5nu297bgII96Ok38vMEqA7DVrlW6eXfXhAF9vHWovtdZ3tqRHAFyAOaVbo20hEVBOiSWxpjMwVDTj+y+PG7w1ne22MfHqE9K4XGVsa9W9yLLarZRVl/Trqj/mBqePkARZj5AFg5WUkgs+LkvfoQqIOY+R5cyLS4gNVg9G+ziy8FR5Une0OYuQ5mR90T2vSwZ4WPVeYd7YH7aUR1lKN1OfjXKFYFdtphLzfJ0Ji3ExUD1rob2b/Rq1pj8d6cY5HY4KJYNXZXrLjbNfXsHXEdloIDAAyS4YbPUbekrM9S2LkhZAntvMMLfSnLe3qEh0C0jV7XNRwIXupByzB3x2AR1tJUrHdBWc7XejxIKrGQ7QHmvVFitF/OcDQDYQJaAWrlYUbFVSjfomrCDKP+cQtuCs0TTPiyui5xhtXbyBi+3MnpmZVxdcjxbG4nLDRQzFd5PMa2o2UpBg0KQRMzxeWa1myXY+Sf9Gm2J4dByL9xiK+o53t1F1cpwBh4FxSdHB0z9GWb0PF9lmFBelhEiEvMPR927+RbMykhk09fc2NawAAxx6uRskbPdsTc8R2luL0KQObgYnDpOehjlWxnaYeAPr8mD5B4ulZjTIMJoAl24ATTy72kXh4LDg08tyuS9WIkedEYA77fcZXHE2GMgvtN8y6sExxsl9ByZX4mB89RtsqN2Lk2R4LN2LkeSvSodC1dkFRoVRaF+vkOSvQmUsiTJ3trecKvX4CnrOdZ5zHyOvJY/75InNtv3aBpb3hGmd7fiKP7JnmRfEVpQK1rEKWFfjCnnuZZ6izvZQuQS03+E6Z62wvpFAu+yAGQwtxiB4u4YntHpagCxMrQkgjeHJ0O3G2pzntRU0XnlY2e3iOCveYjZVzhixwiYuRV2f7mr4wliWCKFVUPHN8sulzMxyLy1Vnu2I67tNw+nN2De1KBAFIrGjqbAeAwfMGAQBnXjxj7+/kxoFwX323d6cRGSTu8zpjsu13twEAXtv9GvJT+XmP10IF1XnOdpYi5AHibAdM921fd9M6ALP7ttMY+VnO9tQwcbazxsBmoFKsutFRFdvz483nBIWeBz6/Dz6/j8TIsxohT1l9JXDiicU+Cg+PBcdwtpesx6YD/PUpFwTBttvfEM44iYOOueFs56Rne2+EpjU6iJEv8ZE0RvegnPVsp3HhfJwrlNrUAjN7WrxdM+ZiZf+Gnh+CQNqGevAJiZHX96SKaetvYMTIzxcSS/r1mal+7QAgBQAI6FtLPtOxXxxr+nTSl14jMfIRT2znmdpC/4apB7Gls3q2C6U0ikU/5DB/e788433reVjC6G9lIeK3EVXBiO0FCmC9f1EtPBUd1GLEyFtYuKU4LTzwmA8tqJg0sclB54VPFLjZ/JuLIAi4Sne3P3G4eZQ8rwU6QDU9pVRWTcd98vRd4gFoiVUtxXbD2W43Rp4lZ7soAsmVdcdkyfYlWHLeElRKFRz8/sGmb1PX2Z4aZs/N3bMaECXTfdtXX7cagihg/JVxpIfJJpARIz/P2c5Y4QEA9G8mP8dfNX5l19luFGJMHWc3Qp6yagdx6JtMQPDw4IWwg9h0oCoW8eRQNZy7Fh3d1JnJi0u1mirmRm9utseErjcmXejZznyMvF68bfX8qMVwtjM+FnORfSICEtkyN5PWWE3DYPv8aAQ1PZgR22nLiYhfgsBSgpaHJUiMvL6eKtkQ25vEyNc625lCEAA5jCXnEOG8Nl2tHkpOgc9XgShqEEOMpop5mMIn+4z53LBve3QJkDljpNYJShqFQgASpwmvvOKJ7R6WSBqRW272bGf/okFvPJ2I7XEOxqEWuvBMWxHb83QsGLuh8rDM1qVxAMBjr51t+dxqv3a+F2tX077tLcT2DEfXzrlE/D7IPvJvbLaoixYf8HYN7Va05EpgpoXYfh4R2ydenTB6TVsiOw6E+6siYyeL7QDp2z59ou5D29+xHQCw/9v7m74F/ayz+5QPsycw+2SgZy2JTjdBqCeEpReRggK62UGd7bRvGgDd5T/k7rEuBPFlgD82q2+7VbF9XiHG9AmgZ42rh7ngrL6S/Dzh9W336C7CNY5KKoxagbc+5UBVbLceI0+KFXhxqRrOdovjUEuek+SD3ojztEZein2Nnu2es70uVpz/dByCnFwz5mIYjEykY9DvH56+SzzmM9vZ7m6MPLPOdgDwh9G/nnym2nS1eig50q8dAIQ6RQcefEGj5BuK7bEhQKsAuQkAgKBkPGc7g3hiu4clDGe7Kz3b+YlCdhYjz8841BIJWHe28+zY9ZjNzu1E1Hj2xBTGUg1uNHSq/dr5OkfmcuV6Ira/NJxq6vjnqVBpLoIgIBGi3zOtr6eapnGbDtK1JOq7uGuJLo0i1BuCVtFw9uXWBTvzyI0DkYGqs72TY+QBXWyvPybb3r4NEIATj5zAzMmZhm8xLzJf09iMkQdI33aTznagpm+7vtlhONtp4UExTdwYLI6FIOjj4ZKzvVwCUqfZj5GPDgJ9G4CTXt92j+5CrEmBstO3nbcYeaB2TWovRp6XsTB6tjtxtnPiYKZ7WmYS1upRrlQTuJh3tuspFqWyimLZ2jlCyXKYiEGx0tOet2vGXOI1aZ6q2rxNSd5oOcHnWHgQSEqYgGLJbzNGnjrb58fIM+tsBwA5hOSKAASfgKkjU5g+Md3wqUpOgSzr+15+T2znnZZie1Qv/tej5H2VDIrFAGTO98J5wxPbPSxhONuzbvRs50dYTYTti+289huO2RDbu0VU9QCWJkK4aFUSmgbcf2C06XO7JfFgIBbAliESN7X3SGN3O68FOhSjb7sJsb1YVqFUyGKfdWeJB0FLrAQKM+R/DRAEwXC3j71oMUpeVYHcJBDpg5Ihc4wJZ/tUfWd7YmUCq68lwuj+f2/sbjcEZupezk8B5Tx7MfIAEVFN9mwHavq2P3wMmqahMEMWt0aMfGqE/GRxLADSt72Osz0/mYfWYjMUmONsnzkFaCr7MfIAiZL3nO0eXYhdcRkA8pzEhNdSdaZadbaT8QtyMhaxgBs92/lwMPfQnu02DSRUXAaASIDtsag9fjvXDADIGZH6bI9FPegenZmYfd5aT8yFGoxUDci0SE7huQDDowoVDosFGZodsV2hPdvni8xMO9vlMCShhOWXLgfQPEqeiO36+STPd/h78IUpZztgiO2imkOx6Pdi5BnDE9s9LEGrgO0uTGoxRGYOBBIjRt7i4rWoVFCqkKpoHooOaolYqAKmUBHRi4PuDnZtJ8LG7v0jTZ+X6qLEg2rf9omGz6Exf7yORzJExfbW3zP0miEIpCecBwckV5Gf06eaPm1w+yAA4Mz+M9bevzBNorlqYuRn9THvRJKryXE3KEAwEyU/ry93Wr/usujm7t9I5geNHmzBqqtXQZRFzJycwdSRqfkx8mm9r3eMUbG9fxMR2zUirId6iTtEU7XGC/kaZs0N2q6A9Rh5gETJnzlIims8PLoIKoRajZHXNA05DsWiqjPVprOdk0how5XqpDe30WaA7XtuY0/LprOdmglkn4CAxPb8kHyi0SrBThoGwLewasXZbrTh4OSaMZeg7INf72Hfqn0mzwUYHlXoWqpU8qOSaVwo3xAlD0hBQJw/T1h3tkPJYe1NawE0j5KvjZGv5/D34At6ztDi/3lEBwEIQIaI7ZKWRaEQ8GLkGcMT2z0sUY2Rd6FnO0eCkd0Y+dqbdt6EIisLEwq9aY9x7mD2INy2jVTtPX18Emf1zf56pArd4WwHgKs29AEAnmjSt506UnhLw6AYznYT11MjQt4vQRSFth6Xx8KgxVeQ/9MiSt62sz2rn1uR/mqMPAvOdqBhAcLWt26Fz+/Dmf1nMLZ//nhomja/L7fh5mZQbO/bCEADJo+aeroclrFyx0oAxFkwL0ae5bEAgIEtJAZfL6Dw+X3GZzMTJT9rbkydAAQRSKxo3/EuFLRv+6mnFvc4PDwWGDutvACSFqTX7HAlmhkF4BZFZupS5cXlT/dcnDjb87w428PVwoOybnywQtYQEvk4T4y+7TYLMWjiQZRDYZUmyZnZ0ypwds2oBz13Do02dzHzXIDhUUUKSvAFfCgW/aikp62/QSnbUGBm3dk+S2zX09XqMTtG3nO2805LZ7tPBsJ9QJrs6fiQQ6nk92LkGcMT2z0sYcTIu+ls50AwqvYvsrZAoRX2Eb8PPs6EIiq2FxTV9CLWcLZ7ESldwYqeMM5fqUfJv9Q4Sp4WYXTDvLhsbR8kUcDJyRxOTtQXSehin9cECCs923n6HvHQiQ4CvkBLsd22sz2r93gP91f7mDMjttcfk1BPCBt3bQRQ391ezpeNOPGqs30YgFCNKmOJfvJZrfRtr3UWzIuRT48AwSS7boKBzeRnnSh5M2L7LGf71HEgvoIs9FknuZokN3hR8h5dht0Y+VxNNDZPzsxqAXh3x8jb3a+ohZee7YmQDEHfejFT3DsXuhbjxSwRs2GSqMWYF5yMRy0xCzHyhrOdk2tGPW7fTgpTv/zQaw3FQ6Cm5QSHBRgeswkmgigW/dByKesvVnINo9N5cLav3LESUlBCZiSD8Vfqm2lmie114vQ9+CKQJPsPTdPnYkNVZ7uQQ6EQ8GLkGcMT2z0sQcX2Ylk1otXskuYoRj6hX/isOtvpGPDo5K6t9M6anCvVuHD+xsOjPrt0d/vPmkTJ03nRDc72aEDChauSAIAn6vRt1zSN6+sGUOtsNxMj3z0tBroGQQSSK0nv6CYMnjuoJ2xlkD2TNf/+uTrO9liHi+2R1gUIRpT8Pfvn9eku1iSHGO6A1DAQGWBTVA33EXF84rDpl6y9kYjtRx86amzeGM729Ai7rnaAiMo+PzD+qvErK2K7UXRCY+R7OOjXDpD+Iqu9vu0e3YcRI29ROKPiSEASuSoCj9osPuAtRp7eK5cqquHAtQqdI6yPieQTjXWlnSh5Opd42McCavqSWyxIoWQ5jgynnylt4npq9GyX+ZgX9fhvN6xH2O/Di6/P4IGDjdPFeC7A8JhNMBlEqeSHmrfTsz0P+OsLzNTZzqbYHgaUPKSghJVXVdPV6jErRr7BWHjwQ0tnO0DEdr1nuywWUCz6vRh5xvDEdg9LRAMSJH3x7dTdnuEoRr7aA02Bqjau8JyLEYHMwRjMxS+J8PvIJcZslTSttO8GUdWDQPu27zs6gfFM/Sh5Y150SXQO7dv+eJ0o+YKioqJfY3jZ4JkL7dk+Y8LZTjc+eB2LriWxsto7ugH+qB+963sBoG50ekOy44DgA4JJdmLkRb0AoYnYvumNmxCIB5A6lcLJx2c/r9bBL1ABJTUMxBntUS4IxN1uQWxfftlyyBEZ+Ylqn3ejZ3tqmN1+7QDgk4C+DY6d7UaMPC9iOwCs2gGMPE9iKj08ugTD2W6xZ3uuxGcEst2I7Dxn/eujfslwc6dsRskbc4QDUbVXLz6cstEeMcOZuEzXUXZj5Om1hkdh1YiRNzE2ecPZzu82e380gPddtQYA8HcPvGrsS8wlx0nLCY/WBBIBFIt+oGjD2d4kRp4WR3f8Or0eutgOVAu+G/VtV7IKZLlcfZ0H11CxvTjduI0qorrYrmmQfQUUiwEvRp4x+L0L8GgLgiAgGaYLE7fEdvYvGlQc1jQgY2FjI8O5UEQ3N8w6KwwHsxeR0jWs7A1j+/IEVA144KX6glnV2d4d8+JqXWzfe3h8XvEOdXKLAn+boZRB3W36cotecEBtjDz73yMeNSRXtYyRB2xGyecmgHAfyiXVcMSHehmID0+ublqAIAUlnHPHOQCAF7/94qzHZsWEU9IjQHy5+8e5UPRttBQj7/P7sPqaqogsBSX46DU0PcJu4QGlf5M7zvap40DPmnYc4eKw+ipALQOvP7vYR7LofOELX8Cll16KWCyGwcFBvPnNb8ahQ4dmPadQKODOO+9EX18fotEo7rjjDoyNzb43O3nyJG6//XaEw2EMDg7i4x//OMpl+7HUHu5Do62tO9v5dCLa7WFfFc74GA9RFByLqnSO8BCfTntPT9pytnPWs91hjLwxLzgpPqilXxf6Dp/NtHxuntNr6Fw+eM16xIISDo2lcd+Lw3WfQ53tvFw/PRpDne2CncLWJjHyRlE8kz3bSYw8UG1ldvwXx6HWaa9Kne2qJpKkMg+uMedsXwJkxgAlB1FUPWc7g3hiu4dl6MLETD/dZvAUIx+UfQhI5HQy48akVOOg2R+DetAFl9mFG+/x2B71oe723Q2i5Ks927tjXpy/MomI34epnIKDI7MrhGud3ILAT8RnLTduWQJJFPDCqWm8NtZccDeKtjj4HvGoIbkKmG4eIw8AS85bAgAYe9Gisz3SjxOPnUC5UEZsWQw963rsHunCYaIA4bx3ngcAOPi9g6jUtG+hYqoRmw4AqRG23dz9G4CJ10iVo0noZgfA2VgApG/72VeM/wz1kwISK2J7KFIB8pNAck1bDnFRGNhCWg6cfHKxj2TReeSRR3DnnXdi37592LNnDxRFwS233IJstro5+tGPfhQ/+clP8L3vfQ+PPPIIhoeH8Za3vMV4vFKp4Pbbb0epVMLevXvxzW9+E3fffTc+9alPLcZH8mhA1dlutWc7dafyJZjZ7UedV8imOE/966lBIGWjTzlQ62Bmf0x6HBhI6DjwsI8F1Ijtdp3tRX6d7TdsIYW9ew+Pt9zny+lpGEGOrhn1SIRl/Ndr1wEAvrTnVSh1BETP2d490J7tQtmm2N4gOp3tnu1hoETWYMsuXoZAPIDCdAGjz4/Oeyrt2V7RAgCn+3seVUyJ7dTZXpghzy34vZ7tjOGJ7R6WcbIwqYU6NHlZpCRo9LGFxStPUfr1oFXvZhdu3eZg9iDs1Pu2P3l0oq67IFXorvYCsk/EFev6AAB75/Rt74aClIFYADfqGxvfeaa54Or1bOeU5Coi+hWbF1vYc7aPA+E+HL6fRJCvv209G4UrJsT21detRmxZDIWpAl77WdX1PSsmnJI6zbabu28jWYBm57fbaMQssT2hj4VaIZXjrIvt/ZuA7FkgNwkAiC6JAgDOHGh9btD5EQ1OkF/wFCMviiRK3uvbjvvvvx/vfe97ce655+L888/H3XffjZMnT+K5554DAMzMzOBrX/sa/u7v/g433ngjLr74YnzjG9/A3r17sW/fPgDAAw88gIMHD+Jb3/oWLrjgAuzcuROf+9zn8JWvfAWlkrN1oYd70GJnu05uHoTUWuy6dnkcj5jNSH1KNUae/fvunoj9Pa0Mb852i2mEc+Ep8WAu6wei2LQkirKq4cGXmxf35jkqRmnF+65ai76IH8cncvjBc6/Pe5yna4VHcwLJAEolP0TVhtheyjWMkac929l1tpMYeVESsfo6sraqFyVPxXYVgXmPefAHbWNXmGnRs11VSHs3wIuRZxDvm8/DMkkXnO2lsopimVRA8iKSxEMyzqSLlnqg8R4jPxAL4JXRNE5MZAEMNH2uqmpctRbwMM+a/gi2Lo3j4EgKD7w0it+9bNWsx7tRUL1yQz8eeuUMHj88gQ9eu974fYbzNAzK71y6Eg8cHMO9vz6NP7ltC/xS/dpAr2c7pyT1a8D0KWDJ1oZPo872MwfOQK2oEH0makizZ4FIP47cfwQAsOG2DY4Pd0FIrgIK00RgDibqPkX0idj29m148m+fxP5v78eW39wCACim5sTIKwVSzBBbthBH3h76N5KfE68B0eb3F5Sh84cQ6g0hP5mvOtszZwCtAsQZHguAOLgBEiW/6gps/s3NePBPH8Thnx3G+KFx9G/ub/hS6myPSGfJL3iKkQeA1TuAX/4VUFEAn3d/SZmZIW6J3t5eAMBzzz0HRVFw8803G8/ZsmULVq1ahSeffBJXXHEFnnzySWzfvh1LliwxnnPrrbfiQx/6EF566SVceOGF8/5OsVhEsVjtS5hKkcQeRVGgKM5S0pxA//ZiHkO7CEqkgCxdsDbG6Ty5FgRlkatxobfMZseDPievkHtMWdS4GQ+6fpjKFCx/JqWioqTv3/gF9sckESSC6ETa+likdYE+5OBc6aRrUFjWExrzJVvHQ0V6P0fnSi23nDOIV8cy2L1/GG86b0nD5+WMcXD+79pJ86MefhH4r9euxV/+7BC+/NBreOP2JUbSJwBk9P2boK9zP4OHeZrNR3/Mj2LRD5+Ws/xv7StlgXAfKnVeV8yQe0cxwN49iegLQlRyKOvHveq6VXj1J6/i6ENHcdlHL5v13GKmiKRfQUUIMvc5gc6/VnUaUpTchxWmG997CKF+SADKZ16BBKBY9ANyd49xp8wzs3/f2532sAx1tk87cLbXVs3yIpJQZ7uVWDbeXapXrOvDY6+N49HXxvGuHWuaPjddLBtpsLwLiR7zuf28pTg4ksLuA/PF9lRed7Z3UTUf7dv+9LEJFMsVBCSyIdQthQfXbRrAYCyAM+kiHnp5DDu313edVnu28z0eXQcV22eai+0963oghSSU82VMHZlC36a+1u+dnUAxuA5nD56FIApYd/M6lw66zSR1t/H0KWCovtgOANvfsR1P/u2TePUnr6IwU0AwEazGyFNne1pv2cGywNy7DoBA+ravvtLUSwRRwJob1uDlH7xsVJUjrfeaZN3Z3rcBEETg7CFg1RXo39yPzW/ajEM/PoR9X9qHN/7TGxu+lDrbQ+IYiT2MmCteYIbVV5GYypEXgBWXLPbRdASqquIjH/kIrrrqKmzbtg0AMDo6Cr/fj2QyOeu5S5YswejoqPGcWqGdPk4fq8cXvvAFfOYzn5n3+wceeADhcP3o0IVkz549i30IrnN8VADgw5ETr2P37uaJKLU8dYa8Lj01gd27d7ft+BaaUxkAkDA+k7H0uaYzeQACnt23FyP723V0C0t+RgQgYu+zvwZOmW/DAgC5MkC3Dx99eA8a1MEyw9hpMt/3v3oMu9Ujll574BgZx9FTx7F791FHx9EJ16DX9bF45bD1z6NpQKboAyBg3+OP4BUOzZmRLABIeOTQGdz7k90INjCuD58h43Bw//OQTv/alb/dCfOjEb0qkPT7MDJTwKe++XNct7R6TTk1Qs6RVw/ux+4zLy7eQXq4Sr35ODo2iiVFP3yCgp/+9MfQBPP7MteNj2IqH8aLdb6bz54mRcAvvvIiTuw+Yf+gF4F1Z47hnELauOfIS8TlfvyR47jvP++DKFe/QE8eOonL5TLyJQF7GL736uRrVSdROE0c7emz6Yb3pKHiWdwC4NgzP8dGEGf7E089gcBJDr9gLbLY8yyXa92iD/DEdg8bJPWeKVMOnO3UwRySfZDMONEYwEmMPC8FB3O5btMA/ubnh/DkkQkoFRVyk39rKiIGJJH7Plce89m5bQh/8/ND2Ht4HNO5EpLhalyU0V6gi8T2TUui6I8GMJ4p4lcnprFjPRERaYEOr9cMiuQTccfFK/DVXx7Bd5891VBs571gqWuJDgGi3DI2XfSJGNw2iOFnhjH24pg5sT03jgmy3sWKHSsQ6qkfXddxGG7/k8DQtoZPG7pgCP3n9GP85XG8fO/LuPB9FxpiquFsT+kCM8tiuxQgYzLxWuvn1rDhtg14+QcvI74iTn6R4qDwAADkICnIGH/V+NWOj+3AoR8fwgvffAE3fO4GRAYidV9qFGNURsmYstBWwQpLzydFBCf2emK7zp133okDBw7g8ccfb/vf+sQnPoG77rrL+O9UKoWVK1filltuQTweb/vfb4SiKNizZw/e8IY3QJb5uocoPT+M7x07gHjvAHbtutj068b3nQSOvII1K5Zi167z23iEC8vxiSy+uP8JVAQZu3bd2vL5dG5UBAlABbfcdD1W9y5+YYgb/CK3HwemRrB64xbsunpt6xfUMJoqAM88CkkU8Bu372SjBU8TMs++jvtOHkSkdxC7dl1k6bW/vPcAMDqM87duxq5rrY0jpZOuQVNPncR9J19BcmAIu3ZdYOm1xbIKdd+DAIDf2PkGLtdkmqbhO6efwPGJHAJrLsKu7UN1n/fVo3uBTAZXX3EZrt5gYk3ShE6aH83IL3kd/+PHB/HI2RD+4l1XI6y3EvjayX1AKoUrL78EN27mrIizC2k2H5859gxe//WjAICdN14DhHpMv6908rOIrd+MFTfvmvfY6f9+GjnkcMW1V2Dtjfaus4uF8Otx+E7fg107dwKCAE3T8OXPfxm5szmc13ceVl1dNRf96N9/BDmvQA4lsWvX/HHodFi5VnUK2TNZvHLnK1DzKnbethOCWOdeqlwADn4M6+MV4Axxtt+882bElsUW/oA7hE6ZZzShrRV879Z7tAU3erZT8YwnNyLtM05duGZIcx4JvXVpHH0RPyayJfz65DQuW9vb8Ll03HhcoHm0Zt1AFFuGYnhlNI0HDo7hbZesBAAUlIoRWRjn9DyphyAIuHpDH370/DCeODxeFdu7qNXC2y5Zia/+8ggeefUsRmcKGKJO1BqM1hOcFx90HaIIJFYA062r2Ae362L7/jFsfWtjFzwAYr/JTWDkFLkHYSZCHgCig4AUbFmAIAgCtr9jO37xyV9g/7f348L3XWiIqYbYTp3trLu5+zcC44ctveSC914An9+HdW/QEw3SI6SwI9w4Zp0ZBjYTZ7vOqmtWYdklyzD87DCe+cdncP1fXF/3ZbQYQy4N8xchD5Do+BWXACefBK76o8U+mkXnwx/+MO677z48+uijWLFihfH7oaEhlEolTE9Pz3K3j42NYWhoyHjO008/Pev9xsbGjMfqEQgEEAjMd2LIstwRm3KdchxuEg+T8c6VKpY+W7FCXImRAF9jkoyQorpsqQxJkkyJxJpG1iAAEA8FuBmPhL6Pkytplj9TSSXfFWG/D34/gz1059AXI/NiJl+2PBb5ElmbJsJ+x3OjE65BiYh+zVBUy8eSKVX3BBOREHz1hAMO2Ll9Kb76yyN44OUzePNFK+s+J0/bZIaczwtKJ8yPZvzu5avxL08cx4mJHL719GnceQNZW+UUff+Go+unR/35GOmLoFgk1xBZLQBW/r2VPHyBGHx1XqPo5r5wIszeHArGAGiQBZUURANYe+NavPSdl3DqkVNYf0O1TWSlUIEsK4AUZe9z1tDp16pOIdofJf9HA9S8imBy/h4nZBkI9UCYJKk7xaKfzfOgDSz2PDP7t/mwFHssKD0u9Gw3+g5zJJA4cbbzKraLooCrN5IN7EdfPdv0uWnDvcznWHi0ZpfuXv7Z/hHjd7QwRxSAiL+75sZVepT844fHjd+lOSxUasTa/gguW9sLVQO+/9ypus/xYuQ5JrmKRKa3wOjb/uKZ1u9ZmAbUMk7+msQ/MSW2CwKQWNlSbAeA7b+3HQBw7OFjSA+nDTHViJFPDQP+KBBcPFepK/RttOxsFyUR57/7fMSW6pXh6REgNkQKPFinf9MssV0QBOz4/3YAAJ75yjNQ6tyfappmFGNI+dPVdgW8sepK0nJAsxabzBOapuHDH/4wfvjDH+Lhhx/G2rWzXUIXX3wxZFnGQw89ZPzu0KFDOHnyJHbsIPNox44d2L9/P86cqV5v9+zZg3g8jq1bWxQ7eSwY9H45W6xYel2+RJ4f9vOVMEbX2ZpGChDMUNYAVb9chDgaD5oSRtdXVsgV6fzg4567N0INJDZ6lJfI+iPCyV5WNEDmBTWCWIGORVAWuRXaAZLCBwC/eOWsca2cC/09T9eMVsg+ER+5eSMA4P8+csTYC6X96yOB7hmLbiWYCKJY1AWoYsbai5Uc4K+fHKNkyVySIwwKjLKenKdUI6fX3kTuu489dGzWU5WcAlkuQ5P5SNDxaI4UkCDpmkf2TLbxE6NDwNRxlEoyNE00XuPBBhzsLHksNEkXnO08iszOYuQZvIEwybUbSWzUo681F9tTXhx010PF9scPjxvnUW3igcjxAr4eVGx/8fVpYzwynKdhzOV39ISD7z77OlR1vkiS6pIe9l1JcpUpYXnJdiK2j7041vo9s6RwZWZcQrg/jKUXMebsTq4y5fbvWduDlVeuBDTgwH8cqO9sZz02HQD6NwBTx4GK/eJPpEbYd/hTBjYDMyeBUnXhvvWOrUisTiB3NocXvzW/Z2alWIFaVgFoEDOngB5OxfarPwp8+Bn+IvItcOedd+Jb3/oW7rnnHsRiMYyOjmJ0dBT5POmrkUgk8IEPfAB33XUXfvGLX+C5557D+973PuzYsQNXXHEFAOCWW27B1q1b8a53vQsvvPACfv7zn+OTn/wk7rzzzrrudY/FgYobVAQzS84Qivi6pwpIVRGQrr1bUaulhThqb0bvl+2Iqjl9PoU5Ec+ogWQya31PK1PkS2yn1wyz50cttKiH96L47csTWJ4MIa9U8EgDE4khtnN0zTDDm85fjo2DUaQKZfzLY0cBANkSX8U5Ho0JJoMolfQ1ZjFt7cWlHGn1VO8h/drsjzCYpEI/U63Yrkfhv77vdeOzkaco8PuVhuPgwR9LLyR7D8d/ebzxk2JLIGgVFAp+CKIAXxcVcfGAJ7Z7WCYZcsHZXuTPjWinUrwbhLNrdGf7/tMzTRezKV1M7KaocI/ZbBiMYtOSKJSKhgcPEuEs1cWJB8uSIazrj0DVgH1HJwDUtJ7gZHOnFbu2L0UsIOHkZA77jk3Me7xasNQd49FVmBTbB7cPAgCmjk6hlGmxYaqL7dlsGOtvXV+/R1YnY1JsB4Dt7yDu9v3f3l/tyW0420/zITD3bQTUMhHc7ZIeBuIcjAUA9G8mP8erbn9REnHFR4hQ+uTfPgltTtESTT2IRHIQynk+Y+QBEuHYxUI7AHz1q1/FzMwMrr/+eixdutT433e+8x3jOV/60pfwxje+EXfccQeuvfZaDA0N4d577zUe9/l8uO++++Dz+bBjxw68853vxLvf/W589rOfXYyP5NEAKgBmLQpnOU6d7YIgGPeJZkVmPSUcfp8IycfPlllcL2pPWTAHUOj84EVU7dEFnFRBQbmiWnptlrP1R0w3fmQcONt5KcJohCAIhrv9/gMj8x7XNA05pTsFZp8o4GO3bAIAfP3xY5jIFKvFOZx9n3jMJ5AIGDHyKFkQ29UKUCnWFZk1TTNi5Nl0tlOxPW/8qmddDxKrE1DLKk4+Vt3jIM52BfCHFvooPRaJDbtIuuJru5sk9EXJ902xGIAUMtcCyaNz4Gfl4LFg9ETc6NnO1wIFqIrttpztHAvMg/EgtgzFoGmz47DnYsTIe872rmbnNiJ67Naj5KtFGN05L6i7fa9+7mS6qGc7QGL4fuMC4sD97jPzI8V5TEnx0EmuAnLjpOK9CZGBCKJDpPfVmQMtouRzVbGdqQh5iskCBAA4923nQpREjPxqBMPPDgMAAnEqtvPibCexlbXismVSI0CMg7EAgAGy0YnxV2f9+sIPXIhAIoCJQxPzFvW0EGNgqe6G5zVG3gOaptX933vf+17jOcFgEF/5ylcwOTmJbDaLe++9d14v9tWrV2P37t3I5XI4e/YsvvjFL0KSvO/gTsIQ201GplPyHIsjUYsFCFRs5y0Omq4fnMSF8zIm1ECiadb2b4AaNzcne1l0L8pqgQ5QbS/ASxFGM3ZuJ9+HD718BsXy7OurUtFQ0QsaeTlHrHDruUPYvjyBbKmC//PwYSgVMhbdMC+6nWDSZow8dX3XiZEv58uAXh/sj7LobJ8fIy8IguFuP/ZwNUqeOtsFf2RBD9Fj8di4i+xhHH3wKMqNvndjVGz3Qw51x94vT3hiu4dlkuGqqFypE+trBqPPLkfx6TRG3kqleEZfnPDuUr1ukx4l36RvOy3A6EYHs0eV288jYvtjr40jVVCMzaBuF9tpoUo3xqbTKPmfHRidtRmmaVrV6d+l84NrkqvIzxnzfdvH9jePki+MnIaqCsjng1h/y3rHh7jg9KwGCjNAfrrlU8P91YKCycOTADiMkY8tJb3nLfZtnwXt2c4DwQQZk5q+7QBJNLj4gxcDAPZ+ce+sx6izvW+JvjnGa4y8h0cXEdGFnlJZhWLBsZvluN8wFdutxsjzFgdN19m2erYbznY+xkTyiUaintW+7dVkLT7Gwjg/SuW6bbuakeW4SGcuF67swZJ4AOliGXsPz05cq+3jztt1wwyCIOD/u5UkLP3bvmoKF4/fJx6zCSaqMfKV7Iz5F9KCenm+yFybVsek0FjH2Q7U79uuZEnPdiEYXbDD81hchi4YQnRpFEpWmZVyMItY1dkuhxk8B7ocT2z3sEwyRL5INc1eBBkAZIr8CUZUDDRbGa1pQLpLXKrX6H3bH3vtLDSt/gLOc7Z7AMDGwSjWD0RQqqh46OWxrhSXa9mxrg+iABw5m8XITL4rY9PPW5HA5iUxFMsqfvz8aeP3BUU1Cr66aTy6hgQpsrASJd+qb/vU/teQzwex9OJliAwyWD1OXccmChCAapQ8JRALAKqqC8wcRKcLAtC33r6zvZgBiik+Cg8o/ZuA8UPzfn35H10OURJx4pETGH5u2Pg9dbb39aeBcB8QiC3YoXp4eLSHWrctdZ2aIc9ZTHgtVntSU2c7bwKiE2d7rkjjwvmZH702Ehs1TTMc4Lw42+k6W9NgRKGbhcaF8zIWzRBFAbeeSwQQmsJHyevjJokC/FJ3brNfu7Efl63pNdbnfp/YtWPRTQTiAWgQUSpJKM9Mm3+hoqdqyfPj02lPczkss9f2Dah+plJ21q/X3kDE9pFfjyA/SYR4GiMvBhncm/CwhSAI2LCzRZR8lJhJCgU/JM+QyBzeN5+HZfySaAgbdqPkeexVnjBi5M0tXhUVVaGIo3GoxyVrehCURYylinh1rH60UCrP35zwsI4gCLh9O42SHzXmRZzFilYXSIRlbF+RBAA8cXiiK53cgiDgbZcS4fU7z1ZFxrRetCUI/G2GeoCIwaJkSmynzvYz+5vHyGePHmc3Qh6ouv1NRslvftPmWdF7/pgfyJ4lfc55EZj7NgITh+29Nq1vlPJQeEAZ2DzP2Q4A8RVxbPvdbQBI73YKdbb39KS8CHkPD06QawSOTMm8qJrjLCa8lmjQWk/qkko294OcOVTpOtuOsz3LmbMdAJJhXWzPmt/TKpZVlPU9HF4E5oAkQtIFLat922mkfresxW7T+7bveXlsVnKIcf3k7JphhVp3OwCEOUl+8GiOIAoIxAIolfyopKfNv5C6vuvEpytZhvu1A9XPNMfZHlsWQ/85/YAGHP/lcfIUPUZeDHvO9m6CRsk3FNt1Z3up5MXIs4gntnvYgkbJT9t0tqc57Nme0MfE7OK1oBcNCwIQ5vymPCj7cPnaPgCNo+TpuHWrqOpRZacutj/y6lmMzJAb1G5OPLh6Azl3njg8zmWhkhl+68LlkH0CDpxO4aVhEk+WqfkeEQQGK549muOTgPhyy872RukpakVF6ewIcrkQu2J7ZACQgqbFdjksY8tvbTH+OxALAGnd1cyLwNy/0b6zPaWPBS+FBwBxtk8eBSrz70V3fGwHAOCl776EmZPkOkqd7Yn4tBch7+HBEVQQzVnowUxjwnkUzWJGH3trMfK8jQVdT2WK1uPC88b84GcNYsfZXtvXnJcUCEEQDPMHTaA0i+Fs52QsWnHZml70RfyYzil46uik8XvqbOexWMkKl63txbV6C8lumRMeQCARQLHoRyUzbf5FRoz8/J7t1NnujzDYrx2o6dmen/cQjZI/+tBRaKqGckF3toe9dLFuYt3N6yBKIiYOTWDyyOT8J+hie6HgxciziCe2e9iiR68CnrbpbKfx6Tw5umnPr1JZRcFE/FZef0o0IEFkMRrHIvSm+9HX6ovt6S4VET3ms2UohnX9EZTKKn76InEexrs4Oqe2b3u6S2P1eyN+3LKV3HB+9xnibqfXjG4uxOCe5CpTwvLAOQMQfAIKUwWkh9N1nzPy3AgCvjTypShWXLHC7SNdGATB9JhQaqPk/TE/kNLd3PHlbh/d4tC3AciNA/kp66/l1dmulongPoehC4aw9qa10Coa9n15H4Cqsz0WngB61izkkXp4eLSRiMUe5UBVLOJNYAaqMfJm49NpjDxvwlltXLiV1AOAz97c1EAymTUvMFMnd0j2wcfRHg4VRq22GKDjwYvLvxWST8Qt55JErZ8dqEbJ02IU3q4ZdviTWzcjJPuwdVl8sQ/FY4EIJoMoFv1QcynzL2oSI8+8s10Kkp9Kbt5Da28kYvvxh49DySuQpDIEAfBFPLG9mwgmglh1NUktPPyzOil9Udqz3YuRZxFPbPewBV2YTFlYmNSS4TAKORqQQNdbZvq2U2d7rEsWJtdtIoLhU8cm6xYjpLye7R46giBg53ZyczGhV7V287y4aFUPApKIs+miEeHIUyqIWWiU/I+eH0ZBqXRl//quI7nKVH9yKSihbxNJgGjUt/3w/YcRieQh9y+FyHL/QIti+7qb1mHJeUsQXxlHbFkMSJ0m8fyRgTYe5ALSTyLYMG4jSj49AgQTgH++o4JZBvQkgzpR8kDV3f6rf/4VCjMFlDIliGIFEf+UFyPv4cERVDjLWujZTp3tIZm/+6pooOroNoMhtnOWPheUfUaLgZTFhMIch6Jqrw0DSYazfu2UWNB6gQ5QdbZ3U2T4bdtIkebPXxoz2kJWr5/dMw6N2LY8gcf/9Ab84zsuWuxD8VgggokgSiU/tHz9ove6NImRZ97ZLgjEsV/H2b7m+jWAAIy/Mo7J1yYhy+Qa6ot4MfLdxoZdTfq2+8Mo+pZiairpOdsZhOHdRo/FhDrbbfds12/ieRKaBUEwItDNLF4LZaLM81Rw0Iz1A1EsTQRRKqt46tj8mBTDperFyHsA2LV9ttOwm+dFUPbhsrW9s37HUyqIWa7e0I9liSBm8goeODhWbUfShWPRNVgQlmnf9mZiezicQ2TNKtcOb1FIrgKmT5h+uiiJ+MC+D+CPDv8RpIBEBOboECBysgTo01sCTNiIkk+NADGOIuQBUkQRTALj9cX2DbdtwMDWAZTSJfzqn3+FUrqEeDwNQdC8GHkPD46gTm6zselAbUw4f2JRlI6HWbFdr1Hg0aVK0/isOphzCn9iYo8u5Exa6NlOz6koZ+IyLV42e45QaCF4N0WG71jXh3hQwnimiGePk30tL0Z+Nn3RAGQfJ2sNj5ZQZzuKFsT2EnW2zy96Zt7ZDhDHPnXv1xDqCWHpRWSv89Wfvgq/n3xWoU7RgQff0L7tx39BUg7m8kLin/Hii+d4PdsZxPv287BFD+3ZnrPbs528jjeRJKFfBK0423kbg0YIgoBrN+pR8nX6ttMChW6Lx/aoz9alcazuq954x7t8XtAoeQDwSyICUvct5H2igLdeQtzt333mVNdG6ncViZVAZgxQCi2fSsX2M/vPzHssP5nH6adeRySSR3Ibo/3aKRad7QAgh2T46OZfagSIcxSb7o+QSHw7fdvTw3yNBUCcFAObgbOvNnhYMNztT335KeSn8ujpIf3bvRh5Dw9+iFgUzjRNqzpUORSLjH7UFmPkeRwLmhZm3dlOHd38jEnVQGJ+LHh1tkdtFmHQawyP50oj/JKIm7fSKPlRAHwXK3l4tIL2bBeUjPkX0Yj1OjHypQzjznYAkCN1ne1AtW/7qz95FbKsf/94YnvXMbB1AIlVCZQLZRz/5fF5j5fyAgDBi5FnEE9s97BF0iVnO2/xv7bEds7GoBnX6FHyj83p265pmtd/2WMWgiBg57aqCNLNznaAuLop3Vx48NsXk17bjx8exyujpHK6m66hXUdSd6HPvN7yqYPbBwHUd7Yf2XMEfrkAn09FaBmj/dopyVVAYQbIT9t7fXoYiHPm5u7b4Dnba+nf1NDZDgDb37EdkSURpF5P4cA9B9DTMwNNE0lxi4eHBxcYMfIlczHyxbIKPQ2ZS2em9Rh5kkDHY6R+zK6oahRj8DMmvbpr0sqeVpZXsT1gL0a+23q2U3YZUfKjUFWt6mzn8Jrh4dGKYJLEyAvl+U7uhih50ttcnH/PceYlUjyfWJNw6xAXHjnUWGzX+7affvp0VWyvU3TgwTeCIDSNki/nyfexFyPPHp7Y7mGLpGNnO59iu1EpXmg9Lnnas72LhLOrN/RDFIBXxzIYmaneeBTLKkoVYiHopvHwaM7tNVHy3T4vti6NG9dd3q6bVljZG8ZVG0hv7u8+Q3p5d/vc4BoqtpuITafO9vFXxlGZIy4cuf8IIhH9O4f1XuW0r7aJXvZ1SQ3zJzD3b7Tfsz025P7xLDbU2a6qdR+WAhIu+8PLAACZ0QySyRRKYj/g8xbyHh68ELYYm56v+d7kSUylUDe2abHdiJHnb7vMaHtnYr+iFh6du3YMJFlOTSMxi+kPFJ4TMZpx9cZ+RPw+jMwU8MLr09We7V02Dh4eQNXZ7lMtiO2lbN0IeQA4ve80AGDFFQwXycshoFTf6b/q6lUQZRHQYMTIQ/ac7d0IjZI/vPswNE2b9RiNlvec7ezB3+rBY0Fw0rO9VFZRLJMNQN5czIaz3UQRQrELxfZk2I/zViQBAI+9Om78nsbYiUJ39fvyaM625XFcvLoH/VE/1vR1982nKAq4aj1xt8c4u25a5W16lHxa3+zq9vHgmvgyQBBNxaYnViUQiAegKirGD1W/XzRN0/u1U7G9v8E7MAIV26fM922fBW8x8gDQtxGYPAqo5hycAMhz06P8jQUA9G8GyvmmBRmX/MElxsK9p2cGRZnDcfDw6GKoEJgzKS7Tftx+SYRPFNp2XIuFISSadraTnzwWHth3tlOxnZ8x6dUjiqcs9GzPcOrktu1s78Ke7QAQlH248RxS6Hv/gVEU9GtoWPbEdo/ugzrbfVp9J3ddlFxdsb1cLGPk1yMAgBWXMyy2D20HXv05UC7Oe8gf8RuFBLKsX3P99QsPPPhm7Y1r4fP7MHV0ChOvTsx6TNF1Ja9nO3t4YruHLajD0kp/K0rtDTxPPb+AaqX4TL71IqVQJhsZvFVFt+LajUToeLQmSj5VqIpmIocbPB72EAQB3/79y/HEn93I3YaGHa7Wz51elntXucCt5w4ZhU1A911DuwqfTPpxm3BxC4JgRMnX9m0fe3EMmdEM4r36RmqYcbE90g9IIct92wEAxTRQSnPobN8AVIrWxiR7FtAq/I0FAAxsIj/H6/dtB4BwXxgXvv9CAEAyOYNycPlCHJmHh8cCETGEM3NFSEY/bk5dmVQItOpsD3IonHk926sYaY15BRVVa/FsQtXZzs84ANVWC2mLYjudF2HOxsMMO7eRdKTdB0YMh7/nbPfoRoKJIHG2CwXzL1LydQXmsRfGUClWEOoLoWd9j4tHucBc+YeksPvF79R9mPZtr8bIe2J7N+KP+LHm+jUA5kfJezHy7OKJ7R62oM72aRvOdhpNFZJ9kHx8TcG47hKyFiPfXRfOazeRCN/HD48bi1o6Xt3k8vcwR1D2ISB5i1YAeMtFy/GRmzfi47duXuxDWVSCsg9vvqAqkHliO+ckV5kWUev1bT98P4kXX3VhGIAAhHtdP8QFRRAsjcksUsQlwF/PdhK/hgkLUfKpYfKTR2d7YhUpyDjbuG87AFzxkSsAgTjb1ajXr93DgyeoaG42Rj7HoWu5lqjFiOyqs52/NYjhbLcqqir8xcjTPS1NM198YPRs5+xcMVotWI6R705nOwBcv3kAQVnEqck8nj0+BcAT2z26k2CSiO2yrwhUTBZyNYiRf/2p1wEQV7sgMGzEGtgMbLkdePx/101fW3fTOgC1MfKe2N6tbNhJ+rYf3j17L4OK7V6MPHvwpXR6LBhOYuTTRfJlEuVQWDVi5E0s1gr69223CUUXrEwiFpAwnVOw//QMgGqMHW9tBTw83CQg+fCRmzdh2/LEYh/KovO2S6vCEI/fJR41JFaaFpZp3/ZaZ/uR+48AAJZtlYFQDyBysAlmW2wn/e+4E5gTKwEpCIy/1vq5lLReeMCjs10U9T72zcX23g29uOqjFyASySO6dfsCHZyHh8dCQJ3t2ZI1sZ1XoYiut80WH1CxPeQ52w1yRf4KMmSfiJg+NyZN7mulDYc/P+MAWG+1QKHXGJ4SD8wS9ku4fhMp9H3q2CQAPq8ZHh6tCCQCmJrS96jMFj83iJGn/dqXX85B6tY1dwGTR4CXfzzvoeWXLYccliHLZaiaCEjdnV7ZzdC+7ccfOY5SpnovYsTIe8525vDEdg9bJCPkZC8oqtGfyCwZIzKcrwUKUBXbzTj+DbGdw3FohuQTceWGPgDAY6+SKHm62OdxTnh4eLjPucsSOH8FWdCt6Akt8tF4tJXkKmC6dYw8ACzZTsR26mwvpos4+TgRpQdWCUBkoD3HuNDYFdsNgZkzsV0Ugd711pzt6RFAlPiZE3MZ2AycbRwjT7n5T0glfXDVpnYfkYeHxwJCXaZmxeW8okdB8y62lypQTcSFlyrETcdj8YGdnu1KRUWpQioQeHMw90SsJTZWY+T5GgcaI29VbM9x2sPeLDu3D836b16voR4ezQgmgxgd1ddUIy+ae5GSqxsjbzjbr2C4Xztl+cXA2uuAx79EIlRq8Pl9WH3tasiygrIaWKQD9OgEejf2omd9D1RFxdGHjhq/V/Jez3ZW8cR2D1vEAhIkvbf2tMW+7XRhF+Pwhnz9QBQA8Ohr4zg1mWv63IK+iI93ocBMo+T/f/buO77Jcv//+Dure7NKoS177ykyVabrqKjHIyqe4wGPgh5E0aO/40KPuPc6juMe53tU3CIgCsqSLXtvKKt7p839+yMkUEtKWtokTV7Px8NHaXInvZq8vXtf+VzDtW+7axn5OP6IAPDS69f10avX9NaAVg383RTUpYQ0Z2G0rOS0h7qWkc/dl6uirCLtnLdTjjKHktokKcKW79zvPBjUeGb7AefsflsQDlBp2EY6Vo2Z7bkHpZhkZ6E+GDVsLx3ZVOmDnUqydju/JqbXfZsA+Ez0ScVlb7hntgfprMyTB7d7M9vfHsTLyLv6295se+dSeFKOgm0AgqvYnllQvWXkg23CRHW3WpCk0rITgzCCacWD6ji3Q2OFnbQ1ZrD9/wF4w7lne4SycxKkDC+L7aWVZ7YXHClQ1nbnlgzN+gXBzHZJGnSbdHCNtH1epbvaXthWYWF2GeYIPzQMgcJkMrlnt5+8b7trZjvLyNc/QfoJE+qayWRSwvGlLKq7lHx+kHZQJKl/yyQNaNVApWUOPf591ct3uvoxrlHEoWRIW2exfeWebOUW208MwAjCTACoG43jIjS6S3L93ssLp5eQKsmQcvad9tCI+AjFpzlXPDi89rB7v/bWo1tLhUelqCAZmJGQJpXkSEXZ1Xtc7gEpLkg+uPi9Bm2lo9Wc2R5sy+mfrFE7qThbOrxBOrBa2vK9tOIdaf7j0tdTpY/HSa+fJ315i3N/95gm/m4xgFoUFV7TPduDs1AUbrXIZnFeL3ozc7ckiJeRj3UtI1+Nomrh8QEKNotJYdbg+ggxsZqfaeUH6TLyrpn61ZnZXnTSIIxgPXecTmyETYPanhjMG4znDOB0IhKcxeKDBxrJOLjGuwedYhn5/b86l5Bv2KGh+znrvVbDpJSeztntv9Pnxj7qMa6dwhITfN4sBBZXsX3bt9tkHB8s79qznWXk65/gulKGTyXUcN/2vCBdektyDkL4fxd0lMkkfbXmgFbszvJ4bFGILiMvSalJUWrZMFrlDkOLtx9zLyPPnu0AgAoS0pxfc7xcSr7biaXkt33nLL62HdNWKjgaRDPbj89Cru7s9ryDwbeEvEvDtlLeAakk37vjcw8E72shSY07Ob++crb02lDpwyulr26Vlv5b2rtUKiuWGnWQeo+XrnhbYtASEFRc/exCL2e2F5UG337cv+cuJnpRZHa9bME4S9W1ql5eNfZsLwjC/dpdklyfaRV4u4y887WICbI9ymuyZ3v+8UEYYVazbJbQ/Wh5dJcTS8mH6qADhLbweOcy6AcPNnIuI3+6lbWkUy4jv2+Jc3B9UOzX7mIySYOmSrt+lvYuq3CX2WpWQkqYTOExfmocAkX60HRZI63K3Zerw+sOS2IZ+fosdK+IcMZco4Cru4z8iT3bg/OE0aVZvC7v5dxf5uFvNrhHJf3e8X5ayM7mHnJ8BPCCLUfcM9tZRh4AUEFcc0kmrwvLrqXkN/xvg3J258gSblH60HRnsT0qWIrtxwcgVLfYnnsgeGdzN3COBvd63/ZgHnggOQcfXPWhdNVH0oR50m0bpHuPSndul25aKF3zqXTJS9J590ntR/u7tQBqmavg423hzL2MfBAXilwzkb2Z0W1nZnsFRUG88oFrAklmNfdsD7a966szGMWl0P1aBF8uqmNkpybuLTYjgvCcAZyONcIqS5hFGRmNZSrJ8a6Peopl5Pcvdc5sD4r92k/W4UJnX/UUs9udM/yDcIs3VIst0qaW57aUdGIpeZaRr78otqPGajyz/fj+YME4s93ljlHtFRVm0ao92fr6t4OV7jcMQ8WuYnsQvw5VGdz2xL7tOe6Z7aH5WgAAPLCGSXEpXheWXTPbdy9w7kWdPiRdYVE25zLywTKzPbqhc+nvGs1sT6mbNvlbwzbOr94W23ODfBl5SepwgdThfKlZbym+mWRhQCMQKtwz270sthcdn6EajMVUl/QGzg/1V1ax8pxLiXvP9uDrm8ZFugYdVGNmexDnIyn6+AQSL/dsD9Zl5F2/T2m5QyVl3q2IURACK2J4IyEqTFf1S1WTuHB1a57g7+YAPmcymRQeH66DB52D3r3at/13y8gbDsO9jHxQzWyXJLNZGjRF2vyNdHhjxftKCyrN8EdoOnkpeYll5Osziu2osRrPbC8J/v25m8RF6G9DW0uSHv1uk4rtFTssBaXlMuQc/RqsM/xPZ0DrBrJZTNqbWaR1+3MksYw8AOAU4lOlbO+WkXfNbHdpM7qNVJInlZcGT7HdZHLObq9Osb3cLuUfdg5cCEYR8VJ0Y+no1tMfW1rg3PM+WAceAAh5rsJZQWm5HI7TL+caCjPbR3V2LvX87brKA+FPZi93yGE4++nBPLO9tMxR6TMKT1x7tgdbgVmq+cz2YJs4cvLv4+3sdvfM9iBbUr8mHvpDFy29Z7iSosP83RTALyISIpSfH63ysCTnUvKn87tl5I9uPqqSnBJZI61q0rVJHbbUT7peKcU1k355tuLt9iLJFu2XJiGwtBnjnDywZ+EeFWcXs4x8PUaxHTWWUM39rVxcF+/B1kH5vQmDWyk5LkL7s4v0n4U7K9znGnBgMZsUYQvN/w2jw63qlZYoSdpxtEBScA/AAADUUDUKyw3aNZDlpGJBm9FtnLPapeBZRl6SEtOrV2zPy5BkBG+xXZIatpO2znYOrqhK7vFCS7DPbAcQsk5e4rrQi4Kq65goW/D2xVzF9lV7snUwp8jjcUUn7XMfjIMPYsOtMjnHEri3cjsd92CMIBx84CqOZntRbHc4DPds7mAbeGAxm9wrF7j2pT8dZrafYHL9TwWEqIj4CEkmFUe0825me2lhhSKzawn5lD4pMluD8DNya5g0YLK09n9S1u4Tt59i73qEpsSWiWrYsaGMckPb52x3LyPPzPb6JwjPYPCVhOP/w2dVc2Z7nntme3CfMCLDLLpzdHtJ0ss/bteRvBL3fScGHFhC+sJ8SLtGFb5nz3YAQCXVKLZbbBY17Ogsqselxjn/XXDMeWewzGyXqj+zPe94gTmY9yk/5x7nMvJvjTlRUD+VvAPOr8xsBxCkImxmHd9C2Kul5ENhhmqTuAj1TncO9P5+XYbH44qODzywmk0KC8IP/M1mk2KOF0fzvFxKvrAkOAvMkpTomtnuxQSSkweuBOPEEdfvlFfiZS5Kg/+8AcA7EQkRkqQ8o9XpZ7Y7yqXykgp7le9bsk9SEO7XfrLe452rsS1+8cRtpQXs2Q4311LyW77cIofduacRe7bXP3XSe9i/f7+uueYaNWjQQJGRkeratauWL1/uvt8wDN13331q2rSpIiMjNXz4cG3dWnHZx8zMTI0bN05xcXFKSEjQDTfcoPz8/LpoLmrI1THxZhTwydx7tofALOZLejRTt+bxyi8p0zNzt7hvdw84CMJOWnUM/X2xPcgHYAAAaiAh1VkgLffuw7/k7s7Za61HtXYOaCs44rwjmGa2J6RJ2bsl4/TLA0uSco8XmIN5ZnuLgdJfZkmFmdIb50mH1p/6uLzjRRZmtgMIUiaTyT27Pd+bYnsILCMvSWO6OK8PvvOi2B4RhLO4XVwD3HO9nNkezHu2J0Z7P4HEtYS82aSgXJ3Q9fmct8vIu2bAM7MdQEo/Zx9zx/oYZ7+94Kjng+2Fzq8nzeh2zWwPuv3aTxYWLfX/m7TyXSn/+OcT9kKWkYebq9i++avN7ttYRr7+qfUrxKysLA0cOFA2m03fffedNmzYoKeeekqJiYnuYx5//HE9//zzevXVV7V06VJFR0dr1KhRKi4udh8zbtw4rV+/XnPmzNHXX3+tBQsWaOLEibXdXJyBRPfM9mouIx9ChWaz2aR/XtBJkvTxr3u0OcO5tGl+kO71VV2dmsapwUn7WrGMPACgkoQ0yXBIufu9OnzQ3YPU/bruGnrfUOcN7mXkk+qogX6QkCaV5ErF2d4dn3tAskZIkYmnP7Y+a9JZ+utcKTJJ+s9oafuPlY/JPSCFxzs/8ACAIOWahVxYevoloV0F5mAspp5s9PFi+6+7MiusOneyolLnTKJgfi1cfW6vZ7aXBm8+kk6aQOJwVD2AMb/kxN71wbg6oX7aOIgAAQAASURBVOvzOW8G6EgnZraH+mdaAKROY52fe6/5/vh59OAazweXHi+2Hy8ylxaU6tBvhyQF+cx2Seo3QTJZpKWvOL9nGXmcJG1QmsJiwlSSc+Ia1UqdpN6p9WL7Y489ptTUVL311lvq16+fWrZsqZEjR6p169aSnLPan332Wf3zn//UH/7wB3Xr1k3vvvuuDhw4oM8//1yStHHjRs2aNUtvvPGG+vfvr0GDBumFF17Qxx9/rAMHDtR2k1FDCe6OSfWWkXcvoR4iJ4x+LZM0pkuyHIb08DcbZBhGyL0GnpjNJg1qe2KmIcvIAwAqSUh3fvVy2fSGHRrqkncuUXxqvPOGgqPOIrMliP7GJKQ5v3q7lHzeAecS8kH44XAlcSnSX76TUvtJH1wurfqg4v15B5nVDiDoRR1f2rlaM9uDeM92SWqeGKVuzeNlGNLsDaee3X5iZnvwzVx2ca0ml1tUvaJqMM5gdn2m5TCk3NMMPigI8gkT7pntXhbbT8xsD75BGACqJ7lnshJaJOjwgRiVm6Oq3rfdXuD8enz59IMrDspwGIptFqu4ZnE+aK0fRSVJff4s/fqGVJx7fO96lpGHkyXMolYjWrm/t0ZYZTKHwOc3QabWrxK//PJLjRo1SldccYXmz5+vZs2a6eabb9aECRMkSTt37lRGRoaGDx/ufkx8fLz69++vxYsX66qrrtLixYuVkJCgPn36uI8ZPny4zGazli5dqksvvbTSzy0pKVFJyYmRH7m5uZIku90uu716xeDa4vq5/vr5dS02zPk/fFZhabV+x7zjheZIS/C+Nr93+4g2mrvxkH7eelQ/bDionEJnVqPDLCHzGngysFWSvljtHEQTYTFC/vWobcF+HkLNkQ0EkirzGNVYNkllx3bJaD6g2s9tzj8sc1QDlQVT1qNTnK/J0Z0yGnY67eGWnP1SbLLK6+FrUKNzlTlCuvw9WWbdKfMXN6s8c6ccg++UTCbnaxFTP18L1K1A+LvI32TUlhj3zHbvi+2hUDQb3SVZv+3L0ax1GRrXP73S/e7XIoiXka/uzPYC957twfeahFnNigm3Kr+kTFmFdnfx/VROntkejFxbT+R5uYz8iT3bg/P1AOA9k8mkjmM7avFTi5VV0EwNq9q33V7k/Hp8lbGQ2K/9ZAMmSUv/LS3/D8vIo5K257fVppmbJLFfe31V6+/ajh079Morr2jq1Km65557tGzZMt16660KCwvT+PHjlZHhHEHcpEmTCo9r0qSJ+76MjAw1bty4YkOtViUlJbmP+b0ZM2bowQcfrHT77NmzFRXl3yU55syZ49efX1dySiXJquzCUn39zbfydrBNTqFFkknLFv+s7eF12MAAM6ixWT8eNOv/fbJS/Rs5JFmUl3lE3377rb+b5lclpVKY2aIYmzTn+1n+bk7QCtbzEM4c2UAg8ZTHUdYE7Vr+gzbvj6/2c/ba9ZuiSs36JZj+3hqGLjCHaeOS77Vjx+kvwAbuWq+isCStrMevQc3OVcPVtmmxOv38hPavX6zVqX/RoD0blB+RolX1+LVA3fLn38XCwkK//WwEF1fhPL/Ei2Xkg3hP7t8b06WpHp+1WYu2H1NWQakSoysWV4tdM9uD+LU4sWe7t8vIB+/Mdsm5b3t+SZkyC0rVsqHnoseJQQfB+TpUe2Z7CJ03AJyeq9i+a1OcGjRbI489VPcy8s5aTUjs136yuBSpx5+kxS+xjDwqaTOmjfvftqggWpkxhNT6VaLD4VCfPn30yCOPSJJ69uypdevW6dVXX9X48eNr+8e53X333Zo6dar7+9zcXKWmpmrkyJGKi/PPMiR2u11z5szRiBEjZLMF3/8gpWUO3bdirgyZNPjcEYr3YgnwkjKHyhbPlSRdNNq7xwSLQUV2DX/2Fx0qtGtFbrSkYrVp0Vznn9/F303zu7MGFyjCZlFyXIS/mxJ0gv08hJojGwgkp8uj5fALatcgQq3PP7/az2356G3J1lbn1+Cxgcyyr6U6pcSow8jT/17WnffJ0b63ks+rf6/BmZ+rLlDZuvOU+vWtah5nksmUp/gOfdT0nPr3WqBuBcLfRdfqbMCZcs9sr84y8iFQNGvZMFodkmO1KSNPczYe0pV9UivcH1oz272dwRzcKx8kRoVpb2aRsgtLqzzuxDLywfk6uPZsL6jmMvLRQToIA0D1NO/fXLHNYrV/TwP1zlwpleRL4TGVD/zdMvIhN7Ndks7+u7TyPee/mdmOk8Q1i1OT7k10aM0h2UKoZhZMav2qqGnTpurUqeJylh07dtSnn34qSUpOTpYkHTp0SE2bntgv8dChQ+rRo4f7mMOHD1d4jrKyMmVmZrof/3vh4eEKD688Tdpms/m9iBAIbagLNptzGfSC0nLllxpqGHf63zGv9EQHJiE6QlZL8O6F9nsNbDbdNqKd7vtivfZnF0uS4iPDgjIb1dU2OcHfTQh6wXoewpkjGwgkHvOYmCbl7pe5JlktOiYl9qzZYwNZYrosuftkOd3vZRhS3kFZEpqf/tgAdkbnqp5/khJTZfr4aqk4R5aEZvX6tUDd8uffRf4eo7a4Zt96M0u1yF1MDY2i2ZguTbUpI0+z1mVUKra7ZrYH88CDmhbbg7Womnh86fiM3OIqj3MvIx+kr0NMNXPhKspHBengAwDVYzKb1PGyjtr9f9tlkiEdWielnVX5wJOWkc/dl6u8A3kyWUxK6Z3i2wb7U8M2Uqc/SBs+Z892VNL2/LbOYjsz2+ulWq90Dhw4UJs3b65w25YtW5Se7twPq2XLlkpOTtYPP/zgvj83N1dLly7VgAHOfTgHDBig7OxsrVixwn3MvHnz5HA41L9//9puMs6Aa0+rrNOMAnbJLz6x1FQoFdpd/tQvTa0bnRi1FhOkS5ABAFCrEtKk7N01e2zBMSmqYe22JxAkpEnZe05/XFGWVF4ixTY9/bHBrMUg6YY5UutzpZZD/d0aAKhTrsJ5wWmWkTcMQ4X24J65/HtjujoncPyy9Wilfctdr0VEEM9sj4s4vox8kbd7tgd3UbVDcqwk6anZW7T7WIHH407MbA/Oz3Biwp258HYZ+WAfhAGg+jqO7agjRxqovNwsx77Vpz6o1DWzPco9q71JtyahV1gcPFUyWaTYU08qRejqfGVnmSwmNerUyN9NQQ3UerXztttu05IlS/TII49o27Zt+vDDD/Xaa69p0qRJkiSTyaQpU6bo4Ycf1pdffqm1a9fquuuuU0pKii655BJJzpnwo0eP1oQJE/Trr79q4cKFmjx5sq666iqlpITQSKd6IDHa+ccwu9C7jpprX7Bg7aCcjs1i1v+7oKP7e9foYQAAUIWENClnv1Tu3QeAboYhFR6VooOwo+IqthtG1cflOvfBU1yI7INXlUbtpWtnSo3a+bslAFCnXEtdu/bb9qS03KFyh/PvSDDP5j5Z28YxatUoWqXlDs3bVHFFxeIgXzJdkmJdxXYvZzAXBflgjFvPa6suzeKUWVCqP7+1TFkFp55I4iq2B/2e7d7ObGfPdgC/kzYoTZEN43T4cEPlr1506oPsrj3bI7VvqbPYHjL7tZ+saXfpji1Ss97+bgkCTHKPZE3ZPUWXvHuJv5uCGqj1Ynvfvn01c+ZMffTRR+rSpYseeughPfvssxo3bpz7mDvvvFO33HKLJk6cqL59+yo/P1+zZs1SRMSJ/Zo/+OADdejQQeedd57OP/98DRo0SK+99lptNxdnKCGymjPbXaOBQ7jIfE77xhra1jnDrk0j9mYBAOC04tMko1zKO1i9x5UWSGXFUnQQzmxPbCGV5Eqf3iBt+FIqLTz1cbnHX7O4EJ/ZDgAhxDWz/XSzVF1LyEvBvU/5yUwmk8Z0cc4k+25tRoX7QmJme6QzG7nF1ZzZHqQzmKPDrfrP+L5KiY/QjqMFuvG9FSopq7wiRL5rj/IgLbbHVmPrCUkqDPLXA0D1mS1mtb+kvTIyGsnYv/rUB9mLJGuEZLZo/xLnoPDm/UNov/aTRTeUTCZ/twIBKK5ZnCxBfC0azOpkHe8LL7xQa9euVXFxsTZu3KgJEyZUuN9kMmn69OnKyMhQcXGx5s6dq3btKs4wSUpK0ocffqi8vDzl5OToP//5j2JiYuqiuTgDCceXecnycma7a5RsbAhfkJtMJr10dQ9N61amAa2S/N0cAAACX0Ka86s3y6afrPCo82tUg9ptTyBoO1I695/SkS3S/10rPdFa+r/rpHWfSiV5J47LOyDJJMU08VtTAQC+5VpJ7mBO1ftQFxwvtodZzSG1zduYLs4BaD9tOVxh9r97//og/oDTNbM9x8vPcEJhufDGcRF668/9FBtu1a+7MjXtf7/J4ai4clB+iWuVxuDMhqtonudlsZ2Z7QBOpdPlnXTwYGPFmPfKUXqKa5DSAskWpXJ7uQ6sOCBJan5WiBbbAQSd0OlNoU4kHt+zPbuaM9tdHbxQFW41q3m0s/AOAABOIyHV+bW6xfaC48X2YJzZbouUhkyTbvpFumWl89/Ze6RP/iI93lr66GppzX+lI5ulmMaSJbSvvQAglPQ/Pqh73qbDWrjtqMfjikK0YNY5JU6pSZEqtjv00+Yj7tuL7A5JUoQteD8qa318db3tR/K9msXsKrYH+zYD7ZNj9co1vWU1m/TlmgN6es6WCvcXHJ/JHaxbIrp+r3wvVzxw5SJYXw8ANdNiWAtlFjSXxeJQxuyfKh9gL5RsUTq87rDKisoUHh+uBu2CcGA8gJAUvD0I+ESie2a7d8X2vBDfsx0AANSALdK573rO3uo9zlVsjwrCYvvJGrSWBk+VJv4k/f036bx7pYLD0syJ0pKXpViWkAeAUNKteYKuPStdkvSPz37zuHd7YQjM5D4V51Lyzr+N3607sZR8UQjs2d48MUppSVEqcxj6deex0x7vyk50kM7oPtmgtg31yGVdJUkv/rhN/112YpBnfpDv2R4bUb1l5N3bCwTp6wGgZiw2ixL6D5ZhSEd/+rHyAfYiKSxK+5Y492tv3r+5TGYmogEIDhTbcUYSolx7tns3+jWPPdsBAEBNJKRJ2bur95hgXkbek8R06exbpL/OlW7bII15XDr3Xn+3CgDgY3eN6aCU+AjtzSzSk99vOeUxoTJr+VRGH9+3fd7GQyo+vld7UQjs2S5JZ7d2Xhct2lZ1sb20zCF7uXM59WDds/33ruyTqlvPbSNJumfmOv281bnygau4HKwTR1y/l2sGf1XKyh0qKXOuAhEdgucOAFVrd1lPHTuWqLJdK2X8bksO1zLy+5c692tv1r+ZH1oIAHWDYjvOSGK0c2a718vIFwd3BwUAANSRhLSaLSMfES9Zw+qmTYEuvpnU/0ap7XB/twQA4GMx4Vb96/gs3bcW7dTKPVmVjjkxkzv0+uc9micoOS5CBaXl+nmrc3Ceq9gezDPbJensNs4VfxZur7rY7sqHFPyvycluG9FOl/ZspnKHoZvfX6lNGblBP7M95qSZ7b/fr/73Cu0n5yI4Xw8ANddqRCsdPpqsBrH7tW/pvop32gulsOgTM9vZrx1AEKHYjjOS4N6z3buZ7a4OShwz2wEAQHXEp0rZ1VxGvvBo8C8hDwCAB+e0b6zLejaTYUh3fvKbSsoqzloN5ZntZrPJPbv9u3UHJck9wz0yyGe2D2jlnNm+8WCuMgs8T5woOL6EfJjFLJsldD4+NJlMenRsV/VrmaS8kjL95a1lOpJXIimIi+0n/V4FHradcN9//HM9m8WkMGvo5AKAd6zhVjkadlZy8hFt/HR9xTtLC1SuMB3b7Bzs1awfM9sBBA+uinBGEqtZbM8rZhl5AABQAwlpUs4+yXH65S3dCo5K0RTbAQCh694LO6lhTJi2Hc7XS/O2VbjPtR93KM1aPtmY48X2uRsOqbTMETKDDxrFhqt9k1hJ0uIqZre78xEC+7X/XrjVoteu7a1WjaJ1IKdYx44PSgjWVRrDrWbZLM59k0+3b7trqXlmtQPwJK7vYIWHl+rA7EUyjJNWy7AXqSjPWY5KapOkqIZRfmohANQ+iu04I4lRzmXks7xcRt5dbA+31VmbAABAEEpIlxx2KS/D+8cUMLMdABDaEqPD9ODFXSRJL/+0XRsO5LrvC5Vl0z3p0yJJDWPClFtcpsU7joXMzHZJGuDat337UY/HuAYfRIXA63EqCVFhevv6fmoQfWI7ouggHXhgMpncAwlc2z964hqEwX7tADxpesEoSVJ0+XZlrDqp/24vVH6mQxL7tQMIPhTbcUZcy8gXlpZXWpLuVPJLnDPgmdkOAACqJSHV+TWnGkvJFzKzHQCA87sma1TnJipzGLrr099UVu78oNs9k9sWmv1zi9mkkZ2ds9tnrTt40usR/EXEgcf3bV9Uxcx29wzmIJ3N7Y20BlF6Y3wfRdjMigm3qkF0uL+bVGdcS+TneTuzPYRzAaBqtoZNVWhPUHLyYW34ZMOJO0oLlHvIeY5hv3YAwYZiO85IXIRVFrNzqalj+aef3e5ajiqWi3IAAFAd8ceL7dl7vH9MwTGK7QCAkGcymfTQH7ooNsKqtftz9OYvOyWdNHM5hGeoupaS/379IRWEyDLyktS/VZLMJmnn0QIdyC465THMYHbqmZao2VOG6vNJA4M6G8xsB1CbyhI6KTn5sDZ+utG9lLxhL1L2fmf9gJntAIINxXacEZPJpLaNYyRJ87ccOe3xrmXkY5nZDgAAqiM8RopqIB3bdvpjXQpZRh4AAElqHBehey/oJEl6es4W7TiSr6IQ37Ndks5q1UAJUTZlFpS6P6+ItAX/R2VxETZ1bZ4gyfPs9lDZw94baQ2i1Ob4Z1/ByvU5XcHpZraXsmc7gNOL6nqWmjY9rGNbjunIemfNwFGUr6I8kyzhFiV3T/ZzCwGgdgV/DwJ17pKezpFoM1fuP+2xrhGyLCMPAACqrdUwaePX3h1bWiDZC5nZDgDAcVf0aa5BbRqqpMyhf3y2VvklFM1sFrNGdGxS4bZQKS4PPM2+7SdmMIduPkJJjJfLyGfkOFdCiGbFSgBVsKb1VExMoWJi8rXhU+dS8kZxvux2q5r2aipLiPytBRA6KLbjjP2hR4pMJunXXZnam1lY5bGui/YYLsoBAEB1db1SOrxeOrT+9McWHP/gOKpB3bYJAIB6wmQyacZlXRVps+jXnZn65rcDkkJ7ZrskjelacXZdVAjs2S5JZ7c+vm/7tmPuJX5Pxt7coSUmwiap6mXk1+zN1tNztkiSeqYl+KJZAOqrpt0kyb2UvCSZyotVWmpjv3YAQYliO85Y0/hIDTzeSZu5yvPs9pKycpWWOSRJseE2n7QNAAAEkdbnSpGJ0tr/nf7YwuPFdma2AwDglpoUpTtHt5ck5bqWTQ/xYvvANg0Ve7ygbJKhMGtofFTWp0WiwixmZeQWa8fRgkr3F9mPF9tDZPBBqHPv2e5hZvvezELd8M4yFdsdGta+kW4c0sqXzQNQ3ySkywiPV0qzozq89rCObTosi8kuu93Gfu0AglJo9CBQ5y49vpT8Zyv3nXJEtFRxdCzLyAMAgGqzhkmdL5XWfiI5HFUfW3B8/9HoRnXfLgAA6pHrBrRQr5NmpYb6zPZwq0XndmwsSQozO1cACAURNot6pSdIOvW+7a69u6PCQzsfocK1Z/upiu05hXb9+e1lOppfqk5N4/Ti1b1ktfCRMoAqmEwyNe2mVl3zJUnrP1omSbLbmdkOIDhxZYRaMbpLsiJtFu06VqhVe7NPeYzrgj0qzCKLOTQ6rwAAoJZ1vULK2SvtXVr1cYUsIw8AwKlYzCY9fnk3hR0vlrH3sjSmS1NJUqjVlQe6l5KvvG97YalzZjt7tocG1/uc97tl5EvLHLrx/eXadjhfTeMj9J/r+7I1JADvJHdTcuNDkqTV/14kSTJHxSg+Ld6frQKAOkGxHbUiOtyq0V2c+5x9tnLfKY9xXbBzUQ4AAGos9SwpPlVa+39VH1dwRAqPk6zhvmkXAAD1SJvGsXrmjz10cfcUDW7LlivndWysa89K0wVpp1k5J8ic3cb53i/ecUwOR8VVCgtL2WYglMScYma7YRj6x6e/acmOTMWEW/Wf6/sqOT7CX00EUN807abw8oOKiCyVSgslSQntmoXMCjIAQgvFdtSay3o5l5L/+reDKikrr3S/64KdJeQBAECNmc1Sl7HS+plSWann4wqOMqsdAIAqXNCtqZ7/U09FMXNZNotZ913QQWc1PvW2eMGqW/N4RYdZlF1o14aDuRXuK3DPbKfYHgpiXXu2F9vdtz0zd6s+W7VfFrNJL4/rpY5N4/zVPAD1UXI3SVL3kSbZbM5zS1JH9msHEJwotqPWnN26oZrEhSu70K4fNx2pdL9rz/bYCJuvmwYAAIJJtyuloixp+zzPxxQek6KZqQcAAOCJzWJW/1bOwYmLf7dve6F7z3YGY4QC18SYghLnIIv/Ld+r53/YKkn61yVdNKRdI7+1DUA91bCdZI1Qx4Fl7mJ7w27pfm4UANQNiu2oNRazSZf0cI5Om7mq8lLyeSXOP6qxdNQAAMCZaNJZatxJWvs/z8cUHJWi+VAQAACgKme3dhbbF26vuG+7a8/2KGa2hwTXlo95JWVauO2o7v5srSRp0jmtdVW/NH82DUB9ZbFKjTspJeWIwqOcf1Ma9aDYDiA4UWxHrbqsV3NJ0rxNh5VVUHFp13z2bAcAALWl6xXS5m+lkvxT31/IMvIAAACnc3Zr50pAv+7MlL38xJ71he5l5PkMJxS4ZrbvzyrU395boTKHoYu6p+j2Ee393DIA9VrTbrLlbNTIGYMkSeGJCf5tDwDUEYrtqFXtk2PVqWmc7OWGvl57sMJ9eezZDgAAakvXyyV7obPgfioFR1lGHgAA4DQ6JMcqKTpMhaXlWrM32317QenxZeSZ2R4SXKtQ5haXKa+kTH1bJOqJy7vJbDb5uWUA6rXkbtKRTWrS6vi2srYo/7YHAOoIxXbUust6OZeS/2xlxaXkT+zZTrEdAACcoYQ0KW2A9Nv/nfr+gqNSFMV2AACAqpjNJg04vm/7opP2bS9yzWxndcKQcPL73LJhtF67to8ibAy0AHCGmnaXjHJp/wrn9xTbAQQpiu2odRf3SJHZJK3ak60dR04s7ZrnKrbTUQMAALWh6+XS9nlS/pGKt9uLJHsBM9sBAAC8MMC1b/u2E/u2FxxfnTCSme0hoWFMuBrHhqthTLjeur6vEqPD/N0kAMGgcSfJZJb2LJGsEZKZchSA4MTZDbWucWyEhrRrJEn6fNV+9+35LCMPAABqU6dLJZNJ2vB5xdsLjn9QTLEdAADgtAa2cV4zrdqT7Z7Rzp7toSXMatYPtw/VT9OGqUXDaH83B0CwCIuSGraTDm9gVjuAoEaxHXXi0p7Hl5JftV8OhyHpxMz2mHCb39oFAACCSHQDqfV5lZeSLzxebGcZeQAAgNNq0SBKKfERKi13aPnuTJWWOVR2/LOcqHBmtoeK2AibYliNEkBtS+4myZDCGMgDIHhRbEedGNkpWTHhVu3LKtLy3VmSpPwSuyT2bAcAALWo25XSvl+lzJ0nbis4vt8oM9sBAABOy2QyaUBr53XTwm3HVFha5r4vin27AQBnomk351dbpH/bAQB1iGI76kRkmEVjuiRLkj5buU/SSTPbKbYDAIDa0n6MZIuW1n1y4raC43u4M7MdAADAKwPbOPdtX7z9qAqOLyEfZjXLauGjQwDAGUh2FdtZRh5A8OKKGXXmsl7NJUnfrD2oYnu5e8/2WJakAgAAtSUsWupwgfTb/yTDudypCo9KYTGSLcK/bQMAAKgnzj4+s33t/hxl5BRLkqLDmNUOADhDyV2dX1lGHkAQo9iOOtO/ZZKaJUQqr7hMczceUj4z2wEAQF3oeoV0dLOUsdb5fcFRKaqBf9sEAABQjyTHR6hVo2g5DOnHTYclSVFhfH4DADhDUUlSfBrLyAMIahTbUWfMZpMu6ZkiSZq5cr/yXDPbI2z+bBYAAAg2rc9xFtfX/s/5feFRKbqRf9sEAAFkwYIFuuiii5SSkiKTyaTPP/+8wv35+fmaPHmymjdvrsjISHXq1EmvvvpqhWOKi4s1adIkNWjQQDExMRo7dqwOHTrkw98CQF07u7VzsOLcjc7/t6OY2Q4AqA0dL5Sa9vB3KwCgzlBsR526tKdzKfmfthxRaZlDkhTDMvIAAKA2WWxS50uldZ9KDodUcEyKZr92AHApKChQ9+7d9dJLL53y/qlTp2rWrFl6//33tXHjRk2ZMkWTJ0/Wl19+6T7mtttu01dffaX//e9/mj9/vg4cOKDLLrvMV78CAB8YeHwp+U0ZeZKkKD6/AQDUhtEzpPPu9XcrAKDOUGxHnWrTOEbdm8er3GG4b6PYDgAAal3XK6Xc/dKeRVLBESmKYjsAuIwZM0YPP/ywLr300lPev2jRIo0fP17Dhg1TixYtNHHiRHXv3l2//vqrJCknJ0dvvvmmnn76aZ177rnq3bu33nrrLS1atEhLlizx5a8CoA6d1aqBTKYT30fZmNkOAAAAnA5VT9S5y3o115p9OZKcS5BZzKbTPAIAAKCaUvtJCWnSb/93fBl59mwHAG+dffbZ+vLLL/WXv/xFKSkp+umnn7RlyxY988wzkqQVK1bIbrdr+PDh7sd06NBBaWlpWrx4sc4666xKz1lSUqKSkhL397m5uZIku90uu91ex7+RZ66f7c82IDCRDSkmzKSOybHacNA5sz3SZg7p16MukDNUhXwgkJBHeEI24AuBkjNvfz7FdtS5i7qn6KGvN6jMYSg2gsgBAIA6YDJJXa+Qlr0hlZcxsx0AquGFF17QxIkT1bx5c1mtVpnNZr3++usaMmSIJCkjI0NhYWFKSEio8LgmTZooIyPjlM85Y8YMPfjgg5Vunz17tqKiomr9d6iuOXPm+LsJCFChno1kmbXh+EKY2UcP6dtvv/Vzi4JTqOcMVSMfCCTkEZ6QDfiCv3NWWFjo1XFUPlHnkqLDNKx9Y83deIgl5AEAQN3peoX081POf0c38m9bAKAeeeGFF7RkyRJ9+eWXSk9P14IFCzRp0iSlpKRUmM1eHXfffbemTp3q/j43N1epqakaOXKk4uLiaqvp1Wa32zVnzhyNGDFCNpvNb+1A4CEbTtFbjmjee6skSW1apOr88zv7uUXBhZyhKuQDgYQ8whOyAV8IlJy5Vmg7HSqf8Ik/9k3V3I2HlJrk/xkMAAAgSDXuKDXpKh1aK0Uzsx0AvFFUVKR77rlHM2fO1AUXXCBJ6tatm1avXq0nn3xSw4cPV3JyskpLS5WdnV1hdvuhQ4eUnJx8yucNDw9XeHh4pdttNltAfCgXKO1A4An1bAxo01hWs0llDkMxEWEh/VrUpVDPGapGPhBIyCM8IRvwBX/nzNufba7jdgCSpBGdmuidv/TTI5d29XdTAABAMOt6ufNrFHu2A4A3XHuom80VPx6wWCxyOBySpN69e8tms+mHH35w379582bt2bNHAwYM8Gl7AdSt6HCreqQmHP+3xb+NAQAAAOoBZrbDZ4a2YzlXAABQx3peK2Xtcs5yBwBIkvLz87Vt2zb39zt37tTq1auVlJSktLQ0DR06VNOmTVNkZKTS09M1f/58vfvuu3r66aclSfHx8brhhhs0depUJSUlKS4uTrfccosGDBigs846y1+/FoA6cmXfVK07kKM+LZL83RQAAAAg4FFsBwAAQPCIbiBd9Ky/WwEAAWX58uU655xz3N+79lIfP3683n77bX388ce6++67NW7cOGVmZio9PV3/+te/9Le//c39mGeeeUZms1ljx45VSUmJRo0apZdfftnnvwuAundln1SN7dVcFrPJ300BAAAAAh7FdgAAAAAAgtiwYcNkGIbH+5OTk/XWW29V+RwRERF66aWX9NJLL9V28wAEIArtAAAAgHfYsx0AAAAAAAAAAAAAgGqi2A4AAAAAAAAAAAAAQDVRbAcAAAAAAAAAAAAAoJootgMAAAAAAAAAAAAAUE0U2wEAAAAAAAAAAAAAqCaK7QAAAAAAAAAAAAAAVBPFdgAAAAAAAAAAAAAAqoliOwAAAAAAAAAAAAAA1USxHQAAAAAAAAAAAACAaqLYDgAAAAAAAAAAAABANVFsBwAAAAAAAAAAAACgmii2AwAAAAAAAAAAAABQTRTbAQAAAAAAAAAAAACoJortAAAAAAAAAAAAAABUk9XfDagrhmFIknJzc/3WBrvdrsLCQuXm5spms/mtHQg8ZAO+QtbgCdlAICGP8IRswFcCIWuuvqurLxtsAqGPLgXGe43ARDbgC+QMVSEfCCTkEZ6QDfhCoOTM23560Bbb8/LyJEmpqal+bgkAAAAAAN7Jy8tTfHy8v5tR6+ijAwAAAADqo9P1001GkA6bdzgcOnDggGJjY2UymfzShtzcXKWmpmrv3r2Ki4vzSxsQmMgGfIWswROygUBCHuEJ2YCvBELWDMNQXl6eUlJSZDYH345vgdBHlwLjvUZgIhvwBXKGqpAPBBLyCE/IBnwhUHLmbT89aGe2m81mNW/e3N/NkCTFxcVx0sEpkQ34ClmDJ2QDgYQ8whOyAV/xd9aCcUa7SyD10SX/v9cIXGQDvkDOUBXygUBCHuEJ2YAvBELOvOmnB99weQAAAAAAAAAAAAAA6hjFdgAAAAAAAAAAAAAAqoliex0KDw/X/fffr/DwcH83BQGGbMBXyBo8IRsIJOQRnpAN+ApZCx281/CEbMAXyBmqQj4QSMgjPCEb8IX6ljOTYRiGvxsBAAAAAAAAAAAAAEB9wsx2AAAAAAAAAAAAAACqiWI7AAAAAAAAAAAAAADVRLEdAAAAAAAAAAAAAIBqotgOAAAAAAAAAAAAAEA1UWwHAAAAAAAAAAAAAKCaKLYDAAAAAAAAAAAAAFBNFNvrMYfD4e8mIADt2bNHv/32m7+bgRDAOQinwjkIgYjzFU5lx44dmjVrlr+bgRDAOSh08F7jVLg+hi9xHsKpcB5CoOFchVOhjw5fqu3zEMX2eujIkSPKz8+X2WzmDxMqWL16tVq0aKFNmzb5uykIYpyD4AnnIASaAwcOKDs7W2azWeXl5f5uDgLI6tWr1bZtWx04cMDfTUEQ45opdPBewxOuj+ErnIfgCechBBL66PCEPjp8pa6umSi21zMbN27UgAEDNHnyZOXk5HARDbc1a9Zo8ODBmjp1qq688spK95MT1AbOQfCEcxACzaZNm9S9e3ddfPHFOnr0qCwWC515SHKerwYNGqTbbrtNf/nLXyrdz/kKtYFrptDBew1PuD6Gr3AegiechxBI6KPDE/ro8JW6vGYyGYZh1Mozoc7t27dPl19+ubKzs9WoUSN17dpVM2bMUHx8vBwOh8xmxk6EqnXr1unss8/WjTfeqCeeeEIOh0Nz587V/v37lZiYqEsuuUSSyAnOCOcgeMI5CIHmwIEDuuqqq1RSUqLw8HBFR0frvffeU8OGDVVeXi6LxeLvJsJPNm3apP79+2v8+PF6/vnnVV5erk8++UT79++X1WrVpEmTyAfOGNdMoYP3Gp5wfQxf4TwETzgPIZDQR4cn9NHhK3V9zcRf0nrkp59+UmRkpN5++21deOGFWrVqle6++273CAxGgoWul156Sfn5+Ro3bpyKi4s1cuRI3Xvvvbrjjjs0depU9evXT6WlpTKbzWJ8DWqKcxA84RyEQPPrr78qPDxcTz75pCZNmqT8/Hxde+21jJ6HPvzwQ+Xl5Wno0KHKzMzUqFGj9Nxzz+nll1/Wk08+qfbt22vLli2SxPkKNcY1U+jgvYYnXB/DVzgPwRPOQwgk9NHhCX10+EpdXzMxs70ecTgc+uabb3TRRRdJkh599FF98cUX6tmzpx555BElJCRUGIHBqLDQcvHFF2vp0qVq3ry5mjVrpkcffVSJiYnasWOHJkyYoGbNmmnOnDn+bibqMc5BqArnIASa77//XqNGjZIkffzxx3rppZcUExOjd999V40aNeIcFcJuuukmzZkzR1arVW3atNELL7yghIQEFRYW6uqrr1Z2drZWrlxJPlBjXDOFDt5rVIXrY/gC5yFUhfMQAgl9dHhCHx2+UOfXTAbqrbKyMuPRRx81zjrrLOOmm24ysrOzDcMwjGeffdbPLYMv2e12978vvvhio1WrVsa2bdsqHPP2228baWlpxpYtW3zdPAQxzkEwDM5BqB8cDofx8ccfG4MGDTJGjx5tHDlyxDAMw3j88ceNXbt2+bl18JWTz1d/+9vfjD59+hgbN26scMxPP/1kJCUlGYsWLfJ18xDEuGYKHbzXMAyuj+FfnIdgGJyHEPjoo8Mw6KPDv2r7mslaFyMEUDv27t2rFStWyG63q2fPnmrTpo37vrKyMlmtVt1+++2SpM8//1x33323ysrK9MYbb+j8889X27Zt/dV01LGioiJFRkbKMAxZrVZ3Hr744gvNmjVLzZo1k3Ri36Xo6GhFREQoLi7Ozy1HfcI5CJ5wDkKg2bVrl+bPn6/s7GwNHjxY3bt3d48+dY1EveKKKyRJL774oq677jqlpKToP//5jy6++GJ/Nh11LD8/XzExMZIkq9XqzsMrr7yiH3/8US1atJDkXI7OZDKptLRUDRs2VJMmTfzYatQ3XDOFDt5reML1MXyF8xA84TyEQEIfHZ7QR4ev+PyaqXbGAKC2rVmzxkhOTjY6depkpKWlGREREcYzzzxj7N+/332Ma+RPWVmZMWPGDCMyMtJISEgwVq1a5adWwxfWr19vpKenG1988YVhGM6RgIbhzIEnU6ZMMUaPHm3k5eX5pI2o/zgHwRPOQQg0v/32m9GwYUOjV69eRvv27Q2r1WrccccdxsqVK93HuM5XDofD+OCDD4zo6GgjMTGR81WQW7dunZGYmGi88cYbFW6v6nw1bdo0Y9iwYUZWVlYdtw7Bgmum0MF7DU+4PoavcB6CJ5yHEEjoo8MT+ujwFX9cM1FsD0CZmZlGz549jbvuusvIzs42Dh48aDzxxBNGVFSU8fe//93Yvn27+9jy8nLDMAzj5ptvNuLi4ox169b5q9nwgd27dxudO3c2GjVqZDRs2ND48ssvDcM4cRH9e5s3bzamTZtmJCYmGr/99psvm4p6jHMQPOEchECTm5trDB482Lj99tuN4uJiwzCcyyG2a9fOuOqqq4zFixe7jz35fBUdHc35Ksjt3bvX6N69u5GWlmaEhYUZb775ZpXHr1ixwpg2bZoRHx9vrFmzxketRH3HNVPo4L2GJ1wfw1c4D8ETzkMIJPTR4Ql9dPiKv66ZKLYHoMOHDxsdOnQwvvnmmwq3v/vuu0bDhg2NO++80ygqKnLf/sknnxhhYWEVRoch+JSWlhrTp083xo4da8yaNcv429/+ZsTHx1e4iD75QnrVqlXGpEmTjNatWzMqENXCOQinwjkIgSgvL8/o1KlTpU7a119/bfTo0cMYP368sXv3bvfts2fPNtLT040VK1b4uqnwobKyMuOll14yLrvsMmPx4sXGgw8+aJhMJo+d+e3btxu33Xab0aFDB2P16tU+bi3qM66ZQgfvNU6F62P4EuchnArnIQQa+ug4Ffro8CV/XTNRbA8wDofD2L59u9GkSRPjs88+MwzDcI8CMwzD+M9//mOYTCbj22+/rfC4ffv2+bSd8I8FCxYY7733nmEYzpGrv7+IPllBQYGxePFisoFq4RyEqnAOQiBxOBzGoUOHjK5duxrPPPOMYRgVz1czZ840EhMTjVdffbXC4w4dOuTLZsJPVq5caXzyySeGYRhGSUmJ8cADD3jszJeXlxvbtm0zDhw44Otmoh7jmil08F6jKlwfwxc4D6EqnIcQKOijoyr00eEL/rxmotgeoCZMmGA0a9bMfUIpLS11j0S8/vrrjaFDhxpFRUVGaWmpP5sJP9uxY0eli+iioiLj559/rnASAaqLcxC8wTkIgeDee+81oqKijC1bthiG4ey0udxzzz1G69atjfz8fPdeTAhNBQUFlUbPFxcXG1999RUfNuKMcM0UOniv4Q2uj1GXOA/BG5yH4G/00eEN+uioS/64ZrIKAcUwDJlMJk2ZMkVbtmzRH//4R3388cdKSUlRWVmZrFar0tPTtWPHDkVERPi7ufATV05atmypadOmSZKuvfZavf3221qwYIHee+89bdq0SeHh4X5uKeobzkHwBucgBAJXDqdNm6bly5frnHPO0cKFC5Weni6HwyGz2azWrVsrISFBNptNViuXvaEsKipKt99+uyTpr3/9qxwOh9atW6f33ntP69at83PrUB9xzRQ6eK/hDa6PUZc4D8EbnIfgb/TRUR300VEX/HnNZK7VZ8MZM5lMkqROnTrp9ttvV1lZmS688ELt2LHD/Qfo2LFjiomJUVFRkQzD8Gdz4WMOh0OSMyd2u12S1KpVK915553605/+pMsuu0xvvfWWvvnmGzVo0MCfTUU9xTkIVeEchEBiMplkGIZiY2M1Y8YMtWvXTv369dPixYtVUFAgSVq7dq0iIyNVWlrq59bC11znK0nuv1XR0dG64447dP/992vixIl65513NGvWLDVt2tRfzUQ9xjVT6OC9RlW4PoYvcB5CVTgPIVDQR0dV6KPDF/x5zcTwoQBTXl4ui8Wi3NxcXXTRRUpMTNS//vUvdenSRYMGDZIkLVmyRD///LMiIyP93Fr4kisbR44cUaNGjWSz2dz3tWjRQllZWYqPj9fChQvVqVMnP7YU9RnnIHjCOQiBxpXJY8eOqUmTJnrttdd0//33a9iwYerYsaNiY2O1du1a/fTTT4qJifF3c+FDrmwcOnRIktSkSRP3feHh4dq9e7fi4+O1aNEidezY0V/NRD3HNVPo4L2GJ1wfw1c4D8ETzkMIJPTR4Ql9dPiKP6+ZmNkeQEpLS2WxWLR7924lJibq9ddf16BBg/TFF1/oueeeU8+ePXX22Wdr2bJl6t69u7+bCx86ORvNmjXTSy+95L7P4XDotdde06xZs/TDDz9w8QyvGIZRaeQW5yBIp88G5yAEAofDUSGT//3vf9WmTRt98MEH+u9//6s///nPuvzyy7V8+XL16NHD382FD52cjZYtW+qDDz5w32cYhj799FN9+eWXmjt3Lp141FhZWRnXTCGC62N4wvUx6gL9dHhCPx2Bjj46PKGPDl/xdz/dZLC2kM9t3rxZ7777rvbt26eePXvqnHPOcb+5e/bsUf/+/XXppZfqhRdekMVi8XNr4UveZuPFF1+U2XxirMySJUvUqFEjtW7d2l9NRz2yceNGPf/889q3b5969eqlc889V0OHDpXEOSjUeZsNzkHwlYMHDyorK+uUHw5lZGSoW7duGjt2rF588UXOVyHG22y89NJLFc5XmzZtUnR0tFJTU33ZXNRT27dv1/vvv68dO3aoX79+uvbaaxUXFydJOnDggHr37s01U5Cgjw5P6KPDV+inwxP66Qgk9NHhCX10+Eqg9tMptvvY+vXrNWjQIA0fPlxJSUn69ttv1aRJE02YMEE33nij/vOf/2jbtm3617/+5d5fwDAM978RvGqSDaC6Nm3apLPOOkvnnXeeGjZsqLlz56px48YaPXq07r//fr311lvaunUr56AQVJNsAHVp48aN6tOnj/r27atXX31VHTp0kHTinDRz5kxt2bJFd955J5kMMWQDvrB27VqNHj1aPXr0kNls1qxZs3TLLbfo6aeflmEYevnll5WRkaHp06dzzVTP0UeHJ/TR4Sv00+EJ/XQEEvph8IRswFcCuZ9Osd2H8vPzNXbsWPXs2VOPPvqoJOcIxB49eig8PFx33323br31Vj+3Ev5ANuAL5eXluv3223Xs2DG99957kqT9+/frhRde0Ndff60rr7xS9913n59bCX8gGwg0R44c0eWXX66kpCT9+uuvateunV5++eUKS4rxAWNoIhvwhX379mnkyJG64IIL9MQTT0iSZs+erUsvvVQLFy5Ujx495HA4KszIQP1EPwyekA34Cn0xeEI2EEjoh8ETsgFfCfR+Op8O+JDJZFJWVpZ69uwpSSoqKlJaWprOPfdcde7cWR999JG+//57P7cS/kA24AsWi0V79uxRbm6u+7ZmzZpp6tSpuvzyyzVz5ky9+uqrfmwh/IVsINDs3LlTLVu21AMPPKDly5dr8+bNuvnmm7Vx40b3MSd31Bg7GjrIBuqaYRj66quvlJ6erjvuuEOSc++3bt26KSUlRcXFxZJEoT1I0A+DJ2QDvkJfDJ6QDQQS+mHwhGzAF+pDP51PCHzEMAzl5eVp7969OnjwoCQpMjJSe/fu1aZNm3TttdeqoKBAM2fO9HNL4WtkA77gupDp3bu3CgsLtWfPHvd9jRs31oQJE9ShQwd9/vnnKikp8Vcz4QdkA4GoQ4cOuuWWW9S1a1c1bdpUy5Yt06ZNmyp12MrLyyWJEdIhhGygrplMJvXv3189e/ZUkyZNJElWq1XJycmyWq3u63XUf/TD4AnZgK/QF4MnZAOBhn4YPCEb8IV60U834FNPPfWUYTKZjAkTJhj33XefERMTY0ycONEwDMP4+OOPjVatWhmZmZlGeXm5n1sKXyMb8IVff/3ViImJMf7xj38YxcXFhmEYhsPhMAzDMFauXGmYTCZj8eLF/mwi/IRsIFCVlJQYhmEY+/fvN5KTk41hw4YZGzZsMEpKSozHHnvMeP/99/3cQvgL2UBtczgc7r99J9/m0qlTJ+Ojjz5yf//5558ba9eu9Vn7UDfoh8ETsgFfoS8GT8gGAhH9MHhCNlAX6ks/3ervYn8w27VrlxYvXqxDhw5p2LBhatu2raZOnaro6Gi9/vrratCggf75z3/qrrvukiQdOnRICQkJSkxM9HPLUdfIBnwhJydHZrNZsbGx7lHRffv21WuvvaZrrrlGkZGRmjJliuLi4iRJiYmJ6ty5syIjI/3ZbPgA2UCg+X0mTx7pHBYWprKyMqWkpGjlypXq1auXJk+erAYNGujLL7/U6tWr/ddw1DmyAV841d9FF5PJpLKyMpnNZkVGRiohIUGSdM899+iJJ57Qtm3b/NBi1BT9MHhCNuAr9MXgCdlAIKEfBk/IBnyl3vXTfV7eDxG//fab0bBhQ2Pw4MFGQkKC0blzZ+Pyyy83Dh06ZBiGYeTm5rpHJLpMnjzZuOKKK4yioqJKIzUQPMgGfGH9+vVG3759jWeffdbIyckxDMMwysvL3fl5/fXX3bM0vv32W2PPnj3GP/7xDyM1NdU4cOCAP5uOOkY2EGhOlclTKSsrMwzDMHbt2mWYTCYjKSnJWLlypa+aCT8gG/AFb3LmGknfvXt34/vvvzemT59uREdHG8uWLfNxa3Em6IfBE7IBX6EvBk/IBgIJ/TB4QjbgK/Wxn06xvQ7k5+cbgwYNMiZPnmwUFRUZdrvdeO2114xBgwYZXbt2NQ4ePGgYhuFeamzjxo3GlClTjLi4OOO3337zZ9NRx8gGfGH37t1Gt27djKSkJKNz587Gv//9b/cfpZM/CPr222+Nvn37GsnJyUb79u2NFi1acOET5MgGAk1VmTyVwsJC45ZbbjFiYmKM9evX+7Cl8DWyAV+obs4GDBhgtG/f3ggPD6fQXs/QD4MnZAO+Ql8MnpANBBL6YfCEbMBX6ms/3ez7ufTBr6ioSEePHtU555yjiIgIWa1W/fnPf9b06dMVFxensWPHKisrS2azWdnZ2Zo9e7ZWr16t+fPnq2vXrv5uPuoQ2UBdczgcmjNnjpo3b67FixfrrLPO0hNPPKGPP/5Yubm5MplMcjgccjgcGjNmjL766ivNnTtX77zzjpYsWaKePXv6+1dAHSEbCDSny6SkSstE7d+/X0uXLtUPP/ygTp06+aPZ8AGyAV+oTs4cDofy8vJ08OBBbdu2TcuXL1efPn382XxUE/0weEI24Av0xeAJ2UAgoR8GT8gGfKU+99NNxu//L8AZs9vtGjJkiAYOHKgnn3zSfbthGPruu+/04IMP6oILLtC9994rk8mkY8eOyWw2s9dXCCAb8IWtW7dq06ZNuuiiiyRJf/3rXzV//nxNmzZNf/zjHxUfHy+HwyGTyVRhXx0EP7KBQONNJk9WUlKisrIyRUdH+6O58CGyAV/wNmfG8b0I582bp0aNGlFgq4foh8ETsgFfoS8GT8gGAgn9MHhCNuAr9baf7o/p9MGuvLzcuOOOO4x+/foZCxYsqHT/xIkTjYEDB7KvVwgiG/CXG264wWjTpk2FZVfefffdKpdgQWggGwg0njKZnZ3t55bB38gGfOFUOXv77beNzMxMP7cMZ4J+GDwhG/An+mLwhGwgkNAPgydkA75SH/rpzGyvI9nZ2Ro8eLBiYmL04osvqkePHrJYLJKk//u//9ODDz6oX375hdHQIYhswJfKy8vd+XKNArv99tu1fPlyff7551qxYoXS09P93Er4A9lAoCGT8IRswBfIWfCjHwZPyAZ8jb858IRsIJCQR3hCNuAr9SlrFNvrQGlpqcLCwnT06FENGDBAjRo10m233aZLLrlEVqtVt956q9asWaNZs2YpKirK382FD5EN+ILD4ZDZbHZ/b7fbZbPZJEkTJkzQm2++qejoaM2fP1+9evXyVzPhB2QDgYZMwhOyAV8gZ6GDfhg8IRvwFf7mwBOygUBCHuEJ2YCv1NesmU9/CKry+7EK5eXlCgsL04EDB5Sbm6tly5YpJiZGjzzyiNLT0zVq1Ci9//77ev755+moBTmyAV84Vc7MZrOOHDmiRYsWSZJsNpvKy8slSdHR0UpMTNTSpUsD6o8Rah/ZQKAhk/CEbMAXyFnooB8GT8gGfIW/OfCEbCCQkEd4QjbgK8GUNYrtNVRWVibpRBgcDofKyspksVi0e/du9e3bV998840SEhI0c+ZMPf/887rlllv0xz/+UcuWLVOPHj382HrUJbIBXzhdznr06KHffvvNfbzFYtFHH32k559/XrNnz1anTp380m7UPbKBQEMm4QnZgC+Qs9BBPwyekA34Cn9z4AnZQCAhj/CEbMBXgjFrLCNfAxs3btQLL7ygI0eOKCUlRVdddZUGDBggSdq/f7/at2+va665Rq+88ooMw6iw5AGCG9mAL1QnZyaTyf24kpISHT58WKmpqf5qOuoY2UCgIZPwhGzAF8hZ6KAfBk/IBnyFvznwhGwgkJBHeEI24CvBmjV6EdW0fv16DRw4UIZhqFGjRjp06JCGDBmiN954Q4WFhcrIyNCkSZP08ssvy2Qy0VELIWQDvlDdnJ0sPDw8YP8Y4cyRDQQaMglPyAZ8gZyFDvph8IRswFf4mwNPyAYCCXmEJ2QDvhLUWTPgteLiYmPs2LHGLbfc4r7twIEDRocOHYywsDDjySefNAzDMBwOh7+aCD8hG/AFcgZPyAYCDZmEJ2QDvkDOQgfvNTwhG/AVsgZPyAYCCXmEJ2QDvhLsWWPYbjXY7XZt3bpVnTt3luTcV6Bp06YaOHCghg8frmnTpumbb76pNOICwY9swBfIGTwhGwg0ZBKekA34AjkLHbzX8IRswFfIGjwhGwgk5BGekA34SrBnjWJ7NYSHhys9PV3Lli1Tbm6urFardu/erS+++EJTpkzR+PHjNWPGDBUWFvq7qfAxsgFfIGfwhGwg0JBJeEI24AvkLHTwXsMTsgFfIWvwhGwgkJBHeEI24CvBnjWK7V5wOBySJJvNpvPOO0/r16/XhRdeqHvuuUedO3fW5ZdfrhEjRmjUqFHav3+/7Ha7n1sMXyEb8AVyBk/IBgINmYQnZAO+QM5CB+81PCEb8BWyBk/IBgIJeYQnZAO+EipZs/q7AYEsOztbCQkJMpvNKisrk9Vq1d///nclJiZq3rx52rJli/71r3/p73//uyTnyIy4uDg/txq+QDbgC+QMnpANBBoyCU/IBnyBnIUO3mt4QjbgK2QNnpANBBLyCE/IBnwl5LLm703jA9WGDRuMli1bGvfee6/7tpKSkgrHlJaWVvj+b3/7mzFy5EijsLDQJ22Ef5AN+AI5gydkA4GGTMITsgFfIGehg/canpAN+ApZgydkA4GEPMITsgFfCcWsMbP9FPbu3aurr75aVqtVM2fOlNVq1X333aewsDD3CAxJ7q+LFi3Shx9+qA8//FA///yzIiMj/dl81CGyAV8gZ/CEbCDQkEl4QjbgC+QsdPBewxOyAV8ha/CEbCCQkEd4QjbgK6GaNYrtv2MYhj766COlpKRoypQpWrhwoT766CNJ0n333Ser1ary8nJZLBaZTCY5HA4dPXpUK1eu1IIFC9StWzc//waoK2QDvkDO4AnZQKAhk/CEbMAXyFno4L2GJ2QDvkLW4AnZQCAhj/CEbMBXQjlrFNt/x2Qy6brrrlOTJk00YsQIde/eXZL00UcfyTAM3X///bJYLHI4HDKbzTKbzbr44ot1zjnnKDY21s+tR10iG/AFcgZPyAYCDZmEJ2QDvkDOQgfvNTwhG/AVsgZPyAYCCXmEJ2QDvhLKWTMZhmH4uxGB7uDBg/r3v/+t//73v7rqqqt0//33S5I+//xzXXTRRbJYLH5uIfyFbMAXyBk8IRsINGQSnpAN+AI5Cx281/CEbMBXyBo8IRsIJOQRnpAN+EqoZI2Z7XK+2Xv37lVWVpaGDx/ufnMdDodMJpOaNm2qiRMnSpI+/vhjGYahnJwcPffcc9q3b59SUlL82XzUIbIBXyBn8IRsINCQSXhCNuAL5Cx08F7DE7IBXyFr8IRsIJCQR3hCNuArZO04I8StWbPGSE9PN9q1a2fEx8cbHTp0MD788EPj2LFjhmEYRnl5ueFwOAzDMIwDBw4Y9913n2EymYzExERj+fLl/mw66hjZgC+QM3hCNhBoyCQ8IRvwBXIWOniv4QnZgK+QNXhCNhBIyCM8IRvwFbJ2gtnfxX5/OnLkiP74xz9q3Lhx+u6777RhwwZ1795dDz30kJ5//nkdOXJEZvOJl6hp06bauXOnYmNj9csvv6h3795+bD3qEtmAL5AzeEI2EGjIJDwhG/AFchY6eK/hCdmAr5A1eEI2EEjIIzwhG/AVsvY7/q72+9P69euNFi1aVBpBcddddxldu3Y1Hn/8caOgoMB9+xtvvGEkJCQYK1eu9HVT4WNkA75AzuAJ2UCgIZPwhGzAF8hZ6OC9hidkA75C1uAJ2UAgIY/whGzAV8haRSE9s91ut6usrEyFhYWSpKKiIknSo48+qnPOOUevvPKKtm3b5j7+wgsv1MqVK9WzZ0+/tBe+QzbgC+QMnpANBBoyCU/IBnyBnIUO3mt4QjbgK2QNnpANBBLyCE/IBnyFrFVkMgzD8Hcj/Klfv36KiYnRvHnzJEklJSUKDw+XJPXt21dt2rTRRx99pPLyclksFn82FT5GNuAL5AyekA0EGjIJT8gGfIGchQ7ea3hCNuArZA2ekA0EEvIIT8gGfIWsnRBSM9sLCgqUl5en3Nxc923//ve/tX79el199dWSpPDwcJWVlUmShgwZooKCAkkK+iCEOrIBXyBn8IRsINCQSXhCNuAL5Cx08F7DE7IBXyFr8IRsIJCQR3hCNuArZK1qIVNs37Bhgy677DINHTpUHTt21AcffCBJ6tixo5577jnNmTNHV1xxhex2u8xm58ty+PBhRUdHq6ysTCG+AEBQIxvwBXIGT8gGAg2ZhCdkA75AzkIH7zU8IRvwFbIGT8gGAgl5hCdkA75C1k7P6u8G+MKGDRs0ZMgQXXfdderTp49WrFihP//5z+rUqZN69uypiy++WNHR0br55pvVrVs3dejQQWFhYfrmm2+0ZMkSWa0h8TKFJLIBXyBn8IRsINCQSXhCNuAL5Cx08F7DE7IBXyFr8IRsIJCQR3hCNuArZM07Qb9ne2Zmpv70pz+pQ4cOeu6559y3n3POOeratauef/559215eXl6+OGHlZmZqYiICN10003q1KmTP5oNHyAb8AVyBk/IBgINmYQnZAO+QM5CB+81PCEb8BWyBk/IBgIJeYQnZAO+Qta8F/RDCux2u7Kzs3X55ZdLkhwOh8xms1q2bKnMzExJkmEYMgxDsbGxeuyxxyoch+BFNuAL5AyekA0EGjIJT8gGfIGchQ7ea3hCNuArZA2ekA0EEvIIT8gGfIWseS/of9smTZro/fff1+DBgyVJ5eXlkqRmzZq532yTySSz2azc3Fz340wmk+8bC58iG/AFcgZPyAYCDZmEJ2QDvkDOQgfvNTwhG/AVsgZPyAYCCXmEJ2QDvkLWvBf0xXZJatu2rSTnaAqbzSbJOdri8OHD7mNmzJihN954Q2VlZZJCMwyhiGzAF8gZPCEbCDRkEp6QDfgCOQsdvNfwhGzAV8gaPCEbCCTkEZ6QDfgKWfNO0C8jfzKz2SzDMNxvtGvkxX333aeHH35Yq1atktUaUi8JjiMb8AVyBk/IBgINmYQnZAO+QM5CB+81PCEb8BWyBk/IBgIJeYQnZAO+QtaqFhIz209mGIYkyWq1KjU1VU8++aQef/xxLV++XN27d/dz6+BPZAO+QM7gCdlAoCGT8IRswBfIWejgvYYnZAO+QtbgCdlAICGP8IRswFfImmchN8zANdrCZrPp9ddfV1xcnH755Rf16tXLzy2Dv5EN+AI5gydkA4GGTMITsgFfIGehg/canpAN+ApZgydkA4GEPMITsgFfIWuehdzMdpdRo0ZJkhYtWqQ+ffr4uTUIJGQDvkDO4AnZQKAhk/CEbMAXyFno4L2GJ2QDvkLW4AnZQCAhj/CEbMBXyFplJsM17z8EFRQUKDo62t/NQAAiG/AFcgZPyAYCDZmEJ2QDvkDOQgfvNTwhG/AVsgZPyAYCCXmEJ2QDvkLWKgrpYjsAAAAAAAAAAAAAADURssvIAwAAAAAAAAAAAABQUxTbAQAAAAAAAAAAAACoJortAAAAAAAAAAAAAABUE8V2AAAAAAAAAAAAAACqiWI7AAAAAAAAAAAAAADVRLEdAAAAAAAAAAAAAIBqotgOAAAAAAAAAAAAAEA1UWwHAAAAAAAAAAAAAKCaKLYDAAAAAAAAAAAAAFBNFNsBAAAAAAAAAAAAAKgmiu0AAAAAAAAAAAAAAFQTxXYAABAwHnnkEX3++ef+bgYAAAAAACGPPjoAAKdnMgzD8HcjAAAAJCkmJkaXX3653n77bX83BQAAAACAkEYfHQCA02NmOwAAAAAAAAAAAAAA1USxHQCAAJCXl6cpU6aoRYsWCg8PV+PGjTVixAitXLnSfczSpUs1evRoxcfHKyoqSkOHDtXChQsrPddPP/2kPn36KCIiQq1bt9a///1vPfDAAzKZTBWOM5lMmjx5sv73v/+pU6dOioyM1IABA7R27VpJ0r///W+1adNGERERGjZsmHbt2lXpZ3nTJtfP3rZtm66//nolJCQoPj5ef/7zn1VYWFihPQUFBXrnnXdkMplkMpl0/fXXe/0aOhwOPffcc+ratasiIiLUqFEjjR49WsuXL/f6OQAAAAAAoI9+5n30J598UmeffbYaNGigyMhI9e7dW5988onXjwcAoL6w+rsBAABA+tvf/qZPPvlEkydPVqdOnXTs2DH98ssv2rhxo3r16qV58+ZpzJgx6t27t+6//36ZzWa99dZbOvfcc/Xzzz+rX79+kqRVq1Zp9OjRatq0qR588EGVl5dr+vTpatSo0Sl/7s8//6wvv/xSkyZNkiTNmDFDF154oe688069/PLLuvnmm5WVlaXHH39cf/nLXzRv3jz3Y71tk8uVV16pli1basaMGVq5cqXeeOMNNW7cWI899pgk6b333tNf//pX9evXTxMnTpQktW7d2uvX8IYbbtDbb7+tMWPG6K9//avKysr0888/a8mSJerTp4/3bwYAAAAAIKTRRz/zPvpzzz2niy++WOPGjVNpaak+/vhjXXHFFfr66691wQUXeP9mAAAQ4NizHQCAAJCQkKBrrrlGL774YqX7DMNQ+/bt1apVK3333Xfu0e9FRUXq3Lmz2rRpo9mzZ0uSLr74Yv3www/aunWrUlJSJEnbtm1Tx44dVVZWppP/7JtMJoWHh2vTpk1q0aKFJOm1117TjTfeqOTkZG3ZskWxsbGSpHvuuUczZszQzp071aJFi2q16YEHHtCDDz6ov/zlL3rzzTfdP/+yyy7TggULdPToUfdtNd0P7scff9S5556rW2+9Vc8991yl1+/3MwYAAAAAAPCEPrrTmezZXlRUpMjISPf3drtdvXr1UuPGjfXDDz9U+/kAAAhULCMPAEAASEhI0NKlS3XgwIFK961evVpbt27V1VdfrWPHjuno0aM6evSoCgoKdN5552nBggVyOBwqLy/X3Llzdckll7g78ZLUpk0bjRkz5pQ/97zzznN34iWpf//+kqSxY8e6O/En375jx45qtelkf/vb3yp8P3jwYB07dky5ubnVeKVO7dNPP5XJZNL9999f6T4K7QAAAACA6qCPfuZOLrRnZWUpJydHgwcPrrAUPwAAwYBl5AEACACPP/64xo8fr9TUVPXu3Vvnn3++rrvuOrVq1Upbt26VJI0fP97j43NyclRcXKyioiK1adOm0v2nuk2S0tLSKnwfHx8vSUpNTT3l7VlZWZLkdZsSExM9/izXfVlZWYqLi/P4PN7Yvn27UlJSlJSUdEbPAwAAAAAAffQz66NL0tdff62HH35Yq1evVklJift2BsQDAIINxXYAAALAlVdeqcGDB2vmzJmaPXu2nnjiCT322GP67LPP3KPPn3jiCfXo0eOUj4+JiVFxcXG1f67FYqnW7a4l7rxtU3WeEwAAAACAQEAf/cz8/PPPuvjiizVkyBC9/PLLatq0qWw2m9566y19+OGHZ/z8AAAEEortAAAEiKZNm+rmm2/WzTffrMOHD6tXr17617/+pWeeeUaSFBcXp+HDh3t8fOPGjRUREaFt27ZVuu9Ut52J1q1be9Wm6qrpCPfWrVvr+++/V2ZmJrPbAQAAAABnjD56zfvon376qSIiIvT9998rPDzcfftbb71VW00DACBgsGc7AAB+Vl5erpycnAq3NW7cWCkpKSopKVHv3r3VunVrPfnkk8rPz6/0+CNHjkhyjkofPny4Pv/88wr7ym3btk3fffddrbbZ2zZVV3R0tLKzs6v9uLFjx8owDD344IOV7mPmPAAAAADAW/TRT6hpH91ischkMqm8vNx9265du/T555/XqB0AAAQyZrYDAOBneXl5at68uS6//HJ1795dMTExmjt3rpYtW6annnpKZrNZb7zxhsaMGaPOnTvrz3/+s5o1a6b9+/frxx9/VFxcnL766itJ0gMPPKDZs2dr4MCBuummm1ReXq4XX3xRXbp00erVq2utzdVpU3X07t1bc+fO1dNPP62UlBS1bNlS/fv3P+3jzjnnHF177bV6/vnntXXrVo0ePVoOh0M///yzzjnnHE2ePLkmvyYAAAAAIMTQRz+hpn30Cy64QE8//bRGjx6tq6++WocPH9ZLL72kNm3a6LfffqvJrwgAQMCi2A4AgJ9FRUXp5ptv1uzZs937v7Vp00Yvv/yybrrpJknSsGHDtHjxYj300EN68cUXlZ+fr+TkZPXv31833nij+7l69+6t7777TnfccYfuvfdepaamavr06dq4caM2bdpUq+32tk3V8fTTT2vixIn65z//qaKiIo0fP96rjrzkXI6uW7duevPNNzVt2jTFx8erT58+Ovvss2vUFgAAAABA6KGPfkJN++jnnnuu3nzzTT366KOaMmWKWrZsqccee0y7du2i2A4ACDomg7VVAQAIepdcconWr1+vrVu3+rspAAAAAACENProAAAED/ZsBwAgyBQVFVX4fuvWrfr22281bNgw/zQIAAAAAIAQRR8dAIDgxsx2AACCTNOmTXX99derVatW2r17t1555RWVlJRo1apVatu2rb+bVy3l5eU6cuRIlcfExMQoJibGRy0CAAAAAMB79NEBAAhu7NkOAECQGT16tD766CNlZGQoPDxcAwYM0COPPFLvOvGStHfvXrVs2bLKY+6//3498MADvmkQAAAAAADVQB8dAIDgxsx2AAAQsIqLi/XLL79UeUyrVq3UqlUrH7UIAAAAAIDQRB8dAIDKKLYDAAAAAAAAAAAAAFBNQbuMvMPh0IEDBxQbGyuTyeTv5gAAAAAA4JFhGMrLy1NKSorMZrO/m1Pr6KMDAAAAAOoTb/vpQVtsP3DggFJTU/3dDAAAAAAAvLZ37141b97c382odfTRAQAAAAD10en66UFbbI+NjZXkfAHi4uL80ga73a7Zs2dr5MiRstlsfmkDAhPZgK+QNXhCNhBIyCM8IRvwlUDIWm5urlJTU9192WATCH10KTDeawQmsgFfIGeoCvlAICGP8IRswBcCJWfe9tODttjuWpYuLi7Or8X2qKgoxcXFcdJBBWQDvkLW4AnZQCAhj/CEbMBXAilrwbrEeiD00aXAeq8RWMgGfIGcoSrkA4GEPMITsgFfCLScna6fHnwbwQEAAAAAAAAAAAAAUMcotgMAAAAAAAAAAAAAUE0U2wEAAAAAAAAAAAAAqKag3bPdW+Xl5bLb7XXy3Ha7XVarVcXFxSovL6+TnxGsbDabLBaLv5sBAAAAAPChuuyjS/TTzwT9dAAAAACoLGSL7YZhKCMjQ9nZ2XX6M5KTk7V3716ZTKY6+znBKiEhQcnJybx2AAAAABDkfNFHd/0c+uk1Rz8dAAAAACoK2WK7qxPfuHFjRUVF1UlH0eFwKD8/XzExMTKbWbHfW4ZhqLCwUIcPH5YkNW3a1M8tAgAAAADUJV/00SX66TVFPx0AAAAATi0ki+3l5eXuTnyDBg3q7Oc4HA6VlpYqIiKCTnw1RUZGSpIOHz6sxo0bs1QdAAAAAAQpX/XRJfrpZ4J+OgAAAABUFpI9S9f+b1FRUX5uCarien/qcr8+AAAAAIB/0UevP+inAwAAAEBFIVlsd2GPscDG+wMAAAAAoYM+YODjPQIAAACAikK62A4AAAAAAAAAAAAAQE1QbAcAAAAAAAAAAAAAoJootoewFi1a6Nlnn/V3MwAAAAAACHn00QEAAACg/rH6uwGonmHDhqlHjx610gFftmyZoqOjz7xRAAAAAACEIProAAAAABDaKLYHGcMwVF5eLqv19G9to0aNfNAiAAAAAABCE310AAAAAAhuLCMvZ+e3sLSsTv4rKi2v8n7DMLxu5/XXX6/58+frueeek8lkkslk0ttvvy2TyaTvvvtOvXv3Vnh4uH755Rdt375df/jDH9SkSRPFxMSob9++mjt3boXn+/0SdSaTSW+88YYuvfRSRUVFqW3btvryyy9r62UGAAAAgCqVl5brs2s+0+JnFvu7KfCz+tBPp48OAAAAoL7Kz8jXhxd8qLUfrvV3U+o9ZrZLKrKXq9N93/vlZ2+YPkpRYd69Dc8995y2bNmiLl26aPr06ZKk9evXS5L+8Y9/6Mknn1SrVq2UmJiovXv36vzzz9e//vUvhYeH691339VFF12kzZs3Ky0tzePPePDBB/X444/riSee0AsvvKBx48Zp9+7dSkpKOvNfFgAAAACqsH3Odq39YK02f7lZZ005SyaTyd9Ngp/Uh346fXQAAAAA9dWChxdo67dblbsvV12v7urv5tRrzGyvR+Lj4xUWFqaoqCglJycrOTlZFotFkjR9+nSNGDFCrVu3VlJSkrp3764bb7xRXbp0Udu2bfXQQw+pdevWpx0Ff/311+tPf/qT2rRpo0ceeUT5+fn69ddfffHrAQAAAAhxe37eI0kqzStVcVaxn1sDVI0+OgAAAID6qOBwgVa9uUqSlLk9s1qrcKMyZrZLirRZtGH6qFp/XofDobzcPMXGxcpsPvW4hkibpVZ+Vp8+fSp8n5+frwceeEDffPONDh48qLKyMhUVFWnPnj1VPk+3bt3c/46OjlZcXJwOHz5cK20EAAAAgKrsXrDb/e/sXdmKTIr0Y2vgT/W9n04fHQAAAECgWvr8UpUVl0mS7AV2FRwuUEyTGD+3qv6i2C7nPmjeLuVeHQ6HQ2VhFkWFWT124mtLdHR0he/vuOMOzZkzR08++aTatGmjyMhIXX755SotLa3yeWw2W4XvTSaTHA5HrbcXAAAAAE5mL7TrwPID7u+zd2Wraa+mfmwR/Km+99PpowMAAAAIRCW5JVr20jLnNyZJhpS5LZNi+xmg2F7PhIWFqby8/LTHLVy4UNdff70uvfRSSc5R9Lt27arj1gEAAABAzexbuk8O+4kiYtbOLD+2BvAOfXQAAAAA9cmK11aoOLtYDdo3UExyjHbP362s7VlKG5jm76bVW+zZXs+0aNFCS5cu1a5du3T06FGPI9rbtm2rzz77TKtXr9aaNWt09dVXM/odAAAAQMBy7dfukr0r2z8NCUL79+/XNddcowYNGigyMlJdu3bV8uXL3fcbhqH77rtPTZs2VWRkpIYPH66tW7dWeI7MzEyNGzdOcXFxSkhI0A033KD8/Hxf/yoBhz46AAAAgPqirKRMi59eLEkaeNdANWjXQJJz33bUHMX2euaOO+6QxWJRp06d1KhRI4/7uz399NNKTEzU2WefrYsuukijRo1Sr169fNxaAAAAAPCOa7/2Jt2bSJJyduX4szlBIysrSwMHDpTNZtN3332nDRs26KmnnlJiYqL7mMcff1zPP/+8Xn31VS1dulTR0dEaNWqUiouL3ceMGzdO69ev15w5c/T1119rwYIFmjhxoj9+pYBCHx0AAABAfbHm3TXKP5ivuOZx6jaumxJbO/uFWdtYWe5MsIx8PdOuXTstXry4wm3XX399peNatGihefPmVbht0qRJFb7//ZJ1hmFUep7s7OwatRMAAAAAvFVuL9e+xfskSd2v667Zt89mZnsteeyxx5Samqq33nrLfVvLli3d/zYMQ88++6z++c9/6g9/+IMk6d1331WTJk30+eef66qrrtLGjRs1a9YsLVu2TH369JEkvfDCCzr//PP15JNPKiUlpdLPLSkpUUlJifv73NxcSZLdbpfdbq9wrN1ul2EYcjgcdT7b29Xvdf28M9WmTRstXLiwwm3XXXedJFV4/rS0NM2dO7fCcTfddFOF43bs2FHhe9fy9Cc/T2ZmZqXbfMnhcMgwDNntdlksFr+0oa64cvn7fAK1iZyhKuQDgYQ8whOyUX85yh1a+Liz79JvSj85TA7FpcdJko5tOxZQ72mg5Mzbn0+xHQAAAADgVwdXHpS90K7IpEi1Pb+tZt8+W1k7s2QYhkwmk7+bV699+eWXGjVqlK644grNnz9fzZo1080336wJEyZIknbu3KmMjAwNHz7c/Zj4+Hj1799fixcv1lVXXaXFixcrISHBXWiXpOHDh8tsNmvp0qXufchPNmPGDD344IOVbp89e7aioqIq3Ga1WpWcnKz8/HyVlpbW1q9epby8PJ/8nGBTWlqqoqIiLViwQGVlZf5uTp2YM2eOv5uAEEDOUBXygUBCHuEJ2ah/shdmK2tbliyxFh1qdkjffvutCg8WSpIObXJ+H2j8nbPCwkKvjqPYDgAAAADwK9cS8mmD05TQIkGSZC+wq+hYkaIaRlXxSJzOjh079Morr2jq1Km65557tGzZMt16660KCwvT+PHjlZGRIUlq0qRJhcc1adLEfV9GRoYaN25c4X6r1aqkpCT3Mb939913a+rUqe7vc3NzlZqaqpEjRyouLq7CscXFxdq7d69iYmIUERFxxr9zVQzDUF5enmJjYxnIUQPFxcWKjIzUkCFD6vy98jW73a45c+ZoxIgRstls/m4OghQ5Q1XIBwIJeYQnZKN+MgxDbz3oXO1swN8HaMjYIZKkkrwSPTX1KZXnluvcgecqIj4wrvEDJWeuFdpOh2I7AAAAAMCv9vzs3Oc6bXCarBFWxTSNUf7BfGXvyqbYfoYcDof69OmjRx55RJLUs2dPrVu3Tq+++qrGjx9fZz83PDxc4eHhlW632WyVPiwpLy+XyWSS2WyW2WyuszZJJ5Zfd/08VI/ZbJbJZDrl+xgsgvl3Q+AgZ6gK+UAgIY/whGzUL9vnbFfGqgzZomwa8PcB7vfOlmRTVKMoFR4pVP6efMX2ivVzSyvyd868/dn0LAEAAAAAfmM4DO35xVlsTx+SLknu2e3s237mmjZtqk6dOlW4rWPHjtqzx/maJycnS5IOHTpU4ZhDhw6570tOTtbhw4cr3F9WVqbMzEz3MQAAAACAwPTLjF8kSb0m9Ko0oD2pTZIkKXN7ps/bFSwotgMAAAAA/Obw+sMqziqWLdqmpj2bSqLYXpsGDhyozZs3V7hty5YtSk93Dmxo2bKlkpOT9cMPP7jvz83N1dKlSzVgwABJ0oABA5Sdna0VK1a4j5k3b54cDof69+/vg98CAAAAAFAT+5bu064fd8lsNWvA1AGV7k9qfbzYvo1ie02xjDwAAAAAwG9c+7Wnnp0qs9U5HjyhZYIkKWtnlr+aFTRuu+02nX322XrkkUd05ZVX6tdff9Vrr72m1157TZJzOfUpU6bo4YcfVtu2bdWyZUvde++9SklJ0SWXXCLJORN+9OjRmjBhgl599VXZ7XZNnjxZV111lVJSUvz42wEAAAAAqrLwsYWSpK7juio+Lb7S/YmtEyVJWdvpf9cUxXYAAAAAgN+cvF+7i2tme86uHH80Kaj07dtXM2fO1N13363p06erZcuWevbZZzVu3Dj3MXfeeacKCgo0ceJEZWdna9CgQZo1a5YiIiLcx3zwwQeaPHmyzjvvPJnNZo0dO1bPP/+8P34lAAAAAIAXjmw8ok0zN0mSBt418JTHuJaRp9hecxTbAQAAAAB+YRiGe2a7a792iWXka9uFF16oCy+80OP9JpNJ06dP1/Tp0z0ek5SUpA8//LAumgcAAAAAqAOLnlgkSepwSQc16tjolMe4ZrazjHzNsWc7AAAAAMAvsnZkKf9gvsw2s5r1a+a+/eRiu2EYfmodAAAAAAD1U87eHP32/m+SPM9ql07s2Z67P1dlxWU+aVuwodhezwwbNkxTpkyptee7/vrr3fvwAQAAAIAvuWa1N+vXTLZIm/v2+LR4ySTZC+0qPFLor+YBp0UfHQAAAEAgWvz0YjnsDrUY1kLNz2ru8bioRlEKiw2TDClrJ0vJ1wTFdgAAAACAX5xqv3ZJsoZbFZsSK4ml5AEAAAAAqI7CY4Va+dpKSdLAf3ie1S45txVzzW5nKfmaodhej1x//fWaP3++nnvuOZlMJplMJu3atUvr1q3TmDFjFBMToyZNmujaa6/V0aNH3Y/75JNP1LVrV0VGRqpBgwYaPny4CgoK9MADD+idd97RF1984X6+n376yX+/IAAAAICQcqr92l3Ytx2Bjj46AAAAgED064u/yl5oV3KPZLUe2fq0x7v2bc/azsz2mrD6uwGBwDAM2Qvttf68DodD9gK7Si2lMptPPa7BFmWTyWTy6vmee+45bdmyRV26dNH06dOdj7fZ1K9fP/31r3/VM888o6KiIt1111268sorNW/ePB08eFB/+tOf9Pjjj+vSSy9VXl6efv75ZxmGoTvuuEMbN25Ubm6u3nrrLUlSUlJS7fzyAAAAAFCFvAN5zo68SUo9O7XS/QktErR34V6K7SGqPvTT6aMDAAAACDSGYWjZS8skOWe1e9O3SWpzfGb7dma21wTFdjn3AZwRM8MvP/vu/LsVFh3m1bHx8fEKCwtTVFSUkpOTJUkPP/ywevbsqUceecR93H/+8x+lpqZqy5Ytys/PV1lZmS677DKlpztni3Tt2tV9bGRkpEpKStzPBwAAAAC+sPtn56z25B7JioiPqHR/QssESewZF6rqQz+dPjoAAAAQGHb9tEuzpszSRa9dpGb9mvm7OX6VuzdXhUcKZbaa1fHSjl49xj2zfRv975qo9WXkZ8yYob59+yo2NlaNGzfWJZdcos2bN1c4pri4WJMmTVKDBg0UExOjsWPH6tChQxWO2bNnjy644AJFRUWpcePGmjZtmsrKymq7ufXemjVr9OOPPyomJsb9X4cOHSRJ27dvV/fu3XXeeeepa9euuuKKK/T6668rK4v/WQAAAAD4l2sJ+d/v1+7iWkY+Z1eOr5oEnDH66AAAAIDv/XDPDzq05pCWPr/U303xuyMbj0iSktomyRJm8eoxzGw/M7U+s33+/PmaNGmS+vbtq7KyMt1zzz0aOXKkNmzYoOjoaEnSbbfdpm+++Ub/+9//FB8fr8mTJ+uyyy7TwoULJUnl5eW64IILlJycrEWLFungwYO67rrrZLPZKowOry22KJvuzr+71p/X4XAoLzdPsXGxVS5Pdyby8/N10UUX6bHHHqt0X9OmTWWxWDRnzhwtWrRIs2fP1gsvvKD/9//+n5YuXaqWLVue0c8GAAAAgJra8/MeSafer11iz/ZQV1/76fTRAQAAAN86tuWY9i3eJ8k5w90wDK+3bw5GRzY4i+2NOjXy+jFJrZ3F9uxd2XKUOWS21vpc7aBW68X2WbNmVfj+7bffVuPGjbVixQoNGTJEOTk5evPNN/Xhhx/q3HPPlSS99dZb6tixo5YsWaKzzjpLs2fP1oYNGzR37lw1adJEPXr00EMPPaS77rpLDzzwgMLCvFt23Vsmk8nrpdyrw+FwyFZuU1h0mMdOfHWFhYWpvLzc/X2vXr306aefqkWLFrJaT/12mkwmDRw4UAMHDtR9992n9PR0zZw5U1OnTq30fAAAAABQ14oyi3R47WFJUtqgqme2Z+/KDvkPS0JRfemn00cHAAAA/GvNu2vc/87bn6es7VnumdqhqCbF9thmsbKEWVReWq6cvTlKbJlYV80LSnW+Z3tOjnPJv6QkZ7BXrFghu92u4cOHu4/p0KGD0tLStHjxYp111llavHixunbtqiZNmriPGTVqlG666SatX79ePXv2rPRzSkpKVFJS4v4+NzdXkmS322W32ysca7fbZRiGHA6HHA5H7f2yv2MYhvtrbf2c9PR0LV26VDt27FBMTIxuuukmvf7667rqqqs0bdo0JSUladu2bfrvf/+r119/XcuXL9e8efM0YsQINW7cWEuXLtWRI0fUvn17ORwOpaen6/vvv9fGjRvVoEEDxcfHy2Y7s9n2tcXhcMgwDNntdlks3i11UV+4Mvn7bAK1jazBE7KBQEIe4QnZCF475++UJCW1S1J4Uvgp3+Oo5CiZzCaVFZcpe3+2YprE1Fl7AiFr5Lx+atGihZYuXapdu3YpJiZGkyZN0uuvv64//elPuvPOO9199I8//lhvvPGGli9frh9++EEjR46s0Efv2LGj+/m+//57bd68OeD66AAAAECgMRyGfnvvN0mSNcKqsuIy7fxxZ0gX249uOCqpesV2s8WsxFaJOrrpqLK2Z1Fsr6Y6LbY7HA5NmTJFAwcOVJcuXSRJGRkZCgsLU0JCQoVjmzRpooyMDPcxJxfaXfe77juVGTNm6MEHH6x0++zZsxUVFVXhNqvVquTkZOXn56u0tLRGv1t15OXl1dpz3Xjjjbr55pvVpUsXFRUVac2aNfruu+/0wAMPaNSoUSotLVVqaqrOO+885efny2w268cff9Szzz6rvLw8paam6qGHHtLAgQOVm5urP/7xj/rhhx/Ur18/5efn66uvvtKgQYNqrb1norS0VEVFRVqwYIHKysr83Zw6MWfOHH83ASGCrMETsoFAQh7hCdkIPvvf3e/8R7r07bffejzOmmSV/ahd3334naLbR9d5u/yZtcLCQr/9bNTcHXfcofHjx6tTp04qKirSzp07tXDhQt11110aOXKkSkpKlJ6ertGjR8tsNisuLk4LFizQs88+q9zcXKWnp+upp57SmDFjJEkTJkzQTz/9pD59+ig/P18//vijhg0b5t9fEgAAAAhQu+bvUs6eHIXHh6v3jb216PFF2v3TbvWe0NvfTfMLwzBqNLNdkhJbO4vtmdsz1Wp4q7poXtCq02L7pEmTtG7dOv3yyy91+WMkSXfffbemTp3q/j43N1epqakaOXKk4uLiKhxbXFysvXv3KiYmRhEREXXWJsMwlJeXp9jY2Fpb8rBXr15asmRJpdu/+OKLUx7ft29fzZ492+PzxcXFae7cubXSttpWXFysyMhIDRkypE7fJ3+w2+2aM2eORowYwSwF1CmyBk/IBgIJeYQnZCN4vf3I25KkgX8aqK7nd/V43LEOx7T3l73qlNJJnc/vXGftCYSsuVZnQ/3Srl07LV68uNLtn3322SmP79ixY6Xt907WqFGjKvvwAAAAAE5Y845zCfnOf+ystmPaatHji7Tzx50huxVZfka+irOLZTKb1KBdg2o9NrG1czZ75rbMumhaUKuzYvvkyZP19ddfa8GCBWrevLn79uTkZJWWlio7O7vC7PZDhw4pOTnZfcyvv/5a4fkOHTrkvu9UwsPDFR4eXul2m81W6cOS8vJymUwmmc3mWttL/VRcS8e7fhaqx2w2y2QynfI9DBbB/LshsJA1eEI2EEjIIzwhG8GltKBUGSudK5a1OqdVle9tYstE7f1lr/L35fskA/7MGhkHAAAAAO+V5pdqwycbJEk9xvdQ015NZQm3KP9gvjK3Zla72BwMXLPaE1snyhpRvRKwa+n9rO1Ztd6uYFfrFWDDMDR58mTNnDlT8+bNU8uWLSvc37t3b9lsNv3www/u2zZv3qw9e/ZowIABkqQBAwZo7dq1Onz4sPuYOXPmKC4uTp06dartJgMAAAAAfGTfkn1ylDkUlxqn+PT4Ko9NaJEgScrelV33DQMAAAAA1BsbP9soe4FdSW2T1HxAc1kjrEodkCpJ2vXTLv82zk9quoS8JCW1ptheU7VebJ80aZLef/99ffjhh4qNjVVGRoYyMjJUVFQkSYqPj9cNN9ygqVOn6scff9SKFSv05z//WQMGDNBZZ50lSRo5cqQ6deqka6+9VmvWrNH333+vf/7zn5o0adIpZ68DAAAAAOqH3Qt2S5LSh6Sfdlm/hJYJkqTsndl13CoAAAAAQH3iWkK++3Xd3X3L9GHpkqRdP+7yV7P86kyK7e5l5LdnyjCMWm1XsKv1Yvsrr7yinJwcDRs2TE2bNnX/99///td9zDPPPKMLL7xQY8eO1ZAhQ5ScnFxhPzOLxaKvv/5aFotFAwYM0DXXXKPrrrtO06dPr+3mAgAAAAB8aM/PeyRJaYPTTnssM9sBAAAAAL+XsydHO3/cKUnqdm039+0thrWQ5JzZHooF46MbjkqqWbE9oUWCTGaT7AV2FRwqqO2mBbVa37Pdm/BGRETopZde0ksvveTxmPT0dH377be12TQAAAAAgB+Vl5Zr3+J9kpwz20/HXWzfnS3DYchkrnomPAAAQH20ck+Wpv1vjUY1NOl8fzcGAOqBNe+tkQxncT0hPcF9e/P+zuXk8zPydWzzMTXs0NB/jfSDIxtrPrPdGm5VXGqccnbnKHN7pmKSY2q7eUGr1me2AwAAAABwKgeWH1BZcZmiGkZ59aFHXPM4mcwmlZeUK/9Qvg9aCAAA4HvvL9mt7UcKNGc/AwsB4HQMwzixhPz47hXus0ZY1XxAc0mht297wZECFR4plCQ1aN+gRs/h2rc9c1tmtR+77ftt2vTFphr93PqOYjsAAAAAwCd2/+zcrz1tcNpp92uXJIvNorjUOEns2w4AAILX6j3ZkqTtuSblFNn92xgACHD7luxT5tZM2aJs6ji2Y6X7T15KPpQc3ehcQj6hRYLCosNq9ByJbZz7tmdtz6rW44oyi/TRRR/pf5f/T0VZRTX62fUZxXYAAAAAgE/sWeD9fu0u7NsOAACCWVZBqXYcde6N65BJ87cc9XOLACCwrXnXOau949iOCo8Nr3R/i3NaSAq9fduPbKj5EvIurpnt1S2275y3Uw67Q44yh/IO5NX459dXFNsBAAAAAHXOUe7QnoXOYrs3+7W7UGwHAADBbPXe7Arfz9t0xD8NAYB6oKy4TOs/Xi+p8hLyLs36NZM1wqqCQwU6uil0BjC5iu0NO9V8n/rE1s6Z7dVdRn77nO3ufxccKqjxz6+vKLbXM4ZhaOLEiUpKSpLJZNLq1av93SQAAAAAOK3Daw+rJKdEYTFhSu6e7PXjKLYjkNFHBwCcqVV7nLMH2zSKliTN33pUpWUOfzYJAALW5q82qzi7WHGpcWp5TstTHmMNtyp1YKokadePu3zYOv+qlZntbY7v2b7d+2K7YRjaMXuH+/v8Q/k1/vn1FcX2embWrFl6++239fXXX+vgwYPq0qWLv5tUIy1atNCzzz7r72YAAAAA8BHXfu2pA1NltnrfFU1omSCJYjsCE310AMCZWnV8Zvs1Z6Up1mYov6RMS3ce82+jACBArXnHuYR8t2u7yWQ2eTwuFPdtr41ie2Ir58z2omNFKs4u9uoxWduzKvTXQ3Fmu9XfDUD1bN++XU2bNtXZZ59do8cbhqHy8nJZrbz1AAAAQF3K2Zujn//1s3re0FPN+jbzd3PqTM6eHP14748qySup8riM1RmSqrdfu3TSzPad2TVpHlCn6KMDAM6Ew2Fo9Z5sSVKv1AR1STS0+LBJczcc0uC2NS+WAEAwyj+Ur22ztkmSul936iXkXU4uthuGIZPJc2E+GBRlFSn/oHNGeaOONf/7ER4brujG0So4XKDM7ZlK6Z1y2secvIS8xMx2BLjrr79et9xyi/bs2SOTyaQWLVqopKREt956qxo3bqyIiAgNGjRIy5Ytcz/mp59+kslk0nfffafevXsrPDxcv/zyixwOh2bMmKGWLVsqMjJS3bt31yeffFLh561fv14XXnih4uLiFBsbq8GDB2v7duf/NMuWLdOIESPUsGFDxcfHa+jQoVq5cqX7sYZh6IEHHlBaWprCw8OVkpKiW2+9VZI0bNgw7d69W7fddptMJlPQn+QAAAAQeooyi/T+yPe14t8rNPOamXIE8VKgy15epjXvrtGmmZuq/M9VLG89onW1nt9dbN+dLcNh1HLrgZqjjw4AOFPbjuQrr6RMUWEWtW0crS6JzmuduRsPyzC47gHgO+v/b70++eMnmnPnHK14fYV2/rhTOXtzAqoPtvaDtTLKDTXr30wN21e9L3mzfs1kjbSq8Eihe8Z3MDu60bk3fVzzOIXHhZ/Rc7mWks/anuXV8TvmOJeQj0iMkCQVHGZmOwLYc889p9atW+u1117TsmXLZLFYdOedd+rTTz/VO++8o/T0dD3++OMaNWqUtm3bpqSkJPdj//GPf+jJJ59Uq1atlJiYqBkzZuj999/Xq6++qrZt22rBggW65ppr1KhRIw0dOlT79+/XkCFDNGzYMM2bN09xcXFauHChysrKJEl5eXkaP368XnjhBRmGoaeeekrnn3++tm7dqtjYWH366ad65pln9PHHH6tz587KyMjQmjXO5T0+++wzde/eXRMnTtSECRP88loCAAAAdaWsuEwfX/Kxjm5ydnaPbTmm1W+vVq+/9vJzy+rG4XWHJTlnFjQ/u3mVxyakJ6hZv+rN8o9rFieTxSSH3aG8g3mKaxZX47YCtYk+OgDgTLn2a+/ePEFWi1nt4g1F2Mzan12kDQdz1Tkl3s8tBBAKSvNL9eUNX6o0v7TSfdYIqxJbJ6pB2wZKbJOo+JbxKo2ofJwvuJaQ7z6+6lntkmQJsyhtYJp2zN2hXT/tUuPOjeu6eX5VG0vIuyS2TtTeRXu92rfdUebQzh92SpI6XdFJK19byTLyIa20UDq6pXaf0zBkKciXCmIkTyPDG7aTwqK8err4+HjFxsbKYrEoOTlZBQUFeuWVV/T2229rzJgxkqTXX39dc+bM0Ztvvqlp06a5Hzt9+nSNGDFCklRSUqJHHnlEc+fO1YABAyRJrVq10i+//KJ///vfGjp0qF566SXFx8fr448/ls1mkyS1a9fO/Xznnntuhba99tprSkhI0Pz583XhhRdqz549Sk5O1vDhw2Wz2ZSWlqZ+/fpJkpKSkmSxWBQbG6vk5GSvfncAAACgPjAchmZeN1N7ft6j8Lhwdbm6i1a8ukLzH5yvruO6yhZp83cTa52rU9/jLz3UYmiLWn9+s9Ws+LR4Ze/MVvaubIrtoSTA++n00QEAZ2rl7mxJUs+0BElSmEUa1LqB5m46orkbDlNsB+AT6/+3XqX5pYpPi1f7S9ora1uWjm09puyd2SorLtOR9Ud0ZP2J2eERLSKka33bxozVGTr02yFZwizq8scuXj0mfVi6s9j+4y71m9SvjlvoX65+ecNOVc/494ZrZnvmttMX2/cv26+S3BJFJEao7Zi2FNtD3tEt0mtDa/UpzZJiT3fQxPlSSo8aPf/27dtlt9s1cOBA9202m039+vXTxo0bKxzbp08f97+3bdumwsJCd8fepbS0VD179pQkrV69WoMHD3Z34n/v0KFD+uc//6mffvpJhw8fVnl5uQoLC7Vnzx5J0hVXXKFnn31WrVq10ujRo3X++efroosuYh86AAAABLXZ02Zrw/82yGwz64+f/1GpA1K19Zutyt2bq2UvL9PZt9dsX+dAVVpQ6l4evjZG0HuS0CLBWWzfma20gdXb8x31WD3rp9NHBwBU16q9zpntPdMS3bed26Gxs9i+8ZD+Prytv5oGIISsfN25/VCfm/to0F2D3Lc7yhzK2ZOjY1uPKXNbpjJWZWjVm6tUesj3M9tXv7NaktT+4vaKTIr06jEtz2mpH/Wjds/fLcNhyGQO3u2SXMvI19bMdsm7ZeS3z3Zua9VqeCvFNI2RFJp7ttOrcmnYztmhrkUOw1BBQb6io2NkrmrEvA9ER0e7/52f7wz6N998o2bNKi7hGB7u3MshMrLqk9X48eN17NgxPffcc0pPT1d4eLgGDBig0lLnSTY1NVWbN2/W3LlzNWfOHN1888164oknNH/+fI8fDgAAAAD12ZLnlmjJ00skSZe8fYlantNSkjTsgWH68oYv9cuMX9Trr70UER/hz2bWKtdS+VENoxTdKPo0R9ece9/2Xdl19jMQgIK4n04fHQCQW2zX1sPOvwGume2SdG77hjKZpLX7c3Qwp0hN470rKgFATRxef1j7Fu+TyWJSj/E9KtxntpqV2CpRia0SpVHOvbhXvblKjiKHHOUOyUeXkeX2cq39YK0k75aQd0npkyJblE2FR537tjfuErxLydfmMvJJrb3fs921X3urEa0U08RZbC84VCDDMGTy1N8KQhTbXcKiajzD3COHQ+W5uVJcnGQ21+5zS2rdurXCwsK0cOFCpaenS5LsdruWLVumKVOmeHxcp06dFB4erj179mjo0FPPEujWrZveeecd2e32U3a8Fy5cqJdfflnnn3++JGnv3r06evRohWMiIyN10UUX6aKLLtKkSZPUoUMHrV27Vr169VJYWJjKy8tr+JsDAAAAgWXDpxv0/W3fS5LOm3Geul7d1X1f9+u6a9ETi3R001Etfmqxzpl+jr+aWevcHfrOdTerXaLYHrLqWT+dPjoAoDrW7M2WYUhpSVFqGBMuu90uSWoQE65eaYlasTtLczce1rVnpfu5pQCC2ao3V0mS2l/UXjHJMVUeGx4f7v53SW6JwiPCqzi69mz/frsKjxQqunG0Wo9q7fXjLGEWpQ1K0/bZ27Xzx51BW2wvyStRzp4cSVKjjrVQbD++jHzuvlzZi+wet8MryS3RviX7JEmtR7RWdBPngOLy0nKV5JQoIiF4JhqcTu1XgOEz0dHRuummmzRt2jTNmjVLGzZs0IQJE1RYWKgbbrjB4+NiY2N1xx136LbbbtM777yj7du3a+XKlXrhhRf0zjvvSJImT56s3NxcXXXVVVq+fLm2bt2q9957T5s3b5YktW3bVu+99542btyopUuXaty4cRVG2r/99tt68803tW7dOu3YsUPvv/++IiMj3R84tGjRQgsWLND+/fsrfQAAAAAA1Cd7Fu7RZ+M+kwypz019NPCugRXuN1vNOudhZ4F98dOLVXA4ePYvc+3bV5dLyEtSQssESRTbEdjoowMAqmPVnmxJFWe1uwzv2ESSNGfDIR+2CECoKSsp05p310iSev6152mPt4ZbZY10zuEtyS6p07adbM07zjZ2HddVFpulWo9NH+a83t390+5ab1egcK04F5Mc4/US+1WJbBCp8DjnQArXtnGnsvPHnTLKDSW1SVJCiwTZIm0Kiw2TpKD63MMbFNvruUcffVRjx47Vtddeq169emnbtm36/vvvlZiYWOXjHnroId17772aMWOGOnbsqNGjR+ubb75Ry5bOpS4bNGigefPmKT8/X0OHDlXv3r31+uuvu0fQv/nmm8rKylKvXr107bXX6tZbb1XjxidGBSUkJOj111/XwIED1a1bN82dO1dfffX/2Tvv8DjKe23f29V7lyX3XmVjbGMwBmyKgdATSCCEJJBCckJISEJOki+kkZOTw0kjISeFElroAWKKTTHFvXdbsi1bVu9d2jbfH7Ozkmx17czOSr/7unwlaHdnXo1md2fe532e5zVSU1MB+MlPfkJxcTGTJ08mPV3fiTlBEARBEARB0IuaIzU8+4ln8XX6mP6J6Vzx+yt6jUqbef1Mcs7JwdPq4cNffBiGkepDKKPq+iPobO/nRl8QzIDcowuCIAiDZdepQF97XtJZj62epYrtm47V0NzhMXJYgiCMIY786wjtte3E58Yz5bIpg3qN5m7vaOjQc2hB2uvbOfKqusB0/mcHHyGvMWHlBACK3y9G8SuhHJpp0O7L02amhWR7Fosl2Nted6yuz+cFI+QvnRT8mRYlP9Z62yVGPsK45557esTPRUVF8bvf/Y7f/e53vT5/5cqVKMrZHyAWi4VvfOMbfOMb3+hzX/PmzeOtt97q9bGCggK2bdvW42c33nhj8P9fe+21XHvttX1ue+nSpezZs6fPxwVBEARBEATB7LRUtPDU5U/RXtdO7rm53PDMDVhtva9ntlgsXPLgJfxj9T/Y/qftLP3mUpLGJxk7YB0wOka+8VQjfp+/z+MsCEYj9+iCIAjCcFAUhV0lDQAsHH/2gqzJ6bFMTIvlRE0rHxbWsGZutsEjFARhLLDzrzsBKPh8AVb74O6xohKjaK1opbPJGGd71b4qfG4fSROSyFqQNeTX55yTgyPWQXtdO1X7q8icl6nDKMOLHovgU6akULGrgrqigcX2yau7ov1jM2KpK6qjtVKc7YIgCIIgCIIgCEI/uFvcPH3V0zQUN5A8OZlbXrsFR0zvPWYak1ZNYuLFE/G5fWz48QaDRqofnnYP9cdVR5bezvb4nHisdit+r5/msmZd9yUIgiAIgqA3J2paaWjz4LJbmZGVcNbjFouFVTPVhBKJkhcEQQ/qT9SrYqlFFdsHi9bDbZSzXRP1Y9JjhvV6m0PtbQfV3T4aqTmoxsiH8r5cc7bXH6vv9fGGkw3UHq3FYrMw4aIJwZ9rve1jzdkuYrsgCIIgCIIgCMIQUBSFlz7zEuU7yolJi+HWN28lNiN2UK+95MFLANjzxJ7g6vNIpeZwDSgQnRI96N9/uFhtVhLzEwHpbRcEQRAEIfLR+trn5ibi7MNNunqW6uB893AVXp/fqKEJgjBG2P3obkBdFK4liQ0GLUa+s9EYZ3tHoyrqRyVGDXsbwSj594pDMCLzoYuzfXIK0LfYrrnaxy0Z1+Nvo4nt4mwXBEEQBEEQBEEQ+qSusI4jrx7B6rByy2u3kDIlZdCvzT03lxnXzUDxK7z7g3d1HKX+dI+Q762nPtQkTUwCRGwXBEEQBCHy2Rnoa+8tQl5jYX4SyTEOGts9bD/Zu9ghCIIwHPxeP7v+vguAhV9cOKTXGt3ZrjnbXQmuYW9Dc14Xbxh9ve2eNg/1J0KfOKfNc/QVIx/sa189qcfPtc721ioR2wVBEARBEARBEIQ+KNteBkDOohzGLR035Ndf/LOLsVgtHH75MKe3nA718AxDj9Xz/aG5LRpONBiyP0EQBEEQBL3QnO0FeUl9Psdus3LxDLVbWKLkBUEIJUVvFdFc2kx0ajTTr5k+pNdqMfJGOdu1/YxEbM9emI0zzklHfQeVe0fX52nNkUDiXGr0sKP2e0OLkW8obsDv7Zmu4vf5Ob6+d7FdnO2CIAiCIAiCIAjCgGhie/Y52cN6ffqsdOZ/dj4A734/ct3t1QfCJLaLs10QBEEQhAimze3lcEUTAAX5fTvbAVbPUnvb1x+qRFFGlxtTEITwseuvqqt9/mfnY3fZh/RaTfTW4t31JuhsTxy+2G5z2Mi/YHT2tndfBB/KxLmE3ARsLht+r5/GksYej1XsqqC9rh1Xgovcc3N7PKZVzEln+xjC75euGzMjfx9BEARBEATBjASd7efkDHsbF/74QmxOGyfePRFcER5pdI+RNwIR20c/cg9ofuRvJAiCMHL2lDTiVyAnMYqsATqIL5iajtNu5WRtG0VVY0u4EARBH1oqWjjy2hFg6BHy0M3Z3mBsZ/tInO3Qrbd9lIntNYdqgNAvgrdYLSRPUheEnRklf2zdMUCN57c5bD0eC8bIjzFn+9CWrIwSnE4nVquVsrIy0tPTcTqdunQM+v1+3G43HR0dWK1jel3DkFAUBbfbTXV1NVarFafTGe4hCYIgCIIgCAKgxqWV7ywHIHdx7gDP7puk8Uks+vIitv5uK+/c/w4TL5loSO95qPB2eKk/FvpeuP6QzvbRi1H36CD36cNF7tMFQRBCx64S9RpqIFc7QKzLzvLJqbx3pJq3D1YyNTNe7+EJgjDK2f34bhSfQt55ecO6l3MlGetsdze51f2OwNkOXWL7yQ0n8fv8WG2j415Az3q3lMkp1ByqUe/9V3f9/PjbvUfIQ1eM/Fhzto9Jsd1qtTJx4kTKy8spKyvTbT+KotDe3k50dHRETZyZhZiYGPLz82UCRBAEQRAEQTANtUdq8bR6cMQ6SJ2eOqJtrfjPFez62y7Ktpdx6KVDzLphVohGqT81R2pQ/ApRSVHEZcUZsk/N2d54qhG/14/VLvcJowWj7tFB7tNHitynC4IgjJxgX3t+0qCev2pWJu8dqWb9oUruvmiKfgMTBGHUoyhKMEK+4IsFw9pGVILBne1NI+9sh0Bve7yTjga1tz27YHi1cGZDT7Fd622vO9blbHe3ujn18SkAJl86+azXaM52T6sHd6sbZ+zYWKQ7JsV2UFfO5+fn4/V68fl8uuzD4/HwwQcfsGLFChwOhy77GK3YbDbsdrtMfgiCIAiCIAimonRbKaDeqI90JXxsRizL7l3GBz/9gHf/811mXDMjYgTk7hHyRl2zx2fHY3VY8Xv8NJU2kTQ+yZD9CsZgxD06yH36SJD7dEEQhJGjKAq7TmnO9qRBvWbVzEz+8+X97C5poKq5g4z4/qPnBUEQ+uLkByepK6rDGe9k9k2zh7WNoLO9wRhnu+agjxqgdmMgrHYr4y8YT+HaQorfKx4VYru30xuMeNfF2T4lBYD6ovrgz05+cBK/x0/i+MTg491xxjuxR9nxdnhprWrFOVHE9lGPxWLB4XDodoNts9nwer1ERUXJTbwgCIIgCIIgjAJC0dfenWXfWsa2P26j9kgthWsLmf6J6SHZrt7ouXq+LyxWC0njk6grqqOhuEHE9lGI3vfoIPfpgiAIQng5Xd9OTYsbh83C7JzEQb0mMyGK+eMS2XO6kXcPVXHzufk6j1IQhNGK5mqfc8scnHHDE0GDne1NkeVsBxi/MiC2v1/MsnuXjXh74aausA7Fp+BKdBGXHfrEud6c7cfeVvvaJ62e1OsiXIvFQmxmLI0nG2mtbCV54sCVKaOByLBNCIIgCIIgCIIgmIDy7Wpfe6jE9qjEKGZ/SnUUHFt3LCTbNIKagzWAsWI7SG+7IAiCIAiRzc6Aq31WTiJRDtugX7dqZiYA6w9V6jIuQRBGP+317Rx84SAAC7+4cNjb0UTvzgaDxPbG0IntEy+aCATc2T7/iLcXbrovgtcjfSplcsDZfqweRVEAOL5O7WvvLUJeIzZj7PW2i9guCIIgCIIgCIIwCHweHxW7K4DQie0Ak1ZNAuDE+hMh26beVB2oAtQYeSPRetsbTjQYul9BEAQ9aO304vMr4R6GIAgGEuxrz0sa0utWz1bF9g8La2hze0M8KkEQxgL7ntqHt8NL5rzMEd3Pas72jsaOoACrJ0Fne+LIxfasBVm4El10Nnay/9n9I95euNE7cS5pQhIWqwVPm4eWihaay5qpPlANFph48cQ+X6f1trdWtuoyLjMiYrsgCIIgCIIgCMIgqD5YjbfDiyvB1Ws32XCZsHICFquFmsM1NJU2hWy7eqF3L1x/BMV2cbYLghDh7C9tZOkv3uGLj28L91AEQTAQra994fihxepOz4xnXHI0nV4/HxXW6DE0QRBGMYqisPMvOwEo+GLBiFzQWme74lPwtHpCMr6+UBQl2NkeCme71W7lvG+fB8Bb97xFW03biLcZTjSxPW1mmi7btzltJOarlSf1x+qDaXw5i3KISY3p83WxmeJsFwRBEARBEARBEHpB62vPXpSNxRq6iLbo5GiyF2UDcOId87vbg71wCS7ic+IN3beI7YIgjAba3T6+8ewumju9vHekmsqmjnAPSRAEA+jw+DhQpi6sHKqz3WKxSJS8IAjDpnxHOZV7K7G5bMz7zLwRbcsR4wgqix0N+l7D+Dp9+D1q3HtUYlRItrn8O8vJmJNBW00bb3/r7ZBsM1zo7WwHgkaDumN1wQj5SZdO6vc1mtjeWiXOdkEQBEEQBEEQBKEbmtgeygh5DS1K/vj64yHfdqgJRsjr1AvXH9LZLgjCaODBNw5xrLpr8lGEM0EYG+wvbcTrV0iLczEuOXrIr790liq2v3OoSiooBEEYEjv/qrraZ904i+iUoX/+dMdisWCLtQH6i+1ahDyAM84Zkm3anDau/svVYIE9T+zh2NvHQrJdo/F7/dQerQX0FduTJ6tJLHWFdcH5ismr++5rB4mRFwRBEARBEARBEPqgfHs5oL/YbkTv3UgIrp43uK8dupztTaeb8Hv9hu9fEARhpLx3uIonNp0E4MJp6ufo+oMito8lTP41L+iI1te+MD9pWAsWF09MISHKTm2rm03HakM8OkEQIhHFr+Dt9Pb7r72+nX1P7wNg4RcXhmS/QbG9UV+xXdu+M94Z0nS5cUvHce7XzwXg9S+9jrvVHbJtG0XdsTr8Hj+OWAeJeYm67UcT2w+/cpjWylYcMQ7GLRvX72uCzvYxJLbbwz0AQRAEQRAEQRAEs+Pt9FKxpwLQR2zPOy8Pe5SdlvIWag7VGN6FPhRqDqo9oeEYY1xmHDaXDV+nj8aSRpInDq3vVBAEIZzUtHRy3wt7Abhj+QQ+fW4+G45W8/GxWlo7vcS6ZJpuNOP3K/zk9UO8uN3GpIXNzMtPCfeQBIPZVaL2tRfkD+/6xWGzcm1BLk9sOsmjH5/g/Kn6dPQKgmBuGksaKXqziKI3iji+/jju5sEJxSlTUhh/4fiQjMEWY6yzPVQR8t25+GcXc+SVIzQUN/Dej97jsv+5LOT70JPgIviZ6SFdiHAmWox89QF1fxNWTsA+wDVrbIZ0tguCIAiCIAiCIAhnULW/Cr/HT1RyVDDKPJTYo+zkn58PwPF3zB0l3z1G3mgsVgtJ45MAiZIXBCGyUBSF7724j5qWTqZlxvHdy2cwJSOOCakxuL1+PiysDvcQBR3x+xW+++Je/rGlhDafhXePyN97LLLzZAMABflJw97G586bAMA7h6s4UTN2HIOCMJbxdno58e4J3r7vbf4454/8Jv83vH7X6xx++fCghXaL1cLy7y4PWQ2YYTHyjarY7kpwhXzbrngXVz5yJQBbfrOF0m2lId+HnhjR1w6QMrnn4sBJq/vva4exGSMvS2YFQRAEQRAEQRAGoHtfu1495RNXTeT4+uOcWH+CJV9foss+RorP7aOusA4IT4w8qFHytUdrRWwXBCGieHZbCesPVeK0WfnNpwqIcqiT1KtmZvLXj07w9sFKLp+THeZRCnrgCwjtL+w4HfxZYdXYcXoJKuWN7VQ0dWCzWpg3bvhxv5PS47hkRgbvHK7i0Y9P8JNr5oRwlIIgmIWOhg72P7tfda+/cxxPqyf4mMVqIXdJLlOumMLUK6aSMjVlwHtUq8OKI9oRsvFpYrsmhuuF5mx3JYZebAeYesVU5n56Lvue3sdrd77GndvuxBa4RjM7WuJc2ix9U06SJ/VMYxmM2K7FyHc0dOBz+7A5I+OYjgQR2wVBEARBEARBEAYgKLYvDn2EvMakSybxDu9Q/H4xfq8fq918QWR1RXX4vX6ccU4SxiWEZQxasoCI7YIgRArHq1v4yWsHAbjvsunMyun6/Fw1SxXb3ztchdfnx24z32e/MHx8foXvvLCXF3eexma1cN2CHF7YWUqRiO1jDq2vfUZWPDHOkU3Jf+H8ibxzuIrnt5/mW6unkxgTOgFNEARz8OItL1L0ZlHwv2MzY5ly+RSmXDGFyasnE50SHcbRGeds1zrb9XC2a1z2m8soequIyj2VbPqfTZz/vfN121coMcrZ7oxzEpcVR0tFC/E58YPaX3RyNFa7Fb/XT2tVa9jmDoxEruAFQRAEQRAEQRAGoHx7OaBPX7tGVkEWUclRdDZ1BsV9s9H9hl4vh/9AJE1IAqDhRENY9i8IgjAUPD4/3/znbto9PpZNSuUL50/s8fg545NJinFQ3+ZhZ0CME0YHPr/Cfc/vCQrtv715AXevVN1gx2ta8fr8YR6hYCQ7T2p97Ukj3tayyanMyIqn3ePj2W2nRrw9QRDMR90xNU3s3K+fy1077+JbZd/i2seuZc6n5oRdaAcDY+R17GzXiE2P5bKH1L7293/8PrWFtbrtK1T4fX5qDqvOdiPq3ZInq+72SasnDWoewGK1jLnedhHbBUEQBEEQBEEQ+sHT7qFyXyWgr9hutVmZeLEqwhxfb87e9mBfe5gi5KGb2C7OdkEQIoDfv1PIntONJETZ+Z9Pzsdq7TlBabdZuXh6BgDrDlaEY4iCDvj8Ct9+fg8v7SrFZrXwu5sLuGpeDjmJUTitCh6fQnFtW7iHKRjIrpIGABbmJ/f/xEFgsVj4fGDhzuMbi2XhhiCMQjSReeEXF5JdkI3FGp6Fzn0RFNsbjRHbnQlOXfcz77Z5TFo9CV+nj9fufA3Fr+i6v5HSUNyAt8OLPcoevD/WkymXT8FitTD/s/MH/RpNbB8rve0itguCIAiCIAiCIPRD5Z5KFJ9CbEas7vFnEy8xt9iu9cIZsXq+L0RsFwQhUtheXMcf3lMjYH9+3Vxyknp3oq2alQnAuoOVKIq5J3eFgfH5Fb713G5eDgjtv7+lgCvnZQNgtVrICpwGhZXNYRylYCRur599pY0AFIRAbAf4xPwc0uKclDV28MZ+WagjCKMNd7MbAGe8viLzcAl2tjfo3Nke6ITXM0Ye1EVMV/35KhwxDk5uOMmuv+/SdX8jRUucS5uRhtWACqILvn8B363/btAcMBi03nZxtguCIAiCIAiCMOrpaOzgmU88w/5/7g/3UExLsK/9nBzdo9MnrVLjZU9vOo271a3rvoaDUb1w/aF1tjeXNuNz+8I2DkEQhP5o7vDwzed241fguoJcrp7fdzLKimnpOG1WimvbOFY9NiYkRyten597n9vNK7vLsFst/OGWAtbMze7xnKwYdUHF0TEy+SzAwfIm3F4/STEOJqTGhGSbUQ4bn1kyHoC/f3wiJNsUBMEc+L1+PG0eQH+RebjYYkZPjLxG8sRkLvrpRQC8/e23aS4376I4o+/LLVbLkM/FuMw4AFqrxNkuCIIgCIIgCMIo5+jrRzn62lFe++JrtFaPjZugoaKJ7dnnZA/wzJGTMiWFxPxEfG4fpz4yVwenz+Oj5kjA2R7GGPnYjFjsUXYUv0LT6aawjSNS+PGPf4zFYunxb8aMGcHHV65cedbjX/7yl3ts49SpU1x55ZXExMSQkZHBfffdh9frNfpXEYSI4oHXDlJS105uUjQPXDO73+fGuewsm5wKwLqDVUYMT9ABr8/PN5/bw780of3TC7li7tnXDtma2F5l3kl8IbTsOhXoa89LCunCzVuXjsdps7LrVAM7A/sQBCHycbd0Lbp2xZtUbDcqRt4gZ7vGkv9YQs45OXQ2dvLG198wZJ/DQUucS5uVFuaR9I3mbJcYeUEQBEEQBEEQRj3aKmN3i5sPf/FhmEdjTro72/XGYrGYNkq+/lg9fo8fR6yDxLzEsI3DYrEEo+TrT8jE8mCYPXs25eXlwX8fffRRj8fvvPPOHo//6le/Cj7m8/m48sorcbvdbNy4kccff5zHHnuMH/3oR0b/GoIQMazdV84LO05jscD/fmoBCVGOAV+jRcmvP1Sp9/AEHfD5Fb753B5e26MK7Q9/ZiGXz8nq9bkSIz/22HWqAQhNX3t30uNdXLNAvT7920fibheE0YLm5ra5bNictjCPpneCYrtBznZXojFiu9Vu5eq/Xo3FZuHQi4c4/MphQ/Y7VMyQODcQIrYLgiAIgiAIgjBmaKtpC/7/7X/cTsPJhvANxoS4W9zUHFJXjecs0l9sh64o+RPrzTVpGryhn5mOxapvnP5ASG/70LDb7WRlZQX/paX1dEDExMT0eDwhISH42Ntvv83Bgwd58sknWbBgAVdccQU//elPefjhh3G7zVd1IAjhRlEUfv7vQwB85cLJnDsxZVCvWzUzA4Cdp+qpbta3/1QIPR8UVvPanjIcNgt//MxCLpvdu9AOXTHyJ2pa8fj8Rg1RCCOa6zxUfe3duWO5ukjzzf0VlDa0h3z7giAYT2fgOsCsrnYAa4wqLRomthsYp581P4vl31kOwPs/ft+w/Q4WRVGoPtR1b25WtBj5sdLZbg/3AARBEARBEARBCB9t1V1iu8/tY8MDG7jm79eEcUTmomJ3BYpfIT4nnviceEP2qTnbK3ZX0FbTRkxaaLo9R0rVATXaOJwR8hpab3vDiYawjiNSKCwsJCcnh6ioKJYtW8aDDz5Ifn5+8PGnnnqKJ598kqysLK6++mp++MMfEhOjnnebNm1i7ty5ZGZmBp9/2WWX8ZWvfIUDBw5QUFDQ6z47Ozvp7OwSDJua1Mh/j8eDx+PR49ccFNq+wzkGwZyE6tw4UNZEaUM70Q4rX1kxYdDbS4uxMycngf1lTaw7UM5Ni3JHNA7BWMrqVNfW+VNSuWhaap9/d4/HQ7ITYpw22tw+CisamZoRZ+RQI46txXV88YmdzMxO4LNL87l0VgYOW+T4x2paOjld347FArOyYvv9TBjO59DU9GiWTUph0/E6Hv3oON+9bNqIxywIINdM4aQ18J3iTHCa8vh7PJ6gs72zsVPXMbYHFhHZY+2GHouFX17IRw9+RNW+KlrrW3HGOQ3b90A0nmrE0+rB6rASlx9nynMEwJWiLpBoqWgZ1hjN8hk02P2L2C4IgiAIgiAIYxjN2T7/9vnseXwPex7fw3nfPs/UcWRGYmSEvEZcZhwZczOo2lfFiXdPMPuT/Xf9GoXWC2eGcyNliuoUrSusC/NIzM+SJUt47LHHmD59OuXl5TzwwANccMEF7N+/n/j4eD796U8zfvx4cnJy2Lt3L9/97nc5cuQIL730EgAVFRU9hHYg+N8VFRV97vfBBx/kgQceOOvnb7/9dlDIDyfr1q0L9xAEkzLSc+ONEgtgY2q8l3fXvTWk1+bbLOzHxjMb9hFbuWdE4xCMZXu5+ndvrKli7dq1/T7XYoF0p5eTbgvPv/UhC1IVYwYZoTx6xEq7x8rOUw3sPNVAokNheZafZRkKCebRPvqkpAXAToJd4cN33x7Ua4b6OTTHaWETNp7adIJp7iJc5kydFiIUuWYynqZd6iLVDn/HgN8p4UIT270dXl5/5XWsTn0WQTVUNgCwfd92DnUe0mUffeFIdeCp9fDKn14hbrZ5FsY17VTPD2e2k7eGeK1pJO0n1IUS9afrR3Qeh/szqK2tbeAnIWK7IAiCIAiCIIxpNGf7tKum0dnYyeFXDvPeD9/jky9+MswjMwea2J59Trah+514yUSq9lVxfP1x04jtZuqFS52eCkDN4Zowj8T8XHHFFcH/P2/ePJYsWcL48eN57rnn+MIXvsBdd90VfHzu3LlkZ2dzySWXcOzYMSZPnjzs/d5///3ce++9wf9uamoiLy+PSy+9tEdMvdF4PB7WrVvH6tWrcTgG7tEWxg6hOjf+/MdNQDOfvnAuaxYOzZ0+sbyZtX/cRGGLnYtWXUS0SXtahbMpfv84FBcxZUIea9b0/b2tnWcLp2RzcncF8bnTWHPx8D9rRzsdHh/f2/4e4OdT5+TyzuFqalrcrC2xsa7Mwpo5Wdy2NJ/54xLDPdQ+2XKiDvZtJzUxljVrzu/3ucP9HLrcr7Dudx9TXNtGa8YcrluSP/CLBGEA5JopfBxqP8RxjpM+Lp01a9aEezhn4fF4ePvNrsVDK5etDEaGh5rDnsN48HDR5ReRNiNt4BeEkLblbRx99Sjj7eNZsmaJofvujy1Ht3Cc40xYPMGU54dGS0ULR755BG+Tl8svuxzrEFNpzPIZpCW0DYSI7YIgCIIgCILQC4qisO/pfeQsyjH8ps5INGd7TFoMF/3sIo68eoRDLx2idGspuedKhG04nO2g9rZv+c0WTrxjjt52v9dPzZGAs90EMfLae7L2aC1+n3/IN+5jmaSkJKZNm0ZRUVGvjy9Zok4kFRUVMXnyZLKysti6dWuP51RWVgKQldV3J7HL5cLlOrtb0eFwmGLC1izjEMzHSM6NsoZ2DpY3Y7XA6tnZQ97O3LxkcpOiKW1oZ+vJRlbNyhz4RYIp6PCp7vS4KOeg/u7TsxKACo7VtMlnUT+8d7SWdo+fnMQofnnDfDw+hbX7ynlsYzG7Sxr4155y/rWnnPl5Sdxx3gTWzM3GaTfXNYHbr/5vrGvwny3D+Rz6/PkT+dG/DvDE5hJuP28SVqtlqEMVhF6Raybj8bX7AIhKiDLtsbfYLLgSXHQ2deJv8+syTkVRgp3tcWlxhh+LcUvGcfTVo1TsrDDV36G+sB6AjNkZphrXmSRmJ4IFUMDT6Bn2goxwfwYNdt/muvoQBEEQBEEQBJNQuqWUl299mafWPIXiH73xnq3Vah9cTHoMGbMzmHfbPADe+f474RyWKehs6qT2SC1gvNg+fsV4rHYr9cfrqT9eb+i+e6P+eD2+Th/2aDtJ45PCPRySJiRhc9rwdnhpPNUY7uFEFC0tLRw7dozs7N7TGnbv3g0QfHzZsmXs27ePqqqq4HPWrVtHQkICs2bN0n28ghBJrD+kLkRZND6Z1LizF5sMhMViYXVAYF93sDKkYxP0pd2tCiMxg0wj0Hraj1Y26zam0cCbB9S6ksvmZGGxWHDarVxbkMsrdy/nX3cv5/qCXJw2K3tKGrjnn7s575fv8tC6o1Q2dYR55F20dqrnRqzO2e43LBxHQpSdEzWtvHu4auAXCIJgWjSB2Rlv7q4MV5J6rdPRoM9nrqfVE5yLcSUM/bpqpOQsVucAyraVGb7v/mivVePZ47LME23fG1a7lZg0tT6stbI1zKPRHxHbBUEQBEEQBKEXNIGz4UQDxRuKwzsYnfD7/LTXqTdq2k3Qyh+vxOa0ceKdExxffzycwws75TvLAUgcn0hseqyh+3bFu8hdoiYLHH8n/H+HYIT8zHQsJnBKWW1WUqepUfLaggihd7797W+zYcMGiouL2bhxI9dddx02m41bbrmFY8eO8dOf/pQdO3ZQXFzMq6++ymc/+1lWrFjBvHnqwptLL72UWbNmcdttt7Fnzx7eeustfvCDH3D33Xf36lwXhLGMJpCvmjl8R7r22ncOV+IfxYv9RhutnV4AYgYpqGpi+4maVtxev27jimQ8Pj/rA++py2efnaQyPy+Jhz61gI33X8y3Vk8jM8FFTUsnv3unkOW/fJevP7OLHSfrUJTwvo/a3Oq5EevUN2A21mXnlnPV+Pi/f2yOZCRBEIaHu9kNhEdgHgra+PQS27VFBxabBUeM8c5mbcF9/fF62moH19ttBNpxMfv5ARCboc6jtFS2hHkk+iNiuyAIgiAIgiD0gub4Btj96O7wDURH2uvaITD/GJOqiu1JE5JY9OVFgOpuD/cEZTgJV4S8xqRVkwBMESUfFNtNECGvoUXJS297/5w+fZpbbrmF6dOn88lPfpLU1FQ2b95Meno6TqeT9evXc+mllzJjxgy+9a1vccMNN/Daa68FX2+z2Xj99dex2WwsW7aMW2+9lc9+9rP85Cc/CeNvJQjmo7nDw+bj6uKf1SOIfz93YgrxLjs1LW52n24I0egEvWnzBJztjsGJ7VkJLuJddrx+heLa0e/2Gg5bjtfR1OElNdbJORNS+nxeWpyLr18ylY++ezF/+HQBiyck4/UrvLanjBv+tImr//ARz28voSPwNzIazdke49K/zfX28yZgs1rYeKyWg2WD65gVBMF8dDZHhrM9KikKgI5GfcV2V4ILi8X4Bd/RydGkTFG/f7S5ATOgnR+RILZr0fHibBcEQRAEQRCEMUprVdfNwMEXDgZv9EYTWl97VHIU1m79liv+cwWOWAdl28o4/PLhcA0v7GhxcWYQ28NdZVB9ICC2zzKP2J46XXW2i9jeP88++yxlZWV0dnZy+vRpnn32WSZPngxAXl4eGzZsoLa2lo6ODgoLC/nVr35FQkJCj22MHz+etWvX0tbWRnV1Nb/+9a+x2/UXDQQhkthwtBqPT2FSeiyT0ocf6+m0W1k5IwOQKPlIoi3obB/cZ6PFYmFKpkTJ98ebB9SEoUtnZ2IbRKqOw2blqnk5PP/l83j96+dz06JxOO1W9pc2cd8Leznvl+/y328dpryxXe+h90BLPYgdZMXASMhJiuaKOWoKgLjbBSFyiRTnclRiQGzXydmuifjafsKBGaPkg+dHvLnPD4DYTNXZ3n1+bbQiYrsgCIIgCIIg9EJbdVdMmLfdy4HnDoRxNPqg/Y5nRqTHZsSy7N5lALz7n+/iH6PxpuF2tueem4sj1kFbTRuVe8MruASd7SYS28XZLgjm4Xh1C5/88yZu//tWfvzqAR79+ATvHaniRE0rHt/Y+A7R4q5XjyBCXmPVzIwe2xTMT9sQO9sBpmXEA3B0DESrDhW/X+GtA+r5f1kvEfIDMSc3kf++aT6b77+E71w+nZzEKOpa3Tz83jHO/6/3ePCNQ6Eecp+0Bs8NYxapff78iQC8uruM6ubRt1hYEMYCwRh5k4uprkRjYuTDuejA1GK7yRdjQJfYPhZi5GUpuiAIgiAIgiD0giZEJ09Opv5YPbsf283CLy4M86hCi+Zs1/rau7PsW8vY9vA2ag7XsOcfeyi4o8Do4YWV9rp26o/XA5C9KDssY7A5bUy4cAKFaws5vv44WQuGPtkcCvw+f1DQlhh5QRB645/bS9h6og5QHd7dsVktjEuOZnxqLBNSY5iTk8h1C3Nx2EaP/8Pj8/Pu4SpgZBHyGiunZ2C3WiisaqG4ppUJabEDvmbv6Qaqmzu5JARivzB0NLF9KL3cUwPO9kJxtp/FrpJ6qps7iXfZOW9y2rC3kxLr5Ksrp3DXBZNYf6iSv39czNYTdTz2cTH3XzEzhCPum2Bnu0t/ZzvAwvxkCvKT2HWqgSc3n+Sbq6cZsl9BEEJHpIipriR1fJ2N+izs0bY7pOPQVAYJoVssn7s4F4DSbaUh2+ZICS7GMPn5ARIjLwiCIAiCIAhjHq2zfck3lmCxWij5uITao7VhHlVo0X7HmPSzxfaoxCjO//75ALz//97H2+E1dGzhpmyHunI9eXIy0cnRYRvHxFWqOymcve0NJxrwdnixR9lJmpAUtnGciRYj31rZqpubQhCEwaF1A1+/MJcvXTiJy2dnMSMrniiHFZ9f4WRtGx8creaJTSf5zot7uemRTRTXjJ5Jt23FXd3SBfnJI95eYrSDJZPUjtD1h/p3t7u9fh584xDXPPwxX3h8OyV1bf0+X9AHTVCNHoKzfWqm5mwXsf1M3txfAcAlMzNw2kc+fW23Wbl8TjZ/ue0cADq9ftwGJTdpne2xBnS2a3wh4G5/euspfGGuIhIEYehoYuqgOtvrT0Jbnc4j6h29Y+SDiw4SBykqn/gQHpoFJdtCNoasgiwsVgst5S00lTaFbLvDRfErwc72QZ0fYSYYIy9iuyAIgiAIgiCMTTRne+a8TKZcPgWA3Y/tDuOIQk9/znaAxV9dTHxuPE0lTWx/ZLuRQws74Y6Q15h0idrbfvKDk3g7w7PgQYuQT5uRhtVETlRXvIv4XFWoqDki7nZBCBeKonAgILZ/7rwJ3H/FTB65bRFv3rOCQz+5nC3fv4Rn71rKf90wly+tmERClJ3dJQ2s+d2HPLe9BEWJfCFo/UHV1X7xjIxBdUsPhlUBh3p/ve1FVS1c/6eP+fOG42iHsapZFh+Fg+E426cF3F7FtW10en26jCsSURSFNw+oYvvlc0Kb6hMX1fX3ae7whHTbfRF0thvQ2a5x2ewskmMcVDd3sunY6FosLAhjgUE72xUFnrgG/n2vAaM6G71j5LXO9kE7uPf+E1Bgx2MhG4Mz1hlMdzNDlLy71Q2Ba75IcLbHZoydGHnzzJQIgiAIgiAIgonQXN+xGbEsuGMBAHue2IN/FHXPagsKenO2AziiHVz4/y4E4MOffxhcQT0WKN9eDoRfbM+Yk0FsRiyeNg+nN58OyxjM2NeukTZdouQFIdxUNHVQ1+rGZrUwLeDU1bBYLGQmRLF0UiqfWpzP/Wtm8sY9K1gyMYU2t4/vvLCXu5/eSUObO0yjHzmKorDukCoMrgpBhLyGJrZvK66jvrXn8VEUhSc3n+Sq33/I/tImkmMcpMaq7qbmMZZEYxY0sX0ozvashCjiXXZ8foUToyjpYaQcLG+ipK6dKIeVFdNCe+1hs1qCordR7xWjO9sBHDYra+aqNUj/2m2e6GNBEAaHdt89YGd7TSHUn4DDa6G9Qf+BnUFUkups1y1GfijOdq8bDr0Gselw4CXoCJ0LXettN0OUvJZ6YLVbsUeZvyU8GCNfNfqvc0RsFwRBEARBEIQz8Hl8dNSrq6hj02OZdvU0olOiaS5t5vj642EeXegYyNkOUHBHAanTUmmraWPTQ5uMGlrYMYuz3WK1MPGS8EbJB8V2E/W1a6TOUKPkRWwXhPChRchPSY8jyjGw0JibFM3Tdy7lO5dPx261sHZfBZf/5kM2FkXm+/hoZQslde247FYumDr8bukzyUuJYUZWPH4F3jtSFfx5bUsndz6xnR+8sp8Oj58Lpqbx5j0rmJKhTma2hCkFZayjuZdjhiC2WyyWbr3to9/xNVjeCkTIXzgtXReBWnO3Gya2dxrb2a5xzQK1Z/jN/RV0eCQ5QRAiiUE724vWgc0Jfg8cfEX/gZ2B3s72IXXXH38POhrg2j+BtwP2PR+ycWi97WZwtmvHxBnvxGIJTZqSngRj5KtaR0WaVX+I2C4IgiAIgiAIZ6CJ0BarheiUaOwuO3M+PQeA3Y/uDuPIQovmbI9Nj+3zOVa7lYt+ehEAm/5nE6e3nB71N0mtVa00nmoEIHthdphHQ1BsD9dCj+oDJna2z1CFrdrDEpEqCOFCi5CfnZMw6NfYrBa+unIKL391OZPSYqlo6uAzf9vCg2sPGdajHCq0TvXzp6SFXBhcHXDKa/t4/0gVl/3mQ9YfqsJps/LDq2bx+B3nkpkQRbzBAqLQhdvrx+NTr42GEiMPBNMgCqW3PYheEfIa8VEOwLgYeU1sN9LZDnDO+GRyEqNo7vTyfrcFO4IgmJ9Bd7YXroMJF8CklbDnn/oP7Ax072xvHILYvv8lSJsOU1bB1Eth5xMhG4fmbC/bXhb2uZAhLUAwAVqMvN/jDxpaRisitguCIAiCIAjCGWgidHRqNJZA92rBHQUAHH7lMO317WEbWygZjLMdYNaNs8hemI272c3flv6NP839Exv/Z+Oo7d0q26GuWE+dnmqKm9hJq9Te9tKtpcGba6NQ/ArVh8wvtouzXRDCx4EydXHSrCGI7RpzxyXy+n+czy3n5qMo8OcPjnPdHz+mqCpyhMe3A53qoYyQ19DE9g1Hqvl//9rP5x7dRk1LJ9My4/jX15bzhfMnYg1cp8S5VCGvRcR2w2l3d7mGhxIjDzA1ILYfHaXXVEPlWHULRytbsFstXDwj9O8pILgwpcmg94pWMRDrMlZst1otXL1AFYj+tTv8bkxBEAaH3+vH06YuBuo3Rt7dCic/hqmrYd7NcGoj1J80aJQqrqSAs71RX2e7Jur3iacDDv8b5lwPFgssvB3Kd0P5npCMI3NuJjanjY76DuqP1Ydkm8MlWDFggnmKwWB32YN1A6N1/khDxHZBEARBEARBOINgX3s3x3dWQRaZ8zLxdfrY/8z+cA0tpGi/Z1+d7RoWq4VPvvRJ5twyB3uUneoD1az79joeyn2IZz7xDIdePoTPPXriKc0SIa+RND6JlCkpKD6F4g3Fhu674WQD3nYvNpeN5EnJhu57MGhie92xOnwSkSoIYUFztg9HbAfV7fng9XP5v9sWkRzj4EBZE1f9/iNe3HE6lMPUhaqmDvaUNABwyYyMkG9/Tk4imQkuWt0+Ht+kTqB/7rwJvPq185mZ3fN4B6OxJUbecNo86jF32Cw47UObap0WiJE/GkELTPTkrYCr/bwpaSRGO3TZh+ZsN6pyQasYMDpGHuCa+Wr08TuHq2gyyMk/EKfr23jo7SOU1LWFeyiCYErcLe7g/+/X2X7iQ/C5YcpqmHkVOGJh73MGjLAL0zjbi9aBuxlmX6/+99RLIS4LdjweknHYnDayFqhpK+HubQ862/tbiGEyNHd7a+Xo7m0XsV0QBEEQBEEQzkBztncXoS0WC/M/Nx+A3Y/tDsewQs5gne2gCr43PH0D3yr/Flc+ciW5S3JRfApHXzvKc9c/x0O5D/HmN9+kYk+F3sPWnfLt5YB5xHaAiavCEyWvRcinTU/DOkQBwQgSchNwxDrwe/w0nGgI93AEYczR2O7hdCDtZXZ24oi2densLN66ZwUXTE2jw+Pney/tpbTB3Eky6w+p0cwL8pLISBjAdTUMrFYLl81WJ3fT4pw8+rnF/PgTs4lynC3aBQVEcbYbTmunutgrupe/y0BoMfIna9vo9MqiMa2v/fLZ+kTIA90qF4yKkQ842w2OkQeYmR3P1Iw43F4/b+43xzX63z8q5nfvFnHNwx+z42RduIcjCKZDcy7bnDbs/SViFK2D5AmQOhmcsTDzatjzDBgYc651trub3fh9oa8BCgrLiQMIy/tfgsy5kD5N/W+bHQo+o/a2u0OzsCcYJR/m3vZIi5GHrt720e5sN/5bXhAEQRAEQRBMTm/OdoB5t85j/XfWU7atjKoDVWTMDq2LrbmsmRdufoG5n57LOV8+J6TbPhN3qxtve8Bp009n+5lEJUVxzpfO4ZwvnUP1wWp2P7abvf/YS0tFC1t+s4Utv9lCdGo0Vlv/wqzVbmXFj1Zwzpf0/T2HQ9DZvtg8YvukSyax45EdnFh/wtD9Vh80b4Q8qKkLqdNSqdhVQc3hGlKnpYZ7SIIwpjgYcLWPS44mMWbkLtSMhCgev+NcPv3XzWw+XsfD7xXxi+vmjni7eqF1qa/WIUJe497V05iRlcClszNJi+t7YjUYI99pDvfqWKJ9BDHhGfEuEqLsNHV4OV7delZiwViitKGdPacbsVj0fU8lBMV2/Rem+PwK7YHknZghVgyEAovFwjULcvj120d5dXcZnzwnz/AxnElda2fgf93c8pct/PeN87hmQW6YRyUI5mFQYqqiQOHbMPUyNTYdYP7NsPdZKN0B44y5x+4ugnc2dRKdHB3S7Q/qWLhb4eibsOK+nj8vuA0+/B84+Aos+PSIx2IWsd3drCYfRJLYHhdI8WmtEmf7kPjggw+4+uqrycnJwWKx8Morr/R4vKWlha997WuMGzeO6OhoZs2axSOPPNLjOR0dHdx9992kpqYSFxfHDTfcQGVlZaiHKgiCIAiCIAi9EnS2Z/R0fMemxzLtKnW19O5Hd4d8vx//6mNOfXiKrb/fGvJtn4nmare5bDhihyeQpM9KZ/WvVvPNkm9yy+u3MPOGmVgdVtpr22mtau33X3NZM+//6H3TRX83lzXTXNaMxWoJRsWZgfwL8gFV/Pa0GyekBMX22eYU20F62wUhnAT72kMoEFqtFr65Sv2ufX57CafrzRk13Ob28lGR+rmjpzCYFOPk00vy+xXaocuta1Q0ttBFayAmfKh97aCKodOCve1jO0r+7UCE/OLxKaTrGI+rpUAY4WzXIuTB+M52DU3I3nishqomfaKeh0JLwOmfFufC7fXzjWd387t3ClEMdOMKgpnRxNR+I+RrCqHhlNrXrjFxBcRnw55ndR5hF3aXHXu0+tmmR5S81gXfb2f70TfB0wazr+v585SJMGllyKLkcxern6XlO8vxe0Pv4h8s2gKEfs8Pk6E52yVGfoi0trYyf/58Hn744V4fv/fee3nzzTd58sknOXToEPfccw9f+9rXePXVV4PP+eY3v8lrr73G888/z4YNGygrK+P6668P9VAFQRAEQRAEoVe0Fbe9Ob4X3LEAgL1P7g2pUNzR2MGuv+0CoKm0KWTb7QttQUFseiwWbTX8MLHarUy7chqffOGTfLvy23x575f7/7fny8RmxtJa1Urh2sJQ/DohQ3O1p89KxxlrnhvY2IxYopLUSYa6IuMiN7UYebM620HEdkEIJwfL1e+r2Tkji5A/kyWTUjlvcioen8LD7x0L6bZDxQdHa3B7/eSnxDA1Iy7cwwk6241w6wo9CTrbhxkTPjUgtheO8njVgdBizi+drd/iFYB4A98rbYFzw2oBV5jqePJSYliYn4Rfgdf3lodlDN1pDSwI+uFVM7nzArUm6aF1R7n3uT1SpSAIDNLNXbQObC6YcEHXz6w2mHsT7H8RvO6+Xxti9OxtH9Sx2P8S5CxUxfUzWfhZKNkMVYdHPJbU6ak445x42jxUH6oe8faGi8TIm5eQf8tfccUV/OxnP+O6667r9fGNGzdy++23s3LlSiZMmMBdd93F/Pnz2bpVde80Njbyt7/9jYceeoiLL76YRYsW8eijj7Jx40Y2b94c6uEKgiAIgiAMivpWNydqRvcqTKGL3jrbNaZcMYXYjFhaK1sperMoZPvc9fdduFvUm+LOxs5gV5teaFH5g+lrHwrRydFkzs3s/9+8TObdOg+APY/tCen+R0owQt5Efe2gOt9SpqYAUFdojNiu+JXgRIKI7YIg9IYWIz87J/TR199c3eVuL6kzn7tdi5BfNTNzxIvWQkFXjLyI7UYzEmc7EFysMZad7TUtnWwrVq9vLtOxrx26d7br/17RhOVYlz2snxOau/1fe8Ibfwxdn1EJUQ7+88pZ/Py6OdisFl7eVcqtf91CXatxIqEZ8PsV/H5x9ZsdRVEMSxfT5gFc/SV8FK6DCcvBeca9/Pybob1OFeMNQlsQ3tkY2vkLv88/cGR6R5N6LObc0PvjM66C6BTY9Y8Rj8dqswbnCMIZJa+dH5HkbA/GyI9yZ7vh+TXnnXcer776Kp///OfJycnh/fff5+jRo/zv//4vADt27MDj8bBq1arga2bMmEF+fj6bNm1i6dKlvW63s7OTzs6uN3RTk3rD5/F48HjC01el7Tdc+xfMi5wbglHIuSb0hZwbg8Pr8/NhUS0v7izl3SPVeP0Kf7xlAatmhrane6xjxvOxpUpdcetKdvU6rtmfns3W32xl5992MunySSPen9/nZ8vvtvT4Wd2JOtJmpo14233RXKFO6EanRYfl2M+5dQ6b/mcTR18/SkNpA7EZZ6cIhOPcKNuh3jhnLMgw1TkJkDwlmbJtZVQdqmKKZ4ru+2s81Yin1YPVYSV+fLzpjodG0uQkQBXb3W73sCazzfA5ZNbjKwh90eHxURj4vpydG3qxffGEFM6fksZHRTU8/F4Rv7xhXsj3MVx8foV3D1cB+kbID4U4LUZenO2G0xZ0tg9PbNdi5LX301hk/cFK/ArMyU0gLyW0C0HPJC4QI99kSIz8yFIPQsWaudn85PWD7ClpoLimlQlpZ193G0X3BQgAn1kynvyUGL765E62Fddz3R8/5u+fW8zk9PAnhuiNoihc/6eNNLZ7eOMbFxDlGN5niKAvfp+f5298nqI3i/jK/q+QMjlF1/0N6Fx2t8LJj2HVA2c/ljkbMueqUfIzrtRxlF1oYnuone2aEQF6dsP34Mha8HXC7Gt7f9zuUvvadz8Nl/xI/e8RkLM4h+L3iyndVkrB5wtGtK3h4m6KvM52ba5HxPYQ8/vf/5677rqLcePGYbfbsVqt/OUvf2HFihUAVFRU4HQ6SUpK6vG6zMxMKioq+tzugw8+yAMPnP0B8/bbbxMTo+9F2kCsW2fcSiIhspBzQzAKOdeEvpBzo3cq2mBLtZXt1RaaPD1Fm+88v4v75/sYZsW10A9mOh+ritUJ9H3H91G8tvisx9sntANw9PWjvPrMq9gTR3ZZ3bCxgcbiRmzxNmyxNtwVbt55+R3iT8SPaLv9UfWh+jvWd9azdu1a3fbTHzFTY2grbOP5Hz1Pxif6XsRi5LlReqgUgKK6IqrWVhm238FQSy0Ae9/bS8OcBt3313pYvRm2p9h58+03dd/fcPF3+sECHfUdvPbsayN6P4bzc6itzXzOXUHoj6OVzfj8CskxDrIS+unSHAH3rJrKR0U1vLDjNHdfNEV3EW6w7DxVT12rm8RoB4snJId7OADEu9SLU3G2G09b4JjHDFNQnRZwfJ2sbaXD4xuTgtubgb72y3V2tUN4nO0xrvD+TdPjXSyfksYHR6t5dU8Z/3HJ1LCNpTkotncdkwumpvPSV8/jjse2cbK2jev/uJFHbl3Essmp4RqmIZyub2d3SQMAu0saWDppdP++kcr7/+99Dr+ixpCXbSvTXWwfsLP9xIfgc/fsa+/O/JvhnQegvR6i9b9G0Uts15zyNqcNu6uP79f9L0L+Mkgc1/eGFn4WNv0BDr/etwN+kOQsNoGzPYJj5LW6xtFKWMT2zZs38+qrrzJ+/Hg++OAD7r77bnJycnq42YfK/fffz7333hv876amJvLy8rj00ktJSAj9CuvB4PF4WLduHatXr8bhkBl5oQs5NwSjkHNN6As5N86mucPD6/sqeHFnGXtONwZ/nhzj4Jr52Xxifjb3vbifY9WtbPXk8d/XzA3jaEcXZjwfj7QfAeCiKy8iY07vIvDfn/g7FTsryKrJ4txbzh3R/p741RMALLl7CRW7KjhecZwZuTOYv2b+iLbbH+9vfJ8yypgyfwqXrrlUt/30R+apTN76j7fwbPVwxZ+uOMuRHI5zo+irajXAyitXklWg/4TvUDjQdIB/PfMvYjpiWLNmje77O+I+QiGFpE9IN2R/I+Hk+JM0FjeyIG8B+efnD/n1Zvgc0tLZBCFS6IqQT9QtHvmcCSlcMDWNDwtr+MO7RfzXjeZwt68/qEbIXzwjA7stPD3MZyLO9vDR5lHdyzHDdLanx7tIjHbQ2O7hWHULs3MSQzk809PU4eHjIrUK5vI5Rort+jvbtYqBcDvbAa6Zn8MHR6t5ZXcpX794Sthi7bUFCNoCIY2pmfG8cvdy7nxiO7tONXDb37bw4PVzuemcvHAM0xD2dpt32HVKxHYzcuTVI3z48w+D/91e3677PgcUU4vWQdJ4SO0j6WzujbDuh3DgFTjnDn0G2Q3Ndd7RGGKxXTsOfbna2+rg2Ltw2YP9byh9OuQthZ1PjFhsz12sVnJU7q3E2+ntexGAjgyqZsBkaDHyLZUtKIpiivolPTD0bGhvb+f73/8+L7/8MldeqcZYzJs3j927d/PrX/+aVatWkZWVhdvtpqGhoYe7vbKykqysvi+4XC4XLtfZJ5jD4Qj7pK0ZxiCYEzk3BKOQc03oCzk3oK7VzU9fP8jafeV0ev0A2KwWLpqezo2L8rh4RgZOuzqJ+uub5nPDnzbyyp5yrl6QyyUzzREbOlowy/no9/ppr1NvopNyk/ocU8HnC3hj5xvse2Ify+9dPuz9lW4r5fTG01gdVpb+x1Le+9F7ALSWt+p6PLTfMS4jLmzHff6t81l/33qq91dTu7+W7IXZvT7PqHNDURTaqlR3cUJ2ginOx+5kzFIXftQX1hsyto5adcIkLit858hgSZ+RTmNxIw1FDUy+aPKwtxPOzyGzH2NBOJMDOva1d+eeVdP4sLCGF3aq7vb81PC729cd7OprNwvBzna3F79fwWodnROZZqTdPTKx3WKxMC0zjm3F9RRWjj2x/b3DVXh8CpPTY5mSoV+qk0ZCIEbeGGf7yM6NUHLp7ExcL1s5Xt3KgbIm5uQaf575/EpXtH4vbv+0OBfP3LmUbz+/h9f3lvOdF/cyd1wiM7LCY6TTm32l3cX2+jCOROiN2sJaXr7tZQDsUXa8Hd7gPbSe9NvJrShqR/nUS6EvwTI+CyZdBHv/aYjYrpuzfaBFB4deA8UPs64ZeGOLbodXvgJ1JyBl4rDHlDg+kZi0GNpq2qjcU0nuubnD3tZwiWRnu7fdi7vFHVELBYaCoctvtf50q7Xnbm02G36/Orm9aNEiHA4H77zzTvDxI0eOcOrUKZYtW2bkcAVBEARBGAM8u+0UL+8qpdPrZ1pmHP+5Ziab77+Ev96+mMvnZAWFdoCC/GTuvEDt5/7+y/tobJd+3dFIW20bKIAFolOj+3ze3FvmYnPaqNxTSfmu8mHvb8tv1K72OTfPIT47noRx6mRSU4m+Ltf2GnWiIDY9fJ2N0cnRzLh2BgC7Ht0VtnFodDR04A8sugnncemL1Kmq26W1qjXkzoHeaKlQu2PjsszfmZk6Qz02NYdrwjwSQRg7HChTRYJZOovti8Yns2JaOj6/wu/fLdR1X4PhWHULx2tacdgsrJiWFu7hBNHcuorS5aYVjCEoqI7A4TY12NveHJIxRRJv7g9EyBvgaoeu94oRlQttgfdiXBjcj2cSH+UILhD61+7SsIyh+2dTbB/HJMph43c3F3DJjAwUBZ7cfNKo4RnOvtKG4P/feaoBRVHCNxihB+5WN8/d8BydTZ3kLc9j0ZcWAWptld4ExdTeBMnaImg42XeEvMb8m+HUJlVc1hm9xHbtfjcqsY+qogMvwYTzIX4QCx9nXQuuBNj1jxGNyWKxBKPkS7eF53M0EsV2Z6wTR6CLczT3todcbG9paWH37t3s3r0bgBMnTrB7925OnTpFQkICF154Iffddx/vv/8+J06c4LHHHuOJJ57guuuuAyAxMZEvfOEL3Hvvvbz33nvs2LGDO+64g2XLlrF06dJQD1cQBEEQhDHOgVJV0PyPi6fw1j0ruHPFJNL7WWX5zdXTmJQWS2VTJz97/aBRwxQMpK1adTZHp0Rj7ScaNjqlSyje/ejuYe2rqbSJA88dAGDpPeq1blBsP62v2N5ard7kxKSF1yG44HMLANj/9H68Ye6Z1TrEXAku7FHhnxQ9E1eCK7gqvK6wTvf9tVSqYru2TzOTNkMVvGqP1IZ5JIIwNvD5FQ5XqKKg3s52ULvbAV7aVcrJ2vBO0mkR8ssmpxEfZZ5ECpfdij3gZpfedmNp9wR6uUfQtT4tQ13YdjTw3TtWaHf7eP9INQCXz+494SjUaO/bNrcPr8+v675CsRAjlFyzQBWJXt1Ths9vvLCrRcg7bBZc9r7vs6xWC1+4QHWfvryz1JDIf6NRFIV93WLka1o6OW1ARLkwMIqi8Ppdr1O1r4q4rDhueu4mYjPU+yEjYuS1zvZexdTCdWBzwYQL+t/IjCvBGQd7n9NhhD3RYt61jvVQ0a+o3FINJz4YfCy8Mwbm3gS7ngLfyK6Rwt3brp0fvSYfmBjtPdQyiq9zQi62b9++nYKCAgoKCgC49957KSgo4Ec/+hEAzz77LIsXL+Yzn/kMs2bN4pe//CU///nP+fKXvxzcxv/+7/9y1VVXccMNN7BixQqysrJ46aWXQj1UQRAEQRCEoCvr3Impg+oNinLY+O+b5mGxwPM7TvP+kSq9hygYjCZCD8bZPP9zaqf6vqf2DUso3vqHrfi9fsavGB+MUE/MUyMd9Rbb22rURQUx6eEV2yetnkR8bjztde0cfe1oWMeiLbTQbgTNSOo01cFde1R/UVlbda51rJmZtOmq2C7OdkEwhuLaVtrcPqIdNiam6f8ZsTA/mQuD7vYi3ffXH1qE/OqZGWEdx5lYLJYux670thtKKATVaZqzvXJsOds/KKym3eMjNymaObnGRIXHd1tQqffClLZgZ3v4Y+QBLpyeTkKUncqmTrae0H/h5ploYnusyz7gvfeySalMTo+l1e3jlV3hcZDqyam6Npo6vDhtVmZmq+f+rpKG8A5KANR79H1P78Nis3DjczcSnxNPdIqaeNdRp7+zvV8xtWgdTFiuisf94YyFmZ+Avc+qkTc6oluMfGM/YvvBV8BiVX/HwbLodmipgMK3RzQurbc9XGJ7JDrboWtOQTM4jEZCLravXLkSRVHO+vfYY48BkJWVxaOPPkppaSnt7e0cPnyYe++9t8cXbFRUFA8//DB1dXW0trby0ksv9dvXLgiCIAiCMBxaOr0U16ri2lAiUBeNT+GO89SV9ve/tI+mUbjSfiyjCa6DEaEnXzqZ+BxVKN739L4h7cfd6mbHn3cAsPSbXQlORjnbg79nmJ3tVpuV+Z9VFy0MNyEgVGg3fmYW21OmpgBqh6DeRFKMvOZsbzjRgFdEJkHQHa2vfUZ2PDaDusG/uXoaAC/vKqW4JjwTdbUtnewI9OpeYqK+do24gIjYLM52Q2kbYWc7dMXIn6xro8PjC8m4IoG3DqgR8pfNzhrUwudQ4LBZiXKoU+J697a3Bs8NczjbXXYba+aqC3xf3WO8gK0d79hBHA+LxcJtS8cD8MSmk6MuYl3ra5+ZHc+Sier1/c6T0tsebk59fIq371XF2Et/fSnjL1DPwahkVVA2wtnep5jqboPij2HKABHyGvM/BXXH4fT2EI+wJ7p3tif2IiofeBkmrYSYlMFvMHs+ZC+AnY+PaFyas736UDWdzaF18w+E3+vH06bOP0aa2K6l5UmMvCAIgiAIwijkULk6UZydGEVK7NAimO67bDrjU2Mob+zgwbWH9BieECaG4my32qws+rLa37b2q2sp2Vgy6P3seWIPHfUdJE9KZtrV04I/18T2jvoO3K3uoQx90Pi9/uBEgRm6ybUo+aI3i2guC5+jKxLEds3ZXndUfzeSdiMcCTHysZmxuBJdKH6FuiLjnVqCMNYI9rVnG+NEBViQl8RF08Prbn/3cBWKAnNyE8hJig7LGPojzqXGY4uz3Vg09/JIxPa0OCfJMQ4UBYqqRm/Eanc8Pn+wlsGovnYNLUpe70XTXU5uczjbAT4RiJJfu6+CTq+xCzu0FIj4QdY1Xb9oHNEOG4VVLWwJgxNfT7QI+Tm5iRTkJwHibA83LRUtPH/T8/i9fmZ/ajZLvrEk+Fh0csDZbkRne3Mfne3FH4Kvc+C+do0JF0B8Dux5JsQj7InWqR7qGHmts/0sUbmpDE5uHHyEfHcWflZ1tjcOf7FRXGYcCXkJoED5zvJhb2c4uFu65ofOOj+Gi6KAW38BXJtTkBh5QRAEQRCEUcjBgCtrOBPF0U4bv7phHgDPbC3ho0KJLh4tDMXZDnDB/Rcw9cqpeDu8PPOJZwYV7634Fbb8dgsAS76xpEc3vCvBFYyM08vd3l7XDgFziBaJF05Sp6WSd14eil9hzz/2hG0cmtgekxFet39/pE4NxMgb4WyvjBxnu8ViCbrbJUpeEPRHu4aanZNo6H6/sUpzt5/mRBjc7UcCPfVLJqYavu/BEB+IMZfOdmNpC4F72WKxBN3thVVjI0p+7+lGmjq8JMc4WDQ+2dB9a2Kv7s72TnM520H9/MpMcNHY7uGDo8ZeM7V0i5EfDAlRDq4tUCOb/7H5pG7jCgeas33euEQW5qvn/8GyxjGVbGEmfB4fz3/yeVrKW0ifnc4n/vqJHmkb2j1ze10Yne2F6yBpPKROGdyGrDaY90k48BJ4B7mIv+qw2oU+BAx3th94BWwOtZd+qMy9CexRsPvpEY0tXFHy2jGxuWzYBrPAr7UG9r8EW/8C7/8S/v1teP5z8NhV8Mfz4NfT4Kdp8IucER+TgQjGyIuzXRAEQRAEYfQRFNuHECHfnSWTUrl9mRor9t0X98rE5igh6GwfpLvZardy47M3knNODu217Tx1xVMD9lAVvVlE7ZFaXAkuFtyx4KzH9Y6S1/rao1OisdrNcUugHYc9j+0JW0xk0NluArd/X3TvbNfzOLlb3HhaVbdXJHS2AyK2C4JBKIrSTWw3ztkOqrv94hkZ+BX4/TuFhu4buoSipGiH4fseDHHS2R4WQtXLPS3wfXt0FLu+uqN1hp87McWwOgoNbWGK3mK7dm7EmcjZbrNauHqe6m7/125jo+SHKrYDwSj5t/ZXUNWkv6vYCBRFCYrtc3ITGZccTVqcE49PCSbHCMay/rvrOfXhKZzxTj710qdwxvVMPjQyRr7XznZFUR3ZU1fDUCo35t8M7fUD95S318Mb34U/nQdP3gAt1YPehV5iu7tJPQ5nLTrY/6IapR81jAWfUQkw+3rY9QT4/cMemxYlb7jY3jyEvvbmSvjLxfDCHfDm92D7o2oiQFstxKbDhOVwzufh8l+q8fr7XtB17BIjLwiCIAiCMIo5UK7eyI5kovg7l88gLyWa0oZ2/uuNw6EamhBG2qqG5mwHcMY5ueX1W0iamET98XqevurpfiPgN//vZgAW3rmw1/ivxDz1xlEvsV1bUBDuvvbuzP7kbOzRdmoO11C6xfgOSYiMGPnkyclgUWP6tBQGPdBc7Y4Yx1mTTWZFE9trj+jv+heEsUxlUye1rW5sVgvTs+IN3/89q6YC8MruUo5XGytKal3ocYOMQDaaOJd0tocDzdkePUKxfWpGwNleOTac7VtPqN/X54YhKUKLkW/WO0beZJ3tGtcsUF2Z6w9VGrpgXIvVjx+C2D4rJ4Fzxifj9Ss8u23wlV1m5mRtG80dXpx2K9My47FYLBQE3O27TjWEd3BjkP3/3B+8P7/28WuDi5u7o8XIe1o9+Nz6pg/06myvLYKGk4Pva9fImAlZ82Dvs70/7vfBjsfg94tg15Nw4XfBYoVd/xj0LjTneUdjR0gXg2sx8lpMPQD1J6F0O8y5fvgbXnQ7NJyC4+8NexOa2F66zdh5i+C5MVCEfGczPH0T+Nzw9Z3wwxr49hH46ka4/TW46VFY89+w8ntw7p2w4NNqokGHPvNP0DXHIjHygiAIgiAIowyPz8/RCvUib1b28CNQY112/ut6NU7+H5tPsvGYOCojnaF0tncnLjOOW9+8lejUaMq2lfHizS/i9569WrpyXyXH1x/HYrVw7tfO7XVb8ePUyVa9ne1DWVCgN64EF7NumAXArkd3hWUMmnhtZrHdEe0ILsbQM0peW3EeCRHyGqnT1YkxcbYLgr4cDCxWnJweS5TDeLfmvHFJXKK52w3ubteEorghCEVGIs728KCJ7UNx6/bG1DHkbPf5FbYX1wOwZGKK4fs3Kka+zYSd7QBzchOYlBZLh8fP2wcqDNtvyzCPx22BNLmnt5zC6xu+G9Us7A242mdmJ+AI1IkFe9tFbDeU2qO1vPqFVwFY/r3lzLxuZq/PcyW6IGAo19Pd7vf58bSpi4B6CKqF68DmhIkXDH2j82+Go29BW13Pn5/aojqfX/uGKuJ/bTus/K7ahb79UVWIHwSas13xKcFktFDQ66KDAy+DPRqmXT78DY9bDOkz4N2fwd7nVOF9iOQsUsX2hhMNwbkVI+izYqA7Xjf88zaoOwGfeQFSJw+chjD9CvB7oGhdCEfbk2CM/AApkJGMiO2CIAiCIIxJjlW34Pb5iXfZyRthZ/V5U9L49JJ8AL734r5gXKAQmQy1s707qdNSueXVW7BH2Tn6+lHWfm3tWau7N/9GXTU/8/qZJE1I6nU7wRj5Ep3Edu13NJGzHbqi5A88ewBPu75Oo96IBGc79IyS14uWwGIkLe4tEugeIx+uKgJBGAscKA1PX3t37gl0t/9rdynHDHS3ayK2WcX2rs52479DR0pLp5c391fg80fe57d27R89wsUn0wKd7SX1bbTr7JwMN4fKm2ju9BLnsjMz29g6Cugutuv7XtHEZbM52y0WC59YoEXJGxeDPJwYeYDL52SRGuukoqmD9Yeq9BiaoezX+tpzu75HC/JUZ/vOU/VhGdNYZfuft+Np9TD+wvFc/NOL+3ye1WYNOqw76vWrM9Ai5OGMGPmidTB+OTiHcW8250ZVOD/wsvrfTeXw0pfg75cCCnz+bbj+z5CQrT6++IvQeGrg6PkAjhhHsJoulFHynY29CMv7X4Rpl4FrBAvCLRa49GfgboWX7oTfzIWHZsMLX1C7zSv2D7jQICopKnhPXrbduM9Q7fzoU2xXFHj1a1D8Edz8FGTNGdyGk/Ihay4cXhuikZ6NxMgLgiAIgiCMUrSJ4pk5CViG0nnVB/dfMYPcpGhO1bXxqzePjHh7QvgYrrNdI++8PK5/6nqwwI4/7+CjX37Ute2qVvY9tQ+Apd9c2uc2jOpsN5OzHWDCygkkjk+ks6mTwy8bX8sQKWJ7yjTVAVZXWDfAM4ePFu8WKX3tACmTU7DYLLhb3DSXjY0IXkEIBwfC1NfenbnjElk1MxO/As9uHbojabi0REiMvJGx0KHiuy/u5ctP7uCRDcfCPZQh4fMrdHhUp+1Ine1pcS5SYp0oChRVjW53+5ZAX/s5E5IN72uHbjHyOr9XulIPzOVsh64o+Y+Kaqhp6TRkn8OJkQdw2W18anEeAE9uPhnycRnN3tMNAMztJrbPz0vEaoHyxg7KG/XvBRdUCv9dCMDiuxcHBeO+MKK3Xevktjlt2LX3ibsNij9W+9qHQ3wmTL4Ydj8NH/0G/nCOKt5f/Tu48z3IX9Lz+bkLIWchbPvroDZvsVi6ouRDKbZrLu7Atqkpgoq9qvN+pExdDV/bCvcdg5ufhjnXqTH9b34PHlkO/zURnrwRPvwfaG/odRPhiJLXjkmPhRjdWf9j2PtPuO4RmLhiaBufcZWaoODTZxGaNq/Q2dSJd5QmMInYLgiCIAjCmORguTpRPCtETor4KAcPXj8XgMc3FbOtWD8RTNAPxa/QXqvePI9EiJ55/Uwu/60abfbu999lzz/2ALD9ke34On3knpvLuGXj+ny93mK7GTvbASxWC/Nvnw/A7kd3G7pvv9dPW635Y+QBUqfq72zXVpzHZpn7WHTH5rSRMlldiCBR8oKgHwcCMfKhuoYaLksnqe/36mZjRCLoJrab1NmuLQJoirBJzGPVLazdVw6oQlokxUS3e7rcbzEj7GwHmJqhRcmP7kVjWl/7kjD0tYOBMfLu4Tm5jWBiWizzxyXi8yu8EXj/6c1wne0An16Sj8WiLg4wMtEk1Pj9SnDh/9xxXWJ7jNPOjCz1e3W3RMkbQt2xOmqP1GK1W5l86eQBnx8dSERsr9NRbO9NTC3+EHydQ+9r7878m9Wu83d+AgW3wdd3qN3l1j6+txZ/EYrWQ+3gFsBpUfJaz3oo0LYVdHEfeAmcccNfdNAbsWkw40rV6f7F9fC9Erj9dTjv66D4YcOv4O0f9PpSTWwv22acs73fGPktf4aPfwOX/QLm3jj0jU9fA52NqiteB1yJLmyB66TR2tsuYrsgCIIgCGOSgzq4slZMS+dT5+ShKPCdF/aO+vjH0Uh7XTtKIL50pEL0kq8vYdm3lgHw6udfpXBtIdv+uA1QXe39JSpondx6ie3tNeoEwXDd+3qy4HMLADj+znEaTzUatt+22jZQAAtEp46sWkJvjIyRjyRnO3RFydce0e/YCMJYprHdQ0lgknlWGJ3t0CWWGSksm15s15ztESa2/3nDMbT2j/LGDt45HDkx0Vont8UCrgFckYNBi5I/WjV6xXZFUdgacLafG4a+dujmbNf5vdLaGXC2myxGXuO8Kep1k1FJCtpn03DE9nHJMVwyIwOApzYbl2gSaoprW2nu9OKyW4OLazSCve0lDcYPbAyiudrzL8gPRsT3R3Syeo9oRIx8DzG1cJ0a8502dfgbnnk1rPw+fPkjuOKXEJ3c//PnXK8+Z/vfB7X5oNiug7M9+Lc59KraLe7Q8V7dGQMTL4AL74PbXoLz74X9L0Hn2d/JuYvVdJCybWWGVZhpyQdnie0HXoE3vgvLvgbL7h7exrPmQmI+HP73yAbZBxaLJWhqGK1R8iK2C4IgCIIw5lAUhQNlAVdWiCeK//OqmWQlRHGippX/eVvi5CMNLUY8KjkK2wh7NwFW/2o1sz85G7/Xz9NXPU1rZSsJ4xKYecPMfl+nOdvba9t16S43q7MdIHliMhNWTgAF9j25z7D9an/7mNQYrDZz3yalTA3EyBfVBReHhJqgsz2COtsBUqerCxHE2S4I+nAokAyUmxRNUkwfEZYGkRAQy5p0+J7sDUVRghHIZo2R1xYgRFKMfHljOy/vUiNYzw8If5EUEx2MCXfaQ1JNNS2wyK1olLq+QBV269s8RDmsPWK0jcSIznafXwkmH4Qi9UAPUgKf4w0GfY62Bpz+8cP8DL116XgAnt9REkwNiDT2lXbNQ9jPuOdYmB/obT8pve1GoIntU68cnIhtZIy8Kz4gpiqKGvk+ZbW6qmu42F2w8ruQOWtwz3dEQ8GtsOtJ8Az8+wb77EMktvs8Przt6ns8KCw3lUP6jJBsf9AU3Aredtj3wlkPZS3IwmKz0FLRQnOpMQvkek8++BheukuN11/90+Fv3GKBGWvgyBug0+KBYG97lYjtgiAIgiAIo4LShnaaOrw4bBamZsSHdNsJ3eLk//bxCXbIjXJEMdK+9jOxWC1c+/i1jF8xXnVNA+d+/dwBhXxXogtHbEBE0MHdbtbOdo35n1Oj5Pf9Y59hq8TbqiMjQh4gaUISVrsVb7uXplJ90g+CzvasyHS2i9guCPpghr52jYRoY5ypGp1ePx6f+p1kxkho6HLrRpKz/W8fnsDjU1gyMYUHr5+LxQIfFtZwPEJiojXxMDpEYurUMeBs1/raF+Yn4wxBGsBwSDAgRr57xYBZPzMSY9TPjEaDxPags32YTv8VU9PJT4mhucPLa3uMi24OJftOq2J7bwtNNGf7vtJG3N7IqdOIRNwtborfLwZg2pXTBvUaI2PkgwJz7TGoLw5tdPpgOefz0NEI+18c8Kmas72zMTTVPtpxgG7CsrtFjZE3ksRcdaHDzsfPesgR4yBjjpq2YVRv+1nnR+VBeOYWyF8C1/4RrCP8Tp2+BppOQ/meEY60d7TUPImRFwRBEARBGCVoEfJTM+J1meC5aEYGNywch6LAfS/socMjcfKRgia4hlKEtkfZ+dQrnyJ7YTYJeQksvHPhgK+xWCy69rYHf08TOtsBZt04C2eck/pj9bQeNGbVs7a6OhLEdpvDRvIk1flSV1inyz60G+BIjZEXsV0Q9EGvZKDh0BUjb5BI1M0tbtZI6GCMfIQ42xva3Dy9VY2D/srKyeSlxHDx9EBM9JbIiIluDzrbQyO2azHyJXXtEevcHYhwR8hD9xh5/T4/tCQMa4gqBvQgKbBoqaHN2M/R4S4+sFot3Lo0H4AnNp0c1KJcr8/Pb9cXcvlvPmBjUfivDzVne29i+8S0WJJiHHR6/Ryu0GdBraBy/J3j+Nw+kiclB5OxBkJzthsRIx8UmIvWgc0JE1fots8+SZkEU1bBtr8O+FRXkir+hsrZronKjhiHalTwecHbAa4w3Jsuuh3KdvUqQBvd296jZqDxNDx1o1ox8Kmn1PSCkTL+PIhK1C1KPuhslxh5QRAEQRCE0YHmytJzovhHV80iI97F8epW/nf9Ud32I4SWUDvbNaKTo/ni1i/yjRPfCHa9DYReve2KogSd7WbsbAdwxjqZ9Uk14q7uXX3E5DOJJLEduqLk9ehtVxQl4mPkm0qacLe4wzwaQRh9HAw628MT/dwdo2PkNeEs1mnDZh15XLgexBkQjR1Knth0kja3j5nZCVw4LR2AW5cFYqK3lwSFbDPTGhhjdIgWYKTEOkmLU0UWo3q0jURRFLacUK9dwim2awtT9HS2d31mhKZiQA+0OhCjnO1ah/1wY+QBblqUh9Nu5UBZE7sH6DY/VdvGTX/exP+uP8rhima++vROSurahr3vkeL3K8G5iLnjzv4etVgsFOQlARIlrzfdI+QH+/40orP9LOdy4TpVAHWG6Z5s8RdVobl0R79PC3WMvOaQDx4Hd+D7MBzHYeplEJcFO852t3fvbTcC7fyIjvXBkzeCxQafeR6iQjS3aXOov++RtaHZ3hlocwvibBcEQRAEYUyhKArbi+uCkwSjiYOBvtFZ2fqJ7YkxDn5+nRon/5cPjg84ESCYAz2c7RpWm3VIXeB6Ods9rR68gYlFszrbAQruKACg4eMGQ0TTYGd7hnmPSXdSp6mish5iu7vFjSfgcIo0Z3tMakzw/avHsRGEsUyn1xcU/8wUI9/q9uH16R+3q4lyZo2DBojv5mw3oobF4/MPO1mgze3l0Y9PAKqrXRM7LpyaTl5KNE0REhPd7u5ahBEqtJqro6NwMvpUXRuVTZ04bJZgP3U4iDcgRr5NSz0w8WdGUozmbDdmgeJIne0AybFOrp6nukn/sflkr89RFIUXdpzmit9+wK5TDcS77ExOj6WhzcNXntoRtuS5E7WttHR6iXJYmZLe+zV2QeB9sUvmD3RDUZQh97WDQTHyzd06ud1tUPyRGmMeLqauVp3TW/t3t2sx8h2NoXW2uxI1sT3ghHaGtgZyUNjsUPAZ2Pd81zgCBJ3t28sMue7Sjkuy9QBUH4Kbn4SE7NDuZMaVULlfrS8IMdrcgjjbBUEQBEEYU7x/pJobH9nEfS/o09UTTg4a1De6elYm1yzIwa/Afc/vodNrfnfOWEdztpuhyzx+nHojGWqxXXO126PswV54M5K3PI/kKcn4O/wce/OY7vsLOttN6vY/E83ZrkeMvHbz64h14Ay46yKJtOmBKPkj4Y8KFYTRxNGKFrx+haQYB9kBB1M46e6MNCI2XdtH3AgcmXqjjc2v9OyL1otP/XkTy3/5bvDaeij8c1sJ9W0e8lNiWDMnK/hzq9XCrUtUd/sTm4sNmbweCZpTN1Sd7QBTA5PRhZWjr7dd62ufPy6JKEfojtlQ0WLkWzq9+Pz6nGPaovUYV/h+z4HQYuQb2z34dToOGoqi0BpYnBI3wgUItwUSMF7fW05da8+FAo1tHr72zC6+/fweWt0+zp2Qwhv3XMATX1hCSqyT/aVN/L9/HRjR/oeL1tc+KzsBex+LsLXe9l2nGgwa1dijYncFzWXNOGIcTLhwwqBfp8XIt9cb1Nle/BH4OsPT165htand7ftfhLa+7zuDne0Noe1s73K2a2J7mO7VC26DziY48EqPH2fMycAeZaejoYO6Iv0T+YIx8q7AcU4d/GKRQTPlErW64MgbId+0liIoYrsgCIIgCGMKzYn95v4Kqpr0i8kymoY2N6UN6s3RTANcWT++ejZpcU4Kq1r4/TtFuu9PGBmas90MUeJBZ3tJaMX24IKCtBjTRlqCGqOYe64ay9Z4slH3/UVajLyezvZI7WvXSJ2hHhvpbReE0HKwXP0snp2TYIrvD4fNSnRArGtq119s14SzeBO7VKMdNrSE+xYdHbugCmd7TzfS3OHly0/uoHEInc8en5+/fHAcgC9dOOks0emmc9SY6P2lTew5rf81wEho82id7aE7L6Zmas720Se2m6GvHXou1tEE4FATdLaH8NwINVpCiF+BZp0XLbW5fWhrZ0Yqts8fl8jc3ETcXj/Pby8J/nzTsVou/+0H/HtvOXarhfsum84zdy1lXHIMuUnR/P6WAqwW+Of2Ep7ZempEYxgOWl/7vHFJfT5nfl4SFouaAlHTEhrhUuiJ5mqftGoS9iEsoDMiRj4opsa7oGIPRCdD2jTd9jcoCm4DFNj1jz6fojnQQxUjrznktXh63IHvw3CJ7SkTYdJK2NkzSt7msJG1QF0waESUfLDL3tEJFis4BldROCRc8TDxQl1624Od7VUitguCIAiCMIYoqVdFR78CL+8qDfNoQocWIZ+XEh3s+tST5FgnP7t2DgB/2nAsuJpdMCdmcjfrFSOvOdvN4N4fiLhsVextLtd/stlMCy0Ggya21x+vx+8NbXxyS0VAbM+KTLE9bYbqbK89LDHyghBKDpior10jIVqdJB9ulPlQCEX8sd5YLJauLmqdhbMOjx9vwAl7qq6Ne5/bPWhn7Ku7yyhr7CAtzsUNC8ed9XhKrJOr5qmxqP/Y1HtMtFlo09zLIXS2T8tQv39HY4y8WcT2KIcNZ2CRh15R8i06nBuhJsphI8qhHocmnXvbteNhtRDc53CxWCzctlR1tz+55SQdHh+/fOMwn/7rZsobO5iYFsuLXzmPuy+ags3atThs+ZQ0vn3ZdAD+378OsMfgqHZtLmBObt/fowlRDqYGPgPE3a4Pw4mQB4Ni5Ls7ujtbICoRwr3AMTYNZl8P2/4G/t7vO3WLkT/T2e4K4/3pos9ByRaoOtTjx5nzMwGoPlSt+xC04+K0d6qR+nqdGzOuhJMb+00zGA7aYn7pbBcEQRAEYUxRUtcW/P/P7zht+gjHwRKMkM82bqL48jnZXDkvG59f4b4X9uAOsTAmhA49O9uHSmKeeo6GXGzXfkcT97VrxOUEbsbK9L8ZizRne0JuAvYoO36vn4bihpBuW4t101aeRxqa2C7OdkEILQcMquEZCloUtBFiuybIjdSRqTfBeGydne3NgWNusYDLbuWdw1X84b2BU5z8foVHNqj1MF84f2KfUeKakPba3jLqW43pkx4Omns5lFHh0wLO9tKG9iElBpid8sZ2TtW1YbXAovHh62vX6Opt1+cYt7nNv0AHIClarQxq0PlcC1ZxuOwhSUe5en4OidEOSuraueR/NvDIhmMoCty8OI/Xv34+8/OSen3dVy6czKWzMnH7/HzlyR1nxdDrhc+vcKBMc7b3PxdRkBfobT9Vr/u4xhqt1a2c3nIagKlrhia2GxEjrznb1c72VnCaZPHz4i9Cw0k49k6vDwfF9hA52zsbzxDbOwPzAeE8HtOvhJg02PlEjx9rC9S1eRY96WxWj4vd2qnvwoPpV4Dig8K3Q7pZbX6hvbYdnwF1R0YjYrsgCIIgCL1yqpvYXlTVEoyVj3Q0sX2WwRPFP/nEbFJinRyuaObhQUxECuFBi1g3k7O9rboNbwgnzDVnuxl+x4GIz1Ynm41wtkea2G6xWoK97aGOktdWmke62F57tBZF5/5RQRgr+PwKhwLpQLOyzSO2JwTEMiNj5M3c2Q5diwH07rFv7iacaSlO/7v+KO8fqer3desPVVJY1UK8y85nlub3+bwFeUnMyU1QY6J3lPT5vHCjCaoxIYwKT451Milwnbb5xOhJadFc7bNzEoOLQsJJl9iuz3ultTMQI292sT1G/Vs0tOsrOrd2hnbBUrTTxk2L1GSM0oZ2kmIcPHLrQn55w7x+j7nFYuHXn5zPpLRYyho7+I9nduEz4HrxRE0LrW4f0Q4bk9P7F8kWjk8CYKeI7SGn6M0iUCBrQVbwfnuwaDHyvk4fHp2SIIKO7ngXuFvMI7aPOwey5sHWv/T6sBb3HjKxXTsOiWd2tofxeNidsOAW2PMMeLp+T23+QG+x3dvpxRf4XrHTpu+xiM+C3HPg8Osh3WxMagyWQNqIEYsTjEbEdkEQBEEQzqLD46MycHF74bR0AF7YcTqcQwoZWoy80a6s1DgXD3xiNgAPv1cUXNUumAfFr5gqYj0qOQp7IB63uSx0YrO2oCA6TYd+rxATdLaX6+ts93Z4gzf0kSK2A6RODfS2F4ZYbI/wGPmkCUnYnDa8HV4aT8lnrSCEgpO1rbS5fUQ5rEwaQCQwEq1vWC9nandaQiwU6UWczm5dDU2gTIhycNM5eXx6ST6KAt94dnePhKzuKIrCH99XXe23Lhvfb6VTj5jozacGHVFvNEFne4ijwpdPVheObSwaPSktWwJi+5IwR8hraIK/7s52E8fIAyQGPkd1d7Z3hN7pf8f5E5mYFsvFMzJ48xsruHxO9qBelxDl4JHbFhHtsPFRUQ3/8/aRkI2pL/YGIuRn5yT0iLbvjYL85OBrvD5JxQslw42QB9VtbrGpfzu9ouQ157IrQRPbTXJvarHAuXeqTuf64rMe1pztmiN9pGhx9F0x8i2ARZ+O8qGw8HZor+8hQmtzR3r3kGupBwA22tVudT2ZsQaK3u2xsGCkWKyW4PEajVHyIrYLgiAIgnAWpwN97XEuO3etmATAq3vK6IjwmJ8Oj4/CKvWCzmhnO8BV87K5fHYWXr/Cfc/vxSM3zqaio6EDxadO5JohYt1isQRX2zeWhE4wDHaTR5KzvbRZ1yoLbQGC1WHtWj0fAaRM08fZrsXIa51qkYbVZg26/iVKXhBCgxYhPyNrYJHASLpi5PV3tkdKjHyws92gGHnNHfz/rp7F/HGJNLZ7+MpTO3q9b9hyoo7dJQ047VbuWD5hwH18Yn4u8VF2TtW18UGh/l2ow6FdL7F9irqg7uNjo8/ZHu6+dg3dne3Bc8PcnxldznaDYuRDmA6SmxTNe99eyd8/t5isgLN2sEzLjOe/bpwHwB/fP8ZbBypCNq7e2Fc6cF+7xpT0OOJddtrcPo6OQkEqXPi9fo69pS74Go7YbrFYgu72jvrQCZDd6REj32kisR1gzo3gSoDtfz/rIU1s93Z4Q5LK525Sj0OXsz3g8g93f33aVBi/HHY8FvyRtlhfm1PQC20hhiPWgcXdon9//YyrwNMKJzaEdLPaHIPeixPCgYjtgiAIgiCchRYhn5cSw7JJqeQmRdPc4dX9BlRvCitb8PkVkmMcZCUM7WY8FFgsFn567RySYhwcLG/iiU0nDR+D0DfazZErwYXdJBPpmtgeyt72oHvfBAsKBiIuW70R83X6dJvQgG4R8umxIemQNIrUaepEfF1hXUi3G+md7SC97YIQaszY1w7dY+T1d7ZHSoy8JiDqHiMfmEzX9uey2/jTrYtIiXWyv7SJH76y/6yFcn8KuNo/ec44MuIHvhZXY6LzAHhyszmvm1t1iJEHWDopFYtFrfOqatLvGsgoalo6KQosel48wRxiu7YwRa/FOm2dmpPb3M52rbO9sU3nGHm3+RYsfWJ+Dp9fPhGAbz+3h+PV+gnb+04Prq8dwGq1sCA/CZAo+VBSsrGEjoYOYtJiyD03d1jb0Lu3PRifnuBSo9P1di8PBWcMFHwGdv4DvD2/l5zxzuD/11zpI6HHcYDAsTDJQvCFt0Pxh1CrXtNoJga9xWPDKwbSpkHKZDj875BuVptj0OYcRhMitguCIAiCcBYlgUis/JRorFYLNwS60CI9Sv5guRbdlhg2QS093sWXL5wMwNZR1ME4Ggg6vk0UI56Yp07GhFRsrzZPVP5A2KPs2OLVCcpQRumfSaT1tWsEY+RD3dke4THyIGK7IIQarYYnHMlA/dEVI6+/sz1SYuSDYrtBzvbuxyMnKZrf31KA1QLP7zjNM1u7utYPlDWy4Wg1VgvcdcHkQe9H63V/53BVn/H04USvGPmkGGdwccvGUeBu316sLgycnhlPcqxzgGcbg94x8i2dkeFsT4wxOEbeZMfj/jUzOHdCCs2dXr785I7gwqpQ4vMrwUVrcwfhbAcoyEsCYNephpCPZ6xy9PWjAEy5fApWWzdZzD3475boFNXZrnuMfLzJYuQ1zvkCtNdhOfRqjx9bbdagMB6KKHlNsNe64OlsNs+xmPUJiEqEnY8DXfMqHfUd+HRMA+2xAKGzRf+FGBaLGiV/5A3why6VU3O2S4y8IAiCIAhjAs3Znp+iXjTeuFAV2z8qqqGsQZ+bCiPQbnDDPVE8PVO9KD6l0w2aMDw0wdVMInT8OPVcGavOdgBHSmAiVEex3YwLLQaD5mxvPNUYkrg+UPt0tRvfSI2RBxHbBSGUKIrCwbKuBYtmQhOWm6SzPYg2PuOc7T1715dPSeO+y2YA8ONXD7C7pAHocrVfNS+H/NTBX4NMTo/j/ClpKAo8s/VUCEYeWtp0jArXets/HgW97VtMFiEP+sfIBzvbTe5s1zrbG3WPkVffK2ZLB3HYrPzhMwVkxLs4WtnC917aF/L6qmPVLbR7fMQ4bUxKH9z1tdbbvqtEnO2hQutrn3F5Bhx4BV67B367AH6RDe/8FAbxd9czRt7v8+NpVd+HXZ3tJrsfS5sCky7Cuv1vZz2kRcl3NOjkbDfLsXBEw/xbYPfT4HUTnRKNJVCxpM216EGPigGjzo0ZV0FrFZRuD9kmxdkuCIIgCMKY4kyxPT81hiUTU1AUeGnn8Nzt+0sbOVQeOsFwOBzUxPbs8IrteYHV0CV1bbr2UHfH7fXz3uGqkCyW6PD4eOtABc9sPTWof7siJPpOi5E3U5d5MEa+JHTvHTP+nv1hhNgeqc72mPQYdQJCgbpjoYmSd7e48bYHJodHQYx87ZHIdwMKQripau6kpsWN1QIzskwUZwokaJ3tBsTIR47YHvjeNDhGvjtfvnASl83OxO3z89Und7DzVD1r95UHHhu8q13j1qXjAfjnthI6vfq5xoaDXs52gPOmqN9lG4/VGnbPoBdm62uHrhoKvZztWme72ZzcZ2JcZ/vZaRhmISM+ij9+ZiF2q4XX9pTx6MfFId2+FiE/OycBm3VwCXsLAs7249WtNOgc8R9p+H1+msuHcG/obqNl42vMz3mRO+96khmFV8Lzt0PxRzBlFSz7Gnz4a3jv5wMK7nrGyLtbuv7OqqDaah43d3fOvRNr2Q4S2070+HFIxfZGE4vtoEbJt1bD0Tew2qxEp6pzfNoifj3o6WxvNiZWf9xiiEkLaZT8aBbbzfftJgiCIAhC2Cnp1tmucdM5eWw5UccLO05z90VThhTDvu90I9f98WPsNgvvfXsl2YnRIR/zQPj9SlDsD3ff6Lhk9bi2dHqpb/OQYkCU4tNbTvLj1w5iscD5U9K4cdE4LpudRZRjcBODiqKw93Qjz+8o4dXdZUPqNvzSiknBlflmxozx6qHubPd7/cFV+OJs7yKYapARGcdEw2KxkDotlbLtZdQerSVjdsaIt6lFyDvjnDhNEvM6HDTXf0tFCx0NHcHJH0EQhs6BgKt9cnrcoK8bjMLQGPmOCBHbDYuR793ZDur3069vmk9h5cccr2nl5v/bjF+BldPTh5UwtWpmBlkJUVQ0dfDm/gquWTC8rl090NO9vHhCMg6bhdKGdk7WtjEhzYSiyyBobPcEqyiWmEhs185dvd4rkdfZrq/Y3hpwtpv1eJwzIYUfXDmTH792kF+sPcSc3MSQLQ7ZV6p+j87NTRr0a5JjnUxKi+V4TSu7Shq4aPrIr/NHC2vvXsvOv+zk2ieuZd5n5vX9xH0vwI7HoGQLcT438+bFUtk6E8u1D8DECyGx23dJXCas+yFYrHDR9/vcpJ4x8pqYanPasLvsxkSFD4epl6HEZpBbvxW4O/hjV6IqjIe0sz1RE9tNFqmfOUsVonc8DrOuITYjlrbqtqCxQQ96iO1GOdutNph+uSq2r34gJJvUDA56d9yHA3G2C4IgCILQA0VRgs727mL7mrlZxDptFNe2sf3k4J3Kbq+f+17Yg9ev0OHx87t3CkM+5sFwsq6NVrcPl93KxDBPVEU5bGQGVuieMqh78kilKlQqCnxYWMM3nt3N4p+v5z9f3seuU/V9umWqmzv5ywfHuew3H3DNwx/z5OZTNHV4yUmMYtXMTFbPGvjf1EwT3iD2gnZjNJrF9rbawPlmIbj62uyIs71/NFG5rjA0znZthXkku9pBnYSIz1E/e2qORH78riCEEy0ZKNyLFXsjLDHyJotAPpN4w2Lk1WPem7Nd/bmDR25bRIzThturdn1+ZRiudgC7zcqnl6jd7f/YdHJY29ALzdke7Qj9eRHjtFOQpy5YjeTe9h0n61AUmJgWS0aCeRa/6R0j36pjxUAo6XK26+ue7koHOXuBjlm4/bwJXLMgB69f4e6nd1LVFJqo8KDYPm5o36ML8pMA6W0/k4pdFSh+hdfufI2KPRW9P2n7o/DiF1TxfPVPeW3vD3noobuomPgALPh0T6EdYPl/wKoHYMN/wfu/7HPfmrNdjxj5HjHhPg/4Os0lMGvY7CiJ43D6enZuh8rZrihKULDvcra3GOPkHgoLb4dj70L9yWBqoJ4CcmdzQGyPN6izXWP6lVBbCDWDmMutL4ZnPwPv/aLPp4zmznZzf9sLgiAIgmA4ta1u2tw+LBbITeoS42KcdtbMzeb5Had5fnsJiycMbpX3w+8VcbiimTiXnZZOL89tP82dF0wadFdZqNAmimdkxWO3hX+9YX5KDJVNnZyqawtGxOlJZWAV7H9cPAWAF3eWUtrQzlNbTvHUllNMzYjjxkXjuG5hLknRTt49XMULO0p470g1Pr8qxLvsVi6fk8VNi/I4b3Iq1kFG4EUKwd5uE8WrJ+ap3bitla343D5sI4wo1TrEolOisZrgfTAYHMkGiu0m+tsPlpSp6mdx7dHQTMKPhr52jbQZaTSXNVNzuIZxS8aFeziCELEcCIrt5uprh24x8tLZHsQoZ7t2PPoS2wGmZcbzqxvn8fVndrF0YuqIXKI3L87jd+8Usv1kPQfLmoblkNcDvd3L501JZWtxHR8fqwkuOIg0gn3tg7x/NArN2S6d7QGxXWdne1c6iHmPh8Vi4cHr53K4vJkjlc189amdPHPXUhwjuG/y+vzBhJihONsBFuYn89LO0oipZTMKTXT0tnt57vrnuHP7ncEudQB2/gNevwfO/RJc8V942r3sfeNXgIVpV07re8Pn3wOKH955ALDAyu+e9RQ9O9uDzuX4gHMZzCm2A7gSsLf1NI6ESmz3dfrwe9RFelGJgQVanS2QPGFE2w05c66HN++HXU8SmzEdMCpG3hpYiGHQ/frki8ARo7rbz7+n9+f4PLDpD/D+f4G3HZor+kyIGM0x8pExwyYIgiAIgmFoEfJZCVFnRYXedE4eAP/eWx6cPOiPA2WNPPxeEQC/vGEul8zIwOdX+J91R0M86oE5WK7e4M4yyUSxlhpQYpCzvSKwMrhgfDL3XjqdD79zEU99cQnXLsjBZbdSWNXCg28cZtmD77L45+v58pM7WH+oCp9fYUFeEj+/bg5b/3MVv725gPOnpo06oR3MGSMfnRqNLTAhFQqxOfg7RkiEPIA9JeA6Emd7r2jO9pCJ7YEY+bisyBfbU2eox6bmsDjbBWEkHDCxsz0xWl9nqoaiKJEjtgfGF87O9u5cNS+HDd++iL997pwh1VCdSUZCFJfNyQLgH5vN4W5XFIU2T8DZrkNnO8DyQG/7pmO1+P2R2dtuxr520D8ZozXwHjS7sz0otuvc2d4aXHxg7uMR47TzyG2LiHfZ2X6ynl+sPTSi7R2rbqXD4yfWaWPSEBP2CgLO9t0lDRH7/tcDTXR0xDqoP17PK599BUU7PrufgVe/Dud8Aa74L7BYOPHuCbwdXhLzE0mfnd7/xi+4Fy75Ebz/C9jwq7Me1jVGvrl7THhAiHSaNCXQFY/D13MuS4t81/rWh4v298WiVpsBgc52kx0LZyzMvVEV29PV311XZ3vguMQkqAsRDHP6O6Jh8sVwZG3vj5/aAn9eAe/8FBZ/ARZ/Edr7XiCkLepvrW7tet+OEkRsFwRBEAShB71FyGssnpDM+NQYWt0+1u7rI64rgMfn577n9+L1K1w+O4sr52bz7cumY7GoYv3+QJSaUWgTxWZxweQbLLZXNatie2a8ujLYarWwfEoav7m5gG0/WMUvrptLQX4SPr9CY7uH9HgXX7pwEuvvXcErdy/nM0vGBydiRitmFFwtFkswSr6xZOTvGc3ZHkkObiNi5IOpBib62w8WiZHvm7QZqkBRezhyo3cFIdw0d3iC14ZmuYbqjuZMbWr39FmJEwra3D60zZs9Rj7obO/UVzgLxsgPIhI6PzUmJILjbUvHA/DKrtKgkBlOOjz+4HkRq5OgOn9cEjFOG3Wtbg5X6HctpBdtbi/7TqvXsGYV23WLkQ90lJt9gY4WI+/2+ukILB7Rg0hZsARq5cFDn1oAwKMfF/Ov3aXD3tbe0w0AzM5NHPKC9emZ8cQ4bTR3eDlWPfoil4eLJjpe8/drsLlsHH39KB/+4kPY+zz866uw8DZY82sILPA6+m/V7DH1qqmDW/R1wbfg4h/Aez+HD/67x0NajHx7vX6d7c54Zzex3aT3ZK4E7L6exyBUzvZghHy8C4v2njFbZ7vGotuhuYxx6UcAdO1s12oGYuICYrtRznaA6WugZCu0VHX9rL0eXrsH/n4p2KPgrvfgsp9D4jho73tuQjO3KD6lq+ZwlCBiuyAIgiAIPdDE3/xexHaLxcKNC9Uo3hd2lPS7nUfeP8bB8iaSYhz89No5WCwWZmYncM38HAB+9daREI+8f7QY+VnZ5pgo1o6vEZ3tHp+fmhb1wlzriu9OQpSDTy/J5+WvLuedb13Ic19axqbvXcz9V8xkSobJVg/riHZjZDYhOpS97cFe+ghytmtie0t5iy4rnxVFMeVCi8Gixci3VLR0uQBGgBYjPyrE9umq2C6d7YIwfKoCLqt4l52kGGeYR3M2Woy8X+nqR9YDTdi1WiDaYd4IZOjW2a6z23+wzvZQsmRiCrlJ0bR7fGwtDs0is5HQPelLr/PCabcGReqNxyLv+2zXqQa8foWcxCjGdY95NgFdMfKhX5ji8yu0e7TOdnN/ZsS57NgCgpaeUfJdMfLmF9sBVs/K5GsXqRVs33txH4crhncvppkM5uYOPWHPbrMyb5z6OultV1H8Cu7A3Mb4C8dz5Z+uBKDymT+jvHQXzL8FrvotWFXZS1EUCv+tdk33GyF/Jivug4t+AO/+DD74dfDHesbIa2KqKyHQyQ3m6ykPoPTibA+V2N4Vl95t7sqsYntOAWTNY5xzPQBtVfrHyEfHBq49jOpsB5h2ubp45cgboCiw7wX4w7nq/17x3/DF9ZA9X31udAq0N4C/9+tym8MWTIgYbVHyIrYLgiAIgtCDU/2I7QA3LBqHxQKbj9dxqo9ViEcqmvndu+oNzY+vnk16fNdF8r2rp2O3WvjgaDWbjhnjNqxu7qSquROLBWZmm0M8zjNQbK8OTJQ7bBaSB5gon5wex7kTU0zRa28kiqIEXd9mipGH0IrtZv0d+8OR5AAL+L3+4PhDibvFjTcw+RdJx0UjKjEquEigrmjkwkNrhXrDOxpi5DVne11RHT4dnVqCMJrRRGazurmjHFYcNlUk0kMw02ju7Io/HkkUuhHEdXPr6un2b+ow/tywWCycN1lNdNl8PPypJW2BBR7RDpuuFUva77zRoHunULIl8HdaMinVdO+d+GAKROjfK+3drjvMHptusVhICkbJu3XbT2tnZMTId+ebq6dxwdQ02j0+vvyPHcOqHNgbENs10XyoFOQnA7BTetsBcLe6IfB2dSW4KLijgCv/w88NN/ybA4dnUT/3J0GhHaBqXxVNJU3Yo+1MuGjC0HZ24X2w8vvw7k/hw4cAg2LkI6Sz3XGmsz3Qrz7iGPnGM8R2RVGd/iZdeMCi20nq3EJ0dLuuznZNbI+KCYjtRjrbY1MhfxnsfhqevB5e/AKMXwZf2wZL7gJrt0VlMSmAAh19JzMGe9t1jN0PB2NrFlUQBEEQhAEZSGzPSYrm/EB34As7T5/1uNfn574X9uDxKayamck1C3J6PJ6fGsMt5+YD8Ku3Dus6CahxsFwVKSemxZqmM087vmUN7Xh8fl33VdmkrizOiI8alV3roaCzsRO/R/07mM7ZnhdCsT0CO9stdktQTNYjSl67wXPEOnDGms+1ORg0d3soets1Z7vWpRbJJIxLwBHjwO/x03CiIdzDEYSIpMXk4ojFYukWJa+fk1sTieJNehy6o7lGvX6FTq9+15haTL2WLmAUSydpYrsZnO3GOJfPm6zee205Xqv7fUOo2WLSvnboEtv1SMZo65aG4bKbf/o9MRAlr6uz3eSLt3rDZrXw25sLyE2Kpri2jXv/uWdI3elenz+YsDdnGM52gIK8JECc7Rqa+9tqt2KPssORN1iU+jDHK+bz0nOreP6TL+Fp7zqPtQj5iRdPxDGcWryV34WV98M7D8DHv+sRIx/quaxgjHyCs5vYbtJ7sqgE7H6dne2BDni8neD3mvdY5BRgwU9CQrOu4nEw+SAqcH4bvfhg+hoo2Qw1RfDp5+CTT0BC9tnPiw5837f1fZ2mzTVocw+jBfN/2wuCIAiCYCglgRW6eSl9x/zduEiNkn9xx+mzbjb/78Pj7D3dSEKUnV9cN6dXB8PXL55ClMPKrlMNrD9UddbjocZsEfIA6XEuXHYrfkUV3PWkMnCzktFLhLygoq1AdsY51Zt2E6E525tPj1xojkRnO0BctnozpqfYbrZFFkNB620PhdiuRbmNBme7xWohdXoqjliHLueOIIwFtM5hs4rtAAmB7+3hOA4HS0sYXNzDJdZp12pqdeui9vj8dAQWKRoZIw+wNODy3l/aqGuawWBoDcTIx7j0FdtnZSeQHOOg1e0L9j9HAp1eH7tKGgBziu3RDlswPj3U51JwoZLT/GkYQJezXSexXVGUiOps705KrJM/3boQp93K+kOV/GnDsUG/trCqhU6vnziXnYmpw7vX0JztR6uaw/6ZZwa695pbCtfBc5/FMv0K0v/zJaJT4yjfWc7au9cGhXAtQn7qlVOHv9OV34PFX4T3fhGMkVd8XXH2oSIopsa7unW2m/OeTHElYPe7VRE8QMg727X5K5MfC6KSAIiO7giaG/QguAjBFTjvjD4eiz4Hn/g93L0Zpl3W9/Oi1c+s/nrbg852iZEXBEEQBGG04vb6KW/UxPa+xbjLZmcRH2WntKG9R4RjUVUzv1mn3sz86OrZZCRE9fr6jIQoPr98IgC/fusIPh16mLujOdtn5wxvNbkeWK2W4DEu0SGCrDtVzerNSmZ8738PoZvj24QitCa2N5b0HcM1WCLR2Q4Qn6PWP+gqtkdgX7uGJrbXFY7M5acoCi0Vo6ezHeD2d2/n/ub7mbByQriHIggRieZejtNZTBwJCdGas92YGHmzY7VaiHN2xWPrQXcR32jhLDcpmvyUGHx+he3F4Y1Vbtec7Q59j4HVamGZFiVfFDlR8ntPN+L2+kmLczIpzXzXFWoyRlftQigJph6Y+LOzO0mBqrFGnWLkOzx+tFv+SBPbAeaNS+Kn18wG4NdvH+GDo9WDet2+QIT87JyEYSfMpce7yEuJRlFgTwjuByMdTXCcOqME/nkrTL0Ubvw7ieNTueHZG7BYLex+dDc7/7KTtto2Tm9S0xiH1NfeG+MWg7cdu8OHLfC+DnWUfI+ucncLWKzg6NsEE1ZcASNLZ9f9ueZE18Ty4RKMSw/E0uMO7MOskfoBcTk6uoOOhg58IU5K0QguNHEEYvqN7GwH1Um/8LMD/x1iBna2a3MN4mwXBEEQBGHUUtbQjl9R+y/T4/p2QUc5bFw9X42Hf36HevMHT5kqAAEAAElEQVTi8yvc98Je3D4/K6enc8PC3H739aUVk0mIsnOkspl/7S4N3S/RCwfK1JvSWTnmcbZDV5S83r3tWox8pjjb+0RztptRcNWjsz3SXNx6Otu1BQhm/NsPllDFyLubu/rrR0OMPKgOi0hwlAmCWWkJONvNLI5oMeZ6ubihW3e9iY9DdzQHfotOx0RzV0Y7bNhtxk8tLgtEyW8Kc2+7dl5E6xwjD7AsECX/8bEa3fcVKrZ2i5A363exXmJ7pPWTJ+rsbNcW/lgs+tcu6MWnFudz8+I8FAW+8ewuSgZxD7/v9Mj62jUK8lQxb5f0ttPZ3Mm0acf4xCXPwOSL4MZHwaaev5MumcTFv7gYgDe+/gYf/OwDFL9CxpwMEvNHaLwICJuWzuagu72jfmSi8ploznZnvBM6W1Tnskk/O4NCb2fXHEWoY+SdCYGKN83ZbrS4PFii1HMrOkYdtzbnEmo6m9XtO+ydYHMFz3vTocXI9+Ns1+YaxNkuCIIgCMKopXtf+0ATIjcFouTf2F9OU4eHv390gl2nGoh32Xnw+rkDvj4xxsFXVk4B4KF1R3Hr1CnZ5vZyoka9gDNTjDwYKbZrMfLibO8LM0eJa2J7S0ULPs/IVklriwoizdluRIx8TEZkHZPudI+RH0l3oOZqd8Y7ccSY9OZdGDI//vGPsVgsPf7NmDEj+HhHRwd33303qampxMXFccMNN1BZWdljG6dOneLKK68kJiaGjIwM7rvvPrxe/YRNwTxEgmAUb0SMvNbZHgEx8tC1KKC5U59jogmT4ToeSyerE7mbwyy2t3u0mgX9xcPlAWf7zpMNQUe92dH62pdMTA3zSPom3qUt1gnte0Vztsc6I+MzQxPbG3VKCIm0WP2++PEnZjM3N5H6Ng+X/eYDfvjKfoqq+r4/0Zztw+1r11iYnwTAM1tPsTMEgruiKNS36pNioCt+P/FH/8Att/yL0zUz1c5ou7PHU5Z/ZzkzrpuBz+1jy2+2ACOMkNcIOrmbevS2h5KezvZW8zq5oUv47jhbbHc3u/H7hj+/19nY7ThAtxh5kx4Pqw1ciSSkqr+zNucSShRFCZ4fDmuneRcegPqedMZBe9+fVZrRQc+O+3AgYrsgCIIgCEG6i+0DsSAvicnpsXR4/Dz8bhG/fvsIAD+4aibZiYOLuvrceRPIiHdxur6dZ7aeGv7A++FQeTOKAhnxLtLjzeXs7oqRN8rZLmJ7X5g5Rj42PRab0wYKtJQPP2ZLUZSI7WyXGPn+SQmIDh0NHbTXDn/SR4txGy2udqGL2bNnU15eHvz30UcfBR/75je/yWuvvcbzzz/Phg0bKCsr4/rrrw8+7vP5uPLKK3G73WzcuJHHH3+cxx57jB/96Efh+FUEg4kER7fmbNc1Rr6jSyiKBPR3todZbJ/U1duu5yKLgWgNJD9E6xwjDzAxLZbsxCjcPj/bT46sNsYIvD4/O4q7nO1mRTdnu1vdXqS4uJMCiywbdPocjYTvksEQ5bDxp1sXMjM7gTa3j39sPsmqhz7g1r9uYd3Byh71eB6fP1hnN29c0oj2e/X8HMYlR1PW2MFNj2zit+sL8Q5TzDxU3sStf9vCLX/ZrHudX0jpaIRnbyGt8u+8++5yPi7+EtjPnt+xWCxc+9i1wcXIECKxPapLbI9OUee7Qh4jH3Auq53tLebtKEftbAewdHe2J3bNN2nC8HA4K0a+0+Qx8gDRicQnq9cEegjI3nYvik99v9qt7Wqku5mJTuk3Rj5hXAJJE5Mieg6mN0RsFwRBEAQhiCb69tfXrmGxWLjpnDwA/vzBcTq9fi6YmsYnAz8bDNFOG1+/RL3x+f27RbS5Qz8hqN3gmi1CHiAvED+mt7O9KnCzIjHyfRN0fJtQhLZYLcTnqmLzSKLk3S1ufIFJYXG2dzEaxHZHjIOEPPUzbiRR8lqM22jpaxe6sNvtZGVlBf+lpalxxI2Njfztb3/joYce4uKLL2bRokU8+uijbNy4kc2bNwPw9ttvc/DgQZ588kkWLFjAFVdcwU9/+lMefvhh3O4IdEUJQ6IlApztCdH6iGXdCQpFEeZs16+zXRXk4qPCk4KSnRjNhNQY/ApsOxE+4Vm7dzHC2W6xWDgvECW/8Zj5e9sPlDXR6vaREGVneqZ5HXjxOtVQtHVqqQeR8ZmRpDnbdYqRDy5YipAO+/4YlxzD2v84n6e/uIRLZ2VitcBHRTXc+cR2Vv76Pf7vg2M0tnkorGzB7fUT77IzfhDzK/2RGudi7Tcu4JoFOfj8Cv+7/iif+r/NQ1q0X9PSyf0v7ePK333Ix0W1HK9uDTrvTU/VIfi/i+DUJo4m/IwPP1yCK6Fvg4crwcWnXv4UrkQXyZOSyVs2+Dmqvjfa5eTWK0Y+GJ8e7wyI7Sa+J+vm9NewOW3YA9dkI4mS79vZbmKBOSqJ2ET1c04zcoQSbSEGFrD628Fp3u9VAGKS+42Rn3L5FL5x/Btc8/drDByU/kTGN74gCIIgCIagib55yYO7Gby+IJdfvXkYvwKxThu/vGHekGPhbl6cx18/PM7J2jYe/biYuy+aMuRx98fBMvXif7YJxfb8VINi5JvF2T4Qwd5uE8bIg7ryt+FEA40ljeQxvMkCzdVuj7bjjHUO8GxzIc72gUmdlkpTSRO1hbXknTe8c0SLkY/LMvFEhjAsCgsLycnJISoqimXLlvHggw+Sn5/Pjh078Hg8rFq1KvjcGTNmkJ+fz6ZNm1i6dCmbNm1i7ty5ZGZmBp9z2WWX8ZWvfIUDBw5QUFDQ6z47Ozvp7OxytTQ1qd/HHo8Hjyd8TlRt3+EcQyTRHHA5Rtstpj1mMQ7VR9LQ1jmiMfZ3bjS1qwtLou1W0x6H7sQG3LSNIzwmfdHQqr6341y2sB2PcyckU1zbxsaialZMCY9zujlwXkQN4f0xks+gJROSeHHnaT4urMZzyeQhv95INh2rBuCc8cn4fF58Jk2+j3Nqnx8dIT2XG9vV98hQPzPC9R0VFxDB61v1+cxobFPvR2Od4fvMCDWLxyeyePx8Tte389TWEp7fcZqSunZ+sfYwD607GlxkMjsnPiTvgWgb/PqGOVwwJZUfv3aIHSfrufy3H/Djq2ZyzfzsPudhOr1+Ht90kj9uOB5M47hidib3XTaVvOSYfv8eZrhmshx6FdtrX4fk8XjvWEf5/5UDG7DH2vsdV9LUJL5y+CvYHDZ8im/EdWzYYnAA3tZ6nInqvXRrTWtIj40mtttibPhrmsERg8+k7xePLRoH4GurR+k2xqikKFraW2ipbiFu3PDuKdsb1cQAe5z6N7a0N2IHPFYXmPR42KISiY5Rx91U3hTy90xrrTpn4Yp3oXQ2oThjTXtuANiikqG1dsRjNMNn0FD2L2K7IAiCIAhBSuoHHyMPagf45XOyWLuvgh9cNYvcpMHFx3fHYbNy7+ppfOPZ3Tyy4RifWZJPUkzohMCDZepq7VnZI+tJ0wNtUUNju4fGdk+wKy+UdHh8NAQcCpnxIrb3hZlj5KGrt30kzvbg7xhhrnbocra3Vrbi9/qx2kMX0BUU20260GKwpExN4cQ7J0bkbNdi5MXZPrpYsmQJjz32GNOnT6e8vJwHHniACy64gP3791NRUYHT6SQpKanHazIzM6moqACgoqKih9CuPa491hcPPvggDzzwwFk/f/vtt4mJCf/n0Lp168I9hIig6KQVsHKy6AhrWw+Hezi9crrcAtg4cqKEtWtPjnh7vZ0bR46px+H0iULWrj064n3oTX2VOt4dew+QUrs/5NvfEjjmLXXVrF27NuTbHwyuRnUMb+0uZp7/WFjGsD/w/qgsHfq5N5zPIFW/tbOvtJEXXl1LjIlndf99WD028R0VYTtHBkNtpTrO3fuPsLbpUMi2u/u0en7WVZWxdu3pIb/e6O+ownp1vKcqa3X5e22vVrff0dJg6vNhuMwFps+FHTUWPqiwUtbmZ89pdR4ipiO0x9QB3DsL/lFk40Szj/te3M8z7+/lpkn+Hp8JigJ76iy8etJKbacqxOfFKlw3wcfkhFL2bSpl3yD3GZZrJsXPrLLnmVr1b04nLWF31hfxbT5M2e4yAMpqyww9lyyKl08Ae7d9REXjRAD2b99P3drQpas01aj3+lt3byVGOY4FhS0mfr9cZbFzZM92TpQlBX/msalzTxve3kB8+fDc1xXF6v3FgcIDlK4tZWL1VmZb7Kx9a/2Ix6wXixs6gAYA9m3eR82UmpBuv61IncvxO/xUnjqGVfGw2cTnxqL6dlzeKjaGaIzhvm9raxucQcrEl2WCIAiCIBjNqdqA2J46+Enw/75xPl+7aOqIYtqvnpfDn94/xuGKZv604Rj3XzFz2Nvqjtfn53CF6oQ1Y4x8rMtOWpyTmhY3JXVtJOaGfkFAtdb7ZbcGY1aFs9Fi5M0quIZEbK8xt3u/P2LSY7DYLCg+hdaq1qDTPRSMJmc7QF3h8Cd8tBh56WwfXVxxxRXB/z9v3jyWLFnC+PHjee6554iOHvoiucFy//33c++99wb/u6mpiby8PC699FISEsL3nezxeFi3bh2rV6/G4QhPBHYk8UL1DqitZXHBPNYszA33cHrFvbuMF4v3E5eczpo1i4a9nf7Ojdef3g01VZyzYA5rFocgjlZndq09zJbqU+SOn8KaS0PQVXsGxe8fh+Iipk7MY82a2SHf/mBY2NTBP/77A0rbLJx/0WoSdFi0OhDbXj8EZSXMmjaFNasGl8410s+gx099xPGaNhKnnMPqWRlDfr1R/PXUZqhvYs0F53Dx9PRwD6dPDq8r5MOKE2SOG8+aNaG5BwU4+HYhlJxg+uQJrFkzY9CvC9d3VE5JA38+vBXFEc2aNStCvv2GrSVQdIjxOVmsWbMg5Ns3C9cCiqKw7WQ9/9hcwpGKZr51w3ym6VClcIvPz58/LOb37x1jZ62VCm8M/33jHM6dkML+0iZ+8eYRthXXA5AR7+Jbq6dw7fwcrNbBJxGG7ZqprQ7bv76EpXoDvkt+TOaSu7ks4Nx/8803qaKK6fOms0KHc7U/lP3RzJ8xkYaCmXz4+ofkpuRyxZorBn7hIDngPgDAJWsuIW3jkxCbzpo1a0K2/VDi8Xjw7otmxsQcZq7oGmN1bjWlp0tZMGMB09dMH9a2//KDv9BKK8suWsbESyZi3ViEtTbetMcCwPbvdbQ0bAIgOyE75GM9ueEkRzlKQnoCmcmxEJ1s6uNhffN9rCVbRzxGs9y3aQltAyEzroIgCIIgAGo/W1OgS22wMfKgCsYjFbKtVgvfuXw6n39sO499XMwd500kK3HkLuwTNa10ev3EOm0j7knTi7yUmKDYPkcHsb2yqStCfqgR/0bhbnHTergV5XIlbGMwu+Cq9XE3nx5+jHqwlz4Cne1Wm5W4rDiaS5tpLmsOmdiu+JWuRQgm/dsPltSpqtg+Ime7xMiPCZKSkpg2bRpFRUWsXr0at9tNQ0NDD3d7ZWUlWVlZAGRlZbF169Ye26isrAw+1hculwuXy3XWzx0OhylEbrOMw+y0efwAJMW6THu8kmLVa8bmTl9IxtjbudHqVuNnE2PMexy6kxCjvvfaPH5dxqudF4nRzrAdj7xUBxPTYjlR08qu082smpU58ItCTIdXvXaNH8ZxGO5n0PIp6RyvOcmW4nrWzDfnAhjoes8kmfw9kxirvlda3aF9r3R41ffIcM4NMP47KjVeXXzX1O7VZb/B90rU2PjuXT41k+VT9f1McjjgntXTuXB6Bvf8czcna9u49e/bOW9yKhuP1aIo6oL7L62YxJcunEysa/gykKHnY/le+OdnoLMFbn0J2+SLsHV72NuizllFJ0Ubfy654rF5WolNU+8b3Y3ukI3B7/PjaVVd4bEpsVg9rRA1GauJ3y+d1miiva3Yuo1R67P3tgz/s8TdrFa0xKbEqtvwtoEzztyfHbEpOG3qvEJ7bXvIx+prU79ToxKj1HMjebypzw1i06CjPmTHIdz3bYPdd+jyFwVBEARBiGi03vD0eBfRTtsAzw49F03PYPGEZDq9fv7vg+Mh2eaBQF/7zOyEIa3gNhItsl+v3vbKQO9XZsLZgocZ8Pv8/Cb3NxR+r5CGEw1hGYOiKBETI99Y0jjsbWiisll/x4HQo7e9vb4dxadO/kXiIoTudHe2K8rwFq5oznaJkR/dtLS0cOzYMbKzs1m0aBEOh4N33nkn+PiRI0c4deoUy5YtA2DZsmXs27ePqqqq4HPWrVtHQkICs2bNMnz8grG0dqqT2iOZpNebhCh1bFq/vB60BI5DnImPQ3fiA+Ns7tDnmGgLdOOjwjvRu3SS+t236fjwF5qNhDa3ehxiDLx3Om+y+jtvPBae33mwRMJnB0B84PNDO6dDhbbYIMZp7t9fQ6txa+704vH5Q7597XyIi4qM4xFJFOQn8+//uIBPnjMORYGPi1Sh/ZoFObz77ZXce+l0078Pg3g64LGrICoJ7nofJl901lO0XnNXOOY3ohKgo5HoFFVQbq9rD9mm3S3u4P93JbjA3QpOcy+A9tpioKOn49eVqP5dOho7hr3dzsYz/sYRcCyISsKOunBdM3KEkh7nfWcLuEKflhFSYlKgLXQVC5GCiO2CIAiCIABdYu9g+9pDjcVi4fPL1e6rUE2YHSxXL/zNGCGvob/Y3uVsNyNWm5W0mWkAVO6pDMsY3M1ufIEJMbNGrI/1znbQR2zXboSjkqOwhWGRUShJmpiExWbB0+YZ9jHSOtslRn508e1vf5sNGzZQXFzMxo0bue6667DZbNxyyy0kJibyhS98gXvvvZf33nuPHTt2cMcdd7Bs2TKWLl0KwKWXXsqsWbO47bbb2LNnD2+99RY/+MEPuPvuu3t1rguji5YIEMy0+PBQi2XdiTixPSBoaeMONZqIH27hbOmkFAA2h01s1wRV464hlk1OxWKBwqoWqpqGL2boTWtn4Nra5O8ZbcFIqBemaAsxYl2RcX2Z0O293KTDwqXmCPguiWTiXHZ+deN8Hrl1ETcsHMdLXz2P395cQG6SfnVButBeD52NcPEPIXl8r0/pbA6j2O5KgM5mopLVuZX2+hCK7QE3t9Vhxe6yq4Kq05xzExoeWzSWzp7zE1FJ6rHpaBje95OiKF3CcqImtjeb/lgQnYTN1wJ0GTlCSfC8j3eBu8X8iw+iU8DbDp7QvUciARHbBUEQBEEAwi+2AyzITwLgaGUz7YHJq5FwMOBsn21isV2L7NdNbG82t9gOkLVAjSGu2F0Rlv1r8eqOGAeOGHNGcWlie0t5C37v8NwmEe9sz9VPbI/0CHkAm8NG8sRk4P+zd95xbpR3/v/MjPqutNq+3uKKce82toEQQse00EMIJIQkl3a5hFxyv1wuuUuOu5RLvYQklxAgBQKhBzAB08HYuBfcu3ft7VXSqs/8/njmGWm9TWVGmmf2eb9evAB7JY1mR6OZ5/P9fD65RckrisJj5C1KS0sLbrvtNsyaNQu33HILKisrsXHjRlRXkw7dn/70p7j66qtx44034oILLkBdXR2eeuop7fGSJOH555+HJElYvXo1Pvaxj+HOO+/Ed7/73WK9JU4BCTEgMqecqQY62yNsCUVUBA8YNIBARXxvkcX21aqzfW/rAPoHjfv9j8ZgEdzLfo9Du7cxq7tdURSEGBGbjRpMCUbZcrbbJFHbF30GiO0sfJdYgSvm1+HHtyzC0snlxd6U3IiRe5GxXLuaEOsthtjuBaIDWlR6pFe/gadhjv1YCHCa+54sIXmA6NB783zF9ngoDkUmKW0s7Qu4/BAgw+mMFcjZbvL94SHDkAj3Fnc7Cgz/huNwOBwOhwMAaO4lQlxTefGmn+t8LlSVOtEVjGJv6wCWTcn9JlFRFOw5TSK3507SvwtdL5rU4YZmg8T2DpPHyANAzaIaAEDHro5xftIYzB4hDxAxWLSJkBMygm1BTXzPBqs42wdO5e7uPxNNbDdpokG2VJ5diZ7DPeg51INpH5qW1WOjA1EkqQuNx8hbikcffXTMv3e5XLjvvvtw3333jfozU6ZMwdq1a/XeNA4DsOBOpc72WEJGJJ6Ey66/uGcWcTlTqKBlnLOdPK+vyPujxufC9OoSHO0M4b1j3bhsXl1BX1+LkS+woHzejCq8f2oA6w934cNLzNfbPhhLgjbamF1c9Rk0mDKoicvmHjZIx++xIxBJoM+AwRX6XWL244FTZKhLegwhsfgx8gOGxMgPcS4riupeNvc9WVxyDxPbqRudRsFnC/39CpKQMkKwECPv9pN/uSPo63MiEU2QhAKdoPvF4bOrTn+z7w9VbB/sAXz1xd2WAsKd7RwOh8PhcACkxN6mIjrbBUHAwkYijO9u6cvruU73R9A7GIdNFDDTxJHIkyvJ/j7VF0ZSzq1neSzMHiMPALWLagEUL0aeOtvNLLiKkqg5u3ONkqfOdjO/z7GgYnvwdFC357SSsx0AKmaSm9pcnO20r93hdcDuNmfCA4fDKSzRRBIxtbu31MTuzFKHDYJA/tsIJ3dSVjQHMytCUaFi5Ivd2Q6kets3Hi18N6jmbDdgwGMsVqf1tiuK/vcP+UJd7aIAuAu8b7LFqBh51jrbAcDvJr3t/eHYOD+ZPTxGnpMR0fGd7TRuvTgx8mVAdECLkY/0RzQXdr4MGSJIRAAlCTjM3csdlzy6x8in7weBXtwxEKkPNzEKeUrJ8UnXXvSCHvdurwAoMgOd7apxKjyxetu52M7hcDgcDgeAOWLkAWBBAxHbd53qz+t5tp8kcUVzJvkMcTjpRZ3PBbskIJ5U0GZA7yIV22u85hXbaxbUAAIQOBXQhO9CwoKzHUhFyfc35/bZoPuWdWe7njHy2u++hs19ciaVZ5PF91zEdh4hz+FwzoQ6EQFzR0GLoqCJ4EZEyVPhEGBHKCp1EgExaFCMPB1qMMPwAY2S31CE3vbBIiU/nDOtAnZJwKm+sGFVVPmgJWI4bCmxxKR405zteg4usNbZDhBnOwCDnO3sOf05RYC6pMcQmTWHr9dRiC0aiot0ttMYeShEcNcDKqY6vA7i5AZMLzAnRFcqjUAlX7Gd7k9XWdr6FQsd5S4/AMBfS75H9I6Sp8e9x6tem5t9f6jDBxjkYjuHw+FwOJwJRiIp41QvicCiTutikXK25yu29wEAlqg98GZFEgU00t72bv0Xy1iIkXd6nXBOIttXjN52VtzNVGzP19lu9qGC0TBCbGfld58pVGzvOZT9TW2wXRXbTZwEwuFwCgsVR1x2ETbJ3MtHPtWdOmBA1zAVrO2SAKfN3PuBonW2G+Rsp/vEDLH6K6eTVJf9bQPoG9TfkTsWVFB1OworIHocNixpIgvZ6w+br7c9xJCLmTrbE7KCSFzW7XlDjHW2A6lKjn5DO9uLn4bBMTFaZ/vI9yNyQkZcHQYpjrPdC0QGIDkk2EvIsaxXlPyQLno6dGDyXu645Bkutqsieb4x8kN+vwxE6tMY+bJqIrbToX69oPvFXaJe15n82ICzDBBE7mzncDgcDocz8WjtjyAhK3BIImqL7IBeoIrthzuD2k15LmxTne1LJ+fe+14ojOptD0UT2iJrjYlj5AHAPZVMhxdFbKeOb5OL0PmI7cl4EpFeMiXOurN9sGsQCZ3EA6uJ7TRGvudID+REdgvGNEae97VzOBxKMGoe9/J4UJHIiBj5UNp+MLtLl0J/Z7GEjGgiOc5PZ4csKwjGqNhefOGsxuvCjOoSKArw3rHCLurSGPmSIgiq555FBuzWH+kq+GuPBz13FLrLPhc8dimthkI/kVkbOGBIbPe7jXO203MzS05/ThGIBgDJAdhGFtJjwdRAldNbDLHdp4nL1N1O77HzRets9znTnO3mFlQTkptEvMup+868Y+T7RxLbQ+aPTXeWARDgrSDXBXo722nygcutnp9NfmxAFIm7nTvbORwOh8PhTDSoyNtY4YYoFncRscbrwqQyFxQF2HM6NwdvNJHEnlPksWZ3tgNAk3qjpncMJI2QL3XaTL9Q7p6uiu3bCy+206ljs3eZU7E90JK9szvcrU7cC4C7wq3nZhUMd4Ubkuoco5Hn+WI1sb2sqQySU4Icl9F/Mrt0EB4jz+FwzoQtd6pxMfIsdg2nX/el1wHoQTCWAE3bNoOzHUh1mG84UjiXdywhI6F29Rba2Q4A586oAgBsPNINWafOYL0IMTSoM7SGQp9hnaSsIBynFQPsiMs0Rt4QZ3uMnWOCU0SigTFFROrulZySdl9YUFw+4rKWk1pve7hXX2c7SzHycckDAQoQS61P6NbZXnaG2G7yfQFRBFw+lPpVsV3nekRtv7ips93kwwcA4K4Awr3F3oqCwsV2DofD4XA4pulrp2i97S19OT1+7+kBxJIyKkocpnlPY0G3UX+xnVyQ15g4Qp7inlY8Zzszne1NuTvbaYS8u8IN0eRRwKMhCILuUfKa2G7yQYtMEUQBlTNz622nMfLc2c7hcChBhpyZqRh5/Z3tQRP1k2eKJArw0AE1nd3+1KHqkES47OYQElepve0bC9jbTiPkAWj7upAsbvLDbZfQHYrhQLt+FTt6wNK5A0idP/RytlOhHWBrSMfvJh3YetcxKIqSGsAwyYAOx6REA2OKiCNGjBcSum3RgDbArleMPHUuE2c77a439xB0XFKH+COp9Qkqkkf6I1CU7AfBaGe79juWZTZi5AHA5YfHS45RozrbnU71/MyC2O7hYjuHw+FwOJwJSHMvEeKays0hNmq97ady623fpva1L53sZyLu0yixvSNAblSKXQ2QCVRs7z7QrfWwFQo6dWx2wZU62/ubs/9csPIex8Mwsd0iznYgFSWfrdhOY+R5ZzuHw6FQRzQLIrPPrXaUG+BspyKRWVzcmUJ/b4GovvuE7mMziWZUbN/fFkBvqDC97TRC3iGJsBdhkNFhE3HONPKdv/6wuaLk6bmDFaGZfrb1qqEYVM8ZogA4bewsvZepzvY+nZ3t0YSMeJKIbqwcE5wiEQuOLbYH0nrNi4HTp27IgGEx8iw52xOSun4YHe5sV5IK4qHszyXDnO1xdY3M5IMHAAC3Hx4P2X7dO9vp8WFXr3GY2B8VPEaew+FwOBzOxOOkOo1rFhf4gkY/AGB3S25i+3a1r30JA33tQKqzvaXXmBj5Wgac7fYKO0pqS6DICtp3txf0tZlxttMY+dMByMns+rips53VvnaKnmJ7eo+9lcT2yrOJ4NB1ILuFdx4jz+FwziQYNZ+oOhqas53HyGuU6iwgUqhT3kzDB1WlTsysId9f7x0rjLudOtuL2Ut+ntrb/vqBjqJtw0ikYuTNkXwwHnqL7SF1EKPEYWNi8JtiVGc7PR4AdtIOOEUiOo7YXmxnu4uYQhAZ0D1GPjaQ5myPqpVpJhdUE6LqbI+mnO12jx2iOmSUS5T8sN9xjI19AQBwl8PpIO/ZKGe7wx4FIJh+EAOA6mznYjuHw+FwOJwJBnVUN5lFbFdj5I92hXJaNN2uOtuXNPl13CrjmFxJ9ntXMDZkMSJfaIx8rc/8znYAqF1UC6CwUfKKojDjbi6tK4UgCVCSiuZCzhRWBgrGo7Se3GTrIbbTAQRBFJjtsR+J2oXkc9S6tTWrx9FjisfIczgcSpAhd6qPdrbzGHkNr7q9RsXIm0lsB9Kj5AuzsEud7Z4iRulfOX8SBAFYf7gbzTonZOUD7edm4dwBAF51WCeoUwoEvZ8r5iBGLvg9JEZ+QGdnO60V8DgkSCI7wwecIhAdyKizvXgx8tTZrn+M/BDXfiwESA7A5tDluY1ipBh5QRBSve39OYjt/WQ/uMrUNSzq8ncyILa7/HDYyHexns52RVa0mgGbGCGfERYGudzl3NnO4XA4HA5n4tFsss72ihIHGtVYrvezjJJvH4jgVF8YogAsZERs97ns8Kuxfc06utups72GFbFdFQnbthdObI+H4kioi8Zmj1gXJVFzdmfb2241Z3vwdDDv56JDFp5qDwQLLfw1rmoEALRua9WO7fFQFEXrbOcx8hwOh8KSO9XnNs7ZzmqMfEpA1Fdsp/vY67Tr+rz5snoGEds3HCmMs51GpXuKKCg3VXhw/llVAIDHtzQXbTvOJHXuYOMzo7uznbHOekqZ25gY+SCj6SCcIjBOjDwVHB3eIonQWmd7ytmuW4x8+iABIx3lcS1GfujahNbbroeznUbUM7A/4PbDLpA1Bj2d7bG0ehybGGFj8AAgYjt3tnM4HA6Hw5lIBCJx9KgXb00mcndqve1ZRslTV/vZtV5mFniAtN72bv3E9g7N2W7+GHkAqF1ceGc77TK3uWywl5hr0XgkaJR8tmI7fZ+sO9v1jJFnJdEgW/zT/CipKYEcl9G6PTN3e7Q/iiR1sHJnO4dTFELRBA61539u0xOWBCO9xbJ0ggzth3RSne3GONvNVi9A+8sPtAfQHYwa/nrheMqtW0xuXdEEAPjrlhYkZaWo20JhKRUDSJ0/BvTqbI+x9f4pdPi7bzAGWcdjiQ6meBnbHxMeOQmhZROc8dyq/XIiGhhTSCy6s92lOtsj+ne2DxkkiAUBx+hDB2YhKTqhCBIQGXqMaM72XMT2/jNj5Gl/vfn3B1x+2BQywE7XX/SAHveiTYSYHGQjUh9QY+R7ATm7CkSW4WI7h8PhcDgTnGY19qqixKE5YMzAggY/AGBXls522te+dAobfe2UpnJVbNcxArI9QDvbGXG2qzHy7bvas+4kz5X0eHUWOhWp2N7fnN3nItxFPudWcbbrKrabPNEgWwRB0NztLRtaMnoMdbU7fU7Y3eb5HuBwJhLffHo3Lv3pW9h0zDwOEJbciFpnu86OTCC1H8wmLo8H3V69Y+SDJnX6V5U6cbaazlKIz5HmbC+y2H7p3FqUe+xoG4jgrYOdRd0WSihqjkGETKH3wAGdkjFojD4r759Cne2yAgRj+p03aDw/C98lnDTkJGx/WIOagV2Fe83o2CJz0cV2uwcQJCA6oH+M/BBne4gNJ7cgELf/Gc52KrZT4TwbtP1QdqbYzsD+cPshqsMpsUAs45S58UgfxBBiQYac7RWAIgPRAg7sFBkutnM4HA6HM8GhseVN5eZxtQMpZ/uulr6sHsdaXzulSXW269W3qCiKFiNf62VDbC8/qxx2jx2JcALdBwsUAdrJluCar7Odlfc5GtzZnhmNq1WxfWOGYnsbEdu5q53DKQ7xpIx1e9sBAO8c7iry1qRgKQrayBj5IEP7IR26vXr1UFOoIOkz0ZAuZbXa277hqPHXkWHa2V7kxAOnTcINS8n3/qObTxZ1WygsnTsA/ZMxBhlz9lNcdgkuO5EK+gf1O2+kkg7YGj6Y8NgcUOwe2JP6OXTHJRoYM0ae9poXLUY+TVymMfLhXgM626MMCapOXyrqXYX2resSIx9jKEbe5QeiAxDtxMShl7t9eMUAI8eGhyQOTaTedi62czgcDoczwaHibpNJ+top8+uJ2N7cE0ZvWkfRWMSTMnad6gMALJnMlrNdi5HXSWwfiCQQiRN3eA0jMfKiJGru9kJFyac721mAiu2BluzEZqt1tkf6IojnuQio/e5r2N4nI5Gtsz3UThYCSusYuXHncCzG+6f6EVKFu32t2Q1TGQlLznZDY+QjbAmHFK9Bzna6j83mbAeAVarYvrEAYjt1L7tN4F7+iBol/+q+DnQE9Ik0zgeWzh1AKt58ojvbAcDvJiJmn45ie2r4wnwDOpxxcPpgT+qXvDcu47h2i+5sB0iUvAEx8vS9pWLkGRCXASK2R87obPfn3tke6SePoYI9W872cghQUNFAzv10vSFfhhz30eCYAymmwq2K7eG+om5GIeFiO4fDyZqjnUF8+L71mvuCw+GwDRV3J5tMbC/z2DG1kmzT7gyj5Pe3BhCJyyhz2zG9ioGL8TTo/m/WaTK6Q3W1l7ntcNnZWeipW1wHoHBiO2uOb19Tbs521oYKRsPpc8Ku9kkGWvNzt1vZ2V6/vB6CKGCgZSCjY4XGyJfWcrGdwykG6S5cM4rtLMSn8xj54Rjd2W5GsX2lKrYfbA+iy+Dedq2X2wSC6sxaL5ZNKUdCVvDk1lPF3hxNbGZlQCUVI6/PZ4WKyyVFTj3IBa23PZzZsHsmpAaWiv9Z4WSJ2184sV1RxnW2xwbIcVlUsd1ZpnuMvJyUEQ+R6xfW3MuKs3TUGHkqnGfDsIGKaJDE94sMnD/cfgCAfxL5X7rekC9DUg8YOjY0Z3uYO9tz5q233sI111yD+vp6CIKAZ555ZtjP7Nu3D9deey3KyspQUlKCFStW4OTJVNRRJBLBF77wBVRWVqK0tBQ33ngj2tu5qMfhmIW/72nDjuY+PL6ludibwuFwdMCsYjsALGj0A8hcbN/eTPraFzf5IYrm799OZ3JajLwsK3k/X7t6k1LLiKudoont2wsktqs3QKy4m3PpbFcUxTLOdkEQdIuSt7LY7ih1oHYhSYloeW98dzuPkedwisvGo6lFqJbeMPoNEIxzgXZSsyCQ0Bj5UCyJRFLW9bmZjZE3zNlOjk8zulQrShyYXUeuE947auzi7qDmXjbHcXGr6m5/bPNJKEr+9xL5EGIsRl3vZAyaVMLK+0+Hnkv1/B5iLemAk0JxlhUuRj4WAqCMKSQOER2LhdMLRANajHwsGEMynszrKWPB1HALEVRD7AiqIzjbc42Rl5Oy1k+eipFnaF+4/AAAP7kNNyZGPhpgp2LAzWPk8yYUCmHRokW47777Rvz7I0eO4Pzzz8fs2bPxxhtvYNeuXfjWt74FlyvVJfqVr3wFzz33HB5//HG8+eabOH36NG644Qa9N5XD4eRIq/plqWesFIfDKR5mFtsXNmTX277tBBHblzIWIQ8Ak/wuSKKAaEJGpw5OHK2v3cdGXzulbknK2V6IhULq+GbG2U5j5E8FoGQ4lBELxJCki36MvM+x4GJ7ZjSsagCQWZQ8j5HncIpHPCljy3GyCOWQyBLNfpO421lyZ6a7rIM6O7mZFdu1zvaJ42wHChclP6h1tptjGOWqBZNQ6rThePcg3jtW3IVt7dzBwKAOkO5s12eNa5Cx95+OXxXbDYmRN+k5gzMGrjLYEwVyttPeb6dv9B8xUYw8dW8D+UfJU4FZtIuQnBJbMfIu36jO9mhfdutaQ4YOyqjYztC+UJ3tvkoy9Kmbs53Vzna7i6QScGd77lx55ZW49957cf3114/499/85jexZs0a/PCHP8SSJUswY8YMXHvttaipqQEA9Pf34/e//z1+8pOf4KKLLsKyZcvw4IMP4t1338XGjRv13lwOh5MDrWoMjJ6xUhxj6ApGEc1vwJJjcWRZQYsae2W2znYAWNBIxPbdLZk62/sAAEsm+w3aIuOwSyLq1ZsSPXrb29W+xhovW2J7zfwaCJKAwc5BBFuDhr8ea/HqpXWlEEQBckLO+OaNutptbpsWwc4yXGzPjKbVxOHWsjFzsZ072zmcwrOrpR+DsSTKPXZ8YGYVAGCvScR2ltyIdkmEW63NGQjrKy6zKhRpne0TVGzfYLTYHjWX2F7itOGaRfUAgMc2FzeFMMTYgIpRznazpB5kA42RN8LZXsrg/pjwuMoKFyMfU+/9zd7Z7iTisiiJmiAczrMKMN2xLwiC2svNhqCqjORszzFGPtpP9oPkkGCj3x8sicuqs720nJzz9Opsp8MYDq+Drc52AHCXTyhne0G/5WRZxgsvvICvf/3ruPzyy7F9+3ZMmzYN3/jGN/DhD38YALB161bE43Fccskl2uNmz56NyZMnY8OGDVi1atWIzx2NRhGNpqZlBgbIhzwejyMeL477lr5usV6fY15YPzZa+8mXRd9g8T5fnPFp6Q3jyv9dj0luCVddzgcjOEOhn93TvSHEkjJsooAqj2S6z/SsGg8EATjdH0FrbxBVpaPfVHUHozjRTc5P8+pKTPdeMqHR70ZzTxjHOgJY3JDfBXRrH7nhqy61m35fpH8v2u12VM6qRNfeLrRsbsFZa84y9LWDHeSm3lnuNP1+opTUlSB4Ooie4z1wVo6/0NDfSoZVPNUeZt4jZaRrJk8dGYzob+nP6/1Qsd3hdzC3XzKhdhnJrzu95TQioQikMcSAQCsZXHBXuS25LzLBDNfnE3XfT3So+3bltEqcXVuKV/d3mKa3nTXBzOe2IRxPYkAndyolEGFrP1BozLvuMfJRsn+pG9hsrJxWAUEADncE0RmIotqguOHBuPkE1Y+saMJfNp3E2t2t+I9r5qGsCEOWsqwwF6Ouie06DabQigEmne0eBwCgb1DHznaGBrc4KRRZQVwohT1eoBh56o4eq7M9XXQsFi4f0LkPAOAudyPaH83b2T5siICl6HTncGc7HULINkZe2w9lad/bsRAzgwcklUFAqS8OwGmMsz0aYOfYAEiU/ARythf0W66jowPBYBDf//73ce+99+IHP/gB/v73v+OGG27A66+/jg9+8INoa2uDw+GA3+8f8tja2lq0tY3e3fm9730P3/nOd4b9+csvvwyPp7hOpXXr1hX19TnmhdVj40SnBEBATzCCF15YC4GtWuQJwzttAiIJCccCAh545hVMZui7mFM4nl73FgAbyuwyXn7p78XenBGpcUloDwt48NnXMK989Njs93sEABLq3AreeZ3N8yuCIgARr23aBWfrjryeatdB8lydJw9j7dpDemyd4dDvxWQ1WaB76/G3cBAHDX3N7pNE5Nh5aCcOrz1s6GvphVxKYslef/Z1+Nv94/58/xYitsdtcaxdu9bITTOM9Gumjr4OAMDBLQcRXZtb5YIclREPEbFg/Y71kA6ytxg6HoqiQPJKSAaSePrXT8Mzc/R7oq4TXQCAHYd34BAj5wujKOb1+eBggZxDHFNBxfZV0yu06hczONtZFMx8LjvaB6K6iu3xpIxognzvsie2k+0d0L2z3dzO9vISB2bX+bCvdQDvHevG1QvrDXkdGhVuFmc7ACxsLMPsOi/2twXw7M5TuHP11IJvw2BadzELFRRAanAklpARTSThtOX3Ow1FzTeIkSllPEaeo7L1t1sRemwvlp5ToGuSqOpsH6uz3RTOdq/m5HaVu4DjQLgnP2f7sCECltzcI4jtmrM9V7E9/fcbDbATIy+KgNsPtz0KwKmbs53uF5fPBiTC7AwfAICHO9sNQ5bJDcp1112Hr3zlKwCAxYsX491338VvfvMbfPCDH8z5ub/xjW/gnnvu0f5/YGAATU1NuOyyy+Dzjd71YSTxeBzr1q3DpZdeCrvdnBO/nOLA8rERTcj4pw2vAAASioAPXXoZkzcQE4F1f90FgAwptbqm4LNr5hV3gzimgp6H6s6aD+zZj1mNlVizZnmxN2tEXh/cjWd2tsJVfzbWfGjGqD+3b90h4MAxnD+nEWsYPd5PvnkUG145DFdlA9asWZDXcz3U8h7Q048PrVqKy+fV6rSFxnDm9+LG/Rvx2puvoWywDGvWrDH0tfeE9gAALr72YlScVWHoa+lF+A9hHDh4ADNrZ2LFmhXj/vyurl04hmOYdNYkw/en3ox0zbRnYA+efehZeAVvzu+n/0Q/dmEXJKeEq2+8msT1WZDg+UEcefEIptimjHqsKIqC3QO7AQCXXX8ZyqaUFXITTYMZrs9pOhtn4hBLyNhyvBcAsHpGFVx20vR3sD2IRFKGTdK9+S9jQrGUQGtWUfVM6HbqGSMfSnO6sjJ0QEnFyOsnmimKojnlzXxcrJpegX2tA9hwxECxnUaFm+i4EAQBH1nRhP94bi/+sqkZd6yaUvBrHPqZEQVo5zSzkz5IE4gk4CzNV2xXndwmGsTIFBoj32dEjLyJPiuc8XFXuNEdccFpy8+1nTFajLzJO9vTxGV3hRuADjHy6e9LTgLxQXYEZmcpGT5QFFA3Xq5iO42dd5WlVSHGQoCLoftTFxXb9etsp8MYrtIkEAQ7gxgAd7YbSVVVFWw2G+bOnTvkz+fMmYN33nkHAFBXV4dYLIa+vr4h7vb29nbU1dWN+txOpxNO5/ATrd1uL7qYaYZt4JgTFo+N1oGhU1mhOFBWwtZ7mAgoioItJ/q0/3/h/XZ8+9oFcNnZu9kbD0VR8NC7x7FiagXmNzB0AWYSTveTi7YplaWmPR8tmlyOZ3a2Ym9rYMxt3NlCbniWT60w7XsZj6nVJDLtVH8k7/fQoV6Q11eUMLM/6Pdiw/IGAEDHrg5Dtz0+GNfczWX1ZczsJ/9kPwAg1BrKaJujveRmr6SanWPhTNKvmcqnlAPI/P2PhLZPakrgcBQxhtBgmlY34ciLR9C6qRX2L4+8r8K9YSRVwcDf6IfNPrEXQot5fc7q55OTO7tP9SEcT6KixIGZNWThrMQhIRRL4mhXCGfXFq+TkTozJVGA08aGYOZTHZl6Otupi9tlF2Ev4vBDLlAxPBKXEU/Kumx/JC4jISvq85v3nLV8SgUeXH8c7582boiJRoV7THaPff2SRvz3i/uxr3UAu0/1Y2Gjv6Cvnx4ZzsowoyQKKHXaEIwmEIgkxqwuywTWUkHS8bvJdbG+ne3s7o+JjLvSjUjECYc9hngyDhh9nRoltVajuXYT0YR2z+I0qB4kI1w+TVx2lxOxPe8Y+bTOdsTVdXdGxHbF6QOUoQMCVCynHeyZMuIwRSwE+Br02dhC4PbDKZDhi1CnvjHy7hJVbB9jIMV0eCqA3mPF3oqCUdA7BYfDgRUrVuDAgQND/vzgwYOYMmUKAGDZsmWw2+149dVXtb8/cOAATp48idWrVxdyczkczgi09g+d1tMzWoqjH809YbQNRGCXBJTZFfSHE3hlX3uxN8sQ1h/uxnee24u7/7AZMTXikZM5zeoE7uSK4laujMXCRjJEsaulf9SfScoKdrb0AQCWTC4vxGYZAv09nOzJL25KURR0BMgNH42kZYm6RWTAsvdIr3ZjYQT05kdySMWdjs8SXyO5uQq0BDL6efo+PdXm/Zxng7eeiE+B05m9/5GgU+YlNWwsYuRK0+omAEDLxpZRfybUTvaFs8wJm4ldihyOFdlwhPa1V0AUBYiigDmTyDl+r4EiYSYE05yZrAhmPlX8DegYm86yIzNd2Arp1EUdUAcZRMHcrt1JqquuK2DcdWTK2W6u/VDmsWPNfHIt/ejm5oK/fojRz4zW267DsA7Lne00Rr5fx7U+mq7B2jEx0fFUehCJqPfI0QJck0QDgGgHbCPfl1N3L1DkznZNXA6TGHnkHyM/tJObOvyLN3CZFVT4jaSOEepsT0QSSGRxTUbF+aFie5CZwQMAgMsPh0Tur/XubHeXqPuSpRh5dwUw2FvsrSgYuovtwWAQO3bswI4dOwAAx44dw44dO3Dy5EkAwNe+9jU89thj+N3vfofDhw/jl7/8JZ577jl8/vOfBwCUlZXh7rvvxj333IPXX38dW7duxV133YXVq1dj1apVem8uh8PJkraBodN6fYOxUX6SU0w2HScRLfPrfVhZQ5wHj28ZfaGdZY52kQvR9oEo1u5uLfLWsAcLYvvcSWUQBaAjEEX7wMgTwwfaAhiMJVHqtOGsGoYuPM+A/h7aB6KIpPUdZkvvYBzxJPns1xRz6jtHPFUeTVBu29lm2OvQDi1PtYcZIQFIie0DLZktegx2qe+zyryf82wonUQ+47FgTHMBZMtEEdvrV9QDAtB3rA/B9uCIP0P/vLSW3XMnh8MqG4+Sa/bVMyq1P6Ni+74i97azKJilYuQN6BpmaD9Q7JKoxXjrNYBA+99LTe5arioh179dwSgURTHkNTSx3YS1ereumAwA+NuO05rwWyjSne0sQT/jenxWWO5sT8XI67fWR/cHi+fRiYy7wo1wmIimSrgAYlk0MKbATO/77CV2iMVMmqHicnRAtxj5IZ3tMVWgZUVgdqX2B8XpcwLqJQKNhs8Ebeig7AyxnSlx2Q9JIffX8VAccR2uSbXkA5f6/cRSjLxnYsXI635m2rJlC5YsWYIlS5YAAO655x4sWbIE3/72twEA119/PX7zm9/ghz/8IRYsWID7778fTz75JM4//3ztOX7605/i6quvxo033ogLLrgAdXV1eOqpp/TeVA6HkwOtZ3xJ6tnjxNGPTceIS2bF1HKsqCZu77cPdaIti4scVmhJu6j9/TvHDFtMsSotDIjtboekxaiO5m7f3kxu/hY3+SGJ5l34Gw+/xw6vugjR0pu7u50OJVSVOpiLPKXULSGOnLYdxont1PFdUs3IjayKrylLsV0dKmDtfY6Go8Sh3YAHTuXmbtfEdovsk9FwlblQPbcawOju9mCbKrbXMXTTzuFYgFhCxpYTZPFp1fSU2D63XnW2m0RsZ0kwMyRGnsH9kE6pk+yToE7Odvo8Zo6QB4Aq1fUYTci6vfcz0dzLJnT4r5pegamVHgSjCbywq7AD6YOMRoYb4mxnUGynznY9UyxTAxjm+6xwRofGyANAorfb+BccR1TVhNhimwlcKSc3dbbnHSOvvjcitqv3t4wIqsoIznZBFLTfUzZR8lSYH+Jsj7LnbBfj/ZDUawO6FpMP2rHvVIegmBo+qCCf7cTEMGvqvvp64YUXQlGUYf889NBD2s988pOfxKFDhxAOh7Fjxw5cd911Q57D5XLhvvvuQ09PD0KhEJ566qkx+9o5HE7hOFOs5THy5mTzcSI8Lp9Sjho3sHyKH7ICPLXdeu725rS47d2n+rX3zhmfWJK4xQFzi+0AsKCBRMnvVqPiz2TbCfLnS9Qua1YRBAGNOkTJ0xSSGi97EfKUusXGi+3pznaWSHe2K/L4A0ZWc7YD+UfJU7HdU2OdfTIajasbAQAtG0a+BqAx8iW1DC1icDgWYGdLHyJxGZVpfe0AhsTIF3OIlEV3qiEx8hF2ne1ASkDUS3CmQqTX5LUjHocNHnWhuytozAIvdba7TSi2C4KAW1aQKpnHChwlH4rRz4z59stY0AGSgTzPH7KsmLZiIBOosz2akPNKWqPEErJW9+d1mntIhzMUu8eOuEzulWKdnca/YDQwZhf1iH3exUBztge0zva8Y+QDae9Nc7YzIqg6hzvbgVSUfKQvX2d7CHAwEqkPAG4/hEiftsakR5S8tl8c6vUMU/tDrfmcIO52Nq1OHA6naJzuIxcQNDFOz2gpjj50BCI41hWCIADLVOHxhiUNAIAntrRYzvlNndkNfnKR+/t3jhZzc5iiRx0w9bpsKPOY+8aX9rbvHMfZvpThvnbKZDWK7GR37mJ7xwDta2cvQp6iie3bubP9TLyTvIAAJGNJTUgfC1aHCsYiX7Fdc/tbPEYeABpXqWL7aM52NUaei+0cTmHZqPa1r5peOSSOe1atF6IAdIdi6DSwb3o8Ug5mc4uq6RgZI8/SfkiHDgkEdRpAoIMMLOyPqtJUlLzeJGUFUVVANKt7+aaljZBEAVtO9OJwR27XS7mgDeqYdL+MRsrZnt9nZTBNoGZtHwDknEGT4vQw14TSBn24s50tBEEAPH4AQKK3y/gXjAbHFJhp1HrxxXZV6Iz2azHy+TrbYwPqe/M62YuR11Fs1/YD/R0n40Ayys6+AIi4HO7X1hnomlM+0GPfblevZ1hytnsqyL8HudjO4XA4w6BuyamV5EuDO9vNx+ZjRHScXefTohSvnF8Lt13C0a4Qtp3sK+LW6Q+N2v6XK2cDAF7e256XSDmR6IqSm2izu9oBYEGjHwBJLzhzYKRvMIaj6gXs4iZ/gbdMf+jvozmP3q92dfK11sews12Nke/c04lkLH9XxUiwKkJLDknr184kSp4724czUTrbAaBpNXG2nd58GrIqDKTDY+Q5nOKw8RgV2yuG/LnbIWFaFTk3FTNKPsSgYGZEjDyLDv90tB5q3Z3t5h7UBUidEgB0GTC0kt6DbkZnOwDU+Fy4aHYNAODRTYVzt7NYQQGkjul8Y+QH1fcvCoDLzt6yuyAI8Lv1622n51CnTYSN0XqziYzkLYOiAMm+AsTIRwfG7mxPj1ovJiPEyOfb2T7E2R5V729ZEVSpEB4Zes1K3enZdLbTn3WVqetYseDQ12ABlx+I9qO0mgxi5OtslxMy4qr2YpeigGgHbAyZatzqfQ53tnM4HM5waGf7nEnkAqhvkDvbzQbta185LbVwV+q04coFRLh6YmthY+SMJBhNoFe96Lhodg0+MLMKigI89O7x4m4YI3Sr17wsiO2z67ywiQJ6QjGc6ht6I7O9uQ8AMK2qBOUlRb7x0oHJOsTI0872GobFdv9UP5w+J5KxJLr2GzNJz7Lgmh4lPxbJeFKbJmfNwT8WXGzPnKrZVXCWOREfjKN9d/uwv6cx8nSAg8PhGE80kcQWtfpo9YzKYX9Po+T3tRbOjXomQQZ7l306OVPTCTAeI1/qMsbZzsL+qKTO9pD+axY0JlwSBTht5l1ave0cMnD31PZTiCaMGV49k9S5w5xDCKPh0+mzElKPjRKHbUhqCUvQ1Lt+Hcw1LKakcFK4K0oQiTiRHCiAUJZpZ3vRne0pJ7deMfLUuUw621Vx1s7IfaookVhzPWPk6e+Y7gtWBg8AwO0HAJTVkfN/vp3t0bSBQZsQYWtfANzZzuFwOKMRS8haBNvsOnJxwZ3t5mOTunC3YupQl8zNy8iN9nM7WxE2yCVaaKirvdxjR6nThrvPnwYA+OuW5rwn0icC3RF2nO0uu4RZdURc231GlPx2Na2B9b52ShN1tucltlNnO0MTr2cgCIIWJd+6vdWQ12DV2Q4AvibyPXxo7aExfy7crd74C9Am760AF9szRxAFNK4cPUqed7ZzOIVnZ3M/ogkZVaUOzKgevmg2t17tbTeBs52l3uVU57L+MfKljApFXhojH9VnnzAZI2+Is13t5LZLphZUL5hZjTqfCz2hGF7Z21GQ12TX2a7PsA59/yz2tVPKNGe7fjHyrB0PHIK7wo1IxAUl1Gv8i0UDYzvbAyYR20WJCOHRgG4x8kNE5liQPL/IkGzn8g1ztucktvef8TuOUmc7QwKzyw8A8FWRRLl8ne10EENyShCTjPXXA4CrDIAAhAtwDjEBDH1qORxOsWkfiEBRAIckatGGXGw3F/2DcexvIxc4K6YN7a5eOa0CjeVuBKMJvLTHuA7kQtKiTo82lhOh7INnV+OsmlIEowk8ttk6Dn6j6FbXnZoYENuBVG/7rlNniu3kom2JBfragaHO9jMj8zOlI6B2tnvZFldplHzbDmPOWax2tgPA4k8sBgBs/b+t2PjzjaP+HH2PnkoPRAtFN+YjtiuKkhLbGfzd50LDqgYAQMuG4WI7j5HncArPBrWvfeUZfe2UlLO9eGI7i/HpZW7a2a6fs53uh1KG4vTTMcrZzkKMfDWNkTegs50VQdUmibh5ORm4e3TzyYK8ZojRz4wWI5/nYMpgmrOdVWiMvJ7OdhbSMDjDcVe6EQ47gXCf8S8WDY4pJJomRh7QxGU6zJ6IJBDPYzhFGySgne0sxaYDxO0fHTlGngromaANHZSd4WxnSWxXne3eCvJdkLezPX0QIzp2+oMpESWyT3iMPIfD4QyF9rXXlblQoUY169HhxNGPLSd6oCjA9KoS1JwhsomigJuWkRvtxy0SJU+d7Y1qdJMgCPjkecTd/tC7x5GUcxMqJwosOdsBYEGDH8BQZ7ssK9ihOtuXWsTZ3lDuhiCQhZruHGMvaYw8y53tADRne/uO4dHXesCys33WtbNw8fcvBgC89JWXsPfJvSP+nBX72oH8xPZofxRynEyas/i7z4XGVSM729MHD3iMPIdTODYeJWL76unDI+QBYJ4qth/tDCISL04iFYtuRF9a53KuA4tnEmDc2U4FrgHdxHba2W7+/VHlVZ3tBojtYfVz6WFAUL1lOUm4e+dwV17JWZnC4qAOwJ3t6fg9+q33sXo8cAjE2e6EECtArU0smFFne9Gd7WQjgOgAnF4nBJGsq+Xjbh8qqAbYE1RdvlTXPP2jHJzttLM9FSOvPidLwweqs73UT66X8nW2D0s9YGnwgOKu4DHyHA6Hcya0r31SmSsVK8Wd7aZi03Hy5XVmhDzlxqVksf3dI92aUK0nkXgSv3ztkObWMZqWXupsd2t/dsPSBpR77GjpDeNlgxz80UQSP3vlIB5+7wT6dYhWKwaKorDrbG/p0xZQj3QGEYgm4LZLmFXLWJzSKDhtEupUkTyX3vakrKAzwH6MPJAS29t2tOm2aJ4Oy852ADjv6+dh+eeWAwrw9Meexsn1wx1LLA8UjEW62J7tsUF/7w6vA3a3+Z15ekBj5HsO9WCwO3VeifRFkKQOrAkQqc/hmIFIPIltairPqlHE9mqvE5UlDsgKcKCtOL3tLLoRqTNVVlK9yfkSYnA/pEP3Cf195gsVIn0siO00Rj6ov0FAE1Qd5hdUmyo8WD6lHIoCvHfM+MVu6uxm7TOj12BKKKaKywwMYoyGnut9rJ9DJzo0Rl5MFOBaZByRmcZpm0JsdxGxXRAFzd0e7s29t31YZztL4jJAhg8iQxMo8+lsd5WpphEmne0kcbOkRBXbO/MU29NTD1gcxABIbzt3tnM4HM5Q2vrJhcOkMhf8ntTFtxECCCc3Nqk3z+dMG1lsb6rwYPX0SigK8NS2U7q+tiwr+OrjO/Gjlw/im0/v1vW5R6NZHRhIF4tddgm3r5wCAHhg/TFDXvdPG07gZ68cwjeffh/n/Ncr+NJftuPtQ51MOem7QzHEZAGCADT43eM/wAScXeuFQxIxEEloIjRdrF7YWAabhSKy8+lt7w5GISuAKACVpSa4Ec2D6rnVEO0iIn0R9J/oH/8BWZCIJrSbWlaFaEEQcOUvrsSsa2chEUng0WsfRdeBriE/o8XIW8zZXjqJ3GQmo8msXQQTqa+d4q5wo3IWEfXS3e00Qt7ld8HGgHDC4ViBHc19iCZkVHudmDHKsJcgCEWPkmdRbHfZRdgl4jAb0Gkglsavs7Qf0tE7Rj7IkNOfiu3dRjjbaWc7A2I7QJKzAKBv0PhkQladzN60ZIx8GIyqQ4yMvf90tPU+Hc6jwSibwxccgruSONttisFiu6IQIXEMUVVz+HpNsMbh9God5e7y/HrbFVlBLJg2SBALsSUuA2R/nBEjTwXzTGPkk/EkEmoNUMrZrgrVLAnMTi8gSHB7yPvW1dk+zmfEtLjLgUHe2c7hcDhDoM72ujK3FisVS8pahBqnuIRjSS1eezSxHYDW2fbE1hbIOorD33txH17Y1QoAON4dKkjk5UjOdgC4Y/UU2CUBm4/3YldLn66vmUjKeHD9cQBAjdeJaELG33aexh2/34QP/OA1/OilAzjeld/FVCFoVvvuJ/lccNjYuBxw2ETMqScLz7vUY307jZCfYo2+dsrkPMT2dvVivNrrhCQO74FlCckhoWZeDQCgdXurrs9NHd+iTdSmrllElETc+Jcb0bCyAeGeMB6+8mEE24Pa32sx8owOFIyGzWmDu5Kc+7ONkp+IYjsANK0mMbLpYnuoXd0XtRNrX3A4xYRGyK8apa+dMle95tlbJLGdxRh5QRC0KPmBPAUzCkvi8kh41d+ffs52NUbeaf5kmEqts90AZ3uMnRh5IK2DuwCpbKlzBxuDCBTdYuRj7KQejIaexwsd9GHpu4STgsbI22BwBUUsBEBhLkYeQMrZ3pObsz2W9h1FOtsZjApXO+yH/FGWznb6+wXSfsfRACCIgI2h9RpBAFxlcDrI8aBrZ/s4VQumxc2d7RwOhzOM1r5UjHyJQ9JcAzxK3hxsP9mLhKxgUplrmPiczhXz61DqtOFkz6AWO58vD7xzDL97m7jIbaIAWQFOdBvfB5cS24eKSLU+F65eWA8A+P07+rrbX97bjlN9YVSUOPDW1z+Ev33xPNyxagp8LhtO90fwy9cP48IfvYFbfrMBf93SrC02mI2T6r5rqmDD1U5Z2ECi5HefImI7dbYvafIXa5MMgYrtucTIW6WvnZIeJa8nVHD1VHvGFDtYwO6x47bnbkP5jHL0HevDI1c9ot20azHyFnO2A7n3tk9Usb1hVQMAoGVDmrNdHczgfe0cTuGgdUurpo8+HAsAcyaRc1yxnO0hRt2IeglmFBYd/unQ7Q7oHCPPRGe76mwPRhO6D4KHGRNUy2gHdwHWblgc1AGgDerk7Wyn9TyMDGKMBDXX9OsRIx+j51A2PiucoRBnuwsOm9FiuzosPoaQaL4YeXIP6lbX1HKNkadiqmgTITklVWxn7D41bfiAkqvYbvfYIVJDUCwEOLxEwGYJt1/7zMQH44iFch/6G1IxEGVwEAMgMfK8s53DmRj8dXMzzvv+a0VbxGCJ1gHqbHdBEASUuQt3w8YZn/S+9rGEI4/DhqsWTAJA3O358uLuVvznC3sBAF+/Yhbmq2Lokc7gWA/Lm4FIXJu0HikG/e7zpwEAXtjVirb+3OKcRoKK97evnAyXXcLCRj/+88Pzsembl+AXty3BBWdXQxDI7+PrT+zCyv9+FTub+3R7fb2ggwpN5WwJcAvSetsHInEc6iDH2ZLJ1nS25yS2B8jxXuO1iNi+hIjt7TvadX1e1vvaz6SkugQf+/vH4KnyoHVrK5649QnICVlztlvlfabDxfbsaFxFkm1ObToFOSkDSMXIl9YxeNPO4ZiA/sF4Vs6/SDyJ7ep14epR+topcyeRa559rQFd06gyJcioO9WnOjJ1i5FnXWzXYuT12R8Dmthufme7z2WDQ62Z6gzoGyXPqrNdj1jw8aCx4ayJzXSAJBKXEVevk3KBDht4GDt3pqN1tofzT4VInUPNf87gDIc62532MIl6NwpVuM7E2e7wOozbjkxx+nSLkdc6uX1OspYbDbIVmw6M6Gx3lpGhiEiG67E0bn7IMAWLgwcA4PJDSgbI8ATyc7cPd7YzdmwA3NnO4UwkntzWglN9Yby0R1/HnBWhne31ZeRCItXbbnzvF2d8xutrT4dGya/d3ZqX83rL8R58+bEdUBTgY6sm43MfnIEZ1eSL/0iHsWJ7ixrRVFHiGHFqfn5DGc6ZVoGErOAPG47r8po7mvuw9UQv7JKAO1ZNGfJ3LruEaxbV44+fPAfv/r+L8LXLZ6G+zIVgNIG/m/D8ovXdj5GCYEYWqmL7+6cGsONkHxSFuPOrzdDbpSOpzvbsp6NpjHytGSa+dYA6242KkbdSvHrFWRW47fnbYHPbcGjtIbzw+Re4s30E0lMNJhI182tgL7EjFoihc28nAB4jz+Hkw+GOID7ww9fwwf95HccyrBDafrIPsYSMGq8T06rG/txNry6BQxIRjCa0IclCknIjsiWY6RkjryiKdq/Eaox8qVEx8gzsD0EQUKVFyesrtg8y1tleyLWbEKMDKumf8XySMTRnP2PDBumUaceLnjHybHxWOENxVbgQDjshSTLkqIF1iVRsz6Sz3QzrHDrGyA8bImCys71MN2c7FekBkH3BpLjshxDp1Yb7qdEjFyzR2e4pB8K9xg7smAQutnMmPMe7yQnvkMHCIOvEkzI61Gm7ujLyhVnuKdx0NGdsYglZi9PORGxfNqUc06pKMBhL4oXduQlYRzqD+NQftyCakHHJnFp859r5EAQBM9SLiaMG95a3ZCAWU3f7I++dRDiWf3QgdbVfs6geNWNEdE8qc+MLHzoLn/vQWQCAvafNl5xBRVzWYuTPqi6Fy04Wnp/aRpIZljRZy9UOpH4vp/vDiCWyc1Z0WCxGvnZRLQBgoHkAgzrWU1jN2U5pXNmImx69CYIoYNvvtuH4m8cBWFNYzlVspwMIE83ZLkoiGs5Ro+TV3nbqbOdiO4eTHcFoAp/981YMRBLoG4zjs3/aisHY+OLMBrWvffWMsfvaAcAuiThbTZ3Y29qf/0ZngaIozPbs6hkjH03IiCfJwiBrwiHFqznb898fsYSMqHpdyoLYDgBV6kCu3r3tg4y5l6nYbnRne1JWEFYj+1kTV+2SCLedbHM+nxeaesDauTMdrbNdjxh5RocvOATqbAeAaJu+SXNDyMTZHjCR2J7m5M43Rn5YPH4sxJ6b2+UDkjEgkRpso2J7LBDTUtXGYsRhClad7e5yINynrTXRYf9coMe9o9TOdme7nEh9zi0MF9s5E5pQNKE5AA+1W/8Dnw+dgSgUBbBLAipLyLQdj5E3D++f7kckLqPcY8dZ1eNPuQmCgJuWEXd7LlHynYEoPvHgJvQNxrGoyY9f3LYEkkgWDDVnu8Ex8qP1tadzyZxaTK7woD8cx5Pb8ovMb+0PY606mEBF/PGYV+8DAOw1YU1Fs7b/2BLbbZKIefXE3U4HRZZO9hdxi4yhutQJl12EogCn+rK7aUt1tpvgJlQHXGUulE8nAxXtO/W7wbeis50y69pZuPIXVwIAFFUk4M72FBM1Rh4AGleT734qtlNnO4+R53AyR1EU/MsTu3C4I4hanxPVXicOtAfwjad2QxnHsbHxKO1rHztCnjKnjl5LFvZeNZqQkVCj61lzdGvOdh1ExXQ3OKsuVSpwhWJJJPOsI0jfH6wIZ3TtoltvZ7sqKHvsbOyHQq3dhNKGjlgUm+kQST7JGHTwirVhg3RoZ3sgmsgrUp8+B8DedwmHINklREHuI6MdHca90Did7YqipMRYM6QaOn1AIgwk45qzPe8Yefq+Ygy6l+nvLS1K3lWWMn/Q391Y0Lj59Mcx21Hu8gORPm29IZ8Y+dgAGcZw+UQiWLMotntUU+AEiJLnYjtnQkNd7QBwrCuU90WklWlVI+RrfS6IqqhKp6N7eYx80dl8LNXXTn8/43HD0gaIAomfP9Gd+ZRdKJrAJx/ajOaeMKZUevD7jy+HOy0+Lz1GfrwFx3xoyUAslkQBd503FQDwwPpjefVd/uHdE0jKClZNr9DE3vGYXeeFIJDhhI6Afr3x+dIfjqNNFWQnMya2A8CCBrL/qdPIan3tABmIybW3nQ6RjZW+wBpGRMlTZ7sVxXYAWPH5FTjvX87T/r+0lsGb1HHgYnv20N72lg2qs71d7Wy34PHB4RjF7985hhd2t8IuCfjV7ctw30eXQhIFPLvjNP7w7vFRHxeJJ7HjZB+AzMX2uerg5r4CD26GGBaZfW4qluXv5E7FQUsZ32OZjXSBK5RB+sJY0Ah5j0OCTWJjObGqlDrbdRbbqbOdx8gPYVDta7eJApw2No6RdPRIxghFacUAW+fOdHxp5418B5e08yiDwxccQkJSxfYuA8X2cZztiXBCGyI3hbOdbmc0oHW25xsjP9TZzti9mZNcr6ZHyUsOCTb1miyTKPmRne0M7gsAcPuBcL+21pSXs13dL54SNa2Vyf2hiu2DXGzncCxNerdePKnghI7xtFajVZ0wm5Q2YVZeoCgyzvhk09dOmVTmxvkzqwFk7m5PJGV88ZFt2H2qHxUlDjx01znaAgZlcoUHkiggFEtqop8R0M7x8ZzZNy9vgtdpw9HOEN482JnTaw3GEvjLppMAgE+el5mrHSA32LSP00xR8s/vOg1FASa5FVSWmuBGJUtobzsAOG0i5kzyFXFrjGOy1tue3XcTHeyo9VpHbK9dTKLk23fo6GzvUKPELRYjn87F/30xPvjvH8R5/3IefI3W+5xwsT17GlcSsb1rXxcifREeI8/hZMmGI9343ov7AQDfunoulk0pxznTKvCva+YAAO59YR82Hx95IWnbiV7EkjLqfC5Mrcxs0Ite4xT6OpKKRW67pKVXsYJXdbYHdOhsp4Iby45Mp02CQxXG842S1/YHQ6KZYTHytLOdEfcyjQUfiCTyTjgYi2CasDpeVYYZ0eP8oTnbGRnEGAmbJGqDB/mu9/EYefaJ28k1S6Kny7gXiQYA0Q7YRl6fou5vCIC9xG7cdmSKS723jvRrMfK5OttpjLzD6wASMRLHzlpPedr+GPLHWfS2R/tH6mxnNEZedbZrYns+ne3qse8qUa/hWDs2ABKrD3BnO4djdY6dcbLjUfKj06aJ7Slhk0ZLGT0dzRkbWVa0Rb1sxHYAWpT8k1tbxnV9K4qCbz37Pl4/0AmnTcT9H1+uCcnpOGwipqgioZFR8pqzvWLsxcpSpw23rmgCkOpcz5Ynt7agPxzHlEoPLp5Tm9VjqQveTFHyj28hwxUra9hM80gX2xc0lMHBoGsiE5pyENvjSVlbTLRKjDwATFoyCQDQtqNNt+fUOtstLLgKooAL/+NCXPL9S4q9KYZAxfZgaxBKhgvHclLGYNfE7GwHyHsun0Fudls2tmiDBzxGnsMZn7b+CP7xL9uQlBXcsKQBd6yaov3dJ8+bimsW1SMhK/j8w9vQMTB8UTEVIV+RsQhFY+RP9YULOuAcZNiJSB2ZA+H8ne0s74d06LBAegx8LlCxnZW+diDlbO/U29lOxXZGBNUyd0qc0qNiYTRYF1b1cLYHqbOd0X1A0dIQ8jxegowfExwg4SD3XIk+A8X2cbqo0yPkTTHIozm5A1qMfK6d7UMc3TROnzWBeQRnO5AS26mQPhajdrYzKS77gegASqrJ+6dGj1yg+8XlVr+XHAzHyA/2Fnc7CgD/puNMaI6dEZ19qCOIK4u0LWZnJGc7vWHjne3F5UB7AAORBEocEuZm6fC9bG4tfC4bTvdHcNdDm8fsFRsIJ/DO4S6IAvCL25Zg6RjR3dOrS3G0K4SjnUGcd1ZVVtuUKS2qs70pgxj0j587FQ+sP4Z3Dndh7+kBLZIzE2RZwQPrjwMA7jp3atbunrmTfHhu52nsMYmz/XBHADua+yCJApZVGedqMJJpVaUocUgIxZJYYsG+dkouMfKd6tSrXRJQrg5EWQEaI9+5rxPxcBx2d/7T7FbubJ8olNSWAAIgJ4iAnol4Hu4OA+qpz5Ohs9RqNK5qRO+RXhx68RDkOBm6moiDBxxONsQSMj7/8FZ0BWOYXefFf12/YMhiryAI+P4NC3CgbQAH24P44iPb8fCnV8KeFrW9QRXbV8/ILEIeAMo8djT43TjVF8a+1oGM4+fzhcaNlzLi2k3Hpzl4879HpcKhl3GRyOuyoScUy9vtTx9P3b8sUFVKroe7AnqL7TRGno1jwyaJ8DptCEQT6AvHUV5izH1CiLF4/TNJie35O9tZPH+mU+a2oxlh9Oe53sfFdgtQ4kQiIUEOGiiURQNjiqojCrHFJE1cdpcTQ07OMfLq95PD6yCx6QB7UeEu1RATOUNsL8vc2U472y0RI+/yAwB8leReOy9nu3rsO5yq0ZHF4QO7B5Cc3NnO4VgdGiO/SHVJHuowzoXLOtTZXpcmtqd6v7jYXkxohPzSKeVZd+e57BKuX9IAAHjzYCfW7m4b9Z93DpMp1v+4dh4um1c35vPOUBftj+RxQTEW/eG4Nm3e4B9fLGmq8ODK+cQZ+8VHtqE3lHkaw+sHOnCsKwSvy4ablzdlva1a16ZJxPbH1cqAC8+ugo9RLVYSBaxUF5uNGuYwA7mI7e2qk67G62K2W3QkvA1eeKo8UJIKOvfkVgeRTvO7zeg5Qs6dZZPLxvlpjlmR7JImEmcaJU+d3O5KN0SLpmKMR+Nqkmpz4JkDAIjjwMYXQDmcMbn3hb3YdrIPXpcN/3fHMrhHEJJKnDb85mPL4HXasOl4D763dr/2d+FYEjua+wBk3tdOoVHyhextZ9nRTYVgPTrbNZGIISf3SFCRKx+3bvrjWXK2V6vO9u4s7v8ygTVnO0CGdwCg18BkQpbPHQDgddIY+Ynd2Q4AfreaZBnO/XhJJGVE6GAno8cEB7B5bQiHXVBCfca9SDQ4pmN3SNS6GdBi0weGxMgrSvaGlpGd7YwJqmkd9ulkEyMfGyC/4yEx8lFGY+TdfgCAt5x8H+TT2U6PfadDPRezdmwAgCAQd/sE6Gzn33ScCc1xVWy/bF4ddrb08xj5MTjdTyb0hna253/xzcmfTTRCfmp2EfKUr10xG/MayhCNJ8f92Zm13owWCGdUky9/o2Lkqau9qtQx4mLnSHz7mrnY0dyHo10hfOqPW/Dwp1bCZR//sQ+sJ9Hzt50zOacbRJo2cKw7hFA0UdSbzERSxlPbTgEAblzSgPjx1qJtS758/8YFONgWxPkzrSu20xj5k92DUBQlo7i0dvVGrcYsE986IQgC6hbX4egrR9G6vRX1y+tzfq54OI5nP/ksoACLPr4I/il+/TaUU3B8DT6E2kMInA5oCQhjMRHqA8ajcRUR2/tPkk49HiHP4YzNU9ta8McNJwAAP7t1MaZUjn7+mF5dih/fsgif+dNWPLD+GBZP9uPaRfXYdrIX8aSCSWUubZguU+bW+/DKvvaC9rYHGezmptAY+YAOUdlUcCthXDSjv8f8Y+TJPvUx5GyvLKWd7UbFyLNzbPg9drT05u9UHotUKgY7+yUdzdmex2cl1dnO5j6glOlgrqGDBwDGTFHkmBvJKyEScQJin3EvEg1kFiNvlnWONGe7q4msk8sJGfFQHI7S7AYCNDHV60xztjN2ryrZiXt5lBh56lofi5Fj5Bl1tqsd5R4v+d3SVMVc0JztdvU6hkVnOwC4KyaEs53tb34OJw96QzH0qheNl8ypxf+8dABHO0NIJOWs3cETgZSzPRXZzWPki4+iKJqzPdu+dkqp04ZbcnBsj8WMatXZblBaRLMaz9RQnvliZa3PhQfvWoGbfv0utp7oxVce24FffnTpmLHw+1oHsP5wNyRRwMfPnZrTtlZ7najxOtERiGJ/2wCWTcnt96QHbx/qQmcgiooSBz54dhVeOV60TcmbGq8LNV7X+D/IME3q8R2IJtAfjsOfQSx8R4Ccq2stuG9qF9fi6CtH8+5tf+M/3kD3gW6UTirF5T+9XKet4xQLb70Xrdtas3a2T2SxvXZhLWxuGxJqn3FJ7cTdFxzOeOw9PYB/fXo3AOBLF8/ExXNqx33MZfPq8PkLZ+BXbxzBvzyxC7PrvNhwRI2Qn16Zddfo3Elk8XlfW+HEdpZ7l42IkWfd2U4FxGCeznYW46BpjHzfYBzxpDyk2iEfWHS26+FUHg/aV86qsEqTMXKNkZdlJXVsMLoPKH4d1vuC6uCBQxLhtLG9PyYyNq8NkYgTgs3A65AYYzHydhcgOYBoAHaPHaJdhByXEe4JZy22a2Kq15FyhrMoqDq9w2LkqUs9mxh5Gj0PRSHHBWuDB4AWI+8pId+3oc5QxgaadBLRBJLqd4pdUsV2FocPAOJsD1u/s50ripwJC+1rr/O5MLOmFG67hFhSziqud6KQSMroUDtk6keJkc8lKoeTPye6B9EZiMIhiVjU5C/25mhMryJf/qf7I9oilZ5k09eeztm1Xvz2zuVwSCJefL8N//XCvjF//oF3iKv9inl1aPBn91rp0Cj5QjqSRuLxrc0AgA8vboBjgsYns4TbIaHaS25Ojndn9t1EB6NqzXITqiOTlpAqiJNvnUQygySOkTi16RQ2/GgDAODq/7sa7izPIRzzUVpPvm+42J45kl0akg7Bne0czsj0D8bx2T9vRSQu44NnV+OfLp6Z8WO/etksnH9WFcLxJP7hT1vx+oEOANlHyAPA3Emk7uRgexDxpJz143OB5SjolNiuX4w8653t+jnb2YuRL/c4tOHq7qB+IjOL7mU9nMrjEWL43AGkju1czx/htHsUlo6NkaDrff15pISkjgcutLMMdbZLSQPTYMdztqtr0k6vidY5nF4g0g9BELQo+XBv9r3tmrPd52S3sx0gbv8znO30PrP5neZxHz5soCIRARR5zOPCtKgx8m4XeU+JcALxUPbnUnpsAIAkRkh6gMjo+dRdPiFi5PlKO2fCQiPkp1Z5IIoCzqohXwC8t304XcEYkrICmyhoMWxAKkY+lpSH3FRwCgd1tS9qKssoEr1QlJc4UFlCjo9jXfr3treoF7CNWTjbKaumV+JHtywCQCLi73/76Ig/1xmI4tkdpwEAnzx/Wo5bSphHxfYCdm2eSW8ohlf2koXem5c3Fm07ONkxXz12Xt3XntHP0xj52jLrOdunXjgVdo8dHe934Pl/eD7rIa9ENIFn73oWiqxgwe0LMOuaWQZtKaeQeOvJzTcX27ODRskD3NnO4YyELCv4yl934GTPIBrL3fj5RxaPmYZ0JpIo4OcfWYz6MheOdYWwRx24XD0je7G9sdyNUqcNsYSMo536X1ePREhzp7InFlGxLJaQEcnzHlWLkWdwP6RDnfn5drYPaGI7OzHyoiigQr0v1StKXpYVbf0j00ozM6CHU3k8BhlMP0gn3xQIKi6LAuCys73kTpMQ8hHb6TmH9XSQiQ51tkuKgevl0eCYArPpnO3AEHGZDvFHesd3cJ+J9t68jIvtLh8Q6R/yR4s/sRiiTcTRV47i5PqTYz482n/G75jVSH2A/P4ECZIcgM1Nzn+hHK7h6bFhL7FDjDMaqU/xTIwYeba/+TmcPKAC4DTVgTuTiu28t30YrWpfe63PNWSRyeOQYJfI//Mo+eJA+9pX5NjXbiRG9ranxPbcXKnXLqrHv66ZDQC494V9eGHX8O7yP288gVhSxuImP5ZNKc99Y5FyJO0porP92R2nEEvKmFfvwxy1R55jfm5YSgSxJ7e2ICmPLy5bOUbeW+/FTY/dBEEUsOPBHXjzO29m9fg3v/smOvd2oqS2BFf8/AqDtpJTaHIV2z3V2Q9rWYnG1SmxvbSW4Zt2Dscgfvn6Yby2vwNOm4jffGxZRlUuZ1JZ6sSvP7YMDjW2usHvzunaVRQFzK5To+QLNLiZ6l1mR0iklDpsoCmd+UbJWyVGvtRJRFa9OttZcrYDQJXOve2RRBJ05pMlx64eTuXxCDI8qAPkHyMfUuN+Sxy2rOOCzUaqNjL3RAjN2c64y3+iQ8R2F+yigQN/0UCqB32kv6ZR677sr8cMw+XTYt9d5WT9JdyTvbNdc+37nCQ2XZAAm4mGCjJlBGe7f6ofi+9aDAB449/fGPPh2tCBGj2vReqzKLYLAuD2Q4j0oUStWaXrENkwZBAjOsBmvQCFO9s5HGuTEtvJYuvMWrKAwZ3tw2nV+tqHijeCIKBMnXbtzeMCnJM7+fa1G8kM1TV4xAAHDo2Rz1VsB4BPf2A6PqH2sH/lrzu0fQkAkXgSf954AgBwd56udiAVI7+/LYBEgeI/z+SJbS0AgJuXcVc7S1w6txY+lw2n+yN490jXuD/fPkBj5K0ntgPA2VefjTW/WgMAePM7b2L7A9szetzpraex/gfrAQBX/foqeConttBqJTSx/VRmYvtgB/n+4M72NLGdx8hzOEOIJ2W8oca+3/vh+ZjfUJbzcy1q8uPeD8+HIABrFtTlLL7MLXBKEssx8qIoaLHv+Tq5rRIjr1dnO6suVdrb3qVTjDzt5AYAF0M91Fpnu4FrNyHGne2+PFMg6Ptnva8dSKsd0CFGntXjgUOQSkmMvMOWvZCcMbHgmEKiFrVuqhh5n9ZRrkeMvMPrIG5uRynA4rBO2vBBOh/45gcg2kQce/UYTrx9YsSHKoqidbYPd7YzGCMPkN72cK+27jDYmX1t8ZBBjHHSH0yPm3e2cziWZnRnOxfbz2Q0sR0Ayul0NHe2F5y2/ghO9gxCFJC389oIaG+73s52RVE0Z3tTRe6CmSAI+NbVc3H5vFrEEjI+/cctONxBLgz/tvM0ukMx1Je5cOX8ury3eUqFByUOCbGEbMjwwXjsax3A+6cG4JBEXLe4oeCvz8kdl13CtYtJt/ITW1vG/XktRt5M8Wo6s/wfluP8fz0fAPDcZ57D4b8fHvPnk7EkiY9PKph36zzMuX5OITaTUyCydrZ38hh5APBO8qJsChEQSycxfNPO4RiAXRLxl8+sws8/shg3L2/K+/luWdGEzd+8BN+4MvfvH5pKVChnOxVlWRVIqDt1IE8HL8tDB+no1dlOH+9jTmzX19k+qLq3PQ4JYhb1EsVGD/F0PIJqKoaHoXj9dFLO9tw+K4NpznbWobUD+az1BSySDjLRkbwSwmEXXM4oEnkObY3KeJ3tEyFGngqqrLqX04YP0vFP8WPxJxcDAN78j5HTCZPRJOQ4MSa5qPYQU9eSWXS2A8TJHenTEvXycrb7nOpACqODBwCJkY8OAElr60dcbOdMSBRFSRPbyUl7Zm1KGMwkqnci0abGyNePILb7C3DDxhkZGiE/t95nyt48zdmuc1pEfziuLfQ0+HN3tgO0T3MJlk72oz8cx8cf2IyOgQgeeOcYAODOc6fCJuX/VSmKgrZIure1f5yf1p/HtxCR9pK5NSgvMVHsFicjbl5GFvr//n7bmLGPkXhS+/saizrbKRfdexEW3rEQSlLB4zc/jtZtw6sgKG/911vo2N0BT7UHV/7iygJuJacQULE92B6EnBg/OYR3tqe44udXYNk/LMO0i/JPcOFwrIbTJuk6oFhV6sxLlJtLryNPD0BRjL9XZd2N6FNFogGdnO2s7gcK3f6AbjHy5rv3HAvN2R7QSWyPsykoF6KzPcT4gEqp5mzPNUbeOs52Wp+ih7Od1eOBQ5BKJERjTrhcUQx2GlC9qihESGSts92VEpdzjZFXZAWxYJprPxZiV1weIUaecsE3L4BoF3HstWM48dZwdzv9/UIAHOp3tia2szp84PYD4T5t3SGfznaH12ENZztgeXc7F9s5E5LOQBSDsSREAZisOmMbyz1w2UVEEzKae7KP9rAyKWf7cGGzTIsi42J7odl0rBsAcM7UyiJvycjQzvZjXSHIOg6wUFd7tdcJlz3/m1iXXcL9H1+BaVUlONUXxnX3rcf+tgDcdgm3rZic9/NT5tWnFkkLSSwh45kdpwAAN/EIeSZZ2FiGs2tLEU3IeH7X6VF/rkO9EHfZReYcR9kiCAKuvf9aTLt4GmLBGB656hH0He8b9nNtO9rwzn+/AwBY88s1Wl8WxzqUVJdAkARAIYL7eHCxPcXs62bj6t9cDRtfAOVwTM+sOi9EAegOxdCpk2A4Fqw7un15CmYU1h3+lFItRj6//UHdvhO9sz2kOdvZ2g9UPDWys531QR16bIdiyZxMOIOMHhsjQY01/eF4zkNe9BzKehXHREcQBMg2sp4V6ejU/wXig4Aij+naHRK1bhacXi02PdcY+VhavYnW2c6qoOoa2dkOAGWTy7Dk7iUARu5u1yLkvU4IdDhVi5Fn9L7d5Qci/Xk527X6BM3ZzuixARBnO2D53nYutnMmJEdVV3tjuQcOG/kYSKKgiYO8t30oVGyfNIaznXe2F57Nx8g02DnTzBchD6ifL4kMsJzq06/biQ7D5NPXfiYVJQ48dNcKVJY4tOP95uWNWtSeHtCuzT0FFttfP9CBnlAMNV4nLphZXdDX5uiDIAiau52mFIxEeyDV155rJyxLSA4Jtzx5C2oW1CDYFsTDVz48ZJI8GSfx8XJCxpwb52DuzXOLuLUcoxBEAd5JmUXJJ6IJRPvJQjsX2zkcDku47BKmq/eqhehtp+5MdgUzGiOvk7OdMXH5TPTqsE+J7aw526nYrs+aRTiWipFnCS2V0MC1m6AqNrM6qJM+SBLM4fPC+rBBOmVqEkJSVnKuoKC1AqweD5wUsoOsZ8U6OvR/ctrzzXCMPHW2ZxsjTzu5RZsIySlZ1tkOAB/41w9AtIs4/sZxHH/j+JC/G/H3G6Ux8owKzNTZXp1HZ/uQioGxqxZMD3e2czjW5bgqtk+tGvoFRnvbD7YbEIvDMG2ZdLbzGPmC0huK4YB6nK6YWlHkrRkZSRS0mgY9e9u1vvby3PvaR2JKZQke+MQKuO0SbKKAu87TN1Z37iTSjbu3tTDxnxQqzl6/tEGXSHxOcbhuST0kUcCO5j4c7hj5O6p9QBXbvdaOkE/HVebC7Wtvh6/Rh679XXj0w49qPXLrf7AebTva4K50Y819aybEAMJEJdPednqDK9pEuPwT53PC4XCsQaqSqABiO+OCmc9NtnsgX2e7RYQzKo7n09kupwlurO2PKq/OznZGe8m1Du5wXNfkuXRSYjNb+4bitEmaISeX8werx8ZIuOwSXHayL3JNsuQx8tZBcPsBALFuA5ztGYiqphTb05zctLM92xj59JhwQRCI2M6qoOrykZSCUTq5y5rKsPRTSwEAb/zHG0P+jg7ED/n9xkKA5AQktgb8NFx+IJIWI59HZ7vD6xi3asH0UGd7mDvbORzLQfvap58ptteSL7TD3NmukZQVTcAZ2dlOY+S5s72QbDlBJsFmVJegstREF5tnoPW259BNMxotvfo72ymLmvx44Uvn45kvnKcNCujFzNpS2EQBfYNxzT1vNJ2BKF4/QCaPb+YR8kxT43XhQ7NIMsHjW0d2t7erF+I1ZroBLQC+Rh8+uvajcPqcOPn2STx959No39WON7/7JgDgyv+9EqW1DN+UcMYlU7Gd3uB6qj18+ILD4TDHHDXFY1+r8YPhqRh5NgUjnyou5xMjryjsistnkoqRz11spw5VgL0Y+coStbNdd2c7W/vBp4rtsgIE8hi8GItBCziZUzUU2e+jQfXYKGHs2BiNMnd+5hoeI28dhBKSqJno7dL/yakbeixnu+oAd3pNtNZBndyKosXIZ+tsHxITDqi93Aw724FUUsEIfOBfPwDJIeHEmydw7PVj2p9rwxRl6WJ7gN19AajO9l4tRj4nZ3sg3dkeZHcQAyDDBwCPkedwrAiNkT9TTKPO9kOjuAYnIt3BKBKyAkkUUDOCW5JefPfyzvaCovW1TzNnXztlehX5TBnhbG/U2dlOmV5divkNZbo/r8su4Sz1HFOoKPlnd5xCUlawuMmPs2oYvijjAABuUqPkn9p2ComkPOzvOwZSMfITjdoFtbj16Vsh2kXsfXwvHjj/AchxGbOunYX5t80v9uZxDKa0npxbxxXbO3lfO4cDAN///vchCAK+/OUva3924YUXQhCEIf989rOfHfK4kydP4qqrroLH40FNTQ2+9rWvIZEwRrDhDGcudbaf7jf8tViPQqZiWT4x8oOxJGgYFesx8vT3GIwlcnY0U+HRIYlw2dkawqhWxZmeUDSnHu4zYdW97LJLcKu/u36D1m+0QR2GxWZvHsM69NzpYXRQ6Uz8bmquyVFsZzwlhZNCKiOu1OSAAUJZTF0vHKOP2pTOdqcXgALEglqMfLad7dr7okMEMYbFdhcV20df7/Q1+rD006q7/d/f0FI/tc72M53tLHeUu8uBWBAlVeQ8GsrBhDbkuGfd2S7ZAGcZd7ZzOFZk1Bj5NGe7UbFarEEduDVeJyRxuAusXHW2G3WzxhmZzcfN3ddO0ZztOqZFNBvobDea1CKp8WK7oihahPzNy7mr3QpcNLsGFSUOdAaiePvQ8IlyLUbeTDegBWTaRdPw4Yc+DIBMiLv8Llz1m6u4g3kCMJ6zPRFNYO8Te/H2vW8D4GK7ZRjsAd7+CRDPblFrorN582b83//9HxYuXDjs7z796U+jtbVV++eHP/yh9nfJZBJXXXUVYrEY3n33XfzhD3/AQw89hG9/+9uF3PwJDb2OPNYVQiSeNOx1krKiuTOZFdvVgfB8YuSpaCYK0ARKVqFOdEUBBnM8dqjwyJqrHQAqVGe7rAC9OiTysdrZDqT1tof1TyZMJGVE4mQgmGVxlR7judQuWM7ZnufxEmI8JYWTwlZOjD5y0AChTOts943414qsDHeAmwGXatKJDOQeIx84Y4iAZUGV/v4iY693nv+N8yE5JJx8+ySOv34cQEpUdqUn6kYZ3heA5uQuLSPfC6GOUNaVorEB9bgvtZNjg+XhAwDwlHNnO4djNZKyghPdRKw7M0Z+coUHDpuISFzW3LMTndZ+sh9G6msHjL1Z44zOyR5yDNPuRrMyo5o62/WJkVcUJc3ZzqDYXk+7No13JO0+1Y8D7QE4bSKuXlhv+OtxjMdhE3HdYvK7fHxr87C/pzHyE9HZTlnw0QW44udXoHRSKa79/bXwTuKJDhMBKrYHT6cGuxRFQeu2Vrz4pRfxk/qf4PGbH8fJd04CAM664qyibOeYdB0Gdvyl2FvBDpEB4M83AK9+Bzj8arG3hhmCwSBuv/12/O53v0N5+fCBTY/Hg7q6Ou0fny91nfnyyy9j7969+POf/4zFixfjyiuvxH/+53/ivvvuQyzG7wMKQbXXiapSB2QFONBmXBJbKC0unFXBjMbID+QYfQykYrZLnDbmB/ecNhE2dXA+1yh56mxn0eVvl0SUq+sWevS2h1S3rofBzwdNJszVqTwWoVhqkINlcdWbR4x80HLO9vyOF7o/WBzS4QzFVe5BJOKAMtin/5OP09keC6WuMx1eh/6vnyvOlJNbi5Hvi0DJwrw3pJMbIG5uVgVm5/jOdgDwNfiw9DND3e3afvCl/X5Z3hcAiZEH4C4hx28ymkQsyzobOozh9qrHFMv7AwDcFZZ3tvNvO86E43RfGLGkDIckot4/VKyTRAEzqkuxr3UAhzoCmFxpTEw1S1Bn+0h97YCxN2uckUkkZW0iv8rEfe0AiWQHyKJGfziuHS+50jsY16bFGxgW2wsRI/+E2ut9+by6vPc7xzzcvKwJD64/jlf2dqA3FEN5SepmpD1Ak0gmrtgOACu/tBLn/OM5zC+MczIn3dke6gxh98O7sePBHWjf1Z76mQYvFt25CIs/sRiVZ5usgqX7CPDQGiDYDtQvBmrmFHuLzE0sBDxyC9B9lMTztWwG5lxd7K1igi984Qu46qqrcMkll+Dee+8d9vcPP/ww/vznP6Ourg7XXHMNvvWtb8HjIfdDGzZswIIFC1BbW6v9/OWXX47Pfe5z2LNnD5YsWTLs+aLRKKLRlLA1MECuf+LxOOLx4t070Ncu5jbkyqxaL7qC3djd0ou5dcakdPQFyfWETRQgKknE48Ora8yO206uAQbC2R1r6cdGf4jsh1Knjclj5UxKnTb0hePoDYZR6cleCOzT9ofE5P6oLHGgdzCO9r5BzKjM7z4yGCH34i5JyGlfFPMcVOYmy8DdgbDur08/M3ZJgKjITJ47AKBETSzoC0Wy3kdBNQHCbcvt2ADM9R1FKzl6g9nvCyC1P5ySOd4PJ3vo783hdyDS7QQifbr/LsXBPoiiHQlFBEZ47lA3Me+INhGKpJjnWJLcsANIhHohVU8lf6YAwe4gXP7M1mTCfcRMZC+1Ix6PwxYLQra5IZvlPY7BsHOVtj96oIyz/av+eRW2/W4bTr5zEodeOqQlAji8Du35pGgAsHuQZGBfjIitFHYAYrIfdo8d8cE4+k/1o3xG5gm1NF7f7iT/TkjucfetmZFc5UCoO6vfqVm+EzN9fS62cyYcx9QI+cmVnhFj0WfWELH9YHsQF8+pHfb3E4029cRe5xv5hpQKPX2DcSiKwsWNAtA7GIeiAIKQivE3K6VOG+p8LrQNRHC0M4glk/OLvW9RI+RrfU44bexNi9P4z5besC7DB6MRiSfx7I7TAHiEvNWYW+/DvHof9pwewN92nsbHz52q/V2H5mw39xBOIeDfRRMLKrZ37OnAT+p/AjlBFnclh4TZH56NxXctxvRLp0OUTBjq1X8K+OOHSeefogCb7weu+nGxt8q8JKLAo7cDrbuAO58B3v0F0LKl2FvFBI8++ii2bduGzZs3j/j3H/3oRzFlyhTU19dj165d+Jd/+RccOHAATz31FACgra1tiNAOQPv/tra2EZ/ze9/7Hr7zne8M+/OXX35ZE/GLybp164q9CVnjDIsARLy08X14O3YZ8hptgwBgg0OQ8eKLLxryGkZzoF8AIOFUZy/Wrl2b9ePXrVuHg+pzKLFwTs9hNkRZAiDg5dffwsEcgn+2dpH9EQv2s7k/ouSz88o7m9B3IL/KwH1HyXOdOnkMa9ceyfl5inEOCveTbV+/ZQfElu26Pjc9d9gFmc1jRKWvk+yjLbv2oLz7/awee+IUeezhfXuwNsvHnokZvqN6Wsn72b7nINaG9mf9+O4Bct7ZsXkjuvbqvnmcAnKo5RCmR1yIh7p0/3yf1b4FMwXHqNcckRayLi24BVNdl7hi3bgcwOZ3XkWHrxOCQ4ASU/DiUy/CWZfZmkz7FjIc3tHXgbUvvIBro0HsPngMJ3rYOYfSc5Uox3ANgJ2b3kHL4fG/Z8svLUfX813421f+BtdkMpxwou2EdnytajmGpGjHZka/T7Tj4+11EEptwCDwyt9eQcmszIdlu093AwAOHtyG2QA2bn8f3YdySygyA0t7w3DHW7A+x2vzYjI4OJjRz3GxnTPhoGL7tKqRT24za4gT91CHcdF8LEGd7fWjTOXRWKlYUkY4noTHIt1UZqZHjVCq8DhGHBgxG9OrS9A2EMGRzlDeYntzD42QL/4CbS74PQ40+N041RfGvtYBrJpujLvylX3t6A/HUV/mwrkzqgx5DU7xuGlZI/ac3ovHtzZrYnswmtBi+momcIw8Z2Lia/QBAqAkFShQUL+8HovvWoz5H5mvRfqZkmAn8MfryH/f+Syw9Q/Axl8Bl/wHEd85Q0nGgcfvAk5uAG5/HGg6B2hcAbzxPSCZACR+DToazc3N+Kd/+iesW7cOLtfI3xGf+cxntP9esGABJk2ahIsvvhhHjhzBjBkzcnrdb3zjG7jnnnu0/x8YGEBTUxMuu+yyIRH1hSYej2PdunW49NJLYbezlf4T39mK157YjUFnBdasOceQ19jZ0g/sfA/+UjfWrLnAkNcwmsmnBvCrvRuh2F1Ys+aDGT9uyLFxqBfYuwN1VX6sWbPSwK0tDL8++i562oNYuGwlzj8r+3uQvk3NwKF9mNpQhzVrFuu/gQbzcmAXDr/fhqaZc7Hm3Cl5PdcbT70PtJ/GwrmzsOYD07J+fDHPQetje7Cr5xQap8/Cmgun6/rcO5r7gJ2bUM7wuQMAtq3dj02dJ1E/ZQbWXHZ2Vo/90+lNQF8fVq1Yiivm5WbeMdN31Mk3j+K11sOomNSENWvmZf34b2x9FUASl198IaZUsLmGM9Ghx+PKC1ci8pgTHnsca9as0fU1xNe3QwxVjvq8pzefxn7sR2lFqe6vnRfRALDnK1ixcBaUuWtwpPoIAqcCWLV4FSYtnZTRU7y+/nW0ohUz5s3ApZedB2GHgvlLV2LefBO9z1EY6VylvP95LJ41DQtXjL/9wSVB/OqVXyG0PwQxSIbi5y+bj3PU61vpj78C/FPM9TvPhliQHB8LZmL35AG0drRi0VmLcPaazL9Xjn7pKCKIYMXKOcBGYOUFlwB1Cw3caGMRX34H4vG3s/qdmuU7kSa0jQdfkeBMOMYV22vJ4ubhjuCIfz/R0Jzto8TIexwS7JKAeFJB32Cci+0FoFvtmasoMbernTKjuhTvHunGkc78P1PU2c5iXztlbr0Pp/rC2HPaOLGdRsjfsLSRiYEMTnZct7gB/712H94/NYB9rQOYM8mHjoFU1Gkpg/2RHE4+uMvduOa316D3aC8WfHQBaubXFHuTxifcC/zpetJpd9eLQFkjsOwTwNs/BnY9Bqz4VLG30BjiESA+CHgqsnucnASe+Rxw6CXgI48A09RF/MYV5Pk69gKT2F14MJqtW7eio6MDS5cu1f4smUzirbfewi9/+UtEo1FI0tDEoJUribh4+PBhzJgxA3V1ddi0adOQn2lvJ26curq6EV/X6XTC6Rzu7LHb7UUXEMy0HdmwsIkMrh5oD8JmM6ZLXK2jRqnLxtz+oZSXknvXYCSR03uw2+2IJIkry+ti7zgZCa86JB9JKDm9n8E42R8+t4PJ/VGtDqP2DOZ2TKQTUePR890XxTgHVaifjUA0qftrR5PkfFTqZPszU+Yh31uhmJz1+xiMqceGx5n3PjDDdxQ9lw7kcC6VZUWrAPSXuIr+Xjj5UVpdikDYCacnpP/vMjEIOL2jPm9ykBxHTl/+nytdkfwABNgSg4DdDne5G4FTASQCmX9eEoPEMOEuc8Muk7Vem9sPmOl9jsOQc5XTBykRgpTB9pdPLseyf1iG937+HgItxPDoqfCknisWAlxeiAztiyHY/IBogy0WQGktMXZGe6NZHcOxAWK283jIZ8Du8TN1bAyjpAoI9+Z8bV7Mz3+mr23CLEUOx1jGF9vJCfBwRxCynF+8mBU43U+cxKN1tguCgDI3EX1pjzjHWLpUZ3tlKStiO/msHdFhgKWllxyPTYw624FUlPxeg3rb2/ojeOtgJwDigOZYj4oSBy5Ra07oYEW7GiFfwyPkOROUpZ9aiov/+2I2hPZoEHj4FmCgBbjjGaBSdQ2XNQCz1wCbf08i5a1ENEgi33++EPifs4Cn/gHoOpTZYxUFeP7LwPtPAjfeD5x9eervJi0CRBvpbeeMysUXX4zdu3djx44d2j/Lly/H7bffjh07dgwT2gFgx44dAIBJk4gzZ/Xq1di9ezc6Ojq0n1m3bh18Ph/mzp1bkPfBAaZUkmvgYDSB/rAx3YWBCFn4ZXl4z6cKy6FYEolkbr3RNDHI62J3P6RDf5+BaG7xo8EoOd5Y3R/VXnKN3KUOrucDFRDdDBoN/B7y2egb1P/8EYqRY6vEyV7dWzq0p5yeC7NhkO4DB9v7gKIdLzl839DjAWD7+4RDcFe6EYm4YJcGoeh9nxINAM7SMf6anLedZlvrEEWSRhYha3uucrJuTvvHMyE6kPbeYuqaqSPzmHHT4fKRYfIMOe9fzoMt7bpiyO84FgQcox8XpkcQAHc5EO5DibouHuoIZfxwRVG048NhU69dWE+/81QA4R7rrXWkwcV2zoTjePfYYvuUCg8ckojBWBKn+jL/grQisqygfYA620d3EperF+D9BtywcYZDne2VpSa70ByFGWo1w9GuzC8qRsMKzvZ59arY3mqM2P7U9hbICnDO1ApMHeU8x2Gfm5eTQYpntp9CPCmjI0DO1bVeHiHP4ZiaeAR49KNAxz7gY08CtWeIlCs+RVzaJ94tzvbpTaQfeOt/gJ8tAF75D2DmpcCl3wWOvQX8cgXwxCeB9jFKPBUFeOlfgW1/BK67D5h3/dC/d3iA2vm8t30cvF4v5s+fP+SfkpISVFZWYv78+Thy5Aj+8z//E1u3bsXx48fxt7/9DXfeeScuuOACLFxIEgMuu+wyzJ07F3fccQd27tyJl156Cf/2b/+GL3zhCyO61znG4LRJ2r0XHbTTm1CUCmbsiiPpgnAugln640oYFFRHotRFjptgnvuDVbG9Sh1U10dsZ1dQpTWA/WH9jRJWOHcAqWM8EMl+fSuoRoOwvg8oftVYk8taHx1YsokCnDYuP7AOEdudcDkjmgCoG7HAmCKiJkh7TXi96UyJy7S+LNybuZYQC5BzscPrIE5uYMzBA9OTNnyQCd5JXiz/3HLt/13pRr9YiG2xHQBcfiDSB081GZYd7Mys9xsAEuEEFNUEaqdiO+v7w10OJGOpY92C8G87zoQilpDR3ENObKOJ7TZJxHR14miiR8l3h2KIJxUIAlAzxkVNPtOunOzpDpKLsSqGYuQB4ER3CPEcnSWU5l62O9sBEiMPAIfaA4gmkro//5sHiKv9uiX1uj83xzxcMLMa1V4nukMxvLa/QxuMqjXbtDeHw0mRjAOPfwJofg/46GNAw7LhPzPtg0DlTGDz/QXfPF0JdQOv3Qv8dAHw5v8A828AvrSdCObnfhH4px3AVT8GmjcDv14NPPYxoHXn8Od5/b9Jj/2aHwGLPzryazWu4M72PHE4HHjllVdw2WWXYfbs2fjqV7+KG2+8Ec8995z2M5Ik4fnnn4ckSVi9ejU+9rGP4c4778R3v/vdIm75xKRWjcNuU7/79Ya6EVl2ItolEW47EUJzFdupcFjKqLh8Jt483Lrpj2NXbCfXyPReOh9SznYGxXYjne1RawyoeNXBlPyc7WzvA0pqrS/7z0368IURlSecwmJ32xFLuuFyRbNybmdEdGwH8xD3t9lw+TRx2a2agiK9mV+fDRkkiFJnO8OCqjM7ZzsAnPf182Bzk3MmFaUBqM52xg1Ebj9xttdk72zXhloEQEIYEETAzq7xDAAR2wHibrco1vj253Ay5GTPIGSF9IyPJR6fVVOK/W0BHOoI4EOzGYgjNQja117jdcIujT6bQ2Pkjbhh4wynO8SWs73O54LbLiEcT6K5ZxDTq3O7cFQUxRLO9ga/G2VuO/rDcRxqD2J+Q5luz60oCg60k66jRY1+3Z6XYz5skogbljTg/946iie2tmByBbkpoQvwHA7HZMhJ4OnPAodfAW57FJh63sg/JwjAiruBl/8NCLQD3trCbme+BNqBDb8ANj8AQAGWfxI49x8B7xmd3jYneZ9L7wR2Pgq8/SPg/y4Azr4CuODrQOMy4J2fAW/9ELjkO8A5nx79NRtXAJt/Bwz2ZN8FP4F54403tP9uamrCm2++Oe5jpkyZgrVr1xq4VZxMqPW5sL8toA3a6U3QIu5Un9uGcDyJgRzcqUBajDzj+4FC3weNg88W6vKlQiRr0HtnPWPkPQwKqtrajQFGCau4unMdTEnvKPcwHqVPKdOSELI/XqxQScIZiix54XJF0NkdRvm0cv2eOBoAykavQNTc3z4TGo6cXrL9yDFGPj0iP9ZO/pBlsd1VlpWzHQBK60px69O3omN3B2oXqve+chKID7Lt8gfycrZrx4bXCSEWBBxeslbAMvRefbAH8E8u7rYYBHe2cyYUx9UY66mVJWNOVs6sIfE1B9sntrO9Ve1rHytCHkjFyJuhs12WFcQS+bmnzQ6dxmels10UBS0t4khn7lEx3aEYInEZggBM8rMrKAqCkOpt1zlKviMQRd9gHJIo4Kwaxi9KOeNy0zJyQ/r6/g7sPU2OpRoutnM45kNRgOe/Aux5Crjp98DMS8b++UW3AZKDRKezQCJGYuGfv4fExW/9A7Dqc8CX3wcu/6/hQns6kh1Yegfwxa3A9f8HdB8B7r8I+N1FwCv/DlzwNeD8L4/9+o1q9OCpbbq9JQ7HzNSp3/Xt/QY526PWEEh8qig8kKOoSOPWWRcOKaWa2J6fs53V44LGyHcHY3n3DVP3soc724eQOnewt1/SoQMl2X5WwvFUap3VnO2RuIxIPLtUvpA6fMHqOYMzHNleBrs9iXBnr75PHAtO2Bh5rZPb6yBx+gDbbu4cnO0AcNblZ+Hcfz43pdXQmHGW9wWgi7OdDGIE2R88AAC3KrZb2NnOxXbOhOKYKrZPqx77ZD2zlpzADk3wGPlWdQFn0jjiDb0Az2XaVW/+6bEdWPLdl3FIdfdake6QKrYzEiMPpKLkj3Tm/plqUS9Y63wuOG1s38DTKHkqkOrF/jZy3E+t9MBlZ3sfccZnZq0Xi5r8SMgKNhztBsBj5Dkc06EoxKW+7Q8kQn3udeM/xu0HFtwMbH0QSOYmihhOzzFg0++ARz4C/GAq8IdrgP3PE3H8y7uBi78FlFRm/nySDVj0EeAL7wE3PUDcDOd9GfjQN8d/bMV0cuPesinXd8PhMAX9rm8PGCW2U3cq29eS1J06kGNsetBiMfKlPEYeABBLyhgI5/fdOhilznb2PiOptZv8hw7OxCqpGKlzR3brW7SCQxAAl90ay+2lThskkYhf2a73pY4H9j4nnFFwkXWsWGenvs8bzbCz3YxrHS4fEOkn/6k627OJkaeufSKoUoGZYVE1LVY/L7R9MfpxwQQuPxDuRYmqQ4WyMKANOe7HqVpghnRnu0Vh+wqIw8mSY93kpDZ9lL52ytmq2H64PQBFUSZsvxAV2+vKxhPbaYx8cZ3tG49247mdpwEAv3nzKH58y6Kibo9RdAfZipEH0sT2PAZYmnvYj5CnaM52ncX2A23k+WbX+XR9Xo55uXlZI3Y292n/z2PkORyTsem3wIZfAlf+z+id4yOx4lNEoD/4IjDnGuO2L1Nig8Dxd0gM/uFXgJ4jgGgDmlYBF/wzcNYlQO18QMxzcVmUgPk3kn8yRRB4bztnQlGr3pu19ecfhz0SAYs4un1q/HG+MfJWcWXm7WyPsh0j77JL8DptCEQT6AxGUebJ7X0oioLBOLtx6X41Rj6eJJHner6HkMXE9mA0AVlWIIqZrQdqg0oO63SUC4KAMrcdPaEY+gbjWd1rWmX4gpNCKCFCWaxHb7F9bCFxiCBtNpw+ksyFVGd7VjHy6a79riBgc5EhZFZx+rRY/bywjLO9HIiknO2DnYMZ60xafQJNPRhjIIUZHKWAaAfCOqdjmAhrjNpxOBlyrDMVIz8WUypLYBMFhGJJnDYono8F2tQY+fpxIrv9Wox88ZztiqLgh3/fr/3/cztPo8Mgt0ex0WLkWXK2qxcWR7tyj5GnzvbGco8u21RM5jWkYuRlWT9Hwf5WclE7q84CF2GcjLhmUT2cttTlXK2Xi+0cjmk49Arw9/8HrP4isPIz2T120kKg8Rxg8/3GbFs2vPxvxL3+yM3AgReB6R8Ebn0Y+Pox4K4XgA/cQ7Y3X6E9HxpXAC1bAdnaVUIcDpD6rjfqXidkka7yvGPkLSa2awJins52H6POdgCoUiOIu/PobY8lZSTV+zc3g852l12EQ7130Lu3nTq7Wf/MeJ3k3KEoqfeUCSGLOrn9blo9kJ25RvsuYficwRmK5CU97cm+bv2eVFHGFRKHRK2bDad3WIx8ps52RVYQC6Y724Psi8uu3GLkh2GFSH1Ai5Gnne3JWFI7nsdjmLPdCjHygkDc7Vxs53CsQaYx8nZJxDTV/W7lOPLxSDnbx3YS0+no/iKK7a/u68C2k31w2UXMrvMilpTx5w0nirY9RhGJJxFQb1pYdLYf7gjmHFfX0msdZ/uM6lI4bCKC0QSa1felBzRGnovtE4cytx2Xz0v1IdeYcdqbw5mIdOwHnrgLOOtS4NLv5vYc53waOPoG0HVI103Lmt1PAmdfBnxxC/DlXcDVPwXmXK1FSZqCphVAtB/oLvK+4nAKQJ3mbDdIbI9Zw43ozTM23Wpie6kztx5qgAy2p2Lk2XS2A6lh9a5g7ol8NEIeADwM1nYJgpCzeDoeqQoKtj8zLrsIm+pmz+b8MRhLOdutBE2ByHY4Q3O2W2x/TGQkH6mISgZ0jICODwKKzHiMPBGXaYx8pp3tsVDqHEzcyyH2o8KdXuJsz3cAmjrbWXdzu/xAPAS7A3CUkmuQwc7M1oCHpB7ELBIjD5D6NwvHyHOxnTNhGIwl0DZAFiTGi5EHgLNryQn98ATubaf7a9K4MfL04rs4MfJJWcH/vHQAAPCJc6fhHy+aCQD483snEYknx3ooc/SoF2N2SWDKVTCtqgSCQHq+ekK5HSfU2d5kAWe7XRIxSz3H6BUln0jKONxJzlezudg+obhpWSMA0kXpYnDRj8OxHKFu4C+3AmWNwI33k2j0XJh7HeCpBDb/Xt/ty4ZEDAi0kqGBqplkGt2M1C8FIPAoec6EgA7WdQWjSCT1T3OwSvRv3jHyEd7ZTonEU25ulvcH7W3vysPZTiPkHTYRNonNJVWtt11ns0RIG1Bh+35EEISchnXooJKH8fd/JnQ4I9fOdpbPGZyh2CqqAABKSEdXKo0cH0tsD6SJjmbDWZZytmcZI0/FVNEmwuayWUNQdfoAKClneq5EVS3GCs52YIi7PdSRWeKrdtxrznaLrPO6y4EwF9s5HOY53kUmh/weu9YxPhZn1ZAvuIMT1NmuKErK2T5OL1OZu7gx8n/beQoH2gPwuWz43Adn4PJ5tWjwu9ETiuHZHaeKsk1GkYqQdzLVA+ayS2jwkwvPI525Rck3W8jZDqT1trfqI7Yf7w4hlpDhcUiWGEjgZM4HZlbhu9fNw49uXljsTeFwOIkY8Nc7yA3xbY/m5/62OYGldwI7HklN9xeagRYACuBvKs7rZ4rLB9TM4WI7Z0JQVeKEJAqQlfwcuqMRsoijOxUjz53tQH6d7QF1YEEUgBIGo9MpVV7qbM9DbNfcuuzuB5pMqHeMPD22PBZwMtMEh0AWwzo09cAK7z8dun6a7XCGVb5LOClcleVIJkUg3K/fk2qi6ugis6md7U4vkIwBiagWIx8LxCAnxh+GTO/kFgRBdbYzLi7Te99InuucsfGPCyZw+cm/03rbQxmuiWv1CT6HNQYxKB7ubOdwLMHxbjVCPgNXOwDMrCUnsUMT1NneE4ohlpAhCEDtOGJ7eUnq4jvXiPBciSVk/GTdQQDAP3xwBso8dtgkER8/dwoA4PfvHCv4NhlJd4h82VYw1NdOoVHyRzqz/0wpioJTFupsB4C59eQidI9OznYaIX92rReiyM4gBid/BEHAnaun4sJZNcXeFA5nYqMowAtfIYLvRx4Gyqfk/5zL7iJuid1P5P9cudDXTP7t1+G9GE3jcqBlS7G3gsMxHFEUUKO6u2gSmZ5YJQra56bO1OwFxaSsaJHQVhGKtM72aCLr++OBSEo0Y2ng+0x0cbbH2BdUtVhwvZ3tFqmgAHKrodDeP8ODGCNBzTXZJllaJSWFk8Jd5UEk4oQQ01NsV9fDxuijNrXYniYuu/yptfNI3/jXZ8PeVzTAfi+3s4z8O9/edjpobmd8/VdztveiRK00ztjZnh4jb4Vjg8Kd7RyONdD62iszE9u1GPn23DumWYa62qtKnXDYxj5V0FipWFJGuMCx7Y9uPonmnjCqvU7cdd5U7c9vXTEZHoeEg+1BvHO4q6DbZCSas72UXbH9aA5ie2cwimhChigAk/xjD3+wwjxVbNcrRv6AKrbzCHkOh1NUBlqBd34KvPvLVCzgRGHDL4Htfwau+V9g8ip9nrN8CnD25cDm3xExv9D0q2K7r6Hwr50tjSuAjr0T77jjTEjoMHS7AWJ70CJR0NSZmkuM/GAsJbBZJQKZDg0kZQWReHb1A3RggeW+diAltncGck+E0KLCGRZU/TmKp+NBB3WsMKBCxfZszh8hi4rLmtie5XBGMMKd7VbDU0nEdjGh47U2dTCPEZGd7gA3HU5VbI8OQLSJ2jZmEiU/LB7fSs72fO/HYkHAXgKIjEuX1NmeFiOfaWc7Pe6dPot1tnNnO4djDY52Zudsn1pZAkkUEIgmDHEMmJ22/sz62gFyo2mXyIS73tPRYzEYS+B/Xz0MAPjSRWcNmS4vc9txy3ISefr7d44VbJuMhjrb6UIBS8xQI3NyiZGnfe2TytywM9qNdyaz1Rj5toEIuvNwV1Cos30WF9s5HE6hScaB/S8Aj9wK/HQu8MYPgFe/A/xsIfD2TyaG+Hng78DL3wLO/wqw+DZ9n3vFp4G23cWJSO87CZTWAnYGBt0aVwCKDJzeXuwt4XAMp1Z1QekttiuKkia2sy2s+qhYlkOMfFAVDe2SAKeNXVE1HY9DAg2/CkRz6172Mj54QO+h6T11LoQ1Zzu7x4VRne0pJzO7+4aSipHP/PxBUw9KGE49GAl6vGRbO0AHU7jYbh3cFW6Ewy5Iso4JsFqM/MjrWHJCRlw9V5na2U5729Uo+XBvBmI7jQmnQwSx0Kj7gRmcesXIh6zh5HaXk3+nx8hn62y3XGd7BXe2czhWQIuRr85MbHfYREytJFNHh9onXpR8az+5MBivrx0gEca0x6l3UP/ewNF4cP1xdAWjaKpw49YVk4f9/V3nTYUgAG8c6MThDmss9Kc620040TkO06tyj5GnYnuDRfraAXLTSc8xevS2H+BiO4fDKTTdR4B1/w78ZC7w6EeBYDuw5kfAPx8AvrQdmH8D8Mb3gJ8tAN7+sXVF97b3gSfvBmZfBVz0bf2ff8ZFQPlUYPP9+j/3ePQ1A/7h11impGoWWeDhve2cCUCdQc72aEJGUiYpGqwLZj7VjZmtsAxYr68dIPfs9P1kIyCm/zz7Ynv+ne0hC8TI07UbPY0S8aSMmNpRbIXPTXrtQqZQZ7uH8XPnmeQ6nBG0SCUJJ4W70o1IxAmHNJhRJ3lG0PvDUYRE6v4mP2JCsZ1utyouu9U1y0jv+NdnQ5zLgOpeZtzZTvdHvjHy0QD7+wIA7G5AcuTkbNeGMUpFIBm1lrM90g/IhU1GLhRcbOdMGGiM/NQMY+QBYGYN+ZIwe297byime9R9axbOdiAVRab3dPRo9A3G8Js3jwAAvnrprBGj7qdUluCSObUAiDBvBbq0GHkTXmSOA3W2N/cMIpJl3UBzD7kYabSQ2A4A8+pJn1G+UfLBaAIn1X00u86X93ZxOBzOqMQGgZ2PAg+uAX6xFNj6IDDveuCz7wCfeQNYcTfgKgPKGoGrfgx8aQcw/ybgje8T0f2tH+U/6W4mgh3AXz4ClE8Drv8/Y6LuRBFYfjew52kgVOBqnP5moKypsK+ZK6IINCzlve2cCUGNKra39eefjpROurDEujszP2e7KrYzLi6fCXXrBrMW260VI9+VR4x82AIx8rl2cI9FKP3cYQFx1ac52zNf37Kss92tDmdk29mu7jsrDF9wCO5yNyIRF1yuaEYx6RkRCwCiDbCNvMZJBWnJKUEy43n3jI5yVzm5PssoRn7gzBj5IPtubkcJIEhETM2HWMga4rIgkCj5HJzt9Nh3l6jfr6wfGxR3Bfl3uK+om2EUXGznTAj6B+PoCZGTVKYx8gBwdi05kR1qN68T682DnVh67zp84ZFtmgtBD2iMfF1ZZuJmrtFSufKbN48iEElgdp0X1y6qH/Xn7j5/GgDgyW0t6A0VznVvFDTyjsXO9upSJ7wuG2QFONGd2SQfhTrbG8s9Rmxa0Zir9rbvyVNsP6ieo6q9TlQwmHrA4XAY4fQO4Cezgaf/ARAl4Ib7ga8eANb8EKhbMPJjyhqAq36UEt3f/AHw84XWEN3jEeCxjwGJKPDRR429AV7yMUAQge1/Mu41RqLvBDvOdoBEybdsLk6/PYdTQKizvSOgr7Ndc2Y6JIg0c5xR0sWybAfTtThsi4lmVPTKxq0LWMjZrgoa4XhyiDicDbSX3MOwgKit3eholKCOf4dNtETtGz3Ws0mBsKqzvYw627ONkVc/K1xstw6iTURc8cDliugntkcDxA0tjHzNMSRK24yc6WzPJkZede07fOoaXtQCznZBIPskX2e7lTrK3X4g3IcSNWk5lGG1Kj323W713GuZ/aFG61s0Sp79KyAOJwOOqRHyNV5nVlO2Z9Wa39n+y9cOQVGAtbvb8J3n9ujmcKfO9np/hs72AsbItw9E8NC7pIf9ny+bNeZC0MppFZhX70MkLuORTScN3zajoUMjLMbIC4KAGdW5Rcm39FrT2T5X7W3PN0aeRsjP5hHyHA7HSDbcRyaRv7Qd+PhzwMKbSTRaJqSL7gtuTonuLVsN3WTDCHUBj3+cDCDc9hfi5DcSTwUw/0Zg8wOFi1xLJoCB04CfEWc7QMT2UCcZEuBwLEyt5mzXV2xPdS6zL47QGHlZSQmBmUJFItbF5TMpzUFABICBiDVi9UscElx2sgyaa5R8WE1o89jZFVSpUzlb8XQsQharXsilcsG6zvbchjNC2vcJu58VznCSQilcrigGszTQjEo0OGZPuenFdpsDsLm0OHzqbM8kRn64s90ibm6Xj3e2p3OGsz3bGHmnSz33WqWz3aM62we52M7hMMuxLiLsZeNqB4CZNSlnu94x7Xqwq6UPm4/3QhIFCALwxw0n8Nu3jury3G1q/18mne1A7hfgufC/rx5CJC5j2ZRyXDynZsyfFQQBnzyPuNv/uOG41iPGKt0Mx8gD0MT2o1mK7afUqdAmiznb56nO9qOdQYSzXARMR+trr7XIxReHwzEf4T5g39+AZZ8AKqbn/jxlDcCa/wH+aSdQWge8+X29trAwKAqw+wngvnOA5k3ALX8EGpcX5rVX3A30nwQOrSvM6wVaATkBlDHkbG9Qfxc8Sp5jcerKyL2A3p3tVnIiOm0i7BIZyh7IUlS0Ymc7kLuzPag529mOkRcEIRUlH8zNJGAF97IRzvZgWiqGFfDmECNvpWGldKixJhBJIJHMbD1NURQEY9as45joyDYv3O4Iwt06O9tH/eszBGkz4vRpTm7a2Z6J839IZ7ucBBJha4jtzjJt+CBnrNBfT3H7gXCv1tke6gxlpDFpx77Tas52GiPPxXYOh1mOdZGpoenV2Z2op1eXQBTIJHdnQN8+PD34/TvE3X3tonp8c80cAMD3XtyPZ3ecyut5FUXB6T5yYTApyxh5PaejR+JEdwiPbW4GAHz98lkQRokaSueaRfWo9jrRPhDF2t2thm6fkSiKok3gs+hsB1KfwSMZxuYAgCwraTHy1nK2V3udqCp1QFaA/W25T37Sx87iznYOh2MUux8HknFg0W36PJ+vHjjvn4BDLwOdB/R5TqMJtAGP3g48eTcw9QPAFzYBs64o3Os3LANqFwB7nirM6/WT6y2mYuRLKskwSMvmYm8Jh2MotLN9IJLIa2DzTIJR63TsCoKgRckPZCGYAdYVzajoFcxyf6Q629nfH5Wa2J7b+g51L7MsKhvZ2W6FcweQOtYHsnK20/oJdo+NkfClfe4z3R+DsaTW6GOVY4JDUJxlcDpjGOzSKQF2nJ5y0zvbAdXJTTrKaYx8Js52KrY7vA6yHwBrCMwuX/4x8laI1Ke4y4fEyMtxGdH+sa9BFFlJHR929bvaKk5/GiPPne0cDrsc6yLC3tTK7E7UTpukPeZgu7mi5Nv6I3hhFxGO7z5/Gj71gemag/trj+/ChiPdOT9332AcUdUBXpPhBQ2ddu0zOEb+J+sOIiEruHBWNVZOr8zoMQ6biDtXTQFABhTMmFKQCaFYUvu9sNjZDiCnGPnOYBSxpAxJFDCpLLOkBVYQBAFz8oySVxRFc7bT5+JwOBzd2f4n4OzLAW+tfs85/0bibt/4K/2e0wgUBdj+MHGzt2wmbvZb/gCUVhd+WxqWAh17C/NafVRsZyhGHkj1tnM4FsbrtGlin57u9qDqbLdK7C+Nkh8IZ+fktmqMvDfPznafBfZHtXofnbvYTh3c7O4LapSIxGVE4voM64QsNqCSW2e7OohhkX1AsUmidu7IdL2PnmNEAXAzXLnAGQG3H6KoINajk1AWHRjb2c6C2O70DYuRz6izPf29xVRDkhWiwp06xciPUS/AFGqMvM1lg7uSDGOc3np6zIfE0tJ3bJJ6nW8VZ7vNQX633NnO4bDLcVVszzZGHgDOolHyHXlGoOjMHzYcR0JWcM60CsxvKAMA/NtVc7BmQR1iSRmf+dMWHGzPbZtpX3tliQOuDC+M6Q1br4Ex8ntPD+DZHeQL6Z8vm5XVY29fNQVOm4jdp/qx5USvEZtnON3qgoDHITF7c3+W2lFzpCOY8dAD7Wuv87lgk6z3tTWvnnx+957O7WK0MxBF72AcopA6X3E4HI6utO4CWncCS+7Q93ltDuCcTwE7HwVCuQ8JGkpfM/DnG4FnPw/MWgN84T1g7nXF256aOUDXocL0tvedJDFvrLkKGleQYzaub7w2h2MmBEFI9bbrKLZb1Z2aTRQ0kOZsZ/SeazS0HupsxfYodbazHSMPIBUjH8jNJGAFZ3up0wZJJAmBeiUTpgZ1rPGZySVG3qrOdgAoo9UDGR4v6ekgmaRRcthB9PgBAImeLn2eMBocU0Qc4v42K05vTjHyQyLyoxZytqftj5yxXIx8HwBg3q3zAABbf7N1zIfQY0O0iZAUtePdCoMYFE85d7ZzOKyiKIrmbM82Rh4AzlY7kA91mMfZHo4l8ch7JwEQVztFFAX85JbFWD6lHIFIAp94YFNOToe2ATVC3p+5i9jvJhc+/QaK7T96mcTMXr1wkjZgkCkVJQ7csLQBAPD7t4/pvm2FoEvrazfxReY4TK4ogSQKCMWSaB/IzE1AI+SbKqwVIU+Zq/a278lRbN+vutqnVpVkPBzD4XA4WbH9T0BpLTDzMv2fe9knAQjAlgf0f+58kGVg8++BX60COvcDH30cuP43gKeiuNtVPRtIRIDe48a/Vv9JtiLkKY3LATkOtO0q9pZwOIZS69O/t91q7tRcY+S1oQMLOLnTScXI59bZboUhjCqdYuRZHsQQBAF+t7697alBHWvcj/pycbZrgxjsHhujkW1tpNUGtzgpRB9JGE306zQoHQ1YJEZeFduziJEf6my3kNju0sPZPna9AFOoznYAWPG5FQCAfU/vQ+D06AbJ9GNDiIUAmwuQ2B941HBXAGE2jZDjwcV2juXpDEYRjCYgCkBThSfrx8+sVZ3tObrEjeDJbS3oD8cxucKDS+YMjXN12SX87s7lmF5dgtP9EXziwc1ZT/JTZ3udL3Nx0+/Rv/crna0nevHa/g5IooCvZulqp9CY/Zf3tqG5Z1DPzSsI1NleUWLii8xxcNhETFE/h5lGydPfVWN59p9fFpirRr/vbxtAUs6+4oD2tc/mfe0cDscI4hFg119JV7tkwIJZSSWw+DZg02+BRG4L37oz2AP88VrghXuABTcBn98AnG3AoEEu1Mwh/+7YZ/xr9Z1kL0IeAGrnAzY3j5LnWB7qbNc3Rt5iYrtb7V3OMkY+aFGhqDTPGHkrxOpX6RQj72bcvaw5lXWqAbRaGgR1tgejiYwT+awsMGdrrqEDOlb5LuGksJUTsV0O6iSUxYIkdnwUmBDbnWWakzubGPmRO9stIDA7fUC0P7/niIWssS8A4myPDwKJKGrm12DKBVOgJBVs/d3o7nZ63JNjI2CdfUHxVPAY+Ux56623cM0116C+vh6CIOCZZ54Z9Wc/+9nPQhAE/OxnPxvy5z09Pbj99tvh8/ng9/tx9913Ixg0j6uYwxbHu4hQ11DuhtOW/Q0RjWU+2J557LWRyLKCB9YTZ/Ynzp2qxX+lU17iwB/uOgdVpU7sax3A5x/ehnhSzvg1WvvIgk02/dhGx8i/vr8DAHG151IHAAAza7244OxqyArw4PrjOm5dYegJkQuxqhJ2ne0AMF3tbT+aodhOne2N5dZ0tk+rKoHXZUMkLmNXS1/Wj6fO9lm1vK+dw+EYwP7nySS23hHy6az6PBDqAHY/YdxrZMPOR4HmTcCdzwLX/BxwZZemYyiltWQ6viBiezPgn2L86+iNZAfql3CxnWN56jSxXb9BJauJRV5n9lHQgHXFdm+OzvYBTWxn31VV5SWCTXcwvxj5EsYd3NTZrtf6jRahbpHPDP2sJGUF4Qx67WVZSVUMMH5sjES2wxlWPYdyAHtFFQBAGezT5wnHiZGncdrmj5En63KldeS9BE4HcPCFg2M+TBsk8KZ1tltBVM3X2Z6IAcmYNVz+ALl3B7Qo+eWfXw4A2PbbbUiO8v1CBzGcPrViwCouf4qbx8hnTCgUwqJFi3DfffeN+XNPP/00Nm7ciPr6+mF/d/vtt2PPnj1Yt24dnn/+ebz11lv4zGc+o/emciYIx7qIoDe1MreT9IzqUogCiUvqyvGGTE/ePNiJo50heJ023LJidLdRU4UHD35iBTwOCW8f6sL/e3J3xsMCmrM9K7E9NelqxFDCCdXdPK8+P0Hxk+dNBQD8dUtz1osuxaY7xH6MPADMUOscjnSGMvr5lNhuTWe7JAq4YGY1AOA1dagkGw5QsZ072zkcjhFs+yMw+Vyg6izjXqNqJjDzcmDjrwATDDai9xhQMR2YfmGxt2Q4gkDc7Z0Gi+2yDPS3AGUMOtsBEiXfsqXYW8HhGEqNAZ3tVnOnas72LMXlkNo/bbUYea2HOmtnO+1sZ39/VJboEyPvtrO9L7T1G52SCbXPjEXEVY9DAvW1ZBIlny7IW+X8mY5WO5BpjHyMi+1WxVldAwAQInk6lynRwJhd1LGBNNHRrKSJy74GH5bcvQRQgCdueQKnt5we9WFaZ7svTWy3gqjq9JHfa6739VZy+QNEWAa0KPk5189BSW0JAqcDOPC3AyM+ZFjFgMNi6708Rj5zrrzyStx77724/vrrR/2ZU6dO4R//8R/x8MMPw24fOhm7b98+/P3vf8f999+PlStX4vzzz8cvfvELPProozh9evQTFIczGsdUZ/v0HN3QLruEyWrstRmi5H//DnG137qiadwL1wWNZbjv9qWQRAFPbmvBT9eNPVVH0TrbsxHb1YvvWFLOaPI3W050kwuPKTkOTVA+eHY1zqopRTCawGObm/XYtIJBFwQqS018kZkBM1Rne6Yx8i295DPcZFFnOwBcNJvcsGQrtieSMg51kP3IY+Q5HI7u9B4Hjr0JLDXQ1U5Z/QWg/X3yesWm9zhQPrXYWzE61bOBjv3GvkaoA0hG2YyRB4DGFUB/MzDQWuwt4XAMgzrbO3QV260lMmud7RkKRBSrujLp+8mmhzqWkBFNkJQ8K4jt1ao7sjNXsV2rWmDbvax3Zzv9zFjF1S0IQtrnZfx9RMVlQQBcdus1tpZlebykYuStcTxwUrirfIjF7BDiOojtikIislnvbHf6tBh5ALjq11dhxmUzEB+M45GrHkHv0eGioiIrQ2PkowEAAqnCYh1XGaAkSXR6Llipvx4gMfKA5myXHBKWfnopAGDzfSMnsQ1JPbCis91TYVlne8GvlGVZxh133IGvfe1rmDdv3rC/37BhA/x+P5YvX6792SWXXAJRFPHee++NKuJHo1FEo6mL5YEBcpKLx+OIx4vjXqWvW6zX5xCOdBCBfHKFO+ffxYzqEhzvHsT+1n6smJJ/lGiux8aBtgDeOdwFUQBuP6cxo8efP70c371mDr757F7872uHUeN14NbljWM+prWPiO01pfaMt9EuKLBLAuJJBZ39g6j363uBcLyLiO2NZY68P1MfXzUZ3/rbXtz3+mHMrPbg3BmVemyi4XSqC2nlblvG+8CM56EpFWRh8HBHcNztSsoKTqnHY5038+ORNc6bUQ5BAPacHkBLd0Dr4ByPI50hxBIy3HYRk7LcP2Y8NjgTF348mhNx6x8hOkqRmLkGMPp307gatpp5UNb/Asmm87Q/LsaxYes5Bnn6RZBNejyKlbMg7ngYiWgYEI25nRO6j8EGIF5ab/zv3gjqFsMOIHFiI5TZV2f0EDOch/g5kJMNterCs57O9lSMvDUEEioOZyMuAxYW22mMfDTzc016v7sV9keVOrgeiCQQiSfhsmd3rA+qxgKPVTrbsxxEGQ2rVVAAJAliIJLIKBljUB1UKnHYIAjDqx5Zh9ZG9md4vGiDW072qyc4Q3FXuhEOOyEldaj7jQ8Cijx2Z3sgTXQ0K04vEYjlJCBKkOwSbn78Zjx4wYNo39mOh698GJ9895PwVKbSOmOhVKqI5mx3lACiBYZ1aFJBZCA3wVxz+VvEUERj5FVnOwAs+8wyvPPf7+D468fRua8T1XOqhzxkaOrB2FULTOK2bmd7wa+CfvCDH8Bms+FLX/rSiH/f1taGmpqaIX9ms9lQUVGBtra2UZ/3e9/7Hr7zne8M+/OXX34ZHk9xo4fXrVtX1Nef6Ow+LgEQ0HlkD9b2vJ/TcwgDIgARr27Zi8ocn2Mksj02/nKEbMfCchm7NryOXRk+rhTA5Y0iXmoR8e1n9+Dkgd2YVz5ynIuiAC09ZJ/t37YR3VmklLpFCfGkgOfXvY5GHQfQQnFgIEJOV3s3vY3Ded7XupJAY4mEllAcn3hoC65olHFZo6LFhJmVgyfJ77/50F6s7duT1WPNdB4KxQHAhtb+CJ5+bi3GWsvriwLxpA2ioGDr+texw+S/o3yYXCLhRFDAL598HatrM4tb2t4tAJBQ40zi739/MafXNdOxweFY+nhUFJSFTyApOhF0TSr21oyPIuOyPQ+i3bcCO18pjNu8yXUulh75HV5/6ncIuhqG/F3Bjg1FxtU9x7HXFcLRtWsL85pZUhXow3nJGN565iEEXcMrufSgvncjVgB4+b19SNhOGvIaRnOpvQKn3v4r9h7NbtGqmOehwcEcHSCcCUltWme7oii6CDxajLxFBDOf6sYcyLI+zLIx8s7sO9upq9fjkGCT2BcBytx2zSTQHYqhIUuTABVV3YxHhfvdxOGvt7PdShHq2QzrUGc760MYo5E6XjKrHbDa4BYnhafSg76IEw7bIOKDcdg9eQxURMePC2fC2e5ShwWiAc3F7PQ5cfva23H/qvvRfbAbj173KO5Ydwfs6nUJfV+CJMDmsllLUKXDE9EBADmse2j99dZ0tgNAWVMZZl07C/uf2Y8tv96CK//3yiEPoceHw6emHngqCrSxBcJTASQiQGwQcFirMragV0Fbt27Fz3/+c2zbtk33Sb9vfOMbuOeee7T/HxgYQFNTEy677DL4fPl1POdKPB7HunXrcOmllw6Ly+cUBllW8LXNrwKQcfOVH9Ti4LMlvuM0XnnyfcTclVizZkXe25XLsdEdjOJrm98GIOP/3bASy6aUZ/WaVyoK/t/Te/DU9tP40xE7Hr57BRY0DHfp94fjiG18HQBw67WXZzXp/YvD6zHQGcKCZSuxerp+bvGdLf3AlvdQ63Xiw9dcpstzXn55Ev+5dj8e33oKL7ZIGHBW4sc3zTd1RPuvjr4L9Adx0Xnn4PyzMtu/Zj0P/Wjf6+gJxXH2svMxr370c/SWE73Ats2o93twzVUfKOAWFp6j7iP4+WtH0O2chDVrFmf0mIOvHgYOHsU5sxqxZs3wtJixMOuxwZmYWPZ4VBSgYw/Evc9A3PcshN5jUMomI/GFrSRn0sQIR16FbUcPGq/5BhoalhbmRRMXQ/nls7jQtR/ymk8DKMKxMdAKaUccc867ErNnXm786+VCaAXws+/jg3NrocxeY8hLiO8ehtLqw2XX3mzI8xcCKfIkZgTbMXVNZvvIDOchms7G4WRCjbrwHEvI6BuMo7zEkfdzhqwmtvMY+SGknO2JjAc0qNBohQh5gMSDV5Y40TYQQXcwmpXYHk/KiCVJpH4J46JqyqmsV2e7tc4dQOr8kVGMvMU668+kLGtnu/WOBw7B4XUgEnXD5Yoi3BPOU2xXq1rHcDAzIbani8tUWAXgrffi9hdvxwPnPYDm9c14+o6ncfNfb4YgClqEvNPnJN/FsaB1xGU6fBDJ8b6GHhdW2R92NyA5hzjbAWD555dj/zP7sfMPO3Hxf18MR2nqOn5IjHwsCPgnF3KLjcetDg+Ee7jYng9vv/02Ojo6MHly6gBJJpP46le/ip/97Gc4fvw46urq0NExtLM2kUigp6cHdXV1oz630+mE0zn8xGu324u+aGuGbbAarx/oQGcgipuWNkIcw47c0juIWEKGXRIwpcqb8yT27Ho/ABLZrOfvMptj47GtxxFLyFjUWIaVM6pzGlj5wU2L0BmM4e1DXfjMn7fj6c+fh6YzBhC6uklkd7nHDq8n8852AGSBpzOEYEzRdT+d6idfMlMqS3R7Xrvdjv+5eTFWTa/Cvz3zPtYf6cZ1v96I//3IEqzUcVBAT3rUqfOaMnfW+8Fs56EZ1aXoCfVia/MAFk2uGPV4blMvQJvKPabafiO4dN4k/Py1I1h/pBuyIMJpG38B51AHmficM6ks5/1jtmODM7GxxPGoKEDHXmDP0+Sf7sOAuxyYcw2w/C4I674Ne9t2YPLKYm/p2Ox6BKiZC9uUcwo3GGC3A+d8BtLbP4J0yb8DJZVpf1WgYyN4CgBgq5pBtseM+OsBTyVs3YeM28bAKcA/me3PY9M5wGv3kjRGKfP3UczzENP7m1NwnDYJFSUO9IRiaA9EdBXbrSIY5RIjn5ShdZRbZT9Q6PuJJxVEE3JGg/U0FcDrss75qbLUgbaBCLqy7G0fjCW1/3ZbRGzXy9luRbE5J2e7RZ3cftrZnqXYbrV0EA4ZWIrLRGwf7B6ErzEPg2OMiu2jO7qH9JqbFZdqZBtBXK6ZV4OPPPMR/PnyP2Pfk/vw0ldfwhU/vWKomAoQN7dVerm14YP+3B6vOdstEiMPkCGMNGc7AEy/eDoqZlag51APdj+yG8s+s0z7u/RhDNLZbqF9AQAe1UAa7gXKxq46Zo2CZkDdcccd2LVrF3bs2KH9U19fj6997Wt46aWXAACrV69GX18ftm7dqj3utddegyzLWLnS5IuSnIIQiSfx2T9txdef2IW7HtqMntDok7jHu0gU4+QKT16RZzOqyRdeTyg25usZRTSRxJ82ngAAfPL8aTknQ9glEb+6fSnmTvKhKxjDxx/chN4z3k9rP+n8qyvLvnPd7yEXP70ZRktlyolu8nucUqn/tNONyxrx7BfPw1k1pWgfiOKj97+HX79xBLKcWYx3oZBlRTv2qkzsvs+Us2vJhcJ/Pr8XF//kTfzqjcNoH6FvsrmHDH80VWR/PLLGvHofan1ODMaSeO9oZt01+9vIzcnsOotdeHE4LNJ5AHj9e8B9K4Ffnwts+i3QtAq4/Ungnw8B1/4CWP1FwFsPvP9Esbd2bEJdwP61wJI7Cu/AX/5J8u8tDxT2dSm9x8m//VOK8/qZUj0H6Myi6ydb+k4CZU3GPX8haFwBJMJAe3bVOxwOS9Soi7Rt/fr0tgfTeoetQC4x8pGUnmo5V2b67zW9i30saOS8lURUej/dFchu3SKsiu02UYCD8Uj9Mre+YnvKyWwdsTklto+/j2i9gMci584zoWt9/RkeL1Yb3OIMJYFS4mxXzVo5ozmYGY+Rp0IofT9nMPXCqfjwHz4MAHjvZ+9h4882Du3kBoigapUY+fRY/VyI0XoBizjbAdLbHu4d8keCKGD555YDADbftxmKktIhhhz3VqoYoFBn+6D1ett1vzoMBoOakA4Ax44dw44dO3Dy5ElUVlZi/vz5Q/6x2+2oq6vDrFmzAABz5szBFVdcgU9/+tPYtGkT1q9fjy9+8Yv4yEc+gvp6YzoJOWzx/ql+bdL8zYOdWPPzt7Hl+MgfzmNd5AQ9rSq/k5LbIWkLGS29he9S/NuO0+gKRjGpzIU1C/LrefW67HjwrhVo8LtxtDOET/1xCyLx1IoCXaipL8vO1Q6kTbvqdMNGOd5NptqmVhnzRXt2rRfPfuE83LCkAUlZwQ/+vh93/2HzsEGEYtIfjiOpDgCUe0w80ZkhX7zoLNywtAFuu4SjnSH88O8HsPp7r+ITD27C87tOI5ogxyT9vDWWWytWZiQEQcCHZtUAAF7b3zHOT5Mb2JM9ZP/M4mI7h1Nc3v0FcN85wMZfAQ1LgY8+DvzzYeDD9wEzL0m5akUJmH8DcbwnM3fZFZxdj5F/L7y18K9dUgksug3Y/DsgkZ3jTBd6jwOlteaPM6uZDXTsN+75+5vZj6ubtBAQ7UDL5mJvCYdjGHXqPVvHgD7ny2CUupitIZBoYns48+9cKra77CLsjAuqZyKKgiZ+ZdrbbrUYeSAltndm7Wwn+8LtkHSvxiw0mniaZcXCaNB9YyVx1avFyGfubGe9XmA0tCSEcHyIIDQaVq3i4BBkyQuXK4LB7jzXx2lnu3Nkd3wimkBSHXIyt9ie3lE+MvM/Mh+X/OASAMBL97yEnX/YCSDNsR8LWUdQdXgBCLnHyMeCgGgDbCb+nWeLu3xYjDwALP7EYtjcNrTvakfLhhbtz7XOdq/a2W6V1AOKmzrbudg+Llu2bMGSJUuwZMkSAMA999yDJUuW4Nvf/nbGz/Hwww9j9uzZuPjii7FmzRqcf/75+O1vf6v3pnIYZdtJMgm0qMmP6dUlaBuI4NbfbsRv3zoy7KLvaBcRaadV5b9g2lhOnLUtvXlO7mWJoih4YP1xAMCdq6fqcsNf63PhwbtWwOeyYeuJXnzlsR2akJtytucgtmfZ45QpJ7tTCQVGUeK04ce3LML3b1gAp03E6wc6cdX/vq0db8WmO0S+aMvcdjhs7C/6TCpz4ye3LMbmf7sEP7xxIVZMLYesAG8c6MQXH9mOc/7rVXz72fexq4XEDtHPn9X50Gwitr9+oGPcm9iD7WRKtKrUiUoLpB1wOMyy4VfAy/8GnP8V4GuHget/A5x9GWAbZTBq/o1AqBM49mZhtzNTFAXY9idg9lVDYtwLyqrPA8F24P0nC//avceB8qmFf91sqZ5NKgqS+l5zASDHQF8z4Gfc2W53A3ULgJYtxd4SDscwar3knq1thISobEkkZUTiah+1RQQSKhDHkvKQAfOxoGK7VUUiTWzP0NlOXb0+C8XIV6niRq4x8lZIfkgZJfTqbFf3jYU+N9nEyA9GaYy8dd5/OjQJISkrGZ07eGe7tZHtXrjdpLM9L6Jjx8jH0tJH0vusTUeGHeXnfu1crPjCCkABdv1pF4C0IYJYwDpOblEkbv8xhg/GJBYi+4LxobYhjBAjDwDucjfm3zYfALD5V6kBcS1G3uuwprPdVQYIEne2Z8KFF14IRVGG/fPQQw+N+PPHjx/Hl7/85SF/VlFRgUceeQSBQAD9/f144IEHUFpqsYOKkzPbT/YBAK6cX4e/ffF8XLuoHklZwX+v3Y9P/3HLkJuF45rYnv/xQ521hXa2bzjajX2tA3DbJdx2jn6LnmfXevHbO5fDIYl48f02/NcLJIq0tY9cLE3KSWxXY+R1doQfV8X2qZXGXngIgoCPnDMZT3/+PEyrKsHp/ghu+c0G/MsTu7DleE9GE7xG0RUk+7TSzBeYOVDqtOGWFU14/LPn4vV/vhBf+NAMTCpzoT8cxx83nNBi0ieCsx0Azj+rCg5JxInuQW1YaDQO8Ah5Dqf4vPdb4KVvEKH94n/PbPq6fglQMb04QnImnNpK4smX3lG8bag+G5h5GbDhPiL8FhJWxPaaOYAcB7qP6P/cgz1APMS+sx0gUfLc2c6xMLXqPdtIdUzZEkrro7ZKFHSpw6at1WYaJR+1utieZY+9FZ3t1TRGPpjdugUV2z0WcC9To0QolkRMTY7MlVhCRiypDupYYBCBQtcgdjT3jfuz9PxZaqH3n47LLsGpmj4ySbK0Yv0EJ4XiLNMnRj4WUB3MI68/U3evvcQO0cxJM3YPEQ7HEZcFQcAVP78Cs66bpf3ZkM52q4jtABHbc3W2WylSn+Lyj+hsB4AVn18BANj7+F6EOsg6MD32XaUKoMjW62wXBOJu5852Dqf4ULF9SZMfpU4bfv6Rxfiv6+fDYRPxyr4OXPW/72gXw8c0sT3/LyzaGd2c7+ReljzwzjEAwI3LGjQxWy9WTa/Ej25ZRF5n/THc//ZRzRWRW2d7KlpKL4LRhDZxPtmAzvaRmFvvw9++eB6uXjgJCVnBY1uacdNvNuCiH7+J+14/jNb+wh4DANCtLgRUlVjXwTytqgRfu3w23vmXi/DHT56DaxbVw2ETUVHiwOxJFruwGIUSpw0rp5Pumtf2jR0lTwcReIQ8h1MkNt8PvPg14Nx/JEJ7ppPXggAsuBnY9xwQ16djV1e2/RHwNQLTP1Tc7Vj9BaD9fQjH3y7s67IitlfPIf/u2Kv/c/efJP9mvbMdIGJ7zxFLTs1zOABQqzqidBHbVSeiXRLgtLEvJgIkNt2rij2ZRslHkuT7vNRC4nI62TrbrRgHTWPku7N0ttOocI8FhlG8Lrt26ZpvMmEo7ViyyqAOAFwytwaCQMT25p6xTTehqHWOjdGoLCHrkcfGMQUAvLPd6ggePxyOOMLdOYqpFCqqjnIfPazX3KwIQsZOblESceMjN6JhZQMAoKRW1StiIWsJqk5fns52i4ntozjbAaB+WT0azmlAMpbE9ge2A0gT293q96vV9gcAeCqAQXOkCesJF9s5THG6L4y2gQgkUcDCRj8AMhl2+8opeOpz52JKpQen+sK4+Tfv4v63j6JZjXzXQ2wvhrP9WFcIr6rdzXedN82Q17h2UT3+dc1sAMC9L+zD1hPkRJeTs92t9n7p2NlOI+TLPXYtuqoQeF12/OK2JfjrP6zGTcsa4XFIONYVwv+8dADnff813PnAJjy383TGcYT50qPGyFeUWMvZPhKSKOCCs6vxi9uWYNu3LsXbX/+QpWILx+Oi2Zn1tnNnO4dTRLY+BPz/9u47vK366gP492rLQ97biTOJs+MsEkjYJJBACmETRmlfdsumvHRAoVBooYNVXlpaKLuFQlgBEkZZCZC9E7K8Eo94b837/nF1ZTvxtSVbutK9+n6eh8fEluQb6eSu8zvnvH87cOz1wOm/Cb3F2aTzpYvPvasisnmD5moHtr0JlCyT5stH08gTgZxJMHz3tHq/090JtFVrI9memAEkZgGHIzC3vcmfbNdFZftM6StbyZNO5Trkyvahz2xv12nb3+65y8Fdo8pt5PVUoduTXKHe5gzu/WgJVLbr53pM7hYXahv5Trmy3az92DAahMA1dnPn0DoTygsyrCYDTLFcfRqi7GQbjh0pLYT/YFtVv4/V04gBJSeOk+5TLN94cMDHso28vhmSpH8Xnsb6ob2Qs1VxXjvQnXAMVH/HMpsj6Epuc4IZyz5YhoV/Woh5/ztP+qazTV+V7SG8H0fRU0t9WT+V7QCk8QIA1v3fOvi8vsBCE5vdf66mt5ntAGBPZ2U7UbTJVe3j85JhP6J116SCFLz703k4c1Iu3F4RD7y/E16fCLvZGFjxPxTRmNn+3NcHIIpS8m10VuR2rFfPH4UfHjcCQPdFwmCS7WmByvbwtZEvq5dWzRZFuIV8XwRBwOyR6Xj0gqlY+4vT8Mj5UzB7ZDp8IvDF94fx01c3YvaDH+OXy7di+6HmiG6LXtvIDyTJaoq7CzQ52b62tEGx3aUoithdIyfblS9OiCgCNr4EvHszMOtq4IyHBjdLLOsYaZb01tfDv31DsX25NBNs2rJob4n0vs65AYa9q5DUdUid3xlIMhep8/uGKns8ULsz/K/bVCG1Q0zICP9rqy1tBJCQyVbypFs5jvDNbA8kR3SWLHL4F2y3BNk2XW4jr6e26T2FModaepy71/P0IHOQbeT1Vr0cuH8zxGIJueJfj1XMi6fkAwDe39J/sl1vsdGX82dIlbgfbKvu1c3gSKIo6rIjBnUzpkjXCL6WISbKXG39JhEDyfZYr2wHAGtK9wz6INjT7Jhzyxw4Cv338/Q2l3uole16Sy7bU4FO5SruiRdOhD3djuayZuz9YG8g9i0W/3mKnmJDlpCuy+5zTLaTpmwol3ZMJcPS+vy5w2bGX5ZNx71nT4DZKN38HpGZCGEwN8KP0F3Z3qnK7G6nx4s31lcCAH48LzJV7TJBEPCrsyZg4cScwPdyB5FsT/FfrDWGsbJdntdepFILeSWJVhMumDkM/752Lj6/8yT89JQxyE+xoaXLg5e+KcdZT3yF72uCP7EKVb2/sj0jSQMnmTQkRRmJGJWVCI9PxFd76vp8zOE2JxraXTAIwNgcHZ50EcWqza8Bb/8EmPkjYNEjg0u0yyZfAHz/0eBXfEfCxheBUScCaTGSbJ58PsTEbIyq/Uid39dYKn3VQmU7ILWSj0Rle3OF1EI+DOfPUScInNtOuiYn2+vanPB4hzZ3WU6O6CmpCgAOm9xGPrTKdr0mieS/VzzPbJeT7Y0drpD+3XS69TOzHQBS/GMKh5xs13EV8xkTc2EQgM2Vzf22ko+Hyvbpw9MwMjMRnW4vPthWrfi4LrcPPv8tU72O44h35rRMAICvfYgtoJ2t/bZOd7VKiUZtJNuDayPfJ1H0J9t1VM1tYxv5XuxpgKdLcYygyWZCyY9LAADfPv4tPP7RRxaLvwOPnkYMyOzp/S5A0Com20lTNvqT7dOLUhUfIwgCrjp+JF6/7jgcNzoD15wQnkR1fqoNgiBdYNW3h69yW0lFQwc6XF4kWU04bnTkK4uMBgGPXVyCpSUFuPbEUUgYxEWCPFO+ucMdtgUJ5Q3Rq2xXUpSRiNsXjMOXd52CF388G8fkJEH0V7tHSmBme5xVtserU8b130p+V5W0sGNERiJsZn3c7CGKeVteB5ZfD0y/HFj0h6EnIiculS64dq8Iz/YNVd0eoHwNUHJ5tLekm8kK34yrMKzha6nFe6Q1lgJGC5CcF/nfFQ7ZxUD9PsAz9PbRvTSV66OFvGz4HMAbvoWgRLEkI9ECk0GAKEqLMYdCrwmz7jbyoc1s19v7IEuySu9HsDPbuyvb9dNGPj3RAoMg5TcaQri30+6Uk+36iI1Uu9yZcGjHyDb/+6LHfzNZyVbMGSXdj1uxVbm6Xa7u18tCjL4IgoClJVJ1+3/8hUF96blvSeC9Cl0yZ2QBAESFGdRBc7b2m1QNVPcma+A+6FDapntdgM+jrwSzdQjvh95a6gNSG3mg31byM66dAQjA/lX7A98zG/3nKHpMtieksY08UTQ5PV5sOyTtqJUq23uaNiwVr1w9B+eWFIbl91tNRuQkS5UDarSSL63rrugOR2V+MGxmI/540TTcfeb4QT1fvlhzeX2BVd9DJb8PI6Jc2d4Xo0HA/LFZWDpdirHvDkTuICEn2zMSNbCik4ZMbiX/39218PmOXrgiz2sfx3ntROrY9h/grWuAqZcAZz0GGMJwCp06DBg+F9j6xtBfKxw2vihdBBafFe0t6UUcdSpMogtCJNqlH6mxVGohH47PVw1Z4wHRC9TvDe/rNlVI8akX824Brno/2ltBFBEGg4Bs/yzToc5t12vCzGH3V7aHOLNdrxWZ8t+rLcjFB3rseGA0CEhPlOe2B59s79RZQjU10EZ+aMUkHYGW4fp4X460eIq0CPP9/pLtcdI2/dzpUrJ9zf56VDb2XenfPZLECINBB12S6CjWbOl+leAc4jjNASrbtdVGfoiV3IC+WqcPpdJfby31AamNPAD0s0AlfXQ6xpwxJvBno9UIo8+/n9Xb+wFI1f5sI08UPTsOtcDl8SE90RK1luLdc9uV20eFS1lDbLRPD0WCxQiLUdqthKuVfLkG3ofZI9MBSDO2+0qMhkNdoI28BlZ00pDNHJGOZKsJdW0ubDl49AXMLibbidSz423gP1dLbd+XPBHeROzk84F9nwLtfY+MUI0oSi3yp1wEmEMfIxNJYvZ4+GCAULMl8r+ssVQ7LeQBqbIdCP/c9uZyqY08EWlCtjy3vXloc9vbdZowc/grsoNtIx+Y2a7TpJn89wq+sl1/yXagexF7XQgdIdpd+qxsbx5yZbs+u2LIFvpbyW+pbEZ5fd/3AgNdD3T6HsgK0xIw11/p/9aGg30+JnAs0dk+g7rZc7Lg8wkweFohDuUe6EAz21s1VNk+lOSyPOtdT9XcQ6n011tLfSCoynYAmHXDrMD/Wx1Wf2wI+ns/AKmNfFcT4BvaGKxYw2Q7acbG8iYAQMmwVNUqvY/UnWyPfGV7WX3stU8fiCAIgbntQ10dDQBdbi8ONUvvdSy/D5PyU2AzG9DY4ca+w20R+R3dle0aOMmkIbOYDJh/jDQHq69W8rtrpJPWYibbiSKrtRp481pgwg+Ac54GDGFOQEw4R/q6Y3l4XzdU7YeBthpg5PzobkdfzHa02gqAaibbj2JPA5Jywzu3vatZ+k9PbeSJdC7Xn2yvbR1asr27GlFfCRKHPdQ28tJXvSYO5QRY6DPb9dNGHgAyk+XK9uCT7R0uzmzvS7tO9x2yzCQr5vpHOypVt3e4uqu59W6pv7r9zY0H+xwfqffFFwTYMxPQ1WWFzdoVqD4fFGcrYNFJZfuQksv+yvZ+3gvNsaYMrdJfb23Tg6hsB4AxZ45BSlEKAH/cy1X+UcqDRVRCOiD6BlyAoDVMtpNmbPDPay8Znhq1bRiWLlVXq1LZXh+77dP7E1gdHYbK9srGDoii1IorlpPMFpMB04dLow2+jUArebfXF1htnpGkgZNMCouT/XPbPzsi2e71idhTIy3qGJfrUH27iOLKF48AJitw1p/Cn2gHgMRMYPTJwNb/hP+1Q9FYKn1NGxnVzVDSnDAcQqST7aKovWQ7IFW3h7OyvalC+spkO5Fm5KaEt7JdbwkSh22QbeR19j7IkgKV7QO/H16fqMs28oCUQAVCTbbrrI18mGa2yxX/iTrritHT4sn5AID3tx7q8+d663rQnzMn58FuNuJAXXvgPm1P8ogKve5DCTBZTehy2mCzOdGh0O0hKM42tpEHpIQqoK/qZZtDmkXvHsS5aZzObAcAg9GAmdfN9D/F5v83osMW8oBU2Q4AnUcfR7SMyXbSDLmyXU5qRoNc2V7RoF5l+/B0bR1g0vyro8PRRl5ecDA8Xb259YM1a4R0kIjE3PbGdqmq3SB0XxCT/p3kT7ZvPdiM2pbuE9TS+nY4PT7YzAYMT9fWYhwiTWk4AKx/Xpr3LK9EjoRJ5wPlq7uTnNHQcED6GqOJ5mb7CGlmuzc8I2r61F4HuDti9j1QlDU+vJXtTeXSVybbiTQj2xGeme16nTkcahv5Lq903am35LIslMr2dlf3Y/QWF93J9uA78nXoLKEarpnt8VDJvHBiDowGAdsOtqC0rv2on3cE3gP9LjiQJVlNOHNSLgDgP320kpf3G3rbZ1Bvbq8ddnsXOuuHcH/c2dpvItHVKu2brMkaSLbbHNLfp49uDwOSk+16Sqpa/YVBcov8YImiPme2m22AyR5UYnnWjbNQ8uMSnPDLE/T5XsgS/Ml2nc1tZ7KdNKG2pQsHmzphEIApw1Kjth2FaepUtnu8vkCr+hGZ2kqmBdrIdw69jXypXN2vgffg2JHdyfa+WmkNhXwDID3RCoMhthcdUPhkJVsxtVBqH/TZ7u7q9t3yvPacZBgZD0SR8/nvgIQMYPY1kf09xYsBkw3Y/mZkf09/Gg8Aidkxe4HfnFAEwesEDu+O3C8JVPcXRe53REJ2MdCwf3BVA31prgCMFikeiEgT5DbyNS1D2w+06nTOrsMuV7azjTyAwGLd72taA4u6lcgJeYvRAJtZX0nEQLK9NfTKdr0kVOVk+1Bntut1oU5PGUlWHKfQSt7nE9Hhlqv79fse9HTejEIAwHubD6HL/3eXxcPiCwLcYiKs1iFUtosi4GrVV2W7zwO4B7H4wClXtsfmtfig2ORke4jV/u5OAKK+3guZPXXANvKAtLhkybNLUHxO8YALUjQtUNnOZDuR6jb4q9qPyUmO6gl8z5nt4U6o9nSoqQsenwiLyYCcZFvEfk8kBFqRhaWyXTvV/SXD02AyCKhu6QoslAiX+nbpBDMzKXZb6VNknFwsJTt6zm3fJSfbOa+dKHJqdwKbXwNOuDPyLcxsDuCYhcDWNyL7e/rTcABIj80W8gDQbPcnwCPZSl5OtqdqLNmeNV6adVb3fXher6kcSCkEDLxMJNKKnDAl2/XaRl6eNd4aZBt5p87byI/OSsLEfAfcXhHvbO67JbZMfs/0WOUvX1vXDbDgoCe5st2uk4UHKfbwzGyPl+Tq4sl5AIAVRyTbO93eQDGrXufWH2nuqAzkp9jQ0uXBxztrev2MbeTjg0dIgs3mHHxlu7tDuobRy8x26yCTy0CPme2xf+87aPL70dUc2vP02FJfZksNfT55PFS2s408kfo2Vsjz2qPXQh4A8lLsEATA6fGF1G4sVKX+JHNReoLmKpnT/LPVh7o6GtDW3Hq7xYjJ/irkcLeSr/fHWgaT7XHn1OIcAMBXe+rg9Eg3d3ZXSyfvnNdOFEGfPQikDgOmX6nO75t0vpRIPhymhGmoGg/E7Lx2APAY7RDTRwFVmyP3SxpLpU4GNo3tW7PGSV/D1Uq+qZwt5Ik0Rk62Vw852S6daybppGpX1t1GPrTKdj0mmGXnTZeqUv+zobLfx8mV7Xp8LwZV2e7UV/VyuNrI63WhzpEWTsyF0SBg+6EWHOjRSl5umy4IgM0cH7fZDQYB504vAAD8Z33v/Ug8dDogwGdMltrID3bMqlzN3U9lu9xG3pKsgXuh8jVk12CS7W2AwQyYNLCoIFjy5xrq4gM9ttSXBVnZ3ouz/+4PmmayAmf+HsibFu0tCav4OAugo+w41ILPdtUO+N/a0gb4fJGr4A7WxrImAMD04alR3Q6LyYA8/82Migi2kpcruosytLeSK8Vf2T5QS7pgaO19mB2hue11bdINgPREHZ14UVAm5juQlWxFu8uLtQekRUdyZXsxK9uJIuPgemDnu8BJdwMmlS7sxy6QVn9vi1J1e8OBmJ9VLuZMjnyyPcbfgz7ZUwFHgdSNIRyaK4CUYeF5LSJSRY6/4qu1yxNocz0YgepUnVVmdreRH3gxuCiKgcp2PScOfzAtHyaDgC2VzdhTozxPtbuy3azWpqmme2Z7CMl2t/RvxG7Rx4IUuSthS5cH3iHc95Mr/vW2UOdIaYmWQCv5ntXtgUUYFhMEQVvFMkOx1L9o54s9daht7V7s1Roniy/inWhxwGYbQhv5IJKq2qpsl5PLIc4oB/zVy9q47x00m1SMFvLiAycr23tx6riyHQCOvVYai6cjPPLFmS63F795bwde/rY86Of8/vwpuHBm9G66ub0+bDnYBCD6le2ANLf9ULPUKnx6hLZHrugu0kBF95ECq6OHWNnec269Vt6H2SPT8cwX+7G2NLzJ9gb/woWMRA2s5qSwMhgEnDwuC/9eV4lPdtVgelEqyhuk/QPbyJPuiL5ob4Hk0weAzHHAlIvU+51mGzD+bKmV/El3S6UxanG1A+21Md1GHgDE3KnA138EfL7ItDjXarIdALKKw1vZPm5ReF6LiFSRbDMj0WJEu8uLmhYnRmYO7jaPXqsR5URxh8sLj9cHk1H5GOLy+OAVpWOw3t6HnjKSrDhpXDY+3lmDNzZU4u4zx/f5uFYdt4PO9FdK1re74POJQXUU7JlU1QO5UAIAWjrdgS6FoZIX6iTo5H3pz1lT8vDlnjq8t6UKN548BkB3ZXuCThZhBGt0VhJKhqdiY3kT3t54CFefMApAz2NJfL0fcceWChuG0EZernjW08x2AHCG2DYdkK7H9Va9POjKdrmlvs7eD0BaJN9wILTnuHQ8s12nWNkeR8rq23He06vx8rflEARgUoEDUwpTFP/L9Vdwb65oiup2765uRZfbB4fNhFGZ0V/Z1D23PXKV7aUaap9+pFT/3K/mIc796jm3Xo7FWDezKB2CAOyva++1sneo5DbynNken07xz23/bFctvq9pgyhKsSBXYxDpgeGzB3HS7nuivRnAgS+BfZ8Cp/wCMKh8g2jSeUDDPqBqk7q/V55VHsNt5AFAzJ0irfpv2B+ZX6DlZHv2+PBUtrvagY56tpEn0qBwzG3Xayvoni3Q5eSxEjlpCOgnoark/BlSC+jlGw8qVjXruY18hr9rnNcnBl0oIFdw6yWpajIakOz/9z6UYgm9LtTpy4IJuTAZBOysasG+w1IFphwXett3BqPnSArRP7i+eyRJ/L0f8URITPPPbB/kvfFABXPfiURRFOH0j/mwJmvg3tdQ2sg7dVjZbjQD5oTQK/31OL9eZksNfT653ivbdYhHvjjxwdYq/OyNLWh1epCeaMGfLpqGE4/J6vc5b6yvxB2vbw5UWUfLhvLuee2xML+8O9k+yNV7QShvkA4uwzXSPr2nNH9le+MQ535pcW59SoIZ43KSsau6FetKG7Focl5YXre+XTrBzGByNS7NG5sFs1FAaX0HPtxWDYBV7aRDCelI7KoO3KSJClEEPv2NNDNq/BL1f//IE4HELKm6Pb9Evd8rr66O+cr2ydL/VG8GMseE98U9LqDloHaT7VnFwJqnAFcHYBnCQs1m/8xNtpEn0pwchw3769qHlGyXW/8m6SyxajYakGAxosPlRUtX/9W7bXLSzGLUzDXoYJ1cnI3UBDNqWpz4em8dTujj/lB3sl1/beQtJgNS7GY0d7pR3+ZE+gBV3T6fiE63vpLtgHQPo9Xp8c9tH9z9p3adzbLvT1qiBcePycTn3x/Gii1V+OmpY7tHcMRhJfdZU/Jw/7s7sKu6FTuqWjAxP4Vt5OOE0ZEOY5cPrqZBVHID3UlYuSL8CJ5OD0Sv6H+IBu6FBirb2UY+wOoIffGBy//+6fH9sKeF3kbe1aa/rgc6x8p2nXN5fLjv3e24/uUNaHV6MLMoDe/fNG/ARDvQ3bpbTnpGy8byJgBASZTntcsK06X3paIhMosQfD4xsMBBi5XtKWFqI1/WoM1W+seODP/c9ro2tpGPZ0lWE44dKc2Ge+mbMgDAuJy+L0iItEpMGwmT6ALaqqO3EXtWAhXfAqfeo24bd5nRBEw8F9j2ptQqXS2NBwBzopToj2UJGYCjMDJz25srAIhAalH4X1sN2eMBiEDd90N7nSb/mClWthNpjjy3fbDJdlEUdV2dKldmD1jZruO26UeymoxYMjUfgFSV2pfume36fD8y/J3jDgcxt11OtAP6apcejjGAbXHWNnzxFKmo4n3/3HZ5vICe4iJYqQkWnDZB6sT3n/UHAXR3OtDrfoMkxhTp3qevtX5wLzDAzHa5hTwEwJyogQVfBqN0TR1q23RAqubWY/WyzTGENvI6fD/sqUBnU2jPYWW75jDZrmMVDR244Jk1eO7rUgDAtSeMwqvXzEFeij2o58tJzkNNnXB5ojdHVa5sj9R89FDJle0HI1TZXtPaBafHB5NBQEFqcJ9VLElN6G4jP5QKxbI6f2W7xqr7Z0Ug2c7KdjrZ30pevpFRnMeVjaQvYro0409oDHGGVbj4fMAnvwGK5gGjT4nONgDApPOB1kNA+Wr1fmfDAamqPRoLDEKVNyUyyXY57jRb2T5O+jrUue1N5YBgBJLD05mHiNSTkyK1ka9uHjhp2Jcutw9yJ3E9ViPm+u+BfLartt/HxVuF6lJ/C+iPtlcHEus9tek8aSaP5ZIXt/dHnsstCIDNrJ9bqUMdA9hzoY4e9x19WTghF2ajgF3Vrdhb2xaIjUQddTwIhdxK/u1NB+H2+uIuHuKVOV1aqC22Nw3uBZwt0nWHqe+xoT1byAtauE4FpOTyYNrIu3SaULUmA10hdj5wtkkxYdTh/sOWCnidgDvIfJLXA3g6ObNdY/Rzhki9rNpRg8WPf4nNFU1IsZvx7BUzcfei8TAbg//Is5KsSLAY4RMjO5+8P/VtzkCV99RhqVHZhiMNS5MWIVQ2dcKnMNtsKOS/b0GaHaYQPq9YIbeRd3l9vVZ/h0qeW6+1yvbZI6Rk+87qFjQPsbpfVs/K9rgnz22XFbONPOlN6nCIECI3j3sgO94CarYCp/4quknnYbOBlOFSK3m1NB7QTpI5bypQtUVq+R9OjaWAwQQ4CsL7umqxJkut34c6t725QnoP9Hhzg0jncpKHNrO956zyBLP+EkY/On4EAOCZL/ajvp8q5nZXfM0anlqYgtFZiehy+7DCX6Xbk55ntgPSPS8AqGsNorJdntduNmon8ROEQGfCQY4BdHp88Pjvi8VLcjUlwYx5YzIBACu2VqHDv/9MiJO//5FOOCYLmUkW1Le78Pnuw4H9RrzEQ7yyZEr3qMRQ22LLnP722Ar7U7myXRMt5GXWQVRyA1I1tx4TqoN5P/S68ACQKtuB4Kvb5e4Pen0/dEp7mTzql9vrw0MrduLqF9ahpcuDqYUpeO+n83DahJyQX0sQBAz3t0yP1tz2TRVNAIAx2UlIscdG25jcFBsMgtSivy6IdmOhKqvXZkW3zG42wuJfJNA4yNXRQPfceq29D9kOG0ZkJEAUgQ1ljUN+vU6XFx3+C3u5zR3Fn5GZiRiZKf1bEARgbDaT7aQzJhs6LRnRqWz3eoBPHwTGLgSGz1H/9/ckCMDk84Ady6U54mpo0FiyvbOhe7Z4uDSWSslqLSeZs4rDU9nOFvJEmpSbMrRke6ASUaezys+eko9JBQ60OT144tO9io+LpzbygHTP57wZUlWq3AK6p+428rFxLybcMv3X18Hc15Hnktt11io81T60NvLtPRbqJOrsvenPosn+VvJbqgKLdOK1st1sNOAH06QFq//ZUBmo9E+Ok/1ovLLmSnkGk68NXtcgCq2crf3OotZmsj15cMl2Z6s+Z5QPptLf1a7P9wKQKtuB4Oe2B0YtcIyoljDZriNOjxdXPbcWz3whVYX98LgReP264zAsffCVwSP8ic6yKM1t724hnxqV398Xs9EQaMVfEYGK/1INz2sHpAv2oa6O1vrc+tn+VvLfhqGVvNxC3mIyxM1NH+rbyeOklcMjMhJhj9MLedK3dks2hIYoJNs3vwI07ANO+aX6v7svk84HOhuB/Z9F/nd5PVI1c/rIyP+ucMidIn0Ndyv5xlLtLDhQkl089Mr2pgogdVh4toeIVCXPbK8eYmW7XisRDQYB/3vGeADAy9+WoVyhmEDv70Nfzi0pgCAA35U2HPW+tOi8sl1uI18fRBv5Trc+RwwEZrYPslBCLgywm40w6nChjpIF/lbyu2tasdlfJBRP+40jya3kP9lZy8r2OGHLlu5P2WxOdA5mzKqrrd9ku6tV2i9bkjVUdDToNvI6ndnOyvbeApXtQRbmOeVku07fD51isl0nfD4Rd7y+BV/trUOixYinl03Hr5dMhMU0tI9YbuFdGqXK9o3lTQCAkhiZ1y6T57ZXRmBuu3yBO3wIiySiTW4lP9i5X7WtTjg9PhgNAvI1OLd+lr+V/NrSMCTb/Rf+mYkWXbWro9BdOKsQCRYjFk/mLF3SpzZrjvqV7e4u4L+/AyYuleaBx4KciVJ18f7PI/+7WioBnwdI00iy3ZEPJGQC1VvC+7p6SLZnjQeayrovygeDle1EmpXjkCrba1ucEAcxakNOMifpNKkKAPPGZmL+2Ey4vSIeXbm7z8fIFZlJOkuo9icvxR5oif2fDb07x+i90j8zWZ7ZPnBle8+ksp4EZrYPsrK9e4GKvt6XgaQkmDF/rDSz+tNdtQDiq7L/SBPyHRif54DL64M3zsYKxCuD1Q632wSbrQud9YO4N+5s7Tepqs3K9iG0kddjgtmWIn3OodBrS30AsPtzW2wjr2tMtuvE7z7chXc3H4LJIOCZy2fizDAlY+QW3uUN6ifbvT4xsEJ0eswl2/1z2yOQbC/1dxEYobH26T3JF2yDbSMvvweFaXaYNTi3/tiRGQCALZVNgdlugyVXtmckaegEkyKiONeB7fctxB0Lx0V7U4giot2aI81sD/c87v6sfw5orQJO/oV6v3MgggAUzgYq10b+d8mdBLRS2S4I/rntYaxsF0WgsUz7yfZsqWITdX0nkAbkcQJt1VI7fSLSnGz/zHaX1zeoazC5FbRek6qyu84oBgC8s/kQth1sPurnbV3xNbNdJlelvrmxEj5f93lYq1PfbeQzEkNvI6+3BOJQuxK2x2E3CJm8CF6eWZ8QZwsOjnTe9IJef463/Wg8crrtsNmc6BhMgZ4e28jbHKEnlwF/Nbd2cwCKrIOo9NdrS30g9DbycizpdfGBTmkvi0VH+efq0kDr+N+fPwXzxmaG7bVHBCrb1W8j/31NK9pdXiRZTRiTHVs7lu7K9vAuQhBFMVDZXqTB9umywAVb5+Au2LQ+t35Yuh25DhvcXhEbK4Y2t73OX9nOee0EgN0NSNfarTkQ3O1AW606v9DZBnzxKDDtUiBzjDq/M1iFs6SEsmfgm79D0ngAEIzaSrDmTQGqwljZ3tkoVSCkFYXvNaMhy78Qq3aQc9ub/dWMbCNPpEkWkyGQOBzM3PZAdarOKzMnFaTgnGn5AICHPzh6fxmPbeQBYOHEXCRZTaho6MS6su7rV7kdtEOnHQ+6K9uDbyOfoLNxXkOd2R4v+46+nDYhB5YexSHx+B709INpBYFRAvE2ViBeuX0JsNudg6tsd7X1m0R0tvqT7ckaSrYPJrns8+m3mnswM+z1WuUPACYLYE4YRGW78qIUij1Mtmvch9uq8et3twMA7lhwDJb6VySHy3B/wreioSPQCkgtcgv5acNSY+4kLVJt5BvaXWh1eiAIwDANt5EPXLANsrJdntdepNH3QBAEzPLPbV97YGjJdrmNfHoik+1EpG/t1hzpfxr2q/ML1/1Duvg78S51fl8oCmcCXidQvS2yv6fhgJRcNWqoYi1vKtB6KHyLMhpLpa9ar2y3JAKpRcDhQc5tbyqXvrKNPJFmZftbyQ9mbrteq3b7cvuCcbAYDfhqbx2++P5wr591t5HX//vQk91ixKLJuQCA/6yXFl+JohhItuu1sj3L3z3ucNvA4xfkfyO6S7Yn+NvID/Lejfy+xNu/GQBIsZtxwjHdxU56i41QZSVbcdIxUmv9eDiWEOARE2G1OtHZMMg28kFUtlscGroXOpg28u4OAKI+E8w2h/T384ZwfNFzsh2QqtuDrmznzHYtYrJdw9aXNeLm1zZCFIFLZg/HjSeHvyorL8UOi9EAt1dEVXP4W6b3Z0O5lKQsGZ6q6u8NhpwIrwhze/1Sf5I5z2GDTcOzwNL8ieHBtiIr00F1/2x/sv270vohvU69v6VdJtvIE5HOtVuzpf9p2KfOLzy4Hhh2bGxW8uZOBowW4OC6yP6exgPaSzLnTpG+hqu6XS/JdkBqJT/oyvYKAALgCO/CXSJST66/1WrtoJLt8TOrfFh6Ai6bI3UzefiDXb3apnfPKNf/+3AkuXDj/a1V6HR50en2BgoukvVa2e6/xnZ5fGj1/xtQIo+HS9BZ9XJqwtAq29vjdGa7bPGU7hGeTDAD582Q9iOZ7MwYF7yGJNjtXYNsI9/Wb8WuZtvIh1rZ7vJ3EtZjgtnqkL6G0lpfry31ZfbU0CrbDWbApKF/A8Rku1btP9yG//nnWjg9PpxSnI3f/GBiRNoLGw0CCtOlKu6ywRw8h2BjDCfb5cr2g02dvS7Oh6q8QTrIDtdwkhmQVvgCg69sL9V4G3kAmD1CSrZvKGuC2+sb9Os0tPvbyLOynYh0zmewQHQUqFfZ3lwhVQLHIpNVquCO9Nz2hlIgTSPz2mVpI6UL9+owzW1vLAVsKYA9LTyvF01ZxcDhQSbbm8qB5DypvR3p3sMPPwxBEHDLLbcEvtfV1YUbb7wRGRkZSEpKwnnnnYeamppezysvL8fixYuRkJCA7Oxs3HnnnfB4+k9QkXpy5Mr25tBHkMRb+/SfnDIGyVYTdlS14J3NhwLfb4ujCv8jzR6RjsI0O9qcHqzcUR1YeGAQ9Fuxa7cYkej/u9UP0Epe7nqgt/eiuyuha1D3tuJt33GkU8d3t5LXW2wMxpmTcnH/DybiwXMnRXtTSAU+swM22yDbyDtb+63YdbVK+2RttZFPBjydIVZyy63CtXv/W5HNn2zvag7+OQOMF9C8kCrb+/83QrGJyXYNqmtz4ofPrUVjhxtTClPw5KUlMBkj91GO8Cc81Zzb3tThwr7D0u8rGRZ7Nz9zHTYYDQLcXhG1reGbp1paJy1oGKHhJDMwtNXRPefWj9DwooOx2UlITTCj0+3FtoMhnFgcoU5OtrOynYjigJg2Ur1ke1NFbLfMLpwV2WS7KEqJ5nSNJdsNBqm6vSqMyXY9VLUDUmV7c0Vo1QOyporY7PJAYbd27Vo888wzmDJlSq/v33rrrXj33Xfx+uuv4/PPP8ehQ4ewdOnSwM+9Xi8WL14Ml8uF1atX45///Ceef/553HPPPWr/FUiBnGyvaR1CZbtOK5iPlJ5owXUnjQYAPLpyN5weKcker23kAcBgEALV7W+sr0RLV/d7EYnCjlghX2fXtfV/X6e7sl1fCVWHP9nuE4E2V+iLp7q7YsTfvxkAcNjMuP6k0ZhU4MCMoti7d6k2QRBwxdwRmFGUHu1NIRWIVgdstkFWtruCayOvqcr2wVZyA/pMtg/m/XDGQ2V7kONmna2c165BTLZrTIfLgx8/vxblDR0Ylm7H36+cFfE2VnIr73IVK9s3VTQBAEZmJgZakscSk9GAvBTpZkZlY/jelzIdVHQDQNoQ5n7pZW69wSBgpv8CY21pw6BfR24jn8E2XEQUD9RKtrs7gfba2E4uFs6UEsHtdZF5/Y566SaH1irbASCPyfY+ZRVLXw/vDv25zRVASgz/e6CwaGtrw7Jly/C3v/0NaWndSYHm5mb8/e9/xx//+EeccsopmDFjBp577jmsXr0a33zzDQBg5cqV2LFjB1566SVMmzYNZ555Jn7zm9/gqaeegss1uNFRFF6BZHtz6Ml2uTo1SWctsvvzo+NHIjvZisrGTrz0TTmAnm3k4+d96Om86QUAgK/31mFvrXRzXK/z2mVyu+u6AYoouivb9RUbNrMRdv8Iw8Hcv2l3xW83CNmtpx+D9346X/f/VoiOJNjTYLM50dUQ4nmHKPoTicpVu5pMtg+qkttf2NjPwgPNsqVIX0OZY+9q13eC2Z4W/P0dvVf561T8ng1pkMfrw09f2YjNlc1ISzDjn1fNRpYK7VSK/AlPNSvbN5Y3AYjNFvKyYWkJqGzsREVjB2aOCM+qzbIG7c8qB7pbkTUOYma7/B7kanxuPQAcOzIdH++swXcHGnDNCaMH9RpyO7vMRA2dYBIRDZKYPhLYsVy6AI9kFVVzpfQ1lpOLBTOlr5XrgHFnhP/1Gw5IX7VW2Q5ILfa/+Ys078yeOrTXaioD8qeFYaNiQOYxAASgdqe0WCMUTeXAsGMjslkUO2688UYsXrwYp512Gh544IHA99evXw+3243TTjst8L3i4mIMHz4ca9aswZw5c7BmzRpMnjwZOTk5gccsXLgQ119/PbZv346SkpKjfp/T6YTT2Z3AammRbra53W643YMbNxUO8u+O5jZEQmaidHunuqUz5L9bq78jmc0s6O59UWISgJtOGY1fvr0DT366B+dOzQksOrAaxbh5H3rKd1gwsygV68qa8MLqUgBAstWo6/ciy59sf371AcwuSglUeh+pvUt6D6ymoe87Ym0flGI3odPtRV1LJ3KTQ0sYt3ZK9ytspvjZd0RarMUHxbd+4zEhBTabE+117aHFq7sDZtEHjykBosLz5GS70a6dY5BgTIAJgLu9EUguDO45HU3ScwQroJG/p2zAfZXRDjMAT3uD4ufci88Ds6cTHqMtuMdrkJA3HcbNr8LTUAEk5/b7WGNXC2BOhFen70WwYuWYGOzvZ7JdI0RRxD3vbMcnu2phNRnw7JUzMSpLndUtRZlSlbWaM9s3BOa1x24bJnlue2XDIGbTKJDfY60n21OG0Ea+u7pf2+8BAMwaKVe2N8LnE2EwhJY4EkUR9e3SCWY6K9uJKA6IaaOlauv2OiApK3K/qEmqYIvpNvKpw4HEbKmVfCSS7Y3+ZLsWq7rzpkpfq7cCI+cP/nW8Hn/79KLwbFe0WRKkzzPUue1eD9ByKLY7PdCQvfbaa9iwYQPWrj16PEV1dTUsFgtSU1N7fT8nJwfV1dWBx/RMtMs/l3/Wl4ceegj33XffUd9fuXIlEhKif66/atWqaG9CWFW2A4AJ5YdbsGLFipCee6DSAMCA/bt3YEXj9khsXkxKEIEcuxE1HW787PlP0NwuABCwed23qIqft6GXMUYB62DE6v1SdzZXR2vI8aQlxQLwmcGIbw80YtGfPsU1xV5k2o5+3L5y6d/Ige93YUXLzrD87ljZBxk8RgACVn7+NcpTQ5vb/v1+6X2p2L8HK5zfR2T74lWsxAcR0Hc8Ztc1I9/mwuGy6pCOE1Z3E84AsG7rbtSU9/28+qp6AMDGHRuxx7BnUNustsSuKpwG4NvPV6E+uSKo5+Q3fotZAFZ+vhoeoz2i2xcpSvsqg8+FswFs/u4rVO4d+Nhi8nZgMYCN2/fg0CF9nneYPQlYCAN2/+dB7Ms+s9/HzirbC5OvC2t0fA4WimgfEzs6gsuLMtmuEa98V45Xvi2HIACPXTxN1fk38vzwsvoOiKIY8XldPp8YaCNfMiw1or9rKArTpBtElY3hSba3dLnR4J/Prac28qHGjDy3vihd2+8BAEzMdyDBYkRzpxvf17aiONcR0vNbujxwe6UTkowYHKdARBRuolxl3bA/8sl2wQA48iP3O4ZKECI7t73hAJCYpc2WdRljAZMNqN4ytGR7SyUgerW54EBJ9nipsj0ULQel9yGWF5/QkFRUVODmm2/GqlWrYLP1kUWKkLvvvhu33XZb4M8tLS0YNmwYFixYAIcjtPPicHK73Vi1ahVOP/10mM36aftb3+bEI1s+R5tHwOkLz4DZGPzUwBcPfQc0NWHuzBKcOan/Shu9sY+qxfWvbMJXtSY4vT4AwIJTTkB+Wny27pzf5cZbv/scTo/0XgzPy8KiRdOjvFWRdfKhFlz78kbUtDjx1Pd2PH1pCaYf0WXxjcPrgYZ6zCqZikUlQzt/jLV90CvVa3HoQCPGTS7Bosmh/ft/75VNQF0tZkydhEWzuWgvHGItPii+9RePzUI9sOFlJApeLFq0KPgXbdgHbANmHncSxKLj+3zIXt9eOOHECaefgNwSjZyXtNUCO+/CnJLxEI/pP5EqEzY1AKXAgsXnAAZtdXcNZl8lbrsB08aNxJRZQcRHSxWwBSg5dh6mjTlt4MdrlOB6HxObtmHcoif6fZzxlX8A1rzQ/m3pUKwcE+UObQNhsl0DPF4f/vLZPgDAnQvH4YxJear+/oJUOwwC0On24nCrE9mOyN6g2Xe4Da1dHtjNRhTnxu4N4EBle1N4Kv7L/VXtmUkWzc+IS/VXtru8PnS4vCHN7yqXW+lnRr/aZajMRgNmFKXhyz11WHugIeRku7z4Islq0nxLfSKioMgVxg37geERbGndXAEk5wPGGL+BVTgT+PKPgM8b/ovvxgPaTTIbTUDOpKHPbW8slb5q9X3oS1YxsPm10J7T7K+8SGGyXa/Wr1+P2tpaTJ/enTDzer344osv8OSTT+Kjjz6Cy+VCU1NTr+r2mpoa5OZKNzhzc3Px3Xff9XrdmpqawM/6YrVaYbUePQrJbDbHRAIhVrYjXLJTTDAbBbi9Ipq6fMhPDX4MVYdLSqw6Eqy6ek+CccbkfMwoKsP6ssbA91ITbXH3PsjSzWYsnJiLdzYfAgCkJFh0/15MK8rA2zfOw4//uRbbD7Xg8ufW4dELpmLJ1O6keqdb/jcSvvcjVvZBaQnSvqLV5Qt5ezrc0sz2lDjcd0RarMQHEdB3PNqy/B2POhphMpmCL7TySkVrpoRUQCHGXa3S/dDE9ETt/DtIygAAmDwdin+vo3i7AHMCzFb1FsOGW7/7KqsDRk8bjMG8H74uAIApISX490+Lpl0C/GsZzA17gJwJyo9ztwMpBTDo+b0IQbSPicH+7uCXOlPUrNxRg4NNnUhPtOBHx6s/V9NiMqDAn1iW52lHkjyvfUphCkwhrMZX2zD/LPuKMLWRLw20T9d+RbfdbITF/9mF2kpefh9G6OB9AIBZI6QuFN8eaAj5ufVtUgv5DLaQJ6J4YUkEkvOk1e6R1FShjSrewplSW/3Du8P/2o2lQJoG57XL8qaEJ9kuGIAUHVViZU8AWg9J8+yD1SQn24ObLUjac+qpp2Lr1q3YtGlT4L+ZM2di2bJlgf83m8345JNPAs/ZvXs3ysvLMXfuXADA3LlzsXXrVtTW1gYes2rVKjgcDkyY0M+NIlKNwSAgO1m6WVvT0hXSc9td0qxyrS/6HgxBEHD3mcXdf4YIe5wvdF46vSDw/8m2+IiJ3BQb/n3tXJw2Pgcujw83vboRj3+yB6IodZrrcElJZbtFf++HXCzR5F/sH4o2p/S+hFJgQUT6YM2Wku1mYyfcHSHc+3W2+V+g7wI70ScGku1WR/ALB6POZAUMZsDZGvxzXG3SPRC9sjmAruAqguHyx4VF552Fxi4A7GnAlgEWyDvb9P9e6FDsZjIp4O9fSTM1lx07PGrVrXJL79K69oj/ro0V0ory6UWxO68d6K5sP9TUCa8vtLlWfQnMa0/XfkW3IAjdc9s7Qrtgk9+H4Tp4HwBgdmBue0PgQj1YdW3Se8cW8kQUV9JHS5XtkdRUro351PklUjL44Lrwv3bDASBdy8n2qUDd94BrCAtBG0sBRyFg0tFxNtufMAplgUZTuTRSwKKPcy86WnJyMiZNmtTrv8TERGRkZGDSpElISUnBj3/8Y9x222347LPPsH79elx11VWYO3cu5syZAwBYsGABJkyYgMsvvxybN2/GRx99hF/+8pe48cYb+6xep+jI9t+UDjXZ3tblT7bHSWL1SDNHpOP0CVLSwGZExEfnxbr5Y7OQnSzFUrItfiqqEq0mPHP5DPzPPOn86I+rvsft/94Mp8eLDv+ClESL/hZiBO7dhFgoAQDtTv/7YtXf+0JE/TOlSZXcNlsXOutDKERz9Z9sd7V130fWVLJdEPzJ5ebgn+PUebLd6gh+8UEg2a7j9wOQ7j1MXApseV3qYKjE1QZYmWzXGibbY9ymiiasL2uE2Sjg8jlFUduOogzp5pucCI2kDWVNAGJ7XjsA5DhsMBkEeHxiyDcz+lKmo8p2AEjzX7A1h7C6sffcen3c8J02LBVmo4CaFmegRX6w6tvlynYNnVwSEQ1V+sjIJ9ubK7RRzWxNliqVwz233dUBtFVrvLJ9KiD6gJrtg3+NxlIgLXrn1xGRMVZaoHE4hLntzeXa+PdAEfWnP/0JZ511Fs477zyccMIJyM3NxZtvvhn4udFoxHvvvQej0Yi5c+fisssuwxVXXIH7778/iltNR8p1yJXtzpCe1yYnzHRYtRusu84oRpLVhMLEoS+k1zqjQcCP/QnnqYWp0d0YlRkNAn551gQ8eO4kGA0C3tx4EJc/+10gEW3XYbI91S4tOmwKpTLVT062x2NXDKJ4J9hTAQA2mxMdoeQL5OSrQrLd2SqdwxhMBhi1tpDH6gCcQVZyA4CrHbDE7gjdIbOF8H64/AWeCnGhK1MvlrrRlX6p/Bhna3y8FzrDs6EYJ1e1nz01P+Kz0vsjt/SOdBv51i43vq+VDrolw2O7st1oEJCfakd5QwcqGzuRn2of0uuVypXtOkkyyxdsjSFcsPWcW6+XFfQ2sxFTC1OxrqwR3x1oCGkxRT0r24koHqWPAna8A4iitDo83DwuoLVKG23kAamVfMV3Az8uFPKsci1XtmdPAAwmoHozMGzW4F6jsQzImRje7Yo2s036N1S7K/jnNFVoo9MDhdV///vfXn+22Wx46qmn8NRTTyk+p6ioCCtWrIjwltFQ5PjvGVSHsBjc4/XB6ZHmUcdzwmxMdhI+u20+vvh0VbQ3JSZcc8IonDejMG6vRZcdW4RhaQm48eUN+K60eyScHhekyG3kmztDbyPfXdmuv/eFiAZgTYEoCrDZnKFVtjtbAcEImPrOczj9CwatDqv2Os1Yk9lGvidrKG3k/cl2Pb8fssJZ0jX75n8Bo046+uei6I8NVrZrDSvbY9ihpk6s2FoFAFGZ1d7T8EBle2TbyG+uaIYoAsPS7chKjv1q3mHpUoK9snHoixDKdZZs725FFvwFm95ayMtm+VvJfxfi3HbObCeiuJQxGnA2Ax2h7TOD1nJQqojWSnKxcBZQuzP4i9RgNEqLOTVd2W6yAlnjhza3XY+V7QCQVRxaZXtTuXYWnxBRv3Icoc9sb3d2t7CM94RZaoIZJt4lAyC10s9M0mCiI4xOOCYL/7nhuMAIQQBI0GVluzwCMLTKdlEU0e6fZa/HRQhENACDAW6PDXZ7FzobQky2W5MUF9bL89otyRq8F2pLCe26Xe+twkOp9He2AhAAs75yAn0SBGDKRcDOd/oei+dxAj4PK9s1iJcRMeyFNWXw+kQcOzIdkwpSorotgcr2CLeR31guzWsvGRbbVe2ywlTpAFARyklFHzpd3kD1wQidtZEP5YKt1L+YQy/vgUye295zRXww6trlyvbYX3hCRBQ26aOkr5FqJd9cIX1N0UhysWAmABE4tDF8r9lwQLqITcoO32tGQ97UwSfbu5qBzgZtLzhQkj0++Mp2nw9ortTOvwci6lfOIGa2t/lnUVuMBliYaSbq5ZicZCy/8XicPC4LJ4/L0kRRSKgGO7Pd6fHB65PGLnBmO1F8cokJobeRd7VJSVgFPSvbNWdQbeT1dQ+8F1uIle0W5UUYujPlQunfwq73j/5ZYH69jhdi6BSvpGJUh8uDV78rB4DArKxokiuNmzvdaOoIvbVUsDZXNgEASoanRux3hJO8wnmole3yLO9kmynQwkvrUhPkuV+hVLZLyfbhOqnul80oSoMgSItVQrnx1SC3kWdlOxHFEzn5Galke5OcbC+MzOuHW+Yx0kV7OOe2Nx4A0kZo/0I2b4pU9e8ZxLlpY5n0NW1EWDcpJmQVA23VQGfjwI9tqwZ8bla2E+nEYGa2d7eBZrKMqC+ZSVY8d9VsPHfVbF1W+g92Znubf98BsLKdKF55kTS4NvL9JBE1nWwPJbkMAE6dtwoPZfGB3lvqHyl9FDDsWGDLa0f/TB5FoOeuBzrFZHuM+s/6SjR3ulGUkYBTx+dEe3NgtxgDq+RLI1TdLooiNlc2AwCmFKZG5HeEW2GgjfzQKtvLelR06+XiLWUQrcjkzgl6q2x32MyYkCet2gyllXx9u3SCmZmkwRNMIqLBsiYBSTlAw77IvH5TufT65r5nxMUcgwEomAFUrgvfazaW6qOiO28q4HUBh0OYTy6T59brMdmePUH6+v3KgR8rLz7RylgFIupXtpxsbw5+gW9rl5QwS7IxWUYUj9ISu2e2i6IY9PPkhToJFiMMBn3cxyKi0HiNybDZukKrbHe29dse29nqT7ZrsZNIyDPb2/WdbLc5gn8/9N5Svy9TLgL2fQq01vT+fqCynW3ktYbJ9hjk84n4x9elAICrjhsBY4yctBYFWslHZm57TYsTh1udMBqEQGIy1hWmSRXYlU1DW4BQprN57QCQJle2h9CKTI/vg0xuJb82hFby9axsJ6J4lT46sm3kUzSWWCycJVW2h3ADtF8NB4B0HSTbcyYBEAbXSr6xVLqxkZAR7q2KvuzxwIQfAO/8BNizqv/HBsYqaOzfBBH1KTdFSra3Oj2BRNhAApXtrEwliktyZbvbK6LDP4M9GG2BrhjcdxDFK9HiGERle0u/SVVNV7aH3Ea+Vd/V3FZ/st3nG/ixem+p35eJ5wIGE7Dtjd7fd/qT7fG2+EAHmGyPQZ/trsWBunYk20y4YGbs3Pga4U+ARmpu+xZ/C/mx2UmwW7TRwm6YP9l+qKkLHm8QBw4FZQ3SAgY9JZlTAzPbg2vt2uXunltfpLPKdgCYPUJKtn+zvz6ox3t9Ihr87116IpPtRBRn0kdFsI18ufZaZhfOBDrququxh8Lnld4DPVR0W5OAjDFA9ZbQn9tYqo9W+n0RBGDps8CY04DXlkmr5ZU0lQG2VKnqgIg0L8lqQqL/WjrY8VVysj2JCTOiuGQzG2AxSbeHQymWaHdKiXnuO4jil2jzJ9sbQki2uwaobPcn2y0ODd4LDbWNvKtd3wlVmwOAKC0qGIjeW+r3JSEdGLsA2PKv3t+XuwHE2/uhA0y2x6B/fH0AAHDxrGExtUJUToCWRqiyfetBuYV8SkRePxKyk60wGwV4fWIgUTwY3RXd+kkyp4bYRr7n3Po0ncyt72nOqAwYDQK+r2kLqjtEY4crUMCYnqDBE0wioqFIHxnhZHvsLGYMSsFM6evB9UN/reZKaUa3HirbAamV/GAq25vK9LHgQInJAlzwPDDqRODVS4ADX/T9uKYK7f17IKJ+5aSENred1alE8U0QhB73b4IrlgB6dMWwaqNYhojCT0hIG+TMduVku6tV2g9pt418S/Ad6fSeYJYXVQSzAEHvLfWVTL1Yup9R22M0nosz27WKyfYYs7OqBV/vrYdBAK48bkS0N6cXueq6PGKV7VKyfbJG5rUDgMEgoCB16HPb5QUMRen6qWxPkSvbg1wZXVqnv7n1PaUlWjB3lNSqdsXW6gEfL7eQT0sww2TkrpqI4kz6KKCzEegIfvRGUHxeoOWg9lpmJ2ZI70nl2qG/VqO0qFMXM9sBIG8KUL1N+mxD0VgKpBZFZJNihskKXPgiUHQc8MpFQNnqox/TVK7/94EozuQky8l2VrYTUXDkzoTNQRZLAEC7iyMoiOKdMSkddnuYZ7ZrvY08xO6Z2/3xugGvU98JZqu/oLIziPs6em+pr2TsAqnT3JbXur8nt5HXc2zoFDM4MeYfX0k3QM+clBeYBx4ritLlyvbwJ9tFUeyubC/QTmU70GNu+yCT7S6PDwf9zx2RqZ+DijyzvbnDDTGIFX1yZftwHbXSP9KiyXkAgA+2VQ342Pp26eQyI0mDJ5dEREOVMVr6hD6njgAAVt1JREFU2nAgvK/bWgX4PNpMLspz24eq4QAgGLS34EBJ3lTA3Q7U7wv+OXpqpT8Qsw24+BVpFMHLFwAV3/X+eXOFfmKBiAB0z20POtnun9HM6lSi+CXPbQ+tjTy7YhDFO2NqRuiV7a42/c5st/lzGsFWcgP6TjBnjQPs6cA3Tw/8WL231FdisgKTlgJbXu+ebe9qA8wJgIHn5lrDZHsMOdzqxNubDgEAfjQv9qqN5CRoXZsz0GouXA42daKh3QWzUUBxnvLqtlg0LF2qbK9oGNwihINNnfCJ0pysbC22yFEgr4x2eX3ocA1cbSZX94/QcbJ9wcQcGASpi8NA8SJXtmdwXjsRxSO56jrcreSbKqSvWmybXTATqNoCuAc/tgaAVNGdUii1GdeD3CnS11BaybdWAV5XfCTbAcBsBy55TVqY8NJ5QKV/HIEoso08kQ5l+29OBzvmrC1Q2a6/UV5EFJxAZ8IQKtvbnPJCHSbbieKVOS0TJpMX7tYWiL5gW6e39FvZLreRtyRr8HrV6pC+OoNJtsdB9bLNAZz2a2Dzq0Dp1/0/Nl7byAPAlIuBlkqg7Cvpz3ofL6BjTLbHkJe+KYPL68O0YamYUZQW7c05SordjHR/4i/creS3+lvIF+c6YDVpa9XOUCvbu1vI66t9ut1shMXf/jyY1dGBufXp+l3Rl5lkxZxAK/n+q9vr25yB5xARxR2bA0jMCn+yvdmfbNdiJW/hTGnWevXWob1O4wH9tJAHgIR0IGU4UB1Csr2xVPoaL8l2QKqYuPRfQPZ44KVzgUObgPY6wNMJpA6P9tYRURjlOqTK9tpgZ7Z3ycl2bV2HE1H4BGa2d4Y+s537DqL4Zc7MBgDYrE50NQWxyE8UB0wkarqyXV5E4Gwd+LFyZbveq7lLLpe69L1/u9Q6X4mzTd9V/v0ZNlu6R7P5X9KfXa36jwudYrI9RnS5vXj52zIAwI9jsKpdNtw/U7zMnyAOly0H5Xnt2mohDwCFafLM9sEtQJAXLhTprKJbEIRAdXtTx8AXbGU6fR+OdKa/lfyKbf3Pba9vl96zdFa2E1G8Sh8NNITQGjwYTWVSGzMtXrjkTAJMtqG3km84AKTH7rnmoORNCa2yXU62x1uS2ZoMLHsdyBgDvHgO8P0H0ve1uPiEiBTJyfZgK9vZCpqIBjWz3cmZ7UTxzpgkFQvabM7g5ra7OwHRq9+Z7TZ/ZXswbeQDc7l1nmA2GIDFfwDqdgPf/p/y41xxXM0tCMCUi4AdbwOuDla2axiT7THinc2HUNfmQl6KDWdMyo325iiSW3yXDbJluhK5sl1r89qBnsn2IVa26zDJLF+wHRzgvXF5fIHFCnqaW9+XMybmwiAAmyua+l2gUSe3kU9isp2I4lT6qMi0kddqy2yTBcibNrRkuyhKiWY9VbYD0vtStVn6+wWjsRRIzpfmmccbWwpw2ZvSQoN3bpK+F2+LDoh0LtsR2sz2NibbieJeaoJ/ZntIbeS57yCKe/4Z5UHPbZdbp/eXbG/1J9u1OGo10Ea+eeDHxkMbeVneVGDW1cB/HwaaDx79c1H0J9v1nRPo15QLpYr23Suk96KffyMUu5hsjwGiKOIfXx0AAFx53AiYjbH7sRRlSDu9cFa2i6KILZVNALRZ2T7M30a+qrkTbq8v5Od3V3Tr74ByTI50YLjlX5uwfGMfB1M/vc6t70tWshWzR6YDAD7YqlzdLreRz2AbeSKKV5FItjdXaLuKt3AmULlu8M/vaJDmx+mxsr2rGWgqD+7xjWXx1UL+SPZU4PLlUrcEWwpgj73xVUQ0eLkp3W3kxSAWIbW75FbQTJgRxauUIbWR576DKG7ZUqUvtq7gKtvl9up6bSNvSQIghNZGPh6S7QBwyi8AcwLw0c+P/pnXBfg88Z1gzhgNFM4GtvyLle0aFrtZ3Tiyel89dlW3wm424pJZsV1ZIldfl9aFr7K9vKEDLV0eWEyGQHJWSzKTrLCYDPCJQHVzcNUDPckLF0boMNn+6yUTcfyYDHS4vLjlX5tw95tb0eX2HvW4Mp3OrVeyKNBKXnlue4O/jXwm28gTUbxKHwl01AOdTeF7zaZyILUofK+ntsKZQHM50FozuOc3Sos79VfZPlX6Gmwr+cZSIE3DcRAOCenAD98DrnxXaltHRLqR5V+s6/L60BhElWqbU7o+Y3UqUfzqHgEYSmU79x1Ecc9f2W63O9FeE0RhnpyE1msbeYNB+rsF00beFSdt5GW2FGDBA8CO5cDeT3r/LLDwIE7eCyVTL5Lem8YD2hx9SEy2x4K/+6vaL5hZiBT/CW6skquvy8PYRn6Lv4X8hDxHTFf1KzEYBBSmSq3kK0Kc2+71iahokNrs6LGNfGaSFS/86FjcfOpYCALw6nflOPcvq3GgrvcJWLzMa5edMTEXggBsLG/Coaa+2yzJM9tZ2U5EcStjtPQ1XNXtogg0V2q3jTwAFM6Svh4cZHV7g5xsHxGWzYkZyblAYjZQvSW4xzeW6u89GAx7avdCBSLSDYvJgEz/KKpgFoN3z2w3RnS7iCh2pdqlfUZzZ/DJ9g4X9x1Ecc9sh080wWZzonZ77cCPHyDZ7vP44OmU9i2WZI0WH1kdUje5gbjaAMEAmO2R36ZYMeVCoGgesOJOwOPs/n4QHQ/iwsSlUkwc3hXfVf4apr3Mps7sP9yGT3fVQhCAq46P/SojORl6qLmzzwrlwZBbyE/RYAt5WcEg57bXtHTB5fXBbBSQl6LPuaFGg4BbTz8GL/xoNjISLdhZ1YKzn/gK72/pruqOt2R7tsOGWUX+VvLb+m4lXxdoI6/Rk0sioqGSq6/DlWxvPwx4urTdRt5RACTnDX5ue2MpkJAB2Bxh3ayYMHwOsPZZYP/n/T/O1Q601zLZTkS6lp3sn9veOnCyva1LuqmdbI3thf9EFDmDqWwPLNSxsLKdKG4JArzGZNhsXajZFET3tQFmtsvz2qWHaLT4yOYIrrJdbhUeT13GBAFY/CjQVAasfrz7+/HWUl9JQjpwzELp/+P9vdAoJtujrKKxE9nJVpxanI2RmbHfKiMj0YIkqwmiCFSGWMWtRK5sn1yg3WR7oX9ue6jJ9jJ/h4BhaQkwabCqPxTzx2Zhxc3zMXtEOtqcHtz4ygbc+/Y2OD3e7jbyOmylr2TR5FwAwIqtR7eSd3q8aPXf9MpgG3kiilf2VCkxLFdjD5U8zzs1tkf29EsQhja3vfGA/lrIy85+DMibBrx4LrDmL1Ing740lklfmWwnIh2T57bXsLKdiIIwmJntbYF9B5PtRHHNngqbzYnqzdUQla7BZANUMMst5E02E4wWjZ6XpI0Avv8Q6Gru/3Gu9vhMqGaPB+bcAHzxqFQMAMRfS/3+TLlI+srKdk3Sd3ZPA048Jgtf3XUKfrt0crQ3JSiCIASqj+Vq5KHw+URsOygdfKYUpg759aJlWLq/sj3E9vpl9VJyfnicVHTnOGx45epjcf1JUmvgf64pwwX/twY7qqQVf/FS2Q4AZ/rntq8va0RVc+9FGvK8dpNBgMPGChMiimPpo4CGfeF5rUCyXcOV7QBQMBM4uAHwDaLDUMMBIF2nyfaEdGDZG8Cc64GP7gaWXw+4+1gEKV/QM9lORDqW459zWtPi7Pdxoiii3d8KOokJM6K4JVe2d7l9QXexbPfPbOe+gyi+mVLSYbM70VnfidaDrf0/2NkKCEbF1umuVul+qGZbyAPAGQ8BnU3AOz9VXgAOSAnmeE0un3iXVFjxwf9Kfw50PIjDxQdHOmah1NEwtSjaW0KDwGR7DLCYDIE2b1ogJ0RLw5Bs31/XjnaXF3azEaOztHuAGWxle7k/OT8ijiq6TUYD7jqjGM/9cBZSE8zYUtmMKn/FRTy9DzkOG2YWpQEAPjyilXx9m3RymZ5ogcEQR+2EiIiOlD46fG3kmyuk+Wm21PC8XrQUzgLc7UDtztCfq+fKdgAwmoCFDwJL/wZsfwt47kygubL3YxpLAZMNSMqJyiYSEakhxyHdX6gYoBtdp9sLn/8+MKtTieJXktUEo//eQ7Bz29kVg4gAQLCnIiVLOpmo3tz3qMwAZ6uUUFVonS5XtlsdGm0hD0iLupc8Dux4G1j3D+XHudriN7lsTQIW/hb4/gNg1wqppT4Qn5X+RzJZgZs3A9MuifaW0CAw2U4hk1t9l/tbfw/F1oNNAICJ+Q5Nt1EvDMxsD7Gy3Z9sH54ePxXdspOLs/H+TfNRMjwVAGA1GXQ7t17JIn91+5Gt5LvntWv45JKIKBzSR4Uv2d5ULs1r1/pMtPxpUjVAqHPb3Z1Aa5V+K9t7mnIh8KOPgLbDwF9PAsrWdP+sqUy6AaL1OCAi6seUQmlE29ubDgY6yfVFbgMtCECCVtu1EtGQCYKAVHvwc9vZFYOIAuypSE73AQCqNw2QbHe1SQvgFegi2Q4AE88BZv0P8OHdQPXWvh8Tr23kZRN+AIw+BfjgLqD9sPS9eH4/ejKyy61WaTe7SVEzIoyV7YF57YXandcOdCfbq1u64PL4gn5euf89HJEZf8l2AChIteNf18zFLxePx58umqbpBReDcaZ/bvu6skbUtHTPU5TbyGcmabhtEhFROKSPki68ulqG/lpNFdpvIQ9IreZyJoY+tz3e2qfnTwOu+S+QeQzwz7OAtX+Xvt9YypZsRKR7J4/LxhkTc+H2irj5tY3odPXdFlpuA51oMUHgIiSiuJaSICfbB57bzq4YRBRgS0FCkrTfqNlc0/9jnW39JlSdrf5ke7LGk+0AsOBB6Vr09R92V2735IzjNvKAtNJz0aNAWzXw1Z8Agxkw8T44aVt8ZbYoLIanSweCsnBUtlfK89q1nWzPSrLCajLAJ+Ko+dtKRBEo97edL4qj9ulHspgM+J/5owJV3vEkL8WO6cNTIYq9W8nLbeQzEnmSQURxLmOU9DUc1e3NFUDq8KG/TiwonBV6ZXvDAemrntvIHykpC7jibWDGVcD7twHv3ATU7YmfBQdEFLcEQcBDSycjO9mKfYfb8dAHfY8ekdtAszKViAKV7UG0kWdXDCIKsKXCapYKiAZOtrf22zq9q0l6HU3PbJeZbcAFzwMtVdK16JHz2139LzyICxmjgeNvke7VxPPCA9INJtspZHIVdmVjJzze4Ku4j+Tx+rD9kFSpNrkgNRybFjWCIPRoJR9csr3VDXS4vBCE7sp4ij/yIoP3e7SSr2tnG3kiIgBSZTsw9GS7KHa3kdeDwplA3W6gsyn45zSWAiY7kJwbqa2KTUYzsPhRYMkTwOZXgYZ9TLYTUVxIS7Tg0QumAgBeWFOGz3bVHvWY1i7OXCYiSWqClNxqDqKNfAe7YhCRzJYCkyhVbtfvqYervZ/uGK5WwJqs+OOaLVKyPn1Melg3MWoyxwBn/QnY8i9g0yu9f+ZqZ4IZAObfJnWe6ycuiLQi7Mn2L774AmeffTby8/MhCAKWL18e+Jnb7cZdd92FyZMnIzExEfn5+bjiiitw6NChXq/R0NCAZcuWweFwIDU1FT/+8Y/R1tZHuw2KipxkG6wmAzw+EYeaugZ+goJ9h9vR6fYiyWrCqEztH1wK0+RFCMG116/zv3X5KXZYTby5Ea/O9Cfb15Y2oLZVCgq5sj2dle1EFO/sadJ/Q022dzZKK8f10EYekCrbAeDQhuCf03ggvmeVT78C+OEKoGAmMPKEaG8NEZEqTjgmC1cdPwIAcOcbW1Df5uz1c1a2E5Gsu7J94DbycmU7q9qJCPZUCK4WOPLtgAjUbj16cV+As7Xfau6D3xwEABTOLQz3VkbP1IuAaZcBK+4Aand1f9/VxgQzAJjtwAXPASf/PNpbQjRkYU+2t7e3Y+rUqXjqqaeO+llHRwc2bNiAX/3qV9iwYQPefPNN7N69G0uWLOn1uGXLlmH79u1YtWoV3nvvPXzxxRe45pprwr2pNEgGg4Dh6fLc9sG3kt9S2QQAmFTggMGg/Ru/oVa213VJf+d4nddOkoJUO6YNk1rJf+RvJS/fBOPMdiIiSNXtcgv0wWqukL7qpY18+mjAlhra3PaGA0B6HLWQ78uwWcDVnwC5k6K9JUREqrnrjGIck5OEujYn7vrPVog92pi2u+TKdibbieJd98z2gSvbuVCHiAKGHwcAOP60vQCA6k3Vyo91tgFWR58/cne6A88dNlcni+Rli34vddl74yrA5S/SY2V7t4IZwLRLo70VREMW9mT7mWeeiQceeADnnnvuUT9LSUnBqlWrcOGFF2LcuHGYM2cOnnzySaxfvx7l5eUAgJ07d+LDDz/Es88+i2OPPRbz5s3DE088gddee+2oCniKHnnGeFlDcFXcfdl6UJ7XnhqOTYq6Yf4FCBVBvieH/cn24ek8sMa7RZOllr5yK/n6dnlmO9vIExEhfbTU+nsomqTzTKToJNluMEit5EOZ2954IL7mtRMREQDAZjbizxeVwGI04OOdNXhtbUXgZ3J1KpPtRJRqlxb7BzOznQt1iCgg6xhg6sWYOuIjmExuVG/uL9muPLO9an0VfB4fkvKS4BjWd0JesyyJ0vz2hv3Ah/8rfc/ZxmQ7kc5E/ayoubkZgiAgNTUVALBmzRqkpqZi5syZgcecdtppMBgM+Pbbb/tM4gOA0+mE09ndEq2lRZoF7na74XYPfKIYCfLvjdbvj6RhaTYAwIHa1kH//TZXNAEAJuQm6eI9ykuWLkwqGjoG/Pu43e5AG/lhaVZd/P1p8E4vzsJvV+zCdwcaUNXYFqhsT7EZhhwbet4P0dAwNiiW9BePhtQiGPb/F54hxKqhoRQGkx0eSwqgk5g35JXAsO7v8LhcA7eG93lhaiyDL2U4fBr7+3NfRWqJhVhjnFOkTMh34M6F4/Dgip24/90dmDMqAyMzE1mdSkQBqf7K9mBmtrfJM9utbCNPRABO+l+YN7+O2bM3oXxTPwu8+2mdXvlNJQCgcE4hBD2OPsuZAJz5e+Ddm6SxZq62flvqE5H2RPWKqqurC3fddRcuueQSOBzSiqXq6mpkZ2f3epzJZEJ6ejqqq5VXRj300EO47777jvr+ypUrkZAQ3Tbdq1atiurvj4TWagGAEWt3HsAKMfRqM48P2H7QCEBA/Z4NWFEx4FNiXlkrAJiwt7oRK1asGPDxdV3SRUndgV1Y0bIzshtHMW94ohHl7QL++O9PUdtiACBg69rVOLQ1PK+vx/0QhQdjg2JJX/FY2NCCGe21+OjdN+E12gb1upMqv0S2MRWffvDBUDcxZqS3WTC/swG7/3kT9mWf2e9j7a46LPC58d2eWtTWDnyOEou4ryK1RDPWOjoG3zWMaCA/njcSn+2uxep99bjlX5vwxnVzAwkzJtuJSE62BzOznQt1iKiXtBFwjrkI8zrfwF+enQ6f1weDsY+Gys4WxQRzINmup3ntR5p+BXDgC+CdmwDRy2Q7kc5E7azI7XbjwgsvhCiKePrpp4f8enfffTduu+22wJ9bWlowbNgwLFiwIJDIV5vb7caqVatw+umnw2w2R2UbIiV5bx3eOLABXeZkLFp0fMjP336oBZ5vv4HDZsLl556uixVr9W1O/HHb52hxCzh1wRmwmpSnNLjdbtz93acAgHNPn4fi3L5X9VH8qEw+gEdW7sFudxrcPqkzx3lnLUCCZWi7aT3vh2hoGBsUS/qLR+FgNvD8M1g4ayyQO3lQr298/TUgeTwWLVoUjs2NEYvg/bQVE9c8geLjFkE8RjnhLpR+CWwHZi64AMgYo+I2Dh33VaSWWIg1uTsbUSQYDAL+cOFULPzTF9hc0YQnPtnTozqVCTOieJdiD31mO/cdRCSznvVLeHf+C7OmfoPGfY3IOCaj9wNE0T+z/eh74KIoonJNd2W7bgkCcNafgEMbpJbyCi31iUibonJWJCfay8rK8Omnn/ZKhufm5qK2trbX4z0eDxoaGpCbm6v4mlarFVbr0fONzWZz1G/MxcI2hNvobOkzK2/ohNFogsEQWrJ8Z007AGleu8ViCfv2RUNOqgl2sxGdbi8Ot3swMlN57kpThxsdXuk9G53jgNnMC5R4d/bUQjyycg+2VEo3WW1mA1IS7WF7fT3uhyg8GBsUS/qMx+xx0s9ayoFh0wf3wi2VQMF0GPQW66ffBzQdgGn5dcCPPgTypvT9uJYKQDDAnDkaMGnzPeC+itQSzVhjjFOk5aXY8dulk/GTVzbiyc/2ojhXuq5PYitooriXmuCf2R5UG3km24moN0NqPraUz8ecOV9h//odyDhmfu8HuDulau4+ku0tlS1oPdQKwSggf0a+SlscJTaHNL/95QuAtH5a7hOR5iiX3kaInGjfs2cPPv74Y2Rk9F7lNHfuXDQ1NWH9+vWB73366afw+Xw49thj1d5cUlCQaofJIMDp8aG21Rny87dUNgMAJhemhHvTokYQBBSmScnRysb+W0CWN0g/z0qyDLlymfRheEYCJhV0LzzKSDx68RARUVyypwG2FGnl92A1VwCpw8O3TbHCYADO/SuQORZ45SKgparvxzUeAByFgEkfCxyJiGjwzpqSj6UlBfCJwI4qaaEvE2ZElOqvbG/uHDjZ3uHyd8WwcKEOEXWrsl8In09Awo4+uhi72qSvfbROl1vI507NhTkhDhaf5k0Fbt8tzXEnIt0Ie7K9ra0NmzZtwqZNmwAABw4cwKZNm1BeXg63243zzz8f69atw8svvwyv14vq6mpUV1fD5ZJmAo0fPx5nnHEGrr76anz33Xf4+uuv8ZOf/AQXX3wx8vN1vrJJQ0xGQyCxXFrfHvLztx5sAgBMKdBPsh1Aj2R7Z7+PK/Mn24syEiK+TaQdiybnBf4/M4kJESIiAFKrtfRRg0+2O1uBzkYgRYfJdgCwJACXvCa9T69eDLj6OC9rOACkj1B904iIKDbd94OJgWtXgMl2IgIykiwwCFLV+vqyxn4fy8p2IupLxtQxWL16JgqEj4Cmit4/dLZKX/uobA+0kNfzvPYj6WCkLhH1FvZk+7p161BSUoKSkhIAwG233YaSkhLcc889OHjwIN555x1UVlZi2rRpyMvLC/y3evXqwGu8/PLLKC4uxqmnnopFixZh3rx5+Otf/xruTaUhGp4htUkvCzHZ3uX2Yne1dIDVU2U7ABSmScnzgSvbpWT8sHQm26nbokndyfaMJFa2ExEFpI8efLJdvshPHRa+7Yk1jjwp4V63B3jrWsDn6/3zxgNsUUdERAHJNjP+eOE0yNPgkpkwI4p7yTYzzp8hJbp+/c52+Hyi4mPlme1J3HcQUQ+5U3Px7bfT4XRagM9/1/uHgWS7cmW7rue1E5Huhf2s6KSTToIoKp+Q9fczWXp6Ol555ZVwbhZFwIiMBHwBoKy+/8TykXZXt8LtFZGeaEFBavhmUscCuTrg+a9L8c7mQ4qPa2iXOjkUMdlOPYzITMSEPAd2VLUgI5GV7UREAemjgLKvB/fcZjnZrtPKdlneFOD8vwOvXgJ8cp80zx0ARBFoKAUmnhvVzSMiotgye2Q6HjhnMj7YVoXjx2ZGe3OIKAbcubAYH2ytxtaDzXh9fQUumtX3+XM7K9uJqA85U3LgclnwxeezsTDhFQjH3yyNPAO628hbHb2e43F6ULVBGofGZDsRaZnqM9tJP4b7E8WhJtu3HPTPay9IgaCzlikzitIAAO0uLyoaOhX/a3dK861mDE+N4tZSLLp8bhEAYLo/loiICFKyvbWq7xbpA2kqBwxmICk3/NsVa8adCSx4APj6z8DGl6TvdTYCzmYgbUQ0t4yIiGLQpccOx4s/PhYOWxzMRyWiAWUlW3HzaVJi7Pcf7lac38428kTUF6vDirRRaVi3bgq8lizgswe7fyhXth8xs716UzW8Ti8SMhOQNpr3QolIu3hWRIM2Qm4j3xDaje+tlU0AgCk6ayEPADNHpOOLO09GXbuz38d5PB5s+W415oxKV2nLSCsumT0cpxRnI4tt5ImIuqWPkr42lgI5E0N7blM5kFIAGOJkjencG4H6PcC7NwOpRdJMd4Bt5ImIiIhoQFceNwKvra3A3to2/Pnj73Hv2Uefe8sFJElWo9qbR0QxLndaLhr3N6JMuBijt/8ZmHcrkDcVcMqV7b1ntvdsIa+3ojwiii9xcteRImFEpr+yva4jqPEAsi2V3ZXtejQ8IwHTh6f1+1/JsFRk6auDPoVRjsMGg4EnmEREARmjpa/1+0J/bnOF/lvI9yQIwKJHgRHzgH9dBuz9RPp+OpPtRERERNQ/s9GAe8+eAAB4YU0Zvq9pPeoxgTbyFtZwEVFvOVNzAADbdk4BMsYAnz4g/cDZAggGwNz7hvjBbw4CAArmFKi6nURE4cZkOw1aYVoCBAFodXoCM8gH0unyYk+ttJJtSmFqBLeOiIiIdCMhQ5rt1rA/9Oc2lQMpcZRsBwCjGbjgn0BSttS6z54O2PS5yJGIiIiIwmv+2CwsnJgDr0/Efe9uP6rAhm3kiUhJ7jRpfFvVpsPAyb8A9qwEytZIM9utydLi8B4q1lQAAIbNHab6thIRhROT7TRoNrMReQ4bAKCsIbi57TuqWuD1ichKtiLHwTbZREREFARBkCqzB5VsrwBS4/DC3Z4KXPovKdEut+EnIiIiIgrCLxdPgMVkwNd76/HR9upeP+twSW3kmWwnoiPJle2Hdx6Gd+zZQO5k4JP7pZntlt4t5FurWtFc1gwIQP6s/GhsLhFR2DDZTkNSJM9trw9ubntgXntBCuewEBERUfDSR4WebHd3Au218dVGvqf0UcCPPgTO+mO0t4SIiIiINGRYegKuO0FasPmb93ai059gF0UR7S65sp0z24mot5ThKbCl2uBz+3B4Zz1wyj1A+Wpg53tHzWs/+K3UQj57UjasySzKIyJtY7KdhqQoQ5rbXloXXGW7PK+dLeSJiIgoJOmjQ0+2N1dKX1PisLJdljUOyJsa7a0gIiIiIo25/qQxyE+x4WBTJ575Yh8Aqapd7iqfxMp2IjqCIAiB6vbqzdXA2NOBYXOAwzsBa1Kvx8ot5AvnFqq+nURE4cZkOw2JXNleHmQb+S0H5WQ754YSERFRCNJHAS0HpWr1YDWVS1/jsY08EREREdEQ2C1G/GLxBADA0//dh8rGDrT757UbBMBuZmU7ER0tkGzfVC2NhDvtXukHlt7J9oPfSJXthXOYbCci7WOynYYkUNkeRBv5NqcH+w63AQAmFTDZTkRERCGQ5443lgb/nOYKQDAAjoKIbBIRERERkZ4tmpyLOaPS4fT48NsVO9HmT7YnWkwcD0lEfcqdlgsAqNlcI32j6Dhgwg+A7PGBx/g8Phxcy2Q7EekHk+00JHKyvax+4Mr27QebIYpAfooNWZzDQkRERKHIGC19rd8X/HOayoHkfMBojsw2ERERERHpmCAI+PWSiTAaBKzYWo1VO6TkWSJbyBORgtyp3cl2UZ47ccE/gTMeCjymZksNPJ0e2FJtyByXGY3NJCIKKybbaUjkNvIN7S488/k+1LZ2KT52q7+F/GS2kCciIqJQJWZJbefqdgf/nKYKtpAnIiIiIhqC4lwHLp9TBAD408ffAwASrWwhT0R9y5qQBYPJgM6GTrRUtkjfPKITRuU3lQCAgmMLIBjYJYOItI/JdhqSJKsJ4/McAICHPtiFuQ99ih8/vxYfbquCy+Pr9dgtlfK89lS1N5OIiIi0ThCA0acAm14BfN7gntNUDqQOj+x2ERERERHp3K2nHYO0BDO63NK9viRWthORApPNhMxiqVo90Er+CHKynS3kiUgvmGynIfv3tXPw23Mno2R4Krw+EZ/sqsV1L23AnIc+wX3vbseOQ9IKtkBlO+e1ExER0WAcfwtQvxfY9X5wj2+uAFJY2U5ERERENBQpCWbcubA48OcEC5PtRKRMnttevam6z59XrvEn2+cy2U5E+sBkOw1Zss2MS48djrduOB4f33YCrj1xFLKSrWhod+G5r0ux6PEvseixL3Ggrh0Ak+1EREQ0SIUzgBHzga//DMiz35R4XEBrFdvIExERERGFwUWzhmFSgdTdkjPbiag/OVNzAPRd2d5R14GGvQ0AgILZBapuFxFRpDDZTmE1JjsZd585Hmv+9xQ898NZWDQ5F2ajgB1VUnV7YZodaYmWKG8lERERadbxNwMH1wNlX/f/uJaDgOhjG3kiIiIiojAwGgQ8vHQKJuQ5cE5JfrQ3h4himJxs76uyvfJbqao9szgT9jS7qttFRBQpXIZIEWEyGnBycTZOLs5GY7sLb286iE93H8bSEq5WIyIioiEYcxqQPRH46s/AiHnKj2uukL6mMNlORERERBQOkwpSsOLm+dHeDCKKcblTpTbyDfsa4Gx1wppsDfws0EKe89qJSEdY2U4Rl5ZowQ+PH4kXfjQb5zDZTkREREMhCFJ1+95VQPU25cc1ycl2XsATERERERERqSUxOxFJeUmACNRure31s8pvOK+diPSHyXYiIiIi0pZJS4GUYcDqx5Uf01QOJOUAZpt620VEREREREREyJ0mVbdXb+5uJe/z+nDwu4MAWNlORPrCZDsRERERaYvRDMz9CbD1DSmp3pfmCikhT0RERERERESqkue212yuCXzv8I7DcLW6YEmyIGtiVrQ2jYgo7JhsJyIiIiLtmX45YHMAa57q++dN5UAq57UTERERERERqS1Q2b6pu7JdbiFfMLsABiNTU0SkH9yjEREREZH2WBKB2dcAG14AOhqO/nlTOZDKynYiIiIiIiIiteVOlZLttVtr4fP6APRIts8piNp2ERFFApPtRERERKRNs68BRBH47m+9v+/zAi0H2UaeiIiIiIiIKArSx6bDZDfB3eFGw15pgXzlGinZznntRKQ3TLYTERERkTYlZgIllwHfPQO4Orq/31oN+DxAalH0to2IKEY8/fTTmDJlChwOBxwOB+bOnYsPPvgg8POTTjoJgiD0+u+6667r9Rrl5eVYvHgxEhISkJ2djTvvvBMej0ftvwoRERERaYTBaEDO5O657V1NXajbWQeAyXYi0h8m24mIiIhIu477CdDZBGx6uft7TeXSV7aRJyJCYWEhHn74Yaxfvx7r1q3DKaecgh/84AfYvn174DFXX301qqqqAv/9/ve/D/zM6/Vi8eLFcLlcWL16Nf75z3/i+eefxz333BONvw4RERERaUTOVCnZXr2pGge/OwgASBudhsSsxGhuFhFR2DHZTkRERETalTYCmHgusPpxwOuvsmyukL6yjTwREc4++2wsWrQIY8eOxTHHHIMHH3wQSUlJ+OabbwKPSUhIQG5ubuA/h8MR+NnKlSuxY8cOvPTSS5g2bRrOPPNM/OY3v8FTTz0Fl8sVjb8SEREREWlA7jRpbnvN5hpUrJGu01nVTkR6ZIr2BhARERERDcnxNwHPnADsWA5MPl+qbLenA9akaG8ZEVFM8Xq9eP3119He3o65c+cGvv/yyy/jpZdeQm5uLs4++2z86le/QkJCAgBgzZo1mDx5MnJycgKPX7hwIa6//nps374dJSUlff4up9MJp9MZ+HNLSwsAwO12w+12R+KvFxT5d0dzGyg2MTZIDYwz6g/jg2JJOOIxY2IGAKBqUxW8Xi8AIG92HmNc47ivIjXESpwF+/uZbCciIiIibcubCow+Bfj6z8Ck86RkO1vIExEFbN26FXPnzkVXVxeSkpLw1ltvYcKECQCASy+9FEVFRcjPz8eWLVtw1113Yffu3XjzzTcBANXV1b0S7QACf66urlb8nQ899BDuu+++o76/cuXKQCI/mlatWhXtTaAYxdggNTDOqD+MD4olQ4lHb6eUYG871IaO+g4AQKm7FLUrasOybRRd3FeRGqIdZx0dHUE9jsl2IiIiItK+428BXlgC7PtUaiPPFvJERAHjxo3Dpk2b0NzcjDfeeANXXnklPv/8c0yYMAHXXHNN4HGTJ09GXl4eTj31VOzbtw+jR48e9O+8++67cdtttwX+3NLSgmHDhmHBggW92tSrze12Y9WqVTj99NNhNpujth0UexgbpAbGGfWH8UGxJFzxWDm6Eo37GuFz+mCym3Du9efCaDaGcUtJbdxXkRpiJc7kDm0DYbKdiIiIiLRv5AlA3jSpur2lChi7INpbREQUMywWC8aMGQMAmDFjBtauXYvHHnsMzzzzzFGPPfbYYwEAe/fuxejRo5Gbm4vvvvuu12NqamoAALm5uYq/02q1wmq1HvV9s9kcEzflYmU7KPYwNkgNjDPqD+ODYslQ4zF3Wi4a9zUCAPJn5sOWYAvXplGUcV9Faoh2nAX7uw0R3g4iIiIiosgTBGDeLcCBL4CGfWwjT0TUD5/P12ueek+bNm0CAOTl5QEA5s6di61bt6K2trvd56pVq+BwOAKt6ImIiIiI+pIztXscUeGcwihuCRFR5LCynYiIiIj0YfwSIG0k0HiAbeSJiPzuvvtunHnmmRg+fDhaW1vxyiuv4L///S8++ugj7Nu3D6+88goWLVqEjIwMbNmyBbfeeitOOOEETJkyBQCwYMECTJgwAZdffjl+//vfo7q6Gr/85S9x44039lm5TkREREQky53W3QmJyXYi0itWthMRERGRPhiMwHE/lf4/rSi620JEFCNqa2txxRVXYNy4cTj11FOxdu1afPTRRzj99NNhsVjw8ccfY8GCBSguLsbtt9+O8847D++++27g+UajEe+99x6MRiPmzp2Lyy67DFdccQXuv//+KP6tiIiIiEgLmGwnonjAynYiIiIi0o/pVwKOAiBnUrS3hIgoJvz9739X/NmwYcPw+eefD/gaRUVFWLFiRTg3i4iIiIjiQMqwFJzy4CkwmA1Izk+O9uYQEUUEk+1EREREpB9GEzDujGhvBREREREREREBmP/z+dHeBCKiiGIbeSIiIiIiIiIiIiIiIiIiohAx2U5ERERERERERERERERERBQiJtuJiIiIiIiIiIiIiIiIiIhCxGQ7ERERERERERERERERERFRiJhsJyIiIiIiIiIiIiIiIiIiChGT7URERERERERERERERERERCFisp2IiIiIiIiIiIiIiIiIiChETLYTERERERERERERERERERGFiMl2IiIiIiIiIiIiIiIiIiKiEDHZTkREREREREREREREREREFCIm24mIiIiIiIiIiIiIiIiIiELEZDsREREREREREREREREREVGImGwnIiIiIiIiIiIiIiIiIiIKEZPtREREREREREREREREREREIWKynYiIiIiIiIiIiIiIiIiIKESmaG9ApIiiCABoaWmJ2ja43W50dHSgpaUFZrM5attBsYexQWphrJESxgbFEsYjKWFskFpiIdbka1f5WlZvYuEaHYiNz5piE2OD1MA4o/4wPiiWMB5JCWOD1BArcRbsdbpuk+2tra0AgGHDhkV5S4iIiIiIiIiC09raipSUlGhvRtjxGp2IiIiIiIi0aKDrdEHU6bJ5n8+HQ4cOITk5GYIgRGUbWlpaMGzYMFRUVMDhcERlGyg2MTZILYw1UsLYoFjCeCQljA1SSyzEmiiKaG1tRX5+PgwG/U18i4VrdCA2PmuKTYwNUgPjjPrD+KBYwngkJYwNUkOsxFmw1+m6rWw3GAwoLCyM9mYAABwOB3c61CfGBqmFsUZKGBsUSxiPpISxQWqJdqzpsaJdFkvX6ED0P2uKXYwNUgPjjPrD+KBYwngkJYwNUkMsxFkw1+n6Wy5PREREREREREREREREREQUYUy2ExERERERERERERERERERhYjJ9giyWq249957YbVao70pFGMYG6QWxhopYWxQLGE8khLGBqmFsRY/+FmTEsYGqYFxRv1hfFAsYTySEsYGqUFrcSaIoihGeyOIiIiIiIiIiIiIiIiIiIi0hJXtREREREREREREREREREREIWKynYiIiIiIiIiIiIiIiIiIKERMthMREREREREREREREREREYWIyXYiIiIiIiIiIiIiIiIiIqIQMdlOREREREREREREREREREQUIibbNczn80V7EygGlZeXY8uWLdHeDIoD3AdRX7gPIiIi6o3nTPGDnzX1hefHpCbuh6gv3A8RERH1Fu5zJibbNejw4cNoa2uDwWDgSTT1smnTJowYMQK7du2K9qaQjnEfREq4D6JYxX0V9WX//v348MMPo70ZpGM8Z4of/KxJCc+PSS3cD5ES7ocoFnE/RX3hNTqpIVLnTEy2a8zOnTsxd+5c/OQnP0FzczNPoilg8+bNmD9/Pm677TZceOGFR/2ccULhwH0QKeE+iGLRoUOH0NTUBIPBAK/XG+3NoRiyadMmjB07FocOHYr2ppBO8ZwpfvCzJiU8Pya1cD9ESrgfoljDa3RSwmt0UkMkz5mYbNeQyspKXHXVVTCZTNi3bx/uvvtunkQTAGDbtm2YP38+rrvuOjz66KPw+XxYuXIlnnvuOSxfvhwAGCc0ZNwHkRLugygW7dq1C1OnTsWSJUtQV1cHo9HIi3kCIN10nDdvHm699Vb86Ec/Ourn3FfRUPGcKX7wsyYlPD8mtXA/REq4H6JYw2t0UsJrdFJDpM+ZmGzXkP/+97+w2+14/vnncdZZZ2Hjxo29AoIHp/j11FNPoa2tDcuWLUNXVxcWLFiAX/3qV7jjjjtw2223Yfbs2XC5XDAYDBBFMdqbSxrFfRAp4T6IYs2hQ4dwzTXXYNSoUQCAyy+/nBfzBEC6wXPCCSfgRz/6ER599FF4vV7861//wh//+Ec8/vjj8Hq9MBh4iURDw3Om+MHPmpTw/JjUwv0QKeF+iGIJr9FJCa/RSS2RPmcSRB5NNcPn8+H999/H2WefDQB4+OGH8fbbb6OkpAS//e1vkZqaCp/PF9j5eL1eGI3GaG4yqWjJkiX49ttvUVhYiIKCAjz88MNIS0vD/v37cfXVV6OgoACrVq2K9maShnEfRP3hPohiyfLly/HUU0/hnnvuwaFDh/Dkk08iKSkJL774IjIzM7l/imP33HMPHnjgAbz++us4+eSTceGFF6KjowO1tbVwuVywWCxYsWIFjjnmGIiiCEEQor3JpEE8Z4of/KypPzw/JjVwP0T94X6IYgWv0UkJr9FJLZE+Z2KyXcO8Xi8effRRLF++HCUlJXjooYeQkpKCxx57DDfffHO0N49U4vF4YDKZAAA/+MEPsG3bNqxcuRKjR48OPOaf//wn7rnnHnz88ccYO3ZstDaVdIb7IAK4D6LY9dFHH2HhwoUAgNdeew1PPfUUkpKS8MILLyArK4sX83Hs+uuvx6pVq2AymTBmzBg88cQTSE1NRUdHBy699FI0NTVhw4YNjA8KG54zxQ9+1gTw/Jiii/shArgfotjEa3RSwmt0ioZwnzMx2R7DKioqsH79erjdbpSUlGDMmDGBn8knTR6PB3/4wx8CAeHxePDss89i9+7dPFHSsc7OTtjt9sBqrp4n0R9++CFOOukk2Gy2wEqcN954A7/4xS/wxRdfICcnJ8pbT1rBfRAp4T6ItEYURfz73/8+avX8I488ggsvvBBFRUXR3kRSQc991fXXX49169bhxRdfRHFxceAxn3/+OZYuXYr33nsPc+fOjdamksbwnCl+8LMmJTw/JrVwP0RKuB8iLeE1OgG8RqfIUvucyRTuvwCFx5YtW7Bw4UKkp6ejra0NtbW1eOihh3DhhRciPz8/EAgmkwl33HEHRFHE/fffD6vVig0bNvDkWcd27NiBRYsW4fHHH8eSJUsgiiJMJlNg9d8ZZ5wReKzc8uLrr7/GqFGjkJiYGK3NJo3hPoiUcB9Esai0tBSff/45mpqaMH/+fEydOjWw4lmOzQsuuAAA8OSTT+KKK65Afn4+/vGPf2DJkiXR3HSKsLa2NiQlJQFAr33V008/jc8++wwjRowAgMBNSZfLhczMTN5wpKDxnCl+8LMmJTw/JrVwP0RKuB+iWMNrdFLCa3RSQ1TOmUSKOQ0NDWJJSYl41113iU1NTWJVVZX4yCOPiAkJCeLNN98s7tu3L/BYr9criqIo3nDDDaLD4RC3bdsWrc0mFZSVlYkTJ04Us7KyxMzMTPGdd94RRVEUfT5fn4/fvXu3eOedd4ppaWnili1b1NxU0jDug0gJ90EUi7Zs2SJmZmaK06dPF8eNGyeaTCbxjjvuEDds2BB4jNvtFkVRitWXX35ZTExMFNPS0sSNGzdGaatJDdu2bRPT0tLEZ599ttf3PR6P4nPuvPNO8aSTThIbGxsjvHWkBzxnih/8rEkJz49JLdwPkRLuhyjW8BqdlPAandQQrXMmJttjUG1trVhcXCy+//77vb7/wgsviJmZmeLPfvYzsbOzM/D9N954Q7RYLL0OWKQ/LpdLvP/++8XzzjtP/PDDD8XrrrtOTElJ6XUS3fNEeuPGjeKNN94ojh49micqFBLug6gv3AdRLGppaRHnz58v3n777WJXV5coiqL4/PPPi8ccc4x48cUXi2vWrAk8tucJdGJiIm866lxFRYU4depUcfjw4aLFYhH//ve/9/v49evXi3feeaeYkpIibt68WaWtJK3jOVP84GdNfeH5MamJ+yHqC/dDFGt4jU5KeI1OaonWOROT7THG5/OJ+/btE3NycsQ333xTFEUxcGASRVH8xz/+IQqCIK5YsaLX8yorK1XdToqOL774QnzxxRdFUZRWrh55Et1Te3u7uGbNGsYGhYT7IOoP90EUa1pbW8UJEyYcdZH23nvvidOmTROvvPJKsaysLPD9lStXikVFReL69evV3lRSkcfjEZ966ilx6dKl4po1a8T77rtPFARB8WJ+37594q233ioWFxeLmzZtUnlrSat4zhQ/+FlTf3h+TGrgfoj6w/0QxRJeo1NfeI1OaonmOROT7THq6quvFgsKCsRDhw6JoiitVJRXIv7whz8UTzzxRLGzs1N0uVzR3EyKsv379x91Et3Z2Sl++eWXvXYiRKHiPoiCwX0QRZPP5xNramrEyZMni3/6059EUex9Av3WW2+JaWlp4v/93//1el5NTY2am0lRsmHDBvGNN94QRVEUnU6n+Otf/1rxYt7r9Yp79+4NHPOIQsFzpvjBz5qCwfNjiiTuhygY3A9RtPAanfrDa3RSUzTOmQzhHz1PQyGKIgDglltuwZgxY3DRRRfh0KFDMJvN8Hq9AICioiKIogibzQaz2RzNzaUokeNk5MiRuPPOO3HJJZfg8ssvx/Lly/Hzn/8c5557Ltra2qK8laRF3AdRMLgPolggCAKys7Nxzjnn4Be/+AX27NkDq9UKl8sFADjnnHNw/fXX45FHHkF7ezs8Hg8AIDs7O5qbTSopKSnBeeedBwCwWCy488478etf/xr/8z//g3/84x8AAKfTiffeew9VVVUYPXo08vLyornJpDE8Z4of/KwpGDw/pkjifoiCwf0QRRuv0ak/vEYnNUTznInJ9hgjCAIAYMKECbj99tvh8Xhw1llnYf/+/TCZTACA+vp6JCUlobOzMxA8FB98Ph8AKU7cbjcAYNSoUfjZz36GSy65BEuXLsVzzz2H999/HxkZGdHcVNIo7oOoP9wHUSyR9z933nknTjzxRJx88skoKyuDxWIJxOro0aORmpoKs9kc2IdRfEpISMDtt98euJh/9tlncdddd+HKK6+EwcBLIgodz5niBz9r6g/Pj0kN3A9Rf7gfoljBa3QKBa/RKRKiec7EPVqM8Xq9MBqNaGlpwdlnn420tDQ8+OCDmDRpEubNmwcA+Oabb/Dll1/CbrdHeWtJTXJsHD58GFlZWb1W3YwYMQKNjY1ISUnB119/jQkTJkRxS0nLuA8iJdwHUawRBAGiKCI5ORkPPfQQbr31VsyePRvLly/HpEmTkJycjK1bt8Jut8PlcsFisUR7k0lFPp8vcIEuiiIEQUBiYiLuuOMOiKKIa665BikpKVi5ciVXy9Og8JwpfvCzJiU8Pya1cD9ESrgfoljCa3TqD6/RSQ3RPGfiEpEY4nK5YDQaUVZWhrS0NPztb3/DvHnz8Pbbb+Oxxx5DSUkJjjvuOKxduxZTp06N9uaSinrGRkFBAZ566qnAz3w+H/7617/iww8/xCeffMKTZwqKKIpHrdziPoiAgWOD+yCKFV6vF4IgoL6+Hjk5OfjrX/+K0047DSeddBLmz5+P+fPn47nnnsMTTzyBpKSkaG8uqcjr9cJgMKCmpgY1NTWBlc0AYLVaUVZWhpSUFKxevRqzZs2K4paSVnk8Hp4zxQmeH5MSnh9TJPA6nZTwOp20gNfopITX6KSGaF+nCyJ7C6lu9+7deOGFF1BZWYmSkhKcfPLJgQ+3vLwcxx57LM4991w88cQTMBqNUd5aUlOwsfHkk0/2aqfyzTffICsrC6NHj47WppOG7Ny5E48//jgqKysxffp0nHLKKTjxxBMBcB8U74KNDe6DKNrkFdFlZWUYN24cfve73+Hmm28GACxfvhxlZWUAgMWLF2PMmDHR3FRSWc/YGD9+PB544AHcdtttAKSblK+//jpuuOEGfPTRR5gxY0aUt5Zi3b59+/DSSy9h//79mD17Ni6//HI4HA4AwKFDhzBjxgyeM+kEr9FJCa/RSS28TiclvE4nLeA1OinhNTqFW6xepzPZrrLt27dj3rx5OO2005Ceno4VK1YgJycHV199Na699lr84x//wN69e/Hggw8GVvjIbTVI3wYTG0Sh2rVrF+bMmYNTTz0VmZmZ+Pjjj5GdnY0zzjgD9957L5577jns2bOH+6A4NJjYIIq0qqoqNDY29lmJUV1djSlTpuC8887Dk08+yZuOcSbY2Hjqqad63XTctWsXEhMTMWzYMDU3lzRo69atOOOMMzBt2jQYDAZ8+OGH+OlPf4o//vGPEEURf/nLX1BdXY3777+f50wax2t0UsJrdFILr9NJCa/TKdbwGp2U8Bqd1BDL1+lMtquora0N5513HkpKSvDwww8DkFYgTps2DVarFXfffTduuummKG8lRQNjg9Tg9Xpx++23o76+Hi+++CIA4ODBg3jiiSfw3nvv4cILL8Q999wT5a2kaGBsUCzauXMnZs6ciVmzZuH//u//UFxcDKD7JPmtt97C999/j5/97Ge8sRRnGBsUaZWVlViwYAEWL16MRx55BACwcuVKnHvuufj6668xbdq0XjMHSbt4HUZKGBukFl6LkRLGBsUaXoeREsYGqSHWr9NNUfmtcUoQBDQ2NqKkpAQA0NnZieHDh+OUU05BU1MTXn31VYwbNw4LFy6M8paS2hgbpAaj0Yjy8nJ4vd7A9woKCnDbbbfBZrPhrbfeQnZ2Nq677roobiVFA2ODYs3hw4dx3XXXYcGCBfjuu+9w/fXX4y9/+QvGjx8fuDA755xzeJEWhxgbFGmiKOLdd99FUVER7rjjDgDS7LcpU6YgPz8fXV1dAMBEu07wOoyUMDZILbwWIyWMDYolvA4jJYwNUoMWrtN5h0AloiiitbUVFRUVqKqqAgDY7XZUVFRg165duPzyy9He3o633noryltKamNskBrkJiYzZsxAR0cHysvLAz/Lzs7G1VdfjeLiYixfvhxOpzNam0lRwNigWHTgwAGMHDkSv/71r7Fu3Trs3r0bN9xwA3bu3Bl4TM8LNTZqih+MDYo0QRBw7LHHoqSkBDk5OQAAk8mE3NxcmEymwPk6aR+vw0gJY4PUwmsxUsLYoFjD6zBSwtggNWjiOl0kVf3hD38QBUEQr776avGee+4Rk5KSxGuuuUYURVF87bXXxFGjRokNDQ2i1+uN8paS2hgbpIbvvvtOTEpKEv/3f/9X7OrqEkVRFH0+nyiKorhhwwZREARxzZo10dxEihLGBsWS5uZmcd26dYFjXmVlpZibmyuedNJJ4o4dOwKP83g80dpEihLGBkWSz+cLHPt6fk82YcIE8dVXXw38efny5eLWrVtV2z6KDF6HkRLGBqmF12KkhLFBsYLXYaSEsUGRppXrdLaRj6DS0lKsWbMGNTU1OOmkkzB27FjcdtttSExMxN/+9jdkZGTgl7/8Je666y4AQE1NDVJTU5GWlhblLadIY2yQGpqbm2EwGJCcnBxYNThr1iz89a9/xWWXXQa73Y5bbrkFDocDAJCWloaJEyfCbrdHc7NJBYwNinUOhwMzZswAALhcLhQUFGD9+vWYMWMGbrjhBvzlL3/B6NGj8ec//xkFBQVYtmxZlLeY1MLYoEjo67goEwQBHo8HBoMBdrsdqampAICf//zneOSRR7B3794obDENFq/DSAljg9TCazFSwtigWMbrMFLC2KBI0dp1OpPtEbJ161accsopGD9+PLZu3Ypnn30W48ePx1NPPYVrr70Wl156KSwWC6xWa+A5e/bswejRo9HV1QWr1co5FjrF2CA17NixAz/84Q+xbNkyXHXVVXA4HPD5fACASy65BO3t7bjmmmtQWVmJc889F5MmTcIzzzyD5uZmZGdnR3nrKZIYGxSLjjyB7nmcs1gs8Hg8yM/Px4YNGzB9+nT85Cc/QUZGBt555x1s2rQpehtOEcfYoEjr67h4JKPRCACBi/nf/OY3ePzxx7FmzRoUFRWpvck0SLwOIyWMDVILr8VICWODYg2vw0gJY4PUoMnrdNVr6eNAW1ubOG/ePPEnP/mJ2NnZKbrdbvGvf/2rOG/ePHHy5MliVVWVKIpioLXGzp07xVtuuUV0OBzili1bornpFGGMDVJDWVmZOGXKFDE9PV2cOHGi+Mwzz4jNzc2iKPZusbJixQpx1qxZYm5urjhu3DhxxIgR4oYNG6K12aQCxgbFou3bt4uzZs0S//znPwfisS9yy7HS0lJREAQxPT2dcalzjA2KtP6Oi32ZO3euOG7cONFqtYpr165VcUtpqHgdRkoYG6QWXouREsYGxRpeh5ESxgapQavX6Qb10/v619nZibq6Opx88smw2WwwmUy46qqrcP/998PhcOC8885DY2MjDAYDmpqasHLlSmzatAmff/45Jk+eHO3NpwhibFCk+Xw+rFq1CoWFhVizZg3mzJmDRx55BK+99hpaWlogCAJ8Ph98Ph/OPPNMvPvuu/j444/xz3/+E9988w1KSkqi/VegCGFsUCwqLy/HJZdcgn379uFvf/tbIB77YjQa0dnZiT/84Q9ITEzEl19+ybjUMcYGRdpAx0UAgVZ1Pp8Pra2tqKqqwt69e7Fu3TrMnDkzmptPIeJ1GClhbJAaeC1GShgbFGt4HUZKGBukBk1fp0ctza9jLpdLnDNnjnj77bf3+r7P5xPff/99cfbs2eJ9990XWJ1YV1cnNjQ0RGNTSWWMDVLD999/L77zzjuBP//4xz8Wx4wZIz7zzDNiU1OTKIpSZUbPFdIUHxgbFEu8Xq/47LPPiosWLRJ3797dKx77quQQRVHcs2ePOHv2bPHbb7+NxiaTShgbpJZgjoui2B1vn3zyCStZNYrXYaSEsUFq4bUYKWFsUKzgdRgpYWyQmrR6nc5kewR4vV7xjjvuEGfPni1+8cUXR/38mmuuEY8//nieJMUhxgZFS18nQS+88EK/LVgoPjA2KJqCPYGWdXV1iW1tbWpuIkUJY4Oipa/j4vPPP8/kmsbxOoyUMDYomngtRkoYGxQtvA4jJYwNiiYtXKcLouivuaewampqwvz585GUlIQnn3wS06ZNg9FoBAD8+9//xn333YevvvoKaWlpUd5SUhtjg9Tk9XoD8fU///M/+Pzzz3H77bdj3bp1WL58OdavX4+ioqIobyVFA2ODYpUcj3feeScuvvhiOBwOvPjii1iyZAlSUlKivXkURYwNiiQeF/WP12GkhLFBauMxh5QwNigW8TqMlDA2KNK0dFxksj0CXC4XLBYL6urqMHfuXGRlZeHWW2/FOeecA5PJhJtuugmbN2/Ghx9+iISEhGhvLqmIsUFq8Pl8MBgMgT+73W6YzWYAwNVXX42///3vSExMxOeff47p06dHazMpChgbFMu0dAJN6mJsUKTwuBg/eB1GShgbpBYec0gJY4NiFa/DSAljgyJJq8dFw8APof4cuVbB6/XCYrHg0KFDaGlpwdq1a5GUlITf/va3KCoqwsKFC/HSSy/h8ccf54WazjE2SA19xZnBYMDhw4exevVqAIDZbIbX6wUAJCYmIi0tDd9++21MHYwo/BgbpAU+ny/w/0ajEW63GwDw7LPP4qSTTsINN9yAf/3rX1i5ciUv1OIMY4PCjcfF+MHrMFLC2CC18JhDShgbFOt4HUZKGBsUCXo6LjLZPkgejwdAdzD4fD54PB4YjUaUlZVh1qxZeP/995Gamoq33noLjz/+OH7605/ioosuwtq1azFt2rQobj1FEmOD1DBQnE2bNg1btmwJPN5oNOLVV1/F448/jpUrV2LChAlR2W6KPMYGxSo9nUBTeDE2KJJ4XIwfvA4jJYwNUguPOaSEsUGxiNdhpISxQZGmx+Mi28gPws6dO/HEE0/g8OHDyM/Px8UXX4y5c+cCAA4ePIhx48bhsssuw9NPPw1RFHu1PCB9Y2yQGkKJM0EQAs9zOp2ora3FsGHDorXpFGGMDYpFHo8HJpMp0AbK5/PB5/PBZDKhrKwMxx13HH71q1/huuuuCzzn1VdfxbJly7B27VrMmDEjiltPkcTYoEjjcTF+8DqMlDA2SC085pASxgbFGl6HkRLGBqlBr8dFXkWEaPv27Tj++OMhiiKysrJQU1ODE044Ac8++yw6OjpQXV2NG2+8EX/5y18gCAIv1OIIY4PUEGqc9WS1WmP2YERDx9igWLRz507cdNNNuOCCC3DrrbdizZo1MBgMMJlMOHjwICZOnIizzz4b1157ba/nLV26FGVlZbxQ0zHGBkUaj4vxg9dhpISxQWrhMYeUMDYo1vA6jJQwNkgNej4usrI9BE6nE8uWLUN+fj4ef/xxAEBVVRVOOeUU7N+/H7/97W9x++23QxTFowKB9I2xQWpgnJESxgbFou3bt2P+/Pm46KKLIAgCGhoa8J///AdPP/00Lr30UuzcuRP//ve/8dBDD/HmdpxhbFCk8bgYP/hZkxLGBqmFsUZKGBsUa3gdRkoYG6QGvR8XTdHeAC1xu93Ys2cPTj/9dABSW428vDwcf/zxGDVqFO68804UFxdj8eLFUd5SUhtjg9TAOCMljA2KNU6nE/feey8uu+yyXifQmzdvxo033ojm5mbcfvvtmD59uiZPoGnwGBukBh4X4wc/a1LC2CC1MNZICWODYgmvw0gJY4PUovfjIpehhMBqtaKoqAhr165FS0tLYFbF22+/jVtuuQVXXnklHnroIXR0dER7U0lljA1SA+OMlDA2KNbIJ9ATJ04E0PsE+rTTTsOdd96J999/nxdqcYixQWrgcTF+8LMmJYwNUgtjjZQwNiiW8DqMlDA2SC16Py4y2R4En88HADCbzTj11FOxfft2nHXWWfj5z3+OiRMn4vzzz8fpp5+OhQsX4uDBg3C73VHeYlILY4PUwDgjJYwNilV6P4GmwWNsUCTxuBg/+FmTEsYGqYWxRkoYGxSLeB1GShgbFGnxclxkG/l+NDU1ITU1FQaDAR6PByaTCTfffDPS0tLw6aef4vvvv8eDDz6Im2++GYC0Y3I4HFHealIDY4PUwDgjJYwNilU+nw8GgyFwAv3aa6/hrLPOwrx58/D444/j8ssvx+mnn476+nr897//1ewJNIWOsUGRxONi/OBnTUoYG6QWxhopYWxQLOJ1GClhbFCkxdtxURBFUYz2RsSinTt3YvHixbjssstw//33AwBcLhcsFkvgMW63G2azOfDn66+/Hvv378fy5ctht9tV32ZSB2OD1MA4IyWMDYpF8gk0gMAJNAC88MIL+PTTT9HW1ob58+cHTqDfeust/PrXv8YXX3yBlJSUaG02qYCxQZHG42L84GdNShgbpBbGGilhbFCs4XUYKWFskBri8bjIyvY+VFRU4NJLL4XJZMJbb70Fk8mEe+65BxaLpdcOSP66evVqvPLKK3jllVfw5ZdfajIQKDiMDVID44yUMDYoFh15Am0ymQIn0FdccQWuuOKKo06gV65cidzc3F4n2aQ/jA2KNB4X4wc/a1LC2CC1MNZICWODYg2vw0gJY4PUEK/HRSbbjyCKIl599VXk5+fjlltuwddff41XX30VAHDPPffAZDLB6/XCaDRCEAT4fD7U1dVhw4YN+OKLLzBlypQo/w0oUhgbpAbGGSlhbFAsitcTaBoYY4MijcfF+MHPmpQwNkgtjDVSwtigWMPrMFLC2CA1xPNxkcn2IwiCgCuuuAI5OTk4/fTTMXXqVADAq6++ClEUce+998JoNAZmWhgMBixZsgQnn3wykpOTo7z1FEmMDVID44yUMDYo1sTzCTT1j7FBauBxMX7wsyYljA1SC2ONlDA2KJbwOoyUMDZILXF9XBRpQIcOHRLvvfdesbi4WPz1r38d+P5bb70lejyeKG4ZRRtjg9TAOCMljA2KtqqqKvH5558XRVEUa2pq+oxHr9fb6zktLS2qbiNFB2ODooHHxfjBz5qUMDZILYw1UsLYoGjidRgpYWxQtMTLcZGV7QCqqqpQUVGBxsZGnHbaaTAajQAAn88HQRCQl5eHa665BgDw2muvQRRFNDc347HHHkNlZSXy8/OjufkUQYwNUgPjjJQwNijW5ebm4sorrwQAZGdn49prrwUgxSMA3HvvvTAYDFi+fDnOPvtsGI1G7a9UpaAwNigSeFyMH/ysSQljg9TCWCMljA2KZbwOIyWMDYoUHhclcZ9s37JlC5YsWQKr1Yqamhrk5eXhnnvuwcKFC5Geng6fzwcAyM/Px7XXXgtRFHH//fcjNTUVa9eu1U0g0NEYG6QGxhkpYWxQLOIJNClhbFCk8bgYP/hZkxLGBqmFsUZKGBsUa3gdRkoYG6QGHhd7UK+IPvbU1taKxcXF4s9//nNx37594sGDB8WLLrpIHD9+vHjvvfeKtbW1oiiKos/nCzzn8ssvFx0Oh7h9+/ZobTapgLFBamCckRLGBsWizZs3i0VFReIxxxwjpqSkiMXFxeIrr7wi1tfXi6IotRuTY/LQoUPiPffcIwqCIKalpYnr1q2L5qZThDE2KNJ4XIwf/KxJCWOD1MJYIyWMDYo1vA4jJYwNUgOPi73FdbJ9+/bt4ogRI47agdx1113i5MmTxd///vdie3t74PvPPvusmJqaKm7YsEHtTSWVMTZIDYwzUsLYoFjDE2hSwtggNfC4GD/4WZMSxgaphbFGShgbFEt4HUZKGBukFh4XezNEu7I+mtxuNzweDzo6OgAAnZ2dAICHH34YJ598Mp5++mns3bs38PizzjoLGzZsQElJSVS2l9TD2CA1MM5ICWODYs3hw4fR1dWFpUuXYtSoUcjPz8drr72GJUuW4M0338Tzzz+Pjo4OCIIAAPj73/+Od999F//9738xYcKEKG89RRJjg9TA42L84GdNShgbpBbGGilhbFAs4XUYKWFskFp4XOxNEEVRjPZGRNPs2bORlJSETz/9FADgdDphtVoBALNmzcKYMWPw6quvwuv1BuZaUHxgbJAaGGekhLFBsWTz5s0466yz8Morr2D+/Pno7OyE3W4HANx888149913sXz5ckyZMgUAUFNTg46ODowcOTKam00qYGyQWnhcjB/8rEkJY4PUwlgjJYwNihW8DiMljA1SE4+L3eKqsr29vR2tra1oaWkJfO+ZZ57B9u3bcemllwIArFYrPB4PAOCEE05Ae3s7AOg+EOIdY4PUwDgjJYwNinVTp05FXl4e7r33XgCA3W6H0+kEADz22GPIyMjAQw89BADwer3IycnhhVqcYGxQJPC4GD/4WZMSxgaphbFGShgbFMt4HUZKGBsUKTwu9i9uku07duzA0qVLceKJJ2L8+PF4+eWXAQDjx4/HY489hlWrVuGCCy6A2+2GwSC9LbW1tUhMTITH40GcNwDQNcYGqYFxRkoYGxSLeAJNShgbFGk8LsYPftakhLFBamGskRLGBsUaXoeREsYGqYHHxYGZor0BatixYwdOOOEEXHHFFZg5cybWr1+Pq666ChMmTEBJSQmWLFmCxMRE3HDDDZgyZQqKi4thsVjw/vvv45tvvoHJFBdvU1xibJAaGGekhLFBsWjHjh249dZbcfjwYdTU1OD3v/89li1bFjiB/ulPf4oLLrgAr7zySuDCrOcJtNFoDMz+In1hbFCk8bgYP/hZkxLGBqmFsUZKGBsUa3gdRkoYG6QGHheDo/uZ7Q0NDbjkkktQXFyMxx57LPD9k08+GZMnT8bjjz8e+F5rayseeOABNDQ0wGaz4frrr8eECROisdmkAsYGqYFxRkoYGxSL+jqBfuKJJ/Dtt9+ipKQEHR0d+OSTT3DDDTcgKSnpqBPoSZMmRfuvQBHC2KBI43ExfvCzJiWMDVILY42UMDYo1vA6jJQwNkgNPC4GT/dLCtxuN5qamnD++ecDAHw+HwwGA0aOHImGhgYAgCiKEEURycnJ+N3vftfrcaRfjA1SA+OMlDA2KNY0NDTg1ltvxbJly/DHP/4RAHDppZdiw4YNeO6551BSUoKEhAScffbZOOmkk3qdQH/33XdxdQIdbxgbpAYeF+MHP2tSwtggtTDWSAljg2IJr8NICWOD1MLjYvB0n2zPycnBSy+9hLFjxwIAvF4vDAYDCgoKUFZWBgAQBAGCIKClpQUOhyPwPdI3xgapgXFGShgbFGt4Ak1KGBukBh4X4wc/a1LC2CC1MNZICWODYgmvw0gJY4PUwuNi8OLiX5YcCD6fD2azGYC0s6mtrQ085qGHHsKzzz4Lj8cDID6DIR4xNkgNjDNSwtigWCKfQM+fPx+AdAINAAUFBYGLMUEQYDAY0NLSEngeY1L/GBukFh4X4wc/a1LC2CC1MNZICWODYgWvw0gJY4PUxONicHRf2d6TwWCAKIqBD1re8dxzzz144IEHsHHjRphMcfWWkB9jg9TAOCMljA2KFcGeQFutVtx0000wmUxxeQIdjxgbpCYeF+MHP2tSwtggtTDWSAljg2IBr8NICWOD1MbjYv/i7m8uB4PJZMKwYcPw6KOP4ve//z3WrVuHqVOnRnvzKIoYG6QGxhkpYWxQLOEJNClhbJBaeFyMH/ysSQljg9TCWCMljA2KFbwOIyWMDVITj4vK4u5fmbyzMZvN+Nvf/gaHw4GvvvoK06dPj/KWUbQxNkgNjDNSwtigWMMTaFLC2CA18LgYP/hZkxLGBqmFsUZKGBsUS3gdRkoYG6QWHheVxcXM9r4sXLgQALB69WrMnDkzyltDsYSxQWpgnJESxgbFiiNPoB944AGeQBMAxgapi8fF+MHPmpQwNkgtjDVSwtigWMDrMFLC2CC18bh4NEEURTHaGxEt7e3tSExMjPZmUAxibJAaGGekhLFBsWTdunWYPXs2tm3bhgkTJkR7cyiGMDZILTwuxg9+1qSEsUFqYayREsYGxQpeh5ESxgapicfF3uI62U5EREREA+MJNClhbBAREREREamL12GkhLFBFB1MthMREREREREREREREREREYUobme2ExERERERERERERERERERDRaT7URERERERERERERERERERCFisp2IiIiIiIiIiIiIiIiIiChETLYTERERERERERERERERERGFiMl2IiIiIiIiIiIiIiIiIiKiEDHZTkREREREREREREREREREFCIm24mIiIiIiIiIiIiIiIiIiELEZDsREREREREREREREREREVGImGwnIiIiIiIiIiIiIiIiIiIK0f8Dkpyvo0Jlt8YAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_forecast(forecast_ts=forecast_ts, test_ts=test_ts, train_ts=new_ts, n_train_samples=HORIZON * 2)" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "a6805ace", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'segment_d': 18.20146757117957,\n", + " 'segment_b': 4.828671629496564,\n", + " 'segment_c': 25.23759225436336,\n", + " 'segment_a': 8.73107925541017}" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from etna.metrics import SMAPE\n", + "\n", + "smape = SMAPE()\n", + "smape(y_true=test_ts, y_pred=forecast_ts)" + ] + }, + { + "cell_type": "markdown", + "id": "d1b2a881", + "metadata": {}, + "source": [ + "Let's compare it with metrics of pipeline that was fitted on `new_ts`." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "48efd3e1", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB9sAAAPzCAYAAAAXr2wFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hc1bX38e/MqHfJtizJli333hvF2AaMGyFAIAmEG3AgOKElJJdww3tTgBRuSKMkIdTQQxJ6MW4Y22CMe+9Nkm01y+p12nn/OJqxZUm2yjRJv8/z8GDNnDlnz+hoZvZZe61lMQzDQERERERERERERERERERERFrNGuwBiIiIiIiIiIiIiIiIiIiIdDYKtouIiIiIiIiIiIiIiIiIiLSRgu0iIiIiIiIiIiIiIiIiIiJtpGC7iIiIiIiIiIiIiIiIiIhIGynYLiIiIiIiIiIiIiIiIiIi0kYKtouIiIiIiIiIiIiIiIiIiLSRgu0iIiIiIiIiIiIiIiIiIiJtpGC7iIiIiIiIiIiIiIiIiIhIGynYLiIiIiIiIiIiIiIiIiIi0kYKtouIiEiXlJ2djcVi4cUXXwz2UERERERERES6Dc98/A9/+EOwhyIiIuJ3CraLiIhISPjtb3/Lu+++G+xhiIiIiIiIiAiap4uIiLSGgu0iIiISEjSJFxEREREREQkdmqeLiIicn4LtIiIiIiIiIiIiIiIiIiIibaRgu4iISJBVVlZy7733kpWVRWRkJKmpqVxxxRVs2bLFu8369euZN28eiYmJxMTEMHPmTNauXdtkX6tWrWLy5MlERUUxaNAgnn76aR588EEsFkuj7SwWC3fffTf/+c9/GDlyJNHR0Vx44YXs3LkTgKeffprBgwcTFRXFrFmzyM7ObnKs1ozJc+xDhw6xcOFCkpKSSExM5Dvf+Q41NTWNxlNdXc1LL72ExWLBYrGwcOHCVr+GZWVlLFy4kMTERJKSkrjlllsoKytr9eNFREREREREPDRP7/g83ePPf/4z/fv3Jzo6mpkzZ7Jr164270NERCSUhQV7ACIiIt3d97//fd58803uvvtuRo4cyalTp/j888/Zu3cvEydOZOXKlcyfP59Jkybxy1/+EqvVyj/+8Q8uu+wyPvvsM6ZOnQrA1q1bmTdvHunp6Tz00EO4XC4efvhhevXq1exxP/vsM95//33uuusuAB555BG+8pWvcP/99/O3v/2NO++8k9LSUh599FFuvfVWVq5c6X1sa8fk8Y1vfIMBAwbwyCOPsGXLFp577jlSU1P53e9+B8Arr7zCd7/7XaZOncqiRYsAGDRoUKteP8MwuPrqq/n888/5/ve/z4gRI3jnnXe45ZZb2vaLEBEREREREUHzdOjYPN3j5ZdfprKykrvuuou6ujoef/xxLrvsMnbu3Env3r3btC8REZGQZYiIiEhQJSYmGnfddVez97ndbmPIkCHG3LlzDbfb7b29pqbGGDBggHHFFVd4b7vqqquMmJgY48SJE97bDh48aISFhRlnf+QDRmRkpHH06FHvbU8//bQBGGlpaUZFRYX39gceeMAAvNu2ZUy//OUvDcC49dZbGx3/2muvNXr06NHottjYWOOWW25p4VVq2bvvvmsAxqOPPuq9zel0GpdccokBGP/4xz/avE8RERERERHpvjRPN7V3nn706FEDMKKjo43jx497b1+/fr0BGD/60Y/avE8REZFQpTLyIiIiQZaUlMT69evJy8trct+2bds4ePAg3/rWtzh16hTFxcUUFxdTXV3N5Zdfzpo1a3C73bhcLlasWME111xDRkaG9/GDBw9m/vz5zR738ssvJysry/vztGnTALjuuuuIj49vcvuRI0faNKYzff/732/08yWXXMKpU6eoqKhowyvVvMWLFxMWFsYdd9zhvc1ms3HPPfd0eN8iIiIiIiLS/Wie7hvXXHMNffr08f48depUpk2bxuLFi312DBERkWBTGXkREZEge/TRR7nlllvIzMxk0qRJLFiwgJtvvpmBAwdy8OBBgHOWRC8vL6euro7a2loGDx7c5P7mbgPo169fo58TExMByMzMbPb20tJSgFaPKTk5ucVjee4rLS0lISGhxf20Rk5ODunp6cTFxTW6fdiwYR3ar4iIiIiIiHRPmqd3bJ7uMWTIkCa3DR06lH//+98+2b+IiEgoULBdREQkyL7xjW9wySWX8M4777Bs2TJ+//vf87vf/Y63337bu/L897//PePHj2/28XFxcdTV1bX5uDabrU23G4YB0OoxtWWfIiIiIiIiIqFC83QRERFpLQXbRUREQkB6ejp33nknd955J0VFRUycOJHf/OY3/PnPfwYgISGB2bNnt/j41NRUoqKiOHToUJP7mrutIwYNGtSqMbWVxWJp1+P69+/PJ598QlVVVaOLB/v37/fV0ERERERERKSb0Ty9/fN0D0/G/ZkOHDjQqFS+iIhIZ6ee7SIiIkHkcrkoLy9vdFtqaioZGRnU19czadIkBg0axB/+8AeqqqqaPP7kyZOAuSJ99uzZvPvuu416yh06dIiPP/7Yp2Nu7ZjaKjY2lrKysjY/bsGCBTidTp566invbS6XiyeffLJd4xAREREREZHuS/P009o7T/d49913OXHihPfnDRs2sH79+hZ71ouIiHRGymwXEREJosrKSvr27cv111/PuHHjiIuLY8WKFWzcuJE//vGPWK1WnnvuOebPn8+oUaP4zne+Q58+fThx4gSffvopCQkJfPDBBwA8+OCDLFu2jIsvvpg77rgDl8vFX/7yF0aPHs22bdt8Nua2jKktJk2axIoVK/jTn/5ERkYGAwYMYNq0aed93FVXXcXFF1/MT3/6U7Kzsxk5ciRvv/12k4sjIiIiIiIiIuejefpp7Z2newwePJjp06dzxx13UF9fz2OPPUaPHj24//772zwWERGRUKVgu4iISBDFxMRw5513smzZMm/vt8GDB/O3v/2NO+64A4BZs2axbt06fvWrX/GXv/yFqqoq0tLSmDZtGt/73ve8+5o0aRIff/wx9913Hz//+c/JzMzk4YcfZu/evezbt8+n427tmNriT3/6E4sWLeJnP/sZtbW13HLLLa2axFutVt5//33uvfdeXn31VSwWC1/96lf54x//yIQJE9o1FhEREREREemeNE8/rb3zdI+bb74Zq9XKY489RlFREVOnTuUvf/kL6enp7RqPiIhIKLIYhmEEexAiIiLiP9dccw27d+9utleaiIiIiIiIiASW5ukiIiJdh3q2i4iIdCG1tbWNfj548CCLFy9m1qxZwRmQiIiIiIiISDemebqIiEjXpsx2ERGRLiQ9PZ2FCxcycOBAcnJyeOqpp6ivr2fr1q0MGTIk2MNrE5fLxcmTJ8+5TVxcHHFxcQEakYiIiIiIiEjbaJ4uIiLStalnu4iISBcyb948/vnPf1JQUEBkZCQXXnghv/3tbzvdBB7g2LFjDBgw4Jzb/PKXv+TBBx8MzIBERERERERE2kjzdBERka5Nme0iIiISkurq6vj888/Puc3AgQMZOHBggEYkIiIiIiIi0n1pni4iItKUgu0iIiIiIiIiIiIiIiIiIiJtZA32AERERERERERERERERERERDqbLtuz3e12k5eXR3x8PBaLJdjDEREREREREWmRYRhUVlaSkZGB1dr11sVrji4iIiIiIiKdSWvn6V022J6Xl0dmZmawhyEiIiIiIiLSaseOHaNv377BHobPaY4uIiIiIiIindH55uldNtgeHx8PmC9AQkJCUMbgcDhYtmwZc+bMITw8PChjkNCkc0MCReeatETnhoQSnY/SEp0bEiihcK5VVFSQmZnpnct2NaEwR4fQ+F1LaNK5IYGg80zOReeHhBKdj9ISnRsSCKFynrV2nt5lg+2esnQJCQlBDbbHxMSQkJCgNx1pROeGBIrONWmJzg0JJTofpSU6NyRQQulc66ol1kNhjg6h9buW0KJzQwJB55mci84PCSU6H6UlOjckEELtPDvfPL3rNYITERERERERERERERERERHxMwXbRURERERERERERERERERE2kjBdhERERERERERERERERERkTbqsj3bW8MwDJxOJy6Xyy/7dzgchIWFUVdX57djdFU2m42wsLAu269QREREREREGvP3HB00T+8IzdNFRERERESa6rbBdrvdTn5+PjU1NX47hmEYpKWlcezYMU1G2yEmJob09HQiIiKCPRQRERERERHxo0DM0UHz9I7SPF1ERERERKSxbhlsd7vdHD16FJvNRkZGBhEREX6ZZLvdbqqqqoiLi8NqVcX+1jIMA7vdzsmTJzl69ChDhgzR6yciIiIiItJFBWqO7jmW5ultp3m6iIiIiIhI87plsN1ut+N2u8nMzCQmJsZvx3G73djtdqKiojQJbaPo6GjCw8PJycnxvoYiIiIiIiLS9QRqjg6ap3eE5ukiIiIiIiJNdeuZpSbWoU2/HxERERERke5Dc8DQp9+RiIiIiIhIY5oliYiIiIiIiIiIiIiIiIiItJGC7SIiIiIiIiIiIiIiIiIiIm2kYHs3lpWVxWOPPRbsYYiIiIiIiIh0e5qji4iIiIiIdD5hwR6AtM2sWbMYP368TybgGzduJDY2tuODEhEREREREemGNEcXERERERHp3hRs72IMw8DlchEWdv5fba9evQIwIhEREREREZHuSXN0ERERERGRrk1l5DEnvzV2p1/+q7W7znm/YRitHufChQtZvXo1jz/+OBaLBYvFwosvvojFYuHjjz9m0qRJREZG8vnnn3P48GGuvvpqevfuTVxcHFOmTGHFihWN9nd2iTqLxcJzzz3HtddeS0xMDEOGDOH999/31cssIkHw3rY8cquCPQoRERERkbbpDPN0zdFFRERERPxv+8vbyd+SH+xhiLRIme1ArcPFyF8sDcqx9zw8l5iI1v0aHn/8cQ4cOMDo0aN5+OGHAdi9ezcAP/3pT/nDH/7AwIEDSU5O5tixYyxYsIDf/OY3REZG8vLLL3PVVVexf/9++vXr1+IxHnroIR599FF+//vf8+STT3LTTTeRk5NDSkpKx5+siATU5pwS7ntrFymRNr4f7MGIiIiIiLRBZ5ina44uIiIiIuJfhTsKefeWd4lNjeVHx3+ELdwW7CGJNKHM9k4kMTGRiIgIYmJiSEtLIy0tDZvNfGN5+OGHueKKKxg0aBApKSmMGzeO733ve4wePZohQ4bwq1/9ikGDBp13FfzChQu58cYbGTx4ML/97W+pqqpiw4YNgXh6IuJj6w6fAqCk3kJxVX2QRyMiIiIi0rVoji4iIiIi4l9VhWbZ1uqiag59fCjIoxFpnjLbgehwG3senuvz/brdbiorKolPiMdqbX5dQ7SPVuFMnjy50c9VVVU8+OCDfPTRR+Tn5+N0OqmtrSU3N/ec+xk7dqz337GxsSQkJFBUVOSTMYpIYG3ILvX+e1deBenJcUEcjYiIiIhI63X2ebrm6CIiIiIiHeeodnj/vf2l7Qz76rAgjkakeQq2Y/ZBa20p97Zwu904I2zERIS1OIn3ldjY2EY/33fffSxfvpw//OEPDB48mOjoaK6//nrsdvs59xMeHt7oZ4vFgtvt9vl4RcS/XG6DLTmng+278yq5YlQQByQiIiIi0gadfZ6uObqIiIiISMfZq09/X97/wX5qTtUQ0yMmiCMSaUrB9k4mIiICl8t13u3Wrl3LwoULufbaawFzFX12drafRycioWJfQQVV9U7vz7vzKoI4GhERERGRrklzdBERERER/zkzs93tcLPrjV1MvWtqEEck0pR6tncyWVlZrF+/nuzsbIqLi1tc0T5kyBDefvtttm3bxvbt2/nWt76l1e8i3cjGoyUAJEWbmTC7FGwXEREREfE5zdFFRERERPzHk9lusVkAs5S8SKhRsL2Tue+++7DZbIwcOZJevXq12N/tT3/6E8nJyVx00UVcddVVzJ07l4kTJwZ4tCISLBsbSsh/fVIfAPLL6zhVVR/MIYmIiIiIdDmao4uIiIhIsLhdbtyurr2A05PZPvQrQ7GGWcnbmMfJvSeDPCqRxlRGvpMZOnQo69ata3TbwoULm2yXlZXFypUrG9121113Nfr57JJ1hmE02U9ZWVm7xikiwWMYhjezfdawnry76Sgn6yzsyqtg5tBeQR6diIiIiEjXoTm6iIiIiARDXVkdfx35V3qN7MW3l38bi8US7CH5hSezPSkriSELhrD//f1sf2k7s/9vdpBHJnKaMttFRLqYYyW1FFXWE26zMLZPIpmx5kW6XSfKgzwyEREREREREREREemo3M9zqcqv4ugnRzm5p+tmensy28Njwxl3yzgAdryyo8tn9EvnomC7iEgXsyHbzGof2zeJqHAbmXEKtouIiIiIiIiIiIh0FXmb87z/3vvW3iCOxL88me0RsREMuXII0SnRVOZVcmTFkSCPTOQ0BdtFRLqYTQ3B9slZyQD0jTVv36lgu4iIiIiIiIiIiEinl7853/tvXwTbS4+UcnDxwWZbGQWTN7M9JpywyDBG3zgagO0vbQ/msEQaUbBdRKSL8WS2T81KAaBvQxn546W1lDasBBQRERERERERERGRzilv0+nM9sIdhZw6eKrd+zIMg9fmv8brV77Of67/D3Xldb4Yok84ak6XkQe8peT3vbMvpMYp3ZuC7SIiXcipqnqOnKwGYFJ/M7M9Jgz6pUQDsDuvImhjExEREREREREREZGOqcyvpCq/CovVQuZFmUDHsttzP8/l1AEzWL/37b08O/lZCncU+mSsHeXJbI+IjQAgY3IGPUf0xFnnZM9/9gRzaCJeCraLiHQhG7NLARjWO56kmAjv7aPSEwCVkhcRERERERERERHpzDwl5HsO78nYm8cCHQu2e0qyD7hsAIn9Eik5VMJzFzzHtpe2dXisHeXp2e7JbLdYLN7sdpWSl1ChYLuISBdydr92j1EZZrB9l4LtIiIiIiIiIiIiIp1W3mazhHz6pHSGXzMci9VC3qY8ynLK2rwvR42D3f/eDcCMX8xg0ZZFDJ43GGetk/cWvscHiz7AWef05fDbNr6zMtsBxv7XWCxWC7mf51JyuCRYQxPxUrBdRKQL2ZhjZrZPHZDS6PbRfRqC7XkKtouIiIiIiIiIiIh0Vp7M9ozJGcT1jqPfJf0AswR8W+17dx/2SjtJWUn0v6Q/MT1i+NZH32LWw7PAAlue3cILF79A6dFSXz6FVjs7sx0goU8CA2cPBGD7y8pul+BTsF1EpIuosTvZ3ZC5PjmrcbB9ZHo8ADmnaiivdQR8bCIiIiIiIiIiIiLScXmbTme2A4y4bgTQvlLynlLsY282s8UBLFYLM38+k/9a+l9E94gmf0s+z0x8hv0f7PfF8Nukucx2gHELzVLyO17egeE2Aj4ukTMp2C4i0kVsyy3D6TbISIyiT1J0o/uSYyLom2zetlul5EVEREREREREREQ6ncr8Sqryq7BYLaSNTwNgxNfMYPuxtceozKts9b4qTlRwZMURAMbdPK7J/YOuGMT3tn6Pvhf0pa6sjje++garfrYKwxW44HZzme0Aw68ZTmRCJGXZZeR8lhOw8Yg0R8H2TmbWrFnce++9PtvfwoULueaaa3y2PxEJng0N/dqnnFVC3mNMn0RApeRFRERERHxFc3QRERERCSRPCfmew3t6s70T+iTQ94K+AOx9p/XZ7TteNbPC+03vR8qg5q8pJ2YmsnD1Qqb+YCoAXzz6Bcf+fqwjT6HVDMPAUdN8Znt4dDgjvzESOJ2dfz6V+ZW8tuA1/j7u7979iviCgu0iIl3Epmyzb87ZJeQ9RjcE23eeqAjYmERERERERERERETEN/I2Ny4h7zHi+raVkjcMwxuk9pRkb4ktwsb8x+dz1bNXAVD+ZWCSuZy1TmhIoj87sx1g/C3jAdjznz3eDPiWZK/O5ukJT3Po40MU7igkf0u+r4cr3ZiC7ZhvKvZqu1/+c1Q7znm/YbS+3MbChQtZvXo1jz/+OBaLBYvFQnZ2Nrt27WL+/PnExcXRu3dvvv3tb1NcXOx93JtvvsmYMWOIjo6mR48ezJ49m+rqah588EFeeukl3nvvPe/+Vq1a5YdXWET8zelysyXXDLZPPU+wfZfKyIuIiIhIiOsM83TN0UVEREQk0DyZ7RmTMxrd7ikln7M6h+qT1efdT97GPIr3FhMWHcaor49q1bEHzR0EgLvW3abYVnudGUAPj2kabM+8OJPkQcnYq+zsfbv5RQaGYbD20bW8fPnLVBeefl3Kcsp8Pl7pvsKCPYBQ4Khx8EjcI0E59gNVDzQpf9GSxx9/nAMHDjB69GgefvhhAMLDw5k6dSrf/e53+fOf/0xtbS3/8z//wze+8Q1WrlxJfn4+N954I48++ijXXnstlZWVfPbZZxiGwX333cfevXupqKjgH//4BwApKc0H6UQktO3Jr6DG7iIxOpwhqXHNbjM6IwGAo8XVVNY5iI9q+gVFRERERCQUdIZ5uuboIiIiIhJoeZuaz2xPHpBM+sR08rfks/+9/Uz87sRz7mfbS9sAGHHtCCITIlt17KjEKAAMp4GzzklEROtiW+3lqDZLvYdFhWG1Nc0dtlgsjLt5HKt+uYrtL21n3LcbZ+jXldXx7sJ32f/efgDGfnssrnoXu/+9m7LsMr+OXboXBds7kcTERCIiIoiJiSEtLQ2AX//610yYMIHf/va33u1eeOEFMjMzOXDgAFVVVTidTr72ta/Rv39/AMaMGePdNjo6mvr6eu/+RKRz2nDU7Nc+uX8yVqul2W16xEWSkRhFXnkdu/MquGBgj0AOUURERESkS9EcXUREREQCqTK/kqr8KixWC2njm35fHHHdCPK35LPnzT3nDLY7653s+ucuAMbdcu4S8meKiIsAC2BAfUU9MQkxbX4ObeHpq95cVruHJ9h+dOVRyo+Vk5hpVnct2FbAv6//N6WHS80y+E/OZ+LtE1n98GoABdvFp9ocbF+zZg2///3v2bx5M/n5+bzzzjtcc8013vsNw+CXv/wlzz77LGVlZVx88cU89dRTDBkyxLtNSUkJ99xzDx988AFWq5XrrruOxx9/nLi409mYO3bs4K677mLjxo306tWLe+65h/vvv79jz7YF4THhPFD1gM/363a7qayoJD4hHqu1+Yr953qTaI3t27fz6aefNnrtPA4fPsycOXO4/PLLGTNmDHPnzmXOnDlcf/31JCcnd+i4IhJaztev3WN0n0TyyuvYdaJcwXYRERERCVmddZ6uObqIiIiI+IunhHzP4T2brcQ04roRrPzflRz95Ci1pbVEJ0c3u58DHx6grrSO+D7xDLh8QKuPb7FaiIyPpL6invryeujbvufRWp4y8s31a/dIykqi/8z+5KzOYccrO7jk/13Clue3sPiuxbjqXSRlJfH1N79OxqQM7/YA5TlqtSq+0+Zge3V1NePGjePWW2/la1/7WpP7H330UZ544gleeuklBgwYwM9//nPmzp3Lnj17iIoyS0zcdNNN5Ofns3z5chwOB9/5zndYtGgRr7/+OgAVFRXMmTOH2bNn8/e//52dO3dy6623kpSUxKJFizr4lJuyWCytLuXeFm63m3BXOBGxES1O4juqqqqKq666it/97ndN7ktPT8dms7F8+XK++OILli1bxpNPPsn//u//sn79egYMaP2bqIiELsMw2JRjZrZPHXDui3Rj+iSybE+h+raLiIiISEjrrPN0zdFFRERExF/yNjdfQt6j57CepI5OpWhXEQc+OMC4m5vPWt/+0nYAxv7X2GbLs59LREIE9RX12Cvt59+4gzxl5M83Lxh3yzhyVuew7cVtlBwuYdsL2wAYcuUQrn35WqJTTi86SOqfBCizXXyrzTPL+fPn8+tf/5prr722yX2GYfDYY4/xs5/9jKuvvpqxY8fy8ssvk5eXx7vvvgvA3r17WbJkCc899xzTpk1j+vTpPPnkk7zxxhvk5ZlvFK+99hp2u50XXniBUaNGccMNN/CDH/yAP/3pTx17tl1AREQELpfL+/PEiRPZvXs3WVlZDB48uNF/sbGxgHmR4uKLL+ahhx5i69atRERE8M477zS7PxHpfI4WV1NcZScizMroPonn3NZz/04F20VEREREOkxzdBEREREJFE9me0vBdjCz2wH2vrW32furi6o59PEhoG0l5D08/d3ryuva/Ni2ak1mO8DI60cSHhNOyUEz0G6xWrjsN5dx4/s3Ngq0Q+PMdsNt+GXc0v34tGf70aNHKSgoYPbs2d7bEhMTmTZtGuvWreOGG25g3bp1JCUlMXnyZO82s2fPxmq1sn79eq699lrWrVvHjBkziIg4vVpl7ty5/O53v6O0tLTZ8mr19fXU19d7f66oqADA4XDgcDgabetwODAMA7fbjdvt9tnzP5thGN7/++o4/fv3Z/369Rw5coS4uDjuuOMOnn32WW644QZ+8pOfkJKSwqFDh/jXv/7Fs88+y6ZNm1i5ciVXXHEFqamprF+/npMnTzJs2DDcbjf9+/dn6dKl7N27lx49epCYmEh4eMdK2/uK2+3GMAwcDgc2my3Yw/Epzzl59rkp0h5fHi4GYFzfRKyGG4fj9PvN2efa8N5mH50jxdWUVtUSF+nTjwHpRPQ+JKFE56O0ROeGBEoonGs6zzunrKws1q9fT3Z2NnFxcdx11108++yz3Hjjjdx///3eOfobb7zBc889x6ZNm/jkk0+YM2dOozn6iBEjvPtbunQp+/fvD7k5uoiIiIgEV94mM2E1Y3JGi9uMuG4Eqx9azaGlh6ivrCcyPrLR/Ttf34nb6SZjSga9RvRq8xg8wXZ7RehktkfGRzLy+pFsf3k7Mb1iuO6f1zHw8oHNbpvQNwGLzYLL7qKqsIr49Hifj1u6H59GWQoKCgDo3bt3o9t79+7tva+goIDU1NTGgwgLIyUlpdE2Z5dP8+yzoKCg2WD7I488wkMPPdTk9mXLlhETE9PkeGlpaVRVVWG3+/8NobKy0mf7+t73vsedd97J6NGjqa2tZfv27Xz88cc8+OCDzJ07F7vdTmZmJpdffjlVVVVYrVY+/fRTHnvsMSorK8nMzORXv/oVF198MRUVFXzzm9/kk08+YerUqVRVVfHBBx8wffp0n423I+x2O7W1taxZswan0xns4fjF8uXLgz0E6QLePWQFrCQ5TrF48eJmtznzXEuMsFFut/CPd5YxKCFAg5SQpfchCSU6H6UlOjckUIJ5rtXU1ATt2NJ+9913H7fccgsjR46ktraWo0ePsnbtWv7nf/6HOXPmUF9fT//+/Zk3bx5Wq5WEhATWrFnDY489RkVFBf379+ePf/wj8+fPB+D2229n1apVTJ48maqqKj799FNmzZoV3CcpIiIiIkFXmV9JVX4VFquFtPFpLW6XOjqVlCEplBws4eBHBxl9w+hG93tKyLcnqx0gMtEMttdX1J9ny45rbWY7wOxHZ5M6JpXRN44moU/LF72tYVYS+iRQnltOWXaZgu3iE10mpfGBBx7gxz/+sffniooKMjMzmTNnDgkJjf+w6urqOHbsGHFxcd4+8v5gGAaVlZXEx8djsVh8ss+JEyfy5ZdfNrn9vffea3b7KVOmsGzZshb3l5CQwIoVK3wyNl+rq6sjOjqaGTNm+PX3FAwOh4Ply5dzxRVXKEtBOuxPf/4cqOGGyyczY0jPRvc1d669V7KVlftPEt9/FAsu7B+EEUso0PuQhBKdj9ISnRsSKKFwrnmqs0nnMnToUNatW9fk9rfffrvZ7UeMGMGSJUta3F+vXr3OOYcXERERke7JU0K+5/Ce58z0tlgsjLhuBGv/by1739rbKNhesL2Agm0FWMOtTYLwreXJlA9EsL21me0Acb3juOi+i1q136SsJG+wPfPCzA6NUQR8HGxPSzNX0xQWFpKefrpnRGFhIePHj/duU1RU1OhxTqeTkpIS7+PT0tIoLCxstI3nZ882Z4uMjCQyMrLJ7eHh4U0ulrhcLiwWC1arFau1zW3rW81TOt5zLGkbq9WKxWJp9nfYVXTl5yaBUVRZR05JDRYLTBnYs8Xz6cxzbWxmEiv3n2RvfpXOP9H7kIQUnY/SEp0bEijBPNd0jouIiIiISEvyNpsl5M/Vr91j5PUjWft/azm4+CCOGgfhMeZcw5PVPuyqYcT0iDnXLlrkzWwvD63M9rZIykoiZ00OZdllPt2vdF8+jQAPGDCAtLQ0PvnkE+9tFRUVrF+/ngsvvBCACy+8kLKyMjZv3uzdZuXKlbjdbqZNm+bdZs2aNY161i1fvpxhw4Y1W0JeRKS72pRdCsCItAQSolr3pWNMn0QAduWV+21cIiIiIiIiIiIiIuIbnsz21gTb0yemk5SVhKPGwaGlhwBwOVzsfG0n0P4S8nC6Z3t9ZeAy230dbE/MMq+Pl+fo+rj4RpuD7VVVVWzbto1t27YBcPToUbZt20Zubi4Wi4V7772XX//617z//vvs3LmTm2++mYyMDK655hrALJk2b948br/9djZs2MDatWu5++67ueGGG8jIyADgW9/6FhEREdx2223s3r2bf/3rXzz++OONysSLiAhsOFoCwJSs1i9EGt0QbD9UVEWN3emXcYmIiIiIiIiIiIiIb+RtMjPbMyZnnHdbi8XC8K8NB2DvW3sBOLz0MNVF1cT0imHw/MHtHkdEvFnSPZCZ7a0pI98WSf2TAJTZLj7T5mD7pk2bmDBhAhMmTADgxz/+MRMmTOAXv/gFAPfffz/33HMPixYtYsqUKVRVVbFkyZJGPbdfe+01hg8fzuWXX86CBQuYPn06zzzzjPf+xMREli1bxtGjR5k0aRL//d//zS9+8QsWLVrU0ecrItKlbMoxg+2Ts1Ja/ZjeCVH0io/EbcDefPUGFREREREREREREQlVlfmVVOVXYbFaSBvffKvls428biQABz44gLPe6S0hP+amMdjCbe0ei7eMfAB7tvujjDwo2C6+0+ae7bNmzcIwjBbvt1gsPPzwwzz88MMtbpOSksLrr79+zuOMHTuWzz77rK3DExHpNirrHOzJM4PlU9oQbAezlPzKfUXsOlHBpP5te6yIiIiIiIiIiIiIBIanhHzP4T1bneXd94K+xGfEU5lXyZ7/7GH/+/sBGH/L+A6NxVNG3l5p79B+WsNR0xBsj/FPsL08pxzDMLBYLD7dv3Q/Pu3ZLiIigbM1twy3AZkp0aQlRp3/AWcYnZEAwM4T6ksjIiIiIiIiIiIiEqryNpsl5FvTr93DYj1dSn7JD5fgsrvoPbZ3qzPjW+Lt2R6AMvKezHZfl5FP6JsAFnDWOakuqvbpvqV7UrBdRKST2pTt6dfe9sx0T9/2XQq2i4iIiIiIiIiIiIQsT2Z7W4LtcLqUfG1JLQDjbhnX4bF4g+0BKCPv6dnu6zLytggbCX3MZDSVkhdfULBdRKST2tCBYPuYvmaw/WBRFXUOl0/HJSIiIiIiIiIiredwuVmxtwi7LtGISDPyNpmZ7RmTMtr0uH6X9COmVwwAFpuFMTeN6fBYgtGz3deZ7dC4lLxIRynYLiLSCdmdbrYdKwPaF2xPS4iiR2wELrfB3vwKH49ORERERERERERa66lVh7nj9W0sPa7L9SLSWGV+JVX5VVisljaXgLfarAy/1iwlP3jeYOJ6x3V4PJHxnT+zHSCxv5mMpsx28QV9encyhmGwaNEiUlJSsFgsbNu2LdhDEpEg2JVXTp3DTUpsBIN6xbb58RaLRaXkRUREREQ6SHN0ERHxhSW7CgDYV24J8khEJNR4Ssj3HN6TiLi2Z3hf+tClTLlrCvMen+eT8ZyZ2W64DZ/ssyWByGxXsF18QcH2TmbJkiW8+OKLfPjhh+Tn5zN69OhgD6ldsrKyeOyxx4I9DJFOy9OvfXL/ZCyW9k3ExniD7cpsFxERERFpD83RRUSkowrK69jTUHXwRDVU1jmDPCIRCSV5m80S8m3t1+4RlxbHgr8sIGVQ26ujNsfTsx3jdOa5v/gzs13BdvElBds7mcOHD5Oens5FF11EWloaYWFhbXq8YRg4nfrCJtLZbThaCrSvhLzH6D4JAOxUZruIiIiISLtoji4iEhpW7S/iF+/tot7Z+Zqerz5Q5P23gcXbNlBEBE5ntrc32O5rYdFhYDP/XV/u31Ly6tnuX/WV9Sz98VKyV2UHeyidnoLtncjChQu55557yM3NxWKxkJWVRX19PT/4wQ9ITU0lKiqK6dOns3HjRu9jVq1ahcVi4eOPP2bSpElERkby+eef43a7eeSRRxgwYADR0dGMGzeON998s9Hxdu/ezVe+8hUSEhKIj4/nkksu4fDhwwBs3LiRK664gp49e5KYmMjMmTPZsmWL97GGYfDggw/Sr18/IiMjycjI4Ac/+AEAs2bNIicnhx/96EdYLJZ2Z+WKdGf7CswVz+P7JbV7H54y8gcKK6lzdL7JqIiIiIhIMGmOLiISOn63ZD8vr8vhk71F5984xHy67yQANqv5/rsppyyIoxGRUJO3ycxsz5iUEeSRmCwWC7YYM9ru777tgerZbhj+LYcfqtb8ag1f/vlLPnngk2APpdNr25LrrsxeA8UHfLtPw8BWXQXVcdDSZLXnUIiIadXuHn/8cQYNGsQzzzzDxo0bsdls3H///bz11lu89NJL9O/fn0cffZS5c+dy6NAhUlJOZ7z+9Kc/5Q9/+AMDBw4kOTmZRx55hFdffZW///3vDBkyhDVr1vBf//Vf9OrVi5kzZ3LixAlmzJjBrFmzWLlyJQkJCaxdu9a74r6yspJbbrmFJ598EsMw+OMf/8iCBQs4ePAg8fHxvPXWW/z5z3/mjTfeYNSoURQUFLB9+3YA3n77bcaNG8eiRYu4/fbbO/Yai3RT1fXm32JyTPu/aPRJiiY5JpzSGgcHCisZ2zfJR6MTEREREfGBEJ+na44uIhIaDMMg51Q1APvyK1gwJjSyP1vD7nTz+aFiAK6f2Id/bTrOppzSII9KREJFZX4lVflVWKwW0sanBXs4XrYYG65KF3XldX47hsvhwu1wA/7JbE/sZwbbHTUOaopriO0V6/Nj+I1htDyXaaXK/Eo2/GUDoFL6vqBgu0fxAXhmpk93aQXiz7fRotWQMb5V+0tMTCQ+Ph6bzUZaWhrV1dU89dRTvPjii8yfPx+AZ599luXLl/P888/zk5/8xPvYhx9+mCuuuAKA+vp6fvvb37JixQouvPBCAAYOHMjnn3/O008/zcyZM/nrX/9KYmIib7zxBuHhZjBv6NCh3v1ddtlljcb2zDPPkJSUxOrVq/nKV75Cbm4uaWlpzJ49m/DwcPr168fUqVMBSElJwWazER8fT1pa6HxAiHQm1XYzEz0mov1v4xaLhdF9EvnsYDE7T5Qr2C4iIiIioSXE5+mao4uIhIaSajs1DddJ9hdWBnk0bbMpp4Sqeic94yK45cJ+/GvTcbYfL8fudBMRpqK0It2dp4R8z+E9iYjzfcC5vazR5vuTPzPbPSXkwT+Z7WGRYcRnxFOZV0l5TnnnCbbnbYNXroHbV0LKwHbv5rPffIaz1ly4W1VQhbPOSViUQsbtpVfOo+dQc0LtQ27DoLq6itjYOKznWjHfTocPH8bhcHDxxRd7bwsPD2fq1Kns3bu30baTJ0/2/vvQoUPU1NR4J/YedrudCRMmALBt2zYuueQS7yT+bIWFhfzsZz9j1apVFBUV4XK5qKmpITc3F4Cvf/3rPPbYYwwcOJB58+axYMECrrrqqjb3rxORphwuN3anuaovtgPBdsAbbN+lvu0iIiIiEmo62Txdc3QRkeA4Vlrr/ff+gs4VbF+13ywhP3NoKoN7xRIbZlDtdLPzRDmT+icHeXQiEmx5m80S8qHSr93DFttQRt6PPdsdNWaw3WKzYIuw+eUYif0TqcyrpCy7jIzJoVGm/7xKs6G2FFY/Ctf+vV27KMsuY/Mzm80fLIABFccrSBmccs7HScs0q/KIiGl1hnmrud24KiogIQGswV2JGBt7elVOVVUVAB999BF9+vRptF1kZCQA0dHR59zfLbfcwqlTp3j88cfp378/kZGRXHjhhdjtZg+NzMxM9u/fz4oVK1i+fDl33nknv//971m9enWLFwdEpHU8q7UBojv4RWNMQ9/2XScqOrQfERERERGf68LzdM3RRUR8J7ekxvvvnJIaau2uDl8vCZRP95k95i8d3guLxcLAeIOdpRY2ZZco2C4i3sz2kAu2R/u/Z7u3X3tMOJYOlkxvSVJWEsfXHe9cZdQdDZ95O/4F038Mvdq+UHj1w6txO9wMuHwAlScqKd5XTHluuYLtHaBaNJ3YoEGDiIiIYO3atd7bHA4HGzduZOTIkS0+buTIkURGRpKbm8vgwYMb/ZeZmQnA2LFj+eyzz3A4HM3uY+3atfzgBz9gwYIFjBo1isjISIqLixttEx0dzVVXXcUTTzzBqlWrWLduHTt37gQgIiICl8vV3K5F5Dxq7GZ5lwibtcMlxUZnmMH2/QWV3mx5ERGR9nDZXVTmV1K0u4jaktrzP0BEpIvRHF1EJDiOnRFsNww4VFQVxNG03rGSGg4WVWGzWrhkcC8ABiYYAGzMLgnm0EQkRORtMjPbMyaFVta1J7Pdnz3bPWXk/dGv3SMpKwmAspwyvx3D5+zVYA2DhD6w6pE2P7x4fzHbX9oOwGW/uczbu748V5VvO0KZ7Z1YbGwsd9xxBz/5yU9ISUmhX79+PProo9TU1HDbbbe1+Lj4+Hjuu+8+fvSjH+F2u5k+fTrl5eWsXbuWhIQEbrnlFu6++26efPJJbrjhBh544AESExP58ssvmTp1KsOGDWPIkCG88sorTJ48mYqKCn7yk580Wmn/4osv4nK5mDZtGjExMbz66qtER0fTv39/ALKyslizZg033HADkZGR9OzZ0++vl0hXUV3f0K89suOrtDNTokmMDqe81sGBwkpGN2S6i4iInK3ieAVb/7GV6sJqak/VUnOqptH/7VV277axqbHcc/AeIhMigzhiEZHA0hxdRCQ4jpfWNPp5X0EFY/qG/vWNVQfMEvKT+iWTGBOOw+FgYLwZbN+UU4rbbWC1+iebU0RCX2V+JVX5VWCBtPFpwR5OI4Ho2e7NbPdDv3aPxP4NgebsThRotldDRCzMuA8++KH5/96jWv3wVb9cheE2GPbVYfSd1peEfglAJ1twEIKU2d7J/d///R/XXXcd3/72t5k4cSKHDh1i6dKlJCefu8zQr371K37+85/zyCOPMGLECObNm8dHH33EgAEDAOjRowcrV66kqqqKmTNnMmnSJJ599llvebnnn3+e0tJSJk6cyLe//W1+8IMfkJqa6t1/UlISzz77LBdffDFjx45lxYoVfPDBB/To0QOAhx9+mOzsbAYNGkSvXr389OqIdE2ezPaO9msHsFgsjO5jfqCqb7uIiJzLsv9exqpfrGLjXzey641dHFl+hPwt+ZTnlHsD7RarBWuYleqiana8uiPIIxYRCTzN0UVEAs9TRj4pxnxPPFDYOfq2r2ooIT9r+On33cxYiAq3Ulbj4NDJzpGhLyL+4Skh32tELyLi/Jfd3R62GP+XkQ9oZntnKyMfHgvjb4LkLPj0t61+aMH2Anb/azdY4NJfXQqgzHYfUWZ7J3Pvvfdy7733en+OioriiSee4Iknnmh2+1mzZmEYRpPbLRYLP/zhD/nhD3/Y4rHGjh3L0qVLm71vwoQJbNy4sdFt119/vfff11xzDddcc02L+77gggvYvn17i/eLSMs8me2+6j82rm8Saw+d4rNDxdwwtZ9P9ikiIl2Pp3zd+FvHkzo6lZgeMUT3iG70/6ikKDb8ZQNLfriETX/fxOQ7Jvutt5qISCjQHF1EJPiONbQwunRYKu9sPcH+wtAPUtc5XKw9bLb7uHTY6cVRNiuM75vIl0dL2ZhdwtDe8cEaoogEWd5mcw4eav3a4Yxge3nnzmw/M9huGEbnuH7hyWy3hcPM/4F374C8bZAx/rwP/fTnnwIw+puj6T22NwBJ/ZMAqMit8NOAuwdltouIdDKnM9t9E2yfO8osQ7RybxG1dvVpFBGRpuxVdkqPlAJwxe+u4MIfXci4m8cx9Mqh9L2gLz2G9CA6JRqL1cK4m8cRFh1G0c4ijn1xLMgjFxEREZGuzOU2yCszg+2zR5iBg/0FoR8wWH+0hDqHm7SEKIanNQ6oT+5vVkPZeFR920W6M09meygG260x/i8jH4jMdk9Wt73KTl2p//rP+5S9GiJizH+P+Qb0GNyq7PbjXx7nwAcHsNgszHpolvd2Zbb7hoLtIiKdTHVDQDzGB2XkAcb2TSQzJZpah4uVDSXMREREzlS0y/x8iEuLI6ZnzDm3jUqKYvSNowHY/PfNfh+biIgEX63dxbNrjlBU2UkuUopIl5FfXovTbRBhs3LJ0J4AFFbUU1ZjD/LIzu3Thusvlw7v1SSTcpIn2J5dGvBxiUjo8FSXy5iUEeSRNNVVMtvDo8OJ7R0LdJ5S8vayMsoLnVQVVIEtDGY9AAeXwrEN53zcyv9dCcC4W8bRY2gP7+1nBtubq8AlraNgu4hIJ1NT35DZHumbzHaLxcKVY8wvbR/tzPPJPkVEpGsp3FkI4C0zdj5T7pgCwO5/76amuMZv4xKR83vkkUeYMmUK8fHxpKamcs0117B///4m261bt47LLruM2NhYEhISmDFjBrW1td77S0pKuOmmm0hISCApKYnbbruNqqrQL9MrgfHKl9n8ZvFefvne7mAPRUS6GU+/9j7J0SREhdMnKRqA/QWh3bd91f6Gfu1nlJD3GJ+ZiM1q4URZrTdrX0S6l8r8Sqryq8ACaePTgj2cJrpKz3bofH3bT+3OpWh/NU9PfJqcz3Jg1NcgdSR8+psWH3N05VGOrjyKNdzKzF/MbHRfQt8EsICzzknNSV2/aS8F20VEOhlfZ7YDfGWsWY5o5b4iqhuC+SIiIh5FO82Lgaljml4MbE7G5AzSJ6XjsrvY9uI2P45MRM5n9erV3HXXXXz55ZcsX74ch8PBnDlzqK6u9m6zbt065s2bx5w5c9iwYQMbN27k7rvvxmo9fcngpptuYvfu3SxfvpwPP/yQNWvWsGjRomA8JQlBu/PMks2f7i/ytr0SEQmE4w392vsmm0H2YQ0l2Q8Uhm6w/WhxNdmnagi3Wbh4cM8m98dFhjEyPQGAjdkqJS/SHXlKyPca0YuIOP8Gm9vDE2yvK/dfVaNAZLbDGcH2nDK/HsdXLI5a7PZwqvKreOnSl/jiz19izPopHFkF2WubbG8YhjerfdL3Jnl7tHvYImzEp5ufnSol337dOtiukgihTb8fkeb5OrMdYFRGAv17xFDncKuUvIiINFG4w8xsb22wHWDyHZMB2Pz0Zgy3vteJBMuSJUtYuHAho0aNYty4cbz44ovk5uayefPpNg8/+tGP+MEPfsBPf/pTRo0axbBhw/jGN75BZGQkAHv37mXJkiU899xzTJs2jenTp/Pkk0/yxhtvkJfnu8pImgOGvpZ+R4eKzCoHdQ43q/afDOSQRKSbO1ZqZuH1SzFbHXmC7ftDONjuyWqfOiCFuMjmEymmZKUACraLdFd5m83v2Oft115ZAPWBf78LSM/2GjOz3d/B9sT+Zhn1zpLZbqMOhyOc5IHJGC6D5fct598/q8WdOgZW/hrO+r5+8KODHP/yOGHRYcz43xnN7lN92zvOd2mRnUh4uPnHWVNTQ3R0dJBHIy2pqTG/LHt+XyJiqnH4PrPdLCWfzt9WHeajHflcNS70egGJiEhwGIbhzWxvbRl5gNE3jGbZj5dRcqiEI58cYdAVg/w1RBFpg/Jy8wJKSop5Eb+oqIj169dz0003cdFFF3H48GGGDx/Ob37zG6ZPnw6Yme9JSUlMnjzZu5/Zs2djtVpZv3491157bZPj1NfXU19/+uJbRYWZ+exwOHA4HE22NwyDqqoqb4DfXzzBYsMwcLvdfj1WV1RVVeV9DT2/R5fb8AbbAT7akccVw5tmaoY6z/Np7vwU8RWdZ76XXWy+/2QkRuJwOBjU0wy678uvCNnXeeVecyHrjME9Go3xzPNjQmZDZvvRkpB9HtK16f0quPI2msH21PGpLf8O3C7CnrsCY8BMXFf+OWBjczgcjXq2++scqa805xK2KJtfz8P4THORVumR0k5xvtssddjt8cx8eCa1pbWs+O8V7HtnPx+WjOOrs17FeWAFxsBZABhug0/+9xMAptw1hcgekc0+x/i+5mtQciR0PnNC5T2otcfvlsF2m81GUlISRUXmRcOYmBgsFovPj+N2u7Hb7dTV1TUqvyfnZhgGNTU1FBUVkZSUhM3mu+xdka7Am9ke4du/jSvHmsH2T/cXUVXvbHF1tYiIdC9V+VXUltRisVnoNaJXqx8XERvB2JvHsvEvG9n8980KtouEALfbzb333svFF1/M6NGjAThy5AgADz74IH/4wx8YP348L7/8Mpdffjm7du1iyJAhFBQUkJrauLJFWFgYKSkpFBQUNHusRx55hIceeqjJ7cuWLSMmJqbJ7fHx8dTX11NXV0dERIRf5uhnOnXqlF/339UYhoHdbqe4uJjS0lIOHjzova+4Duqdp+cOK3bn896HxwnvpJdBli9fHuwhSDeg88x3dh6xARZOZu9jceVeiqoBwth9vJSPPlqMnz9O2qzeBesOm2O2FOxh8eI9TbZZvnw5FXaAMA4UVvLm+4uJ0SUaCRK9XwXHsZ3HADhScYTixcXNbtO7fCsXlOdSt/tDljGbQL7heYLtjhoHH33wERab74+duy8XgKPHjlKz2H+9xCuKzEXBx3YdY/HixX47jq/MMGpxOMLZt2c7iVMTGfSbQRx99ChbV/di4pB0Il75b9ZNfhgsFko/L6VoRxHWGCuV4ypbfH6nnObcaPua7RQPaf58C5Zgvwd5koLPp9t+TKelpQF4A+7+YBgGtbW1REdH+/1CQVeUlJTk/T2JyGnenu0+DoaPTE9gQM9YjhZX88neQq4e38en+xcRkc7JU0K+x5AehEW17bNn8vcns/EvG9n33j4qTlSQ0CfBH0MUkVa666672LVrF59//rn3Nk929/e+9z2+853vADBhwgQ++eQTXnjhBR555JF2HeuBBx7gxz/+sffniooKMjMzmTNnDgkJTd8LDMOgqKjImwHvL4ZhUFdXR1RUlObp7dCrVy9GjRrV6LX7dP9J2LqVoalxVNQ5KKioJ27QZC4f0frWI6HA4XCwfPlyrrjiClXYE7/ReeZ7v965CrBz9WUXM7pPAvVON3/c9Qm1Lph0yWWkJUQFeYSNrdx/EueGrfRNjmbh16Y3ej89+/x4Pvtzsk/V0GPYFC4d1vpFryK+oPer4Mr+cTZ11DH98un0vaBvs9vY/vUKRkQs0fZSFkwbAj2HBmRsDoeDpYuXen++7OLLiE7xfQXpd157hxJKGDVxFFMXTPX5/j1OZp3kyK+OYJQaLFiwwG/H8RXHujux28O54JILGHD5AABq/quGD77zAZ+uvJBvf/ttei/fzphf38cL978AwMX3Xcwl37ykxX1uyt7EsneXkWJLCZnXIFTeg1o7P+22wXaLxUJ6ejqpqecow9FBDoeDNWvWMGPGDH0gtVF4eLgy2kVaUGP3T2a7xWLhK2PTeXLlIT7cka9gu4iIAFC40wy2t6WEvEfqqFT6XdKP3M9y2fr8Vmb+YqavhycirXT33Xfz4YcfsmbNGvr2PX3BLj3d7AM5cuTIRtuPGDGC3FwzmyQtLa3JQnWn00lJSUmLC6QjIyObLQkfHh7e4vy4b9++uFwuv5YK1Dy9/Vqapx89VQvA0LR4esZF8uIX2Szbd5J5YzvnfOJc56iIr+g8841au4uTVXYABqTGN7yuMKBnLIeKqjhcXEtmj/ggj7Kxzw6Z2YOXDkslIiKi2W0858fUASlkn6phy7EK5oxWuz8JDr1fBYezxrz+G50Q3fzrX5YLh1bAvP+D5T8nPGcNpI8K2Pis4VbCosJw1jlx17r9co64as2EsxZfg+bUlUNUYpuO03Ow2f6ovrweV7WLqKTQWqR1NsNmx26PICo+yvu6JKYlctNHN/HZbzLJObKefuGv8veRsVQVVBPdI5qL//vic76GKQPMFmOVxyub3+7YBlj2c/ivNyEysJ+rwX4Pau2xu22w3cNms/ktqGuz2XA6nURFRekDSUR8prre9z3bPa5sCLav3n+SyjoH8VF67xIR6e48/dpTx7QvQ3HyHZPJ/SyXzc9s5pL/dwnWsE5aV1ikkzIMg3vuuYd33nmHVatWMWDAgEb3Z2VlkZGRwf79+xvdfuDAAebPnw/AhRdeSFlZGZs3b2bSpEkArFy5ErfbzbRp03w6Xn/O0T371zzdtzz92oekxnPhoB68+EU2K/YUYne6idB7voj40fFSs7RrfGQYidGn39OH9Y7nUFEVBwormTUsdKpsGIbBp/tOAnDp8PNnqk/OSuHfm46zKbvE30MTkRDjqDEXn4bHtPB9dfOLZtBz4rdh/0dw+FO44I7ADRCITIzEWeekrrzOL/u3V5uLqcJjW/md/dAn8Po34JuvwbB5rT5ORGwEMb1iqDlZQ1l2GWnjQ7jasmEQHmbH4Qhvcm5YrBZm/HwmeW89SMbO2+mbtI19BUOY/tPpRCY0XQR9psR+5gKFspyyZo/Jx/8DeVtgx79gynd99Wy6FM16REQ6GW9me6TvL0IO6x3PoF6x2F1uVuwt9Pn+RUSk8/GUkW9vsH3E10YQ0zOGyhOVHPjogC+HJiKtcNddd/Hqq6/y+uuvEx8fT0FBAQUFBdTWmtnIFouFn/zkJzzxxBO8+eabHDp0iJ///Ofs27eP2267DTCz3OfNm8ftt9/Ohg0bWLt2LXfffTc33HADGRnKtOvuDjYE2wenxjGpfzI94yKpqHOy7sipII9MRLq6Yw3B9r4pMY3KsQ9LM7Pu9hVUBmVcLTlUVMWJsloiwqxcOLDnebefmmVmGu44Xk6dw+Xv4YlICPEE2yNim6mA4bTDlldg3A0QEQuDLoPsz83bAygy3gzg1lfU+2X/jupzvAbN+fzP4HbCh/dCbVmbjpWUlQS0EGwOJY5aLBaw28MJj25+EULGdd/AmTGduVdtZuDsLKbcOeW8u03sbwbba07W4Kg9q8rYnnfNQHuPwbDxBTP4Lk0o2C4i0sn4M7PdYrFw5VjzgulHO/J9vn8REelcXA4XxXuLgfaVkQcIiwxj/K3jAdj01CZfDU1EWumpp56ivLycWbNmkZ6e7v3vX//6l3ebe++9lwceeIAf/ehHjBs3jk8++YTly5czaNAg7zavvfYaw4cP5/LLL2fBggVMnz6dZ555JhhPSUKIYRgc9mS2947DZrUwd5T5efHxTs0nRMS/jpWYC8f6ndUreGhvM9h+oDC0gu2f7jcrRl04sAfRrWgN2L9HDD3jIrG73Ow4Xu7v4YlIiHA5XLidbqCFzPb9H0F1EUz6jvnzwEvBUQ3HNwRwlGZmO5jl1/2hTZntxzdD9mcw73dgr4al/9umYyX1TwKgLLusjaMMMIe5yMxuDycsuuXYQNj8X5IUk8e3/xTbcnWEM0QlRRERZy5qqDh2Ro9ylwM+eRiGzIH5j0LRbsj9smPPoYtSsF1EpJPxZLbH+Lhnu8dXxpp9O9ccKKb87JVsIiLSrZQcLMFldxERF+GdfLbH5O9NBuDw0sOUHin10eikszm59yQ5a3KCPYxuxzCMZv9buHBho+1++tOfcuzYMaqrq/niiy+YPn16o/tTUlJ4/fXXqayspLy8nBdeeIG4uLgAPhMJRYUV9VTWO7FZLWT1iAVg/mhzPrFsTyFOlzuYwxORLi63xAw6ZCbHNLp9eENm+8HCKlzu0MnA85aQH3b+EvJgJkRMHZAMwEaVkhfpNjxZ7dBCsH3TC9DvQug90vw5bSzE9DBLyQdQRIIZnA2JzPYvHoeUQTD1dpjza9j2qtnTvpUSsxrKqId4sN2oNxe5NldGvpHMqWaAfMVDUH/+hWcWi8VbSr4894zFXZtfhJKjcPkvzUUdyQNg0/MdeQpdloLtIiKdTLXdf5ntYK4AH5IaZ5aS36NS8iIi3Zm3hPzoVCxWy3m2blnywGQGzTUzZDc/s9knY5POo7aklo/u+oinRj/FizNf5MSGE8Eekoj4yMEi8+Jd/x4x3v7s0wamkBQTTkm1nQ0KDomIHx3zBNtTGgfbM1NiiAq3Uu90k3OqOhhDa6KyzuENmLelj/zk/mYpeQXbRboPT5DZYrNgDT8rhFd8EI6ugcm3nr7NaoWBs+BIYIPtnj7g/gq2tzqz/dRh2PM+XHQPWG0w8Wbz9Xj/h1BXce7HNvCUkS/PCe0qIs5K8/mcq4y81/xHoeZUq7P8m/Rtr6+E1b+DcTdC2mjzPJt8K+x5D6pOtvcpdFkKtouIdDI19f7r2e5xZUN2+4c78vx2DBERCX2FOxuC7WPb16/9TJPvMLPbtz6/FWfDZ5l0bW6Xm83PbubJoU+y6W+bMBoyyw4uPhjkkYmIrxzylJBPPV3lINxm5YoRZin5JbsKgjIuEekejpWaZeQzzyojb7NaGJIaWqXk1x4qxuk2GNgzlqyesa1+3NQBZrB9c3ZpSGXpi4j/eDLbw2PCsVjOWvS++UWIToERX218+8BL4cQWqAncwhxPsL2uvM4v+291ZvsXT0JsTzMoDGCxwFVPQG0pLP9Fq47VWcrIu84Itp+rjDwAKQNg7m9gy0twYNl59+3p2+7NbP/iL+ZihUv/3+mNJvwXYIGtr7Rn+F2agu0iIp2I221Q4/BvZjucLiX/2cFiymtUSl5EpLsq2mn2lew9pn392s809MqhJPRNoKa4hr1v7+3w/iS0HV9/nOcveJ4PF31I7alaUkenMnHRRACyP80O7uBExGcONgTbB6c2bimwYIw5n1iyqwC3gkMi4geGYXC8IbO931mZ7QDDGkrJ7y+oCui4WuIpId+WrHYwS+LHRtiorHeyvyA0Fg6IiH+dGWxvfEctbH3VDHiGRzW+b9ClgGFmvQeIPzPbDcM4/TqcK7O9qgi2vQ7Tvt/4NUnuD1c8BJv/AUdWn/d4nsz2UA+2O6vNYLubSKy2VoR3Jy2EwbPh/XvOuxDDk9lekVsBlYXmIoZp34OkzNMbxaTA6K+Zr6vb1d6n0SUp2C4i0onUOV0YDdeq/JnZPjg1nuFp8TjdBkv3KBtFRKS78paRH9PxzHZrmJWJt5vB1k1Pberw/iQ0VZ+s5r3b3uP5C54nb1MekQmRzH1sLou2LOKi+y4C4PiXx3HUajGfSFdwOrM9vtHtFw3uQXxkGEWV9WzJLQ3G0ESkiyurcVDZUC2pb3IzwfbeDcH2wtaVEPYnwzD4dL+5iPXS4a3r1+4RZrMysb/6tot0Jy0G23e/C3VlZgD1bIl9oefQgJaS9wbby30fbHfWnq6Gd87M9vVPgzUMptzW9L7Jt0HWJfD+3VB/7oVXnqzuutI6v5XF9wV3lfmZ5rI1/dxrlsUCX30SnLWw+Cfn3LRRz/Y1j4ItDKb/qOmGk2+Dslw49Embxt7VKdguItKJVNebK8YsFogK81+wHeDKhmyUj3bk+/U4IiISmuor6r39ynyR2Q4w4bYJWGwWcj/LpWh3kU/2KaHB7XSz4S8b+MvQv7DthW0AjF84nrsP3M0FP7wAW7iNlMEpxPeJx2V3ceyLY8EdsIj4xKEWMtsjw2xcPsJcqPWxSsmLiB8cKzWz2nvFRxIV3vT6yFBvZnvws8H35FdQVFlPdLjNWxa+LaZkqW+7SHfSYrB90wtmufgeg5p/4MBL4fBKvJlafubPzHZPv3Zo5nXwqK+Cjc+aiw+ik5veb7XCV5+A6mL45OFzHi8yPpLohpYk3p7lIchd27BoIKyVwXaAhAxY8EfY9SbsfqfFzTwLDoySw2a7gkv+28xkP1vfyZA2FjY934aRd30KtouIdCK19oYS8uE2rFbLebbumAUNpeTXHiqm9IwvOCIi0j0U7TKD4fF94r2Tzo5K6JPAsK8OA2DT35Xd3lVU5lXyzKRn+Piej6krqyNtQhq3rr2Vq/9xNXG9TwfgLBYLAy4dAKiUvEhXcKqqnpJqOxYLDOoV1+T+eaNPl5I3AnTRV0S6j2MlZr/25krIg1l+HSD7VA11juCWul213ywhf/HgnkS2I3HizGC73k9Fur5mg+0FO+H4Bph8a8sPHHSpmXFccsTPIzRFJvovs93Trz0sKgxLS9fAt7wM9mq44I6Wd5QyEC7/BWx4GnK+OOcxO0MpeXdtwwKy8DZeoxlzPYy8Gj78sVkivhmezPYpQxdjxKXB1O81vy+LxawkcGAplOa0bRxdmILtIiKdSLXdLKETE+m/fu0eg3rFMSI9AafbYJlKyYuIdDueEvK+ymr3mHzHZAB2vLyj0Wp16bzWPrqWwh2FRCVHceVTV3L7xtvJvCiz2W2zLs0CFGwX6Qo8We19k6OJjmgaPJo5tBfR4TZOlNWy80R5oIcnIl1cbkO/9szk5gMOqfGRJEaH43IbHD4Z3L7tn+5rXwl5j/GZSYTbLBRW1HO8tNaXQxORENRssH3TPyAuDYbNb/mBWdPNkuoBKiUfEW+Wd/dnZnuL/dpdDlj3Vxh9feOe4s2Zuggyp8F7d4G9psXNOkewvQq7PYyw6HOU1m+OxQJX/gmsNvjgh81WP4jPiKdv3wJGjjhA/aT/hvColvc35usQGW9mwAugYLuISKdS0xBsj23mYpY/fKUhu/1DlZIXEel2Cnc29Gsf2/F+7WcaePlAkgclU19Rz643dvl03xIc2auyAbjyqSuZ/P3JWG0tTzM9wfYTG05gr9JiC5HO7KCnhHwzWe0A0RE2LhuuUvIi4h+eMvKZLWS2WywWb9/2A4XBKyVfXuNgS24pALOGte97dXSEjdF9zIzDDUdVSl66t/VPruevI/9K6ZHSYA/Fb5oE2+srYce/YOLNYGsh+Axm8LPvVDgcmGB7VKIZjK0rr/P5vj2Z7S32a9/1NlQch4t/cP6dWW1w9V+hIg8+/U2LmyVmNfQszwnhRaJ11Tgc4S2X1j+X2J5w1RNw4GPY9lqTu21hVuYuWEthYU9ORc0+974iYmHcjbD1FXBqXg8KtouIdCqenu0xEf7PbAdY0NC3/YvDpzhV5ftViiIiErqKdpoZOL7ObLdYLUz+vpndvvnvm326bwm82tJabxWErJlZ590+eUAyif0TcTvd5K7N9fPoRMSfPJntQxqCWc2ZNzoNgI935qv0sYj41DFvZnvLfWuHNZSS3xfEvu3HSmtwG2Zv+T5J7W/N5CklvylHwXbp3na/sZvivcXnb0v2wb3w75vNvt6dTJNg+87/gKMGJt1y/gcPuhSOrgGX048jNEUkBCmz3TBg7eMw+AroPap1O+w5BC79f2Y2/LENzW6S1D8JCO3MdsNejd0eTnh0O4LtAMMXwPib4OOfmi0HznRwGX3Tc1ixYjplua343Jx8K1SfhL3vt28sXYyC7SIinYg3sz0yMJntA3rGMiojAZfbYOnu5vu5iIhI12MYhjeAmjrGt5ntAONuGYc13Erepjzyt3a+6inOOid/HflXXrj4hW4fPMr9PBcM6DG0B3FpzWe3nk1920W6hkPnyWwHuHR4KhFhVrJP1QQ12CUiXY832N5CZjvA0IZg+4Egvv/UNvSLj+tgO0BPsF2Z7dLdeYKwe9/a2/JczF4D2/8Je96Df8yHis415/QE2yNiI8zA8sYXYOg8SOx7/gcPugzqK+CE/xe2Ryb4v2d7s5nthz6Bot1w8Q/bttML74Y+E81y8o6m2fidoYw89ioz2N6ezHaPeY9AVKL5Orjd5m1uF6x4kKKa4Rw6NIDy3FZk96cOh/7TYePz7R9LF6Jgu4hIJxLozHaAr4zNAOCjnXkBO2aoszvd/H7pPjZla5IrIl1TxfEK6svrsYZZ6Tm8p8/3H9srlhHXjgBgy7NbfL5/fzv2xTGK9xZz7ItjlB0tC/ZwgipndQ4A/Wb0a/Vj1LddpGvwBtt7txxsj4sMY8YQs0exSsmLiK+43AYnysze5ZkpLWeLny4jH7zM1lq7eR0nKrxjSROT+ycDcPhktSoPSrfmaUVVeqSUwu0tJAYdXQPOOvj6S1BdDM/NhsI9ARxlx3iC7WExYWbQvHCnmUXcGhkTzEBqAPq2e4Ptgc5sX/sYZEw0e9S3hdUGV/8NSrNh+c/NAPMZPMH2kC4j76jB4QgnLLoDsYGoRLjmr+bfycZnzdu2/xOK9pBt+w5gaV2wHWDKrZD7Raf6+/IXBdtFRDoRT2Z7TIB6tgNc2VBKft3hUxRrQgfAO1uP89dPD/M/b+0I9lBERPzCU0K+x7AehHUwC6clExdNBGDnazu9E+nOwtOjHMze491Zzhoz2N6aEvIenmB73uY8v1yYERH/q6hzUFBhZgQNTj13VYv5DaXkl+zqXFllIhK6CivqcLgMwqwW0hPPH2w/UVZLRZ0jUMNrpMbuSZro2HWc5NgIhjS8327K6bq9qkXOx5PxDLDnrRYCfAeXQvIAGHk13P4JRCfDC3PhyKrADLKDvIHmmHDY9AIk9TMz1lvDaoMBMwLStz0y0Qy2u+wunHW+LVvfYmb7ic2Q/ZmZ1W6xtH3HqcPhil/Bhmfh+SugYJf3rsT+Zs/2muIa76KOUGNx1GC3R7S/jLzHwFkwdREs/yUU7IRPfwsjr8GSOQmAityK1u1n+FUQm2qep92cgu0iIp1ItT3wme39esQwtm8ibgOWKBsFgNUHTgLminLPavrO5ssjJRwob8eXUpFuxHAbbP3HVgp3dr82Gp4S8r3H+rZf+5kGXDqA5IHJ1FfUs+c/nWsVtILtpvrKevK3mMGz/jP7t/pxiZmJJA9KxnAZ5HyW46/hiYgfebLaeydEkhB17ot9s0f0Jtxm4UBhlfdxIiId4Skh3yc5Gpu15XltYkw4aQlRABwsDE4p+bqGMvLRHcxsB5js6duuKnvSjZ25UHvvW3ubbmAYcHA5DJljBmMTMuA7i6HvFHj1Otj2egBH2z6ezPbomHrY9RZMWmgG0Vtr0GVwfCPU+TdDOyLudCDc14uoW8xsX/sEpAyEEVe1f+cXfB9uXQr2anhmJqx4EBy1RCVGEZVkfmaU5ZS1f/9+ZHHVYLeHm1UPOmr2Q+bfxwvzoKoQLv+Fd8FBq59/WARMvBm2vwH13ft7voLtIiKdSE19YHu2e3iy2z/aoWwUp8vNZweLvT9/1hB470wq6xx895UtPLXHyvHSzrlYQCQQjn95nPdvfZ83v/FmsIcScJ7Mdn/0a/ewWC1MvN3Mbt/8jP/7yfmKo9bBifWnA+zdOdh+7ItjGC6DpKwkEjMT2/RYlZIX6dw8QfMhqfHn3TYxJpyLBpktSZTdLiK+kOvp157ccr92j2ENfdv3BalvuyezPdoHFQqnDjBLyW/IVma7dE+GYTTKbC/eW8zJPWddlyvaC+XHYOic07dFJcC3/gXjvwXv3gGr/s8MyocoT7C9T8Qas9T5hG+3bQcDLwXDBdmf+2F0p1ltViLizYB7XXnTHugd0ahvvcepw7D3fbjonrYtPmhOv2nwvc9g5v/Aur/C3y6EI6tCvpS81VWHwxHW8cx2gIgYuPbv4KiBSd+BHoNI7GfO61tdRh7MxSCOatj5746PqRNTsF1EpBMJRmY7wIKGYPv6o6c4Wdm9y71uO1ZG5Rmlkc4MvHcW+woqqXe6cWPhP5u7b5BI5HyqGno7Fu8r5tTBU0EeTWB5svl7j/FfZjvA+IXjsYZZOb7uOEW7i/x6LF85/uVxXHYXYVHmZ3H+lnzcTneQRxUcnn7tbclq9xhw6QBAwXaRzsrbr/08JeQ9PKXk1bddRHzhWOn5+7V7eILtB4IUbK91+KaMPMDk/mZm++4T5d42gyLdiaveheE2g+SZF2cCzZSSP7gUwmOg/1n9vG3hcNUTcNnPYdUj8N5d4AzNUuHOGidgkGF8bGZwx7VxEXzKAEjOCkwpeT/1bfcsqmiU2b7urxDTA8bd6JuDhEXAzPvhji/MDO+Xr+aK6e8QHV1LWXaZb47hY1ajFrs9omM928+UORXuWAdzfwvgDbbXnqptfbu/pEwYOg82vhDSi1j8TcF2EZFOxDOZig1gz3aAzJQYRqYn4DbgyyPdK+B0tjUNmez9e5gr6D8/VIzL3bm+SOzJO913560tJ3C6umeQSOR87JWnJxYHPzoYxJEElsvuonivuZDIn2XkAeLS4hh61VAAtjy7xa/H8hVPCfnh1w4nMiESZ62z0ywU8LWOBNs9me35W/OpVZUVkU6nrcH2K0b2xmqB3XkV5J6q8efQRKQbON6Q2d63FZntQxv6tu8PUhn52obrOL4oI983OZo+SdE43Qavr8/t8P5EOpszg3/jbh4HNFNK/sAysx91eFTTHVgsMOM++NpzsPM/8Nr1fi+13h6OGgf9+x8n2n0cJt/avp0MugwOr/TtwJoRlWi+zn4vI191Era9BtO+B+HnX2jVJj2HwC0fwlVPkJm8g7vuepGoYx+EZODYatTicIQTHuODzHaP1OHmwgPM36dnAUXFsVb2bQeYfBsU7jTbF3RTCraLiHQi1fUNK6IjA5vZDjBtoLmCev3R7h1s9/Rrv2PmIOKjwiivdbDjeFlwB9VGZwbbCyvrWbW/85XCFwkEe1X3DLYX7y/G7XQTmRhJQmaC3483adEkALa/vB1nXehn6OSsMgPMAy4bQMaUDKB7lpJ31Dg4sdF83v1ntD3YHp8eT49hPcCAnDXq2y7S2RwsMoNWQ1oZbO8RF8m0AT0AWLJbpeRFpGM8ZeT7pZw/2D68IbN9f0ElRhACJ57Mdl+UkbdYLNx56SAA/rjsgBYvSbfjyXa2RdgYcd0ILDYLhdsLKTlcYm5QWwrH1pv92s9l7Nfh2+9A/jZ4fi5Uh1bVSkeNg3798nBaEyBr+vkf0JyBl0LJYSjz78Icb2Z7uZ8y2z1B5Q1Pg8VmBnX9wWqFSbewI+k5jh7NZEzk4+ZijJIj/jleO9mox24P900Z+Ra0uW87mIs7krNg4/N+GVNnoGC7iEgnEqzMdsB7cWz9kZKAHztUnKqqZ8cJc8XrZcNTmT7Y7D3Z2UrJ78k3g+2pUeaFhn9u0Ip4keacGWzPXp1NfTdpo+Ht1z46FYvF4vfjDbxiIIn9EqkrrWtaAjDEOGodHP/yOABZs7LoM7UP0D2D7ce/PI7b4Sa+TzzJA5PbtQ/1bRfpnGrtLo43VKRobWY7wIIxKiUvIr5xrLShZ3srgu2DU+OwWKC0xsHJqsB/n/f2bPdBZjvAjVP6MW1ACrUOFw+8syMoCwhEguXMbOeYHjFkzcoCzshuP/SJ2av8fMF2MIPYty03+7uvf9pPI24fR42DiAg77rB4Mxu/PQbMAIvV76Xk/V1G3tuzfed/YNw3ISbFp8c5W+zAgbz11ldYtvlWKNoHf50Gy34GtWV+PW5r2agzg+2+zGw/S7v6tlutZt/33W9DdfdM1FOwXUS6HafLzc/e3cmTnxzsdJMSzyQtGJntUweYX2YOFlVxKggT1FDw+aFiDANGpCeQmhDFJUN6AadLy3cGTpfbWz7vmiyzfPyn+4vIL1cJX5GznRlcdzvcHFkRWiua/aVwR0O/dj+XkPew2qxMuG0CEPql5E+sP4HL7iI+I57kQcneYHvehrwgjyzwsldnA5A1M6vdizLUt12kczp8sgrDgJTYCHrERbb6cXNHpWGxwNbcMn33FJF2q3O4KGwI6mQmn7+UcFS4jawesQAcKKjy69iaU2v3Xc92AKvVwu+uG0tkmJW1h07x703HfLLfQNmSW8pNz33JrhOhV7pbQp83ABtnBmBHXDcCOCPYfnAZ9B4NiX1at8New2DsN2HLy+By+Hy87WUG2x0YYedfUNSi6CToM8nvpeQjE83vgnXldT7db5My8tWnIGWgT4/RHE9W944NfeDujTDjJ2a29pMTYcOz4ApuNb4waz0OR7jverY3o13BdoAJ3wYssO1V3w+qE1CwXUS6nc8OFfPql7n8cfkBHv+kc5UFrm6YpAUjsz0lNoKhvc3MlY3Z3TO7fXVDufUZQ82M9kuGmP/feqyMirrQ+VJ+LkeKq7E73cRG2hiRZDAlKxm3Af/ZdDzYQxMJOd7M9oY4YncpJe/NbB+TGrBjTrh1AharhZzVORTvD91qIZ5+7VmzzACzp4x80a6iRv0Du4PcNWZVlH4z+rV7H55MlMIdhdQUqwyqSGfh7dfeq/VZ7QCpCVGMzjAv3m1pS1lKEZEznCgzF+vERNhI8WQ8nsewhr7t+wra0H/WRzxl5KN8lNkOkNUzlv+eMxSAX3+0l8IK3wa5/OnNzcdZe+gU/++dnZ0uAUaCzzPn8mQ7j7h2BFjMSmPl2SVwaEXrstrPNOU2qCqAfR/5erjt5qhxEB7uwAjvQLAdzFLyR1eD2+WbgTUjIJntbhfYKyEq0afHaE5SVhIA1UXVOJzhMPN+uGcLDJ0Pi38CT10EB5YFp5+7y4nN6vR/GfmGYHtFbhs/M2N7wODZ5t9hN6Rgu4h0Ox/tON0j8LEVB3l9fecpoV1Tb66ei4kIfGY7nC4l/2U3LCXvdhusaSgXP3OomdGemRLDwJ6xuNwG6w53jhI5nn7tI9LisVrgm5PM1b7/2ngMl1sTXZEzeYLt/S8x+1EfXNz5KqK0R+HOhsz2MYHJbAdI6JvAkAVDANjyXOhmt3uC7f1nmedEQp8E4jPiMdwG+Vu6Tw9iZ73zdDn9mVnt3k9saiy9RpmfqZ5MeREJfd5ge++2BdsBBvUys0tzSqp9OiYR6T7O7Nfe2uo6Qxv6th9oqPIWSN4KhT6+jnPrxQMY1zeRyjonP3t3V6eZp1Q3XNfacbycpbsLgzwa6Wy8fbwbsp3j0uLoN91c/Hvszfeg5hQMndu2nfYeBZkXwKbQ6TXtyWy3RMR2bEeDLjX72Odv983AmuHJbPd1z/ZGme31DUHfyASfHqM5UUlR3gUE3szuhHS45q/wvdUQlwqvfx1euRYKd/t9PI04zO/Pfi8j356e7R5xqVDXPSuXKNguIt2K3elm6W6zR+DsEWbG3s/e3cmy3Z2jb6BnkhYbGfjMdjhdSn7D0e4XbN+TX0FxVT0xETYm9z/dH8iT3d5ZSsl7+rWPaLjYMHdUbxKjwzlRVstnBzvHcxAJFHulObkbcuUQwmPDqcqvomBr5/i8aK/a0loqjpnvE4HMbAeYePtEALa/uB1nfXBLszXHWeds1K/dw1tKfmP3KSV/YsMJnHVOYlNj6TGsR4f2pb7tIp3PwSIzWDWkDf3aPfo1lHLOPaVqFtI9GYaByx3sUXRuxxuC7X2TW5/x6cls318Q+GB7XUNme3SEby/Dh9ms/O76sYRZLSzfU8hHOzvHws/q+tMZtn9avl+L/qVNPAviI86oauEpJe/cuRiik6HvlLbveMptcHQNnDzgk3F2lKdnOx0NtvedAhFxfi0lH5DM9rqGYHsAMtstFsvpYHN2WeM708fBLR/ADa9DWQ78fTp88EOoKvL7uACwm59/IVtGHszfUV3gq8iEAgXbRaRb+fzQSSrrnKTGR/L0tyfzzcmZuA24559b2ZwT+gHkanuQM9sHmkHmvQUVlNd0jrLpvrK6IZh+0aCeRISd/vj09G3/7GDolj0+kzezPd282BAVbuPaCWag6I0NnavXm4i/eSby0T2iGTjb7A124KPQmHz7S9Euc5KY2C+RqMSogB57yIIhxGfEU1Ncw/739gf02K1x/MvjuOrNfu0pg08vusqYapaSP7HhRLCGFnA5a3IA6D+jf7v7tXuob7tI5+PNbG9HsL1/ihkcy1GwXbqpv646wn0bbOw43j2zvnzhWKlZRj4z5fz92j2GeTPbq3AHOLjrSZqIDvf9dZzhaQnceelgAH753m5KO0Fbo1rH6UW1Bwqr+GB791mwKh3XpI83MOJrZrC9d9Q2HH1mgbUdCUojr4aYHrDpBV8Ms8M8ZeQtUW3/rtWILRyyLoEjq1q3fW0plLWtAqznuoFfM9s9mdJR/s9sh9Ol5JsE2wEsFhh+Jdy5Hub8Bna/A3+dBrXNbOtrDvP7c8DKyB+vwN3WFYJRCcpsFxHpDj5sKCG/YEw6NquF31w7msuHp1LvdHPri5s4VBT4Vc5tUVMf3Mz21PgoBvaMxTC6X992T7B95rBejW6/cFAPwm0WcktqyDkV2uUwDcPwZrYPb7jYAHDjVLPk1oq9hRRVdp5ebyL+5l01HxfBkCvNEueHFh8K5pD8Lhj92j2sYVbG3zoegC3Phl4peW8J+ZmNA8yezPZuFWxf3RBsn9m/w/vqP7M/WODknpNUFVZ1eH8i4l92p5vshkD5kNT482zdVP8eZrDdUwZapLv5eFchbsPCir0ByoLrgjyVMfqltD6zPatHDBE2K7UOF8cbgvWBUustI++f6zh3XTqIob3jOFVt5+EP9/jlGL7kyWyf0C8JgD+vOIBD5R6klRplOzdIzExkyCVxpKcXkVs0vH07DouECf8F21/3Zg8Hi9vlxlnnNMvIdzTYDmYp+dwvwX6Oa5ZVRbD8l/Dn0fD0DHC0/tqg3zLba87MbPcE25N8eoyWeIPt5yqjHhYBF94JN/4LakugPAAJTHZzvuzvMvLxGfFYbBbcDjfVhW281h2VaJb97yStTXxJwXYR6TbqnS6WN/SDunJsOmCW3frLtyYyoV8S5bUObn5+AwXloRlstDvd2BsmIDF+WBHdWt5S8t0o2F5Z52BLTikAM4c0DrbHRoYxsV8yEPql5Asr6imptmOzWhqV/RyWFs/Efkk43QZvbj4exBGKhBZPGfnI+EhvP/Hj649TfTK0F9Z0ROGOhn7tYwPXr/1ME2+bCBY4suIIpUdKgzKGlngCzGeWkAfImGxmtpcdLevS54aHy+Hi2BfmhQRfBNtjesR4zzfPggYRCV3Zp6pxuQ3iIsPo3XBxtS36NQTb88prqXe6zrO1SNdS53BxpNj8rrA3COXMu4pjpWYgLLMNZeTDbFYGNcyB9xUEtrxtrbeMvH+C7ZFhNn533VisFnhn6wk+3RfaCzlqGio23jlrMD3jIsg5VaPrENJqzWW2A0ydV4bbbWHTsg6UGZ/0HbP89a63OjLEDnPWmn8jEREOrDFtX9jYxKDLwO2A7LVN7ys/AR//Dzw2BjY+B2O+bma3H/i41bv39Gyv8/H1dM/CikD3bIfTPcvLs1uRoR3T0FYtEKXTA1RG3mqzktDXfK3b3Lc9MhHcTm8WfneiYLuIdBtrDhRTWe8kLSGKSQ3BUTAnPM/fMoWBvWLJK6/jlhc2UF4beiXSPauhwX+TtNbwlJJff+RU0MYQaF8cPoXTbTCgZ6z3AuGZZgw1A/BrQryU/J5880vioF6xRIU3PoduaMhu/9fGYwEvqycSqs7MbE/ok0Da+DQw4NCSrpvdHszMdjBXkA+aMwiALc+FTna7s87JsXVmgPnsYHtUYpS3b3l36NuevyUfR7WD6JRoUkf55jxR33aRzuPMEvLtaSPRKy6SmAgbhkHAs0tFgu1QURXOhrmWgu3td6yhMkZmGzLb4XR1twOFgX3tPcHl6HD/XceZ0C+ZWy82W/P87zs7qawLvWtaHp7M9l7xkdwxyyyB/8QnB7297UXOpVEA9gz9eu/j+PF09q84SU1xO4N8KQNg8OWw6fkmd5XllHHgwwMYAcjW9WZ0RziwRvsg2N5jMCT0hSOfnr6t5Ci8/wN4fBxsfwOm/wju3QlXPQZ9Jpu3tZK/Mts9CysaZ7aHQBn5s3nGVB+AzxaHuWDP35nt0IG+7Z7Xoxv2bVewXUS6jY92mBfAF4xJx2ptfGEoJTaCl74zldT4SPYXVrLo5U0h90Xf0689wmZt1DM80KYNMAMKu/IqqKp3nmfrrsFbQn5or2bvn9GQ7b7u8KmQLn+2N9/84jcyvemX06+MTSc+MoycUzWs60YLKUTO5cxgO+AtJX/wo4NBG5M/GYZB4c6GzPYxwclsB5h4+0QAtv1jG64Q+Sw+vt7s1x6XHkfKkJQm93enUvKeDP9+l/TDYu1Yv3YP9W0X6TwONrR7GNKOfu0AFovFW/o5V33bpZvxtPSC01XHpG3KaxxU1JnXIfomt75nO8DQ3mbQan+A29Z4Eif8nTTx4zlD6ZcSQ155Hb9bss+vx+oIz+KD2AgbN03rR3piFPnldby+vm19oqV7ahSA9XDWE1GwloKqsRgug33vdeD8n3wb5G2FE6cXfu/+926eGv0U/7zqn+R+7v/z9MxguyUytuM7tFhg0Cw4/Cmc3A9vfw+enAT7F8NlP4Mf7YJZP4WYhnnuuBvg4HKoal31Tn/0bHc5XLgd5vVVs2d7BYRFm+X+A6BVZeQ9PNn29f4PLhv1Z5SR92PPduhIsL2hukQAXo9Qo2C7iHQLdQ4Xy/c0LiF/tsyUGF78zlTiI8NYf7SEH/97G64QyvD1TEhigtSv3SMjKZq+ydG43Aabc0KrxK8/GIbB6v3nDraPykggOSacqnonW3PLAji6ttmTZ37RGZnRNNgeExHG1RPMUsj/3KBJrghAfaU5WYyIbxxsP7z0MG5n6C6saa/ynHLslXas4VZvpnYwDLtqGLGpsVQVVHFocWhUEfCUN8+aldVsJme3CravaejXPqPjJeQ9+s/oj8Vq4dSBU1TmKdNPJJQdOnk6s729PMH2nFNdv/WGyJk88zGPvfnd70J0R3lKyPeMiyA2sm0ldD2Z7fuDVEbeXz3bPWIiwvi/r40B4NUvc0O2GmG1p4d9ZBhR4TbuucycY/1t1SGqu0lCh7Rfs5ntOV+AoxrbmAUA7H1rb/sPMHSumQW+6Xlcdhcf//Bj3vzmm96F+G0OPLaDGWw3CA93QIQPgu1glpI/uRf+Og2OroG5v4Uf7oDp90LkWdnzo68DixV2/qdVu/ZHZrvn9wxnZLYHKKsdTgfbq/KrcNad530pPBosttPZ937krjG/h/u7jDycUUq/ree8Z/FBAF6PUKNgu4i0SyDK5vjS6gMnqba7yEiMYkJmUovbjcxI4OmbJxFhs7J4ZwEPf7A7ZJ6rp9RWbETw+rV7eLLbQ3Xy5kuHT1ZzoqyWiDCrt4T+2axWC9Mbsts/Oxi6fds9mRQj05vvYXXDFLOU/LLdhZyq8m35J2msqLKO/3lzBwcDXMJQWs8wjCaZ7X2m9iG6RzR1ZXXentVdiServdeIXtj8WObyfGwRNsZ/ZzwA257fFrRxnClnVfP92j08wfa8jXkh873BH9wuN7mfmQuyfNGv3SMqKYq0CWkAHP30qM/2KyK+5/nuMqR3+4Pt/RvaMuWUKLNduhdPcN1mMRr9LK3nKSHftw392j2GNgTbj5ysxh6ghbMOlxuHy/x9+7OMvMdFg3ty49RMAH769s6Qq9jocLm9r31sw+KDr0/uS/8eMRRX2Xnxi+wgjk46A08QtlFm+8FlkNCHftfNB+DIiiPUlbWzf7jVBpMWYux4k9cv/xsbntgAQHSKWUnD16XSm+OocWCzubDZ3BDuo2D74CtgxFVmmfgfboMLvg8RLbyPxqTAsHmw/Z+t2rWnZ3t9Rb3P5sKeCgYWmwVruLUh2N78tUx/iE6J9i7oOG+w2WIxFwIEIJPbVV2By2XF5bIFrox8Tjsz21VGXkTk/HYcL2Pyr1fwr42dJ/v1ox35QPMl5M920aCe/Omb47BY4KV1OfxzQ2gEVDxl5P29Gro1vH3bj5YEeST+5ykhPzUrhZhzLHSYMaQnELp926vqnWQ3ZA+NSG++59PoPomM7ZuI3eXm7S1dPzszmJ5dc4R/bTrG31cfCfZQpAXOWic0zBM9wXarzcrgeWZfwQMfHQjW0PymcIcZbA9Wv/YzTfyuWUr+8NLD2E8Gt8Tqmf3aWwow9x7XG2u4lZrimtb1deukCrcXUl9RT0R8BGnj03y6b/Vtl+5uw9ESHnx/t7eaVShyuQ2OFJvfJwf3an8P0X49zAvHKiMv3YlhGN7Fz6OTzS+ZZ2e6y/l5Mtvb2q8dICMxivjIMJxugyPFgSklX3tGsNvfZeQ9Hlgwgt4JkRwtruaxFaHV/qrG3vT1CLdZuXe2md3+9OrDlNeGbr95CT5vGfm4M4LtB5bCkCvoNTKVniN64na4OfBh++fr2VUzcNvt9HKsICopihvev4GhVw0FAhdsj4ho+DvwVWZ7VAJ881WYtLB1pdjH3QgFO6Bw93k39WS2G26jUUZ6R5y5qMJisUB9+emM6QCwWCxt69semRCQ4LK7tgqHIxyLzer3BImO92wv8+2AOgEF20WkzZbtLuRUtZ1P9hYFeyitUudwsWLvuUvIn+0rYzO4b84wAJ797EhIZKnV1J8utRVs0waYwfYdx8u8/ce6qjXn6dfucUlDZvuO42WUhmDvvf0FFRgG9E6IpEdcy1+sPdnt/9yYGxLnfVe1MdtswXCiTBeZQ5WnhDw0XjXflfu2F+00P9d7jw1ev3aPlMEpZvDVgFMrgltF5cSGE2a/9rQ4egxtvrx+WGSYN/jclUvJe0rI95veD6vNt1NJ9W2X7u43i/fy4hfZvPZl6C5oPlZSg93pJircSp829ko+U/8UZbZL93O8tJbKOifhNgsTezYE25XZ3ma5De8b/VLa/h5ksVi82e37CwJTYayu4XqJzWohwsffnVqSEBXOr64eDcDL67JDKrvdc/0o7KzX46vj+jAkNY6KOifPrtGCdGlZkzLypw5DyWEYMheAkdePBNpXSt5wG6x+eDUvXbWEffsGM+3iPSzadDvDrhrWKHvb3xw1DrOEPPgu2N5Wg6+A6JRWZbeHx4RjsZmJbb56fTyLKry/5wBntkMb+7ZHJUC9/z9XjJoq7PYwv/drhw4E2yPizDYE6tkuInJ+hxv69FWHcNbFmT7dV0SN3UWfpGjGn6OE/NkWXpRFbISNo8XVfHkk+BncNQ5PGfngZ7b3S4khLSEKh8tga27X7dte53DxZUOp/JnDzh1sT0uMYmjvOAwD1h4Ovex2b7/29HOvBP3q+AxiImwcOVntDQiLb9XaXew6YX5ZzWtvaTPxO08J+fDYcCxnVEQZPHcwFquFk7tPtm7S1Yl4gu2hkNkOMGnRJABKVpTgdgWm1Gdzztev3SNjSgbQxYPtqxv6tfuwhLxHv0v6YbFZKD1Set4JvWEYbH52M89f9Ly36oBIZ+Z0udnXEHT7eFd+kEfTsoNF5jxwUK84bOepFnYunjLyuSU1uN1a3Cndg6dk/KBecfSLM8/7Q0VV1DtDJxDaGRwrqQUgsx1l5AGG9jaD7QcC1M7Lk8kdHW475/dIX7tiZG/6JEVTY3d5EwhCwZkVG898PWxWC/89x8wcfmHtUYrV1k5a4M1s9yyIP7AUbBEwYAYAI64bAcChJYe8c/rWqDlVw+tXvs6qX64CA8p7X09yfBHJ1l2Af/qSt8Qvme1tFRYBY74OO/4NrnNf/7dYLN7Xp67cN9e4mrQLqKsIeLDd07O8dZntiQEJLrvrKrHbI/xeQh5OB9vrSusaJaOcl8USsEz/UOOXYHtlZSX33nsv/fv3Jzo6mosuuoiNGzd67zcMg1/84hekp6cTHR3N7NmzOXiwcXZQSUkJN910EwkJCSQlJXHbbbdRVRWYEj8icm6eYHtVfeeYFH6407xgdeXY9DZNbmIjw7h6gtmD9Z8bgp9hUlPvmZQEP7PdYrF4S8l/2YVLya8/WkK90016YhRDUs/fl3KGp2/7gRAMtnv6tWecO9geFxnGV8eZAaNQOO+7ou3Hy3A2XFjOL6/VReYQdXa/do/olGgyLzL7IHal7HZnvZPi/eZ7V+8xwc9sBxh+7XCie0TjOOUge2V20MbhCbb3n3XuALO3b/uGPH8PKSgMt0HOZw2962dm+Xz/kfGRZEw2P3/O1be9PLecV+e+yoeLPuT4uuPsfG2nz8ciEmhHi6upb+hhuyW3jPzy2iCPqHmHGoLtg1vxvfhcMpKisVkt2J1uCiu18FC6B898bER6PMkRkBBlljM/WKhrnW3RkTLyAMN6m+9fgcps9wbbA5w0YbFYmDvKrLr08a6CgB77XDwVG2Obqdg4d1QaY/okUmN38dSqw4EemnQSZy6KB+DgUsiaDpHm33bvsb1JHpSMs87JwcWtm6+f2HCCZyY+w6ElhwiLCuPqF6/moifvh55DYePzwBnB9vJuEmwHGHcDVBXC0VXn3TQqMQrwd2Z74MrIw+nM9vLsVmR2R8YHJLhs1FfjcIQTFu3/2EBkfCRRyebvtV2l5Ova+JguwC/B9u9+97ssX76cV155hZ07dzJnzhxmz57NiRNmlsejjz7KE088wd///nfWr19PbGwsc+fOpa7u9CTrpptuYvfu3SxfvpwPP/yQNWvWsGjRIn8MV0TawOlyk11sTm6q6kK/j1KN3cnKhnL3X2llCfkz3dhQUnvJroKglwavtnsmJcHPbAeY2lBKfsPR4Jb39afV+80V4DOG9GrVQo1LGkrNrzl4MuRKsO/JNy8mjEw//0rQG6aa5/3infmU14T+33lnsyn79AIVh8vQqv0QZa803/Mj45u2XeiKpeSL9xZjuAyikqOI79P+Pry+FBYZRr9LzPej0sPBqbThrHNyfN1xwMxsPxdvsH1zHm5n8DLx/eXknpPUnqolPCac9Elt/07VGufq2+7JZv/b6L9xZPnp8qK1p0IzKCnSFmeXkl4aQoGRMx0sMr9PtmYR6rmE26z0STJLQOeob7t0E57M9hFp8VgsMLyhnPlelZJvNbfb4HgHM9uHpZnBmn0BCrZ7erZH+7m3bnPmjzGD7Sv2FmIPke+mZ2a2n81iOZ3d/sqXOSG78EyCq1HGc30lZK/1lpAH8zzyZLefq5S84TY4uvIob//X27ww/QXKc8tJGZzCd9d/l/G3jDezcyffCvs+hMqCIGS2N1yDDm/fe51PZEyAXsNh2/lLyft6MUKTzPb6wGe2e4LtpUdbcS0iKiEwZdPrq7HbwwOS2Q4d6dsemEz/UOPzYHttbS1vvfUWjz76KDNmzGDw4ME8+OCDDB48mKeeegrDMHjsscf42c9+xtVXX83YsWN5+eWXycvL49133wVg7969LFmyhOeee45p06Yxffp0nnzySd544w3y8rpmpohIZ3G8tBZ7QynX6k6Q2f7pvpPUOlxkpkQzpk/bP5TH9E1kVEYCdpebt7Yc98MIWy+UMtsBpg0w+9ZuzS3rsqXvVh8wF2qcr4S8x9SsFCLCrOSX13krQISCM0uTni+zHWBc30SGp8VT73TzztbgnveBcqCwEkeAylRvymn8RT3PR2W2xLdaymyH08H2oyuP4qjtGgtSCncWAmZWeyBLXJ6PZyV1XWlw/k5ObDiBs85JbO/YFvu1e/Qc1pOI+AictU6KdhcFaISBk706G4DMizKx+emC8Zl9289ctFZ+rJzX5r/Gh4s+xF5pJ/OiTC7530sAs+SjSGfnCbZ7gg+hlIV4psM+ymyHM0rJ629Yuok9ZwTbwcxwP/N2Ob+iynrsLjc2q4X0pKh27SOzodd7UQACZnC6R3lzwWV/m9QvmdT4SCrrnCHT6q6mIdjeXGY7wMyhvZiSlYzd6ebJlYcCOTTpJBplPB9ZBW4HDJ3TaJuR15l92w98dKDJfL08t5zVv1rNE4Of4OXLX2bnaztxO9yM+NoIbt90O73HnlHlbdyNYA2HLa8EPNgeHt5Quj2i49+52s1iMbPb93143qxtX78+jobEn0aZ7ZGBzWz3VPzL35x//ucVqLLp9oZgewB6tkMHgu2Rid0ys93nERun04nL5SIqqvGXnujoaD7//HOOHj1KQUEBs2fP9t6XmJjItGnTWLduHTfccAPr1q0jKSmJyZMne7eZPXs2VquV9evXc+211zY5bn19PfX1p0/6igrz5HY4HDgcwbkI6jlusI4voasznxv7C06/UVbVO0P+OXyw3ayoMX9Ub5zO9vWY/8akPvwyr4J/bsjl5ml9gxaEqKwzv1BGh1la/br781zrlxRBj9gITlXb2Xz0FFOykn1+jGA6UVbL4ZPV2KwWpvVPbNVrGGaByf2T+OJwCZ/uK6R/cvsuAPia2QvQTUyEjYz48EafjS09r29O7sNDH+7j9fW5fGtKn5AKvvnae9vzue/Nndx2cX9+Om+YX4/ldhtsbgi2x0WGUVXvJLe4klFpQSwNFgJC8XOxpqFEZXhceJNxJQ9LJiEzgYpjFRxafojB8wcHY4g+lb/NbLnSc1TPkPo9RCSYix1qSmqCMq4jK80M6n4z+rXqe0T65HRyPs3h2JfH6DHy3MH5zsZTTr/v9L5++12kTU3DGm6lPLeck/tPkjQwie0vbueTn3xCfUU9YVFhzHx4JlPumcLhJWZ50ZpTvjk3QuF9KJT+9iSw9jZUILrloiyeWnWYjdklFFfV0zOuaXWVYDEMw9uzfXBqxyug9GsoAZ1TUt3hfYmEuoo6h7fX+PC0eL7Ydzrorsz21vOUkE9PjCLc1r78sfgoM0Bhd7mpd7qIDPNvENyT2R4VhMx2q9UsJf/Klzks2VnApcNSAz6Gs3mSdlpafGCxWPjJ3OF84+l1/HvjMb4/YxD9egQxs1dCTqOM533LoMcQSBnYaJuMKRne+frhZYcZPG8w+9/bz9YXtnJ42WFoWNMbmRDJ6BtHM+HWCWRMyWh63Ss6CcZcB5tfJHLoV4DABNvt1fbTme3BLCMPMOYbsOIh2PMeTPx2i5tFJvq2Z7tnUUVEbAQYRkMZ+cBmtvcY1oOew3tSvK+YAx8eYMy3xrS8cVSCWWnB3xw1ASsjD6f71revjHz3+37j899KfHw8F154Ib/61a8YMWIEvXv35p///Cfr1q1j8ODBFBSYK7R7927cC7J3797e+woKCkhNbfwFICwsjJSUFO82Z3vkkUd46KGHmty+bNkyYmKC+6G8fPnyoB5fQldnPDdW5lkA80txdb2Djz5aTKjG4Opd8MleG2AhoewQixe3b1VslBMirDYOn6zmr//6mIGBXUjntfeIFbByIucoixe3rX+Vv861zEgrp6qtvLbsS072Da2y6R31RaF5rveLdfP5p61//Xo5zce9/cVeUkt3+218bbG52BxT70gnS5Z83Oi+ls6NKCeEW20cKKriqX9/TFZoVJX2i6d3m39b/9qQzWjXYax+fE/Lq4bKujAirAaDY+1sq7ey8sutGLld6++nvULpc/HUOrNFRllNGYsXL25yf/iocDgGK/++kgPGgUAPz+cOf2p+rhRS2OzzDZaCYvO7/+Hdh3EsDnwg8tDb5neHyh6VrXpdalPMC+nr31pPXlrXqchlGAYHV5htE/LC8/x6jkQPjqZ6bzXvPPQO1QeqqdxiXrSIGRZDvx/041SfUyxZuoTq/WaAruR4iU/HE8z3oZoaZfh2V3vyzItRc0b2Zu2hYnYcL2fZ7kK+Na1fkEd2Wl55HTV2F+E2izcrvSM8++hsZeTdboOdJ8oZlhYflOCZdE77GhbUZCRGkdRQ+tVTRn5PXgWGYXTpxc2+cqykoV97O0vIg7ng2aO63v/B9ppzlE0PhPmjzWD7sj0F/MY1mrB2LlLwFW9m+zkqNk4dkMKMob1Yc+Akj604wJ++OT5Ao5NQZxjG6cz2mDA4uBxGX9dkO08p+fWPrWfF/St4/9b3qS053ZYga1YWE26bwIivjTh/Oe7Jt8HWV0l2bAACWUa+Ye4bzDLyAIl9YOAs2P7PcwfbfZ3ZXn1GZrujFtxOiEryyb5by3Meffabz9jz5p5zB9sjE6De/5ncFmdNcMrI57SjjHxptu8HFOL8sgTilVde4dZbb6VPnz7YbDYmTpzIjTfeyObNm/1xOAAeeOABfvzjH3t/rqioIDMzkzlz5pCQEJzImMPhYPny5VxxxRWEhwfmD0A6h858bnz+7m7IMbPFDSzMmj2nxfJPwfbhjnwcG3bSLyWaRV+f3qHJ6wbXLt7akkdueCZ3LzjHh6sfrXp7FxTmMXbUMBZcMqBVj/H3uXYqJZdtH+2jLCKVBQsm+Xz/wfTh69uAIq6eOoQFswaeb3OvgQWVvPfXdRytDuPyOZcRGRbcySzArqUH4GA2F47IZMECs5xWa86NDc5dvLM1jy32NL43bwI2f0ahg+RUVT0/+nI1AFUOCxljLmJivyS/He/1Dcdgx14mZ/VgVEYC2z7PJiljAAsWDPfbMTuDUPxc3Hh0I8c4Rp8BfViwYEGT+w8aB/nPkv/g2ONg/vz5nf4C6RN3PgHAZTdeRt8L+gZ5NKdtOLqBgtcK6BHbo9nfgz85653sumEXAAvuXEDP4T3P+5j99v289dZb2AptAR+vP53af4rtZduxRdr42j1fIyzKf9/9Vq9fzdq9ayl4w1xoYYu0MfOhmUz94VSsZ1wgPjX4FAd/ehBq8clrHQrvQ57qbNK9FFXWUVxVj8UCw9LimTc6jR3Hy/l4V35IBdsPNWS1Z/WIbXdG6Zn6pZiZWrklnSvY/vK6bB78YA/xUWF8dVwG35ySyZg+iZ3+e4D4l7dfe/rp65ODU+MIs1qoqHOSV15Hn6ToYA2v0/C8X3gqY7SHzWohJsJGjd1FVZ2TlNimLaN8qS6IPdvBDFwnx4RTWuNg/dESLh58/u+z/uTJbI8+z+KD++YMZc2Bk7yz7QQ/umIomR34nUvX4bK7MFxmokJkzQGozIchc5rdduR1I1n/2HpOHTAX0cf3iWf8wvGM/854UgaltP6gfSZCxgQSCv4DTAlosN1lRGKzBv+aIuNuhHcWmcHT5KxmN/FktvuqZ3ujdgGecuRRgY/xeYLth5YcMisOtPSZERlvZrYbBv7MSrS4anA44jpBGfkElZH3lUGDBrF69Wqqq6upqKggPT2db37zmwwcOJC0tDQACgsLSU9P9z6msLCQ8ePHA5CWlkZRUeM+h06nk5KSEu/jzxYZGUlkZNMSa+Hh4UG/aBsKY5DQ1BnPjaPFjS+G2N0WkkL0OSzZY76PfGVsBhERHZtA3XRBFm9tyePj3YU8ePUYEgP0oXamOofZTzohOqLN542/zrULB/cC9rH1WBlYbT658BYKHC43646UAHDp8N5teu1G902mV3wkJyvr2XGikouCPJkF2FdoXhwd3Se5yXM517nx3UsG8tGOAlYfKOa3Sw7w0FdHdbkLiSsP5OM+I6l85f5ipg3q5bfjbT1mftmcMqCH98JOQYW9030W+EsofS66ahpKPiZGNTumIXOGYIu0UZ5TTtnBMlJHBb8sY3vVnKqhKs98n8gYnxEyvwOA2B5mMMYehL+TvC/zvP3a00anter9r9+FZmDs5O6TGHaj5cl4J3NinbnQsu8FfYmO928wYNAVg1j7yFoA+kzrwzUvXtPsQoeENPNii73SjtWwYvNRxlgw34dC6W9PAsdTQn5Az1hiIsKYPzqdR5fsZ93hU5TV2EmKCY33kYOF5jiH9PZN79DOmtme0xDsq6xz8tr6XF5bn8vwtHi+MTmTayb08XvgTjonT/WKkRmnAwWRYVYGp8axr6CSPXkVCra3gqcUv6fvenvFRYZRY3dRWe//qkk19tYFl/0lzGZlzsg0/rXpGB/vyg96sL01me0AY/smccHAFL48UsLHu/JZNGNQIIYnIc6T7QwQfmIlRMRDvwub3Tbzokym/mAqNSdrGPvtsQyaM6jRwt02mfJdIt67m6SkIVSV+z/hzFHjIDbCgcsSRUjU0BnxFfgoDnb8G2be3+wm/spsj4iNgPqGBckBLiMPkDY+jaQBSZQdLePQx4cYef3I5jeMSgTDDfYqM/DuJxZXLXZ7MmHxASoj395ge1Ritywj79eoSGxsLOnp6ZSWlrJ06VKuvvpqBgwYQFpaGp988ol3u4qKCtavX8+FF5pvjhdeeCFlZWWNMuFXrlyJ2+1m2rRp/hyyiJzH4ZNVjX6uqm9fH3R/q6p38un+kwBcOTb9PFuf34TMJIb1jqfO4ea9bSc6vL/2qLZ7eluFTiWBYb3jSYoJp8buYteJrrNibUtOKVX15ir3MX3a9mXOYrFwyRBzArv64El/DK/NPJkUZ17caY1RGYn86ZvjsFjg5XU5/G1V29oXdAYf7zL7VI/ra/6el+4uwDD8V9J9U0O/9slZyWQ0XFDLK68910MkSOxVDT3C4pq/aB4eE86AS80qIwc/OhiwcflD0U5zcVrSgCQi40OnPzBAVFIUAHWlvun91haeHuVZM7NavdAovk88celxGC6Dgq3Nt7/qjHJW5wDQf0Z/vx8ra2YWF//0YuY9MY9bP7+1xYoCUUlR0PBrqS3V+6h0XmdnvA7oGcvwtHicboPlewqDObRGPPPAwb18E2z3ZKaW1zoorwl8m5D2qm2Yk105Jp2rx2cQEWZlX0ElD3+4hwt++wl3vbaFVfuLcLnVIkhO21vQMB9Lbzwf8/ysvu2t4+nZ3tEsZ08p+ao6/1/PqrGfu0d5IMwfYyauLd1diDvI703e1yPy/K/HgjHmtbyPd3Wd79TSMZ5sZ2u4Fevh5TBoFoQ1P1+3WC3Mf3w+171+HUPmD2l/oB1g1NcgMoHJk3fgrHPiajiP/cVZ4yQ83IHbEiKLsCJiYeTVZin5Fq6XRSU2zNt93LM9POaMzPbIwGe2e0rJA+x9a2/LG3rG5ue+7VZ3HQ5H4MrIJ/VPAqDieAVul7v1D4zqnpntfgm2L126lCVLlnD06FGWL1/OpZdeyvDhw/nOd76DxWLh3nvv5de//jXvv/8+O3fu5OabbyYjI4NrrrkGgBEjRjBv3jxuv/12NmzYwNq1a7n77ru54YYbyMjI8MeQRaQVSqrtlDZcCPH0GfOUgAo1n+wtxO50M7BnbJMJbXtYLBZumJoJwOvrc/0ajGtJTcPChthWTEoCxWq1MCXLLL+0/mhJkEfjO2saguSXDOmJtR2l02cMMTOjPztQ7NNxtYdZmtSO1WIujmirr4zN4JdfMVdu/n7pfv6z6Zivhxg0pdV2vjhslhT7zbVjiAizkn2qxlsm1dcKyus4XlqL1QIT+iWT0RBEzCsLfBBRzu98wXaAIVcOATp/sL3iuHmBN3lgcpBH0lRUsvl34qtydG2Rs6ohwDyr9QFmi8VCn6l9ADixITiL83zNMIzTwfaZ/g+2W6wWZj8ym2n3TMN6jlYsVpvVuxij9pSC7dJ5eTNez5izzB9tBhiWhFCA4WBDpaTB7fg+2ZzYyDB6xpkLvHJKqn2yz0CobSgJPaFfEo/fMIGN/282v7p6FKP7JGB3ufloZz4L/7GR6b9byXOfHQnKvFFCi9PlZl+BefF9xFnXJjw/e94H5Nw8Pdv7dqBnO0BcQzucQCSPBLuMPMBFg3oSHxXGycp6NueWBm0ccDrYfr7MdoC5o8xFAltzy8jXAnXhdLZzYi8HHN8EQ+YG5sARMRhjb2DsWDPYWl/p37mpWUbejtsW5dfjtMm4G6DkCBzb0Ozdnsx2e4XdJ4dr1LPdW0Y+8JntgDeb/cCHB3C2tEjLU+Lez9ncNqMWuz2csOjAJOLFpcVhDbdiuAwq81q3kODg4oPk76kGeyW4QzNu5C9+CbaXl5dz1113MXz4cG6++WamT5/O0qVLvWXx7r//fu655x4WLVrElClTqKqqYsmSJURFnX4Dee211xg+fDiXX345CxYsYPr06TzzzDP+GK6ItJInm6FPUrT3wkggym61x4c7zGzVK8em+6zs9bUT+ngzF7YfD/zqrFDMbAeYNqAh2H7kVJBH4jurD5jB9plD21dOfHpDZvue/ApO+vlL+Pl4LtwM7BXX7tJ1Cy8ewB2zzLJtP317J5/uKzrPIzqH5XsKcbkNRqQnMLpPItMbSuot3e2fC9ubcswFKSPSE4iLDPOWiiyuqvdehJHQYa80J4nnyvT2BNtz1+Z26sxaz8UCzwQ5lHh6vwU6s91Z7+TYOnNxUdasrDY9tqsF28uyy6g4XoE1zErfC/oGeziNxDSUoa7pZGWoRc7krUB0ZrC9IQvxs4PFVNYFf75lGAYHGxYjDkn1TWY7dM5S8meXhE6MCefbF2bx4T2X8NEPprPwoiySYsLJL6/j1x/tZe2hrjNHkvY5UlyN3ekmNsLWpNe4p/KYJ/NdWlbvdFFQYX4f7EjPdjgjsz0AwfbT7xnBu44TEWblihG9Afh4Z3AXcVU3vOatyWzvnRDFpP7mYuClIbT4TILHk+08buxewIAhVwTs2Nb0McTHV2OxuP3et93Ts92wdey9zqf6T4fETDO7vRneebuPMtsblZEPYs92gD5T+pDQNwF7lf3/s/edYXJUZ9anqjqnyVFZo5wFEkKBDAKEMWBwxDmv02KvA3xr767z2mtjnDPYa5t1IBuEQCCSIso5jsJIk3Pn7uqu+n5U3eqeme6Z7um6FaQ6z6NHMJquqrlz61bd97znHDRvzOP4qSjbKT7PRREc4kgmtVO2MyyDwETpZyvESr7rcBcefcuj2PLjQ9IXaI6HAUGFbH/HO96B5uZmJBIJtLe342c/+xnKyjKdJwzD4Bvf+AY6OjoQj8fx0ksvYdasWUOOUVlZiUcffRShUAiDg4N4+OGH4fOpt6mzYMFC8SBqzxm1PnjlzYkRle2hOI/XVLSQJyj3OHCbbGP11zdbVDtuoVCyrQykbAeAFdOqAAC7zvZfFHaJ3aEEDrVKLwNXzRwf2V7tc2K+XDjZfEpfK/kjOQq448GXb56Nt102AWlBxKf+sgd7de6IVwPrZQv5dQukgvbaeVIB4kVKlq27zsoW8nLBoMxtVxQOHSptSCyoh0KU7RXTKlA9txpiWkTzi+aNWSiksUAvEGV7fDAOUcNnTNvONqRiKXhrvXltzPOBkO1tO9toXJrmIKr2xuWNhsugd1dJTUuxPvM2u1i4tBHn00pDc3bcz8xaH6bXeJFMC9hkgCbHnnASgzEeLCPZ3KuFKTJh1tJnHrJ9NJXq/MYy/Ndb52P7Azfg9sWSK+NzB9s1vT4LxgNpqJnTEBjhmkaU7ed6o4ZorDEy2gbiEEXp3qse5f28EGhJtscMoGwHgFvkPe+GQ+26Om4Uo2wHgFvl67as5C0AEgE7cWIb1ix7GVj+McBfr93JZVW1y5XQhGy323mINvXeuUoGywKL3gkcfgLgR9av1M5sV2zkibKdYQGHPtwgwzKY87Y5AICjj+Wxkic57TSV7akEGEaUbOTd2pDtQMZKvhCy/dX/eBUQgVhUfk5fYrntVDPbLViwcHGhWSbbm2p88MmEb8SAme0bj3QimRbQVOMdl232aHjXcslK/pn9bZrn1ZPGBqMp2+c1SirdUCJ1UWTNvSFbyM9vDKCmBOLpKoNYySvWpEXmtQ8HwzD43t2LcPWsGsT4ND78h5043U3Hbl0LDEZ5bDkl/W5ulZtobphbB4YBDlwYRNuA+sQNUbYvk6MXGIbJspK/tImiDZ/dgNPfOa3YmRsBhZDtwMVhJU+U7Q6/sYhUIJPZDlG9jXshUPLary08r52gcZlEsPSf7ke0xzwEUj6ce107C/li4a6UyXbLRt6CSXGiMwRBBCq9DtRmvXcyDJMhGHRWIQLAyS7JNnJypQcuFQmjyYqy3Tw28oXkL7vsHN5+ueQEsvFIx0XRkGxh/MgVFUFQ6XWgPiC96xzvoJvzanZkLOTdJbsXKjbyGmS2xwyQ2Q4AV8+qgdfBoW0wrotTI0FEFpEUOh7ESv7Ns326uwZa0B/pgXa8/e3/RPfgRODm72h7cnc5AO3IdoeDB+wGUrYDkpV8fBA48fyIfyKZ7WrFvw1RtieCUrODSs6148G8uyUr+ePPHEc6mUN4SFT3CYrra1J6X9bSRh4AyiZLjSZjke1tu9tw9AmpGSEel/c1lrLdggULFnKDqC6aar1KF6rWhHMheE6xkG9UzUKe4IpplZhe40U0mcYz+7RVrMWIst1gZDvHMlg2VVLqbr8IrORLtZAnuFq2kn/9ZI+uneNqKdsBwM6x+OW9l2HRxDL0R3m8/+E30RUypyL7paOd4NMiZtX5MEO2Q63xO3H55Arl39VEJJHC0XapgEbuFwBolK3k2y5xZfvJ504i+GYQkU7jFNsLJaBn3Sa5M516/hSEtED9umiAKNuNSLbbnDYwDulZrqVVPyHbx0Mwu8pdqJolub607jS/lbyS13618ch2y0begtmRTcIN37eQ3PZXT3QpDld6oTnL4UxNmNFGPlagJfTKpiqUue3oCSex82yfFpdmemw/3Yt7f7cdLSaaD4WA7MeG57UTkKboIxdB43qx4NMCvviP/XjgiQMYjI2u7CcOGJNKtJAHAL+WynZ5zXDpTLa77Byum1MLAHj+kH6OG1FZRELcMsfCpEoPFk0sgygCLx7Rv/nMgo5I86g79hUwDPDqkQ8DNo33rtnKdpUI5XxQyHaHgZTtAFA9E5iwDNj/1xH/RF3Z7tTHQp5g0upJ8NZ6ER+I48wrZ0Z+g8MPgAESFBvn+AzZrpWNPAAEJss28udGJ9tf+eoryn8rZHtcv+YuPWCR7RYsWCgYzd3Sot5U48t0AhuMbB+M8XhdVia/RUULeQKGYfDu5ZMBAH/dqZ2VvCCIiMr2Y4VkW2kNYiX/5hnzFpL6Ikl8+7kjinqoVLL98qkVcNs59IQTCsmqNaLJFM70SPdtvuJOsfA6bXj4g8sxtcqDC/0xfPDhnaa0PCQFBlLIJiCd8y8eVpds33d+AGlBxIRyNxrK3MrXG+X/vtSV7US9rHUu92goVNk+afUkOMuciPZETWsbrmS2G9BGHgBsPumdQ6v5kU6mcX7r+PLaCS6W3PZQewj9p/vBsAwmr56s9+WMgGIjbynbLZgURxUSbqQb1/zGACZVuhHnBSUiSy+cVMh2dV3DJldKRWQz2cgXaglt51jcJEcUbbDsjwvCr15rxpZTvfjT9rN6X4qqIPd5Pqcxcv9fDC5xxeKx3Rfw2O4L+L83z+OtP9uMw235i/Ln+6V1otS8diCjbA9poGxX6jg628gDmb3vhkMdugkCilW2A9kW+NZaeklj43/AEz2If/zjLUjbS6vXjQsa28g7HDwYp8HIdgBY8m7g5EYgPDTmiGS2qzU2fDQ7sz2ojL9eYDk2YyX/eA4reZaVrORp2qYrynaHpjbyhSjbWza34NSGU2BtLMqnliORsGzkLViwYCEv4nxa2dxINvIks91YZPvGI5JadWatD7NUtpAneNtlE2DnGBy4MIhDrdp0aMVTaZC9kNGU7QCwYrpki/3m2T4IJrNJDMZ5PPjicVz1vU347RtnkEwLuHFuLS6fUjH2h0eB08bhimnSuOw+p08TwrGOEERRUmyXYok/HNU+J/744StQ7XPgSHsQn/zzbiRT5lH0huI8Xpft/dctHEq2k6Lo9tO9GIyq10RAFE3ZqnYgS9muAdl+rjeCj//vLhzrMN7LrkK2D5iPbOfsHGbcPAMAsPfhvdSviwaMrGwHAM4nFeO0mh+tO1uRiqXgqfGgem5xee0EjVdIVvJtb5qzAYMg3CERbN46r6JWMBIUG3krs92CSXFkFBJOspKX3lP0zqo9JZPtMykp2zuCcSUL3egoxhL61iyCyGx7JK0hiqKyt953fkDfi1ERXaE4esJJsAzyRtzNa5CK2MTp4lJBnE/jJy9LMUxuO4dzvVG87Rdb8fed53N+/wX5WT+xwp3z34uBV0Nle9wgNvIAcO3sGjhtLM71RnUUBBQfj0iehduaezEQTVK5LgsGx4F/ANt/gXO+T+L8+QmS2llrKGR7XCOyPQnGRaeuXRLmvw1gWLBHnhjyZbJXTIaTqjj+ERt5RdmuM9kOZKzkjz11DEKuGqgzQNc2PSnxMjyvrY38WJntoiji5f/3MgBgyYeXoHZhraVst2DBgoXRcLY3AlEEAi4bqn0OTTcnxeD5g5Ja9S2LGqmdo8rnxFpZ/aqVup3ktTMM4LIbb+leOKEMbjuHgSiPE13myJqLJlP4xauncNX3XsFPNp1CJJnGggkBPPKh5fjt+5fBxpU+ziSPu19F0rYYHFXRQn44plR58cgHr4DXwWHLqV588R/7TVNE3HSsC8m0gKYaL2bVDS0aT632YnadHylBxCvHu/IcoXjsPtcPAFg2ZTjZLme2a2Aj/+iOFrx4pBMPbTRetrghyXaZgC5E7X3F564AIJHtPcd6qF4XDZBigVGV7ZxXKk5qZSNfSl47QbayXc8okVJRzH2gByxluwUzQxBEhezI50BE1HwvH+3UlYw+SclGvsrrgNfBQRSBC/3mULcTS/9CsuvXzKyGz2lDRzCOvRcRgUwDHUGJlAaAAxcGwZs0mmc4CIE+rdoLdx6ylSjbj3WEkLpIfu5C8JcdLWgfjKOhzIXXvnQtrp9Ti0RKwJcfP4AvP7Z/xJpHxUZeE2W7vGYYgGz3Om2Kg59eVvJEsFNM88G0ai/m1Et79I1H1HWgszAK0ikwLVvh5Af0vY6OQ8AznwUWvROt6XUAZLWz1pBtzLVQticjSdjtPBi3uu9dqsBTCcy+BeyBvw35cnZjNtlDlgJiIy8p241Btk+5ZgrclW5Eu6M498a5kd9AW9mu2MjbNLWRH0vZ3vxiM1reaAHn5HDN166Bq9yFdNoGAXYrs92CBQsWcqG5S7aQr/WBYRhDKtsFQVRszG+YW0v1XO+5QrJSfXpvmyYZitGsvHa1c+jVgJ1jFSW40a3kE6k0/rDlDK7+/qv4/objGIzxmFHrwy/vvQz//MwaXDe7VrUxDrikl5+x8udoQckBzWNZWCoWTizDr953OWwsg2f2t+HZg/plvxWD9fJ1rlvYkPN3vXa+pG5/4bA6KrJUWsAeQrZPrRzyb1oq2wmhv7W5B2mDNUa4KgxItheobAeAyasnY/ZbZ0NMi9j075toX5rqMLyyXSbbtbKRP79FUlSVklFev7gerJ1FtCeKgbMDKl2Z9iARA0adG1ZmuwUz40J/DOFECg6ORVNN7mLqkonlqA+4EEmmsfmkPs1cg1Ee3fJa0KQy2c4wDCZXSRapZ3vMcR8TG/lCiCKnjcP1ckbyBh0zks2AAxcyBdxESsDxDnM0cI+FsRpqAKmJ2ePgkEgJONsb0erSdEUkkcIvXjkFAPjcDTNRG3Dhd+9fhi/dPBssA/x91wW87RdbcS5rPGjYyGshHlGU3AawkQcyzm56OaYQd5BCM9sJSPOZ3k4vlxREAbY/vRW1wYP6XUOsH/jbvUDVDOAtDyEZzVI7aw2WAy+4qZPtoigqNvKs24DKdgBY/B4wnQfhj2WcSGxOGzg59jSugphkiLI9ob+NPCC5Gs6+YzaAPFbyLtrKdn1s5AOTpHeYxGBixO9WFEUlq335p5YjMDGg1Pd40WvZyFuwYMFCLjR3S2oGUgjyGVDZfronjFAiBbedw5x6ui8kK6dXYXKlB6FECs8eoF84Icr2fN3wRsAK2TJ9x2ljku1pQcTfdrbg+h+8hv/65xH0hBOYVOnGD9++GC/cdzVuzUO8loKA/PIT1Itsp6hsJ7hqZg0+cc10AMBTe42fTRxJpPCqnHs6PK+dYO08aSP/2oluVVRkxzpCiCTT8DttI+Itssl22urXjkGJ0A/GUzhwYYDquYqF0TLbhbSQyQgrkGS8/jvXg2EZHH3iKC5sv0Dz8lSHktluQJtwQHsb+Wi3VMwtn1Y+7mPYXDbUL5bWkrad5rWSt5TtFizQw5F2iVycVe+DPY+jEssyuhMMvRHpGeF32pQ9oJqYKjfNnDNBbjufFsCnpfe1sTLbCW7N+v2Z2emENobHs+1t6dfpStTFaFERBBzLYLZcvzh8iVjJ/2HrWfRGkpha5cE9l08EIK13n75uBv70kRWo8kpxZW/56Wa8eLgDoTiPAfndXA1lu88p7dNDGtrIG6WWc/3cWtg5Bqe6wjilsSuhKIpKZru3yPEgTQKbT/YgFNenvnLJweaAaPfAntapCUgQgMc/BsQGgHf+CXB4hhKwOiDF+KiT7elEGhAhke1eg5LtM26E6K5A48DOIV92lUl1nVLHRxTEYZntg4qzgN6Ye/dcAMDRJ45CHC5icQaABMV1VSbbed6uqbLd4XUo++7h6vZjTx1D26422L12rLl/DYBMfY9Pu4H4gGbXaQRYZLsFCxYKwnCyPWMjb5xsvT0tAwAkta0aFuCjgWUZvHP5JADAX9+kbyUfHeeGREuQfPIdZ3oNWUj68Usn8JXHD6J1IIa6gBPfunMBXv7Ctbj78ongWDpuAQrZrsNmMC2IOCYrKWgp2wnuWirZJb9+otvwGWqvHO9CIiVgapVHsWwcjgUTAmgocyGaTGPLqdJVZLvkvPbLplSMmGsN8mYkmkxTd0DoCGaISr3UcfmgkO0a2OkXArKJBwpTtgNA7fxaLP7AYgDAS195yZDrYD4YnVDV2kaezMNSmw9Ibnvrm8ZvRMoHoyvbrcx2C2bGEaJ4rR/9PY2QtS8d7dTFWltRZTrp7EMmy2R7iwkUvbGsJsxCibNrZtfAZWdxoT92yRCp48FBmWyvkd9FLhbbfRLrNZqyHcg0R+uVo60lBmM8fv1aMwDg8zfNGtFstHpGNZ773FW4fEoFQvEUPv6n3bj/cUlZW+Gxq9L0o6VTY7QINwwtEHDZsWZGNQDg+YPaNnElUgIIN+Up8vc4s9aH6TVeJNMCNh1TL+7NwhhwlcGe1qkZ7rX/Bk69BNz9e6ByGoAsa/EC9+hqI836qWe281EeLJsGxwngjEq22xwQy6fCxQ9tjCP758RgaePDZ9XGpMx2YyjbAWD6jdPhDDgRbg+PFFm4AnQzynmS2W7TNLMdyJ3bLqQFvPI1SdV+5X1XwlsruVWR+l4y5bJs5C1YsGAhFzJku7Rw+uRii5Fs5PfJG/Klk8o1Od/bl02EjWWwp2WAus1dhBS5HNo+TIvB4knlcNhY9ISTON1jrGJZKi3gUbkp4nPXz8BrX7oO771yChw2uo/BgGxPF4xpf5+c7Y0gxqfhtnOYKttz0sKMWj/mNgSQEkTD27qRgsJoTgYMw2DtPMlK/sXDpWfC7cqT1w5IeZ9Vct5YG0XVriCI6Mza8LyhQhOBmnCWS5syoyjbiYU8wzKwuQpfd6/9+rXgnBzOvX4Op54/Renq1IfRCVVF2a7R/CDFAdKZP15MWJ7JbTcrlIgBnQpaYyHbRt5MDS4WLACFx/0sm1qJap8DgzEe25p7tbi0IcjYptPZh0yplN5TzaBsJwpVlgGcBe4jPA4brpstWcnrlZFsdIiiqCjbSVzbPrmR3syIJdM4LddR5o9BthMynijhL2b89vXTCMZTmF3nx+2LGnN+T32ZC3/9+JX4yBqJYHtOjgFTQ9UOAH6XdpntxDbdZRAbeSDj8Kb13j27flioOwgBwzAZpxCNmwRo43DbIHafM6ZDJFxlcOihbD/+PPDa94Dr/x2YeaPyZdIUr0tmOwDR5peU7SWSyaOBWMgDMK6NPAC4y+EY1oihkO0lNiNkix/sbruc2W4MZbvNacOs22cBAI48fmToPzr91G3ked4GUWQ1tZEHcue2H/rrIXQf7oar3IVVX1ylfJ2Q7YmEi27zgQFhke0WLFgYE4IgDslsBzLKdiOR7XvlDfnSyeWanK/W71Ky4f+Psro9Ko+zl5KiRA247JzS6GA0K/ktzb3oCSdR6XXgszfM1Gyjq6eynRRwZ9f7qSn3s3H7YmnD/s/9xrVLjiXTShf8ujwW8gRr52dUZKXkm4uiiF1nc+e1E2iR294XTSKZpYbb29JvqPXbLY+BUTLblbx2v6OoeImySWVY8bkVAICX7n8Jgg4KxPHALMp2reYHKQ6UqmyfcIVEtrfvboeQMsdcGA6jN2IQO7t0Iq1YDVqwYBYUqnjlWEZ5L9GDrCXK9mKJkUIxRVG2G59szx6LYt4PbskiiKzGoJHoCMbRE06CYxm8WybbT/dEDO+YNRaOd4YgiECV16Eo9vOBNN0cvcjJ9p5wAg9vOQMA+MLaWWBH2afaORZfe8s8/OLeyxQl+hSVmsi1ikVMCyIS8jugkYQTN82rA8cyONIexDkNXUWy19Dx1ChIk8CrJ7oU90ezQxBE3Pu7HXj3b3agP2K8NU90lcOe0vj53NsMPPEJYPZtwJp/G/JPetvIC44AdRv5bLIdDrrCmZLgKoM9NXT9cJbJIooSHQuJg4HNbQMjpgA+YhhlO5BlJf/40aHvdc4A3YzyZAQ8L819LW3kASAwWXpPGTwnkedpPo1X//NVAMCqL61SCHYAcFfI9b2Yw8pst2DBgoXh6AjGEePTsLEMJsudxGRzEtKgE7gQRBIpHO+QFvClk0eqR2nhXXIx4Mm9rapkO+eDGZTtQCa3/c0z2qtuRsPTcpb4WxY15M3EpIGAS0eyvYB8QDVBVAnbTveiK2gMwnQ4XjvRhRifxsQKNxZMGH1crphWiTK3Hb2RJPaUkBnZOhBDRzAOG8tgSR7XjUb5pbRtkB7Z3iFvdqp9TkyqdINPi9hhoPuUKNsTA/Q2rcVAIRjHoeZdc/8auMpd6DrYhYN/Oaj2pamOdDKNtPyMMSqhqpDtGijb08k0UvK7DSkWjBdVs6vg8DvAR3l0H+lW4/I0h9EbMRw+B1i79Fy3rOQtmAmDUR6tcpPdWGQ7kLGSf/FwaU2A40FMJjRoWSCT/eX5/qjmP1uxICp/d5F7suvn1MLBsTjdE8GJzjCNSzM1DlyQCrcza32oL3NhWrVELuwzuZX80az92FjNGXPq/WAYoDuUQHfIGO/DNPCLV5oRTaaxeGKZ4iQ2FtYtbMAzn1mND66aik9f16TKdXizyHaB4rqTXSOi1bA0HlR4HVg5vQqAtup2Ja99nCKS+Y0BTKp0I84LePW4Od+th2MwxmMgyiOZFnCyy4DPB1eZtpntggD87X2Arwa465cAO7R+p9jI66Rsh0srsl1uvLAbl2wXXeUj5obaynaH15HJQDcQ2T7j5hmwe+wYPDeI9t1ZjbAuypntfBTJpFRn1tpGfriyfd8j+9Df3A9vrVcRnBAQ4j0atVs28hYsWLAwHMRCfkqVRyEqlYwrg3STHmwdhCBK+cd1gdJsX4vB1TNrUOt3YjDGK8p6GoiWuCnRCpfLyl2SuWcExJJpvHBY2kDesWSCpucuk5Xtgzqo7ZTiTgEFXDUwqdKDpZPLIYoZmz+jYb1sN7duFAt5AjvH4oY5knPFi4fHX4DYLVvIz28M5M32zCjb6RGJhGxvKHNhzYwaAMDmk8Yh210Vcma7wWzkx0O2uyvdWPPAGgDAK197RSFujYpEVkHXqISqzSe9c2ihbM8uDJSqbGc5Fo3LzJ3bbnRlO8Mwmdz2Xotst2AeHJWbhCeUu5X3xdFw5fQqlHukJsA3z2jrIKUoESmR7Y3lbtg5BnxaRDvFxkM1kBmL4kppfpcdV82UM5ItK/kRIBbyCydIhVzSoGp2sl2JiihgP+Zx2DBNVm1frOr29sEY/rzjHADg39bOLsodYnqND//11vmYU6/O3tafFRNFs6ZF1gyGAVx2Y5XgFccNLcn2RGkiEslKXh8LfFrojWT2HqT2aijkIFSpItYHdB0Grv9qTnJVb2U74y7XhGy3202ibB9mI09i2Eq12SdNFVJe+4D0RacxbOQBSVU+c91MAMOs5J1lVMllIR5SyHatbeSzM9tT8RRe/+brAIA1D6wZUTcjZHssZLNs5C1YsGBhOJq7SF67T/ma0WzktbaQJ+BYBlPlzvueML2XrVI3JVqhxicRE4M6ZJTnw0tHOxFJpjGp0o3LNJ4fAbnTMES5Yz4XCs0BVRNE3W5EK/k4n8bLR6X8daIOGwtr50tqixcOd47b8nPnWakgns9CHgAay+jbyHfIbgN1AZdS7N18yjhqAPIyXqrdmFooVc17xWevgH+CH4Mtg9j5i51qXprqID+rzWUDW2D+rNYgyvZYP30ShsxBu9cOVgUnFGIlf+r5UyUfSw8YXdkODM1tt2BBS4iiiJ+/cgq/e+N00Z8t9j3NzrG4aa70XrJBY7I247BFh2znWAYTK8xhJU+ylz324vdkhNjacJEQRGqCNGovnCgRK2RPT7OZXQsUGhVBMLfx4s5t/8nLp5BMCbhiWqWyH9ELThsLm2xjTtNKPjbO6AktsHZ+HRgG2H9+gOo+NBtRFZxSyFq66WgnVXdJrdATzljHnzYg2S7mIFSpgqiC3bnrJ0pTvE7KdtZXAZcrbtnIAzldDxwB6feiqrKd2JAbSNkOAHPvyWEl7woA6STA06lribFIhmzX2EY+W9m+61e7ELwQRGBiAMs+uWzE95L6XiRos2zkLViwYGE4TskvfDNqR5LtfFpEIqX/C+6+85J6NJ9NM01UyS95fRTzlRRlO6Uil1ookx/2wRhvmDzCp/dJasI7Fk/QfINLbORFEQhr6ALRHUqgK5QAw0iWhFrhtkUNYBhgT8sAzvcZq1j6xskeRJJpNJa5Cl4nrp5VA6eNRUtfFMc7x2cFpeS1T8kfb6FFZnu2sn1VUxUYBjjRGUanQSz/FbK9P26ItaMUZTsgdRlf+/VrAQBvfPsNwzQR5ILRlcsAwPm0s5EnhQHSlV8q5t0zD2CAo08cxfF/HlflmFqCkO1Gnh8kt91StlvQGk/ubcX/vHAc33ruKE4W+Z5QLAkHALculMnawx2aNnFmbOTpNf0SK/lzBnt/HA5iI+8ax57spnl1sLEMjnWEDEmo6AVRFEdVthvhvXA8EARxiI18ISAK+ItR2X6uN4J/7DoPAPjSzcWp2mmAYRj4ZHV7mKILlRI9YSALeYJavwvLp0iEplZNQBkRyfjHY8nEctQHXIgk09h8sketS9MN2aKd090aKsgLhasMjpSG10XIdqcv5z8PUTzrANZfaWW2y5Bs5GOAKChfI3voUusffDTLwYAoo13GUbYDwMx1M8E5OfSd7EPXoS7pi065/kpJ3S7Ew1JmOwNwGjvfErI91BrCG995AwBw9deuhs01cn+g2MiH7RAtZbsFCxYsDEVzl/Rila1sJzbyAN3NSSEQRTFL2a5dXjtBpUy291Il2+VNidPYyvaA/JBNpgUkUsIY300f/ZGkkuV159JGzc/vsnNwyErRYEw7K3lSoJlW7dXUDaEu4MKV06Tst2cPGMsi83nZ2v6WBWNbyBN4HDZFdfHi4c6izxmM8wpJf/nU0ch26UW0nSIhS5Tt9WUulHscWCQXM41SoCA28kJKUDZWeqJUsh0AlnxgCarnViPWF8OW729R69JUhxmUy0pm+wD9ZgxieVeqhTxB47JGrPy3lQCAZz/+rOnU1+ReMPL8UGzkrcx2CxqiO5TAN57N2EY+tudCUZ8/Mo64n9UzquF32tAZTGCv3GisBWjbyANSXBkAnDP4GqmoMsdBnJV7HFjZpH1GstHREYyjJ5wExzJK88mc+gCcNhaDMR5negxIPhWA8/1RRJJpOGwsplcXRpaQ9YA4X1xMeOilk0gJIq6dXYPlozh+aQlfVm47LZA1g+b6WQpIE5dW8RYxnsQjjr9GwbKMLhb4tNCbrWw34nrnKodNS2V7Um5Gc+QWjQxRPOsArqwKDkcK6XgcaUrOCkPIdruHyjlUgascDMQhymWyh04GS6uPk6YKKbOdKNvLSzqm2nD6nZhx8wwAwJHH5D0BsbqnpOYW42Ekk3bY3XbNm9a8tV5wTg6iICLaHUVFUwWWfGhJzu91BpwAA8TjTjDpBJCi15xiNFhkuwULFsYEyQ1qylK2cyyjdOeS7lS90D4YR1coARvLYEGj9rYyVbJ1el+E3sPDLMp2n9MG2Y0NgxqSy/mw/lA7UoKIeQ0BzKjVTuGdDaJuD2porT+eAq5auH2x8azkE6k0NsoW8usWFmYhT7B2nvT9Lx4pfiO/51w/RFEqINf686tkibK9IxhHKk2nSYUo2+sD0nWsUazkjUG22z12QF7ejJDbrobam7WxuOG7NwAAtv9oO0Jt43NHoA0zKdvTyTRSlNdSolJwlqlHLl//zetRPaca4Y4wNnxug2rH1QJmmB9E2W62RgYL5sZ/PXMYA1Feyf19am8r0gWqzfm0gJOd0v6qmHc1p43D9XNrAQDPH9SOYMhYp9PbhxBle0ufAYmGLBDL4vGqMknWsGUln8GBC5LiaWatDy55jjlsLBbIjaFmzW0nhPnsOj9sBcbSkGaD0z2Ri8Iem+BEZwhPyW5zX1w7W+eryUALst3IynYgY8m+61w/ukL092BqKNuBTCzcxiMdSBpA5FEKerOU7S19UcP9PKKrHDYxqR1ZlpDJdoMq223lUtOcy5VQmtbVRjKShMMhH9vAynaF/CaZ6sjsoUtWtkdyKNsNlNlOMPfujJU8gIz6nlZue1Kykbe5tRfiMSyDskkZzuXar18LLs+zjWEZuMpciMflmsolZCVvke0WLFgYFcE4jy650Dq9ZuhD3qvB5qQQEFX7nAa/Lh3DxEY+uyNVbZgls51hGATcGSt5vfH0Xonw1UPVTkBy24Nx7caDFHeKsSZVC7cuqIeNZXCkPYhTXcawyNx6qheheAq1ficuK9L94oa5tWAZ4FBrEK1F2rzvPkcs5EdXb9T4nLBzDNKCqKy3aoMo2xtkW6/VMzJkuxHsORmGgc0n3Sta5HKPBTWU7QAw+62zMWnVJKRiKbz69VdVuDL1YQZlO+tiwXBSJxft+UEKA2op2wHA5rLhzj/eCYZlcPDRgzj6xFHVjk0bZpgfJLPdspG3oBU2HOrAcwfbwbEM/vjhK1DusaMzmCi4ga25O4xkWoDfacPECndR51bI2sPakbVRypntADClStpnFqts33m2D6v/exNePlq8A9F4QMZiPDbygJSRzDJSRrnRIpf0wnALeQJiJW/W3PZMVEThDd91AScqvQ6kBREnxhlhZUQ8+OIJiKK0T1wwwTiZu34tbOQ1WD9LQUOZG0smlUMUx+fkViwyIpLS6lrLplai2udAMJ7CttO9alyabujJcshMCyJajPZsIDnZWYQqVSTltc+Rm2zXXdnuk+pJNK3k+SgPu51HSnAArDHXDgAQc8wNsocudWyGKNvjg4DdC3DGq4fPun0WWBuL7sPd6Dnek2kIoEa2R8HzkrJdDxAr+Zr5NVjwrgWjfq+r3IVEQr5PLyEreYtst2DBwqggmUG1fqei0CXwyfkgEQ2zqHNhb4tEaC2dpL2FPKCVjTyx2zLuixaBouTWkFzOhQv9Ubx5tg8Mk1Fb64Ey+SVIS6X/kSLzAdVEhdehWK8bRd2+XraQv3VBPVi2OKulKp9TIcs3FlnY3nm2DwCwbBQLeUCywquXSXBaue1E2V4nn+fyKRVw2zl0hxLjzqNXG9lW4XpDLbKdYRjc+L0bAQB7f78XPceM4SSQDTMolxmGUaIGaM8PtTPbCSZcMQGrv7IaAPDsJ59FxIiZjDlghvmhZLZbNvIWNMBglMfXnj4EAPjE1dNx2eQKvFV+z3x8d2FW8oSEm9PgL/q95Mrp0jvJhf6YZuq3jI08vSInsZFv6Y0W1QT469ea0ToQwwsaNR8Qlep4Vf7VPqdioa3VNRsdBwnZPnEoCbt0cjkAEyvbx+E0xjCMQs5fLFbyBy4MYMPhDjAM8IWbZul9OUNAlO0hDZTtLoMq2wHgyumSUleLRnlFRFJiXYtjGaydL6nbN2hkgU8L2cp2ADjdbQzBggKFUNWILCPK9hxkezqZhiC/++ilbCfj4XLFqZLtDgePtGjcZmcAylgwWaplsocm0WzjxVBlezAzDw0Gd4Ub026YBkBWtyv3C6VnOC8p2+0efeb/zLfMhN1jx80/uhnsGK49rvIsZXvCItstWLBgAQDQLL9wZ+e1E/g06AQuBGQDTrrftUaVTMb0USTbyaaEZpFLLehBLufCP/dLm64V0yrRUFacakhNZGzktRmPOJ9WNmjzdVC2A1lW8gfadFdN82kBLx6RuvRvXdgwrmOsnV8HAMpxCj0vWZuWTRm7EYjM0TYKue2hOK84kBAbeaeNwxXTpGKvUXLbFbLdADbyRM2rBsE4ec1kzLp9FsS0iE3/vqnk46kNMyiXAWmzBtCfH6Qw4AioTy5f85/XoHZBLaLdUaz/9HrVj08DZpgfSma7pWy3oAG+vf4IukMJTK/24nM3zAQA3H3ZRAASeVpIsykh0cYT9+PLyrmNaOQulsnYpW8jH0qk0B8t7J05FOfxuvwOo1WsWUyF/Pp18vvoxZA1XCpEURxT2X60PWhKS/Wj7VIza7FOY2RdIE05ZscPXjwBALhryQTMrNMn1i0fFKdGivUsLZxBSkWFR7t6hVrKdiBjJf/i4c6CY1yMiB65yZtEDTQbrCFXlK3CGc2U7WGJaGdHUlbJrJqrXsr2DNlOV9nucPBIQ93mb9WRy0ZeZWW7YiPvMp6FPMG8e+YBkMl2p/yco6RsZ1KSsl0PG3kAWPn5lbh/8H403dQ05ve6KrJt5C2y3YIFCxYAZOe1j8yJIS/IetrI82lB6YYn3e9ao8orPTyGd6SqCbNktgNZtukaZpTnwtNyLtydSyboeh2Krb5GTSnHO0IQRKDa50CNTuTITfPq4LSxON0dwWGdVRnbmnsxGOOHKImKBclt33GmD/0FNtUcaQsizgso99hzNisNxwQ5t52Gsr1TtpD3u2xKUQmA4kDwhlHIdt/Fp2wnuOE7N4BhGRx94igubC9M+agVzKBcBjJkO20beVrKdgCwOWU7eY7BkX8cweG/H1b9HGpCFETV7wUaIDbyVma7BdrYfLIHf991AQwDfO+eRYpScdHEMsyo9SGREvDcgbEVduMl4QDAxrFw2qQyjlbuYoqynaIy02XnUCcXaM/1FkY0bDrWpaj7aSpTs6EG2X6zrMbcfa5fcR66VNERjKMnnATHMiPuhwnlbtT4nUgJGULeLBiIJpX4qblFOo2RcThyEZDtb57pw+snumFjGdx3o7FU7UCWjTxNZXvS+HGAWoolIiqOx5XTq1DmtqM3ksSbZ/pKPh5BXyRJzW0uF0gd8bIp5QCMqGwvl/7WUtk+hoU8a2fB6VUblcdDC7JdYIxOtgcggsmZ2V7q2CjKdo9dIq4NqmwHgNl3zAbDMmjf047+c2HA5qambGdSUSSTDt1s5AGAtRVGJ0s28lZmuwULFkyMtCCiL5JEc3cYu8/14aUjnfjHrvP47eun8f0Nx/CTl08ikSquK1wh23Mp22XSRitVRS4caw8hkRJQ5rZjWvXIhgAtQGzkB2I8tY5aNTcltGEEZfuxjiCOdYTg4Fgl21IvBFyk+UCb8Tii5AMGwDDFWZOqBb/Ljuvn1AKQ1O164nnZVu6WBXXgirRqJZhc5cGcej/SgohNx7oK+gyxkL98ckVBFrGN5fRs5NsHh+a1E6yRyfYdZ3qLfjbQAFG2X0yZ7QS1C2qx+AOLAQAvfeUl3R0fsqGmip8mtLKRp5HZno2Gyxpw1b9fBQB47lPPIdxpsIJaFoaoRww8PxQbeUvZboEioskU7n/iAADg/VdOGdLAxzCMom4fy0peFMWS4368yh5Mm2d3VKN9yJRKaS9XaF7thixluFb70ShfeuNBfZkLl8lN4pe6lfyBCxJ5M7PWN8Jmm2EYRd1uNit5co9PrHCPiOIbC2RdONoegmBitS4A/O6N0wCAdyyfhMlyY5yRQOpZVMl2E9jIZ8QBGijbE+o5pdg5FmvnSQ50z6tkJd8XSeKWh17H2h+9rlk9q1fed14xVbLzP91jLGU73BpntieCgDM32T4kx1svOHwQRAYuV0LZN6oNiWxPIs3o59BZEBgWPOce4npA9tCljs2IzHancZXt3hovplwzBQBw4rkTkgo/QSeqkRViSCZtutnIF4Mhme20MuwNCItst2DB5DjdHca6H7+BxV9/ETP+fT0u++ZG3PDD13D3L7fho/+7C1967AC+vf4ofvFqMx7ceAJ/23m+qOMTC6NcZLtXg83JWNh7XsprXzKpXDdikdhuiSLQH6VjJa/mpoQ2tLZNz4Wn9koE77Wza1Cm80uIlptXIMuaVIe89mwQK/ln97frRiym0gJeOCxZv68rsemCZMK9eKSwoujuc9LatKxANX2jomxXf8Om5LUHhpLts+v8qPE7EecF5Xr1hKGU7RSss6/9+rXgnBzOvX4ORx47otpxSwVRthvZJhzIKM21spEnXfk0cPW/X426xXWI9cbw3L88Z6jmi2yQ+4BhGUNv6Imy3cpsz4/vfve7WL58Ofx+P2pra3HnnXfi+PHjOb9XFEXceuutYBgGTz311JB/a2lpwW233QaPx4Pa2lp86UtfQiqlr5ORVvifF47jQn8ME8rd+NItc0b8+11LJ4BlgF3n+nF2lEJ5VyiBvoik5J01Tktlsh/QStke08gGmZBx5wpwqYgl03j1eLfy/1rFmqk1FqQZWC2CyKzIZyFPQJzr9rYMaHRF6oC4V4wnKqKpxgcHxyKcSOGCARpQSwFp+L1xbq3OV5IbPqf0bhO6xG3k9VC2l+IOko1bF5Lc9g5VmlO+8c/D6AolEE6kCnZZKQVxPq04syyfJkXPGU7ZbnMjzdjAxDRStifHVrbrltcOACwLPu2mqmxPRVOw21MQOYOT7QB4zjvE9YDs2dOJNFIlcAVDM9sHDa1sB4C6xVLjT6gtJDUG0CCXhTRYMamrjXwxcJW7IIosUqLbspG3YMGCefCd9cdwpD2IwRgPUqv1O22YVOnGoolluHpWDe5Y0qjYBT+1t7XgY/NpQXnBbKodJbNdR7J9n7zx1stCHpDsHAnhTiu33UzK9oDOynZBEPHP/RLZfudSfS3kgUzzgVbjcb5fKlA2VY9tXU4T18+phdfBoXUghj0t+hC5HcE4+iJJODhWyScfL0jX/GsnusdsnBBFETvPErJ97Lx2AGgso2cj35FH2c4wDNbMkJ4NRshtN1RmOwXr7LJJZVj9ldUAgBfue0EhufWG2ZTtWtnI01K2AwDn4HDnH+8Ea2dx7MljOPjoQWrnKgVKxIDPoVtDYyFQMtv7YhBNrgKkhddeew2f/vSnsX37dmzcuBE8z2Pt2rWIREYWkh966KGcv+90Oo3bbrsNyWQSW7duxR//+Ef84Q9/wH/8x39o8SPoit3n+vGHrWcBAN9528IhuekE9WUurJafqU/sya9uJ02R06u941Y6kigvzdTcMqmvFjmSD1MqCyfbXzvRhRifVlyLtNqPZmzkS9uT3SJnDb95po9qFJnRQeLgFk7MXUQ3rbK9LeM0VizsHIuZddI+zuxW8hEV87lpgNSzaK6lcV5dcpkGtCTbyRqq1pxYPaMafqcNXaGEIsQZLzYd68RT+zKufJ2UiNRskPqhnWOweGI5AKA/yhccXacJGAY859FQ2R7O5F4PgyGU7QBSolcDG/kkRM54jiDDIc2NDJGaXVMoZXwI2a4o2w1OtpPIu/hAXFK20yCXk9K+LZl0GLoRnoDUb3jBc0nZyBvzjceCBQsFYW9LP1462gmWAf780RWYWetHuccOOzeyj6YrFMeV33kZe1oG0NIbLcjG63xfFHxahNvOoSEwMivGCDbye+WNN9mI64VKrwP9UR494cS4VSqjQclsN4GyvUxjJfdw7DrXj9aBGPxOm2JlrieU8dAow5505gd0zPABJKu8tfPr8eTeVvxzfzsun1Ia2T0ekMJrwG2DLce6WAzmNwYwodyN1oEYrvreK7h3xWR8YNXUEWpxQLI/7Qkn4ODYvEqd4VCU7YMUyHY5s72+bGRn9JoZ1Xhybyu2nLLI9mwoZLvKBPSa+9fg4F8Oor+5H6/+56u4+cGbVT3+eKCQy0ZXtpdrYyNPlO00MtuzUb+4Htf8xzV45Wuv4PnPPo9p102Dv1H994dSYJZGDGIjLwoi4oNxuCuMrwLRGhs2bBjy/3/4wx9QW1uL3bt34+qrr1a+vm/fPvzwhz/Erl270NAw1BHmxRdfxJEjR/DSSy+hrq4OS5YswTe/+U185StfwX/913/B4Rg5TxKJBBKJTKEtGJQKLTzPg+f1c0Ai5y7kGhIpAV9+bD9EEbhraSNWTSvP+7m7ljTgjZM9eHzPBXz6mmk5Y2QOXpDIgDn1vnGPAVFIBqMJTcaR7PUcrEj1fBPKSWZ7eMzzPCfHFF01owqvnuhBOKHOnBprbkQScvG3xLGo99uxoDGAQ21BPH+wDe9cNnHcxzIrRFHEQdlGfm6dN+d4zq3zgmWA1oEYWvvCqDX4uwrBkTbp55pdm/vnGmuezan34XBbEIcu9OOG2VX0LpQyyNrh5Apbb7WG2yat0cFYktr1heOyW1YRY1DMM0oNEIFkMEb/2RyW11C15gQL4NrZ1fjngQ48u78Ni8b5Lh2Kp/D/npCaX1kGEESgfSBCfTw6B6TmskqvAw5WRH3AiY5gAic6BpW4Eb3B8zzSnBdctA+CBnOSiwcBuwfpHOeKycIEm8em65qSghdudxwD/TEq15EIJ2Cv5iHY3IZcOwl4ngfPeSFG+4dcp91rBx/hEemNwFE+vn1kIiLtH1gnC3FwEILDp8n8Gy/sfqn+GuuLQXD4gNhgzjlcEqKDsANIJu1wOTlDzw0gMyYJ3gVHtH/cvz+tn4ljXcdYsMh2CxZMjAc3ngAA3LV0IlY1VY/6vbV+SW3xxskePL2vFZ+9YeaYxycW8tNrvDmLRaQbNaxRXuBw9EeSOCPbNOpNtld5nWjujlBRtidTAvi0pNQyhbJdySjXpwnjqX2Se8MtC+oNkY0WkHevWjUfEBtNv0v/uXL74gY8ubcVzx5ox9feMm/cmenjRWYsSm88YBgGP3j7Ynzl8QNo6YviF68247dvnMbtixrxkaumYX5jhlQnqvaFE8sKnoMks30gyiOaTKl6rxNle32OxgCS236gdRAD0STKPfqRagrZbgAb+WxFr5qwu+1Y97N1+Mutf8GOn+zA4g8sRv3ielXPUSzMQqgqZDttG3kNlO0Eq7+yGseeOob23e149hPP4l3PvMtQCnLSdGL0Rgyb06YUdWK9MYtsLwCDgxIRVFmZaYSLRqN4z3veg5///Oeorx+5Lm3btg0LFy5EXV2d8rWbb74Z//Iv/4LDhw9j6dKlIz7z3e9+F1//+tdHfP3FF1+Ex6O/Wmfjxo1jfs9zLSyau1n47SKWcy1Yv74l7/em04CL49A6EMdP/7YBM8tGOi28coIFwIIZaMX69aPnu+dDdFA6xtade5A6S9/NIRjhADDYuW0LzlP8tV0IAYANJ9r6sX79+rzflxKAFw9L1zQNnXgVHEIxHs89tx5qLaH55kZbp3TeY4cOYH37/pLOMdXG4BA4/PnVQ/B3HSjpWGbEQALojdjAQsTZfVvRlsfkpc7NoT3K4OGnN2FRpfHdS1ICcEKeJx3HdmH92fzfm2+eCX0MAA6v7T+FmYkTNC5TE2TWjs04Z8BH88leaZzPt3ePuuaUglNnpPX6XPNJrI8X97ss5BmlBqIpALAhxgt45tn1sFH0wO3skebEwX27kTyjzv1cm5B+j3/efhblwWZMHQff/vfTLDqCLKqcIqYHROzsZrFlz2GUddN1nzrcL127PR3H+vXrEWBYdIDFU5u2oaPWOOvdVZwHfaePYh+l+yQbqztaELNXYk+Ocw1sHQAAhBNhavdsIViW4OB0JnD84HFE1qsfN9BxvgOORh49gzFs1vHnLATLbV70tTZjW/Z1OgFEgJfXvwxP0/heHLsudAEADh4/iAXeHpw8245TBh6LvnN9AIDzp86joz8KW7p36JioAG+iEzcC4Hkb+rrbdL0HCkHfWWlMIhEWwdNHsLfE69XqmZgP0ejYzluARbZbsGBabD/dizdO9sDGMrjvxrGJcwC4Y8kEvHGyB0/ta8Vnrp8xZkG3Wc4KypXXDmTlBeqkbN93YQCAZMOoJ0EESJ2oAB0b+WhWHqORs74I9LSRT6YErD8oZR/esUR/C3lA+wz7kEzq57I41RprZtSg3GNHTziB7ad7FXtVrUBU/mqNxcqmKrzyxWux8Ugnfr/5NHae7ccTe1vxxN5WrGqqwkevmoZrZ9Vit/yivWxKYRbygNQQ4HfaEEqk0DYQx4wc0R3jRXseG3lAynGfWevDya4wtjb3Yt3C0rLtS4HNJ/2eaNuEFwIaNvIEM26ZgXn3zMORx47guX95Dh/e/GEwGjeiZEPJbNeAXC4FxIaMNtkel+8XmpntBJydw51/uBO/ufw3OPHsCez/434s+eAS6uctFErTicEbMQDJSp6P8FZuewEQBAH33XcfVq9ejQULFihf//znP49Vq1bhjjvuyPm5jo6OIUQ7AOX/Ozo6cn7mgQcewBe+8AXl/4PBICZNmoS1a9ciECjeXlkt8DyPjRs34qabboLdnr8h72h7CJt2bAcg4jt3L8Et8+vyfi/BzvRh/H13K9qck/Cv6xaM+PeHTmwGEMWd1y3HVeN8L1o/uA/HBrswY858rFsxeVzHKAZffHMjABG33Hid4sRDA/3RJB489CqCPIPrbrw5r+3ypuPdSOzYizq/E599+2o88u1NEMDghrU3l9xoO9bc+M25bUAohFUrluHaWTUlnWtuTwTP/ngLToU4rL7uBsUN61LBxiNdwJ59mFXnx523r8r7fVv5w/jbrlZwtU1Yt3aWhlc4PhzrCCG9Yxt8Thvee9dNOWsuY82zqjN9ePLhXegTPVi37uoR/24GiKKIL+x4CYCIW2+6PqcbmN7wn+zBIyf2wO4NYN26lVTO8fxf9wPdnVi6qPD1utBnlFpICyIe2CmRGKuuvQHVPnrvwP9z9HUgFsd1a1aqJpi5WRBx6i978dqJHvzxjBuPfWIFJlUUTvDtONOHLdt2AQAees9y7DzXj52bmlFWNwnr1s1X5RrzIbanFTh2GNMaqrFu3eXYKRzFiR3n4WtowrqbjbHe8TyPUPMPMKHKi8Z166ifz/b7H0BonIX6W0ee60DPAZzFWdRNqsM6Da4lHwb2/RIuVzsafY1UruOP3/0jHA4eVY2Tdf05xwLP8+j6/e9R5+KHXOf5mvPo7evF8kXLMeWaKeM69u//8/eIIIIr16yAfXcccxYtx6zLjTsWx/njaPlJCwL2AOqnzAK6j6n/u+s4CByRbOSb5jThxnU3qnt8lXFSOImWH7cgnfZhYnUADeMcD62fiflAHNrGgv6VeAsWLBQNURTxwxePAwDeuXwSJlUW9iJ58/w6/PuTLJq7IzjcFsSCMeyNm7tGJ9v9Ome275Xz2pcYwF6pSiZkesPqk+0kr91hY3NGBBgNAR1t5F8/0Y2BKI9avxMrm4xhuUfGgxC/tBFKGEfZ7rCxuHVBPf7vzfP45/427cn2hLpkOwBwLINbFtTjlgX12H9+AL/ffAbPHWzH1uZebG3uxfQar/K7Xja1OOv8xnI3jneG0DYQU5Vs75Rt5PMVudbMrMbJrjDeONmjOtkeTaaw//xgQfejkZTttBW9N//oZpzacAoXtl3A3of34rKPXkblPIWAKNuNrl7WzEY+qI2NPEHtglpc+/Vr8fIDL2PDv25A09omw9jJm2VuAICnyoPg+SCiBWQ9X+r49Kc/jUOHDmHz5s3K15555hls2rQJe/fuVfVcTqcTTufI+WO323UtlhRyHam0gH9/+ghSgohb5tfj9iWF2Xy/fflk/H13K1443Ilv3bVwiFNNNJnC2T5pji6cWDnuMfC7pX1HPAXq45hKZxy2Ah4X1fPVBGzwu2wIxVNoD/GYXZ97Hd54tBsAcOvCBpR7XWAYQBSBeJqBX6UMy3xzI84LAAC/21nyWMxqKMfsOj+Od4bw6sk+3HP5pWUlf7RTqjUsnFg+6lheNqUSf9vVigOtQUOsG2PhRJd0j89rDOSM18hGvnm2cKK0h2gdiCOagikbMeJ8GmlBWjvKfW7Y7frvTYejzCutMZFkitrcSqSkNcPrchR9Dq2elXZAWXujlJ8rUXkNLfOq9zyxA/j5vZfjHb/ahiPtQXzsT3vxxL+sRlkBz4NYMo2vPn0EAPDuKybjqtl1aJUjpXoiPPXxH4hLtb4avzQeM2qlPcDZvpih1rsk5wWbCILV4pqSYXCuALgc5xIS0vxx+kp/BpcEZxlcrrPgB+jMkVQsBYeDh+AOGGoe5ALPecEmWob8vsi+PRUZ/9rKR6V6sscHMGIanLcy55wwCnzVUv0uMZgA6y4HkiH17xdR2psnk3Y4vMU/U7SGT+aSYlE72ETp46H3/rHQcxuftbFgwcIIvHaiGzvP9sNpY/HZ6wtTtQOScvLGuZIi42nZans0nJKV7flIH69TX7J9n5zXvnRy4epRWqiSle29kcQY31k8YiSv3QSqdiCj5NZD2U4s5G9f3Ki5ZXk+ZGz16Y+HIIjK/egzANkOALcvagQAPH+oA0m52KAViI08rbFYPKkcP3n3Urz+5evwiaunw++y4XR3BN2yGvTyIpTtQMZKvm1APWVmIpVGr+y4kUvZDgBXyVbym091q3Zegv/ddg7v/u12fPmxsa1WOZ8xMtvTfBppOR6FhrIdAAITA7j269cCAF76ykuI9uhHEJpFvUw27TSdD0RR1NRGnmDVF1ehcXkjEsEEtv5wq2bnHQtmmRtAJrc91msp20fDZz7zGTz77LN45ZVXMHFihtjbtGkTmpubUV5eDpvNBptNem7efffduPbaawEA9fX16OzsHHI88v+5bOfNjt9tPoODrYMIuGz4xh2FK9uWTanAlCoPIsk0Nhwaqvg/1hGCKAI1fidqSmhiIXsCLdzFonwmLiyf0lwtMAyDKVVSE/m53ty2rHxawMYj0ry7ZUE9WJZRos20GI+Y3ATtVimq6pYF0r2z4VC7KsczEw62SnEWCyeOLgAge/0DFwYV8tbIONouKZ/mNYzfvaPMY8cE2UWCHM9syL4f1bpf1IYiHqHYFB+V1wyjOxSWaeROSOaF2uPhc9rw8AeXo6HMhebuCD7x511IpMaOu3zopRM42xtFfcCFB9bNAZBpUCcN6zTRG5betavld4LpMjl1Wq7FGgUpzgMmPqjNyRJhwJm78Tgp1zXsXp1JRlcZXK6E4oimNpKRJByOJBiXegIMWuA5D5AY+pwi+2iyrx7XcSPSWuRwyHs7V/m4j6UFFGHAYBxwBYA4hWd3Uno35nk77CZowiNjEg3ZgYRG64cBYJHtFi5a9IQT+OpTB/Hw5jO6kcE0IKnapayn9105BfVFKq/uWCIRX8/sbxt1syqKYkbZXuvN+T2EbNfDRl4QROxrkXKRl+qc1w7QtZGPJMgGzRjk6VggGzWtbNMJwokUXjoqFd/IPDcCyHiEEinqBaIon4YonyKgQk65GlgxvQo1ficGYzzeOKk+mTsawglpDtJW+U8od+OBdXOx7YEb8J+3z8Ocej/efcUkZV0oFA1yUa1NxU1bl7zBcdhYlOfp7l8xrQp2jsH5vlje4vZ4EIzz+NVrzQCAK6aZR9mezHIooUW2A8CKz61A3aI6xPpi2PgV/fKnzKJeVmzkKc4PPspDlBWcWtjIE7A2Vmm+2PObPYaIUgDMMzcASdkOwLKRzwNRFPGZz3wGTz75JDZt2oRp06YN+ff7778fBw4cwL59+5Q/APCjH/0IjzzyCABg5cqVOHjwILq6upTPbdy4EYFAAPPmzdPsZ9ECqbSAp/ZKDZxfe8s81BZhf8wwDN62VGpkeGz30Ex2QprNLYGEA7L2YEntyGWWAZw0g3xlTKmU9p0tfbmb0LY192IwxqPa58By2UHIp2EDOGk+UIsoum2R5Cj02olu9FPYRxoVoijiECHbx3Dba6rxwee0IZpM40RnSIvLKwlHVCDbgcw6YVayPZrVmGKUJvjh0GLtiKm8ZtCCFtF3qbSQUfpTqG3Vl7nw8AeXw+e0YfvpPtz/+EGIYv76y/7zA/jtG6cBAN+6c4EyBqQZriukvpBmOIgzJhHvTK/JPANTaW2FCqMhyXkBrcj2ZBhw5CaZCQGrN9nOeMrhciVKIpNHAx/lYbenwLqN4XY2GnjOC8QGgKx7jTjEJQbHPz6kscJpI2S7fvFThWCIC5/TP6IBQRXIZHsyaYddJScnmiBjEgnaIGq1fhgAFtlu4aJEZzCOd/56G/68vQXfePYIVn7nZXxn/VG0qqgW1AsvHO7EwdZBeBwcPnltU9Gfv2Z2DQIuGzqDCew405v3+3rCSQTjKTAMMLUqN9nu05FsP90TQTCegsvOYna9/i8gVXKuFR0beVnZ7jT2Bo0g4JbmRSiRgqCh+uDFwx2I8wKmV3vHLNpoCX8W6R2ibK1Pjm9jGU0KooWAYxncJluT/3N/m6bnJnbufo3y631OGz60eho23Hc1vvu2RUV/nihY1FS2Z+e158qMBKSiPVENvXGyR7VzP7z5DAaiPKbXeHFnAQ0whGxPhpNI82MrEWiBkO2cgwNHsTDG2lis+4WUW7Xv4X1o2dJC7Vz5IIpiJp/e4OplQn7TdD4gBQGGYzTfwM64ZQbqFtUhGU5i5y92anrufDCTst1VKXfOWzbyOfHpT38af/7zn/Hoo4/C7/ejo6MDHR0diMWk5019fT0WLFgw5A8ATJ48WSHm165di3nz5uF973sf9u/fjxdeeAFf/epX8elPfzqnVbyZYeNYPPmp1fj2XQvGZe39tssmAAC2ne4dsv880qYOCadlwzMhzLwOW973CDUxWVG2576Xn5fdAm6aV68QeMTBSIvIJtJ8UGo2PMGsOj/mNwbAp0U8o/F7sp7oCMbRE06CY5kxm084lsHiSdLejsTIGRWiKKrWVDOvUfo8WTfMBjPUMMjawafFglTQ44HaawYtaKFs18IpZW5DAL+49zJwLIMn97biRy+dzPl9yZSArzx+AIIIvHVxI26cV6f8G1G294QT1AnvblnZTuqJjWVuuOws+LSI8wZpvgVkQjU+QP9EQhrgo4AzN9lOCFiaDfGFgPGWw+2OUyPb0/E4bLY0WI8JlO02LxgxLTVJyHAEpN+PGsp2O0fIduPUeHNBsc6PpZDmfNI8Tqv8XspL78bJpB02t/HFeEoDQsxOR+lvUBijEm/BgopoHYjhHb/ehubuCOoDLik/N5HCb14/jau//wo++397sV+2Hzcb0oKIBzdKWe0fXj0N1b7iC1tOG6d00D+9N/+Gvlm2LZpU4cm7MdBSRTAcxEJ+4YQyQ+SYZ2zk1SfboyZTtpOOYFHMZGZrgaf2SfP5jiUTNCkGFgqHjVWs84IxuuNBLPD8Lm0KooXi9sUS0brxSKdScNACIco28mqDho18h2x/Vz+GKu+qGbKVvEpke38kid+9cQYA8IWbZsFWwDpNyHZAX3U7UfNqsYmfvHoyln5kKQDguU8+p3mTAR/lIcpNUUZXLxNlO81mjGwLea3XUIZhsOrLqwAAO368A7wOUSzDoeW9UCoUZbtlI58Tv/zlLzE4OIhrr70WDQ0Nyp+//e1vBR+D4zg8++yz4DgOK1euxHvf+168//3vxze+8Q2KV64f3A4O966YMq61YFKlByumVUIUgSf3ZNTtGRKutEZhxUZeg3eqqEyY0baQJ5hSKZPtOZTtaUHExiMS2X7rgkx0gVbNB2lBVFSZaqpU775Mauh4fM+FMb7z4sGBC5LCaWatryASconsZLfvfD/NyyoZHcE4+qM8OJbBzLrSSJJ58jpxsHUQ53ojo/650B8dVcGrB8zgzpetrqZlJZ+xkTfuOADauBOSuhZHWRhw9awafOtOqWnwJy+fxD92nR/xPb96rRnHOkKo9Drwn7cPdeep8jrAsQxEURIh0YSibJfftVmWUcRORrKS520eMMmw+uThcBDCdgxlu6NIB0G1wfkrYbOlkYqo5wo4BDKpynqNreYGgCQnvbchNqB8jSjbx2uzn06mIcjvW3ZWfh90GnssnAEnIG8Z+LQkolFd3Z6MQBAZpNOcKZTtdq8dDMcgHndJY2Gw9xRa0J+hsmBBRZzrjeAdv9qGc71RTKp04x+fXImXPn8NHv7gMqxqqkJaEPHP/W244+db8PZfbcWGQx2myP0iePZAG050huF32fCxq6aP+zh3LJHUFusPteft4CVke1NNblU7oC/ZvpdYyBsgrx0AKn0UbeSTdHKtaMFl55TNk1ZW8t2hBLackkhCI1nIExC1f5C2st1gee0El00ux4RyNyLJNDYd6xr7AypBya93Gv9FFAAaytRXtncMyqrFMSJH1si57Vube1R5Lv769dMIJ1KY2xDAugUNBX2G4RhFQasr2R7WlmC88b9vhLvSja5DXdjxkx2anJOAkKlg9LfjGwuurDlciiXdaCAFAS3z2rMx/x3zUTa5DNHuKPb/cb8u15ANMynbrcz20SGKYs4/H/zgB0f9zJ133jnka1OmTMH69esRjUbR3d2NH/zgB0q+u4WhIIr4x/e0QhRFCIKIYx2SBfb8xtIKhh4Nle0xjfOGibK9JUeszc6zfegJJ1HmtmNlUyaexq/RnjSe1eilJnF2x5JG2FgGBy4M4qQJbNLVQKEW8gRLJkl7fqMr20lDTVONt2Ql87wGaWyOdYRwzf+8OuqfNd97Bd989mjJ168moiaoYXAsozQv0Vo/yLph1Nx6gky9gmZ+fWZO0G5qffcVk/Ep2Qn0gScOKrUiADjRGcJPN0mK9/+8fZ6iKidgWQY1PmIlT3dP2huRM9u9mWtoqpWI5mYjke2cXBembQWdkH/mPMSqUWzkbWXSOwhDIYc6zadhY6R5wXn1d3EdC5m5MaB8rdTM9mRWXd0GmWw3uLKdYRnl507y8v1MgWxPpZ0AGFNktjMMA3eFG/G4A4woDHE/uJhhke0WLho0d4fxjl9vQ+tADNOqvfj7J1ZiUqUHLMvg+jl1ePRjV+K5z63B2y6bADvHYOfZfnzyz7tx3Q9exf9uO2t40j2VFvCjjVJW+yeuno6yErqYrphaiYYyF0LxFF45ljtDublLKnA01eTvyCYqgjgvaJ4nRJTtRshrBzKZ7f3RpOpzySzd0NkIaGBDlo3nDrQhLYhYPKkcU6vzN4joBS0y0IBs23RjvXgxDKOo27W0kg+bTNk+ISuzXS11SodMSo5Fti+aWI6Ay4ZgPIUDFwZKOmdXKI4/bJVU7f920yywReQ0KrncFK3Cx4LWtuqeag9u/P6NAIBX//NVDJ7XLs9KIVN9DkO5YeQCa2OV3wmtTHNC4rvGuF9ogbNzWPlvKwEAW3+wFYLOWY1WZrsFC+PHrQsb4LZzONMTwZ6WAZzriyKaTMNpY/NGdBUK0vBMVII0oeQua7QPmSKPzYX+2Ij95QbFQr5uiLMZsammTbZHs5wE1FRlVvmcuHZ2LQDgsUtE3X6QkO0TCyXbywEAp7rD1JuXS0GP/Nwk7/SlYFKlGzfNq4PPaRv1DyGL/7azRSEzjQCibPdqFOc1XtCOoYhq3LA0XmhiI58VS6IFvrh2Nm5f3IiUIOKTf96NE50hpAURX37sAPi0iBvn1uKti3MLNepk0qyTkk04IDU1EmV7dda+s6maKNspqabHAZ6ol2lbySfkhrOxbOR1VrbbKiShAidEVN+vpWIpOBzSfcj5jU0wA9lzI1PDIPFv422QJ00VrI0FywcB1g7YS3+u0oai6I/Le2e1rdP5KPiUNPfNYCMPSFby1MbDoLDIdgsXBY53hPDOX29HZzCBmbU+/O3jVyoKwWzMbyzDg+9Ygs1fuR6fvq4JZW47Wvqi+I+nD+P7LxzT4coLx+N7LuBsbxSVXgc+tHpaScdiWUZ5qXx6X2vO71GU7bWjke2ZDYMWNoYEsWRaUYYsmVyu2XlHQ6VHeuCJIjAQVVfdTlQrRs47Gw7FhkyjYgixkC8kF1oPBDQaDyOTy7cvltTNm453adbcFEpI4x0w4HjkQl3ABYaRMuTUiqToCMrK9jFs5DmWwaomdazkf/FKM+K8gCWTynHD3NqiPqtsUHRUtmcT0Fph6YeWYtKqSeAjPF74/AuanddMZCoAuCukdztazRjZNvJ6YelHlsJd5UZ/cz+OPq6vSk2xkTeDsr1SmhtWZrsFo8DntClW54/vuaDkLs+p9xcUrTIaPJSVmNnQmiiqD7jg4FikBBHtWfajgiDi+UPtAIZayAMZByOtlO1uO1dUI2EhuOdyyXnuyT2tmjexaw1RFItWttf4nZhY4YYoAgc0bEosFmFl31763oNhGPz2/ctw6Os3j/lnapUHkWRaaUgxAsygbAcyvysa64coiojxJstsj9KrV5C6lkejuhbLMvifexZh+dQKhOIpfOiRnfjhi8ex7/wA/E4bvnnngrzNxjV+aU9KU9kejKWQkusilVnk8XRZ8GQksj2ZQ71M50SF2cjrrmyvlOomLpf6ue18lM+Q7WZStmfZyKulbLd77RKJ7woABhcGAMMyygEqynael9YKM9jIA9KYJBKEbDfu+5uasMh2C6bHodZBvOs329ATTmBeQwB//fiVqB2DVKgLuPClm+dg2wPX4/5b5wAAfvP6aWxr7tXikotGIpXGT14+BQD41LVNqmzeiJX8y8e6chKAGRv5/GS708bBIReLtLSSP9g6iLQgoj7gytlUoQdsHIty+WGndm67KZXtMrlJO6McAFp6o9h3fgAsA9y2qDC7aq2hRac4AITixiWXZ9dJG4VkStAsXkBpPjC4ooLAYWNRK5OealnJk0J1QwFK3dWylfwbp8ZPtrcOxPDojhYAkpqgWLU0UbbTUi4XAq1t5AHJduy2X94GhmNw9PGjOPn8SU3OayabcCDL+YBSM4ZiI1+mH9nu8DpwxWeuAABs+d4WXTNYyfwwQzOGZSNvwYi4W7aSf3Z/m5I1Pbeh9MxJ8l4T0UDFqjVhxrEMJsnNM+eymmf2nh9AZzABn9OmRN8Q+IiynaL9MZCt8ld/LK6fU4cKjx1doQQ2l/AeZgZ0BOPoCSfBsUxR9wOJjzNybnsmwkq7vQfDMHjbZSS2wjjOCBGNVczjhRJDQWH9iPOZxhmjNx1oIQ7QWtkOSE0Ov3nfMkyr9qJ1IIZfvNoMAHhg3dxRa4laKNt7ZAt5v8sGpy0zP6bLUZ6ne4xjuczbRhKqVDCWsj1sEGW7vxIA4HIlKJHt0s/J5Gk6MBJ420jXAyKgGO/Y8HLTj8PrkAhrg1vIExCyPRYhZLvK0UDJCHheWj/NYCMPDFO2q918YFBYZLsFU2NvSz/e/dvt6I/yWDyxDP/3sStH5O2MBo/Dhk9e04R3LZ8EUQS+8Pd9VDs5x4u/vnkerQMx1AWceO+VU1Q55twGP2bW+pBMCSM6oGPJNFplome0zHYgo7bWIjOQgOS1LzGIhTwB6UYlVlBqgRTSvAbfoGVDUbZrQKoe65Ae2PMby1Dr18f6dyxo1XygR4GnUNg4VilmDGhEtocMPB75kMltV4dM7JTJw7oxmtAA4KoZUvF6b0v/uNf0n206iWRawJXTK7F6RtXYHxgGpRtYz8x2ndTedYvqsOJfVwAAnv/M8+A1uE/MpmxXNrC0bOQNoGwHgCs+cwVsbhva97TjzMtndLsOrSMVSgGxkbeU7RaMhJXTq9BY5kIwnlIa0eaVmNcOZJSYES1t5DVUZRIr+XN9GVXfBlnVfv2c2iGkBJBxdKLd/B2jmL3ssLGK89zje3I7z10sOHBBUjbNrPUVpfYle38j57ZHVFS2F4O7lkpCiq3Nvao17JaKqMYq5vGC5vqRbetv9Mx2LcQBEZ3cDiq8DjzyweVKvW7l9Cq8+4pJo36G1JW6gvT2pD1yU2v1sBr2NNlGviec1CyWcSzkyuWmAkXZnlvRPUTxrCdk8tftpkO22+3y791hvIjM4RAZG0SHN7eyvUQbeUXZ7iz93VkLkFpFJCy/A1CwkU8mpblvGhv5imwbeUvZbsGCofHmmT6893c7EIqnsGxKBf780RXjzjH/2lvmYVq1F+2Dcfy/pw7qqiIajlgyjZ+9IqnaP3P9TNXspxiGwZ3ypmy4lfyZnghEESj32IfYGeUCTdutfCAb7KUGsZAnqPZKD5A+tZXtciHNYyLCUCvbdOkc0tyr0Lm7dTRoNR5kLPwuY3Y5kjVa7aiFfDCyrX4+KLntKhTK0oKITnkTX4gLyJQqDyZWuMGnRbx5pq/o853tieDvuyRFzXhU7UAW2W6EzHYNle0E1/7XtfBP8KP/dD+2fH8L9fOZTdlO3UZeLgjoqWwHAE+1B5d99DIAkrpdL5ipGYPYyCdDSaR57aKNLFgYDSzL4K7LpP0WUXnOU0HZTlSBWjQ7x3TIG55cKTXPtMjNM6Io4nm5OXzdwvoR36+VjTwhzmgo24GME8KLhzsMnUteKoq1kCcge/995wcMVa/Jhpo28sVgUqUHV06vhCgCT+41RrNGxCRNz+T6QhTWD9Kg47SxqkdPqI2AS4PMdrmupfX9AQBTq7149GMr8MlrmvDjdy0Zc59KlO1dIXrKduKIWTWsjuV32RW3u9PdxlC3p1gXRIbVQNku/7x5lO2EhNVb2Q6HF4LAUlS2E7Ldo+qxqcFVPqQRQ8lsL9FG3uF1SIS12ZTtA4KUM6+6jXwYibi0VpvTRt5StluwYFhsOdWDDzz8JiLJNFZOr8IfP3xFSeSS12nDQ+9cAhvL4LkD7XjCQN3kf9p+Ft2hBCZWuPHOZaN3XxYL0j2/tbl3SMdmtoX8WC+hio2hhmT7vvMDAAysbI+o+7JlZmW7Fp24RD1vROt0ArJ5pa30Nzq5TKIWNFO2y+MRMGjzQS40yi/oapDtveEE0oIIjmVQUwBZxjAMriJW8uPIbf/xyyeRFkRcO7sGy6ZWFv15gL5NeCEgZLvdp/28cfqduP5b1wMAjj99nPr5zESmAvTnh1GU7QCw8gsrwXAMTr90Gu172nW5BjM1Y7gqXID8yhrrM4aqz4IFAIq9M8EcNch2WSka49NIC3RJx4x1unbvllNkp4qzvZKy/XBbEBf6Y3DbOVwzq3bE9/s0clqj3XiwcEIZZtb6kEgJeO6APuu+FjhIyPaJxRXP5zUEYOcY9EaSuKBj3NBoyBDM2u/b7yZW8rsvGKIZIWKSKDzSrENj/dCjWWm80EIcoJeynWBOfQD33zpnzNhRIOMK10lR2d4blt6zq3I0eDcZLbedYSTCUwtlO+cAbLn3YoZRtjMMkikXfbLdbnxlOwB5bmRUy2QvTSLaisUIZbvLHMp2Zzn5uRPSNaut5E5GkUhI66eZbOR53gZB5ICEpWy3YMGQ4NMCPvPoHsT4NK6ZVYNHPrRclc7IxZPKcd+NMwEA//nMYaWTXk+E4jx+KWcK3XfjLDhs6t6ykyo9uHxKBUQReGZ/m/L1DNk+9oPdRzHjKhfaB2PoCMbBsUzRG3TaqPTRsZE3pbJdI3IZyCJUDfyyEZAtfoKU7xOS2e43Ktnulu4RLeI6UmlBURMYXVGRDaJAbx/nxiQb5Bg1Pie4AtUUa2bUAAA2n+ou6lwnOkN4SnZJ+bebZhf12WyQLmg9M9v1zqmumS/9DqLd9N9DzESmAvRt5ElBgOTM6YnyqeVY8M4FAKCJy0EumKkZg+XYzPywctstGAhNNT5FkTulyqPKO0n23jdKObc9ymtPjhCynWS2rz8oEc/Xzq7JqSq/GGzkAanpkajbH99tnOztsfCPXefx388fQzIljPm9oiiOW9nusnOY1yh9Zk+LMXPbwwmy99B+X3rrwga47RxO90SwxwBW+1GTCAbIvplGPYv2mqEmFLEExX161ETNB6RRnaayvUeuGw63kQcyue3NBlG2A5DVy5TJskQQGCWn3DDKdgDJlBcuV5wa2Z5K2wDOHHUs0VU2xPUgO7N9PM1fQ5TtZspsL8sSBjj9qme2i8kIknE5s91EynaAAS+4LRt5CxaMigMXBtAf5VHhseM3779cNVt1APiXa2dg+dQKhBMp3Pe3vUilx94w0sQjW86iP8pjeo0Xdy5ppHIOctyn92WT7VL3JOmmHA1a28jvkzeOc+r9huuSJvZPatvIm1HZrhW5LJ2DKNuN+7KhmbJdvg/9BiWXtbSRz84x1cOqbrxolG3kW1VQtnfInfj1RRCHq5qqwDDAic4wXj9ROOH+o40nIIrALfPrS2qEUpTLl6iNPCBZiANAtCdKXZlEyFTTkO2U50cyKJPLOtvIE6z68ioAwJF/HEFfc/HRDqVASAvg5YKrWeYHyW23lO0WjIb3XDEZAHDFOF1fhsNpY5UmOkJe0II+NvISydDSJz0HN8gW8rcsGGkhD2Rs9enbyBOVP72xuGvpBLAMsOtcP872GETROAa++ewR/Oq1Ztz/xIEx31s6gnH0hJPgWAZzx+HysFR2tiNOd0ZDJrNd+327z2nDrfI98vge/Zs1IiYRDPgo1rO0WDPUAqnfhBIpCJQcU8j9YbQ6Xi4QZXtPOEGtLkwcMatyku0GU7ZjJKFKBYlwXgt5wEDKdgC86JGU7ePMJc+HZCQpk+3G2I8WhOE28rKyXUyLyn6yGIxUtpercJH0QRq/EwMJKWdeZRt5MRFGMinty82U2Q4AfMpt2chbsGBUbGvuBQBcOb0KTpu6L60cy+BH71wCv9OGPS0D+PkrzaoevxjwaQG/e+M0AOALN82CjaNzu962qBE2lsHB1kGla7K5K2MjPxa0tpHfa1ALeYAe2R4ziQVbNnSxkTfwy4ZW4xEyeGZ7uVs7G/lQQjqH08aq7gpCE2pmtnfIKt36AqzyCCq8Dlw7S1JWv//hN/HvTx4cs/h0qHUQzx/qAMMAX1g7a/wXjGHdwDqBD+tLMHplJUMqnhrX5rQY6K3iLxZKZjul+UGU7UawkQeA+sX1mHHLDIiCiG0/3KbpuZNZLj2mmR9ybnvUAO5UFixk457LJ+L/PnYlvvqWeaocj2EYhfzWimDWch8yqdINhpHOva25F6d7InBwLK6fM9JCHshStlNu8o3z9BsP6gIurJkpvYc9YQDCdCwIgqhkXT+xpxU/efnUqN9/4IKkappZ6xuXaIK4ROw1gHI7F0iTvF6uWsQZ4dn9bcp81QtmUbaTpuwQTWW7wccAyNQrRJFOfj2QeZ7o0YxSLKq8DnAsA1HMZKurjZ4QUbaP3HMSZfvpHqMp2wfoniMZBhz+nP+U5tMQeKnxQa+m+GykGR+cTjo28nY7j5Rojv0XAGluZDVi2L12MHJT6HjGZ2hm+6BEXJsAhGyPD8Zla32VyeVEFDwvK9sN7OyaDaUBIemylO0WLBgV205LZPvKpioqx59Y4cE375RsO3+y6aRuFmUDUR7BeAoMA9y6oIHaeSq9DiWj9+l9bRAEUXmha6otgmynrKogIMr2pZMrNDlfMaiUO1J7wmpntptnU0KgpY18ULFON+7LhhYZaEBmY2xU23Qls10DG3mjNx7kQ4P8MtodThRkxzkaiI18Mcp2APjZey7D+1dOAQD8ZUcLbv7R69h6Kn+G+w9flLLF71jciFl1uTfHhcIIynbFWl2nTbzdawcnr/e0reRNp2wvpzs/SDHACDbyBKu/shoAsO+RfYh0aaduIXOD4RhlPhod7iqJbLds5C0YDQzDYGVTlUJmqAHyrhdNXHzKdqeNQ4PcKPir16Xm86tnVed9p/PLlt1aNR6o6ayXC3dfNgEA8PieVmoKU7UQT6WRLWb/0UsnRrXAH6+FPAFpuD/SFkQipS+ZnAthRdmuz15s5fQqNJa5EIyn8NLRTl2ugcA0ynYlhkL9/amyftqNPQaAtO667BJFQKuGE02aR9nOsgxq5Poerdx2RdnuHUmqNlVLtdizvVGkdX4OiKIokdw6K9uJ2hkwho18mvNSzGxPIm0isl10lQ1pxGAYRmleH4/yf6iy3UQ28uVZwhEKynbwESSTUq2IKTAmUm8oY5JwqD8eBoVFtlswFRKpNHadlcjvldPpkO0AcOfSCbhjSSPSgoj7/rpPM4v0bJBz+hy2grN2x4s7l0ob+qf3taJ1IIY4L8DBsZgkK8hGA81O4OHg0wIOtA4AuLSU7WbalBBoq2yXM9sNmlMOZDcfWJntgDbzQrHUN+hY5EOV1wGHjYUolr6x7xyHjTwgrevfuGMBHv3YCkyscKN1IIb3/G4HvvrUwREuJrvP9eGV493gWAb33Viaqh3IItt1VLbrbSPPMMwQK3maMFMmN0B/fpBigFGU7QAw5ZopmHDFBKTiKez46Q7NzpvtesAw5tjMExt5S9lu4VKAdsp26fhaKzMny/czibS5ZZTmc9KQTD2zXaPGg5vn18PvtKF1IIbtZ3qpnqtUZMcYfOKa6QCA+584gK3NuZs0DxKyfZyRQ5MrPaj0OpBMCzjSZryibUTnxmeWZfC2yyR1+2hND1rALMp2vwY28i6DjwEBqVnQ2qsrIhKTjEddgJDtdHLbe+U9Z1WOPeeECjccNhbJlIDWfv2aSPc+vBf/7f5vnPvBuRGEKhUkQ3kz24nambWx4AwwhwRbAG43vcz2NMauxxsGrvIRqmWFbC9J2c4AqRjgMpmyfSAuXbPaynY+gmTSYRpVO5AZk1jUYdnIW7BgROxrGUAiJaDa58SMAlTXpeAbdyzAhHI3Wvqi+Pozh6meKxcIaebTgCi6aV4d3HYO53qjSr7X1GpPQdb1Prm4oYWN/PGOEOK8gIDLhunVXurnKxaVtDLbE9orSkqFVkpuIGMXHjDwC0cmw55yZrvc9KLFujEeaJnZroyFwdUUw8EwjGIlX2pue/ug9PmGcap0VzVV44X7rsZ7r5SyZv+8vQU3P/T6kALqD144AQB4++UTMVWFdZkoimM6FhUI2a4nAa0V2U42v2ZRthMbeVrzg4yHUTLbAWlNIOr2nT/fOcTenSbM5noAZCnbrcx2C5cAtIryiuqgbAeAKZWZdwoby+CmuXV5v5e890YSqTEzw0uBYglNWdnusnO4bZHUXPD47laq5yoVxFnBbefwlZvn4C2LGsCnRXziT7txsjM05HtFUSxZ2c4wjNJ0b8TcdrJv10vZDgBvk50RXj/Zg66Qfs2rEZNE4SmZ7RRt5D2U1wy1QAQT1JTtJLPdJPvzGr+0L6V1HxFHzOocme0cy2Cq3HTWrKOVvM1tgyiISEfSOQlV1VGAst0Iee0AIDoC1JTtdjuPNGMcp7UxkcP1gOynSUxbMSC/a7cnmTm+CTBU2e4HEqExPlEERBFMKgaet5smrx3IItvDdstG3oIFI4JYyF85vZK6yqbMbceD71gMhgH+sfsC1h9sp3q+4QjHtVNlehw2rJ0vFTB+/8YZAIXltQOZjaQWZLuS1z65AqwBLVNIR2p/NKmq1VOmK9w8D1StlNzZ5wgY2C6cXFs0mQafLs0afDQQhwmjjoW2me3mJNsBoFF+IS01t5104ReT2T4cXqcN37pzIR796ApMKHfjQn8M7/ntDnztqUPYeKQT2073wsGx+OwNM0u6VoJs5TLNgvloUEhGHbPgSG47dbI9ZDwl92igbSNvtMx2gtl3zEbVrCrE++PY/dvdmpwzW9luFpDMdstG3sKlAGUPlqSs5tYgpzwXiLIdkOLjSMNmLpB3PUHMXC8NZFT+9N8tSfb284faNdlnjxdk/nmdHFiWwQ/evhiXT6lAKJ7CBx/ZOYSk6gjG0RNOgmMZzG0Yv0ptqUy2Gy23XRTFIeOhF6bX+HDZ5HKkBRFP723T7TqiCf3HohBkbOQpkO2KQ6Gxx4CAtjthRtlujv05TWV7MiUgKNducmW2A5mabHOXfmQ72Xulo+kRudxUkAxLJGWuf8rO8TYCXGUUbeR5iKx5lO2iqwxIJwA+swcrRdmukO1uM5PtKtvIp5NgxDSSSTvso7wTGw1ELBEJ2SBaNvIWLBgP25rp5rUPx4rpVfjUtU0AgAeeOKioBLWA1kTRnUsmDDlvoWQ7zc3JcOxtkSIEjGghDwAVHumlTxDVU+4KgphRlBh8o5oNslGL8emSc6fHAlGLlxm4uy+7aYZWp3gqLSgFRqMSzOXyPaJFZruWDUtqo6FMeiFtH0cXMIEoisozq1gb+VxYNaMaL3z+aty7QlK5/2n7OXzsf3cBAN6zYrKixi8VZIMipkX6Ct5wN9BzcsSX9baRBzLK9kg33YxuM9vIq92MIaQEZWNvpMx2AGA5Fiu/uBIAsP3B7Ugn6efUmlrZbpHtFi4BELVohHJmOyF63RpnDk/JIttvHcVCHpBU1aQPm4Y6lSCWlPY0WhBny6ZUYEqVB9FkGhsOdVA/33hB9qkkZsBl5/Db9y/D1CoPWgdi+OgfdylNCgcuSIqmmbW+knLvl0wuB2A8ZXs0mcmv13svRpo1Ht9zQbfmVdMp26mQ7dKaYRobecruhEo8oknqWrWysr2bgrKd5LXbWCavUGK63Hx9uofufnA0kD1ROpKWbeQHAYFifS8RAhx5yHZ5j24UZTvjqZDI9hJqNrlAyHaB84z9zUaBq1z6O6sZg8ydcWW2y/VCl1v+rNMcNvJEzc9HeAh2n7q26UlpHUgm7aa0kY/HHEB0QN+L0QgW2W7BNIjzaaV7mWZe+3Dcd+MsLJpYhsEYjy8/dkCz82bsoLVZRNfMrFZs0AGgqbYwO2Cam5PhIBvqpfIG22iwc6xCMqtlJZ+tzjBLBzAw1MacpnW6KIoKee03qJobAGwcq9wrQUpFwOx70Kg28uUa2shrGcWhNhpVsJEPxlKI89JGuK4EZXs2fE4bvn3XQvz5IysUct1lZ/Gp65pUOT4gWdWRDDZa6mUFb/wA+P1NI+ysFLJdR5LRXS2Nr1bKdrMQqkozhiAqZLBaIGMBGE/ZDgCL37cYvnofgheCOPh/B6mfzwhxCsWCZLZbNvIWLgWQKK8obWW7TjbyU6ukvSjLQHFgyweGYZT37BDFPWmMJ40H9MeCYRjcfVmGMDUqcjmwVXodeORDV6DCY8eBC4P417/uQ1oo3UKeYPGkcjAM0NIXRXdIfcXpeEEaU1hGmzkyGt6yqBEOG4tjHSEc1iHbXhRF3fPrCwVpzKbRqBOV1wyz2cjTUraT2Amz1LVoKttJXnul15HXtXN6tSSAOt1tEGW7uxyAqK5adzgKsJE3irKd8ZaD4wSkwur+fiSyPQmRM4+yXZobAOIDypfUyGx3OeXPmkXZntWwz4se6V5RqzlFJtt53lzKdpvLBs7JIZFw0l07DASLbLdgGuw5149kWkBdwIlpGuZ12zkWD71zCQDgjZM9qudx5wMhirRSZdo5FrctzKgGCraRV1QVdAs9A9EkTssKvyUTy6meqxQQK/leleYJsaJjGInUMgs4llHmLq3NGiB1zBPHfqNapxME5PGgpWwnFvIuOws7Z8y5Up61gRdUjFrIBdJ84Dd4gScXJqhgI98elD5b4bGXpB7KhTUzq7Hhvqtw/61z8Nv3L1O6/tUAwzBD7bdoItIDxPqBbb9QviSKYoaANoCynTbZbjZlu91tBycTTGrntpOue5sr0/BhJNhcNqy4bwUASd1OG2ZrxAAyNvLRXrr3jQULRoBHo4bnqE428vMaAvjAyin4f+vm5syzHQ4tMuxjw1TctHHXUsl5btvp3pIaMGmCOCsMnx/Tqr347fuXwWFjsfFIJ7713BEcJGT7xNKK5gGXHXPqJZXbdjlm0Agg96LXYaMeeTgWytx23DRPalLRo1kjmRaQkvd6RlcxK2tHMq1qFCAAxDVeM0pFgHL9JmIyW/1ahWxXf09K8tqrRnm+Kcp2yk5no4EoddORNESiLs4iVFVHMgQ4cteiCQFrFGU756+U/kPlHOpUNAW7PQXRrh3vUSrEHMp2NTLbHXb5sy5zKNtZG6vUkHjeBUCUohHUAC/tb5NJc2W2A1LTTjzuBJOKAmnjRiOpBWNW4y1YyAGS175yepXmm5fpNT6FsNFCkQnoQxTdubRR+e/pRWa20y70EFX7tGovKgzSyZgLVfK19apkf5zd/av3pr1YZHLb6ZHtpCnFzjGGb0agbctGyHaf0xibj1wgYyCIdJVHQNZ4mFDZTmzkSyLb5U1NfRmdjmi/y45PXtOEq2bWqH5sYhWuNpk6AmRjvO3nQLQPAJBOpCGmpUKbETLbYz10x8CUhKqc+6V2Mwbpujeiqp1g8fsWAwA6D3ZCoBzRYrZGDMCykbdwaYEQRFHKsRLDbcK1Assy+PodC/DRq6YX9P0+iupUAmUsNFKpTqr04MrplRBF4EmDqtuJ2j+XVfiyqZV48B3Sc+uRLWfxxskeAKUr2wFglRwruLW5p+RjqQXSeOA1SKPvPbIzwtP72qjHug1HNCvewuiq7uzfV0RlpxC91s/xgijbgzE662g0T3OOUUEayrsoOGiQemG+vHYgU5PtCiWUupfWIE3wEICUKNeIVSaXFYiiqZTtXJlEtrO8uuNBlO2Mw0Q28kojxmDWl0pXtjts8aHHNwHIPZNIynvoREidA8ukvdls5AGpfhOPk/G4+NXtxmYmLFjIgtZ57cMRoGypNBxaZ7YDwGWTK/DZ62fg39fNLfi8RL1MOy/weIf0gFJjc04TxIq/L6LOC7nZun+zkSGX6RW9yEYw4LIbvhkh03xA10Y+YGBy2WXnlALlIOXcdqVhyeCOB7lAbOTbSyATOwnZbmDiMB80U7YngsDMtYAoAFseAoAhOfFGULbTzGwXUgJS8npkJkJVmR8qxwyQrnvShW9EeEnEj0i/GcWMjRjERj7aG9Uto9aCBa1A9gY0G57TgqiQdEbPXdaiATyug8o/YyXfash1LZ+yneAtixrxlVvmAJDmE8cymNtQetF89QxCthtQ2W4QJfdVM6tR43eiL5LEq8e7ND03qWE4bSxsBnVcI3DaWNg5qY6gdrMOcQbRO1agUNCseYqiqIyHURpSxgKJYusJJ5BKq9uwQjLbR3NuKXPbFTL+jE657XaPHYx8f8QTMvGepV5WFak4IKbzZ7YbTNluq6gGADC8SmSqDJLZnq/pwJDIZSNfNn6ynTRW2LmoRLSz5lhDgaxaRULeQ6tFLiclZbvZbOQBaUwSCXmto9WsYyAY+63HggUZ0WQK+y8MAABWTq/W5Rq0IA6zQVSZWhJFDMPg39bOxseuLkxBAGinbB+QX/irdCQ/CkGlV3qAqGUjT7qhzbIhyUaZm76NPFGJB0zQ2Rdwk8x2Wsp2c2SUK7ntMbouIcp4mPDeaZRf0EOJ1LjnC21lu+oQRXCCtBFTlMu0M9vjg0BlE3DlvwA7fgOEOhSC0ea2gdWxOKiFjfyQxgITEaq0nA/MoGxnbayygdcqYsBMc4Mo29OJtNJIYsHCxQpF2U5xD5adB2/0xl+fBntSrZXtAHDrwga47RzO9ESwp2VAs/MWCiWzfZT37U9eMx3vvmIyAGB+Y0CVeKPlUyvBsQzO9UZxod8Y0SFGyyi3cSzuXCI5F2ptJW+mGgbDMNTWD2Ijb/T1k4Am2Z5ICYpNv1nGo8rrAMcyEEX16nsERNleNYZKm6jb9bKSHxLxRsh2WjbyCdlu25mbbFeU7QapCTuqJG7CJoYhqNiMQch2xkxku80l/cm2kSfK9sHxK9vtbMxUqnYgi2yPyvM0rhLZfhHYyAOwyHYLFoyCXWf7wadFTCh3Y1KlPsSBFsRhNsImsUAmnduRZIpqtz2xIjd6LjfpPO1TK7M9YWJluwY28uTYfoPfJwB9d4yMktvYY0Hs6QY0U7YbezxyweOwKU0J47WSJ9lyDWXq5anTBPvyf+Ca4/8JIEOmUle2x4OAqwxY9VnA5gDeeFAhoPXexHtq6JPtpLGAtbOwmaAYSkDNRl4uBLjKXMCF3cBf7wXS+lg2jgbSiEHbKp3MDzO5Hjh8DrA2lrFwAwABAABJREFUaXtr5bZbuNhBlOZhiu5iJKOcZST1p5GhSWY7r70ltM9pw60L6gEAj+02npV8ITbZDMPgm3fMx/fvXoT/uWexKuf1u+xYLGe/G0XdHimg8UBr3H255Iyw6VgX+lUmC0eD2WoYpOYWUlvZrtwfxpkTo6GMYuxdduSJ0Z1SCFiWQY2PTm57dwGZ7QDQJEeLNXerlPs8DhCFciwq12JpKduJAjgPyWw0ZbujuhYA4HIlhjSxlwo+GoPNlgbjMhHZDgCu8iGNGC65DlWKst2GsFSvMRHI/RINy/NUNWV7xkbenGS7ykp/A8PYOyYLFmSQvPYrdchrJ8jkF2lEtuuQ2T4ekMKGKNLNDMwo/Y09HpVqZ7aTrnCTbEiyUaZB9IKibDd4EwZAv/kgGDeWmiIfKjzSPTJAeS0Nm2Q88qGxrDQreUXZHjAH2Q53FRy89OJNuoE1yWx3BSTbs1WfA3Y/gnT3OQD6E4zZhKoo0GlkM2MmN0DPRl5Rtpc5gXNbgGPPAgcfU/UcakAL1wMgS9nucwCCIP0xOBiGsXLbLVwyUBqeNVByexw2w8c1kfe9EE2yPWs8tAQhTJ890KZY2RsFmb3q6KSqjWPxjuWTMLs+t2JxPFjVJKkKt54yRm57xkbeOHuPOfUBzG8MgE+LeGZ/m2bnNVsNw+eU9ulqr6cxk9nI06zfkLF12VlwrLGfJ9moDRCyXd3cdkXZPkaD9/RqfZXtQDZpmpJUxrSU7TKZCIc5MtttXh9SKQ4uV2Jc6u28kO3CWY96z0tN4C5XXdluEyNSvcZEUFzoQjLlatnIw1XhQjxOnDEufrLdHG8+Fi556J3XDmSIMs0y201iCe22c2AZQBClF2ham0uz2IUrZLtKme1Kkcsg2W/FIECxM5pAyWw3QWcf7fEI6xA9MR4QxfZglLKNvIkz2wEpt/1IexCtJSrb602ibBe9NXCmw+DTfEbZTtNGPp0C+EimU3rFJ4Htv4Tv2M8BTNdf2S5nT4uCiFh/TPl/NWHGTG6Ano28ktkecAJRWSW3+UfAoncCrHH6kzUn2/0O4C93A9WzgFu/R/WcasBT5UGkM2Ip2y1c9FBs5JP0yXYtldzjBdkzq525nA09bOQBYOX0KjSWudA2GMf1P3gVjjFcBmbU+vGr916mSVZ2RsGs/V5s1Ywq/OyVU9ja3AtRFHVvCDGajTzB3ZdNxOG2I3h8zwV8YNVUTc6pzAuT1DD8lGzkY2azkVfEAeqvo2ZrwCCo9bsADKIrpO6+NJPZPpaNvHGU7YmBhKxepmQDPYaNvNGU7WAYJJIuiWxXsxmDlxorWLfZlO1lQ+bGeDPbRUFU4sDYtPmU7QrZHmQlayi1yOVkBGnRDlFkYTc4LzIcUmY7sdW3bOQtWNAd4UQKB1ulm1FPsp2mpVIumEXJzTCMQrDTVBKQ8TC6grlKzmxXy0ZeycEz2aYEoLtZIwiZStkuZ7ZTGo9wwhwZ5UpmO2Ub+ZDJle0T5Jf08drIZzLbzUG2wyupkxDtySiXadrIKzZ1cqe00wdc9QX4u/6Jysp+3cl2zsEp3eC0SFXTKtspxQwMUbZHewFnGdBzHDi+XtXzlAqtyPYhNvJdx4BdDwOhDqrnVAOKsr3PUrZbuLiRsZGnaZtuHito2jbyoijqYiMPSFbG9145BQDQNhjH2d7oqH9eOtqJYx0hTa4tpmRzaz9HLptcAaeNRVcooSsRRUAaPfQYi9Fwx5JG2FgGBy4M4mSnNvPCbMQqrWYdsma4zKJs92Sc+NSOiCQxC2ZpwCCoo6xsrx7DRp5ktp/tjUCg5HY2FghpGg/GAXcZPRt5kynbASDJu+ByxVUl29mUtMfjfOZSdA+3kSe1DNLQXij4rDohmwqZlmyPDySlWpNaynY+grQojanplO3lLggCh5TguCRs5M3x5mPhksbOM31ICyImV3owoVyfvHYgS5WqsY28GYgin9OGUDxF1cYwk9lu7PGoUj2z3Vzd0NkocxNymaaNPFG2G/9lg7ayPdOQYux7pMytrY280RuW8qFBft61F7k5AaTCJ3FhMQ/ZXiP9HenJZHLTVLaTjtrszduyj4B/6Ue45pptOBBdRu/cBcJT40EimJBI1dnqH9+0ynZaNvKyxZ2kbO8DJq8AkhFg84PAnNsAg1gou6ul+0M7G3k7EOkGBB7Y/gvgpm9QPa+CziOArzbTiFMg3JWWjbyFSwMZZTs9W3G9lNzjAW0b+TifidLQQ+n/L9c04ZpZNWPayH/h7/vR0hfVrGZBCDQ9Mqlddg7LplZgy6lebG3uxYxafS13wwnSeGCsvUeVz4nr5tRi45FOPLbnAh64dS71cyrEqklqGLTEI1GTKduJwCiZFhDnBVXXumjCXA0YBJKyHehWUdkuimKWjfzoZPukCjfsHIM4L6BtMIaJFeq7nY0FxUZ+IAFMLKdnI5+Qm4HyZLYTst0wynYAScGjurKdSZuUbHeXAwPnlf8db2Z7MquWzvChjDjCJBgiHJkWUFHZHkVKkNYLM2a2AwCfdsNmKdstWNAfJK995XT9VO1AdmY7PUI5G0pmuwmIIi8l261shExCqlZ5M2S7Gp2nUZNtVLOhjY28dGy/wYoauUA7s13JKDf4mqGFsj2VFhQlgRkalnKhUSbbx2Mj3yFbyHscnCnuDQAQvbUAACbSrY2yXSHbszZvdhda3e/BwoXHUF3VXdzxRBEItqt3fchSMHdbyvZsKM0YlJTtrjKXpGz3VAFrPg+07gbOvqHquUoBiRSgTSYn5SKgy52UiPaqGcDOh+mpWYbj0XcAz3+l6I8RZbtlI2/hYgdRB9Lcf5mJKPJSVrbHskhuPZoPWJbBggllWDa1ctQ/NfIzXSs3vkIz22mB5LZvMUBuu2Ijb0Ay8e7LJgIAntrbirQG6lijWurnA7lOtZXtcZNltnsdnJKnrvYakmnMMcdYENBQtgfjKSTTUgNX1RgqbRvHYnKl9O6vV267szwre9ulgbLd7s39zzIJayRle0r0qkq2i4IIVpD2uKYj2/Mo25OhJIS0kPszOUCU7XaPHUw8aGJle1xdZXsyAj4lK9sNzosMB3EmTCRdl0Rmu0W2WzA8jJDXDmQyobXIbBdFMctG3viLaMa2j56ygrzsG735oEJ+8RNEdZS7irLdJBvVbJAGFZr3DJkXRm/CAOiPR9Aka0a5Mg70Mtuz1yKjNx/kQyk28u2D0mfqy1y651cWDKJejXRTy+QeArLpGbZ5a0tdh4GBMiya8M/CjxUfBP72XuBH84GeU6pdIm27cNMq2yu0ULbLZPuMG4H6hcAbD6p6rlKgtY28yy7fK9c+AKQTwK7fUz0vACDcBQyelyz8k8UVFpVmBMtG3sJFjmxlu9p2vwSZpl/jv0uRPSKt5gMyFg4bq5BRRgQZhyDF7PpsZBoy9Jkjq+Qa0fbTfZqQyKMhTOLfDLhvv35OLSo8dnQGE9gui1loIlPDMAexmlk/1Nuni6JoOuEEwzCKS57aNYuYyaIFCGoVsl29fUdvWHrH9jltBUUMNMlW8qd1issYYgfuLqeY2R4CHH6AzU1VkUZgIynbU/CpSran4ik4HNK9ZwuUq3JMzeAuH9KIQeYNkPndFYIhDgbxwaHiCBNgKNnuzzg2lAo+glRamvtmtJEHgHjCCSQsZbsFC7piMMbjcJv+ee2ANsQhQZwXlM2iGbqBlU5gFTcn2UilBWUjb/RsbjvHKnOlL1L6C1cms90cG7RsaBG9QJwmAiaw0SHXSKv4ZWW2Z0CaMFx2FnbOnK86DWWSOrNjMF508ZAUAxrMYiEPADYXeNYNJtpNTbk8BKRI4BxKtifCIl59dSUaPbuB1j1jH6fzMPCb64AzbwAMC5zaqNol0iZVzapsJ5s1tZsxSJ6cktnuqZKs49d8Hjj9CtC2V9XzjRdake3K/ODkAkH9QmDJe4DtvwJ4ykR22z7pbz4KHH++qI9aNvIWLhUQ8iYtiEikClcMFQPFRt4E+xBaylQColA1OmlG9sohjch2omDWa1wWTiiD32nDYIzHkTZ91VKKmtuAjb4OG4vLJlcAAM730Xd+ydQwjDcWueCj4NSYSAkgWziXwdeNbAQo1T3NFi1AQGzku0LqKdt7I8RCvrCGZ5Lb3qyTsp3svSRlezlFG/lwXgt5wJiZ7WlOItuLzSXPBz7KZ5Ht5iKZ4Sob0ohhc9nAyfc7aWovBBkHA5skkDCZst1ZJjenDMSlRgEVbeR5Xpr7ZrWRj0cd9Jp1DARzVqAtXDJ480wfBBGYXu1FXUBf0kCxgNbAki0kk2YMY46XUa9iY0hH2Z5dLDDi5nU4iBVUTxHde/kQ0VktUAoy9wzNeAF+yLmMDNo28iGTZJRrkdkeVqwLjT8v8qHW7wTHMkgJInrCxW3uSc673s/NYpGwByRlO6VM7iEgm55hndLJcBIHD85BRJgAbPrW6Mc48HfgtzcAdjfw8VeAKSuB5k2qXaKnxlK25wJtG3mn3wbE+iWyHQDm3gFUTAM2/0jV840XWpDtQkpASn6mODAgfdFbA6z6HBDtAfY9Su3cAKTGBncFMOFy4NATRX2U2MhbZLuFix3ZewNq1ukmtJGnp2w3hx20omzXKLNdsZHXScFs41ismF4JANjSrK+VvNGt02m7P2TDbDWMDNmuXj0rnhU94TH4upGNMkqCCSWz3aD3Rz6Q/XRPOIFUEVbYo4Eo28eykCeYXiPZqp/u0UnZLpOHiWBihHpZVSTDgCM/2U5IWCMp2wWbHy5XXDVlu0S2Sz8n68o/FoaEqxzgI0A6s3YQdXsx40OaKrxlIgDRtJnticGE6jbyyaSsbDeBs2s2FLFExG7ZyFuwoDeIhfyVOqvaAW2V7YQ08zltprAApp2RR8bD4+BMoVKtzMptLxXRBLGjM88GjSD7nqFlb0mIfDPYyJNrTKSEIZtvtUAKJ0Yn27VQtptlLEaDjWNRL2/ui81t7xw0obIdQMIWABPpUWzC+SiPdJJSPEl8ELB7AG7o2pEMJyGKLFoc7wOaXwbObR352VQSeO6LwBMfA+bfCXxkI1DVBDTdAJzdDKTU2WxrldluNrKdVjMG6bj3eBIAxAzZztmA1f8KHHkG6Dmp6jmH4MSLwMO3AsLohTwtyPZElnrHLgwArE0qoFQ1AfPuALb+BEhTLNa37wMalgAL7pHcIooo6hEbeSuz3cLFDo5lFOKXVpSXmTLbaShTs2EWlT/Zb2ilbNfbRh7I5LZvbaZvjz4awgYnE30aku1mq2EoY6OisIbcGw6Ohc0ENSwCWnVPsyrbq7wOcCwDUcwo0ksFEeVU+wpzF2siZLteyvayLFtsomynUd9LhEynbBcdAVVt5PkoD7udRyrFjahTGB7ucunvbCv5sqwIggJBmiq8ZfK7rcmU7UNs5F0B9ZTcfATJpPSsMquNfDRsg2gp24tHOp3G1772NUybNg1utxtNTU345je/OYRoEUUR//Ef/4GGhga43W7ceOONOHlyaPGqr68P9957LwKBAMrLy/GRj3wE4bA+XVwW9MM2OU9q5XTjkO1BisQhAbG/M4NaFwD8lMl2s+S1ExCyXY2X8YiJshKHg9impwVR2WyqDdJxbYZ7xe+0gfTO0CiAhcyS2e7JZLbTWkvDcWMrSwoFIcuLzW0nyvZ6synbbWVApHtIvhc1K/k8lmSEgA76r5Vsszd9a2gxYbAV+MM6YPcfgNseBO78JeCQyD00XS/ZXp/focolWjbyuUGaMVLxlKK+VgOkSOJyyIUsT9a755L3AL46YMtDqp1vBE6+CLRsBbqPjfptRLkdH4hDoGQdTeYG5+DAxnsBT3UmP3H1fUD/WeDo01TODUBStjcuAebfJakjjv6z4I8qynYrs93CJQDt1NzGf5/yKftROnuOmEls5DOZ7Vop2/Un0FbNkJ7XO8/0IUnpuVgIMsp2Y84RL+WohWyYTdnup7CWkjXDZTcP0Q5k6ipqk+0ZFwxzzAkClmVQ41M3t703TGzkC9uDTa+WCOj2wbiy5moJRdlObOSFFJCkQPwXqGx3FGi/rwncZTLZrq6NPJ8y0M9YKFzl0t9ZMQMlKdsD/NDjmgSKsj2YgOjwq6hsjyKZkNZn09rIx50QoxbZXjS+973v4Ze//CV+9rOf4ejRo/je976H73//+/jpT3+qfM/3v/99/OQnP8GvfvUr7NixA16vFzfffDPi8czidO+99+Lw4cPYuHEjnn32Wbz++uv4+Mc/rvblWjAw+iNJHG2XFqUrDUC2ky5xQaTfDRw2uAXZcJAXZlod9EETWYUDmZfmPhVs5PW25isFbjsHOyexyzQcIURRNFUjBssyykaexniYhWAul23k+TTFJgwTzYvR0FgukUbtRRLOpBBQL+e+mwUJewBMpBssxyqberVzuRXEB3NakiXDRO3tAq7/GnBuS8Ya/vRrwK+vBoJtwIc3AMs/AmS7z9QtkKy2VbKS98oqBstGfiicficYVhp3tZoxRFHMZLbb5ebebLLd5gRWfhrY/zep4YIGOg9Jf599Y9Rvc1e4AXna0SKUh8yNSDfgq8n8Y+MSYPp1kq0+jYapUCcQagcalwKBBmDqGuDQYwV/3Mpst3ApgZB6tIrvsaR51KnZql1BUH9tipnERj6T2U6fbBeyGqr1JFVn1/lR5XUgxqex7/yAbtcRUdTcxtx/0CCU8yFqorUDyKwfatazYga4N8aDgCIyUneekPvD6A1LuVAbIGS7OuplEhFXXSBpXOF1oEIWLOihbh+iTibqZRrq1EQYcPrz/jMhYY1kI8+4y8GyIoRwSJXjJSNJiWxPm6sZHkBOZTtxRRhPZrvHJ69BLpPZyGe5S6ZEj+TYoAaSESTi5lS2c3YOdq8d8bhTveYDA0N1sn3r1q244447cNttt2Hq1Km45557sHbtWrz55psApGLWQw89hK9+9au44447sGjRIvzv//4v2tra8NRTTwEAjh49ig0bNuB3v/sdVqxYgTVr1uCnP/0p/vrXv6KtrU3tS7ZgUOw4I6naZ9b6UGMA1ZXLzsFhk24ZmhnUQGZzbIZ8coC+jTx50TcLcValKNtLfxnPbErM8bNng2GYrNx29Qs+cV4An5aKaWawkQeyNq8qj0ecTyMpZ4gZ/T5x2VllLaWV2262hqV8IGR7sTby5lW2S5ntwDD7LRqI51G2h7Os1WeuBSZeIanb33gQ+NOdQP0C4BOvAxOXjTwmy0okpEpkO21lu5JRHtD/HasYMCyjejNGOpGGwEtrqIPNQbYDwLIPSS4G236uyjmHQBSBzsPSf49BtrM2Vsmtp+164PA5gEiX1ESSjTWfBzoOqjbXh6B9n/R3wxLp7wV3A2deB8JdBX2c2MjH+mIQKRBuFiwYCWR/cKlbpwND3/miFOKaFLLd4HuyTGY7fUI1nsqMs56kKsMwWCnHDm45pV9uO7kPvQadI+QeCWmR2Z4wF9FMwyWEKNvNsH5mg5aNvCIiMcmcyEatX9qXdoVUUrZHistsB4DpNZLi+3SP9mT7EMI0h3pZNSTzk+1CSlDi5YxkI8/6KgAAYnRAleMRZXtaMM7PWDCUuZFpxChF2e72yuI1k9nIcw5OIcN5wS3VndRoUOcjiMek54nZMtsBqb6XSDjBJFQaDwND9afcqlWr8Jvf/AYnTpzArFmzsH//fmzevBkPPvggAODMmTPo6OjAjTfeqHymrKwMK1aswLZt2/Cud70L27ZtQ3l5OZYtyxQyb7zxRrAsix07duCuu+4acd5EIoFEInPzBoNSpwTP8+B5bSy0hoOcV6/z50M0mcIDTx7GmhlVePvlE/W+nLzYclIquK+YVmGYMQy4bOgJJ9EbjKHWO/7bZ6y5MSC/fPkcnGF+9tHgtkkSq1Cczv02EJFeav1OmynGo8wtPQB7QvGSr5eQ7U52fGuJ3uuQ32VDbySJvlAcfJW6Kts+uSOYZQAHI5hibhBFQX+49LmRjQF5LBgGcDBiQcfWc26Uu+3oCiXQE4yWtJbmw2BUGg+vgzXFvMiHOr/0Et3aHy345+DTArpJt7zXHM8QQJqHCVsAiPaATybgKndh8Nwgwt1hKj8DF+sHHH6khx07LrsCcC4OfCoF5pr7YfvL24C2PUiv/gKEq78CsByQ55qYqdfAdvDv4AfaRhKURcJeJv3+I90RKmNANr2c29jzJNda5apwId4fR7g7jPIZ5SWfI9yTiapiU/0QwSBl8w79PbMusJd/FOybv0Jq5b8CnsqSz6tgoAX2RBBC/WIwZzcjlUwATP6eaHeVG7G+GIIdQZTPLFfvOmRE+yUS3+FzQAh3A2WTht4rE1eCa1gCvPEg0lOuVvXc7PldYN2VSHkbpPGfuQ425osQDjwOYflHx/y8LSA9U0RBRKgnpDQmFAK935n0PrcF84GQZ7Scgghp7TG4mhsAnDYWNpZBShARjqdUb7gkY+E2uCW0ktmeoL+WZFv2u2z6zpHVM6rx7IF2bGvuxedv0v78qbSAhGxhb9RmX5/cBK+FjbyibDcJ0UxD9R81iRvGcJAoQLXFAaSuZbbmAwCoU13ZXpyNPCDltu8+14/T3drH65ImZz7CI233gwOGqJdVQyKY10Y+mRXRaSRlO+uvBNoBUaXxUDLbBXOJJgBkSPFsG/my4sl28rt2ueXfeQ43QqPDVe4CH+WR5F3wCDyQigP2EuvhySgSUWl9NpuNPCCNSTzuACOqNB4Ghuq/nfvvvx/BYBBz5swBx3FIp9P49re/jXvvvRcA0NHRAQCoq6sb8rm6ujrl3zo6OlBbWzv0Qm02VFZWKt8zHN/97nfx9a9/fcTXX3zxRXg8npJ/rlKwceNGXc8/HG92M1h/isPLRztgbzsAo77rbDzAAWBg7z+L9evP6H05AAAuLV3Ti69uxpmy0jtx8s2NN9sZAByCfV1Yv359yeehjeZu6XrPXmjH+vXq26vukMcjZJLxaJHH42RL6eMxGJHm3M7tm9FSwrNIr3VITEjXv2nzdnQfUbd7rSMKADa4OBHPP/+8qsemBT7KAmDx+radCJ9Ubzy6YgBgg5MVsWFDcWOhx9xgU9K8eOHVLTirwlo6HPtapHHu6WjF+vXnVT++Vmjrk9aSoy2dBa99/QlAFG3gGBHbX3sZLDP2Z4yCBnsZGCGFjf98DBFB6trf/up2HE8fV/1cq1rPIGELYPewcR3oGgAA7D64G8cF6bwzG+5B0D0ZndElwIYXRj2uk0/jFgD7n/wxWitXlXSNqZBUlEqGknj26WfBqlzg722XHIT2HdmHZnsz/LFWxByVSHHG3Phkr1UJRtqwb964GYH+0jfgiTa5ecvN4sS+bWjivNiQ43ft4KfhphSP5v/7Co43jGz+HS/qB/dgBYC9zitxeWw/Nj/xGwTdk/NfLyf//C9uRnmoXLXrIBjYNgAAiKQiiHadRUeiAoeH3SsNrqtwxZmf4o1//BQD3ibVzn1F80ZwtkZsy3qur/DNh33L77G5u7GgY7AuFkJcwIYnNsDZULxzg557t2iUjluBhYsTHllNTEvZbiYbZIZh4HPZMBDlEU7wANQtVMdNMhYBDZXt2XntrM4vnKtkZfve8/2IJlOa/56yGw+MaiPv09BGXlG2G3QshkOJoYinIIoiGKb0+UxiOMxGLlNXtpskWiAbRNnerZayXbGRL/wdlSjbm3W0kQeABO+BB6CjbE+EAWdusp2onRmOAWege8pWJj17mKQ6tvqSsj2JNMzlPAcAcHgB1gbE+pUvEWU7iWsrBOR37XIlAM4J2M3XeOAscyLUFkI8If8e48GSyWUxGUE8KtWDzGYjD0hRePFO+XcZH7TI9mLw97//HX/5y1/w6KOPYv78+di3bx/uu+8+NDY24gMf+IDap1PwwAMP4Atf+ILy/8FgEJMmTcLatWsRCOjTBcPzPDZu3IibbroJdrtxboRXHz8IoB2JNAPX9Mtxy/y6MT+jNXrDCXRsew0A8Mm33YBKg9jEPHJhBzrPD2Le4stx07zasT+QB2PNjTOvngbOnsKsaZOwbt38Ui5ZE9iOdOIvp/bDHajAunUrVD9+86Zm4GwzZk+fjHXr5ql+fLVR1tyLP53aDbj8WLdudUnH+rcdGwGIuPWm68dlCa33OvSP7t04d6oXs+YvxrqlhRXJC8XelgFg/5uo8nuwbt1Vqh6bFp4d2IdTwS5Mn7MA666YpNpxD7UGgX3bUe51Yd26awr6jJ5z409tb6Lj3ADmLFyKWxfUq378Xc8dA1pbsGB2E9bdOFP142uFae0h/Pb4NkThwLp11xX0mb0tA8CeN1Ff5sZbblNXcUoTPM9j95MSuX3TqiUYnH4AJw6ewJypc3D5ustVP5/t9z+A0DAb69atG/L1U+IpJJDANTddg7ol5P1o3cgDjAKx69e4rGwAi9cV97kRxxFEHP7gYYhpEdcsvwb+xvwZduPB6c+dRhxxXHXjVWi8vA62/5kKuMuRvvWHEGeuVfVcpSDXWjXwkwGcbT6LBTMWYMG6BSWfo313O47iKLxVXsyeXA02WT9ibhAw7gOYfegfaHrfj/KqL4oFu/koxLZyLHrnVyH+8A+4ehID4Yr88+cfv/0HTh47iblT52LpuqWqXEM2DvQcwFmcRd3kOngRxbQFyzFl5bDrEW6G+Ov1uIrZjfS6z6p2btuPvwRh0bux7rrM+ZiDYdie+RTWrV4IlI397DxdcxrB80GsWLQCjcsLf/fQ+50JyLizWbBQCAipF6VmI28ussjrIGS7+kp/QhS5DK5S1TKz3Qh57QSTKz2YUO5G60AMO8/245pZpbkLFYuwfK84uExcltHgzyKUaSOSJJFexr5fCEgjQkoQkUgJqtznxEbebBnl9Mh288Yjqq1s75WVu4VmtgPA9GovAOiibOfsHFgnCyEhIB5zSGQ7DWV7Mgw4cu93idrZ4XWo0gyjFmwVEtnOptTJ5eajPHwOHml4VTmepmAYyUq+RGU7H5XJdkfCdBbyBCQSMUHI9kQQ8JfAvQkCmFQMyaS0PpvVRj7eIq958SDgV78ObBSo/pT70pe+hPvvvx/vete7AAALFy7EuXPn8N3vfhcf+MAHUF8vDWZnZycaGhqUz3V2dmLJkiUAgPr6enR1Dc3lS6VS6OvrUz4/HE6nE07nyM4fu92uO9FthGsgEEUR289kuoyeP9yJ25cYz0p+13nJQn5OvR915cZ5yJR7pIUhzAuq/E7zzY2onBta5nEaZu6MhjKP9CCJJtUZl+EIJ801HrUByU2jP8qXdL3JlICUnDda5nWVdCy91iHlnqEwNyKpTF67GeYFAJTJ4xFRaQ0hiJUwFnrMjQqv9LwOUVozoiZbM/JhSrW02eyL8EiDLajw0xOVChkNZW7T/ewJm9QcaY/3KbnLfKi0dTT/yULgPBXghh2bZFV7KjzjP++M68Ec+AdYm03adJYAT5UHka4IkgNJ2KeoOw5DflY+CKRigK0etr+/B1j4DuCW/wa8VWMcRTtkr1WeSnXnRzoqkyhlLnDxAcBbk/+4qz8H7H4Y9gOPAis/XfK5AQDdR4C6BbB7AsDE5eDObwO3+jN5v91bK70bJ/oTVO6PdFwuEJdxYBJBcP76EfcKYAdW/yuYf/4r2MGzQLUKjU2hDiDcCW7i5UPPN/+twPovwH7sGWDNfWMexlPlQfB8EMnB5LjGR8+9m9nWbQv6glg0RyjZyGeU7eYgi2iSiWYhzvwy2R5UUaGbD9nKdr3BMAxWNVXhH7svYOupHs3JdmKRbWTVrpbK9qjZMtuzrjOcSKlCtpvWRp6sIVZmu4JahWwvXdnOpwUMyGRiMTbyRNl+pidCfW3PBc7LQUgISIRFwO4ZksutGgpQthvJQh4A7JXVAAAurR7ZbrfzEBiTqn7d5UMaMZTM9sHibeQdjjjgMp+FPJAh2+MReb1LlNhMzUvOZ4RsN6uN/EA8q/ngIobqLZfRaBQsO/SwHMdBEKTC97Rp01BfX4+XX35Z+fdgMIgdO3Zg5cqVAICVK1diYGAAu3fvVr5n06ZNEAQBK1aor5q9lHC2N4r2wbhS+335aJcmL9vFYluzZG26ssk4RV4g0+Wp9ovncITipBPYHAuol7KFIenMD5jkgVIld6j2R3kIwvgtskkBAzBHVmIukNxAtTO/gMx9SDaEZgCtTvFQwlxrRrk8DmSjqTbCck6lWcYjHwJum1LAbBuIFfSZdtmiq67MfHZbCbvcuRzpzmxQ+tWx6xuB+OCIzZsoiJnNXRFKgxFouh4IdwBdR0u5QgCAp1oilaM96lpLi6KokO1OvxMId0r/cPfvgDt/BZx8Efj5FcChxwFR/aiHUuGqkOfHgDrzg1jbOQNOINoLeEZ5/yyfJDUjbP0ZkErm/75i0HkYqJcV+tOuAs5uBuS9Uy7QmhcEZG74y+Sfz5fHzWnxuwBfHbDlx+qcuG2f9HfjkqFfd/qBWbcAhx4r6DDuKqlAFesrbN20YMGsIMr2CKU9GCHxTaNsp0gmxgxELI8Gsl9OC6LSIEALilW4QcZk9QyJ9Ngq15K0RFgh242796B5f2QjmRKQTEvvMGYhVlmWyTQjqNSsEzPZ+klAq+ZJ3A48Bm5IyQdiI98VKl3Z3ifvNVkmUxMpBJMrPeBYBtFkGh0qkP7FgvVIPE98ID5CvawK0imp8TtfZns4o2w3ElyVZeB5DjZEIJZQ+yWQbOR5CKxJyXZX+ZBGDJdckypK2S43VjhsMdMr26Nh+R6Pl0guJ6X4CJ63g7Wx4EzIDzjLnYgTsp1GDIWBoDrZfvvtt+Pb3/42nnvuOZw9exZPPvkkHnzwQdx1l5RryDAM7rvvPnzrW9/CM888g4MHD+L9738/GhsbceeddwIA5s6di1tuuQUf+9jH8Oabb2LLli34zGc+g3e9611obFTXhvhSw9bmHgDA8qmVmF7jRSIlYOORDp2vaiS2nZbJ9unGIttpdXkOR9hkxBlREUSSdDZuhKj1m4RUrZDVy2lBLIlUJQUuh42FjTOmHd1YoEUuA5mmFLM0YQDZa4i69woZC7PcI+UeevMCyKyhZG0yKxiGwcQKaaN1uK2wF3TScd8wjtgJvZFi3RA5BxDphlv+uWP9FMgyUZS6aYdt3vgYD8h7ZIe/hI385JWAzQU0vzz2944BWqRqOpGGkJIKoQ6/AwjLjlLeGmDJu4FPvwlMWQU89mHgr/cCwXZVz18qyAZWrflBCgCuMhcQ6QE8laN/YM19QKgdOPC30k+ejAK9zUCdHBs0dY20Ae08lPcjZF7EeuiQyQm5mOjzy8f3Vuf+RptTUvfv/ysQbCv9xG17pUaHXFbxC+4GOg4C3SfGPIy7Ul4/ei2y3cLFDR9lst1Mme0AXeWuWWzk3XYOnJyfTju3PZPBbIz5QXLbD7UNYiCqUjNcgYiYoH6jOD8kJNcDWohlOW2YiWhWe/0wmzMIQYCWjXzCvMr2Onlf3RNOIJXO3wxbCHrkvPZKrxMsW7g63WFjMVl29jqtQ24755XmcXwwPkK9rAqSsj2+c3QbeaMp250BJ+JxF1yuhNIQUAoUsp0zK9leNtRGfhzKdsXFgIsCTnMr2yMhef0vWdku3fPJpN2UqnZAzmxXyHZL2V4UfvrTn+Kee+7Bpz71KcydOxdf/OIX8YlPfALf/OY3le/58pe/jM9+9rP4+Mc/juXLlyMcDmPDhg1wuTKF4b/85S+YM2cObrjhBqxbtw5r1qzBb37zG7Uv95LD1lMSib26qRq3L5IaF/6531gF1M5gHKe7I2AZYIXByHaly5NyzhVRcvtMQhR5s7qAaWzcSKEgYJLxcNhY5Vp7I+PvfiX5i16TbdCyQYtcBjJNGGZStpPGALWV/mGTrRkkXoBWISwcvzjIdgC4aZ6U7fT3XecL+n6ibK83obIdDCORvVnK9sSAOtl4Q8BHASEFOIeS7UTNCwawe0pYV+xuiahu3lTCRUrw1NAh2xNZygyHT2pwAJBRMPvrgHf+CXjH/wIXdgI/XwHs+ZNhVO6Ksl0l5wNSAChI2Q4ANbOBObcBWx4ChBKVg11HAYhAnaxsn7BMatY4+0bej2ilbPd65WKedxQ73ss/KNlJbv9F6Sdu3wc0LMkdvzBzrVRwOfT4mIchyvZoL53xsWDBKCAkOI2McsBYNuGFwKfYyKvfzGkWG3mGYZR9KO3cdqPNj9qACzNqfRBFYPtpbdXtERMo2wmZnBZExPnSCMPREDFBfn0uELfGkFrKdt4cDTrDQWqekWS6ZGI5GxGDrRfFoMrrAMcyEMVM3vp40RsuPq+doKlGx9x2QrbTUrYnZBv2MWzkjaZs55wc4gknXK5EUertfCBku2jzqHB1OmC4jfw4MtuVxgrG/Mr2yID8DFRJ2Z5M2kurU+kIV7kLyaQDosjQiaEwEFR/8/H7/XjooYdw7tw5xGIxNDc341vf+hYcjsyCyDAMvvGNb6CjowPxeBwvvfQSZs2aNeQ4lZWVePTRRxEKhTA4OIiHH34YPl/uRddCYRAEUVGMr5pRhdsXS2T76ye6Ne/8HQ1kYzS/sUx50TMKCFFGS41JQIgis5DLZFOZEkQkUupv3EIJ85GqJH+pt4TuxojJ1CS5QItcBrKaMAy2TowGWu4YirLdwAWebJRRtpHPRHGYZ27kwzuXTQYAvHGyB+f7xiaOOs1MtgMQvTVAuEshU6ko28nL/bDNm2JP53OUnoPXdANwbivAl3b9CqnarS5pSMhUu8cOlmMlZbvDLzUKZGPeHcCndwBz1gHPfAb4011A/zn1LiTcPS4CnzgfqG4jX+YEon1jk+0AsOYLQO8p4NizpZ288xDAsEDNHOn/7S5g4nLJSj4PaJPJZH543DLZ7smjbAekOIYrPgrsegSI9Zd24ra9Iy3kCewuYM5bJCv5MeaMp0pW/lvKdgsXOXwyORSl5C5mtsxhn4O4ranffBAz0Vhkctvp1iwiBlTurpbV7VpbyZOGFyOT7R4Hp/SykfoKDURNahfuk+8btZTtUQPeH4Uguwaplsgou8HDyPdIPrAsgxqfOrntRIxTXUReOwHJbd98qgevHO8a9c/uc/2qCqEI2Z4YTEh7aFrKdoe5lO0MwyDJu+FyJZT9ZCmQyPYkYPeqcHU6YFgjBlG2FzM2pLHChohpyXbSZBAb4KXfJWkmGS+S0p6f5+2wm6j+nQ2pAYEBn3ZZme0WLh4c7wyhL5KEx8Fh8cRyzKj1YV5DAClBxPOHjGMlb9S8doCuJXY2Mjby5lhEs62gaNgYZkhV87yYV8odl30ldL4qynaTbVSzQfOeycQLmGdeBCi5Y5jNNp3YyA9QWkvNlmE/GiZXeXDVTIno+tvOsdXt7UGJXGowKdkOT/UQG3m1yNQhIJ3FwzLbs8n2ktF0PZCKAy3bSjoMLQUzUbYrdvmRrvy53J5K4K5fAfc+BvScBH59dekbRukigB8vAvb/X9EfJd3iqinbiY18gAWSocLI9omXS5EBe/9c2sk7DwGVTYAjS8Ew7Wrg7Ja8qnnaynYyP1yOsOQAYR9jPVnxScktYufvxn/SYDsQ7gQal+b/noV3Sw0O7ftHPZSV2W7hUkFG2a7+/iud1URtFnLEpyi6KWS28+bJX840O9N14yM59kayhV7ZJL0zbznVo+l5Mzbyxp0fDKN+LnkuRExqF+5XbOTV2Z+aqUEnGzaOVZwV1arhZDeEma35gKA2QMj20tTLRIxTVYKy/YXDnfjQIztH/XP3L7fiiT2tJV1rNjhPlrLdXa6+MjVBbOTHULarsU9XGXzao5qyPRVNwW7nAYdJyXZ3ORDLzA3FRn4cynZOjIyo15gFikvjYEKKRrBs5DNjwrssG3kLFw9Id+/yqZWKnRNRt/9zvwo5iyrBqHntgHaZ7Yoq0yTEGccyyktzhIKNYchkme2AZDUFlGYzdVEo2yneM+SYZnI8UGwdVR6PoMmU3OVu6f4YpKRsv5hs5AHgXcsldfvfd50f1c5PFEV0ynbYdSbMbAcAeGuH2MirRaYOQR5lu0JAq7GJr50L+OpLtpKnZSNPlMtOv6yqCHfnJ9sJZt4EvPdxqVv9/JulX8SFnZKl/7Hniv6oYiOvUjMGsZH3BeRCQCFkOwBMvw44vwMQSnD16TwM1C8Y+rWpa4DEoJRRngNa2ci7bMH8ee3Z8NUCS+4Ftv9q/G4O7fukvxuW5P+eaddIv5tDj416KCuz3cKlAkKCR2koufnMMc1CjngpZtibSeXvd2pTsyD7fiM1IKycXgWGAZq7IyUrUItBOGG8xoNc8KucS54LZrULV7sRIdOgY+w5kQtKfKZqZLs0FiwDOE0ULZCNWr+09+gKlbaudMuZ7VXe4pXtN8+vx3Wza7BwQtmof6bKDk+/ef20aur2IZntNGzkk3IjtyM32U4IWKPZyAMAL3rhcsVVspFPwG5Pg3GalGx3lQ9pxHCVZZHOBYI0VnBCyLTKdqWWNRCXGgZUs5F3mNpGHgASCedFbyNvvqe+hXFjq9zduypLMf6WRQ343oZj2Ha6F13BOGp1Ls63DsRwrjcKjmWwfFqlrteSC1op20MmVOx6nTZEk2nVLclEUVSIRDORqqRTtRQbedIBfDEo22kUe0hTipls5Ms8dNYQ8yrb1Y8wSaUFpbhhlvEYCzfNq0OV14GuUAKbjnVh7fz6nN/XF0kimRbAMJmCgNkgequBli2qk6lDQDqLnbmV7QoBXQoYRlK3N79S0mE0VbaPlstNUD0LcFdIBPOMG0q7CELYn34NSCUBW+HFE+J8oFbMACmOeL1xIITCyfbJVwKvfgfoOS41WBQLUZSU7U2fHfr1CZcDNreU257DVp3Mi8RgAmk+DU5l8keZH0ywsHkBAKs+A+z6vdQ8sfCe4k/atldytiibmP97ODsw707g0JPAjd8A2NwFW2Ijb2W2W7jYQfYIdMhl6ZiMicgRmkRinDdPEzRRttNQ+Gcjs1c1zpiUeexY0FiGg62D2Nrcg7uWjvJMURFhE2S2A7KYY5Cusj0qN2F4DD4Ww0GELmGVxCNmatAZjoDbjrbBuGo1i0hWM0rJUV06oc4AyvZyjwOPfOiKMb9vMMrjyu++jOOdIWw73YtVTQU0zo4BomxPDCRG5HKrAkXZnttGnhCwRrORB4A064XP1Yo+Fch2ISY1HTAuk8You8qkhnEhDbCcomxPxVNIJ9PgCmjCIo0VbEp2WDMhhpDtzoA0JqVAsZG3mddGntT3Yk7LRt7CxYFUWsCOM30AgNUzMg/aSZUeXDa5HKIIPHewXa/LU0As5BdOKDOk/W/GApoe2S6KYoY4M+AY5INPURKoq6yI8WmkBakb00zEWcZGfvwvXGQszVDUyQdatunSMYmy3TzjE8jKUFQzQ4s06JjFDYNmZnt2gdXoBa9C4bCxuOdyqVj411Gs5NvlLKwqr1NxsDEdvDVApGfIBkUU1LtXpIOOndmuCpqul4jU0PijemhnthelbAckcnPSCqBle+kX0bIdKJssKRnO7yjqo6rbyMvd9h6PfDxPgQ2fE5cBDDf+uIDBC9J8rFs49Os2JzDpiry57a5yFxhWKlbSUG+T+eHAAOArkGyvnC5ZwB/95/hO2rZPaiwYqwi78B4geGHUOaPYyFvKdgsXORQlN4XMdmKB7LFzpiFHvBTJdoU4M4FaV6vMdqNmUq+aIee2n9Iutz1ikggrmvcIQUSJFzDWvBgLPpVt5DMNOuYaB0D9uqeyVphYREIa2btLVLb3hklmOz2FdpnHjrsvnwAAeGTLWVWOSV/ZTjLbR1e2G5Ns96tmI08UzKYl293l0t9yvYWQ7UDhVvJ8hAfHpcAISUvZTsBHIIJBKmUzvY18NGK/6JXtJq3EWigWB1sHEU6kUOa2Y27DUCWXkazkd5+TGgKuNKCFPKCNsj3Gp0F4BbMQZwA9ZQXJa8+2qjcDKmVbqFJs5KMm3ahmI+DKbOhHs78eDxQbeRN19pFr5dMi4rx64xFW3B/MsWYQZXsiJSiFCLVAVDwuOws7d/G85rxz+SQAwKvHu9A2kJtAInaZps1rByB6awA+ArdXuj9EQVRUtqohPigRpMOy0BSCUa3ix/Rrpb9LULdrq2wvgGwHJLL9wi4gXcLzXkhLx7j8A9J5T20s6uOkMzoRTEBQ4dmiZLY7pQIHPAUqQBxeoH4h0FJcs4CCzsPS33XzR/7btKuAc1tzjjPLscoY0FBvk/lhS/cXrmwHgLm3Ayc3Fm8lL4qSsn00C3mCSVcCgQmjWskTZbuV2W7hYgexrKYR45Uhl83xbglkKVMpNPmaSaVKmnvpK9uNSSYSFefW5l5Vm5tHg2mU7VqQ7SSz3eBjMRx+ldcPUssxQ4POcKhd9yRrhdFjFkaDasp2uT5Y7VPBSW0UfHDVNADAS0c70aLCXkFRtg8mJAI0FQd4FR3oEiGAc+Z1OlMy2w1oIy/Y1SPbGTmbm/XkVvgbHq5y6W+5GYO1sYrteSHjI4oikpEkXC75e02e2Z5RtodKO2AyAoFxA2BMbyMfi9ghxiyy3cJFAJLXfuX0SnDs0M702xY1gGWAPS0DON+nr91ij6wqmyRnLRoNhCiL8wISKfWLGkBmU8yxjCk28wS0Nm7ZlvpmUVUAmU7VUmzkIya1YMtGNhGudsEnaMJcbq+DA1mC1VSbhBU1hTlevHxOG2zyQKitbjfbWBSK6TU+rJhWCUGUsttzgSjbTZvXDijEni3VB05u4lLdSj4+KG3chj1TFGW7X6VNvK8GaFhcUm67t0ZqCIj2RFUtGA9RtgsCEOkpXME8+UqAj0iq/fGi87CkaJ+8EphxI3DypaI+TjZrQHEZcPkQl+8dlz0CsPa8FoY5MflK4Pw4lf6dh6SCVS7r9KlXSRZrHQdyfpRmbju5Fzi+WLL9rdLcKLbBJNQuNXw0Lh37e1kWmH8XcPipvA0fJLM9EZRs9i1YuFhB10bemETqaNDGRt7440H2RvQz20k2t7H2YsunVsDOMWgdiKFFo/pWRtlu7Pnhd9En280qGCD1rJBKYxOTG+vNVNMjUJtsJ24Hpla2K2R7qcp2YiNPl2yfUevD1bNqIIrAH7edLfl4irJ9ID5CvawKEiHAmV/NbWQbedERkMj2QRWafHnpmcV6zEkyK3MjK2bAWSbNdbLfHg0CL0BMi1lku8mV7YNxiE5/6bbpySjSkI5pVht54nKQSDghRgb0vRjKsMj2SwRbm6W89mwLeYJav0tRkj97QF8r+bBCnhlz8fA7bUptniiu1QYhJH1Oc5HLtMj2jFW4MedEPmRs5C9tZbudY5WilNpWhoqy3URzg2GYjC2bigWwkMkaDxiGoZbbTtYgs6j8i8F7VkwGAPx953klXiMbF42yHQAiPUout1pW4QoSwZwbN0XtraatX9P1wOlXJEJ7HCCEajqZVghQNTBE2R7rA8R04cr2xqUSIV2k9fsQnN8hHWPCZcDMG4Guw8Bga8Ef5+ycUmxRI7eddNo72KCU117M+9fkK4H+s+OLC+g8BNQtyH2+xssAu0fKbc8BqmR7KAlABJvoLY5sr54J1Mwp3kq+ba/0d458+pxYeA8Q7QH+P3t/HibHdZ/34m9V9b5Nzz7YAQIgCRAQF3ABCJLiChKgKMtilFiOJEtW4limYsvy1U10YyuW9DjKL1ak2P4pukksibIpxbIkShFpiCK4iBQJggtEggBIgMS+zmDW3ruqu6vuH6dOdU1P90xtPdPnTH2eh88Q08vUnDlVXee83/f9nnyu6cOR7gigD6nvbvfhGbr+kquq5wlSJQbFdiNW3+P1qKZpTLlU6Xqg3c72UoU6mDtrTGKhAK5d2Q0AeHGeouRpkXynJxMagnIb5warhgEjYt+jsSlRgZmBa0YjRus7j/Y8ixy0R6Qx8pdcJK5pmoZRPUa+dx4c2p/YvhoA2Ttwu08rxol8ZMTIA95GySv5lhHyQD1GvhOd7Vq4C4IA1LLuiw+EKnG2S3E+nO2ASWS14Gynf2fmxXa6H6cBNSHuSYx8DWQcAzE2r6OiJCLcFUa5HIbmx8j7sE65UsNrpyYBADevbR7P3ilR8p3eq1wUBePY2hUln2ek31cj7drcYNG9DNTFdjcx8kYFMMOLEqA97Rfkag1ylWwqshQjD7RnPFjr2Q60r287i2NhlXuvGkI6FsSFTBnPvzM643HqbB9iWGw3hL3CpenxW15SzpA4rwY879kOELG9MOrYBR6MBY2+XF72bTci85MhID9CvmmlZzsABKNEFHXTt/3MPuL6D0aBy+4ABBE4Zs/dbhRjeDA/qDs+KOSI2G6HFVvJVyfjMXK4eYQ8QGIUV9zUsm97u8T2mlJDTakhEilD0Kr2xHaARMkf3Q3UbFzbL7xBfk5qmbXnL7kG6FkLHPpx04dFSaxH1fliuw/HmNcIXkfJFxgSlyleO1MpSk012ryxMB5e91tuRac624H6vhc1nbQbI0a+A8fCDE3+8p3tM/Ha9U/TQSK+s934PGFtTpihyXFjedlxcVterkLR97B629iznfLe9f24rC+OnFzFj/efc/VeTZ3tJveya+T8rMlidJ3eic52IZYGAKiFSffvVSPrFinBpshsiOMmMZUKz1bEdppgEI3r154mezYsEIgEjJTGqhbzwNleQFUlYjurznaAOP7L5TAExWWsfofji+2LgNfPTEGuquhPhrG2v3ml2M5NQwiIAt66mMWxS/l5PsI6htDcwSJJuxev5th0loi3y9nOoHsZqPdgmiwqUJs4UK1g9LbqMLeAXbyujAbq1fiC0LnFOa0wxsOja4imafVCJYauG+kYWWB6L7azWbBkhUhQwm9eS8So//3KmRmPD1OxneUY+WgPEV4Lo0ZPai+cy9MoN3e2ex4jDxCxNBhzFSXfDlGVOtvDyTCQv0S+aUdUXXGTS2f7K+Q9ACDWAyy73n7fdlqM4TL5QFO1eo9yNUOOxw6pJUB6pf3xqJSA8WOtxXZA79v+UtO49HaJ7XQs4nH9vHMitpenWjrym3LxDSKgW00UEARg04PEQd+iXySNki+N+2K7D7+EAiJCEtnSoWKGV7DobE+0qfibjgXARiR0ap6c7Z3caoAmOr50fNzxWtwOBUYMEwmP+5I3g1XDgNdJjSWGWk80kop624qiSAtzOvz8mI3eeAiSKEDTnBtqaIR8LCTNy/khigJ+5+bVAICH955ydS0092zXDEF1yuURmpjD2d7JPdulBFk7akX3YruoknVLIMmmyEzEcWF6jDx1tlto/Uad7Yku/TrMqLMdqO9VKLWoe2e7UjTEdmrEYJFIOgJZDkGo5h0nP7KAL7YvAmg1781re1vGkqdjIdx2OdlMW0h3OwsiSTtcqWbyjDq5k23a3GAtHpvSrQuJNVVzPFdo3FaUsYVqI8ZizcMCFbrwS4QDEEV22i0A5sWrd1XzdN2UZKhPedq4lrYnRr6TP0fc8OEbSZT800cu4VJDz7hhDmLkIUrEWZwf9dS5PI1yprnYnmuDsz0QBlbfAhx/2vFbmPu2e8U0Z3tBT0mw6mwHSHR69jwwddb+D89eADJngJU31b+3/h7gxHO23NBeFWMoeQXQr6FSZcq+sx0g7na7zvZLbwOaCgxubv2c1beS3vYXD8x4KNrbHjGZzo1Ut74hYmdeAMDQe0jxgdUoeU0jMfJWI+Qpm/8ZcQm0SESI9erFCOPz06/Xx2ehiLWpbzsVUqNBdu6nqJBYVGpN2+04hYpmQUlAUOr8LbR6oXObne0dLKpevTyNaFDCeEHB0ZH2O6jo+Rfv8PVHsk0GCTN0D4M1w0DC8xh5upfD1jgA9T1Pr/ZvCtREwuBYUERRQH/CXd/28YIeIT8PrnbKg1uWIxkO4ORYAc81ScazCnW2q1UVFZXcY3vrbJ+9ZzsVYTvR2S6mSNsSQXYXja1pGkSNzK1AilGxXRTJPos5Rr7Leow8LaqIJasAhFkLMDodQ2yvRIBqyV7qWyOVAqo1ct0IxjrvHLCK4WyHRvY4OKXzVwo+rtl7nPSp2r52Zr92Mw9cvQQA8NibF6Bp7a/+bYYR/9vBi5SuNvRbNpNjVChqm7Od9mxnLColFBCNAgGnla88xG0B7SlQoe0FWEs8ALx3ttOClIAoIBJk52O9K9aeGHm6QdLJCSluuHwwiS2rulFTNfywIQ6OOtsHWRbbAeKkNcfIz1PP9rbEyAMkSv7MPkApOHo5dTAXRp29vhlUUDWc7cE4EIpbfwPqSnfibqeiNI1fB4B1d5O/y9lXLL+NV8UYdOEvBkUI8oQzsX3lVmD4TXt/45HDAARg4MrWz1l6LfnbnHp+xkPtdrZ39er3LvHZ1w8zEARgw/uBtx8HVAux1tkLpOBj6bX2fk7/FaRQ4dCPmj7crmIEH59Og8ZWFxRvY+SLDPYbNot7Xq5J64UHbIxFUl9rtL1newensIUCIm5cQ9yGdD+sneQZEdvbtWdjppOLMGYj4WGMfKWmoqoX/MQYKliieL1/U2R0TjQyoDt0L1kQDZsxpq81aQrmfJAIB/DPb1gBAPjO3lOO30eMiBAkYnKRCyIghaZFhbtGmT1GvpOd7YEusnYUXEaFqxUVoYCCWk1EMGljXd5pRNNNne3lzNxrdlpUEUtUgUiKiPeMQvey5LI+Z2UX4rJSQKWqi+2MaSNmot1RlMv69Y/jvu3szlofS+TlKg6cnQIAbGvRr51yz8YhhAMiTowWcPiCy4gLByhVtd6DuYMFtHZXihvu/g4eg2bUF27ebvTkGBZVe/UbwQmHYns9mo/tRUk7zhn6XqwlHgDej0dervcob5Ve0omko3qMvMfXUpavGVah7vZ/ePWMEQeXK1eMzSGmY+QBXWyvx8jPd8/2cNLjDZC1dwE1BTi919HL2xIjr28ShVNhoHAJSNiMCk8MAD2XOetTfvZloHs1kBysf2/JNeTvbiNK3qtiDLrwD6fCEIouxHa1Cpzfb/01I4eA3rWzFzlIQfLeTfq2t0tsp4UYXd0yIAaASNr+m2x4gMyrc6/O/dwLr5OvS66x/3M2fRA4+kTTzQvqbPd7tvvwTrxNzvZOFlJbEQ5I9Vh9D8eDNYdqO1LFmlHQ1/2dKibSvu0vtVls1zTNKHbpdMPEfMTIs9oKL+lhP/uiufUEI9cNMymve7bL7EbqmxlIkrXHSM7Z2mMsrzvb4/MntgPA72xbDUEAnn9n1HHbWEEQjN7b5YxM1gdexsjLuVldzFSE9bwo3gMCaV1sr7hz6laKFYRCChQlyLR7uXFuUGe7lTV7vWe7wnSEPGDaq6BiuxtxWSmiUiFzgv0YeSq2z7/uOF/4YjvnvHpqAlVVw4qeKFb0xGZ9biIcwF0bSFTkY2/Of5S8eUHcyTfm9Uil9ixQWI2RT7Rpo4dlUbVXr1idKDirfK3H0XXu+WAFrxdrgElQZbCqr74B5s25kmX0mpFul7Od0XQQO9y/eQmSkQDOTpQMtw6Ns0tGAh3vqpmTxACQHzUWKPPWs70dMfIA0LceSC133Lc91t++nu2hZAjIjwKJwTle0YSV24CzDsT2M/umu9oBUrW+9i7g3eaR4M3wKkae9o+LdIWB4rgzsb1/AxDuAs7YcPqPHJ69XzvF6Ns+/VrZbmd7IlUiBRBOiriW30jmlJUo+YtvAPEBILXU/s/Z9EESy/fukzMeivSQ+eHHyPvwTrxNrbyKFfZi5AFv3amUeu9lNsaCOtuLSg3VWnt6YqqqVh+XDl2rblhCCivPTbb3c0Cuqkbbgk5ft89HjDy9FrFyvlC8bENR1s8NSRQQlNgphqd4neZZL95ia040MpiiMfLO9vfGDWf7/ArGK3tjuHsDWes9vPek4/cxRNNMeYZ72TWyNWd7J8bIh9MJKEoQkupebA8GK1CUECSWC1MiXdOE5d71ZG194bW5dSZaVBGNKmRtzTDGXlZBn7Nukg+UPBSF/Rj5cDpcd7a7TILoZHyxnXP2HiP92ueKkKc88B6y0fX4gYvzHiVPb/ijQQmBDu6FRoWytvVs112qScZuRBMeVgKbYVlU7dGd7TQuyi7cONs97vllfi8W3ctGLJtHIrMRm85Qv3agLrZ73bM9x3mMPEAcEh+4ZhkA4H+/cgYAMKwLhkz3a6c0Otu9jpEvZ0gsWQNti5EXBGDtHc7F9jaIqtNi5AuXyJjbZcVNRDC2E4mmFIDhg8CKG2c+tv4eYOQgkL1o6a28Sj6gLv94twhUy/Zj0wFSLLDiRuvFB5pGnO2Dm+Z+7upbgUoBuPDGtG+329keT5aczQuAjMeV9wNv/4z8rrNx4Q3Sr92JqN+9mvSIf/vxGQ8ZznY/Rt6Hc+ox8u1xtrPmRKRiZzti5CPMxMjX74HbFSVPhXagPgc7je4YuZ+bLHq71mjEPNc6dSwo7ShGacRwtnf4WDTiZRsKYx8nKDGVPEcxG4y82BcuMNiWpBnU2T7q0Nk+np//nu2UT2xfDQD48f7zjvehDLF9quy9s13JW3O2d2CMfDhFBMSA5q7lG3G2V4y4cGZpKMRYc+caAMDZvWdRmUNHoUUVkYjMvLOdni/FvP5Z6CZGvlKEopD3YTlGnvZsB+DHyPuwC3W8zRUhT7njygEkwgGcnyrh12cm23loM2BFIGl3z3ZWXZnGxobHC3oqqrLm2gW8iJHnxNmu/+2yJe/mBj3/UgxG6HhdfJBj1NlOr6WTBa+d7XqsPmPXULvQKPkn3xrGWF7GxQwRlIa6ogt5WN7Q2LPdyxj5WpUIl7P1bE+2YYG79k5g9AiQOWf7pYaoOtouZ/slkiZgl5VbAU21FhVOOb8f0GrktY2svRMQROCYNXe71zHyqV79WhTrcfZGK28Czr5qvU95adKa2L7kGrL51NC3vV1iMp0b8VjBudgOkCj5qTOkl30rNI3EyDuJkDd+zvuJs70yfR4YPdv9GHkfzqmLy+3p2c5aBLJRAO7hmpS1woOgJBr95dsltlPxTBCASLAztxW7dQfkZLHSViNJ3cktQRQ7W1il66N2zQugPjdY28Mwt6FwK7bTa0aEkWtGI9TQUFPrLRLcwGoBRiNune1j+r7gfMfIA8C2y3px5VASpUoNP3jtjKP3oOKhnNGFUM+d7c3FdrWmoqbf43Sks72LiO1BsQDNRSqGUlAQClVQrc3//PCUhkKM3it6kVyaRE2u4ezes7O+lBZVhMNyU3MES9C9ikJWv0dyE5uuFKHIutjOsLM92h2FLNNYfd/Z7sMgkwUFb10kk9eq2B4JStixkcTLPHbAmrPIK3JlNhzd7YjENpNlpOigEbpw89pVwXL/ZVqx6lRsp72tWF+UdLXhnGHZ2W70bPdIbGc1DSMda2/PdtaKD+yycWkKVy/vQqWm4cf7zxkx8kMpxhdnABH4SpOIpsm54qmzncZVNenZbgjQ7XAbXHY7AAE4/qztl7bf2T5KYrzt0rseiHbbi04/8zKJhOvfMPOxWA+wbIvlvu3RbiKmeuVsT3Xrn9VOYuQBEo0vZ4BLb8/93JHD5KuVGHkpQCL7G/q203khZ2XUPNgIpdC5EYu4FNtX30o24maLks+eB4pjwNJrnf+cDQ8QN8yJX077tu9s91ks0Fjeotcx8owJzJR2tDYrVeoJfKzQ7r7tRbnznbvU2a5U1Wk9tL0mb7R+6/y1R8KIkW/PvABMexgMjEcjXvW0p9cM1q6flEhQNAoPvNjDMQpSGCvAaGRAX2dfculs70vO/3pdEATD3f7dvacdtRiJpEyF8NG0d85UTQOU1j3bKyZzRic728Nh2RCLnUBj5Ktq5/2OtmhwtguCgDV3EXf7yWdmb2NA/9ahYJl5ZzsV2/OTuvTqKka+ALnMR8/2ajWAmhrwne0+bPLyyXFoGrB+IGHE3Vjhgav1KPk3L7ruVWQHw9Hd4QJJO4RDM/We7WyJiO3qF2g4mDt8XjSjR69YHcvbr3ytmfvgMbpIo7QlRr5EizDYmxfG5pdHTn9WxeW0EafvbbQj/SxhbTyc8Fu6u/0Hr57FBd2dy4WzXXdZx+NEXPbU2U5v6mdxtofbsQES6wGWXecoSt7rnu2aqpki8wNEbE84EFVFkUTJ2+nbfnYfsOIG8tpmrLsbOP5LkkAwB161GaA92xMp/bPaqdi+bAsgBqyNx8hBUvCRXmntvdfcSnrdV+vXy0g6AkF30HnZl5zOjUgw52xeUKQgcMWu2cX2C6+Tr0uvcf5z+q8AetcBR6b/nGgPuRb6Pdt9eMeIkfd4Dcaam5tiOHe9FNsVIkqw5PJPelzc24hRjNHBgmosJCEUIPcb7YySp+IyC6ladH1UrqiOxDYrmJ3+rOFVMQI9P1gq0DEjCEK9faYHre94cbbTfXXXPdsXSDD+jWuWoTsWxPmpEp56e8T268NpU892L2PkKyWSltaiZzsVsAVRgNSBBRuBSABlOYJIRDaKuJ1AY+SrGuNtAZvMDRolf/LpOcR2/XoTChS5EdtLUxoghdw5uSsFyCUy91mPkQcEKJUIMSlwii+2c8yLx0iE/PZ19npP3rK+D+lYEGN5GftOjLfj0JrCikDitSu1EVZj5OsLE79nO8VNjPy0PniMzYVG2lGgQpMwWJwXXl9DWGnB0Qjt2e61s53VHvZOeODqpYiHJJwYK+DJw2TBPJRifHEGGG7aaDgPAChNeuhMNcT26c52taaiqhfAtMXZDpCY9BPPWosZN+G1s91ccR8OlgC16szZDhCx/dxrlsRxqCqJWV/RJEKesu4esvCyEE1vLGBdzg+jZ3tCF+2jDmPkQzFgydXWnP4jh4mr3aobcPUtQKVYF6dBNpxoVLqXqQc04SEcyLpztgPEdT56BBh9p/njF94AEoNAconznyEI5Occ2T1tHhox8r6z3YdzjIJnj527hljEmDiSiHgfI29E6jMknNGC5HbFhRcZ6MEsCAJ6aN92j9tWmSkYzvbOHQuKeV+h4HHrCQCo1lTIVSLisyis1ve03I1Nybh+dv6caIWXhgleerYP6uvssbzsqFhlzOjZvjBJdJGghN++iRT6fvvFU7ZfP61ne4N72RW0l3ULsZ26nYPxYEcmqQiCgEothkikbBRxO4GK7TXWxXaaemBq30LF9guvXjBauDWD7lMEpVLTJEKWmNYSMZxyLi5XFUCtolzUxXaGY+TpmMhy2I+R92GTvcfHAFiPkKcEJRE7N5FNr8cOXPD8uFphCEYdLiy2O0Y+x2iPcvp387pKmuWe7T0uxHYaBSkKQDjA9qXaEJe97NnOcHsBY+Hq0TUkx2gaRjpKzo+iUoNc9W6zJ8dowZITEuEA3n8NSaOhi/clXYwvzoC62B4kC29Pne00vquhUpq6eYE2i+2lSeDiAVsvo2J7aaIE1YPPVxoTLogCAlW9qNJJz3aA9F5X8sClw3M/d/RtsshccWPr5yy9ljjLLUTJexUjTxf8sVgJCMaIaO6UFVstOtsPW4uQpwxdDYSSM/u2t6nFgCRVERRK7sX2tXeSMT3Swt1+8Q3Sr93txtmGB4DSBHBmr/EtI0be79nuwznxkPex6YBJTGVIYAbaEyNfZjBtzHC2t2nPomAkH3T2/TYt7p1oo7PdiJHv8LEAyF4f3VvItSFKvmgyDLAYGe5djDzbznbAW8NEkeHWAmZ64yFIogBNA8Zt7vFVayomdddub7vWmhb46NbVkEQBr5ycwOEL9sS/iL7PYPRs98rZrpAC+1Yx8kYiWwdGyFMqWtwjZ7sCVWB8PyfSRZIKaBEFgK6VXehZ1wNN1XD6+dMtX2oUVgj8ONvLU2Vi9DCNhy3084OK7azHyANAuRzyY+R92GMkW8bx0QJEAdi6xn4c5vv1KPmfHxqGUm1PvFQjdUd3ZwtGXVHvhUMzeUYjodtRJV2t1fursSiq0ptouzfiQH0DIx4KdGT1ph3a0TPQaC/A4I2GcQ0pV6Fp7lt10Jg71sTlZCRg6CvtSD1g7RrqlN+6YXoM9SBHzvaQSITxaqmKqleb5vSmPtxcbBcDYvvi6ZbfQDYRbEbJ0zhsaN4Ih0Zv+mQIQmGUfNOpqLr0WkAMWnNzn30ZECRg+fWtnyOKwNq7gHfnFtuNxdpk2dW1VMnqsenhovMIecrKm4CpM0B2lmLVShkYexcY3GT9faUAsOrmmX3b29CXXMkpiMf193OaeEAJRoH19zSPktc04tR306+dsvQ6ILUMePtx41v0vKmWq0YkoY8Pj7Tb2c6SwAy0J22tyKBLlRb3tsvZXlKowNzZY0KL36faGiPPVqEvXSN5nUgI1EXVgCgYPb9ZIulRjDyrbTjM0P03T3q203QQhscDAERRQL/uSh/J2iv2pQU/ggB0xxZONB7qimDnpiEAwMM23e3TnO2RNBEBraSbzYXhbG8htlO3c7xz94RrgjdiezBYgSoy3hYwkiZfG6Pk75o7Sr5SqEAQVASE0owkQtagxSnE2Z507uSu6K0V8+QzlekYeb0NYKkQhOamh32Hw97dj48lqKt907IudDmImLhxTQ8GkmFkShX86t1Rrw+vKayIzGbhUG1DT3tWXZmhgGgsqPKKt72oAfYisgGgV+/ZPlFQbM8Vo9cZgxXhjVBxWamqhjPELVS4Z7EIgx5zTdU82Rg1Wi0wdo6IolCvmPdICKnUVJQrpECs0z9LvOI9y7uwcUl9IcKFsz0YAcIpBNVJQC/IcNuX24AuchoWb/Ue5qH2FThJQWDNe4EX/xr40e8C+x8GJk5Mi1hr/jLJWJh44WCmzvZwMkz6tQPOne3BKOm3bcXNfeZlYGgzEIrP/rz19wDDbwK52XsJ0jFRq6pRBe8E6myPhApAzGGEPIVG5J+ZZTxGjwBazZ7YDpAo+TMvA9X6Jk47nO1yTkY8XiD/iNtrRdWUDe8novrU2enfz5wDiuPu+rVTBAG48n3AkceN8ymUDEHU3Xt+33Yfnom3wckNsCkwA/Xig7aI7Qy5VOl9cLta39Hi+k6fH1TUcpI0ZxXD2c7I/o1RkNKGQgxzXDiLhoGER+0XWG3DYabLozQ+TdOM4gMW0h/mYiBF9vgu2RRVab/2nhhxxy8kn9hORM//c+ACxvPWfw8jAjojk6hwwBt3quFsnz1GvpOd7TUpiWjUm57tzIvtdG40tBkw+rY/01psVwoKwmH985oXZ3uGxsg7FJcVso4t5cl1g4cY+VIpDK0wtbAH00Z8sZ1T9ur92u1GyFMkUcAdV5CN1wPn5ifagboRO11kpkKZpnknKlNUVas7/BkUiugxe7XZQxc5sZCEIIOV0d3xuqhqd6OjVGEjms8K8VAAdD3hVZQhTZZgLTodACJBEUGJDIgX48HyNSMd9bZvu/naw8qGl1sEQcCHb1wBgLScSDN88z2NeD+E4uj0imAvKGdIrLU0fZyoAN22CHnK/V8FbvgkMHkaePyPgb++Fvhvm4Gf/gFw4B9aOqK9FFXNznbkLwGBaMvYPkusuMmis30fiZ2fi7V3ARCAY0/N+rRgLAgxSO4N3MwPuikSlvLune3JQaB7DXHxt2LkMAABGNhg773X3ApUS8D5/ca3on3e92wnznb9/dzGyAPA+h2AFCJCuBnaf37JNe5/BgBseB+QPQ9c+DUAcm30+7b7LAYMZ7vHYjura5F2ONtZjJGnexbt7tne6eIZXY9PtjHhhDmxnQrKbXS2szIWjXhVrFOPkWdvD4vildiu1FRUdeMJD0aSgSRZm47k7K09qNjet0D92s1ctzKNq5d3Qamq+P7LZyy/LpxqcLaTf7g/IFkX2+dwtrd9ne4CNZhEOKxAzhQcvwcV2zXJRUuzTqDF3Fh9x2oAwKWDl1C41HycKoUKIhG9YIEXsX2qDC2Scu5s14tR5DK5JrMcIx9KhCCIAmQ5BK04tdCH0zbY/eT3aYmmadh7nIjtN6917kihFXvtjNwyQ2/2O92NGAlKRp8rr9yYlGKlZhjckh0ep98M6qzwalHPcr92AAgHJCOKzG6UvOFsZ2hTpxWiKBhRhl7FhRvOdgZvNARBqPex98BtQvvXs3jN6IrRaEdv+9eTgobFc4vzm9ctx41revAvb1rFpIukKYkBID9aj5qa9Egsk7NNF26Gsz3Z5kV8ailw938E/vXTwL87BXz4B6Tf9MUDwE/+DfC1DcDfXA88/lkgc954mSG2j3rtbL8EJPrd9cxeuRXIniNO5VbkRoDJU0SYn4t4L7Dsujn7tguCUK+OdjE/5AxZ0AeRBWIeOLlXbgXOvNT68ZFDQM+alhtKLRl6D2l/YIqSb5+zncbIeyC2R1LAZbfPjJK/+AaQGAJSS9z/DABYeTMQ7Zn2c/y+7T6LASp2FjwuAi8qbK5Fkh71XDZDXaoRFp3tberZbrQZ6HDxjDrbJ9vobK/HyHf2WFDmy9nOIkmPxqYeI8/eXgWF7rO43b8pmlpMxhi6hraC7pOP2HQwj+kO8oXs104RBMFwt//9vtOWW8eG07rYnim3dC87Yo6e7UYf7w6OkddCJDWvmpl0/B6G2B5g3dneTb42pB7E++MYfM8gAODks83d7cTZrp9bYcZj5PV9Cq2mQZUSzp3teoy8opD5z3KMPN2/KZcj0Ep+jLzPAqNpGo5dyqNmIYr67EQJ56dKCEoCbljd7fhn0krGdlYBm6E3tCy4M7s8Fg4pdAwCooAIg1WwxmaPR1XSLEeFU4y+7Xl7C/wiR1FbADwVl6s11RgfVudGyqgUd3+u5GkqCAPXzkYMZ7tHRV15o2iLzXnhlEQ4gH/8N9vwhQc2LvSheEe8DyhcQrSbLDY9dbY3WbiZY+TnjUgXcMV9wH1fAT71IvC548CHHiYO5tcfAQ5833hqvJ9Er3vvbB9135ebCuizRafTmHkrYjsArLub9Lafow+gMT9ctBmgzvaAlnHvbAfI7zh8qO7SaGTkEDB4lf33FSXSt/3k88a32iG2U2d7LZAEAh6dDxseAE7vJUkKlAtveBMhT5ECwJW7iNiuV67Svu1+jDzwla98BTfccAOSySQGBgbwgQ98AEePHjUen5iYwL/9t/8WV1xxBaLRKFauXIk//MM/RCYzfaPszJkzuP/++xGLxTAwMIDPfe5zqFbb45z1sUbd2e5dz3ZV1Yy2PKyJZu2IkWfR5d/unu0FRnpSG2J7Gw0kecbc3Am9QLstPdsVNlsiUrxKxmCxQKcRw9nu8hpCCzDCAREBDorhB3Vn+6hNZ3tdbF94ZzsA7Nq8BAPJMOSqimOXWqxZGqCJc3JGrhevl52LywZyFoDQstWY4Wzv4Bh5Oh5qzo3YXkYwWIU2V8u1TofutTQpxJirbztPzvZANGCk8FURB+ScszdSTGK7AEiMFPa1ItIdQbkcgiDPT4r2QsD+J90i4a+efhd3f+05PPA3L2D/6YlZn/ui3q/92hXdrhaE3YbjcH6c7XmGepUbQpnHPdDycl00Y9GdmPA4xrAeFd75c6IVPXHaJ85e5StPPduBemW0F+KyedOI1bnhpdOfjgcL185GaOS5V4VLOcPlz95Y+DQQHwAKo/X4LS97tjdZuBkC9EK6DeJ9wFW/Cbzv60SMnTxlPORlXPhMZ/uguzdMDAA9l80enX72FaBrBdC1zNp7rruHFEacf23Wp9HkAzfFGLRnu1Sd8kZsX7mV9GRvduyaRoT4wc3O3nv1LcC5V4EKOWbDue1hTLqck5FIFKGGPRgLyhW7SHrC0d3k35pGYuSXXuvdzwCAKx8Axo8Bo0RE9mPk6zz33HN46KGHsG/fPuzZsweVSgU7duxAoUBiHC9cuIALFy7gq1/9Kg4dOoSHH34YTzzxBD75yU8a71Gr1XD//fdDURTs3bsX3/3ud/Hwww/jC1/4wkL9Wj5oT892Ki4DbAnMQHti5EtG/2V2ts9Sbe7ZXqTR6R0+P+havJ1ie4GhfSygPekPFFr0w9p1g+JVxH6JwdYTjXhlMDJMJIycH3Mx6NDZTpMueztEMA4FRHz74zdg3+fvwsal1hzE4a5mMfIeCGZyHggnWyatseBsF3Q3dy0/u14zG2qR3JMLbtq7dQJSAAglm7YYmEtsVwoKN2K7OYWvWou4jpGvVIIIRoNMakVmIukIZDkMoeqw+IAB2FktLGIKchXffoFciN66mMWD33wJf/KPB3CpRSUdjZB32q+dQvtbeRXvOxd5RmLkAe/6FzWSZVg0A+qLE682N3JGVHjn3lTNRU+c3JDajZHnzdnuZRoE3TSKhyRmq6NTHkY70vONRZd/3dnuzbXUXLDkwzjx/mkx8t4526dIrHUD1NkeTnaG2wDdq0lfdx3qYC6MOu8DR5nRsz3hQVT4iq2zO9vP7LPuagdIjHy0Z86+7d7FyGsQlSkg1uP4fQz6riAbUM362OeGgdKEM2c7oPdtLxtCfruc7bFYEYh6EKlPifcBq7bXI94zZ8k4eNWvnXLZ7SSCUv85htjux8jjiSeewMc//nFcddVVuPrqq/Hwww/jzJkz2L9/PwBg06ZN+PGPf4wHHngAa9euxZ133om/+Iu/wGOPPWY415988km89dZbeOSRR3DNNddg586d+PKXv4xvfOMbUJT5Kc72mYnXyWJAfR0iCGAubc3r4m/A3H+ZnfvLtvdsZ8TtTwt7Jwrt29NiTWynBTrtcLYXjP71bIrMXl0/SrqbO8qws91IJnS5X8FTe0SgHiPfaj++FeO6s72vA2LkKZuWdSFq4+9CxXYlr0CV4oAgeRcjP4vATJ3tnSy2iwk9VdhFH2qtTHvXM+5sB0ibgSZzY9WtqyBIAiZPTGLq1MzHpznbGY+RB+p7FUot6kmMfDDWueeAVUiMfBiiKgNVPtePbNwNLnIe/fU5ZMtVrO6N4aY1vfjBa2fx41+fw5OHh/GZey7Hx7atMnrTapqGl3Rn+80uxfb0PERumam7Mzv/4tHlYQS0GVpdzGoEstexfVnGxwOo30xP2IyRZ73fWSOe9igvsT8vvErHMEfqsygwGz3bS958zrDs8vdpINEPFMcQSZM54mnP9iZ9qBckRn42ulcD5+rOaCqqlsbcjwN1toeSIaDgQYw8AKy8CXjzH0g8Wjg5/bFKifSkv/q3rL+fKAFr7wTe3QPc+u9aPs1tjHxNqaFariISkSFoNW+c7aJICgua9W0fOUy+OhXbBzeRKv+TvwJW3+K52K5pmt6zvQgk1njyngYb3g/84v8hGy8XXiff8zJGHgCCEWD9DuDtnwHv/Zzh/Pdj5GdC4+F7eloXmGQyGaRSKQQC5DP1pZdewubNmzE4WE/DuPfee/GpT30Khw8fxrXXzkwqkGUZslx3f2WzZKOpUqmgUpmfgu5m0J+9kMfgFWGJtE0oVmqQZQWi6N7xki2Sa2o0KDHXJiCiL51y5aqjv2+zuUHFopCkMTNn9FAxZEpKW445rwtw4UBnn0epMNknmyzIbTtOahCIBATLP2Mhr0ExvYAm24a5kdXXdJGA2NHzohXRALl+5kruPqPq1wxnf+NO+IyKh8hYTBXdzZNskdwDxIISk3OikR794jqSKdv6fWjsfHc0wNw40OOVYvW9yfxEAclIF9TCBFSXv49YykAMxVFt8T5Gy69OHrt4F5AFtNKU42NU9R7WWijWub9nA62uVYFwF9TizLkhRkUsvWEpzu87j2N7juHqj1897XGloCCyRIYqRVDTBICRcWhFWC/OKZWDSMs5VBUZEOwVsYqlHEQxBE0TO/scsEgoFUL5HBmXSn6cFOXPQSd8Jtr5+f5udIejqhq+s/cUAODjN6/Gx7evwW/duAL/8WeH8ea5DL78+Fv4x1fP4s/ffxW2re3Fu5fyGMsriARFXLvSeb92wBwjPz+TmSWRhLpSPe/ZTt39DIxBMxJe92wv0Z7tbI4HUI+us+1sZ6z321wYznYPridZI/GA3bGpV4q77IFm6s/JwrWzEe+d7ewkpPjMQXwAUKtIdpM57l2MfAboWTvj21SADiY6pIinexWQPQfUKoAUbEvP9jAV2xMeiO0rtgKaSgoE1t4x/bHzvwbUij1nOwCsvwc49KPpfb4bcJt8QDdvYjG9iMELsR0gxQe/+jqg1kjhAGXkIInVS69y9r6iRMbxPHEjey221+QatJqGRKIIIeXBvDBz5f3Azz8HvPskcOltILkESA55+zMAYMP7gB/9LjB52ujZ7sfIT0dVVXzmM5/B9u3bsWnTpqbPGRsbw5e//GX83u/9nvG94eHhaUI7AOPfw8PDTd/nK1/5Cr74xS/O+P6TTz6JWCzm9FfwjD179iz0IbiG3AoGoGnA//mnn8MLQ+mFAnlPUati9+7d7t9wHpmQASCAbEl2dezmuTE+JQEQ8MZrryD3jutDnBcuFgEggPFssS1/w5NnRQAiTrzzNnZn3vL8/b1ivAwAAYznym2byxdGyfx4683XIZzVbL12Ia5B588JACS8fewkdu8+7ul7v6G/9/jIBezefc7T954Pjk6R478wNulqvpy9QM6Pd98+hN1jBx2/z0J+Rp3NA0AAl6byrsbi4AQZU7mYY+7zpBlZBQACGMvLeOyfdkOyWN924jy5Tpw8chC7L73ZxiNsH8889wyEkABN0fDE/3kCu9QgLr71a7yVcfd3vfrM2+gq1fB8i/lx7i1yLTl94XTHzqHJ06O4sRsoTJx3fIy5i2eBdcCJ88M43qG/Zysar1U3F2son3gbv27ye1RXVIF9wN7v7cX5gfPTHivnygiHZchaGE8yNgbNyOlR6UePXsTSmIYnH/8JqlLU1nusH96PtSrZo5Jr7u5tO4HR/CiSZSK2P/fkYyiErbc0XOh1W7Fobc/F343ucJ5/dxQnRgtIhgP4Z9evAABcu7IbP/2D7fjBa2fxX544gqMjOXz4f+3DA1cvxXLd4XPD6h6EAu4i37r1eIq8XIVSVV2/31zQ+F8WRJKuNvVsp1XRLDpUAbOzvTbHM62R48DZ7lRs587Z7uE5Y7QXYHheGD3sXY4HfX04ILb9Gt0O2tWznYWEFJ850N3nyS4iknkXI9+8Z3tHxshrKonb7rnMU1GVFhbEEhUS3dXE6W+bvstJdPrZl2eK7Wf3kWhAu27utXcBAIQTzwJINn2K2xh5KranevRrkFdi+4qtgJIjTvYl76l/f+QwMLiRuN+dMrQZeP17AOpiu5JXUJWrCLgsuqKFGPF4EVLa+sLXEl3LgGXXE9e5nPc+Qp6yfgcghYAjjyPauxWAL7Y38tBDD+HQoUN44YUXmj6ezWZx//33Y+PGjfjzP/9zVz/r85//PD772c9Oe+8VK1Zgx44dSKUWLh6yUqlgz549uOeeexAMsn3PoGka/t2re6BpwC2334V+Dz7HXj87Bbz5CtKJGHbtutX9Qc4jU8UKvvjrZ1FRBdxz731GAqBVms2N/3ToOaAs487bbsFVFnvbLjQXM2X85wPPQ1ZF7Ny5w/Menz+49BowOYEbr7sGu65e4ul7e0leruJLrz+DiibgjrvvtRWZbJWvv/MCUCji9u1bccNqa4aXhbwGje87g386ewTd/Uuwa9fVc7/ABoeffAc4ewpXrluDXTuv8PS954OlZ6fw399+BWIoil27bnP8Pn9/4RUgM4Wbrr8O911l/36qEz6jzk4W8dWDL0CBhF277nX8PpUDF4GjB7FsoBe7dl3v4REuDDVVw5+//hRqKnDjrXdiMBWx9Lr/8vbzAMrY8d5tuHZFuq3H6DXm+Xis9xjyF/PYds02xF5fgrWDPVi9a5er95d+8ihQVLGrxfs8/pPHMYYxbLh6A27edbOrn9UujipHIf86hK6ogDscjsdTD5Ni6vWbrsE6l2M6X7S6Vkk//AegpmCoye9xKnYK3//h96EcVbBz507j/kRTNbyhvIFIREYo1d9yPrDEo3/3KI4cOILBgfVAHtjx3q1Aapmt9xB/eQDqOGmzkO5PMz8uTz//NE4fPAIAuP2ma6AtnZmM1kgnfCYC9YS2uWBT0VtEfOfFUwCAD12/YpprURQFfPjGldi5aQj/9cl38L2XT+OxAxeMx29e677PYjIShCAAmkYifgeS1m4inFCpqShXVP3ndv60THnYf9pMXVzu/DFoBi0S8MzZzoGDuZfGyBfkOZ45HV6d7V60XqDvQc9DFvGqB1rdyc3mWFCx3TNnO+PXUB8Tuts6kdDFdi+d7U16tht9zDslRp46nydPTRPbvejZTsX2eLwAZOCNs92ITm/St/3sK8Dy66c7vK2Q6AeWXgvx+FNA+DebPsVwtjucH+UMeV2q12Oxfdl1gBgkxQeNYvvKbe7ee2gzkB8G8pcQ7uqHIAnQahpK4yUklzYvSrAKmRsaYrEShKTHznYA2PAA8Mv/DARCwNaHvH9/gLQxWHsn8PZjiPXeCcDv2W7m05/+NB5//HE8//zzWL58+YzHc7kc7rvvPiSTSfzkJz+ZtqExNDSEV155ZdrzR0ZGjMeaEQ6HEQ7PFH+DwWBHiNydchxuiYcCyMtVyKrgye+j1ATjfVkbn3Si/lmjqAJiDu+RzXOD9idPxsLMjEdvkvwNq6qGGiTPe0eX6N5NNNTRY5IOBBCUBFRqGnIVDak29Pwt6C29uuL258dCXIO6YuSaXKionv/scpU4+5MRNq+t3QlyX5mXa66O36vzYyE/o3qTZO1RrqhQBRHhgLNriH56IM7onGgkCKA/EcZwtoyJUg3Le+f+nTRNM8w3Q11xZschGAwi0hVB/mIetWINYrQbUHIQ3f4+lSIQTrV8n2qR7PFEUpGOHbtYTwzlchiSmnd8jEKVrFeCqe6O/T1bMeNaFesBxo42/ZuuuXUNApEACsMFZI5n0L+BFP5T80MkIkOIpZkbg2bQlDW5RD53g9UiYPf3qpVQFcj7BGPsX0fJuUL23AI1e+Ox0Os2qz+bPRvcIuLYpTyee2cUgkAi5JuRjoXw5Q9sws8+fQu2rKpX0d663r3YLomCp9HPs2EWZ1kQF7vaJLZT4YzFOGgASOi5hV71bKcOZlaFRADojZMP1fFF37Pdu9YLRhEGw4KqV9cQ1mPTu6Le9mxn/RrqY0Lv3RSLEnHZE2e7ppGe7U2c7ZU8ORc7RmzvWg4IEjB5GoC3ceGGezmSJ9/womc7QKLTz71GotMpqkoE5xVbnb3nurshnPwlcfk3wejZ7jJGPtVNxfbW/attEYySfuTmvu1VGRh7x3m/dsqQLt4PH4QgCPW+5B7NjWi0DElSvUk8aGTDA0C1RIpevO7XbubK9wFn9iGeIGPi92wnG72f/vSn8ZOf/ATPPPMM1qxZM+M52WwWO3bsQCgUws9+9jNEItMLrbdt24aDBw/i0qV6a4c9e/YglUph48aNbf8dfFoT19dgXhU8F/V1SDtcwO0mKIkI62lPXq1Jy7rYztK6LBaSIIlEcPc6jQ8wFYaHOvueWxAEoz3ipM2kOasUGFt/UINEvg3zgrY4izEyFo3QdLS8XIWm2WsJYKakK8xeF7nMJ8lwADQQw82eBf08iTN0/ZyLAb0P86WsNUNNUakZ5rLeTllrOoSmipWnykA0DZSm3L+pnCPFsi2oFPR1erxzxy6cCqNUCkPS8o7fQ6iR9YoUd1c83RHMMjcCkQBWbCfJzSefPml8X9E/o8O62M4D9Hwp5vTrn2zNGT0NpYAayPsEGTacUSLpCMp6jDzKmYU9mDbhi+0dzHf1Xu13bxjEyt7Ze9ptWtaFH/3+NnzzX16Hv/qta7Bp2cyNZCcYC5M2i+3U0R0Jiraj3hYCr1ypjRgRyIwKZ/UYea96tusOZkbHA3DRs11hYwPDKl7GyNPzjmlnu0fjUS9IYXOeeO1sZz0dxMdEOAVIYURCpM+V05jwaVSKgFoFwq1j5EPJDlnES0EiuE+eAgDE+sl9YKVQQcXlvQcVmOnYIuGRqGqOTqeMvwuUJokQ74R190AoTaK72LynqLHh49DZLmfIWCS6FFKEIXn4ubLiJuDMy/V/jx4l82+weY9sy3SvAYJxYJj0APW6xUA8rr9PO8T23rXAgF5s0K4YeQC4YhcgCEiXSEy6HyNPouMfeeQRfP/730cymcTw8DCGh4dRKpGxoUJ7oVDAt771LWSzWeM5tRq5J92xYwc2btyIj370ozhw4AB+8Ytf4E//9E/x0EMPNXWv+8wfdL3gldheYlBcNkPvA71Yk1ZqKio1IrqxJJwJgmCIv7l2iO0VvTA83PljQtfjk0XvxXZV1errdkYE5qTHezZmWBdW6T5cTdUMcdQJ9WsoG3OiGaIoGHPFTToh6wUYzaCpryM5a+sParyJBEVmP1cp4S5yv1fOlEkLsfKU+zeV80A40fJhKsIG25BM4hXhVBjlchhBwXkKnVgj9+RS0hs9Z0GZY26suYsU/ZrFdlpUEY1VIITZaNkzF3SvopDRz/uyA7G9UkQNujM+1rnngFUi6QhkmYrtDsaDATpf1VykZIoV/Gj/OQDAJ7avtvQaQRCwc/MS/MY19vo/zAYVQtqxMDHDWp/ddsXIGxHIjN6I0gW9Vxs9OZn93ty0cnWyoNiqjqZjyMIGhhW8PGeyHAiqtIDEbax+/drJ5ljQgq5cuYpqzfmGBoVuJrJasORjQhCAxAAiErkB98TZTm/mmzjbOy5GHgC6VwFTxNkeToUh6k49t8IhjZGPBLKAFCaFDV5gjk6nnNkHCCKw/AZn77n8emiRNAazbzZ92IiRd+lsTyTK3kXIU1ZuBbLngAy5n8fIIfJ10KUDWBSBoU1tEdvlnGwS29sQIw8AV/8LoO8KIOlxT3gz8V5g1XbExp4BQGLkNdW5Q40HvvnNbyKTyeD222/HkiVLjP9+8IMfAAB+/etf4+WXX8bBgwexbt26ac85e/YsAECSJDz++OOQJAnbtm3DRz7yEXzsYx/Dl770pYX81XxQF/loMpZbqHjIqigQ93BNSkUzgD2nP23FlvGgjVcj1NnOwhyhe1oTbXC2m885VtZj9fOjNscz7VNQ2BaZY0HJcHO7KUag19BoiO0t966Y+z0c1gswmkGd7SMWne1jekvJvkTY6E/NKm1xtis5INRabDec7Z20Tm+AiO0RBKWS41QMUS2hVhMRTMxutmSCaJq4lluMxZo7idh+6penoOr7gLSoIhpVmu7XsEikS29NMuXS2a6S9wkw3GKXEu2OQtNEKNWws/FgALY/+TnmB6+dQalSw5VDSWy7zOPNPxtQIWSqzWI7a1HIRv/psrcLV9b7L3stttd7c7MxL5pBK+mrqmZLWGV9k6sRIw3CC2d7mf0iDO+c7WxdOxsxp1Z4cT31Y+Q5I96HEKYAeNSzncZUNVm8UWd7ONlB7szu1YazXRAEz/q2G4UFwhTp1+7Vpo8RnW7q2372ZRKbPks04KyIErTLbsdA9mDTh2mMvNPkA9qzPRYveS+20+h8Oh4jh8nf1OlYmBnaPA/OdvctqZqy7d8Cn3qxPe9tZsMDkM6/iHC4DE3VjMKKxYqmaU3/+/jHPw4AuP3221s+Z/Xq1cb7rFq1Crt370axWMTo6Ci++tWvIhDwP3MXmnqMvDfiWZFxwazu6PZAbNfHQhIFhBhI4DOT1I0M7XC2FwwBrfPnCF2Pe5WkZYaec5IoGO0LOh1alNyWxAN9LcaKy78RURSQCLl3/tMinSgD58dseJHoWW+PyPZYmBnUne2jFp3tY/raqzfRQetMh1Bnu5yRyZp6Hp3tnRwjH+ki0djRSNkoDrCLqJWgKEEu3MuIdAE1Bag0X6Mv3bKUFChMlTH8+jCAelFFJCLzI7ZTZ/ukRgwIDsX2qkrmPg9zg46JIof9GHmf+aNaU/HdvcTJ9Intqxe08q3ubG9vjHxeZisKuV4l7nGMPONCEV1U5fye7QbhgGQkFdCKVisUOVuUGAUqHjgr6kUY7M4Lr1pR1MVlNsciIInGdd+Loi7WCrd85iA+gIA6BYCIoq6dqXRxE5np5DZi5DupYj69yhDbAe9EVepsD6pT3keFr7hputh+Zp/zfu066po7kC6eJP38GnAdI08j9SNF78X2RD/Qs9Ykth9yHyFPGdpMIvqVIqK9pODAi77k1NleUwPt2+QQRW/j+ltx5f0Q1Ao2bDoDwO/b7sM3nsfIG+sQNot+Ex7GZJt7L7PmSKR7Fl4bBMwR2yzMkbRuIGmHs53OsXiInflhjpF305e8GQUjUr/z50Ur6j3tnZ03NVWDUiXnB0utJ5rR5YFBgKZgsDwnGhm06WynLSX7Olgstso0Z3skTZLjVJcJhUoeCM3ds72TY+QD0QBkJYxIRHZc4CuhzJHYniZfWxRjiAERq967CgBw8hkSJW/0bA/LTfdrWKR+vsik4N5hjHylRq4dPDjbjTEph/wYeZ/546m3R3B+qoTuWNDTSHgnpKPt629lhrUo5Lpw6HXPdrYjkL10tmuaZmwMsOxgBoCehP0FPn892+lmTwWqS8GMD2d7vTDFzXiw3rMd8LaoK89YSxKfOUj0Q1LGyf9rcO9Mnc3ZnutAsb17Nel3rh837dvuVmynzvZAbQJIeBzlbY5OL4wBE8eJAO+G/g0QoJH3aoDGyFeKFdQU+45O2rM9Eix4L7YDZDzO7iMResMei+2aClx6uy3OdrmW9C7xYKHoWg4s24KNV5F54/dt9+GZeoy8t8521mLTKV6uSVkeC1qw7rWD2Rytz4KDuaeNaY0FBs0SdK9J1ab/Lb3AaIXH8B6GkYwhOztvzGPKQjHKbHR50AqQR2c7jZG/ZLlnO3W2d9A60yE0Fruc0WPkySLd+RvWKkC1zLyzXRAEVLW4Y7FdrakISgoqlWBHFxVYJpomX2dpM9DYt50UVWgIB0vcOdvLU2Ug3OXY2V6p6s52hg1nFDompWIImhfJGB2IL7Z3IN9+8RQA4LdvWonIAldCdtMePW13trO1SKGOWrmqouzhAiXPeCS0l/2/SpUaaroIyep4UGh03Xje+gKfu57t+maPpgF5l/0kaZELy+0FzOPhJgmC9WsGUC/qypTcb4BlORgPHxPxfgjFMaOC12lUuAEV25v0KDec7ckOWsR3kwUoJknakSGqjjoXVWuVGmo08lQZJ+5rL6HC+pl99d7tK92J7VrvOgCAMH5sxmPhVD2O0UnfdroZEg7kgViPwyOchRU3kfj4iRNAcYxE6nvBwEYSRTf8pjEvSmPuxWTibC9B0fjY4MCV78PqFccQCFRQmvDFdh9+qcfI+z3bAXNMthc928l7sOhQrSdpeetsp1HhggAmotO79bX4RFti5NmLTY8GJYi0L7nHqQdGf26G9zDo39Lp2NAxYOX8mA16DXGzH8z650kzBvQYecs92/V1Jg8x8lQok6fkOd3LlqDJZbO02WLB2Q4AVSGBSEQ22pTZem2pimCwAkUJLQpnO1Dv2376V6dRU2pQCgoCgSpEUSXCNAdMT4JIOXNyKwVUKhzFyHfXne1qYWphD6ZNsP3JzyGHL2TwyskJBEQBH926eqEPB+n4PDvbGRFIEqGAsUDx0t1uRCAz6so0XASKO7cuUN8UkESB+Rvz3ji5qbbqbNc0jTtneyQoGYtNt8U79T7lbJ4nwPTxcHMNYb1nO1B3tnvRR5G2JGGlcMtnDuIDQGF0+iLFDeUMIEhAKD7joY6Mke8m0WqYahDbXTiYqYMfAITSGBljL0kMAD2XEaH9zD4guRToWuHuPSMplANdTcV2URKN3oFOijGosz2EbJuc7duIA33/d8i/hzxytgejQN/lwPBBb53teQXxeAEVMe36vTqCDe9HMFDB2rWn/Rh5H64xYuRdFrRSSoz3bPe0AFxhJy69kWSbenOb16ksRKd3G2uNNsbIM7T2EATB5N72Vmyn5xzLexj0vHHahoLl1hONdMXcx8jzkHbQCHW2j+VlVGtzR6gbMfIciO103VV3tmNW9/KcKHnyNdTc2a7WVFT1Pa9OdrYDQE1MIBSqQJ7K235tpVhBKKRAUQIIMLy3Z0Dnxiw9uQc2DSA+EEe1VMW5fedQKVZIv3aAS2e7Fk42bYs3J5UiFIVci3mIkQ9EApBCEsrlMLSC37PdZx74ju5q37l5CYb0eJaFpHu+erZTwYiRRYooCobQ5+bGsxHWig4aoYs2TQOKLh3/OSMqnI1F/Gz0Gs52a5WvSk1FVS9W4MXZDtQTIdyeM1nT3GAZL8Yjx3jPdqAeT+dWbK/UVKN/JMvFBz4m4v1ApYhkH7ldddqX20DOkorihs+UmlIzIsg7SmyP9ZKNB71vuxcx8jRCXgqLEAqjRBz3mhVb6872lTd5EkeejwxBaBIjDwDRbtKz3EkxRjlThiCoCCDfHrG9bz0Q7QFef4T8LdOrvXvvoc3ei+05BfF4CVWp2/V7dQR965ApL8WVVx7zY+R9uCbmYWw6UF/HsejmBsw9qd2v06lLdaETB53g1dqrkXosNBtjYjjb29CznY4Fa4W+dC/LS2d7TdWMCHVW5kYzEmGXYjsHY0Ch+y1uYuSN4hyO9rV642FIogBNqwvps0H3Afs6aZ3pECNGfqpcF0RdOdt1YbqFs71i2iPqdGe7GiTpedWpCduvVQoKQqEKqrUw8/vfAOpzY5ZCDEEQDHf7yWdOolLgV2xXKyq0YNJxjDwV23mIkRcEAZF0BLIchuamUKeD8cX2DmIsL+Nnb1wAAPzu9tULezA63W3sb2XGcHQz5FT1on+RGVXVmIvTbyQSFA3Hv9vNnqzRi5qdOdEK2rPdyo04ABRNLowYgxs7raDnjJsoQ/N5kmL8RoMuXt2MB08926dcXkvN1xyW3CU+s6BHnHcPkrnhibO9Wb92U4uPjhLbBQFIr6qL7R4625O9AGoyKWjwmpU3ASOHgAuvE+HdA/LhJU2d7YCpYtxBMYaclRGN6q+L9Tk+vpYIAomSL02S6HfRw6XX0GZg5DCiPWTOeuHcpj3b1VAbCg8WiJHqjbjiiuMojbvoJ+nj0+EkdBGj6IGTGwBKjImpjdTFMm9amwFsjkXKwzh9M6zFQtM9rck2iO10jrEmJLoVlJth7lXO8lrMcP07jpEn48BigU4jXuzfFBlPSmmGJAro113qI9m51x9jtGd7nH1nuxEjnzHHyLtwp87hbKcR8hDQ+Y5vPfq8lhm3/dJKsYJgsIKqxv4cAQAEwkAgOmchxuo7VwMgfduVgmIS22e2/WORYDwIQSIiSU2I2Y+RV1XibJfJ3OchRh4g15FyOewsVp8BfLG9g/jevjNQaiquWZHGtSs7w1FCb67a7Wxn0dHtxY2nGXPsH6vCmSAI9R5XrsV2KqiyORZmem1W09O5EA6ICEj8XKa9qIzOyVVoeocCVs8TihduE6NAh+GxMHq2uyzqop8j0aCEIEfnzaJGjzjv6iFzw5Oe7bP0a5fCEqRO2xjrXu1pz3bqbE/36edbu5ztmgrUFGDFjZ68ZT68hPQ912a2qKF9v5zGyMdi+uva4WwH6j3rverXThnaDFQKSIRHAXjjbJdzMhKJItQIP2L7VORWRKMyYrn9C30oPj5tg4oYXglnVByJMiKmNuLVehQwR+qzNxb1nu3tiZFnRTzroWK737PdgBYHeCm2F/X3EhnvVU7X1U7NI2WGrxmNpDwwGNF0ENYKUuaCRslfstC3fdzo2d5BRd0OMWLkzc52N+5Uo2d7c7Fd0fdQQ/FQ5zu+9fGo5ew720mMfAU1deETjj0jmp5zblx212UAgHP7zqFwqcCds10QBCMNoqrFANlmYUqV7FPIZfK5xEOMPED2b8rlMMSKL7b7tBGlquKRl8lm6ic6xNUO1CO3pooKtCYbnF7BYp9dKgJ75WynQlFQEphenCQ9ijGkmwKs9q83Q2+qrYrt9agtds4HK3ghLtN5EQmKCAfYXrB5kY5BrxssR+p75WxnsWjLZw5013UqTRZd7p3t2aYLNypAd5SrndK9ui3O9nSvvpD1umc7QHqJR9JAMEYEYQ/IR4YgVApA9sKMx9zEyMtZGfG4Pp5tE9u3ka9ei+2DZGxjFRKvXylUUHF5Ha0V8giHFSDeBpf/AlHr3oipqRR61X0LfSg+Pm2DrqG96tleYExMbYTeC+Y9iE+nbl0WXarJdjnbZbbEs7QePVyq1FB22equERrDztI+FgAk2hAjT68b8RDbbQCTLot1igrbbTjMeCG2F+T6vOCJgSQR0EZys68/aqqGiSI/YruRKJYpQxNE4uZ2EyM/h7OdFsV3eoQ8ACBG9hm0wqTtlxpiOzgS2yPpOedGek0aXau6oFZVHH/iOMJhfY+iiUGCVeg5U1Gj9nu2KwUAgFwknyc8OdtlOQyxVmhqpmAddhU9zvingxcwmpMxmApj1+YlC304BrRne6WmGTeN7aAeI8/ODViXxz3QzBHyLC9ODCeBy4VbjiNne48eFzVmsWc7LVTgoRraTD0NwoXYzlF7AS/cJvUNHnbHw6ue7cbnCGObXT6zEOsBBBHxJBFDXfdsnyNGPpzswNi27lXA1GlAVRHvjwPwpmd7Mq2PZaINMfKiCKy5FVh1MyB5c23Kh4fI/4y/O+OxcFp3WDiYH+VM2eRs73F8fLOy9Drgut8Brtjl7fsm+oHkEgSzRyDqRZpu+5ILsu7EaEfiwQIR7Yvh7bfXYUns11wu5n18gPr6q+DHyAMwFR94MB6sRaabaV/Pdpp8wMY9dzIcQEDvdTfpcXvEPKPOdreCcjOMPQxGijBaUS/WcdezndVkEDNu9zxrqsZ0K47ZoM72kTmc7ZNFBZpGOkvRlA2WoS5dtaKiWq4C0S6PnO0terbrMfKheOePnRgnCcVa0X6sviG2CxyJ7Rac7YIgYM1dpG/72JExRCIyNIhAKN7+45snqNiuVKP2Y9N1sb1c0sV2xlupUmiMvICa8TvyhC+2dwCapuE7L54CAHx066qOir+NBiWE9A08rxcmZnIMVgRToSzjURwZHQPWRUTvYuT5EVXtxsgXFT6rf70Ql3lwclNoIUnWRWFK/brB7nik9UWnW2e7kZDC8Fj4NCBKQKwX8Ri5AXcdIy83d7ZTsb1jne01BcgPT3O2O00bMnq2p0qAFKr32vOa3/jvwIPf8uztiuF+aGIAGJsptlNnu935oWka5KyMWEx3ZrRrLAIh4P1/DXQt8/69hzZDGD7oSeoBAARrxIkhdQ26PrROIdYbw9691+PHz/0h2en08eGQuC5iuE0Wo7AeI2/0XPZgPKgTmkWXaruc7bQYI87I/BAEwUhstLoet0pBZm8fC2hPz3Ze0vniLq8fJcaTQcy4TeIrmZIkWJ8XjQzqzvbROZztNEK+OxbiokVkKBGCoBcvGVHybpztch4IRFoWaBsx8p24Tm9ASqZJXa+DHvZEbFegilHvD2yhiKQtjcWaO9fUXxKRURXiXK3ZqNguy2GyH2VnH6dC1valArl2cBMjn46gXNbPaZm/KHn2r/Qc8Oszk3jzXAahgIgP37hyoQ9nGoIgGO52t67D2WAxfqudznaW8SrGsC6qsi+295gW91YEEl6qwhupnzPO5wYV6lMcVPS5LT6QqzUoNRUA2wIzjZH3qmc7y4UHPk2IDyAa1uOzpqylg7SkVc/2XAcv4tOryNfJU4j2ksW3WlUhZ5yNBXW2x+NFEtPfroVsJEWq2T1CEwKk8GD82MwfpfdstxsjXylWoNU04myP9BBHPmsMbQaGDxpzozjuTmwPqERsF7uHXB9apxDtjSKfT2DiIvv3DT4+raAihldJdCXGC3/jHrU1A8yFB+yNRbt6trPYZqBde1oFxgoPKIk2FGLUx4KdedGMhMukxhLDBTqN0GtIrlxFTbVf6EtbTogCmG6V2YxB3dl+8HwGZyda33/TdMteBpzZVhBEAWH9d5czsmVBtSVKrmWEPFB3trMQIx/uihK3rmJfPKwUKwgGK9C4EtutFWI0iu2q2Ho+sIjReqEcAtQqULFhEKDO9gJnMfLdJEYegH23PwPw9WnHKN/WXe0fuGYpehOdF2HarbsO2+psl9lzdXvRv8hMrsyHK7NeJe1us8fo2c74eAB1sb2qasiW5l60cets16vw3JwzWY6KMNxGO5o3RxIMz5U0jZH3qmc74wVLPg0k+hEJkhtw1872Fj3bDWd7sgM3QdJ6EebkaQSjQWOjwamDmRYWxKJ5IrYzhNazrqmz3VjA2oyRl/XYx1isBMTb1K+93QxtBvLD6FlC7hvcOttDIOdaoIcfZ3u0R08+cBmx7+PTydDe2V65VFmOTgfq60cvxoPl/st0HApKDVW9QNcLigy2PKN7Wl472+meR4KxtWl9z8a74gNeWuG5vX6wngxipstkcHBSfGAuzGG5VWYz1vSRmOtD57O49b88i3/5t/vwf944b6ShUAyxvROLuh1irL2mypaiwmdFzgPh1uKq4WxnoFgh0kWiscWqA7G9ICMUqkILxNpwZAuExbmRXJJE34Y+AERsrwWatxRgFaPlXVG/ntpxcutieylPrp+8xcgDcFes06H4YvsCc2GqhCcODQMAPrF9zRzPXhjoDdbkPDjbWRJWvRbb85zEY3vfs539D5NIUDIWtOOFud2ItCqchwWaGS/cFXw6252dK+ZEEFFkd/HaFatfS1UHFfOUejoI+3PDx0S8H2GB3IDbdS7PoJwhjusGOjpGPhQDEkPA5CkAcN23nTrbo+E8c325td51TZ3tNEbe7vyg6QCJLgVCjFWx/T0AgCVLxwG4E9s1TUMkkEGpFEY4zc8mR6yXbFrJWRm1ijeuXx+fTqPubHcvLqumHrusrkXcOlPNlBnuN2w2MrQjLpylFLZ2GUjqMfLsjAVgEpQ9dLYXZT5i5Ola0uk5Q9sssFig00goIBq/h5N9T14KMJpx45oe/L8fuQ63ru+DIAAvHhvHH/3DG7jxL57Cn/30EA6dz0DTNCNGvhONdU4Jd+niYaasO9unnL+ZkgdCrdcdTDnbU2GUy2FItbzt19aK5DVagJ9e5XbmBu3bHg7L0IL8rEMBUoQBAKUCFdtz1l+si+3FLI8x8vo10Y+R9/Gag+czCEkitl3Wiw1LZm4AdwJ0YTLVJmd7taYaC3qWHIlUFHcqlDXCT4y8Nz0D6z3b2R4PSo+NPnH16Ea+FiVue34BfM0LI1bf4Xjw4uSm46Bp7qIMWSza8rFAfAABbQqAfefyNGpVoFJo6mynAnRHiu0A0L3KENvd9uamzvZIIMum2D51BqhMnwdGjLxDZ3siWQZiPd4c5HzTvQYIxtHfSwp33YjtlWIFsVgRhUKsM1MeHBLpjgB6PZqra4iPTwdD47wrNQ1y1V1RSdn0elYFEir2KTXV9XjQAoYIg2MRCoiIBMmWn7dx4eylsNGe7ZMFj2Pk9T0P1gTmuEdphGaoYYDV6wbFbT/7EsMFOs1wk05Ix4K188MKgiDgvk1L8PefvAnPf+4O/NFd67EsHUW2XMXf7zuN9/3NC9j11y/g54cuAgD6GHBmW8V3tjeHiu0B2Bfb1aIuwIYWn7MdAC676zIAxNmuhTpTG3MKPV8KOf06aCc2nfZsz+rOdl5i5H1nu087ufeqIez7/F34i9/ctNCH0pLueHt7thdMN/gs3YR5IRyaofHYrMfIx10uTig89WwH6rFR4xbEdnpOxBg6H6zgNjYd4Gte0IWr4xh5mY/Cg3BAMjYjpkrOi7rysi+2c0m8D4HKBACXznZaMdusZ3snx8gDpFf51GkAdbG9MFpw9FZUbA+LGSDOltiO3nUANGDixLRv0wWs3TYD5QyZT7F4GYj3eXKI844oAkOb0JM4D8Cd2K7kFcTjReTzMSY2tKwiSqIxR9z2tPfx6VTMBbpFl+KZue97JMCmWGQuRC24HI9ShcSvxxh1qRpJWi7WX40UGRRVac92r53teUbF9nbEyPPSCs+t65+OQ4TRa0YjXS72cHh2tptZ0RPDH99zOX71f9+Bv//kjXjg6qUIBUS8fTGLV09NAgD6OHK2U6cu6dlurS93S2SOerZTsV2wv97QSrpAH+bM2V4tAdW5011XvXcVBFFAOKxAaGKOYBlDbM/oEqxsQ1xWCtAgQC7yFyNfqQShqqIvtvu0h65YEJf1t/5wWWjSbe7ZTm/awgERoQA7U9LNTWcz6pHQbF88abGAa2c7jQvnRDjr1TeuaYzUbNANDN/ZPpN6jDz788JtrH6OkwIdwNS33UVRF70Ws+7092kgMQCxkoEo1tz1bKc38bP1bO9UZ3va5Gzvd+dsJy5+DUFtij1ne89a8j/j0/u2O46R153t0UgRYDVGHgCGNiMVOAXAXV9yJacgHi+hJCcgMNyapBl+33Yf3glIdQez24LnkqlHOattiiRRMKKP3a5JSwwKy2aSHqfxAabCcIZEVZoy174YeXbGAqivH71sL2AIq4xF6jdC/5alSg3Vmmr79dw52yPO93B4KcCwiigKuHV9P/7mw9filf/nLnzx/Vdh45IUIkERt17ev9CH5xnTnO2RNFlnaw7bASo5INw6Npw629kR2yMIiU7EduJsF2Zx+TMH3XexIKZGu6PY8OAGxBIKwgNs7VHMBT1f8hO63mXH2a4UgGAMNKaNF2c72b8RICthLmPkF8cnno8raBVwu5ztrLoRPe/ZzolL1W3sFoWnnu2AOUbees92ljYwrOC2RzlQF1T5cLbTgh13PduTHIxFVyyEC5kyplxcT/McFR/4mNDd1/F4EbmchEqp4qyi1xDbmzjbqds72aGOg+7VQO4iUCl7EiMfClUgQQbijG36xPrIon1suthu3vDRVM2yUEx7tkdCBebF9qj6bQQCFVfOdjknIx4vIDfO2LywwAe/90GIARF9VzKaYODjY4F4KIByRTHWEU4x+nEzLhQlIgGUKjXX8elUOGMxRh6orzdyHjrbSxXq5mZnTGhrRCst3exQYLRPeTLszr3dDF6E1XhDMkZXzJ4hyChYYvSa0Yib1ne8FGA4IR0L4XduXo3fuXk1NE2DILBZvNaMaT3bo92AWiWioBOhWM6TtW4LqLOdhdQt6mwPBUu2/+aa3ptbiHAktkfT5GtpylKR/4f+8UPQ/uufQUgzvC5vAt2ryI3r37AjLleK0AL11gIBTvY66ZjIchhR39nusxhpt7O9LrazJRjRm868XIWqOqziM5HjpN8wXVy5Fdt56s0NAD1xckNqJUa+aCza+VqUUDd6qVKDUrVfJQ7UhXoeijBSJkeBk6p5ummWZGxzpxl1Z7v7GHnWnCU+c6DHeyeSxJHqOEqeLmpYdLbTDYipM3WxfdShsz1LBFUAzDnbIQhA73pg/Ni0b9Oe7dDqbnUrlDNlBAIVBCWZebFdgIqBgXF3MfK6s11W+eqTBwDLb1qOpVuWMrFR5+PjFCoQuY1NpwlbrAtF9P7Ys+IDRiOhkxF3xb3NoHMsytCY0NaIXu5pKVUVir6GSzAmMPvO9taETImbOQcx+7RAh6XzYzbcpBPyUoDhFp6EdqCJs538w9mbKXkgxImzvYuI7ZGIjIpds6Ksi+3R1mPBHA7mhlDONm37xzJGy7sphbRMkHPWX6wUoAVIQpsUlrhJnzPGpBiEZsfpzwi+2O4zJ1QEmWyXs73MpkBCnbWaBtcV8wA/QlF9o8f5mFRrqnFjzoODGQD6EtZj5Hl1tpsLapy2X6g729kfG3PBgJONDlZTQZqRjrlPCqHjwcs1w0dHF4S7B8jftzzpUGynFbPhJmJ7rtPF9lXk6+Qp1852OScjkdBfy1rPdgDoWz/D2R4IBxDQi7nsFGPIWRnRqP58lsX2gY3QIGJo6JI7Z3u2hHi8CEVLe3dsPj4+8wZ1oruNTefF2R73yLlbZtylStdMXjrbjZZnDO1bUGf7ZMG7cTCfa6wVydM9Jy/2sSg8CatJF2mN9Wso++MAuEv0LDDehsOnOdTZLmfk6e5lJ8j5WR3xlTw7zvZgLAhZjiASKdsqAAcAVIjYLsY4dbZboVYh48BZz3YjCWKqTAoJbMbIaxLZ/+ElQh4wFeyUw6hlJxb4aLzHF9t95qRb/1DLtMnZnmNUZA4FRKNa1Yso+RwnkdDJiHtXhXnRx0skdD1G3krPdj6d7ZIoGAtXt33KWT9PACAoicbC08k1hNVrZzPSHrQr4amHvY+JGHG2d/WRa6djZztd1DSLkafO9mSHLuKTSwApBEyddt2zXckpSCQYdbYDQO860rO9oS+gUR09ab0nt5yREYvpz4/1eHaI804wCrVrLYaGRl2J7bWpMYiihqrU7eHB+fj4zBf0frDokZM7yrhQZIiJbosPGO+/nPSgjVcjLBZkdLchrZEKseGAiIDE1tZqMkzmhVxVHSfONVJgsAijFYbz30ExQj1Gnq050Yp66zsHznZG2yz4zM50Z7v1vtxNUfLE7dvq4UKHF8WbEAQBVSGBYLAGedKeW1eokjWcFOfI1W042y3ODer4brJfwzJGZHpGBsJJ2zHyqkBe76iVYocihSS9OCUMrTC10IfjOXx8+vu0FdqzvV3OdlplzaJAQmOxnbp0zfDmbHcTSUbHMxaSEGRs4doKKrZbiZE3ItgY3+RqhpvKaKA+N7qifIyNmz72PBUedEXJ+eGJ2M74NdSngWAECHch1U2qw+2IqdMoZ4BgDJBmni8dHyMvSkDXCs+c7fF4EZoQqC+AWaJvPflbFsenfTvaTeLV7CQfyFmz2M6wsx0AlmzG4OAoqqWq/dhCHTU7AgCoBnyx3ceHRWLGGsybGPk4Q0JqM7xIWwPqwnKE0Uhoul/hrbOdPecuNZAUlRrKFXfnCIWKyyyuPcxF/W7PEYohrDJ+7QDcFevUY+TZmxfNqMfI2x+LAidtSXymE+kyiYduYuQ1jQissznb9TQSFmLkAUCVyO9SmRiz9TqhVoSqCgjEYnM/mRWCUUAMWp8b9HmcOdup2F4tV6GFkrad7TWB7HMEONkDp0TSEZTLYWglv2e7zyKE9mzPliuoedCbvBFaLcpi32E3/YsayXHSozyhL9zciO289K83058k0TGnxwsYzc0eKcRTBFsj9cpo+/ND0zTDEc9LVLibgp08R05uw9lectOzXS/cYvCzxGcOEv1IdnnQs73Fwk3Wr8kdK7YDpG+7WWx30LNd0zTd2V6EFu0FRAaXAb3rydeGKHnat91WjHyGH7FdXH4NhoZGAWgojjt0t+dHAQBqmO2x8PFZrNA1mFtne4lB13Izki6cqZSaqhmuX5aEZTNGYa+HYnu9MJydOZKKBCDpvU7dFPeaoePAoms3IImIBMl9oFd92/NGz3b2xqORhItinRLjrScaoa0onOx5lhR+CjB86kxztruJkVcKADRLPdtZiJEHADVIfpfqxPgcz5yOWCtBUUIIMvJ7WkIQyPywOjeMJEK+xPZwMgzordZrUsKes10pQIXubOcoRh4g1xFZDjtPxehgGNxl85lvaM92TfNGVG6E5b7DVGx3GolthtXe9Y2YXQSa5qw4gzdBFQCuHErhqqUpFJUavvT4W7M+1+htxVmMPFB3pDs5ZwpKDbTeJ8VJhE7d2e4gRp6TAh2g/jnjdPOrUlNRrpDNUB7Gw6eBeD8ScSIguurZHm4eSUad7WG9KKoj6V4NTJ42xPbyVBk1m86saqkKTdUQjxfZjJAHgJ7LAAgkSt6Eoxh53dmuIjhrfCELCEs2IxSqoKdnynmUfFEX2yO+2O7jwyJUDHYrnPESIx/3oAC8ZPqcZUlYNlPv2e6NoFpTNch6AQJLIrMgCKbERm+i5POMR2Qn9Ch5r8R2XlIxAHfFOiXGW0804mbPs8BgCobP3Bg9qDNlkhoXjDtztit5/Q1bi+2sOdu1EBGKq1mbYrtWgqIEuBNUEUnbcLbromuLPRtWEUTBSIOoCTHbMfI1kPONpxh5gDrbQxAquYU+FM/xxXafOQlIonGz6WWPKwrLfXapUOa2CKGmasaNKOtCES0WqJoW4nbJcuhsl0QB/78H3wNJFPDYgQt4+u2Rls+tR7Dx8/tT3JwzdIEXkkSEA3x8fLnpgWYUKjG6wWOm3rPd2WeMeSOE9YIlnybE+xGNkD7jrnq2t6iS7vgYeQDoXgVMnkK0O2JURpcm7EXqUwd/PF6AkBz0+gjnh2AESK+Y4Wx3EiNfzpQRi5VQC6ZJ5T3LDG4GAFd920V5AtWqBCmR9vDAfHx85gujZ7vLGHlDKGI0Np3ihZBIXZmCAGbXHkmPne3m5ATWxESjb7uFtm5WKBhtANkaB4ohKHsktvMkrCZctEak50iU8WsoxY3YXjTSH/gYCx/CNGc7QNbYTpztMhXbLfRsZ8XxHSX7DWpu0tbLJK1MnO28ie22nO262M6Zsx2onzMVLWY7Rr6q6mI7Z3Mj0h1BuRyBWPXFdp9FilshZDbqvcrZu3B0uRDKzJhv4lksOjBjFoidLtzoePLiXqZsWtaFf3XLGgDAn/70UMvxMZztjG1gWMGNuJw1ObkF1oURHTetKHjq2U7blUw5LFyi51I0KCEg+bc23BHvRzREbsKd92yfAiIzq6RptDrQ6WL7akDJQVQyiPYQYdmuqEp/z2RXGQKrznaARMmPH5v2LUcx8tTZHuKgR3miH0W5C0NDlxyL7VJlAoVCDKFOTnjw8fFpiRdObsAkFDG+DvEiRt6Igw5KzK49kh4722nygchgAQIV2yc8c7azGyMPmARlr+YGR8Iq/ZvaPW9UVTPS1li/hlJSLvYr6vtabJ4jPs2hLl0lp0CtqURQdRIFregi2ywJY6w524VYGgCg5idsvU5CGYoS5E5QteVsp45vzpztgElsr0Zsx8hTsZ3Hnu2yHIKklQDVXaFwp8HW3bHPgkEXJl71tzLDct9hNzeeZuhCjTh22b4pF0XBEImd9LgC+BIRG/nM3ZdjZU8MFzNl/OUTR2Y8XjMt0HgU270Ql3kqwqDRjtmS/XOF5VSQRmhBV8bhZwxPY+HThMQAQiJZlDiOkW/Rs71aJtHqABBKdrDYnl5Fvk6edNy3nTrbEwmGY+QBoG/9zJ7tTmLkac/2KB+x6RllJQYHR1Ead1aQEqxNolCIdXY7BR8fn5ZQMcPp+otS5KRnO42yzrvoYU9d/iw7VFMetr0D6vMjHmKv+Lk7TmPk/Z7tQF1sz3ngbFdVDcUKR852h67/cpX91hONmA1GdttEGtcLDgowfOrQGHmAFC/bElTNyHPHyLPmbJcSXVBVASjZKz6QBBmVSpCZogLLRLqsF2KUM6TwQmL/M6QRes5UqlF7zvZKEZUqmft8xsjr1xI7BQgM4LnYvnr1agiCMOO/hx56CABQLpfx0EMPobe3F4lEAg8++CBGRqbHKZ85cwb3338/YrEYBgYG8LnPfQ7VqjfVlj7OoK5DrxYmZnKy7lZlcJHimdjOWWx63EXsFmDu2c7HeJiJhiR85YMk7vXv9p3G/tPTKx7NvQFZXbjPRr1Huf25weO8cOP056tne93ZbncRD/AVqe/ThHg/QpgCoLmIkW/es51GyAMdHs3VvZp8nTyNeH8cgHNneyxaYFts710HTJ4EavXrpuFst1GMQZ3tiPMhtueFy1w524PaFAqFaGcXnfj4+LTEiJFXXMbIcyK2J/Q1hxvXLg8uf6+d7VRgjjEonrUtRp5RcTnhQfoDpVytgS7heBBWkw5d/+brb4RxEw2F7ldUatq0vSorGNcLRs8Rn+YEwgEE9OuHnJHtRYWboT3bWzjbNVVDVd83ZEWEDqd0AdGG01/TNAQkTp3tdmPkOYyQB0ytF+QwINuITVcKdbGds7kxTWx3kozRwXgutr/66qu4ePGi8d+ePXsAAB/60IcAAH/8x3+Mxx57DD/84Q/x3HPP4cKFC/jgBz9ovL5Wq+H++++HoijYu3cvvvvd7+Lhhx/GF77wBa8P1ccG3e2MkaeORAZFEjeuVDNUNOPFlUkXJwWHPQN5drYDwPZ1ffjQluXQNODf/fggZFMFNI1fYzGazwpdevSNmxh5vpztztwmmqZxJTBTZ3tN1RwV6fBUeODThHg/BKiIRsvOne0terZTAToYC0Ls5BYE0TRxDUyeqjvbbYqqck5GMFhBKKgAcYbF9r71gFoFJk8b3zJ6tlssxlBrKpS8glisBDHV15bDnG/K0fVIpQqojl909PqQkEE+H/ed7T4+jELFcfcx8rqbm3FxhPbRduP0N8fIs0oq4tyV2owiw325u+PUQOLNnlaOE2d7XnZvqKH7PoLAh8jstGc7vWZEgiJEka3kh1bEQxIk/Xexu+9pTsLw4QtDPMyUXTjbddGxRc/2isnsx4qzPZwKEwFRsS4eVstVhIJVPsV2q3NDVYG3fgYMvafdR7QgGOdLOQRUS9NMA7NiEtv5jJGnYrvvbJ+V/v5+DA0NGf89/vjjWLt2Ld773vcik8ngW9/6Fr72ta/hzjvvxJYtW/Cd73wHe/fuxb59+wAATz75JN566y088sgjuOaaa7Bz5058+ctfxje+8Q0oivdCr481jCrgNojtdJHCokjiJhLbTE5mt+CgGXGXC7e6qMrHeDTjP9y/AX2JEI5dyuObvzxufL/AcDSfFdxEGdLFXYqjIoyUUXxgf+GqJ19zUZQSCUpGcYmTdiV0I4SXgiWfBnQXdjxedOdsbya26852Jty83auAyVOI9hFhuTBasPVyJacgHtdfk+j3+ujmj9715Kupb7uxgLVYjGG4/GMlSF0MFx6YqHVvBACECu84en04kEOx6DvbfXxYpe5s92PkASAR1p3tbsT2CvtjQfdYKjUNclV1/X5Fowcze2NCDSSeO9sZdXLXBWX3vVKNeRGUuBCZjWQMu2I7B60nGhEEwfG+Jz1HWE4H8WkOjcUuT5XJGtuJs13OAYIIBGNNH6YR8hDYERqJ2B6BVM1bfk2lWEEopEBRQtxFhVt2tr/7JDD6NrD9D9t9RAuC0fKuoP99rYjLVQVQK6goZO6zcg5YJdLNr7O9rX8pRVHwyCOP4LOf/SwEQcD+/ftRqVRw9913G8+58sorsXLlSrz00kvYunUrXnrpJWzevBmDg4PGc+6991586lOfwuHDh3Httdc2/VmyLEOWZePf2SyZuJVKBZWK99HnVqA/d6F+vpek9AXEeF72/PehzvZIgL2xSoSIOJQpKbaOvXFuZAp6H9WwxNwYNCNGx6XgbL5k9KKOWFDkYjyaEQ8K+LNdV+KP/vFNfOPZY9hxZT/WDyaQKRChIBbyZi502nUoFiSL70zR3jkDAJP6eRIP8TMvYkH9XLE5HpN5Mk8kUYCEGioV+5tnnTY30tEgRnIyxnMlDCXtLTKm9LkRC/JxDV2MzDofw2kEASQSBUxOluz/jTUNATkLNRiH2vDa4hRxh4cSoY6fO1IXEdtpZHr+Ut7WMReniqRfO4BKuAfo8N+XMmNuRPsRCMagXjoC9bK7AACBJFnSlCzOj/xYHoCGWKwMLdbT8X97K2g9q6GMBRGrHnf0+0RDORQKMQxFF+91tBM+Fxfr2Pu4J+aRcMaymGrGac9lM3WXP7tjEQ8FIAqAqpFi54hLEZBlp2q3x60RqZubWWe7hzHyrI9FI26d7SwmP8xGKhLAREGxLbb7Pdv5JdJF1qNyRgZSaWdimZIHQkkSidH04XoCHStGpHAXcbZLYetR4ZViBcFgBdVaCCJv6aaRNKDkgFp19l7sL3wdWHETsHLbvB3afGKI7fkA0A1Azszdyq5CTBKyTPZGeUs94Llne1vvAH76059iamoKH//4xwEAw8PDCIVCSKfT0543ODiI4eFh4zlmoZ0+Th9rxVe+8hV88YtfnPH9J598ErFY8yqp+YJG6bPM+YsCAAlHjp/B7t2nPH3vqYIEQMBrL72AUxFP37rtHMsAQAAXRqewe/du26+nc+OlETK+halxR+/TaRSmRAAi9u1/A+K5122//tR58voTRw5h99hBz4+vU9A0YFO3iEOTIv7g4RfxR5tqOJkDgAC0StnTudAp16HjWQAI4MJ4xvbv9+YpMi/GLpzF7t2n53w+C7yTIef++dFJW+MxXASAAMKiip///OeujqFT5oZYJZ8FT/7yRZxO24u53H+ejGNmbJiLa+hiptl8DNRKuB9APF7CmZM5239jqSbjfWoVr799EudHpr82+zq5sS/VSh0/dzZOVLF06m2cHiPXv+NvHrd1zJdeuYRUgizannrpAJTgybYcZ7swz433Bvow9cazODCxBgBQOlUCAGRGrH22lE6VEApVEAjU8No7Z3B+tLP/9lbInsyid7gfMRyzf46oMt4XVFAoxPDKgVdwKHeoTUfJBgv5uVgs2msP4eNDoe5ar5ztrDsz6Xh44WxneSxEUUAiHEC2XEW2XMVAyt37sexU7fE4Rp71ZC0vY+TpdYcXsT3psBChaIqR54kuB+mESlVFVY/i4634wMeUKjZVBgbSDmPk8y0j5AGgUiDzLZRgJ3WLxsh3ddl1tldQA2OCiBWiafJVzgKxnubPOf0ScHYf8OF/aFl4wTr0fClkJSK2W3G2K2RNqMgBADXuUg9IjLx+bnMWI9/WT7xvfetb2LlzJ5YuXdrOHwMA+PznP4/Pfvazxr+z2SxWrFiBHTt2IJVyuaJwSKVSwZ49e3DPPfcgGGT7pKgeuIgfnzqIaLoPu3Zd79371lT80UtPAQDed+/dxgKIFY4M5/A3b70ENRDGrl23W35d49y48MIp4MQ7WLtyGXbt2ty2450vni4cxKHJi7js8g3YtX217df/z9MvAdkcbt16PW6/nOGoWwtcd0sZO//mRZzK1zDZuwnvWR8FDr+O/p4Udu1yX9XXadehd0Zy+OvDL6EmhrBr1x22XvviTw8DF8/j6o2XY9ftl7XpCOeXVRey+MZb+6AFIti1672WX/fG2SngwCvoSUSxa9dtjn52p82NRy6+iounJnHF5muxa/OQrdce2fMucOYkrly7Grt2XdmmI/RpJ7POR02DdvgPEY8XoBZV3Hfvffb6q+cuAm8C12y9DVevu2faQ0fKR3ACJ9C3rA+7du3y4DdpH+L+EYi/+AW2bL8GF75zAelw2tYx/2r/r1CM/xyqJuLu9/9zEtvHAM3mhiQ/ilR+BMv03z9zJoOjnzkKrahh586dc7ofzr54FiOxVwAA19x8F65eY/3626lcHLyIkS//L6xZdwHr7c7lzFngAJDPx7DjvjvRs67FZgjndMLnIk1n8/GxCxUz3PQoB+rOTNZFMyNGvlyFpmmOXHG8uFRT0aAutrsXVWkBAotO1bTubJ/wPEaezfmR9CD9gULfg/VEDIpTZ3u5wsc1o5GUgxh5c+EXL/PCp44RI58pE0G1WgYqZSBoQzBW8kCotdhOY+RZ6dcOELE9Uw6jV7Du9K8UK0jyKrbTNn6lydZi+4v/Dei/Elh/77wd1nxDz5f8lAisAmmhMBcVIrbLZV1s59DZXqsF8PSLu3DXQ1sW+nA8pW13AKdPn8ZTTz2FRx991Pje0NAQFEXB1NTUNHf7yMgIhoaGjOe88sor095rZGTEeKwV4XAY4XB4xveDweCCiwidcAxu6UuR/qBTpaqnv0vRFJXYnYgiyFhkSk+SjEu2VEUgYL/HNp0bJT0COhUNMT9XACCp34wXK5qj3ydXJouUnkSEi/GYjZV9Qfz7+67En/2fw/ive97FZ+6+HAAQD3t73eiU61BvkiSN5Mr2z5m8vuHVnQh3xO/iBT0J/RpStndt1dvXI+nBNaNT5gaNdswpqu3jKerX0K4YH9fQxUyr+ajF+40IdLWoItwz856vJVXyukC8F2h475r+eRNJMvB507cW0Gro7iG/T2msZOuYq8UqEokiKloK4ZCN8esQps2N/iuA03sh6v/uWtIFCEBNqUEel5Fckpz1vaqFKmIx4oYPpAZnzAsWSQ2lcGC4H1u2vAlBq0AIWU/20koTAIBCIYZ4T7zzz4U2s5Cfi4t97H2cQ8WhgtsY+Qq7zmUzVAyuqqRXuZP4dCosu41eX2iSkSCAEnIexoWzKCZSY8eUZzHyupubwbEA6tcML+YFy+0FmhE3xsZZbDrLaRjNcCK2F/SxCAVEBO0USfswwTRneyQN/R9A0IZpQs5ZcrYH4+zcG1Nne0iynlRFne2qwKPYniZfWyUfjLwFvPME8IH/FxD5vU4YzvZJ/bPBSmy6QtIR5FIAgMxdz/ZoN9kLf/mlzbir//IFPhpvadtM/s53voOBgQHcf//9xve2bNmCYDCIp59+2vje0aNHcebMGWzbRhyc27Ztw8GDB3Hp0iXjOXv27EEqlcLGjRvbdbg+c9CtV9BMeRS5RcnpkVXhgIgQY0I7UI9TUmoqyg56JlNy+kItyWgEWSP1zR5nCze6qElF2LmpcsO/vGkVtqzqRkGp4etPvQMAiDO+wdWKlH6DUFU1YzFqlayuMPM0L+h4lCo1KFXr1xBaZZ9k1EnRjHTM/iKekmPcWeIzN0JiAIlUGYC+qLcDXcxEZiYdKTm9Yj7JQMV892oAQCI8BgAojtmLm5ZzMuLxIipit9dHNv/0rgcKl4z+gMFYEEPXkM2dU788NefL5axsiO2IzdEvjRFifTEMDw9AFDVUz9hrwVMdvwiAiO0sRTX6+PjUoeJQqVJDTbXXjsdM3c3N9lrELPo5de4WORmLlL7HYCcCuhXUrcrimNA9rbxctbXuagWdV6ymQDh1bzeD7vvEGEw8aIbZ9a9p1q+nRusJBs+P2TBi5G0UHxSNYhS+xsKHQJ26ckY2uZen7L2JnOPS2V4uhxEKWt+vqBRkIraL0TYe2QJBY+RbzY0X/wpILQc2/7P5OqIFgYrt2XH9GzZi5MtFopXxGCMPkKKaWsVdoXCn0RZ1U1VVfOc738Hv/M7vIBCo33h2dXXhk5/8JD772c/i2Wefxf79+/GJT3wC27Ztw9atWwEAO3bswMaNG/HRj34UBw4cwC9+8Qv86Z/+KR566KGmznWf+YE6Dr3qb0XJMy4yx0MSJJE4c93EstFqYlb7fTViiO0OegZqmoZsmc4Lvj5MWiGKAv7zBzcjJIn1TR1GF+1zEQ1KCDg8Z+jzWb1eNMMsDtupnM9xOBY02tFJUVees2uoTxMSA0ilyaK1NFmy91pdkDU2AkwoeX0Rz4LA2LUCgIBYYBSAfbFdySmIxwuoBjiICO9bR76OHTO+teYu0r/95DNz96KXMyaxPcrBeIC4PsYzA1BVAZUTv7b12urEMACgVI5xF1Hn47NYMIufTtZgFGMtEmT7nkoUBUPkcVoAXuZEOKNrai8dzCw621ORIPRlqCcmEuryZ7XYN+GwL3kzeHO207+pqtUFdCuUGC5GmY0uF852Fq8VPnMzzdlOBdWy9eh0AMS5G26dRsausz2CcKgMTbVW1FXNEwezKlpPJWMGw9neZG5MnQEO/hC4+dOAxM7f2An0fClOVAEpbM3ZrsfIlwu62M7ZGj2cqmu8ckZewCPxnraI7U899RTOnDmD3/3d353x2Ne//nW8733vw4MPPojbbrsNQ0ND06LmJUnC448/DkmSsG3bNnzkIx/Bxz72MXzpS19qx6H6WKRLP6nLFdVYdHqBIZAwukARBMGoFHfixqTQceDFpRo3qqTtzxWzGyPFWUzKbKwfTOKhO9YZ/+a1AlgQBEeLNaC+QZTiqKIvIInG9S9rY6ODtwIdoL6IdxLtmFtkBTqLkngfEgkijtp2ttPFXbiJs50lsT0QAlLLEK4RF3K1VEXFxvmi5BQkEkXUQhyIy7365+X4u8a31typi+1PWxDbdWd7RY3Y6y3YwQiCgFBXF8bGeqBdeNPWa9XMMIrFCAKxqKO+xj4+PgtPOCAaBa1Fh1HymqZx5cyk98lORWbq4mY9Epquqb3o2U7HhMW1qigKholkwhOxnTrb2RsLwGNnO2cicywkgd4O2SlG4DZGPuKgZzvj54fP7ES6yPqJONvT5JutosJbIc8utrPsbA8Eaqjm8pZeoxaI8KoFOBTbw0lAEJvPjZe+QZIHr/vYvB/WfDO97ULKVox8uUA+q3mLkRcDopEuadtM0+G0RWzfsWMHNE3D5ZfPzNyPRCL4xje+gYmJCRQKBTz66KMzerGvWrUKu3fvRrFYxOjoKL761a9Oc8j7zD/JcMBYvHvpbjeifxkWjIxIJTdiu8yXUGQs3Bws6GlUuCQK3C1S5uJTt6/F5YMkRomXudCMlHHO2FvY03OMpxh5wFmleI7xQqVm0Bj5KQfXUh5j9X0aiA8gFisAAMqTDsR2QQJC8RkPyTlSRctEjDwAdK+GVDgLibr1RguWX0pj5LVof7uObv4IJ4HkEmC87mxfectKiAERUyenMHlyctaXlzNlIrZrs/d2Zw0SJd8Pcfywrddp2UskQp6V88DHx2cGgiAYQpdT8axcUUETk3kQzdyKifzEyFNnu3uxnbq5WS3GoOuNyYK7sdA0zRCYWV2PeSm20wIfViP1GxEEwdH48FSsZKbLwf6N72znm6bOdrsx8kp+1hh5Fp3toUQIZZk4dpWxUUuvqRVz5H+CHIrtgkDSBRvnRmEc2P9d4Kbfb7pHwxtGZHqxAi2cshUjX8oRLY63GHmg3rfdtpmmw2GvSbbPgiAIQl0IceA6bAUPglHKoUvXDF34sjwOZuJGz3b7rop6v/bAonNXhQIi/vu/vA4fvHYZPnzjioU+nLaRclCgQtoL6HODs4q+pIM+irwV6ABAOkpEnoyDz5g8B4VbPnMQ70c0nAOgOevZHkkBTT5TmHK2A0D3agiTpxHrJ4txO1HyclZGIlGEFh9o19HNL73rgLG6sz2cDGPZjcsAAKeePTXrS6mzvSrObC3AMrG+GEZG+hHKvwNYjC4EABTGUCjEEE76Lbt8fFiGriWLDmPkza/joejZaG22yGPk6z3bPYwLZ3TfoifuTXvEUqUGPYyP2bFIOOxL3gzenO1AvYjbltjOq7M9an+/osjhnPCpQ3u2lzNlIBgl0di2ne05IDx3z3aWxHZBEFATSTF3ZcKa2K5SsZ1X0TmSnjk3XvkfZG/mxt9biCOad8yR6WogYT1GXgpBLpI1PW8x8kBD0Q5H+GK7j2XSbejbXo+RZ/eiYVR5uunZzplQZF642aXel5vdOeGGdQNJfO1fXIN1A3y57cw4ab1Qrqio1PT2ApzNjZSDawifPdups93+ZwwPhVs+c5AYQECsIBisOOvZ3qRfO0Ci1QGWxPZVwOQpxPrsi+21YgHhsAIhyZHYbnK2A9b7ttOe7bUAf2L78PAAJK0ETM4dp08RSqO+s93HhwNiHjm5I0ERosh+0bObNSnATyR00kNnO+sCGt3Tmii429Oic0oQ2B2LpL4Hp2n1ue4U3pztgLOe9tTZzuqcaIWTPU9qvPGd7XwyQyRr5l6eC4vOdpZi5AFAC+pi++S4teeXdLE9zKnYHk1PnxtyHnjlfwLX/Q4Q46C9nQVEqR6ZrooJi872PBCMoaoXSvIWIw/4YruPD7rb4GzPy3UXM6sY/YtcjAvrvesbSeh9mQoOXBVZoy83H2PhMxMn4jJ9riQK3C1e6TXEjtuk7mzn5zxx07OdfpbwNB4+DcRJ9HkiUXQQI59t2q8dqDvbmXH0dq8GimNIDZDroB2xPVCbAACI6aE5nskIfeuB8ePTHNzmvu2zubSos10Ndbf9MOeTaF8Uw8N6m4Bh633bRXkChUKUnfPAx8enKVToctqzvS4U8XE/FQ+5E9sNlyrja496z3YvenOzPUd6dLF9yqWBhAqJ8RC7aXyRoAhJL6pxGyVP933ijJ8rZuj1NGdjbIyCJY7GAXDW9o4W5vg92/lkWs92gAiq5Yy9N7HYs50lZzsAaCGy71DLWhTby6QtnDCLy59pGp3tv/47kmqw7aGFOqIFgQrLVUQt9mwvAqE4Kvr+KNfOdrv7ex2OL7b7WKatznaGBZK6cOh8gUIXN7w4duNh+1XAFBpNlWQ47cBndpz1KK+LqaxuaLSivgHm92wHSM92O1GGlZqKcoWIbf51g2N0sT0eL9qvfJ3N2c5ajHx6FQCgbwlZlBdHrYvtIY30MQ/0LPH+uBaC3vVAtQRkzxnfWr51OQKRAPLDeYwdGWv5Uups1yJ8VdPH+mIoFmMo17qB4YOWXxeoTqBQiPvOdh8fxqFCl5OCZ6Aet866k5vixJlqhheXqpfO9hLjompaF20mXPZsp+cKy0KiuS95zmUhBhWZYxytTRMO9rSMawYn11CKYTCyJbazXZjjMzszne1pezHyVQWoybM62411OmPOdkTJvkMtO2Ht+XIeACBEOBXbzYUYVQV46f8PbP4QkOa3dWozDLFdjQMTJwGlMPsLKrrYrl93eezZHun2ne0+i5y0C9dhK4z4dIZvyqlQ5rRne7WmGjeiLBcdmHHjIsj5znbuceLkzpT4Kkgx46z4gMOe7XpBl1Kti+dWMG+AsLzh5TMHCRJ9Ho87cLbLWY5i5FcDAHp6STW0VWe7WlMRCZDXSH1L23Jo807fOvLV1Lc9EAlgxXaycJ8tSp462xHva+shzjexXtJeYLK03LrYrqoIqBm/Z7uPDwfEjR7lDp3tCh/iMiXpsmd7yYjVZ3s8nKy9WmFEQzO6f+OVsz1viO1sjgMl4bL1BMUYD46E1aSDNhQlTgVmul9RVGqo1Kyt03lMO/CpQ3u215QaquXqzKjwuVDy+hu1drYbMfKsrNN1pHgStZoItTBp7QUKWc+LMU5biZpbDBz6EZA9D2z/owU9pIWAiu1j8Z1AfgR4+H4gf6n1C5Q8ND9Gnkl8sd3HMt16Ndmky/5WZnIcONudCGVmzJshLBcdmKELE7mqomrxZpyy2Hu2Lwac9Pyiz+WxCKO+AWZ9PPIcFCo1Eg9JCOhRhnb6tudNLqyA5N/WcEu0GxpEEiPfDmc7K47exAAQiCKdmgJgXWxX8gri8SJUVUC4nxNne3oVIIVa9m0/9cypli8tZ4qIRssQkpyJ7X1EbB+dWGJdbC9NQICKQiHKznng4+PTlIRLcZk3d6qTGGgzvDgz6drc79le39OacB0jz8dazIl7uxnGvOCo8NlJIQIdB95i5M2t2qzuWRQZL8zxmZ1wMgzogZPlqbJ9Z7tM+5TP3bOdtRj5SFcU5XIYKFqM1a8WoKoCpGisvQe2UNC5oarAC/8NuGIXMLBhgQ9q/qHC8mTlCuATu4HsReBv7wJG32n+AqUILRA1/sl1jLwvtvssVswRv15Bb+qTDN+AORHKzOT0XsPhgIhQgI9T0lzhbddZYTjbfbGdW5ykQdDzi8d54aQVhTlWnxcEQTA+ZyZtRDvWXf78jIVPE0QJtUAa8XgRpcmSvdda6NnOTMW8IADdq5CIkh5wVmPklZyCRKKIYjEKKcrI7zoXogT0XDbN2Q6Y+rY/exJqi4I/oZyBKGoIpAfafpjzCRXbhy/2A7mLQH507hcVyHPyeT9G3seHdagA6tSlWuQsAtmPkSfQtYbbqHDAXIDA5ph0G60R3e1p8eLkTjhwbzejaOphzwsJvT2ZLWe7ns7GyzWUEpBEo/jA6h6O72znG0EUEE4Rd3s5U57uXrYCdbaH5u7ZzlqMfCgVImK7PGXp+UK1CEUJIsjY72kZmnrwzs+BsaPA9s8s8AEtDNOE5SVXA//qKSAYB751D3D6pZkvqBShSfUCDC5j5P2e7T6LnW6PIrfMGO5MhkUSt852HoWioFQvHKDFBFYxerZzNB4+03FSoJLluAgjpc91W852Dq8bQP16asfZTgsPWP4c8bGGGulDPF6w1accwKzOdjknA2BIbAeA7tWISUQgtepsl3MyGbtyHIIgtPPo5pfedTOc7Uu3LEU4FUZ5soyRAyNNXybViNNA6h5s+yHOJ1RsP3tS70V/5PG5X6SL7YVClK3zwMfHZwZUDCk67NleYty13Ijh9Hc8HkRAZL2HveFsl6uoqZrj96nWVMhVIiayKqr2xGlhr1tnuy4uM2waAbyLkS9wdu0AnBXr0GtolKNxoHTZNAj4znb+oUKZnJGn9+W2gkxj5PlztodTYZRKEUiKtZ7tQrWISiXIpXMZgO5szwAvfB1YeTOw8qaFPqIFYYaLO70C+N0ngKHNwN/9BnDo0ekvUPJQBeJsFwMiRE7MmWZ8Z7vPoqebOg7b0LM9GWb3Q8XuTWcjPMZBA+YYQ4fOdg6rtnwIznqU81uEkbIZq19TNRT0zT/e2i3Qvu0ZG58zeZn9hBQfa4jpQcTjRUyenETFzr2InAUiM53tmqoZi3imelWnVyGiXgRgI0Y+R2LkSzJnveD61s8Q28WAiFXvXQWged/2armKSJBs8AT7+BTbL56KQLv6w8CTfwZMnpr9RXqvOL9nu48P+9C487zDnu3UtcyLUETXo04c3aqqGc521sfDvH5yI6rS5AOA3TGhaw33Yjvdw2FzHCh1QdndHl+Rk+IDM0kHhQi8XDOaQa8jvrPdhxLpMglldmPkFT1GPtRabGfV2R5OhXHhwiC68Jal54tqiTjbeRXbo2kAGnDuVeCWzyzwwSwc4S5TEgQlmgY+8mNg428AP/oE8OJfA5peFKkUURPIa3idG6nlKSy5bgm613Uv9KF4ii+2+1jGWJh46WznwJFoCGUOne11hypfF0+nVdJZjkVVH4KTKMNsid8iDLtOf/M5xVuRTtpwtjvoX+9fM7gn0L0EqW4Z0IDRtyzEYwNArUpi6po4282CPVOO3u7VCMoXAGi2nO2JRBFytXmcPrP0rgMyZwFl+jgYUfJPzxTb5ayMWIy0Igj2DbX/GOeRaC+pfq/JNVRu+wsg1g385PcBdRbhrTCGmhqAooT8GHkfH8aJ68KfU2c76xHhjcRd9LCnDm6AfWd7OCAhrDuinO5ZAHWnvyQKxvuxRo++p5WTq6i0aDVjBSNGnvG1mBNBuRFN07gUVuMOinV4ScNohl3DBG+fJz4zMVypmTIQ7SZr7opFhyrHPdvDqTBOnFiFeGAUmDgx5/NFrQxFCXErqBr7MAMbgfU7FvZYFhAjCWJKnv5AIAx88H8Ct/4JsOfPgN2fI2t3pQAVZG0fiLJ9r9GKy+6+DL+3//ew6292LfSheAqbd8g+C4LRs91DZzsPru4ul2I7FZdZHoNmON3c4Lk3tw/ByTlDzxMe50V94WrtXKEu/3Cg3q6BF7ocfM7QDRDerqE+TYj3I5UmC/iRg83jwWcgZ8nXJj3baYS8IApsLWC6V0OolRGPF1EcL0KzEAlLne2y1jxOn1l615OvE8enfZuK7ad/dRo1ZbrQXM6UDbFdjPe2/xjnkWAsiIBeeFTMScBv/g/gzD7gxb9q/aLCKEpKEoDgO9t9fBjHjbgM1IWiGKMR4Y24ERKnubg5EM686NtO51UsJDHbkiYVDYIeuhsTCQ/7WIAp/cGF2C5XVdBbUZ4iw+v97K2vS0scC8x293Dq1wt+5oTPdAyn7lQZGLiSfHPkkLUX0xh5Dnu2h1NhnDq1AqomAsefnfP5ksa5sz3eT75u/wzA6L2DF8wamS4IwF1fAN7334DXvg384CNAeQpVjW9nO6/wtUvv01bMPdtVF72+zPDQrzzlsgcar65MGqlmd3PDiJHnbDx86jg5Z4wiDJYEMYvQ38lqjLwRm87hOZKO6p8ztnq285kO4tOERD+ikQIAYORNi2I77R3XxNmu5PUFfCLE1qZxN4lI7+7OQKtplnpcUWe7gnSbD26e6dPF9rF3p317YNMAYn0xVAoVnH/1/LTHqLO9XI4AEl/XUUEQjCj54lgRWHUzsP2PgGf/E3DxQPMXFS6hWIoDgO9s9/FhnLjDNl4U7mLkHfRcppR1sT0cECGKDN0jtICuG6yuN5rBg1NVEoV6kpYLE0mBE2e7m3OEYi7uiXFQmEKxW6yjaZpRpMNDgU4jKZvOdhqpH2e81YJPa6b1bB/cBIhB4Px+ay9W8kAgOutajFVne6QrAlkOYzSzCjhhQWwXynyL7YObgI/9DNj8oYU+kgXFUn/y6z8BfPgfgBPPAdnzqFGxncOEV57xxXYfy1Bnu6q5q3yl1FTNWLCxXBFsjrV24m43YuQZHoNmxF3GyPMYF+5DMP9tcxY3fLJGEQZ/84KOh1JVjY292eBZXKafM/Z6tvOZDuLThPgAQmIBoljDpYOXrL3GENtnOtvNYjtTpInY3r+UFB5YiZKvZPOIRGRUpZ62Htq8E+sBoj0z+rYLolCPkm/o2y5ndLG9Ep+3w5xPpontAHDHfyBuk0d/D6iUZr6gMIZikbzGd7b7+LANjXAuOIyRL1V0JyInQpHT9SjAh7Bshq6h3Djb6ZjEGXeqdusuyQkXfdt5iZF32vrPjPlc4aEwhWK3EEGuqkarXV4KlswYznaL+ze06Mt3tvPLNGd7IAwMbQbO/9rai+X8rBHymqoZLd9YdLYDwJmLa4GTz8/ezgtAQJBRqQSZKyqwjCAAl70XEBe3BGlJbAeAy3cAn/gnoGsFStJyAPzGyPPK4p7pPrYIByRjsTnlQd/2aX2HGXZoBiXRGBcnleK8ulQTDmMMeUg78Jkd8zljtTKaivI8zotEKIBIkHwcn5mYWzTLcxyb3u0gRj7vXzMWD3oEWTxetO5spzHyzZztOV1sZ83NG04AsT70L7EutmtZMl61IF+x6QCIu73B2Q4Aq+9cDWBm33Y5KyMaLUOuto4tZBlDbB/X50UgBHzwfwETJ4GnvjjzBYVR5HKkHxxz54KPj8803MbI8+ZsNztTNc1eAl2ZM4eq4Wx30bOdFnHEGHeqmhMbnULPMdYNE073bMwY84IzUdVuIUJJ4av1RCN2Y+SL+rxgvTjHpzXTerYDwLLrgAsWxXYlB4Rm6ddummesidBUbD95ajUp/L/w+qzPD0gy3852HwA2xHYAWHot8JmDmIreAcCPkWcNX2z3sQVdmEx60Led3rSGAiLCAbZvRrtsRiqZMfoNcyYUOVm4VWqqscnDo4PZpw79+2Yt9imvx8jzNy9EUcD1q4jbdO+xsTmfn+W48KAr5iBGnpOeiT4WSOhie6KI4mgR+ZH83K+hzvbw7DHyzNG9Gr19OQBAYbQw9/MLJAmgFuFQbO9dD4zPFNups/3cS+cMZwRANoTi8SIUjU+xPdpLhPNpRRgDG4C7/xx4+ZvA8WemvyB/CbkMWfz7znYfH7ZJuIyR582JSIsPVA0oV1Rbr+Wt8KDubHcRI8/J/KB7WhMFNzHyNCKb7bGge1BuEg/qkfp8nCsUu2I7jZAPSSICEn9b7bQVoJU9T9WUYsp6cY5PayJdeoz8lEy+sWwLMPZOff09G3M42+k6HWAvQpuK7adP9APh1Jx92wOS4ovtiwB6vhjFKXMhCEbRCWvnwGKHvzsAn7ZCI34nvXC2cxSfXq/ytL9IMcT2MF8XT7rwtNNywBzRxVvxgc907MaQ8RwjDwDb1/UBAF44Nj7nc/Mci8tOeijyHKvv04DubF9yOdm0sRQlX6bOdo5i5AGgezW6uqYAAMXRuZ3tYlkv5In1t/GgFoi+dcD4caDBtdizrgep5SnUlBrO7j1rfJ/2bK8KMwsweGBGjDzlpt8H1rwX+OkfAMUJ49taYQy5KbL4953tPj5sQ5OjnLpUjRh5TgTmWEiCoKda52R7wirtN8y6sExJRWnPdjdx4XzMj24P9rTynAjMXsTI81akQ6GF7eWKikpt7mKdEmcFOo10xazveZZMrfF8Zzu/GDHyVDxceh35euGNuV8s54BQ68Jnc792gbH2FIkhUkRQHJNRXbpt1r7ttUoNoaBCYuR9sZ1rqLNdySlQq9YKQKlhwI+RZwtfbPexRdqI+HUvttOqah5EVSoAOnG2037DvLlUncQYUuE1FpIQ5LAa2KcO3fCxes7Une18nSeUW3Sx/eUT46jOsZjnWVw2erbbuJbmOU0H8WmCLrYPriObWJai5MsZIBgDpJnni5wjVfhMunm7VyEVI4LpuX3n5ny6KI9D0wAhOdDuI5t/eteTdgH56cUXgiBgzV0z+7bTnu3VwCIT20UR+MA3gUoR+Kc/IcUJSgFCpYBCwe/Z7uPDA4azXbEfmw7w16dcEATHbn9DOOMkDjrphbOdk57tPXr/30kXPdtpdDrrxc90D8pdz3YaF87HuUIxpxZY2dPi7ZrRiJ00T3p+CAKMdnk+/DEjFrtvPRHQz++f+8XKHM52/frMWr92AIj2RDH4nkEAwKXiVcDZV4iTvwmVYgXBYBWKEvLFds6hxSkAKf63QlUvbvLnBlv4n3o+tkjTGHkXkVsUnqJ/UzZdumZ47VGedLCxwetY+MzETs8vuVqDrFf+8RgjDwAbl6bQFQ0iJ1fx5vnZY7d47lGejtIeijbEdk56JvpYIBAGIl3oW06uB5ac7XK2ab92gH1ne0SagCRV8daP3kJ1DqdaoDqBYjGKUCo6Twc4j/SuI19niZI3920nzvYy1GD3vBzefEPF9tJYaeaDXcuA930dOPwocPCHQIEkHhQKMQiSAIlxh56Pz2In5iI2HaiLRTw5VA3nrk1HN3Vm8uJSTRk9273ozc32mNA9rQkPerYzHyOvpyvaPT/MGM52xseikaAkIhwgW+ZWYvbraRhsnx+tsGMwoi0n4qEABIEtV7KPdYwY+YwuHIoSsPQaa33b5RwQtuZsZxFa8H3k4BJArQCnX2z6vEqxglCIONslTq8dPgQpKBnz2VLfdsCIkfed7Wzhi+0+tqCRW1MOHNyNGG5EDm7K7bp0zfAaCR13EElmuJc5dOz6TIf+ja1cS+jiVhCABEebf2YkUcDNa0kv5bn6tue47tlO5kWpUkO5Yq1Qx7iGcjgePk3oXoPe7lEAwMhBi8728MwIeaAutgcTDH7mpFdBgIZlV2iQMzLe3T1TaDYTVCdRKMT4dC73rAEEERhrLbZfeO2CEXEoZ/KIRGRo0Z55Pcz5wnC2j7doL7DpQWDzh4B/+r+AC68DgDE3/A1RHx+2iZkclVQYtQNvfcqB+hrbfow8KVbgxaVqONttjoOZEifJBz1x+22rGuFlD8fo2e4725tix/lPxyHCyTWjETttAOnnD0+fJT4zmeFsB4Bl1wHnLYjtSh4I8elsB+pr0ENPloCuFS37tlcKCkKhCmqI+uuwRUDTc2YWaIy872xnC19s97FFd4y6Dj3o2U7diBwIq3YilRrhqejADO1fZqdKOsuxY9dnOit7iRiw//TknM+lRRiJcAAiY/2a7HCz0bd9DrGdk82dZiTDAdA/sZXUA4Dv4gOfJiy/HsnaEQDA6OFRqHP1UCzP4mzPkXsZJgXo7tUAgKsfIL/bwe8fnPXpISGDfD7GZ0/uQBhIrwLGj814KLU8hd7Le6GpGk4/fxoAoOX1fuWx3vk8ynkj2kvSC2bEyJvZ9VXiJnn8MwDA79zw8VlkiKLgqm87bzHygLm1mbMYeV7GwujZ7sbZzomDme5pTTiMka/WVCM5gnlnu17IrlRVyFV75wilwGEiBsVOT3verhmNpEzJhKo6e5uSktFygs+x8CHM6NkOkL7t2fNAbnj2F8t5rp3tq25bBUESMHl8CvLAzS37tldyOQgCoIqReT5Cn4XArthuxMhzmvDKK77Y7mMLI0beRRUwhacoZOrStSoOmcly2n/Z3DPQKrRKlteocJ86920aAgA8987onItXeo7wnnhA+7b/+vSUsUBtBs8920VRMIqXrCao5DgtWPJpwfIbIGVPINldQ7VcxcSxidmfX57iM0Y+tQwQA1i7lcz7dx5/Z/pGRwNhKcOvsx0gPQKbONsBYPWdqwHU+7YLZTJnhGTfvBzafNOyZ7uZaBr4zW8CJVLwVixG+Z0bPj6LDKfiMgCUOIkJN1N3ptp1tpPxi3AyFsmwFz3b+XAwd9Oe7Q4NJAXTOi3OePsV8/E7uWYAQNGI1Gd7LJpBnf9WDCS8tZ5ohK7RVQ3Iz7HHx3MBhk8dKhzKWRkaLcBYtoV8ncvdzrmzPZwKY9kNywAAFyavAEaPANkLM55Xy5EWkqrIYas3nxk4dbb7MfJs4YvtPrYwYuQ9cLbz5M505WyX+XRl2qkCpvAsIvpM54rBJC7ri0OpqnjmyOx9l432ApwXYazujWFpVwRKTcWrp1oLiEYaBmfXDEo6Zr1vO3FhEGcJ3UT04Zxl1wMANmwlQuKcfdvlLBCZPUaeSbFdCgBdy5GKTaD/qn7U5Bre/vHbLZ8eDeZQKMT5dS/3rm/asx2Y2bddlInALHX1z8+xzTNmsV3TZnEerbkN2P4ZKOHl0DSR37nh47PIoEKo3Rh5TdNQ5FAsqq9JHTrbOYmENlypbnpzG20G2F6DUGf7pENnO02NCEoCwgG250dAEo1WCU7SMAC+hVU7e1pGGw5OrhmNRIISQnoP+7lMRjwXYPjUoT3boQFyTu/b3rUciPfP3bddzgPh1mI76852oN63/fArfQAE4MQvZzynls8BAFQpNo9H5rNQ0HNmNpOEGcPZ7sfIM4UvtvvYIq2f4E6rgM3QqmoeBKMuh4vXiimCjIeiAzN1V4WTnu18jYXPTARBwM7NxN3+84MXZ32ukXjA+bwQBAHbdXf7i7NEydNei0nOrhkUw9lu4XPGfH3xF/OLhN61QCSNNVeMAwBG3pyjb3s5M2eMPLMiY/dqCJOnsPm3NwOYPUo+Gskjn+fZ2b4OmDwNVGdeN1bfvhoAKcwoXCpAqk4BAALdQ/N4gPNHTG/TolZUY4635O4/x9HlfweA0XYKPj4+M3CyBgMAuaqC1ufwJJrR8bDT2gyou1R5cfnTwn43zvYSL872WH3vpjpXO6ImFAwhkY/zxOjb7rAQgyYeJDhciyX0Ym4rYnuZs2tGM+i5c3Q4N+vzeC7A8KkTiAQg6ee94dQVBOJuP7+/9QtVFVByXDvbgbrYfvSpMWhL3tO0b3utkCX/E/DF9sWAbWe7rpH4MfJs4YvtPraw4zicC556laccOtvNUV08FB2YSTjY2KALPN4dzD6EnZuWAACePXrJWKQ3g/YWXAyJB4bYfry12M5TC45m0KIuKzHy9JoRC0kISP4tzaJAEIDl12Ow9xwAC872chYIc+hsB0if8qnThth+8pmTyF1osvlVVRCNlFEocNyXu3c9oNWAyVMzHor3xzF49SAA4NQvTyGgTkFVBQR7+OzZHowFjer34vgsUfIAIAgo54nQwO3c8PFZZDiNkS+aorF5cmbWnamLO0a+3m/Z79neFQ1CEMj/W21bZYYKr3FOhMSkg0RCM8a84GQ8zCRtxMgbznZOrhnNuH/zUgDAXz397qzpSUbLCQ4LMHymQ526ckauf3PpdSRGvtUcqRTIV457tgPAim0rEIgEkL+YR6nrJuJsV6cXeKlFIrZrIV9sXwyE06S43Y+R5xt/Z9rHFt1eiu0y7cPM/kWDOjFzNhdr1KEaCYoIciYUGRs9Sg2qOkuMqQnqYOZVRPSZzlVLU1jZE0O5ouKXR0dbPo86MFKL4Abj5nVE/Dl8Idsy2jDHe4w8LV6y8DlDr6E8FG352GDZ9UjhHQAaRg46d7bTuDtmxfbu1cDkKaRXp7Fi+wpAAw79w6EZT6tOkvSQfD7Or3u5dx35OkeU/ImnTyCILOlRTqMPOSTaS/r+zdq3XYe637mdGz4+iwwjRt6mcEbFkXBAhCQKnh/XQpFwWHzAW4w8XV8rNdVw4NqFzhHWxyQgiUjpRdxOouTpXOJl/WH0JbdZkEIpcBwZTn+nnIXrqdGzPcjHvGjGH9yxFrGQhDfPZfDkW63XYDwXYPhMp6lTd9kWoDwFTJxo/iI5T77OIrZTZzvLYnsgEiBrdABnLq4FCpeAS4enPUct6WMRjM/34fksAHad7X6MPJvwpe75tB0aG5SXq1Cq9iO3zFCxnQfBiIqAdp3t+TJdqPF34TQL5kWLC3pDVF0EDmaf6VHyu2eJks8uonkxkIzg8sEENA146cR40+fQxT6vTn8jQaU09+YX7/3rfVqw/AZI1Sl0d09h8vik4VCfgaZZ6tnOrMjYs4YUEzz3l7jmt4iY3CxKvjJ6AQCQz8fYLSyYi+QQiSIcm6Nv+1MnEZbyKBaj9T6DHGLu2z4XRtGJ72z38eGCesGzXbGdzwhkpxHZJc761ydCAcPNnXUYJW/MEQ5E1R49mnjSgYkkz5m4TIsGnMbI02sNj8KqESNvYWxKhrOd3232vkQYn9i+GgDwtSffQa2FqabIScsJn7kJd+lOXXMP6qXXkq8XXm/+IkUXmGeJkafOdtbXrnQNevCFBBCIzIiS13SxXZilf70PP1CxXZ6S53gmwY+RZxN+7wJ82kIqYo7ccte33XBnciA0d5li5GeLU2qEJ3d/I2ZXhFVnRT0unL/x8GnOLj1K/pkjl1q6LOi8WCztBWiU/AtN+rbL1ZpR6MSLm6KRes/2uTe/6DWU1/71Pi1Ydh0AYO1VUwCAS4dbRMlXioBaBSLppg8zHyN/xf3ADf8aeP4vcW32Y7jjzr2YeusExo5Ov3ZUx4nYLtdSEAOc3voLAnG3H38aKE7MeHjVbasgSAImT0wiGi0RZ3uK0SILC9gR26mz3Rfb+eYrX/kKbrjhBiSTSQwMDOADH/gAjh49Ou055XIZDz30EHp7e5FIJPDggw9iZGS6c+3MmTO4//77EYvFMDAwgM997nOoVp3HUvt4D422tu9s59OJ6LSHfV0442M8RFFwLarSOcJDfDo1kUw4crZz1rPdZYy8MS84KT4w06evEY6N5ud8bonTa2gjv3frWiQjARwdyeHxNy80fQ51tvNy/fRpjSEemmPk472k3dn5Xzd/kay3PZtFYDbW6Qz3bAfqfdtPPHMe2sqbgRMNYntZv7ZEfLF9MWC7Z7u+J+o729mC0x03n3YhioItIWQ2qIuZB8GIOm6rqmZUwVshx5G7vxFBEIxKVqsLehoJvVhEVR/gPcu7sCwdRVGp4bl3mkfJ153t/J0nzdi+Vu/b3kRsN1fV83DtbAbd/Do/VZrzuXnOXf4+LYj1AD1rsXYjSX9o2be9THqgNevZrqkaShNkjjErMgZCwP1fBf7oAIQtH8PNN/8an/nM36L4/T8BcnWBTJ0cBgBUpe6FOtL54aZ/A5x7Dfj6JmDPF4B8/TMlnApj2Q3LAACxWAmlUpTr3mdOnO3MJjz4WOK5557DQw89hH379mHPnj2oVCrYsWMHCoWC8Zw//uM/xmOPPYYf/vCHeO6553DhwgV88IMfNB6v1Wq4//77oSgK9u7di+9+97t4+OGH8YUvfGEhfiWfFphbednBiAjnzInotB91qUKKW3nqX0/3LLIO+pQDZgcz+2NC2yNOFh2I7Qo1jfBxH2GI7U6d7TK/zvY7rhwAAOw9NjZnizOa5hjh6JrRjK5YEP/mtssAAF/f8w4qtZmJp76zffFAk8JmiIfLtgDn9zd/kQ1nO8sx8gCwdMtShFNhlKfKyEa2AKf3AhXTWCkFaBogRf2e7YsBpzHyPO9b8IgvtvvYxliYOKgCNlMXSdi/aMRCEgK6i9tOlLwRgczJQq2RhE0ngeFg5mBO+FhDEATs3ESi5H/eIkqebggtliKMmy7rgSQKOD1exNmJ6UKJEVsYkrjqp2lmm15s8MK7YxjNzR6vlOX8GuozC8tvwJKB8wCAkTdb9AwsZ8jXJj3bh98YhpyREUqE0Lu+t11HOT+klgD3/gXeWf9jvPzytRis/BzaX70H2P1/A5lz0LIjKBYjCMSjC32k7eWa3wY+cwjY+vvAq98G/ttm4InPA1ny2bL6ztUAiNguVxMQBD6voUBdbC+Nz120ZDjbWU148LHEE088gY9//OO46qqrcPXVV+Phhx/GmTNnsH8/2QjNZDL41re+ha997Wu48847sWXLFnznO9/B3r17sW/fPgDAk08+ibfeeguPPPIIrrnmGuzcuRNf/vKX8Y1vfAOK4m5d6OMd1F3q1MnNg5Bqxqlrl8fxSDqM1KfUY+TZv+/ujjsX2/O8OdsjztIfKDwlHjSytj+BywcTqKoannq7dY9yAChxVIwyF5/Yvga98RBOjRfx4/3nZjzO07XCZ3bC6SYx8gBJort4AKg1ua4Yzva5e7az7mwXAyJWvXcVAODEiVVAtQyc3Vd/glKAooQQjLH9e/pYwyhOaTxfWmA42xfJXjgv+J98PrZJ667DKYcV0RSehGZBII7/8YKCbKmKJTP39Zti9K3nYAyakYgEgIz1hZvfs31xsnPzEvztCyfx1NuXIFdrCAemL1DphtBiKcJIRoK4ZkUa+09PYu/xMfyLnpXGY3QseHZyXzGUxNXLu3DgXAY/ff08/rVeOd8Mv2f7Imb59Ui++SNIUrW1s13Wne1NerYfe+IYANJHTeJkU2zdg1vx0z+4Ay++eD0+9S0RXQe/B7z2bcQDfZgqxBaHczneC9z1BWDbp4GX/wfw8jeBV78FXPdRrLv5g3gBRGxXxlpv7vAAFdszZzJzPtePkV+cZDJkbvT09AAA9u/fj0qlgrvvvtt4zpVXXomVK1fipZdewtatW/HSSy9h8+bNGBwcNJ5z77334lOf+hQOHz6Ma6+9dsbPkWUZslwvnMtmyXW5UqmgUnG3lnQD/dkLeQztIhIghUS5sr0xzukt4iJBkatxobeIVseDPqdUIfeYQVHjZjyo2D6ZL9v+nSo11WhlFRLYH5OuCLn3G8/ZH4ucLtBHXZwrnXQNigWJBytTUhwdD93rCXF0rpjZsWEA74zksfvgBbz/PYMtn1c0xsH937WT5kczQiLwb25bg//086P4q6ffxfs2DyJsalWV1/f1IlLn/g4+1pltPtL1Q3GiOO1xYfBqBKolVC4eBAY3TXuNUJxCAEBFDAMt5oecJ/eOYpj9e5KV712Jdx57B4eeVXHN3f1Q330a6ortAABNKUBRg8z+np1+reo0AglyH1aesnbvQXu2I7i4x7hT5pnVn+/vTvvYhjrbpxxUAVNqqmZE2/HgbAeI63a8oNhztnMegUxF80tzuFMBQNM0w6XK63j4NOfaFWkMpSIYzpbxwrtjuGvD9EVsdhEWYWxf24v9pyfx4rFx/IsbZortvIvL//yGFThwLoN/fO0s/tWta1o6UPMyP+1IfGyybAtEVLFkySWMvJmEpmkz58kszvbjvzgOAFh739p2H+m8EYqHcOUHrsTB7x3E3pdvxM6//PfAa9+G8MzXMTrau7jE1FgPcMfngW1/ALzyP4GXvoGV8nfxwG9sQDxeRAUWqyIZZeUt5HPj7Uffxn1/dR+i3a1TDWhPxEVRjOEDAFBVFZ/5zGewfft2bNpENkCHh4cRCoWQTqenPXdwcBDDw8PGc8xCO32cPtaMr3zlK/jiF7844/tPPvkkYrGFj8zcs2fPQh+C55waFgBIOH76HHbvPmP5dS9fIq/LTY5j9+7dbTu++eZsHgACGMvkbf1eU/kSAAGv7duLiwfbdXTzSykjAhCx97XXgbOardcWqwDdPnz+mT0IMJ6ROXKezPeD75zEbvW4rdceOknGcfjsKezefcLVcXTCNeicPhZHjtn/fTQNyMsSAAH7XngORzi8lYgXACCA545ewqOP7UakRY3uhUtkHN46+AYC51/35Gd3wvxoRY8KpEMSLmbK+MJ3f4H3LqlfU85eJOfIO28dxO5Lby7cQfp4SrP5ODxC7v+OHTwGeXd931eqybgfAg794u9wpu/2aa9ZPfoyNkPE7iefBVrs84yeJ+3A3jzyJk7vPu3Rb7AwlAIkaezUc2dw7r61SL7xMzxXvh4AsHxyGEo0iJMjJ1HcPXf7r06lk69VnUT5PHG050Zzlu5Jyzny/BdffhHhMxx+wNpkoedZsWjtHPV3p31sQ53tky56ttM+VwA/ohGNuLbTAy1f5idKvxnXrkzjNd2d+4Frl8363FKlhppKbtBTfj+SRYUoCrhv0xAe3nsKuw8OzxTbaXuBRRSds31dH/76mWPYe3xsmohI0x94vWZQHrh6Kb78+Ft491Ier5+dwnUrm/eazi+y1AMfE4OboAUiWL58GOf2LUX+Yh7JpQ1uZSq2N/RsL2fKOLv3LABg3b3r5uNo543Nv70ZB793EId/cBj3fu1eiNv/CAeP3IzH//wxrL1vES7QIl3AbZ8DbvoUhNe+hQ3lv0QwWOO+f/3qO1Zj8D2DGHlzBPv/x37c8u9vaflc2rN9URVjLHIeeughHDp0CC+88ELbf9bnP/95fPaznzX+nc1msWLFCuzYsQOp1MzUkfmiUqlgz549uOeeexAM8nV/qbxxAT88eQipnn7s2rXF8uvG9p0Bjh/B6uVLsGvX1W08wvnl1HgBXz34ImpCELt23Tvn8+ncqAkBADXsuOt2rOpZ+MIQL3i2eBCHJi9i1forseuWNbZeO5wtA68+j4Ao4IH7dzLfiiX/2jk8fuYtxHsGsGvXdbZe+8tHDwHDF3D1xiuw6zZ740jppGvQ5Mtn8PiZI0j3D2HXrmtsvVauqlD3PQUAeGDnPVyaJjRNww/Ov4hT40WEV1+HXZuHmj7vmyf2Avk8btl6I25Z565FVSfNj9koDZ7Dn/3sLTw3GsV//OgtiOmtBL51Zh+QzeLmm67HnVf0L/BR+rhltvn46slXMfz9YfSn+rFr167pLxz+Oq7urWBTw/fFl45BGEti1/33t/yZ5//DeRRRxNbbtmLNnc6us52Cpmn4q7/4KxRHiwgP7UTX0T/HrttvAmK9OP3Md6CUg7jq2qtw464bF/pQbcPKtapTKFwq4MhDR6CWVOy8byeEWVqDapqGA8oBAMDdO++eude1iOiUeUYT2ubC3532sY3Rs92Fs50KJCFJnBEZzSpU7HHibOfVlXnr+n78r1+dxK/eHWvuOjRBBVVJFBAN8jEnfKyza/MSPLz3FPa8NQyluhkhk11iMTrbr13ZjWhQwlhewdGRHK4cIhvSvF8zKKlIELs2LcGjr5/HD18721JsXyxOf58mBEIQllyNyzaMY98+YOTgSHOxXZCAUHzat08+cxJqVUXv5b3ovowv0fWyey5DrC+GwqUCTjx9AuvuXQc5X4OqSotbTA0ngO1/hP3PbMCF//1dCFfcsNBH1FYEQcC2P9mGn/7OT/HK37yCbZ/d1rJdAo2R953ti4NPf/rTePzxx/H8889j+fLlxveHhoagKAqmpqamudtHRkYwNDRkPOeVV16Z9n4jIyPGY80Ih8MIh2fOrWAw2BGbcp1yHF6SipHxLio1W7+bXCNFz/EwX2OSjpNkj4JSRSAQsCQSaxpQrpAUvlQ0zM14dOn7OEVFs/07KSopzIqFJIRC7N9P9CbJvMiUqrbHoqSQOP2uWMj13OiEa1BXXL9mVFTbx5JX6nuCXfEopFmEA5bZuXkJvvnL43jy7Uv4wHUrmj6npLdZSEbdzwtKJ8yP2fitm1bhb188hdPjRTzyynk8dAcpYi5WyFjwdP30aT4f471knV3JVWb+rZddB+HiGxAbv18tAaHkrHOD9qqOdcW4mENr7lyDwz84jGNHV2AAGoJnXwQ2PQhJK6FSCSKSjDD9e3b6tapTSPQlyP9ogFpSEUlHWj63ptSg6YZEXs4Dtyz0PLP6sxkPf/JZCNK6u3Sq4NzZzqNA0kWd7WUnMfL8jIOZG9f0IBwQcTFTxvHR/KzPrfdrt7YJ4sMXW1Z1oz8ZRrZcxYvHx4zvV2oqigrd7OLzPGlGKCDixjWkj+oL79bHo96/nv8brQ9dTzYyHjtwEUVTGoqZnFF8wP94+DRh2fVYOnQRADDy5sjMx+Us6dfe8JlC+7WvvZefCHmKFJRw1b+4CgBw8Hsk99bvyV3n2t/fjsC1D+LGP37vQh9K29n0W5uQXJpE7kIOh/7hUMvn+c72xYGmafj0pz+Nn/zkJ3jmmWewZs10l9CWLVsQDAbx9NNPG987evQozpw5g23btgEAtm3bhoMHD+LSpUvGc/bs2YNUKoWNGzfOzy/iMydx3VlYkGu2XlfS77djLQpzWIWuszUNxppiLqoaoO9vIsrReKQc7FdQijKdH3ysx3ri1EDioEe5vi6Jc1L8TNdRdJ1pBzoWkaDIrdAOADs3kYKyZ4+MGtfKRuj3ebpmzEVQEvGZu9cDAP7Hc8cN4xHtXx8PL56xWKxEuohYWJ4qz3xw2RZg5C1AaYhelvOkEHoWKrreEIzzsc+z5i5y33306SzQfyVw/FkAgKiVoShBBGN8/J4+sxMIBxDQ97ULlwqzPrdiMnIGFtFeOA/4YruPbdJxD5ztHPbZpYtXO852HosOzESCkiEYPvfO2KzPzRrx2P5NxmJEEgXcdxVZxP784EXj+3nTop+n64UVtuvxc3uPjxvfWyzOdgDYelkPVvXGkJer2H2weS/YPOfXUJ85WH494qExxOMFXDp4aebj5cyMfu2apuH4E6Q357r7+IqQp2z+7c0AgCM/OYJKsWKIqb5zGYj3x/HB730Qq25btdCH0nakkIQb/y2JI3zpv74ETWven9d3ti8OHnroITzyyCP4/ve/j2QyieHhYQwPD6NUIn0ku7q68MlPfhKf/exn8eyzz2L//v34xCc+gW3btmHr1q0AgB07dmDjxo346Ec/igMHDuAXv/gF/vRP/xQPPfRQU/e6z8JAxY1Ci0LFVhQNoYive6pwoC4C0vvouTBraTwlrtHCAyeiKi18jXEinnXrwsZEwf6eVl7mS2yn1wyr54cZWtQT5+y60cjmZV1Ylo6iVKnhuXdGmz7HENs5umZY4f1XL8P6gQSy5Sr+9lcnAAAFha/iHJ/WUGduOdNEbF96HaDVgOGD078v54DQ7GK7ol+bQ3E+ioFpFP65fedQW3kbcOKXgKZB8sX2RceSa5cAAE798tSsz6PpDoIotEyo8+lMfLHdxzZ0YTJlQ1RuxBCZOVmgAHVnux8jP53b1pMeTb96t/mihJKljl2/YmvRslPvf/bkWyOo1Ej0GC3CiIckBKTF9ZG1fV0fAGDfifEZ48FrGoYZQRDwoS0k4vYfXz3b9DlGOgjH11CfWVh+PQBg2bLhFmJ7dka/9vGj48icyUAKS1j1Xj4F1+XbliO9Jg0lr+DoY0frYmrKF8MWG1t+bwuCsSBG3hzByadPznhcraqo0tZOvrOda775zW8ik8ng9ttvx5IlS4z/fvCDHxjP+frXv473ve99ePDBB3HbbbdhaGgIjz76qPG4JEl4/PHHIUkStm3bho985CP42Mc+hi996UsL8Sv5tIAKgAWbwlmRU2e7IAjGWtuqyKynhCMkiVytP2gyVtbBPg6dH7yIqt26gJMtV1DV11lWKXC2h5PUne15F852XoowWiEIguFuf+LQxRmPa5qGYmVxCsySKOBPdlwOAPj2CycxnpfrxTmcfZ74zCTcRdaXTZ3tg1cBUhg4v3/695XcrM52TdMMoZEXZ3v3Zd3oWtUFtapiJL8RyJwFxo9DEspQlBA3v6fP3KzbRQwf7+5+d9bnVfVWu4Gon/7LGvysHHzmDdqzfcqVs52/+PT64tX6IiWvVwLzNA6N3HY5Edv3nRiHXG0d3UcX/Uk/DnrRcuPqHvTGQ5gqVrDvBHFz0/OJJkcsJjYMpdATD6Go1PDG2SkAi8/J/eCW5RAF4JVTEzjRpBVFbhEVH/g0oWsF1Egfli+/iNG3RlGrNHzGNHG20wj5Vbet4qZSvhFBEAx3+8HvHfRj5Bcx0Z4orvndawAAL33tpRmP09QDwHe2846maU3/+/jHP248JxKJ4Bvf+AYmJiZQKBTw6KOPzujFvmrVKuzevRvFYhGjo6P46le/ikDA/wzuJAyx3WJkOqXEsTiSsFmAQMV23uKgaYKcm7hwXsaEtkbUNHtmCcDk5uZEbKfrSrsFOkC9vQAvRRizQY0BT799aca+VqWmoab3nuDlHLHDvVcNYfOyLhSUGv7mmWOo1MhYLIZ5sdihznY5I898UAoCS94DXPj19O/LeSCcbPme1VIV0AO5Qgk+1q+CIBju9iOv9wJiEDjxLAKijErFd7YvJtbvIq03Tjx1AtVZPneNgpNFuBfOOr7Y7mObtP4h4KS/FYUKRjwJJE6c7TljHPi9eF4+mMBAMoxyRcVrpyZbPs93tvsEJBE79Ch5GhtOndyLoUd5I6IoYNtaEiX/4jHShmExXDPMLOmKGgU7P9p/bsbjRjoIR58lPjYQBAirbsTylSOoKTVMvDsx/XE521Js57Ffuxkqth/7+TFMnZ4C4Iupi5Wtn9kKCGQujL41PWWIFmJIIcmPp/Px4YS4fi4rVdVIRrJCgeN+w1Rstxsjz1scNF1nO+rZbjjb+RiTgCQipa8f7O5r1dMJ+RgL4/xQqlDV5i1nWlHguEinkWtXdGMwFUZOrmLvsfFpj5n7uPN23bCCIAj4v+69AgDw9/tOG9/n8fPEZzq0Z3u1XG0uHC7bApxvENuVPBBqLbYr+bqxjyehkfZtP/b0MLDiRuA4Edv9GPnFxdA1Q0gsSaBSqODMr860fB7t2e7PDfbwxXYf25id7a36P84FzzHydhaviyFGXhAE3KpHyT8/S5R8zu/Z7gNgF42SPzyMak01Eg8WaxHG9rUkSp6K7YsxNv2fX78CABHbG2Meefws8bGHsPx6LFs2DEFQMXJwZPqDDc72SqmC08+RDSBe+7VT+jf2Y+iaIahV1VjE+c72xUnP2h5s+M0NAGa626mz3Z8bPj78YHbbUtepFUqcxYSbsduTmjrbeRMQ3TjbizKNC+dnfvToCUeTNhIbNU0zHOC8ONupAUbTYEShW4XGhfMyFrMhigLuNYwB06PkS/q4BUQBocDi3Ga/bX0fblzdYzj8Q5K4aMdiMRFOhQE94bqpu33pdcDEcaBkMl7J+Vlj5Gm/9mAsCEHkJz57zR1EbL/4+kVUltwCnPoVQkG/Z/tiQxAErNs5d5S8OUbehy38Tz4f21Bne6Wm2Y6no+Q4dCMaleJ+z/YZ3HY5EQx/9c5Yy+cYceG+2L6o2XpZL7pjQYwXFLxyamLRObkbuUXv2/76mSkU5OqijE3//9i77/C2yvP/4x8NW94ry7Hj2Flk75CQAQQIJGEVCFDKCpRCCwEawir8WkbakrL3KKNQdr8FApQRkjASCFmQvfeOneF4L9k6vz9kyTaxHNmxJfno/bouLmLpWHos3T4+j+7nvp9xvTsoJTZSBwrL6yzYqah0qbzS/Wko20+EsfRhirSXq23bXOWs+mWyve6e7Tvn71RlWaUSOiWoXZ92AR5o4PW/on+dr6lsD18jbx8pSVr11ioV5dRsyeHdYsAkLRoBSBG1EhxFFf4nVUtM1ia8trioxu1JXeFyf7gfZbIKVc/8oSmV7cUmq2yXpKTqIpIjxf4n28srXaqsTiaaJcHssFtlr05oNXbfdk9LfbMtTPFlQvW+7XPW59TpHOI9f5rsnNEYtavbJSnGJJ0f0DCL1eKdY9a7b3v6EPf/9y2vua2iUIr0nWx3Fptrv3aP+LR4te3dVjKkPYd6SOUFio0poY18GPK0km8o2U4b+daLZDsaLTrC5p3AN2ZiUpt332ETJUi8le1+JtsrXfImisyeYPYkDNftL9DBwnpWO4q9l+EWYbPqrD7uSeyXq7NrtZEPz7jo3CZGGSnRqnQZWrK9ZvGBmRYqHUuk3aoLBqVLkv6zdLf39trVSeH0euAX0ofIkEWdOu3XgdUH6t73i8p2bwv5Cd1ksZhnlbwv/S7r5600kKheDmcZozLU6aROqqqo0tLnl3pv97RpZCEGYC6ehGhJI/Zg9rQJN2PSLN67j33j2sib7bXwfOZQVN74duGl3vgwzzV3Uyrba+9rbpYuEBaLxTuXKipv3EIMb2W7SV6LYxmelaI2sZHKK3Fq8baa7as8le1mXKzUGMO7pHi3gAuXmIDkSKxOtufXk2xP6SY5EqW9P9fc5mdle2Ss+eaunlby6xZGyaj+nKKiIpJke5jpOq6rrHarDm88rNytufUeQxv51otkOxrNYrEoOabx+5PX5rmIN1Ni1TN59fc1KavVFCDW5Ks+28Q51C/dXV34w5b6W8nX7NnOH5JwN7G6lfystdneDz/COS5qt5IP10r/X5/obiX/9foDOlTkXrDjWbQVE2mTzUTtxdBIjng5Y7spPT376GR7eYEUVVPZvnXWVknmbyHvkdApQVmnZnm/JqEa3k6adpIkaekLS70r5WkjD5hTbCP3KJdqkkVmSzBLNXNtf9une9rImy1xVrtdeGO6Hkjm3Jvb07Ext9j/z7Q8ldzREeaaf3gSo43dYsDzepilyv9Y7DarzurbQZL05ZqaVvKexShmO2c0xV3jeyo6wqY+aQnHPhimEJXk3re93sp2q1VKGyTtrVXZXl7Y4J7tZq1sl6Qup7uT7Tu+2SUjY4wkqaLCTkI1zEQlRqnzmM6SpC1fbqn3GNrIt14k29Eknn3bG7MKuDbvvsMmSrZ7KtuLK6rqtJTyxZNsj46wyW4z/6+iZ992X63kqWyHx6hubZUQZdfBwnJ9u8G9OMPs3R8aMrq6M8QPWw6FzdYTv9QzNV4DOyWq0mVo5rK9kqTC6kVb4fZa4GjWrBFKT9+vvB15Ki+o7p5SVSlVFHkr2/N25OnQhkOy2CzqekbXII42sGq3kiehGt56X9hbSVlJKj1cqpVvrpRU00aehRiAuXgSZ8WN2LPdU9keHWG+6ypPN73G7tlutpbQUbU6FDZm6ztJKjFhUjWl+jOtvEZ8plVksv3aPeKjGr9AR6qpbA+nluET+nWUJH21Nse7P3nN+TN8Xgdf+qUn6oe7T9MLVwwJ9lAQIFGJ7mR7vXu2S1L60JrK9spyyeUM28r2rLFZkkU6tOGQCmNOlFRd2R7GxUXhqvvZDe/b7m0jz0KMVsf8GT60CM8q4CMlTats97ZCNtEkpXaS2J8VwZ5ke7gkl0+pTrbP33yo3rZ1ngl/OCdV4RZpt+rM6lby6/YXSJISwng136hubSRJG7ILw7qt/qXV1e3/99NuGYZRsx1JGL4WqMvedYTatz+siIgKHVhTXd1e7j53ePZs3/KVe8Vwp5M6eVffh4Pek3rLHm2XLdKm2HaxwR4Ogshqt2rE1BGSpEVPLpLhMqhsB0zKU8ntb9t0qXabcPMli+I8r4e/yXbPongTvhaeOURjK5hLnOZLJiZXJ3JyG7E1oud3Ks5kyWXP53L+/o54FFf/soRTy/CRXdsoIcquQ0Xl+mmHu/0vbeTrahPnUEQYFBTBrcHKdsm9b3tRtlSwz91CXpIc4VnZHp0crY5D3At2NqzNUGWlTcVlSbKYqFMK/OPZt33Htzu8LeNr87aRZyFGq8NfPzRJchNWAddmxmS73Wb1/jz+tJL3zG/DJVE0JDNJMZE2HSoq14bswqPu98REOCYRcbSzq1vJe4Rb2/Ta2sQ51LujO2FoVK9TCZfzRm3nDUxTVIRVmw8UacXuvLBtqY96dBomq9VQWlqOclbnuG8ry3f/v7qyfetX4dVC3iM6OVqTv5msy7+4PKwWGaB+g387WI5Ehw5vOqxNn2+ish0wqdhGJs4Mw6ipUDVhssi7H3Uj28ib8bXwLGxvfGW7p6LbPK9JTbdG/18Ls1a2xzVxEYbnHGPG3xVfIu1WjevjaSWfLcnci5WAY2lwz3bJXdkuuavbK6o/C45soLK9yLyV7VLNvu2rP8vTI4/cqMOFGUEeEYKhXZ92SuycqMqySu34bsdR93sq22kj3/qQbEeTeCvbG7G/VW3eVsgmSxh5Wsn7M3ktq3KvXIs32UTNF4fdppO6uit0528+et92b8Uuq7YgaUyPtnUW44R7x4PR1dXtkmSzWkxVVeKvhKgInV3dtu//ftpdsx1JmJxD0YB2vVRpRKlTp/3KWVWdbPdUtkclqMpZpW1zt0kKv2S75K7mD6fW+fDNEe/Q0N+7P/Ba+PhCKtsBk/K2ka/wr418eaVLnsZjZqzMbHwbefc83Ywt9eObmlT1LsYwz2uSEuvp1tiIynazJtsdTWsjH257tnuc7W0lny2Xy6ipbDfhOQM4Fs+Cbp9t5BPSpLhUae8yvyrbD6x1d6pLzEps1nGGCs++7XuX7JXTGUmb8DBlsVgabCXv2bOd+Gh9SLajSZKOd892T0Wiw1wnDc/k1a/K9urPPsy24KAhp/Rw7z39fT3J9poq1fB5PeCbw27TuN7tvV+Hcxt5SRpd/bsjuT8MsVjCs83UJcPcq37/t3K/DhS6V06bqUMKmshqU1lMH6Wn79eB1dVt5GtVtu9ZuEcVhRWKaRvjbdsGhKsRt4yQ1W7Vznk7tfO7nZJItgNmE9PItumltZLyZkqmeniqsf1OtnvbyJvv4zLPwnbPQnd/mbFytymfaXl+p8w2/4hvZPcHDzN3xGjImB5tFRtp0/78Mq3ck1ezZ3uYvQ6AVKuy3Vcbealm3/aK6mR7A5XtexftleReMG5Gncd0ljXCKlUvciSZGr48reS3fLFFhlF3u11PG3kq21sf880eEBDJ1X8M/Ekq18dbkWiyxGpiIyavpZ4920224KAhJ5/g3rd96fYjdT7UcVa5vBOUcK9gRo2J/WuSYuEeF8OzUmSv3sfJbB/uNMaILinqnBKjovJK/fenPZLCa8ESGpAxTJ06ZevA6hz3RKXMs2d7orbMcu/X3u2sbuyHhrCX0ClBfX/dV5K0+8fdkmgjD5iN51qxxM/ksmc/7ki7VTYT/p30JhL9rmx3/9+MCw+aXtnuSbab5zVJqW5RfKQRe7YXmbSSu8mV7WG4Z7skRUXYdHpvdyv5WWuyVVZ9Do0Jw+5zwDEr2yUpfbC0b0WtOXr9yfbK8krtX75fktRphDmT7ZGxkXUWEphxb3r4p8vpXWSLtOnItiM6vOlwnfs8beTZs731IdmOJjmeynaXyzBtG3nPSnEq2+vXtW2s0pOiVVHl0qLtNX9Iaq+gDqfXAw079YR2infYZbVIHRLCe6/hWIddQzonSzLfIqXGsFotunSYe2Ky+YB7VXQ4vx6oEd3/ZMXHFyvSdUgFewpqVbYn1CTbJ3QL4giB0DHy9pF1vqayHTCXWG/izL828t79uE1alelJBDa2sj3KhIkz9myv4dkaMa/UqSqXcYyj3Woq283zOkg1Wy0UNjLZ7omLGJO9Hv6Y2C9VkvTFmv3eCn8q2xGOohLdn9Uds7K9PF/av9L9tY/K9pyVOaoqr1J0m2gld0tu7qGGDM++7RKV7eEsMjZSWWOzJB3dSp428q0XyXY0SbI32d74yvaiilqJVZOtCE5sVLI9/KpULRaLTjmhupX8pkPe2z2dAGIibYqwcVqCW1SETW/9boRevmqYUhPDO9kuSaO6u/dtD/fk8qShnVS76Io92yFJtqwRkqROnapbyZcXSBGxKjpUruzl2ZLcle0ApI6DOyrrtCzv11S2A+biSZr720a+xIRVy7XFNbJFdk1lu/kSZ97K9sYmVZ3mayPv+UzLMPxffODds91kvyverRYa3UY+PCvbJWlsz3aKirBqd26pftpxRBLJdoQnT2V7WX4Dyfa0we7/b5/n/r+PPdv3LHZ3L+w0opOpt07sekZX779Jpoa37hPd+7Zv+WJLnds9yXbayLc+ZLXQJN5VwE2obPdcwEfYLHLYzRWCNSvFjz1J8cxvE8IscXZyD3cr+dr7trNfO3wZlJGkcX06BHsYIeGiwZ3UpW2szh2QFuyhBFXHxGidUr0lhUQ3DFSL76BiZxulp+9Xzqocd2V7VIK2zt4qSeo4pKPiOvjeGw4IN7Wr2yPjqGwHzMRT2V5c0bhku1kTRZ7F7f4uPvAk26OpbPcqKTffgowIm9W7aDfXz8+1Cr0V/uZ5HaTGb7Xg4TnHmKnjgb9iIu0ae0J7SdLi7bmSzHnOAI7Frz3bo5OllG7S7iVSRIxkrf93xbNfe/qI9GYfZyhJH57uTbKTbA9vnn3bd8zboYqimmsRbxt54qPVMVemEwHj2bO9MftbeXhbyDvsplup1pjK9tIwbCMvSaO6tZHV4m4BvS+vVFLNZD/c9+UGGtK5TYy+vWOsJo/KCvZQgu7SYRnef3vaHgIljj41le1l+VJUorbOcifbaSEP1NVjYg+17+/+kNjMbRqBcOSpMvU3uVzqrG4FbfZke0WVXH60C6+o7kBnxsUHTdmz3VnlUkWVewWC2SqYk6v3bfe3iKS41mdZZuKZTzU22V5i0j3s/TWxf2qdr816DgUa4tee7ZKUPkSqKvfZQl6qVdlea09zM7JF2pR5SqYkkqnhLqVHipK7JcvldGnb19u8tztL2bO9tSLZjibx7NleUFapyuqJl788EzszJpkTq9t7eNqiN8S7Z3uYJYqSYiI1oFOSJOmHze5W8gXVMZHAHxEAfhjXu4NSqj8cS6CtEqoZaUPUsWOODq7ZJ5UVyHDEa8tX7nZc3cd3D/LogNBisVp01ZyrdM38a5Q6MPXY3wCg1YitlVz2h7ey3aRVmbU/d/Cn2t9p4jbynvm2P59XeJTUiiOzLUDwJNtzixvXRt5sn2U1dqsFSaqorFmEYaaOB41xeq/2iqy1DaLZfj8Af/i1Z7skpQ1x/99Rf7K9+GCxjmx1b8mQPtzcle2S1ONcd0VzYufEII8EwWSxWLzV7bX3bfdUttNGvvUh2Y4mSaqVFC1o5L5OntWy8SZMMreJc7fPWbUnTxWVDS9CKAvTynZJ3hbQ86tbyXsm+7SRB+CPSLtVf/1VP53Zp4PG9mwf7OEgREQPOFkREVWy5m6QUZKn8vIolR4uVWR8pDqNNPfqeKAp4jrEKfPkzGAPA0Azi3E0dc92cyaKHHabImzuanV/KnfLTdxGPt7TRr4Rn+GUVNRsAxhpsm0AvR0b/axsLzJpG3lPpX5jKttLay3CMOu541jioyI0pkdb79dmPGcAx+KtbC8ol9FQ95j0oe7/+6hs37vE3UK+ba+23sc0s2G/H6ar5lylU+87NdhDQZB5ku1bvtgiw3D/Dnn2bKfzQetjritlBIzdZvUmRv2dmHgUmbiy/bRe7dU2zqHduaV6a9HOBo8tq25PF44J5lOqJyQ/bDmkKpfh7XZAG3kA/jpnQEe9cvUw07VxRNPFDRqtqiqr0lL3quLIIRUccv+d7Tquq2x8+AUACBOea6MSPyvbSyvMtx/3L3mTiX4kmT0vmxmrVBM8beQbsWd7sQn3a/dIqe7Y6O/2iJ7XIs5ke5Q3Zc/2oupFGJF2qyJs4fvR8oR+Nd2BwnXRAcKbZ892w2XU2XP6KKn9JYtNcsTXe/eeRe4W8mbfr93Dareq67iuJFOhzFMzZY+2q2BPgQ6sOSCJNvKtWfheEeG4Jcc0bn8rj0JPFbMJEyRxDrvuOOsESdIzX29u8LXxzPPN+Docy8CMJMU77MorcWrN3nzvnu3huPAAANA8LJExOlKcpvT0bLkKcnV4t/sPbfcJtJAHAIQPT8LH38SZt428iRNFnkpkfyq6nVS211Fq4s4Hnu0Rcxu5Z7vZ9q5vzGIUjxLva2G+uGiMs/p0kN3qXuAbZcJzBnAs9ii7bNXngbL8BlrJR8ZIHfr4rmxf7K5sN/t+7cAvRURHqMvpXSTVtJKnjXzrRbIdTZbkabnl5/5WHkUm3efK45JhGeqVGq/8Uqee+XqLz+PCuY18hM2qUd3bSJK+33ywprKdFVsAgONQZO+lTp32y1Wcr9yd7uuTbuO7BXlUAAAEjrey3c9ke2l1haoZk6kemW1iJEnLdh455rHl3j3bzTdPT4j2LDpoRGW7ieMjJdb9+UOen59pmbWNvOfnqahyqbzSv44YxWHQEcMfSTGRumx4hjokODSgU1KwhwMEnMVi8Va3H6bM2QIAAQAASURBVHPf9jP/Ko3+41E3Gy7D20Y+XCrbgdpqt5KXaCPfmpFsR5N5VgE3to28J7Fq1ta/NqtF/++c3pKkNxfu0PZDxfUeV1o9h4kP09bpJ/eo3rd90yH2bAcANAtXh6Fq2/aIIo3DKi11qG2vtkrKTAr2sAAACBhP4qy4okquhvZPrRYOle3j+7pbPX+xZn+DxzmrXHIZ7ipVM1e2V1S6VOb0L6nq2bPdbAlmqemV7Wb7LKv2z+Nvdbu3st1kLfWb4q+/6qfF945TSmxksIcCBIV33/b88oYP7HaalDX6qJsPbTyk8vxy2aPt6tC/Q0sMEQhp3Se6uzHuWrBLZXlltJFvxUi2o8mSq1fX5Ddivy+pZjWwmZPMJ/dop7E926nSZegfX64/6v7ySpeqqifxZpuo+euU6mT7sl1HtD+/VBJ7tgMAjo+jn3vyHhFRqfJyh7pNoKodABBeare4LvEjoeo5JibCvPNST7J9+a4879yzPqW19rk34+KDeIddFvfHEN4iiGPxLsYw4eIDT3LUn60RXS7DW81ttoUHNqvF27nAsy/9sVDZXsPi+aUCwlRUojvZfszKdh88LeTThqXJaidVhfCT3CVZbXu3lVFlaOucrd428lS2tz6cwdBkyU2sbPeslDV7FfP/O7u3bFaLvlqbo0XbDte5r/b+eeGabO/cJkZZbWJU6TK0eFuuJPPHBACgZbUZPlylpdVt7Moc7NcOAAg7URFWVW8h7Fcr+XCoUO2QEKWhmcmSpK/WZPs8rrR64YHdalGkCT/wt1otiqtOjhb62Uq+pNycCWap5jOt3OJjf6ZVe+GKGT/D8fxMheV+xkWF+c8bAPzjqWwvyilq0vfvWbRHEvu1I7x5Wslv+nSTXE73nkbs2d76mG/2gIDx7tle0rjKds/FuxknKLX16BCvy07MkCT9/fP1dVr4eff6irTJZg3fVbCeVvKV1a8Ne7YDAI5HVHK0sg+7//Y6XdHKPCUzyCMCACCwLBaLt7q9yJ9kexi0kZekif3c1e1f+pFsjzJhFbeHZ85d4Gdlu5n3bE+O9f8zLU8LeavFvaDFbOKqCx/8bSPvqYCnsh1A2vA0SdKWL7c06fs9le3s145w5km2b/zfRu9ttJFvfVrkCnHv3r268sor1aZNG0VHR6t///766aefvPcbhqH77rtPHTt2VHR0tMaNG6fNmzfXeYzc3FxdccUVSkhIUFJSkq677joVFTVthRRahmcVsD8tt2oz+57ttd125gmKc9i1em++Pl6x13t7URi9Bg05uUfbOl8nUNkOADhORZaekqSk3llMTgAAYclThVxSceyW0J4EsxmTqbVNqE62L9mRq4OF9e8rW1rhriQy82vh6Sbnd2V7hXnjI6XWZ1q1iyPq4y2YcNhN2TY83uH/Ah2pprI93D/TAiD1mdRHkjvZ7mxkQV5FcYVyVuVIorId4a3zmM6KjItUeX7NNaqdPEmr0+zJ9iNHjmj06NGKiIjQl19+qXXr1unxxx9XcnKy95hHHnlEzzzzjF566SUtXrxYsbGxGj9+vMrKavb2uOKKK7R27VrNmTNHn332mebPn68bbrihuYeL4+CtbC9u2p7tcWFwwmgb59BNp7n3i330q43ePeBqT9TC2chubWSvVdnPnu0AgOMVNXCsJKn7hSOCOxAAAIIkprq1c6Mq2028Z7skdUqO0YBOiTIMafa6+qvbayrbzVe57OGZcxeUNi6pasYK5qTqZLvLkAqOsfjAU9lu1uSyt7Ldz2R7TWW7+RZhAGic1MGpSspKkrPEqS2zGlfdvv/n/TJchuLT45WQntBCIwRCny3Spq5ndvV+bY+yyxLG3ZBbq2afQTz88MPKyMjQ66+/ruHDh6tLly4666yz1K2bO+FoGIaeeuop/fnPf9avfvUrDRgwQG+++ab27dunjz/+WJK0fv16zZo1S6+++qpGjBihMWPG6Nlnn9X777+vffv2NfeQ0URJx7tnu0knKb/029FdlJ4Urf35ZXr1+22SalW2R4X3xCQ+KkJDOifX+RoAgOPR/abfyXn55+p+xfhgDwUAgKCI81a2+59sD4ekmae6fZaPVvLe18LEbeQbW9le7N2z3XyvSaTd6v1dOVYrebMXTHi2nij0s418zZ7t5nw9APjPYrGo96TekqT1H65v1PeyXztQw9NKXmK/9taq2d+1Tz/9VOPHj9cll1yiefPmKT09XTfddJOuv/56SdL27duVnZ2tcePGeb8nMTFRI0aM0MKFC3XZZZdp4cKFSkpK0rBhw7zHjBs3TlarVYsXL9aFF1541POWl5ervLymzUJBQYEkyel0yulsXOV1c/E8b7Cev6XFR7pX1+SVVDTqZ/RM6qLtFtO+NrXZJN1xZnfd9t/VenHeVl00uKPyStyxGhdpC4vXoCGjuqVoyY5cSVK03Qj716O5mf08hKYjNhBKmj0eu4wgtk2CcxUCJRRijThHc/EkzovK/Wgjb+I9uX9pYr+OemTWRv249bCOFFcoOTayzv1lnsp2E78WNXu2+9tG3ryV7ZJ73/ai8krlFleoS9tYn8fVLDow5+vQ6Mr2MDpvADi23pN6a+HjC7XxfxtVWV4pu5/nSvZrB2p0n9jd+++IGAoSW6Nmv0rctm2bXnzxRU2bNk333nuvli5dqltvvVWRkZGaPHmysrPdK4g7dOhQ5/s6dOjgvS87O1vt27evO1C7XSkpKd5jfmnGjBl68MEHj7p99uzZiomJaY4frcnmzJkT1OdvKYfLJMmuw0Vl+uKLL/z+vrximySLflr0g3ZFt9ToQovFkDLjbNpZVKU73vhW6bGGJJuK8w436rUzI2uhJNllsxj6ds5smXD7s5Bg1vMQjh+xgVBCPMIXYgOBEsxYKykpCdpzw1y8le2NaSMfBkmzLm1j1Ss1XhuyCzVnfY4uHZZR5/7wqmz3t4LZ3J0PkmMitTu3VHnH6NhY00benK+Dp/NkcSPbyMeadBEGgMbpNKKT4tPjVbi3UNvmbNMJ557g1/dR2Q7USEhPUIeBHZSzMkcR0STbW6NmvypyuVwaNmyYHnroIUnS4MGDtWbNGr300kuaPHlycz+d1z333KNp06Z5vy4oKFBGRobOOussJSQEZ88Pp9OpOXPm6Mwzz1REhPl+QQrLKjV9+Tdyuiw6/czxivJjQupyGZq6yP0B1rnjz1DbOEdLDzNkdOyfp1+/skSLDlo1sV17SQfUtXOazj57QLCHFlSGYagoebPaxTt0zsjMYA/HdMx+HkLTERsIJcQjfCE2ECihEGue7mzA8fJU3/pTpVrqTaaGR9JsYr+O2pBdqFlrso9Ktnsq28288KCpyXazJlWTq7dHzC4oa/A4bxt5k74OcY2MC09SPsakiw8ANI7FalHvi3prybNLtP7D9X4l2wv2FKhwX6EsNovShqYFYJRA6Otxdg93sp3K9lap2a8SO3bsqD59+tS5rXfv3vrwww8lSamp7j2ycnJy1LFjR+8xOTk5GjRokPeYAwcO1HmMyspK5ebmer//lxwOhxyOoxO3ERERQf9gLhTG0BKS7XbZrRZVugwVOQ3F+3ESKCxzyjCqvz8uWhEmXjH+SyO6tdM5/Tvq89X79cVad3wnRkeaMjYa695z+gZ7CKZn1vMQjh+xgVBCPMIXYgOBEsxYI8bRXDyJ8+JjtJE3DEMlTnNXLv/SxP6penLuJv2w+ZAKy5yKj6r5vfO8Fv4UErRWCdU/b0Gpv3u2mzup2is1XvM2HdTjszdpTPe2ymxTfyv5msp2kybbHe648LeNvNkXYQBovN6T3Mn2DZ9s0LnOc2U7xt9ST1V7hwEdSCwC1fpe2lcLHlmgdn3aBXsoaAJrcz/g6NGjtXHjxjq3bdq0SZmZ7orVLl26KDU1VV9//bX3/oKCAi1evFgjR46UJI0cOVJ5eXn6+eefvcd88803crlcGjFiRHMPGU1ksViUVP3H8EixfxM1z4W73WqRw97s4Rfy7p7QS5G2mp/brBM1AAAAAEBweFpde/bb9qWiyqUql3s1vJmruWvr0T5OXdvFqqLKpW821C3yKDN5y3RJ3sUFBX5WMJeafDHGrWf0UL/0BOUWV+ja15fqSHH97eQ9yXbT79nub2U7e7YD+IXOYzortn2syo6Uacd3O455/J7F7mQ7+7UDNVIHpWrqzqm64M0Lgj0UNEGzZztvu+02LVq0SA899JC2bNmid999Vy+//LKmTJkiyZ2gnTp1qv72t7/p008/1erVq3X11VcrLS1NF1xwgSR3JfyECRN0/fXXa8mSJVqwYIFuvvlmXXbZZUpLo61IKEmqbrl1rP2tPDwX7vFRdlnCcHPuzm1idM3oLO/XngkNAAAAAADNwVPZfqwqVU8Lecnc+5TXZrFYNLGfu2Pil6uz69wXFpXt0e7YKChrZGW7SSuYYx12/WvyiUpLjNK2Q8X6/Vs/q7zy6I4QRZ49yk2abI9vxNYTklRi8tcDQONZbVb1vKCnJGndB+uOefzeRXslufd7B1AjIT3hmJ0hEJqaPdl+4oknaubMmXrvvffUr18//fWvf9VTTz2lK664wnvMXXfdpVtuuUU33HCDTjzxRBUVFWnWrFmKioryHvPOO++oV69eOuOMM3T22WdrzJgxevnll5t7uDhOydWV7Xl+tiAr9LTeCuMk85TTuntft4Qo2uQAAAAAAJqPp4Pa/vyG96Eurk62R9qtstvCp/PcxH7uLQ2/23SgTvW/d/96E3/A6alszy/x7zOccGgX3j4hSq9fO1zxDruW7MjVnf9dJVd1xwePonL36xVn0nb6nqR5oZ/JdirbAdSnz8XurYU3frxRriqXz+OqnFXa9/M+SVKnk0i2AzCHFplNnXvuuVq9erXKysq0fv16XX/99XXut1gsmj59urKzs1VWVqa5c+fqhBNOqHNMSkqK3n33XRUWFio/P1//+te/FBcX1xLDxXHwVLYfaWRlu2c/qHCUGB2hJy8doKFtXRrfp32whwMAAAAAMJERXVMkSd9sOKAFWw75PK40TBNmfdMSlJESrTKnS99tPOi9vdTpTgxERZh34UG3du49ybceLPKritmTbDf7NgM9U+P14pVDZbda9OnKfXpizqY69xdXV3KbdStAz89V5GfHA09cmPX1ANA0WWOzFJUcpeIDxdr1wy6fxx1Yc0CVpZVyJDrU5oQ2ARwhALQc884gEBDeynY/V0UXetrIh/kF+ehubXR1D5cSosN30QEAAAAAoPkN6JSkq07KlCT96aNVPvduLwmDSu76uFvJu6vbv1xT00q+NAz2bO+UHKPOKTGqdBlasv3wMY/3xE6sSSu6axvTo60euqi/JOm5b7foP0trEkVFJt+zPT6qcW3kvdsLmPT1ANA0tgibev2qlyRp/YfrfR63Z5F7v/ZOIzrJYg2/bWYBmBPJdhyXZE9le7Gfle2e1lth3EYeAAAAAICWdPfEXkpLjNLu3FI99tWmeo8Jl6rl+kyo3rf9m/U5Kqveq700DPZsl6RR3dxVhD9uaTjZXlHpkrPK3U7drHu2/9KlwzJ06+ndJUn3zlyj7ze7Ox94kstmreT2/FyeCv6GVFa5VF7p7gIRG4bnDgAN6z2ptyRp/UfrZfxiSw6PvYvd+7Wnj0gP2LgAoKWRbMdxSayubD/SyMp2s05QAAAAAAAItjiHXX+vrtJ9/cftWrbryFHH1FRyh9/8fFCnJKUmRKm4okrfb3a32vck281c2S5Jo7q3lSQt2Npwst0TH5L5X5PabjvzBF04OF1VLkM3vb1MG7ILTF/ZHlersv2X+9X/UomzdlyY8/UA0HRdz+yqyPhIFe4t1J7Fe+o9xlvZzn7tAEyEZDuOi6eyPc/fPdurJyjxVLYDAAAAANBiTuvZXhcNTpdhSHd9sErllXWrVsO5st1qtXir279cs1+SvBXu0SavbB/Z1V3Zvn5/gXIb6FJYXN1CPtJmVYQtfD4+tFgs+sek/hreJUWF5ZX67etLdbCwXJKJk+21fq5iH9tOeO+v/lwvwmZRpD184gKAf+wOu3qe11NS/a3kS4+U6vBG92Kv9OFUtgMwD66KcFy8e7aX+lfZXuSpbCfZDgAAAABAi/rLuX3UNi5SWw4U6flvttS5z7MfdzhVLdc2sTrZPnddjioqXWGz+KBdvEM9O8RLkhY2UN3ujY8w2K/9lxx2m16+aqi6tovVvvwyHa5elGDWLo0Ou1URNve+ycfat93Tap6qdgC+eFvJf7hehlG3W8beJe4W8indUxTTNibgYwOAlkKyHcclybNnu5+V7Z428vEmnaAAAAAAABAqkmMj9eD5/SRJL3y3Vev2FXjvC5e26b4My0pR27hIFZRVauG2w2FT2S5JIz37tm895PMYz+KDmDB4PeqTFBOpN64Zrjaxkd7bYk268MBisXgXEniKZHzxLMJgv3YAvnSf0F0RMRHK25Gn7OXZde5jv3YAZkWyHcelpo28n5Xt5ezZDgAAAABAoJzdP1Xj+3ZQpcvQ3R+uUmWVS1KtNvIR4Tk/t1ktOquvu7p91pr9tV4P8ycRR1fv2/5jA5Xt3grmMP78pnObGL06eZiiIqyKc9jVJtYR7CG1GE+L/EJ/K9vDOC4ANCwiJkLdJ3aXJK37YF2d+9ivHYBZkWzHcUnytJEvqZDLZRzj6JqL9rioiBYdFwAAAAAAcFet/vVX/RQfZdfqvfl67YftkmpVLodxhaqnlfxXa3NUHCZt5CVpRNcUWS3S9kPF2pdXWu8xVDC7De6crNlTT9XHU0abOjaobAfQnPpc3EdS3VbyhmFQ2Q7AtEi247h4ku0uo6ZFfEOKytwV8FS2AwAAAAAQGO0TovSXc9wffD8xZ5O2HSxSaZjv2S5JJ3Vto6SYCOUWV3g/04iOMP9HZQlREerfKUmS7+r2cNnD3h+d28Soe/u4YA+jRcVHuT+nKz5WZXsFe7YDOLYe5/SQzWHT4U2HdXDtQUlS7pZcleaWyuawKXVgapBHCADNy/wzCLQoh93mvSDfcrDomMd72sgnRHFRDgAAAABAoFwyrJPGdG+r8kqX/vTRahWVkzSLsFl1Zu8OdW4Ll+Ty6GPs215TwRy+8RFO4vxsI5+d7+6EEEsRDYAGOOId6nZWN0nSug/dreQ9Ve0dh3SULUz+1gIIHyTbcdxO69lekvTpir3HPNbTjiqOZDsAAAAAAAFjsVg046L+io6wacn2XH2+ap+k8K5sl6SJ/etW18WEwZ7tkjSqW/W+7VsOe1v81sbe3OHFs91jQ23kV+7O0xNzNkmSBndOCsSwALRivSf1luRuJS+xXzsAcyPZjuN24RD3Hiv/W7VfzipXg8d62rLRRh4AAAAAgMDKSInRXRN6SpIKPG3TwzzZPrp7W8VXf0ZhkaFIe3h8VDYsK1mRNquyC8q07VDxUfeXOquT7WGy+CDcefds91HZvju3RNf9e6nKnC6N7dlOvz+layCHB6AV6nl+T1ntVh1YfUCHNx1mv3YAphYeMwi0qJO7t1XbOIdyiys0b+NBn8e5XIaKKqhsBwAAAAAgWK4emaUhtapSw72y3WG36fTe7o59kVZ3B4BwEBVh05DMJEn179vu2bs7xhHe8REuPFtE1pdszy9x6to3lupQUYX6dEzQc5cPkd3GR8oAGhadHK0uZ3SRJK16Z5WyV2RLorIdgDlxZYTjZrdZ9atBaZKkmct9t5IvcVbJ05ks3hERiKEBAAAAAIBabFaLHrl4gCKrk2XsvSxN7NdRkhRueeXR3lbyR+/bXlLhrmxnz/bw4HmfC3/RRr6i0qXfv/2TthwoUsfEKP3rmhPpVgnAb55W8oueXCRXpUuxHWKV2DkxyKMCgOZHsh3N4sLB7vYvc9bnKL/UWe8xnn2f7FaLoiIIPQAAAAAAgqF7+3g9+etBOn9gmk7u0TbYwwm6M3q311UnddY5nRveGs9sRnV3v/cLtx2Wy1V33/aSCrYZCCdx9VS2G4ahP324Sou25SrOYde/rjlRqYlRwRoigFao1wW9ZLFaVFFYIcld1R4uHWQAhBcynmgWfdMSdEKHOFVUuvTl6v31HlNU7k7Cx0XZ+aMKAAAAAEAQnTOgo575zWDFULmsCJtV953TSye1N459sIkM6JSo2Eib8kqcWre/oM59xd7KdpLt4SDes2d7WU0BzZNzN+uj5Xtls1r0whVD1LtjQrCGB6CVim0Xq8xTMr1fs187ALMi2Y5mYbFYdOFg934rHy2rv5V8QXVlO+2mAAAAAAAAgivCZtWIrm0kSQt/sW97iXfPdj7DCQeeyvbicvcii//+tFvPfL1ZkvT3C/rplBPaBW1sAFo3Tyt5Seo0gv3aAZgTyXY0mwsGp8likZbsyNXu3JKj7i8i2Q4AAAAAABAyRnVzJ9sXbK27b7tnz/YYKtvDguezusLySi3Yckj3fLRakjTltG66bHjnYA4NQCvX+6LeskZYZY+2K21YWrCHAwAtgmQ7mk3HxGiNrF4R/fHyo6vbPfs+xUeRbAcAAAAAAAi2Ud3c+7Yv2Z4rZ1XNnvUl3jbyfIYTDjyV7XuPlOgPb/2sSpeh8wam6fYzewZ5ZABau/i0eF015ypdNfsqORIcwR4OALQIku1oVhcOdu+7MnP5XhlG3b3OqGwHAAAAAAAIHb1S45USG6mSiiqt3J3nvb24orqNPJXtYcGzZ3tBWaUKyyt1YlayHr14gKxWS5BHBsAMsk7NUucxdMkAYF4k29GsJvbvqKgIq7YdKtbKPfl17iv0VrZHBGNoAAAAAAAAqMVqtXi7FP5Ya9/2Uk9lOwUTYaH2+9ylbaxevmqYoiJYaAEAAOAPku1oVnEOu8b3TZUkzVy2p8593sp22sgDAAAAAACEhJGefdu31OzbXlxdMBFNZXtYaBvnUPt4h9rGOfT6NScqOTYy2EMCAABoNUi2o9l5Wsn/b9X+Ovt9FZY5JdW0pgIAAAAAAEBwje7u3rd9+a48b0U7e7aHl0i7VV/ffqq+u3OsstrGBns4AAAArQrJdjS7Md3bqm2cQ7nFFZq38aD39qJy9mwHAAAAAAAIJVltYpSWGKWKKpd+2pmrikqXKl2GJCnGQWV7uIiPiuAzOwAAgCYg2Y5mZ7dZ9atBaZKkmcv3em/37NlOG3kAAAAAAIDQYLFYNLKbu7p9wZbDKqmo9N4Xw77dAAAAQINItqNFeFrJz1mfo/xSd/t4757trJIFAAAAAAAIGaO7u/dtX7j1kIqrW8hH2q2y2/joEAAAAGgIV8xoEX3TEnRChzhVVLr0xer9kmrayMdHRQRzaAAAAAAAAKhlVHVl++q9+crOL5MkxUZS1Q4AAAAcC8l2tAiLxaKLhnSSJM1c5m4lX1jmrnCPp408AAAAAABAyEhNjFLXdrFyGdK3Gw5IkmIi+fwGAAAAOBaS7WgxvxqUJotFWrIjV7tzS2gjDwAAAABBMH/+fJ133nlKS0uTxWLRxx9/XOf+oqIi3XzzzerUqZOio6PVp08fvfTSS3WOKSsr05QpU9SmTRvFxcVp0qRJysnJCeBPAaCljermbiU/d737dzuGynYAAADgmEi2o8V0TIz2TtQ+Xr5XhdVt5OOobAcAAACAgCkuLtbAgQP1/PPP13v/tGnTNGvWLL399ttav369pk6dqptvvlmffvqp95jbbrtN//vf//Tf//5X8+bN0759+3TRRRcF6kcAEACjq1vJb8gulCTFUCwBAAAAHBNXzWhRFw7upAVbDmvm8r01e7YzWQMAAACAgJk4caImTpzo8/4ff/xRkydP1tixYyVJN9xwg/75z39qyZIlOv/885Wfn6/XXntN7777rk4//XRJ0uuvv67evXtr0aJFOumkkwLxYwBoYSd1bSOLRTIM99cxEVS2AwAAAMdC1hMtakK/VP3549XadqjYe1t8VEQQRwQAAAAAqG3UqFH69NNP9dvf/lZpaWn67rvvtGnTJj355JOSpJ9//llOp1Pjxo3zfk+vXr3UuXNnLVy4sN5ke3l5ucrLy71fFxQUSJKcTqecTmcL/0S+eZ47mGNAaCI2pLhIi3qnxmvdfndle3SENaxfj5ZAnKEhxAdCCfEIX4gNBEKoxJm/z0+yHS0qzmHX+L6p+mTFPkmSzWpRVAS7FwAAAABAqHj22Wd1ww03qFOnTrLb7bJarXrllVd0yimnSJKys7MVGRmppKSkOt/XoUMHZWdn1/uYM2bM0IMPPnjU7bNnz1ZMTEyz/wyNNWfOnGAPASEq3GMjVVatq951Mu9Qjr744osgj8icwj3O0DDiA6GEeIQvxAYCIdhxVlJS4tdxJNvR4i4cnO5Ntsc57LJYLEEeEQAAAADA49lnn9WiRYv06aefKjMzU/Pnz9eUKVOUlpZWp5q9Me655x5NmzbN+3VBQYEyMjJ01llnKSEhobmG3mhOp1Nz5szRmWeeqYgIuq6hBrHhFrvpoL55a7kkqXtWhs4+u2+QR2QuxBkaQnwglBCP8IXYQCCESpx5OrQdC8l2tLgx3duqbZxDh4rKFcd+7QAAAAAQMkpLS3Xvvfdq5syZOueccyRJAwYM0IoVK/TYY49p3LhxSk1NVUVFhfLy8upUt+fk5Cg1NbXex3U4HHI4HEfdHhERERIfyoXKOBB6wj02RnZvL7vVokqXobioyLB+LVpSuMcZGkZ8IJQQj/CF2EAgBDvO/H1u+nmjxdltVl0wKE2SFB9Fsh0AAAAAQoVnD3Wrte7HAzabTS6XS5I0dOhQRURE6Ouvv/bev3HjRu3atUsjR44M6HgBtKxYh12DMpKq/20L7mAAAACAVoDMJwLiypMy9enKfTqjd/tgDwUAAAAAwkpRUZG2bNni/Xr79u1asWKFUlJS1LlzZ5166qm68847FR0drczMTM2bN09vvvmmnnjiCUlSYmKirrvuOk2bNk0pKSlKSEjQLbfcopEjR+qkk04K1o8FoIVcemKG1uzL17CslGAPBQAAAAh5JNsREFltY7X43jPYrx0AAAAAAuynn37Saaed5v3as5f65MmT9cYbb+j999/XPffcoyuuuEK5ubnKzMzU3//+d/3hD3/wfs+TTz4pq9WqSZMmqby8XOPHj9cLL7wQ8J8FQMu7dFiGJg3pJJuVz3AAAACAYyHZjoAh0Q4AAAAAgTd27FgZhuHz/tTUVL3++usNPkZUVJSef/55Pf/88809PAAhiEQ7AAAA4B/2bAcAAAAAAAAAAAAAoJFItgMAAAAAAAAAAAAA0Egk2wEAAAAAAAAAAAAAaCSS7QAAAAAAAAAAAAAANBLJdgAAAAAAAAAAAAAAGolkOwAAAAAAAAAAAAAAjUSyHQAAAAAAAAAAAACARiLZDgAAAAAAAAAAAABAI5FsBwAAAAAAAAAAAACgkUi2AwAAAAAAAAAAAADQSCTbAQAAAAAAAAAAAABoJJLtAAAAAAAAAAAAAAA0Esl2AAAAAAAAAAAAAAAaiWQ7AAAAAAAAAAAAAACNZA/2AFqKYRiSpIKCgqCNwel0qqSkRAUFBYqIiAjaOBB6iA0ECrEGX4gNhBLiEb4QGwiUUIg1z9zVM5c1m1CYo0uh8V4jNBEbCATiDA0hPhBKiEf4QmwgEEIlzvydp5s22V5YWChJysjICPJIAAAAAADwT2FhoRITE4M9jGbHHB0AAAAA0Boda55uMUy6bN7lcmnfvn2Kj4+XxWIJyhgKCgqUkZGh3bt3KyEhIShjQGgiNhAoxBp8ITYQSohH+EJsIFBCIdYMw1BhYaHS0tJktZpvx7dQmKNLofFeIzQRGwgE4gwNIT4QSohH+EJsIBBCJc78naebtrLdarWqU6dOwR6GJCkhIYGTDupFbCBQiDX4QmwglBCP8IXYQKAEO9bMWNHuEUpzdCn47zVCF7GBQCDO0BDiA6GEeIQvxAYCIRTizJ95uvmWywMAAAAAAAAAAAAA0MJItgMAAAAAAAAAAAAA0Egk21uQw+HQ/fffL4fDEeyhIMQQGwgUYg2+EBsIJcQjfCE2ECjEWvjgvYYvxAYCgThDQ4gPhBLiEb4QGwiE1hZnFsMwjGAPAgAAAAAAAAAAAACA1oTKdgAAAAAAAAAAAAAAGolkOwAAAAAAAAAAAAAAjUSyHQAAAAAAAAAAAACARiLZDgAAAAAAAAAAAABAI5FsBwAAAAAAAAAAAACgkUi2AwAAAAAAAAAAAADQSCTbWzGXyxXsISAE7dq1S6tWrQr2MBAGOAehPpyDEIo4X6E+27Zt06xZs4I9DIQBzkHhg/ca9eH6GIHEeQj14TyEUMO5CvVhjo5Aau7zEMn2VujgwYMqKiqS1WrlDxPqWLFihbKysrRhw4ZgDwUmxjkIvnAOQqjZt2+f8vLyZLVaVVVVFezhIISsWLFCPXr00L59+4I9FJgY10zhg/cavnB9jEDhPARfOA8hlDBHhy/M0REoLXXNRLK9lVm/fr1Gjhypm2++Wfn5+VxEw2vlypU6+eSTNW3aNF166aVH3U+coDlwDoIvnIMQajZs2KCBAwfq/PPP16FDh2Sz2ZjMQ5L7fDVmzBjddttt+u1vf3vU/Zyv0By4ZgofvNfwhetjBArnIfjCeQihhDk6fGGOjkBpyWsmi2EYRrM8Elrcnj17dPHFFysvL0/t2rVT//79NWPGDCUmJsrlcslqZe1EuFqzZo1GjRql3//+93r00Uflcrk0d+5c7d27V8nJybrgggskiTjBceEcBF84ByHU7Nu3T5dddpnKy8vlcDgUGxurt956S23btlVVVZVsNluwh4gg2bBhg0aMGKHJkyfrmWeeUVVVlT744APt3btXdrtdU6ZMIT5w3LhmCh+81/CF62MECuch+MJ5CKGEOTp8YY6OQGnpayb+krYi3333naKjo/XGG2/o3HPP1fLly3XPPfd4V2CwEix8Pf/88yoqKtIVV1yhsrIynXXWWfrLX/6iO+64Q9OmTdPw4cNVUVEhq9Uq1tegqTgHwRfOQQg1S5YskcPh0GOPPaYpU6aoqKhIV111FavnoXfffVeFhYU69dRTlZubq/Hjx+vpp5/WCy+8oMcee0w9e/bUpk2bJInzFZqMa6bwwXsNX7g+RqBwHoIvnIcQSpijwxfm6AiUlr5morK9FXG5XPr888913nnnSZL+8Y9/6JNPPtHgwYP10EMPKSkpqc4KDFaFhZfzzz9fixcvVqdOnZSenq5//OMfSk5O1rZt23T99dcrPT1dc+bMCfYw0YpxDkJDOAch1Hz11VcaP368JOn999/X888/r7i4OL355ptq164d56gwduONN2rOnDmy2+3q3r27nn32WSUlJamkpESXX3658vLytGzZMuIDTcY1U/jgvUZDuD5GIHAeQkM4DyGUMEeHL8zREQgtfs1koNWqrKw0/vGPfxgnnXSSceONNxp5eXmGYRjGU089FeSRIZCcTqf33+eff77RtWtXY8uWLXWOeeONN4zOnTsbmzZtCvTwYGKcg2AYnIPQOrhcLuP99983xowZY0yYMME4ePCgYRiG8cgjjxg7duwI8ugQKLXPV3/4wx+MYcOGGevXr69zzHfffWekpKQYP/74Y6CHBxPjmil88F7DMLg+RnBxHoJhcB5C6GOODsNgjo7gau5rJntLrBBA89i9e7d+/vlnOZ1ODR48WN27d/feV1lZKbvdrttvv12S9PHHH+uee+5RZWWlXn31VZ199tnq0aNHsIaOFlZaWqro6GgZhiG73e6Nh08++USzZs1Senq6pJp9l2JjYxUVFaWEhIQgjxytCecg+MI5CKFmx44dmjdvnvLy8nTyySdr4MCB3tWnnpWol1xyiSTpueee09VXX620tDT961//0vnnnx/MoaOFFRUVKS4uTpJkt9u98fDiiy/q22+/VVZWliR3OzqLxaKKigq1bdtWHTp0COKo0dpwzRQ+eK/hC9fHCBTOQ/CF8xBCCXN0+MIcHYES8Gum5lkDgOa2cuVKIzU11ejTp4/RuXNnIyoqynjyySeNvXv3eo/xrPyprKw0ZsyYYURHRxtJSUnG8uXLgzRqBMLatWuNzMxM45NPPjEMw70S0DDcceDL1KlTjQkTJhiFhYUBGSNaP85B8IVzEELNqlWrjLZt2xpDhgwxevbsadjtduOOO+4wli1b5j3Gc75yuVzGO++8Y8TGxhrJycmcr0xuzZo1RnJysvHqq6/Wub2h89Wdd95pjB071jhy5EgLjw5mwTVT+OC9hi9cHyNQOA/BF85DCCXM0eELc3QESjCumUi2h6Dc3Fxj8ODBxt13323k5eUZ+/fvNx599FEjJibG+OMf/2hs3brVe2xVVZVhGIZx0003GQkJCcaaNWuCNWwEwM6dO42+ffsa7dq1M9q2bWt8+umnhmHUXET/0saNG40777zTSE5ONlatWhXIoaIV4xwEXzgHIdQUFBQYJ598snH77bcbZWVlhmG42yGecMIJxmWXXWYsXLjQe2zt81VsbCznK5PbvXu3MXDgQKNz585GZGSk8dprrzV4/M8//2zceeedRmJiorFy5coAjRKtHddM4YP3Gr5wfYxA4TwEXzgPIZQwR4cvzNERKMG6ZiLZHoIOHDhg9OrVy/j888/r3P7mm28abdu2Ne666y6jtLTUe/sHH3xgREZG1lkdBvOpqKgwpk+fbkyaNMmYNWuW8Yc//MFITEyscxFd+0J6+fLlxpQpU4xu3bqxKhCNwjkI9eEchFBUWFho9OnT56hJ2meffWYMGjTImDx5srFz507v7bNnzzYyMzONn3/+OdBDRQBVVlYazz//vHHRRRcZCxcuNB588EHDYrH4nMxv3brVuO2224xevXoZK1asCPBo0ZpxzRQ+eK9RH66PEUich1AfzkMINczRUR/m6AikYF0zkWwPMS6Xy9i6davRoUMH46OPPjIMw/CuAjMMw/jXv/5lWCwW44svvqjzfXv27AnoOBEc8+fPN9566y3DMNwrV395EV1bcXGxsXDhQmIDjcI5CA3hHIRQ4nK5jJycHKN///7Gk08+aRhG3fPVzJkzjeTkZOOll16q8305OTmBHCaCZNmyZcYHH3xgGIZhlJeXGw888IDPyXxVVZWxZcsWY9++fYEeJloxrpnCB+81GsL1MQKB8xAawnkIoYI5OhrCHB2BEMxrJpLtIer666830tPTvSeUiooK70rEa665xjj11FON0tJSo6KiIpjDRJBt27btqIvo0tJS4/vvv69zEgEai3MQ/ME5CKHgL3/5ixETE2Ns2rTJMAz3pM3j3nvvNbp162YUFRV592JCeCouLj5q9XxZWZnxv//9jw8bcVy4ZgofvNfwB9fHaEmch+APzkMINubo8AdzdLSkYFwz2YWQYhiGLBaLpk6dqk2bNunXv/613n//faWlpamyslJ2u12ZmZnatm2boqKigj1cBIknTrp06aI777xTknTVVVfpjTfe0Pz58/XWW29pw4YNcjgcQR4pWhvOQfAH5yCEAk8c3nnnnfrpp5902mmnacGCBcrMzJTL5ZLValW3bt2UlJSkiIgI2e1c9oazmJgY3X777ZKk3/3ud3K5XFqzZo3eeustrVmzJsijQ2vENVP44L2GP7g+RkviPAR/cB5CsDFHR2MwR0dLCOY1k7VZHw3HzWKxSJL69Omj22+/XZWVlTr33HO1bds27x+gw4cPKy4uTqWlpTIMI5jDRYC5XC5J7jhxOp2SpK5du+quu+7Sb37zG1100UV6/fXX9fnnn6tNmzbBHCpaKc5BaAjnIIQSi8UiwzAUHx+vGTNm6IQTTtDw4cO1cOFCFRcXS5JWr16t6OhoVVRUBHm0CDTP+UqS929VbGys7rjjDt1///264YYb9O9//1uzZs1Sx44dgzVMtGJcM4UP3ms0hOtjBALnITSE8xBCBXN0NIQ5OgIhmNdMLB8KMVVVVbLZbCooKNB5552n5ORk/f3vf1e/fv00ZswYSdKiRYv0/fffKzo6OsijRSB5YuPgwYNq166dIiIivPdlZWXpyJEjSkxM1IIFC9SnT58gjhStGecg+MI5CKHGE5OHDx9Whw4d9PLLL+v+++/X2LFj1bt3b8XHx2v16tX67rvvFBcXF+zhIoA8sZGTkyNJ6tChg/c+h8OhnTt3KjExUT/++KN69+4drGGileOaKXzwXsMXro8RKJyH4AvnIYQS5ujwhTk6AiWY10xUtoeQiooK2Ww27dy5U8nJyXrllVc0ZswYffLJJ3r66ac1ePBgjRo1SkuXLtXAgQODPVwEUO3YSE9P1/PPP++9z+Vy6eWXX9asWbP09ddfc/EMvxiGcdTKLc5BkI4dG5yDEApcLledmPzPf/6j7t2765133tF//vMfXXvttbr44ov1008/adCgQcEeLgKodmx06dJF77zzjvc+wzD04Ycf6tNPP9XcuXOZxKPJKisruWYKE1wfwxeuj9ESmKfDF+bpCHXM0eELc3QESrDn6RaD3kIBt3HjRr355pvas2ePBg8erNNOO8375u7atUsjRozQhRdeqGeffVY2my3Io0Ug+Rsbzz33nKzWmrUyixYtUrt27dStW7dgDR2tyPr16/XMM89oz549GjJkiE4//XSdeuqpkjgHhTt/Y4NzEAJl//79OnLkSL0fDmVnZ2vAgAGaNGmSnnvuOc5XYcbf2Hj++efrnK82bNig2NhYZWRkBHK4aKW2bt2qt99+W9u2bdPw4cN11VVXKSEhQZK0b98+DR06lGsmk2CODl+YoyNQmKfDF+bpCCXM0eELc3QESqjO00m2B9jatWs1ZswYjRs3TikpKfriiy/UoUMHXX/99fr973+vf/3rX9qyZYv+/ve/e/cXMAzD+2+YV1NiA2isDRs26KSTTtIZZ5yhtm3bau7cuWrfvr0mTJig+++/X6+//ro2b97MOSgMNSU2gJa0fv16DRs2TCeeeKJeeukl9erVS1LNOWnmzJnatGmT7rrrLmIyzBAbCITVq1drwoQJGjRokKxWq2bNmqVbbrlFTzzxhAzD0AsvvKDs7GxNnz6da6ZWjjk6fGGOjkBhng5fmKcjlDAPgy/EBgIllOfpJNsDqKioSJMmTdLgwYP1j3/8Q5J7BeKgQYPkcDh0zz336NZbbw3yKBEMxAYCoaqqSrfffrsOHz6st956S5K0d+9ePfvss/rss8906aWX6r777gvyKBEMxAZCzcGDB3XxxRcrJSVFS5Ys0QknnKAXXnihTksxPmAMT8QGAmHPnj0666yzdM455+jRRx+VJM2ePVsXXnihFixYoEGDBsnlctWpyEDrxDwMvhAbCBTmYvCF2EAoYR4GX4gNBEqoz9P5dCCALBaLjhw5osGDB0uSSktL1blzZ51++unq27ev3nvvPX311VdBHiWCgdhAINhsNu3atUsFBQXe29LT0zVt2jRdfPHFmjlzpl566aUgjhDBQmwg1Gzfvl1dunTRAw88oJ9++kkbN27UTTfdpPXr13uPqT1RY+1o+CA20NIMw9D//vc/ZWZm6o477pDk3vttwIABSktLU1lZmSSRaDcJ5mHwhdhAoDAXgy/EBkIJ8zD4QmwgEFrDPJ1PCALEMAwVFhZq9+7d2r9/vyQpOjpau3fv1oYNG3TVVVepuLhYM2fODPJIEWjEBgLBcyEzdOhQlZSUaNeuXd772rdvr+uvv169evXSxx9/rPLy8mANE0FAbCAU9erVS7fccov69++vjh07aunSpdqwYcNRE7aqqipJYoV0GCE20NIsFotGjBihwYMHq0OHDpIku92u1NRU2e127/U6Wj/mYfCF2ECgMBeDL8QGQg3zMPhCbCAQWsU83UBAPf7444bFYjGuv/5647777jPi4uKMG264wTAMw3j//feNrl27Grm5uUZVVVWQR4pAIzYQCEuWLDHi4uKMP/3pT0ZZWZlhGIbhcrkMwzCMZcuWGRaLxVi4cGEwh4ggITYQqsrLyw3DMIy9e/caqampxtixY41169YZ5eXlxsMPP2y8/fbbQR4hgoXYQHNzuVzev321b/Po06eP8d5773m//vjjj43Vq1cHbHxoGczD4AuxgUBhLgZfiA2EIuZh8IXYQEtoLfN0e7CT/Wa2Y8cOLVy4UDk5ORo7dqx69OihadOmKTY2Vq+88oratGmjP//5z7r77rslSTk5OUpKSlJycnKQR46WRmwgEPLz82W1WhUfH+9dFX3iiSfq5Zdf1pVXXqno6GhNnTpVCQkJkqTk5GT17dtX0dHRwRw2AoDYQKj5ZUzWXukcGRmpyspKpaWladmyZRoyZIhuvvlmtWnTRp9++qlWrFgRvIGjxREbCIT6/i56WCwWVVZWymq1Kjo6WklJSZKke++9V48++qi2bNkShBGjqZiHwRdiA4HCXAy+EBsIJczD4AuxgUBpdfP0gKf3w8SqVauMtm3bGieffLKRlJRk9O3b17j44ouNnJwcwzAMo6CgwLsi0ePmm282LrnkEqO0tPSolRowD2IDgbB27VrjxBNPNJ566ikjPz/fMAzDqKqq8sbPK6+84q3S+OKLL4xdu3YZf/rTn4yMjAxj3759wRw6WhixgVBTX0zWp7Ky0jAMw9ixY4dhsViMlJQUY9myZYEaJoKA2EAg+BNnnpX0AwcONL766itj+vTpRmxsrLF06dIAjxbHg3kYfCE2ECjMxeALsYFQwjwMvhAbCJTWOE8n2d4CioqKjDFjxhg333yzUVpaajidTuPll182xowZY/Tv39/Yv3+/YRiGt9XY+vXrjalTpxoJCQnGqlWrgjl0tDBiA4Gwc+dOY8CAAUZKSorRt29f45///Kf3j1LtD4K++OIL48QTTzRSU1ONnj17GllZWVz4mByxgVDTUEzWp6SkxLjllluMuLg4Y+3atQEcKQKN2EAgNDbORo4cafTs2dNwOBwk2lsZ5mHwhdhAoDAXgy/EBkIJ8zD4QmwgUFrrPN0a+Fp68ystLdWhQ4d02mmnKSoqSna7Xddee62mT5+uhIQETZo0SUeOHJHValVeXp5mz56tFStWaN68eerfv3+wh48WRGygpblcLs2ZM0edOnXSwoULddJJJ+nRRx/V+++/r4KCAlksFrlcLrlcLk2cOFH/+9//NHfuXP373//WokWLNHjw4GD/CGghxAZCzbFiUtJRbaL27t2rxYsX6+uvv1afPn2CMWwEALGBQGhMnLlcLhUWFmr//v3asmWLfvrpJw0bNiyYw0cjMQ+DL8QGAoG5GHwhNhBKmIfBF2IDgdKa5+kW45e/BThuTqdTp5xyikaPHq3HHnvMe7thGPryyy/14IMP6pxzztFf/vIXWSwWHT58WFarlb2+wgCxgUDYvHmzNmzYoPPOO0+S9Lvf/U7z5s3TnXfeqV//+tdKTEyUy+WSxWKps68OzI/YQKjxJyZrKy8vV2VlpWJjY4MxXAQQsYFA8DfOjOq9CL/55hu1a9eOBFsrxDwMvhAbCBTmYvCF2EAoYR4GX4gNBEqrnacHo5ze7Kqqqow77rjDGD58uDF//vyj7r/hhhuM0aNHs69XGCI2ECzXXXed0b179zptV958880GW7AgPBAbCDW+YjIvLy/II0OwERsIhPri7I033jByc3ODPDIcD+Zh8IXYQDAxF4MvxAZCCfMw+EJsIFBawzydyvYWkpeXp5NPPllxcXF67rnnNGjQINlsNknS//3f/+nBBx/UDz/8wGroMERsIJCqqqq88eVZBXb77bfrp59+0scff6yff/5ZmZmZQR4lgoHYQKghJuELsYFAIM7Mj3kYfCE2EGj8zYEvxAZCCfEIX4gNBEprijWS7S2goqJCkZGROnTokEaOHKl27drptttu0wUXXCC73a5bb71VK1eu1KxZsxQTExPs4SKAiA0EgsvlktVq9X7tdDoVEREhSbr++uv12muvKTY2VvPmzdOQIUOCNUwEAbGBUENMwhdiA4FAnIUP5mHwhdhAoPA3B74QGwglxCN8ITYQKK011qzHPgQN+eVahaqqKkVGRmrfvn0qKCjQ0qVLFRcXp4ceekiZmZkaP3683n77bT3zzDNM1EyO2EAg1BdnVqtVBw8e1I8//ihJioiIUFVVlSQpNjZWycnJWrx4cUj9MULzIzYQaohJ+EJsIBCIs/DBPAy+EBsIFP7mwBdiA6GEeIQvxAYCxUyxRrK9iSorKyXVBIPL5VJlZaVsNpt27typE088UZ9//rmSkpI0c+ZMPfPMM7rlllv061//WkuXLtWgQYOCOHq0JGIDgXCsOBs0aJBWrVrlPd5ms+m9997TM888o9mzZ6tPnz5BGTdaHrGBUENMwhdiA4FAnIUP5mHwhdhAoPA3B74QGwglxCN8ITYQKGaMNdrIN8H69ev17LPP6uDBg0pLS9Nll12mkSNHSpL27t2rnj176sorr9SLL74owzDqtDyAuREbCITGxJnFYvF+X3l5uQ4cOKCMjIxgDR0tjNhAqCEm4QuxgUAgzsIH8zD4QmwgUPibA1+IDYQS4hG+EBsIFLPGGrOIRlq7dq1Gjx4twzDUrl075eTk6JRTTtGrr76qkpISZWdna8qUKXrhhRdksViYqIURYgOB0Ng4q83hcITsHyMcP2IDoYaYhC/EBgKBOAsfzMPgC7GBQOFvDnwhNhBKiEf4QmwgUEwdawb8VlZWZkyaNMm45ZZbvLft27fP6NWrlxEZGWk89thjhmEYhsvlCtYQESTEBgKBOIMvxAZCDTEJX4gNBAJxFj54r+ELsYFAIdbgC7GBUEI8whdiA4Fi9lhj2W4jOJ1Obd68WX379pXk3legY8eOGj16tMaNG6c777xTn3/++VErLmB+xAYCgTiDL8QGQg0xCV+IDQQCcRY+eK/hC7GBQCHW4AuxgVBCPMIXYgOBYvZYI9neCA6HQ5mZmVq6dKkKCgpkt9u1c+dOffLJJ5o6daomT56sGTNmqKSkJNhDRYARGwgE4gy+EBsINcQkfCE2EAjEWfjgvYYvxAYChViDL8QGQgnxCF+IDQSK2WONZLsfXC6XJCkiIkJnnHGG1q5dq3PPPVf33nuv+vbtq4svvlhnnnmmxo8fr71798rpdAZ5xAgUYgOBQJzBF2IDoYaYhC/EBgKBOAsfvNfwhdhAoBBr8IXYQCghHuELsYFACZdYswd7AKEsLy9PSUlJslqtqqyslN1u1x//+EclJyfrm2++0aZNm/T3v/9df/zjHyW5V2YkJCQEedQIBGIDgUCcwRdiA6GGmIQvxAYCgTgLH7zX8IXYQKAQa/CF2EAoIR7hC7GBQAm7WAv2pvGhat26dUaXLl2Mv/zlL97bysvL6xxTUVFR5+s//OEPxllnnWWUlJQEZIwIDmIDgUCcwRdiA6GGmIQvxAYCgTgLH7zX8IXYQKAQa/CF2EAoIR7hC7GBQAnHWKOyvR67d+/W5ZdfLrvdrpkzZ8put+u+++5TZGSkdwWGJO//f/zxR7377rt699139f333ys6OjqYw0cLIjYQCMQZfCE2EGqISfhCbCAQiLPwwXsNX4gNBAqxBl+IDYQS4hG+EBsIlHCNNZLtv2AYht577z2lpaVp6tSpWrBggd577z1J0n333Se73a6qqirZbDZZLBa5XC4dOnRIy5Yt0/z58zVgwIAg/wRoKcQGAoE4gy/EBkINMQlfiA0EAnEWPniv4QuxgUAh1uALsYFQQjzCF2IDgRLOsUay/RcsFouuvvpqdejQQWeeeaYGDhwoSXrvvfdkGIbuv/9+2Ww2uVwuWa1WWa1WnX/++TrttNMUHx8f5NGjJREbCATiDL4QGwg1xCR8ITYQCMRZ+OC9hi/EBgKFWIMvxAZCCfEIX4gNBEo4x5rFMAwj2IMIdfv379c///lP/ec//9Fll12m+++/X5L08ccf67zzzpPNZgvyCBEsxAYCgTiDL8QGQg0xCV+IDQQCcRY+eK/hC7GBQCHW4AuxgVBCPMIXYgOBEi6xRmW73G/27t27deTIEY0bN8775rpcLlksFnXs2FE33HCDJOn999+XYRjKz8/X008/rT179igtLS2Yw0cLIjYQCMQZfCE2EGqISfhCbCAQiLPwwXsNX4gNBAqxBl+IDYQS4hG+EBsIFGKtmhHmVq5caWRmZhonnHCCkZiYaPTq1ct49913jcOHDxuGYRhVVVWGy+UyDMMw9u3bZ9x3332GxWIxkpOTjZ9++imYQ0cLIzYQCMQZfCE2EGqISfhCbCAQiLPwwXsNX4gNBAqxBl+IDYQS4hG+EBsIFGKthjXYyf5gOnjwoH7961/riiuu0Jdffql169Zp4MCB+utf/6pnnnlGBw8elNVa8xJ17NhR27dvV3x8vH744QcNHTo0iKNHSyI2EAjEGXwhNhBqiEn4QmwgEIiz8MF7DV+IDQQKsQZfiA2EEuIRvhAbCBRi7ReCne0PprVr1xpZWVlHraC4++67jf79+xuPPPKIUVxc7L391VdfNZKSkoxly5YFeqgIMGIDgUCcwRdiA6GGmIQvxAYCgTgLH7zX8IXYQKAQa/CF2EAoIR7hC7GBQCHW6grrynan06nKykqVlJRIkkpLSyVJ//jHP3TaaafpxRdf1JYtW7zHn3vuuVq2bJkGDx4clPEicIgNBAJxBl+IDYQaYhK+EBsIBOIsfPBewxdiA4FCrMEXYgOhhHiEL8QGAoVYq8tiGIYR7EEE0/DhwxUXF6dvvvlGklReXi6HwyFJOvHEE9W9e3e99957qqqqks1mC+ZQEWDEBgKBOIMvxAZCDTEJX4gNBAJxFj54r+ELsYFAIdbgC7GBUEI8whdiA4FCrNUIq8r24uJiFRYWqqCgwHvbP//5T61du1aXX365JMnhcKiyslKSdMopp6i4uFiSTB8I4Y7YQCAQZ/CF2ECoISbhC7GBQCDOwgfvNXwhNhAoxBp8ITYQSohH+EJsIFCItYaFTbJ93bp1uuiii3Tqqaeqd+/eeueddyRJvXv31tNPP605c+bokksukdPplNXqflkOHDig2NhYVVZWKswbAJgasYFAIM7gC7GBUENMwhdiA4FAnIUP3mv4QmwgUIg1+EJsIJQQj/CF2ECgEGvHZg/2AAJh3bp1OuWUU3T11Vdr2LBh+vnnn3XttdeqT58+Gjx4sM4//3zFxsbqpptu0oABA9SrVy9FRkbq888/16JFi2S3h8XLFJaIDQQCcQZfiA2EGmISvhAbCATiLHzwXsMXYgOBQqzBF2IDoYR4hC/EBgKFWPOP6fdsz83N1W9+8xv16tVLTz/9tPf20047Tf3799czzzzjva2wsFB/+9vflJubq6ioKN14443q06dPMIaNACA2EAjEGXwhNhBqiEn4QmwgEIiz8MF7DV+IDQQKsQZfiA2EEuIRvhAbCBRizX+mX1LgdDqVl5eniy++WJLkcrlktVrVpUsX5ebmSpIMw5BhGIqPj9fDDz9c5ziYF7GBQCDO4AuxgVBDTMIXYgOBQJyFD95r+EJsIFCINfhCbCCUEI/whdhAoBBr/jP9T9uhQwe9/fbbOvnkkyVJVVVVkqT09HTvm22xWGS1WlVQUOD9PovFEvjBIqCIDQQCcQZfiA2EGmISvhAbCATiLHzwXsMXYgOBQqzBF2IDoYR4hC/EBgKFWPOf6ZPtktSjRw9J7tUUERERktyrLQ4cOOA9ZsaMGXr11VdVWVkpKTyDIRwRGwgE4gy+EBsINcQkfCE2EAjEWfjgvYYvxAYChViDL8QGQgnxCF+IDQQKseYf07eRr81qtcowDO8b7Vl5cd999+lvf/ubli9fLrs9rF4SVCM2EAjEGXwhNhBqiEn4QmwgEIiz8MF7DV+IDQQKsQZfiA2EEuIRvhAbCBRirWFhUdlem2EYkiS73a6MjAw99thjeuSRR/TTTz9p4MCBQR4dgonYQCAQZ/CF2ECoISbhC7GBQCDOwgfvNXwhNhAoxBp8ITYQSohH+EJsIFCINd/CbpmBZ7VFRESEXnnlFSUkJOiHH37QkCFDgjwyBBuxgUAgzuALsYFQQ0zCF2IDgUCchQ/ea/hCbCBQiDX4QmwglBCP8IXYQKAQa76FXWW7x/jx4yVJP/74o4YNGxbk0SCUEBsIBOIMvhAbCDXEJHwhNhAIxFn44L2GL8QGAoVYgy/EBkIJ8QhfiA0ECrF2NIvhqfsPQ8XFxYqNjQ32MBCCiA0EAnEGX4gNhBpiEr4QGwgE4ix88F7DF2IDgUKswRdiA6GEeIQvxAYChVirK6yT7QAAAAAAAAAAAAAANEXYtpEHAAAAAAAAAAAAAKCpSLYDAAAAAAAAAAAAANBIJNsBAAAAAAAAAAAAAGgkku0AAAAAAAAAAAAAADQSyXYAAAAAAAAAAAAAABqJZDsAAAAAAAAAAAAAAI1Esh0AAAAAAAAAAAAAgEYi2Q4AAAAAAAAAAAAAQCORbAcAAAAAAAAAAAAAoJFItgMAAAAAAAAAAAAA0Egk2wEAAAAAAAAAAAAAaCSS7QAAIGQ89NBD+vjjj4M9DAAAAAAAwh5zdAAAjs1iGIYR7EEAAABIUlxcnC6++GK98cYbwR4KAAAAAABhjTk6AADHRmU7AAAAAAAAAAAAAACNRLIdAIAQUFhYqKlTpyorK0sOh0Pt27fXmWeeqWXLlnmPWbx4sSZMmKDExETFxMTo1FNP1YIFC456rO+++07Dhg1TVFSUunXrpn/+85964IEHZLFY6hxnsVh0880367///a/69Omj6OhojRw5UqtXr5Yk/fOf/1T37t0VFRWlsWPHaseOHUc9lz9j8jz3li1bdM011ygpKUmJiYm69tprVVJSUmc8xcXF+ve//y2LxSKLxaJrrrnG79fQ5XLp6aefVv/+/RUVFaV27dppwoQJ+umnn/x+DAAAAAAAmKMf/xz9scce06hRo9SmTRtFR0dr6NCh+uCDD/z+fgAAWgt7sAcAAACkP/zhD/rggw908803q0+fPjp8+LB++OEHrV+/XkOGDNE333yjiRMnaujQobr//vtltVr1+uuv6/TTT9f333+v4cOHS5KWL1+uCRMmqGPHjnrwwQdVVVWl6dOnq127dvU+7/fff69PP/1UU6ZMkSTNmDFD5557ru666y698MILuummm3TkyBE98sgj+u1vf6tvvvnG+73+jsnj0ksvVZcuXTRjxgwtW7ZMr776qtq3b6+HH35YkvTWW2/pd7/7nYYPH64bbrhBktStWze/X8PrrrtOb7zxhiZOnKjf/e53qqys1Pfff69FixZp2LBh/r8ZAAAAAICwxhz9+OfoTz/9tM4//3xdccUVqqio0Pvvv69LLrlEn332mc455xz/3wwAAEIce7YDABACkpKSdOWVV+q555476j7DMNSzZ0917dpVX375pXf1e2lpqfr27avu3btr9uzZkqTzzz9fX3/9tTZv3qy0tDRJ0pYtW9S7d29VVlaq9p99i8Uih8OhDRs2KCsrS5L08ssv6/e//71SU1O1adMmxcfHS5LuvfdezZgxQ9u3b1dWVlajxvTAAw/owQcf1G9/+1u99tpr3ue/6KKLNH/+fB06dMh7W1P3g/v22291+umn69Zbb9XTTz991Ov3y4oBAAAAAAB8YY7udjx7tpeWlio6Otr7tdPp1JAhQ9S+fXt9/fXXjX48AABCFW3kAQAIAUlJSVq8eLH27dt31H0rVqzQ5s2bdfnll+vw4cM6dOiQDh06pOLiYp1xxhmaP3++XC6XqqqqNHfuXF1wwQXeSbwkde/eXRMnTqz3ec844wzvJF6SRowYIUmaNGmSdxJf+/Zt27Y1aky1/eEPf6jz9cknn6zDhw+roKCgEa9U/T788ENZLBbdf//9R91Hoh0AAAAA0BjM0Y9f7UT7kSNHlJ+fr5NPPrlOK34AAMyANvIAAISARx55RJMnT1ZGRoaGDh2qs88+W1dffbW6du2qzZs3S5ImT57s8/vz8/NVVlam0tJSde/e/aj767tNkjp37lzn68TERElSRkZGvbcfOXJEkvweU3Jyss/n8tx35MgRJSQk+Hwcf2zdulVpaWlKSUk5rscBAAAAAIA5+vHN0SXps88+09/+9jetWLFC5eXl3ttZEA8AMBuS7QAAhIBLL71UJ598smbOnKnZs2fr0Ucf1cMPP6yPPvrIu/r80Ucf1aBBg+r9/ri4OJWVlTX6eW02W6Nu97S483dMjXlMAAAAAABCAXP04/P999/r/PPP1ymnnKIXXnhBHTt2VEREhF5//XW9++67x/34AACEEpLtAACEiI4dO+qmm27STTfdpAMHDmjIkCH6+9//rieffFKSlJCQoHHjxvn8/vbt2ysqKkpbtmw56r76bjse3bp182tMjdXUFe7dunXTV199pdzcXKrbAQAAAADHjTl60+foH374oaKiovTVV1/J4XB4b3/99deba2gAAIQM9mwHACDIqqqqlJ+fX+e29u3bKy0tTeXl5Ro6dKi6deumxx57TEVFRUd9/8GDByW5V6WPGzdOH3/8cZ195bZs2aIvv/yyWcfs75gaKzY2Vnl5eY3+vkmTJskwDD344INH3UflPAAAAADAX8zRazR1jm6z2WSxWFRVVeW9bceOHfr444+bNA4AAEIZle0AAARZYWGhOnXqpIsvvlgDBw5UXFyc5s6dq6VLl+rxxx+X1WrVq6++qokTJ6pv37669tprlZ6err179+rbb79VQkKC/ve//0mSHnjgAc2ePVujR4/WjTfeqKqqKj333HPq16+fVqxY0WxjbsyYGmPo0KGaO3eunnjiCaWlpalLly4aMWLEMb/vtNNO01VXXaVnnnlGmzdv1oQJE+RyufT999/rtNNO080339yUHxMAAAAAEGaYo9do6hz9nHPO0RNPPKEJEybo8ssv14EDB/T888+re/fuWrVqVVN+RAAAQhbJdgAAgiwmJkY33XSTZs+e7d3/rXv37nrhhRd04403SpLGjh2rhQsX6q9//auee+45FRUVKTU1VSNGjNDvf/9772MNHTpUX375pe644w795S9/UUZGhqZPn67169drw4YNzTpuf8fUGE888YRuuOEG/fnPf1ZpaakmT57s10RecrejGzBggF577TXdeeedSkxM1LBhwzRq1KgmjQUAAAAAEH6Yo9do6hz99NNP12uvvaZ//OMfmjp1qrp06aKHH35YO3bsINkOADAdi0FvVQAATO+CCy7Q2rVrtXnz5mAPBQAAAACAsMYcHQAA82DPdgAATKa0tLTO15s3b9YXX3yhsWPHBmdAAAAAAACEKeboAACYG5XtAACYTMeOHXXNNdeoa9eu2rlzp1588UWVl5dr+fLl6tGjR7CH1yhVVVU6ePBgg8fExcUpLi4uQCMCAAAAAMB/zNEBADA39mwHAMBkJkyYoPfee0/Z2dlyOBwaOXKkHnrooVY3iZek3bt3q0uXLg0ec//99+uBBx4IzIAAAAAAAGgE5ugAAJgble0AACBklZWV6YcffmjwmK5du6pr164BGhEAAAAAAOGJOToAAEcj2Q4AAAAAAAAAAAAAQCOZto28y+XSvn37FB8fL4vFEuzhAAAAAADgk2EYKiwsVFpamqxWa7CH0+yYowMAAAAAWhN/5+mmTbbv27dPGRkZwR4GAAAAAAB+2717tzp16hTsYTQ75ugAAAAAgNboWPN00ybb4+PjJblfgISEhKCMwel0avbs2TrrrLMUERERlDEgNBEbCBRiDb4QGwglxCN8ITYQKKEQawUFBcrIyPDOZc0mFOboUmi81whNxAYCgThDQ4gPhBLiEb4QGwiEUIkzf+fppk22e9rSJSQkBDXZHhMTo4SEBE46qIPYQKAQa/CF2EAoIR7hC7GBQAmlWDNri/VQmKNLofVeI7QQGwgE4gwNIT4QSohH+EJsIBBCLc6ONU8330ZwAAAAAAAAAAAAAAC0MJLtAAAAAAAAAAAAAAA0Esl2AAAAAAAAAAAAAAAaybR7tvurqqpKTqezRR7b6XTKbrerrKxMVVVVLfIcZhURESGbzRbsYQAAAAAAAqgl5+gS8/TjwTwdAAAAAI4Wtsl2wzCUnZ2tvLy8Fn2O1NRU7d69WxaLpcWex6ySkpKUmprKawcAAAAAJheIObrneZinNx3zdAAAAACoK2yT7Z5JfPv27RUTE9MiE0WXy6WioiLFxcXJaqVjv78Mw1BJSYkOHDggSerYsWOQRwQAAAAAaEmBmKNLzNObink6AAAAANQvLJPtVVVV3kl8mzZtWux5XC6XKioqFBUVxSS+kaKjoyVJBw4cUPv27WlVBwAAAAAmFag5usQ8/XgwTwcAAACAo4XlzNKz/1tMTEyQR4KGeN6fltyvDwAAAAAQXMzRWw/m6QAAAABQV1gm2z3YYyy08f4AAAAAQPhgDhj6eI8AAAAAoK6wTrYDAAAAAAAAAAAAANAUJNsBAAAAAAAAAAAAAGgkku1hLCsrS0899VSwhwEAAAAAQNhjjg4AAAAArY892ANA44wdO1aDBg1qlgn40qVLFRsbe/yDAgAAAAAgDDFHBwAAAIDwRrLdZAzDUFVVlez2Y7+17dq1C8CIAAAAAAAIT8zRAQAAAMDcaCMv9+S3pKKyRf4rrahq8H7DMPwe5zXXXKN58+bp6aeflsVikcVi0RtvvCGLxaIvv/xSQ4cOlcPh0A8//KCtW7fqV7/6lTp06KC4uDideOKJmjt3bp3H+2WLOovFoldffVUXXnihYmJi1KNHD3366afN9TIDAAAAQIOqKqr00ZUfadFTi4I9FARZa5inM0cHAAAA0FoVZRfp3XPe1ep3Vwd7KK0ele2SSp1V6nPfV0F57nXTxysm0r+34emnn9amTZvUr18/TZ8+XZK0du1aSdKf/vQnPfbYY+ratauSk5O1e/dunX322fr73/8uh8OhN998U+edd542btyozp07+3yOBx98UI888ogeffRRPfvss7riiiu0c+dOpaSkHP8PCwAAAAAN2Pb1Nq1+Z7U2/W+TTpp6UrCHgyBqDfN05ugAAAAAWqv5f5uvzV9sVsGeAvW/vH+wh9OqUdneiiQmJioyMlIxMTFKTU1VamqqbDabJGn69Ok688wz1a1bN6WkpGjgwIH6/e9/r379+qlHjx7661//qm7duh1zFfw111yj3/zmN+revbseeughFRUVacmSJYH48QAAAACEud0LdkuSygvKVZZXFuTRAA1jjg4AAACgNSo+UKzlry2XJOVuzW1UF24cjcp2SdERNq2bPr7ZH9flcqmwoFDxCfGyWutf1xAdYWuW5xo2bFidr4uKivTAAw/o888/1/79+1VZWanS0lLt2rWrwccZMGCA99+xsbFKSEjQgQMHmmWMAAAAANAQT7JdkvJ35SsqKSqIo0EwtfZ5OnN0AAAAAKFq8TOLVVlWKUlyFjtVfKBYcR3igjyq1otku9z7oPnbyr0xXC6XKiNtiom0+5zEN5fY2Ng6X99xxx2aM2eOHnvsMXXv3l3R0dG6+OKLVVFR0eDjRERE1PnaYrHI5XI1+3gBAAAAoLYqZ5X2Ltnr/TpvZ546DOgQxBEhmFr7PJ05OgAAAIBQVF5QrqXPL3V/YZFkSLlbckm2HweS7a1MZGSkqqqqjnncggULdM011+jCCy+U5F5Fv2PHjhYeHQAAAAA0Tc7KHDlLnN6v83fmB3E0gH+YowMAAABoTX5++WeV5ZWpTc82ikuN0855O3Vk6xF1Ht052ENrtdizvZXJysrS4sWLtWPHDh06dMjnivYePXroo48+0ooVK7Ry5UpdfvnlrH4HAAAAELJ2/7i7ztd5O/OCMxAT2rt3r6688kq1adNG0dHR6t+/v3766Sfv/YZh6L777lPHjh0VHR2tcePGafPmzXUeIzc3V1dccYUSEhKUlJSk6667TkVFRYH+UUIOc3QAAAAArUVleaUWPrFQkjT67tFqc0IbSe5929F0JNtbmTvuuEM2m019+vRRu3btfO7v9sQTTyg5OVmjRo3Seeedp/Hjx2vIkCEBHi0AAAAA+MezX3tsB3f77YJdBcEcjmkcOXJEo0ePVkREhL788kutW7dOjz/+uJKTk73HPPLII3rmmWf00ksvafHixYqNjdX48eNVVlbmPeaKK67Q2rVrNWfOHH322WeaP3++brjhhmD8SCGFOToAAACA1mLlmytVtL9ICZ0SNOCKAUru5p4XHtlyJMgja91oI9/KnHDCCVq4cGGd26655pqjjsvKytI333xT57YpU6bU+fqXLesMwzjqcfLy8po0TgAAAADwl2EY2rXAnaTse2lfLXl2CZXtzeThhx9WRkaGXn/9de9tXbp08f7bMAw99dRT+vOf/6xf/epXkqQ333xTHTp00Mcff6zLLrtM69ev16xZs7R06VINGzZMkvTss8/q7LPP1mOPPaa0tLSjnre8vFzl5eXerwsK3IsnnE6nnE5nnWOdTqcMw5DL5Wrxam/PvNfzfMere/fuWrBgQZ3brr76akmq8/idO3fW3Llz6xx344031jlu27Ztdb72tKev/Ti5ublH3RZILpdLhmHI6XTKZrMFZQwtxROXv4xPoDkRZ2gI8YFQQjzCF2Kj9XJVubTgEffcZfjU4XJZXErITJAkHd5yOKTe01CJM3+fn2Q7AAAAACCoCnYXqHBvoSw2i/pc0kdLnl3Cnu3N5NNPP9X48eN1ySWXaN68eUpPT9dNN92k66+/XpK0fft2ZWdna9y4cd7vSUxM1IgRI7Rw4UJddtllWrhwoZKSkryJdkkaN26crFarFi9e7N2HvLYZM2bowQcfPOr22bNnKyYmps5tdrtdqampKioqUkVFRXP96A0qLCwMyPOYTUVFhUpLSzV//nxVVlYGezgtYs6cOcEeAsIAcYaGEB8IJcQjfCE2Wp+8BXk6suWIbPE25aTn6IsvvlDJ/hJJUs4G99ehJthxVlJS4tdxJNsBAAAAAEHlqWrvOLij2vVuJ0kqyi5SZXml7A6mrcdj27ZtevHFFzVt2jTde++9Wrp0qW699VZFRkZq8uTJys7OliR16NChzvd16NDBe192drbat29f53673a6UlBTvMb90zz33aNq0ad6vCwoKlJGRobPOOksJCQl1ji0rK9Pu3bsVFxenqKio4/6ZG2IYhgoLCxUfHy+LxdKiz2VGZWVlio6O1imnnNLi71WgOZ1OzZkzR2eeeaYiIiKCPRyYFHGGhhAfCCXEI3whNlonwzD0+oPubmcj/zhSp0w6RZJUXliux6c9rqqCKp0++nRFJYbGNX6oxJmnQ9ux8KkFAAAAACCodv/o3q89Y3SGottEyx5tV2VppQp2Fyile0qQR9e6uVwuDRs2TA899JAkafDgwVqzZo1eeuklTZ48ucWe1+FwyOFwHHV7RETEUR+WVFVVyWKxyGq1ymq1ttiYpJr2657nQ+NYrVZZLJZ630ezMPPPhtBBnKEhxAdCCfEIX4iN1mXrnK3KXp6tiJgIjfzjSO97F5ESoZh2MSo5WKKiXUWKHxIf5JHWFew48/e5mVkCAAAAAIJq94LqZPuoDFksFiVlJkkS+7Y3g44dO6pPnz51buvdu7d27XJ3E0hNTZUk5eTk1DkmJyfHe19qaqoOHDhQ5/7Kykrl5uZ6jwEAAAAAhKYfZvwgSRpy/RDFtK27rZdngXvu1tyAj8ssSLYDAAAAAIKmvLBcOSvdid6MURmSpMTMRElS/i72bT9eo0eP1saNG+vctmnTJmVmZkqSunTpotTUVH399dfe+wsKCrR48WKNHDlSkjRy5Ejl5eXp559/9h7zzTffyOVyacSIEQH4KQAAAAAATbFn8R7t+HaHrHarRk4bedT9Kd2qk+1bSLY3FW3kAQAAAABBs3fJXhkuQ4mdE5XQyb2Xd2Ln6mT7TpLtx+u2227TqFGj9NBDD+nSSy/VkiVL9PLLL+vll1+W5G6nPnXqVP3tb39Tjx491KVLF/3lL39RWlqaLrjgAknuSvgJEybo+uuv10svvSSn06mbb75Zl112mdLS0oL40wEAAAAAGrLg4QWSpP5X9PfOtWtL7pYsSTqy9UhAx2UmJNsBAAAAAEHjbSE/OsN7m7eynWT7cTvxxBM1c+ZM3XPPPZo+fbq6dOmip556SldccYX3mLvuukvFxcW64YYblJeXpzFjxmjWrFmKioryHvPOO+/o5ptv1hlnnCGr1apJkybpmWeeCcaPBAAAAADww8H1B7Vh5gZJ0ui7R9d7jKeNPMn2piPZDgAAAAAImvqS7ezZ3rzOPfdcnXvuuT7vt1gsmj59uqZPn+7zmJSUFL377rstMTwAAAAAQAv48dEfJUm9Luildr3b1XuMp7KdNvJNx57tAAAAAICgcFW5tGfRHkk1+7VL7NkOAAAAAMDxyN+dr1Vvr5Lku6pdqtmzvWBvgSrLKgMyNrMh2d7KjB07VlOnTm22x7vmmmu8+/ABAAAAQCAdXHtQ5QXlioyLVIf+Hby3e/aRK9hdIMNlBGt4wDExRwcAAAAQihY+sVAup0tZY7PU6aROPo+LaRejyPhIyZCObKeVfFOQbAcAAAAABMXuH90t5Dud1ElWe830NCE9QRabRVUVVSrKLgrW8AAAAAAAaHVKDpdo2cvLJEmj/+S7ql1ybyvmqW6nlXzTkGxvRa655hrNmzdPTz/9tCwWiywWi3bs2KE1a9Zo4sSJiouLU4cOHXTVVVfp0KFD3u/74IMP1L9/f0VHR6tNmzYaN26ciouL9cADD+jf//63PvnkE+/jfffdd8H7AQEAAACEFc9+7Z1G1V1lb7VblZCeIIlW8ghdzNEBAAAAhKIlzy2Rs8Sp1EGp6nZWt2Me79m3/chWKtubwh7sAYQCwzDkLHE2++O6XC45i52qsFXIaq1/XUNETIQsFotfj/f0009r06ZN6tevn6ZPn+7+/ogIDR8+XL/73e/05JNPqrS0VHfffbcuvfRSffPNN9q/f79+85vf6JFHHtGFF16owsJCff/99zIMQ3fccYfWr1+vgoICvf7665KklJSU5vnhAQAAAOAYdi3YJUnqPLrzUfcldk5U/q585e3Ma7DlHcypNczTmaMDAAAACDWGYWjp80sluava/ZnbpHSvrmzfSmV7U5Bsl+QscWpG3IygPPc9RfcoMjbSr2MTExMVGRmpmJgYpaamSpL+9re/afDgwXrooYe8x/3rX/9SRkaGNm3apKKiIlVWVuqiiy5SZmamJKl///7eY6Ojo1VeXu59PAAAAAAIhML9hcrbnidZpPQR6Ufdn5iZKP0g5e+ksj0ctYZ5OnN0AAAAIDTs+G6HZk2dpfNePk/pw4+eX4aTgt0FKjlYIqvdqt4X9vbre7yV7VuobG8K2si3citXrtS3336ruLg473+9evWSJG3dulUDBw7UGWecof79++uSSy7RK6+8oiNH+GUBAAAAEFye/do79O+gqMSoo+5PzEyURBt5tC7M0QEAAIDA+/rer5WzMkeLn1kc7KEE3cH1ByVJKT1SZIu0+fU9VLYfn2avbJ8xY4Y++ugjbdiwQdHR0Ro1apQefvhh9ezZ03tMWVmZbr/9dr3//vsqLy/X+PHj9cILL6hDhw7eY3bt2qUbb7zRO0mdPHmyZsyYIbu9+YvxI2IidE/RPc3+uC6XS4UFhYpPiG+wPd3xKCoq0nnnnaeHH374qPs6duwom82mOXPm6Mcff9Ts2bP17LPP6v/9v/+nxYsXq0uXLsf13AAAAADQVJ5ke8bojHrvT+xcnWynsj0stdZ5OnN0AAAAILAObzqsPQv3SHJXuBuG4ff2zWZ0cJ072d6uTzu/vyelmzvZnrcjT65Kl6x2arUbo9kz1/PmzdOUKVN04oknqrKyUvfee6/OOussrVu3TrGxsZKk2267TZ9//rn++9//KjExUTfffLMuuugiLViwQJJUVVWlc845R6mpqfrxxx+1f/9+XX311YqIiKjTiq25WCwWv1u5N4bL5VJEVYQiYyN9TuIbKzIyUlVVVd6vhwwZog8//FBZWVk+FyJYLBaNHj1ao0eP1n333afMzEzNnDlT06ZNO+rxAAAAACAQdi+oTraPqj/ZnpSZJEnK25kXoBEhlLSWeTpzdAAAACC4Vr650vvvwr2FOrL1iLdSOxw1Jdkenx4vW6RNVRVVyt+dr+QuyS01PFNq9qUJs2bN0jXXXKO+fftq4MCBeuONN7Rr1y79/PPPkqT8/Hy99tpreuKJJ3T66adr6NChev311/Xjjz9q0aJFkqTZs2dr3bp1evvttzVo0CBNnDhRf/3rX/X888+roqKiuYfcqmRlZWnx4sXasWOHDh06pClTpig3N1e/+c1vtHTpUm3dulVfffWVrr32WlVVVWnx4sV66KGH9NNPP2nXrl366KOPdPDgQfXu3dv7eKtWrdLGjRt16NAhOZ3OIP+EAAAAAMzOWerU/mX7JTVQ2Z5JZTtCH3N0AAAAIHgMl6FVb62SJNmj3Itdt3+7PZhDCrpD6w5Jalyy3WqzKrlr9b7tW9nmqrGavyf7L+Tnuz8YSUlxryL5+eef5XQ6NW7cOO8xvXr1UufOnbVw4UKddNJJWrhwofr371+nrfz48eN14403au3atRo8ePBRz1NeXq7y8nLv1wUFBZIkp9N51OTU6XTKMAy5XC65XK7m+2F/wTAM7/+b63mmTZuma6+9Vn369FFpaam2bt2q77//Xn/605901llnqby8XJmZmRo/frwkKS4uTvPmzdNTTz2lgoICZWZm6rHHHtP48ePlcrl03XXX6dtvv9WwYcNUVFSkr7/+WmPHjm2WsR4vl8slwzDkdDpls/m3r0Rr4YlJPjhBSyPW4AuxgVBCPMIXYsO8di3aJZfTpbiOcYpNj633PY7pGCNJKi8oV+Ghwnr3dW8uoRBrxHnrdMcdd2jy5MneOfr27du1YMEC3X333XXm6BMmTJDValVCQoLmz59fZ47++OOPa+LEiZKk66+/Xt999513jv7tt9+GzBwdAAAACDU75u1Q/q58ORIdGvr7ofrxkR+187udGnr90GAPLSgMw2hSZbskJXdL1qENh5S7NVddx3VtieGZVosm210ul6ZOnarRo0erX79+kqTs7GxFRkYqKSmpzrEdOnRQdna295jaiXbP/Z776jNjxgw9+OCDR90+e/ZsxcTE1LnNbrcrNTVVRUVFAamULywsbLbHSk1N1ZdffnnU7a+//nq9z5uenq7//Oc/R93nWYzgcDj03//+t977gq2iokKlpaWaP3++Kisrgz2cFjFnzpxgDwFhgliDL8QGQgnxCF+IDfPJ+TBHkmTLstU7v/GwxdtUVVilz9/5XNFZ0S0+rmDGWklJSdCeG013wgknaOHChUfd/tFHH9V7fO/evTVr1iyfj9euXTvNnj272cYHAAAAmNnKf7tbyPf9dV/1mNhDPz7yo7Z/uz1s920vyi5SWV6ZLFaL2pzQplHfm9zNXdmeuyW3JYZmai2abJ8yZYrWrFmjH374oSWfRpJ0zz33aNq0ad6vCwoKlJGRobPOOksJCQl1ji0rK9Pu3bsVFxenqKiWq44wDEOFhYWKj48Py1/q41VWVqbo6GidcsopLfo+BYPT6dScOXN05plnKiIiItjDgYkRa/CF2EAoIR7hC7FhXv99xb3g98SLTtTws4f7PC67e7ayl2drQOcB6nF2jxYbTyjEWqgsegYAAACA1qCiqELrPlgnSRo0eZA6Dukom8Omov1Fyt2c2+hksxl4qtqTuyV72+r7y7PPPW3kG6/Fku0333yzPvvsM82fP1+dOnXy3p6amqqKigrl5eXVqW7PyclRamqq95glS5bUebycnBzvffVxOBxyOBxH3R4REXHUhyVVVVWyWCyyWq2yWpt923ovT+t4z3OhcaxWqywWS73voVmY+WdDaCHW4AuxgVBCPMIXYsNcDMPQnkV7JEmZJ2c2+N4mZSUpe3m2ivYVBSQGghlrxDgAAAAA+G/9R+vlLHYqpUeKOo3sJIvFooyRGdrx3Q7t+G5HWCfbG9tCXpJSupFsb6pmzwAbhqGbb75ZM2fO1DfffKMuXbrUuX/o0KGKiIjQ119/7b1t48aN2rVrl0aOHClJGjlypFavXq0DBw54j5kzZ44SEhLUp0+f5h4yAAAAACBADm88rNLDpbJH2dVxcMcGj03snChJyt+ZH4ihAQAAAABaCU8L+YFXD/R2l84cmylJ2vHtjmANK6iOJ9nubSO/NVeGYTTruMyu2Svbp0yZonfffVeffPKJ4uPjvXusJyYmKjo6WomJibruuus0bdo0paSkKCEhQbfccotGjhypk046SZJ01llnqU+fPrrqqqv0yCOPKDs7W3/+8581ZcqUeqvXAQAAAACtw+4fd0uS0oenyxZpa/DYxEyS7QAAAACAuvJ35Wv7t9slSQOuGuC9PWtsluZpnnZ8tyMs920/tO6QpKYl25OykmSxWuQsdqo4p1hxqXHNPTzTavbK9hdffFH5+fkaO3asOnbs6P3vP//5j/eYJ598Uueee64mTZqkU045Rampqfroo4+899tsNn322Wey2WwaOXKkrrzySl199dWaPn16cw8XAAAAABBAuxbskiR1GtXpGEdKSZlJktwfpAAAAJjVsl1HNOGZBdqYF15JIQBoqpVvrZQMd3LdM2+UpE4jOskeZVdRdpEObzwcvAEGycH1Ta9stzvsSshIkOSubof/mr2y3Z/WAlFRUXr++ef1/PPP+zwmMzNTX3zxRXMODQAAAAAQZHt+dO/X3nl052Me66lsz9uZ15JDAgAACKq3F+3U1oPFmlNu0W3BHgwAhDjDMGpayE8eWOc+e5RdnUZ20o5v3fu2t+3VNhhDDIrig8UqOVgiSWrTs2n71ad0S1H+znzlbsn1a85e25avtqiyrFK9ftWrSc/dmjV7ZTsAAAAAAPUpOVyiQxvcbe06jTx2Zbtnz/ai/UWqLK9s0bEBAAAEy4pdeZKkrQUW5Zc6gzsYAAhxexbtUe7mXEXERKj3pN5H3Z81NkuStOO7HYEdWJAdWu+eaydlJSkyNrJJj5Hc3b1v+5GtRxr1faW5pXrvvPf034v/q9IjpU167taMZDsAAAAAICA8+7W37dVWMW1ijnl8TNsY2aPdDdkK9hS06NgAAACC4UhxhbYdKpYkuWTRvE2HgjwiAAhtK990V7X3ntRbjnjHUfdnnZYlSd5928PFwXVNbyHvkdItRVLjk+3bv9kul9MlV6VLhfsKm/z8rRXJdgAAAABAQHiS7RmjM/w63mKx1OzbvpN92wEAgPms2J1X5+tvNhwMzkAAoBWoLKvU2vfXSjq6hbxH+vB02aPsKs4p9nZWCweeZHvbPk1vnZ/czV3ZnrulcXu2b52z1fvv4pziJj9/a0WyvZUxDEM33HCDUlJSZLFYtGLFimAPCQAAAAD8sntBdbJ9lH/JdqmmlTz7tiMUMUcHAByv5bvc1YPd28VKkuZtPqSKSlcwhwQAIWvj/zaqLK9MCRkJ6nJal3qPsTvs3gXeO77dEcDRBVezVLZ3d1e25271P9luGIa2zd7m/boop6jJz99akWxvZWbNmqU33nhDn332mfbv369+/foFe0hNkpWVpaeeeirYwwAAAAAQIFUVVdq3dJ8k/yvbJSkx051sp7IdoYg5OgDgeC2vrmy/8qTOio8wVFReqcXbDwd3UAAQolb+291CfsBVA2SxWnweF477tjdHsj25q7uyvfRwqcryyvz6niNbjyhvR573ayrbEfK2bt2qjh07atSoUUpNTZXdbm/U9xuGocrKyhYaHQAAAADUb//y/aosq1R0m2i1OaGN39/nTbbvItmO0MMcHQBwPFwuQyt25UmShmQkqV+ye2/huetygjgqAAhNRTlF2jJriyRp4NX1t5D3qJ1sD4d920uPlKpov7uivF3vpifbHfEOxbZ3d1rxt7q9dgt5icp2hLhrrrlGt9xyi3bt2iWLxaKsrCyVl5fr1ltvVfv27RUVFaUxY8Zo6dKl3u/57rvvZLFY9OWXX2ro0KFyOBz64Ycf5HK5NGPGDHXp0kXR0dEaOHCgPvjggzrPt3btWp177rlKSEhQfHy8Tj75ZG3d6v6lWbp0qc4880y1bdtWiYmJOvXUU7Vs2TLv9xqGoQceeECdO3eWw+FQWlqabr31VknS2LFjtXPnTt12222yWCyyWHyvPgIAAABgDrVbyDdmDsCe7QhVzNEBAMdry8EiFZZXKibSph7tY2uS7esPhEVyCEDoWPt/a/XBrz/QnLvm6OdXftb2b7crf3e+DFfonItWv7NaRpWh9BHpatuz4X3J04enyx5tV8nBEm/Ft5kdWu/emz6hU4IcCY7jeixPK/kjW4/4dfy2Oe4W8lHJUZKk4gPhV9neuCXXCKqnn35a3bp108svv6ylS5fKZrPprrvu0ocffqh///vfyszM1COPPKLx48dry5YtSklJ8X7vn/70Jz322GPq2rWrkpOTNWPGDL399tt66aWX1KNHD82fP19XXnml2rVrp1NPPVV79+7VKaecorFjx+qbb75RQkKCFixY4F1xX1hYqMmTJ+vZZ5+VYRh6/PHHdfbZZ2vz5s2Kj4/Xhx9+qCeffFLvv/+++vbtq+zsbK1c6W7v8dFHH2ngwIG64YYbdP311wfltQQAAABaWsGeAs3/+3wNuW6I0oalBXs4LSZ/d76+/fO3Ki8sb/C47OXZkhrXQl5iz3aELuboAIDj5dmvfWCnJNltVp2QaCgqwqq9eaVat79AfdMSgzxCAOGgoqhCn173qSqKKo66zx5lV3K3ZLXp0UbJ3ZOV2CVRFVFHHxcInhbyAyc3XNUuSbZImzqP7qxtc7dpx3c71L5v+5YeXlA1Rwt5j+Ruydr9426/KttdlS5t/3q7JKnPJX207OVlYdlGnmS7R0WJdGhT8z6mYchWXCQVx0m+Voa3PUGKjPHr4RITExUfHy+bzabU1FQVFxfrxRdf1BtvvKGJEydKkl555RXNmTNHr732mu68807v906fPl1nnnmmJKm8vFwPPfSQ5s6dq5EjR0qSunbtqh9++EH//Oc/deqpp+r5559XYmKi3n//fUVEREiSTjjhBO/jnX766XXG9vLLLyspKUnz5s3Tueeeq127dik1NVXjxo1TRESEOnfurOHDh0uSUlJSZLPZFB8fr9TUVL9+dgAAAKA1KS8s1ztnv6MDqw9o57ydunH1jbLazNlYbOkLS7XyzZV+H9/l9C6NenxPG/mC3QUyXEaD+/LBZEJ8ns4cHQBwvJZVLyYc3DlJkhRpk8Z0a6O5Gw5q7roDJNsBBMTa/65VRVGFEjsnqucFPXVkyxEd3nxYedvzVFlWqYNrD+rg2prq8KisKOmqwI4xe0W2clblyBZpU79f9/PrezLHZrqT7d/u0PApw1t4hMHlSba37dNwxb8/PJXtuVuOnWzfu3SvygvKFZUcpR4Te5BsD3uHNkkvn9qsD2mVFH+sg26YJ6UNatLjb926VU6nU6NHj/beFhERoeHDh2v9+vV1jh02bJj331u2bFFJSYl3Yu9RUVGhwYMHS5JWrFihk08+2TuJ/6WcnBz9+c9/1nfffacDBw6oqqpKJSUl2rVrlyTpkksu0VNPPaWuXbtqwoQJOvvss3Xeeec1ev86AAAAoLVxVbn00eUf6cDqA5Lc7dzW/t9a9f9N/yCPrGUcWuduVzfgygHHrFpPykpS+onpjXr8hPQEWawWVVVUqSinSPEdjznLglm0snk6c3QAQGMt3+2ubB/cOdl72+m92ruT7etz9MdxPYI1NABhZNkr7u2Hht00TGPuHuO93VXpUv6ufB3efFi5W3KVvTxby19broqcwFe2r/j3CklSz/N7Kjol2q/v6XJaF32rb7Vz3k7TL9z2tJFvrsp2yb828ltnu7e16jquq+I6xkkKzz3bmVV5tD3BPaFuRi7DUHFxkWJj42RtaMV8AMTGxnr/XVTkDvTPP/9c6el1P+hyONx7OURHN3yymjx5sg4fPqynn35amZmZcjgcGjlypCoq3CfZjIwMbdy4UXPnztWcOXN000036dFHH9W8efN8fjgAAAAAmMHcu+dq02ebZI+yq9cFvbTm/TWaP32++l7a15TV7Yc2uCf1A68ZqK5ndG32x7farYpPj1fB7gLl78wn2R5OTDxPZ44OACgoc2rzAfffAE9luySd3rOtLBZp9d587c8vVcdE/5JKANAUB9Ye0J6Fe2SxWTRo8qA691ntViV3TVZy12RpvHsv7uWvLZer1CVXlUsK0GVklbNKq99ZLcm/FvIeacPSFBEToZJD7n3b2/czbyv55mwjn9LN/z3bPfu1dz2zq+I6uJPtxTnFMgxDFl/zLRMi2e4RGdPkCnOfXC5VFRRICQmStfk/VOvWrZsiIyO1YMECZWZmSpKcTqeWLl2qqVOn+vy+Pn36yOFwaNeuXTr11PqrBAYMGKB///vfcjqd9U68FyxYoBdeeEFnn322JGn37t06dOhQnWOio6N13nnn6bzzztOUKVPUq1cvrV69WkOGDFFkZKSqqqqa+JMDAAAAoWnZa8u08PGFkqRfvfEr9ZjYQ1tnb9WhDYe05v01GnDFgCCPsHlVVVR593Fr1/v4J/W+JGUmuZPtu/LV6aROLfY8CDGtbJ7OHB0A0Bgrd+fJMKTOKTFqG+eQ0+mUJLWJc2hI52T9vPOI5q4/oKtOygzySAGY2fLXlkuSep7XU3GpcQ0e60h0eP9dXlAuR5SjgaObz9avtqrkYIli28eq2/hufn+fLdKmzmM6a+vsrdr+7fb/z955h8dR3mv7nu276pIly7It915lY2xjOqZ3SEJPh4TACYGEkOSkkOQk5JwvPSGNEGooIVSDA7YpBlzAvVfZclPvdft8f8zOSsKS1XZ2Z6XffV2+ErQ7M69Gs7Mz87zP8wxasd3X5KPhaAMQm/tyPUa+8XgjgbYAdnfXsyp8jT6Orz8OwIQLJ5AyXJtQHPKH8DX4cGW6BjyWZGHw2SqGECkpKdx5553cf//9vPnmm+zevZvbb7+d1tZWvvSlL3W7XFpaGt/61re49957eeKJJyguLmbz5s384Q9/4IknngDg7rvvprGxkRtvvJGNGzdy4MABnnrqKfbt2wfApEmTeOqpp9izZw8fffQRt9xyS6eZ9o8//jiPPvooO3fu5NChQzz99NO43e7oA4exY8fy/vvvc+LEiZMeAAiCIAiCIAhCMlLyXglvfPUNAM558Bxm3jATZ7qTxd/UOpjf/8n7hIPhRA4x5tQerEUNqTjSHNHIOCPQe9vrI72mgmBG5B5dEARB6AtbjtYDnV3tOkunDQdg5e6KOI5IEIShRtAXZNuT2wAo+nJRj++3OW3Y3JqH11fvM3RsHdn2hDbGWbfMwmq39mnZMedq17tH3jsS83GZBT1tLjU/tdcR+6fCnePGma5NpKg/XN/t+w6/exg1pJI9MZvMsZnY3XYcaQ5AS0EYSojYnuT84he/4Prrr+e2225j3rx5HDx4kLfeeousrKxTLvfTn/6UH/zgBzz00ENMmzaNSy65hDfeeINx48YBkJOTwzvvvENzczPnnHMO8+fP55FHHonOoH/00Uepq6tj3rx53HbbbXz9618nL699VlBmZiaPPPIIS5YsYfbs2axatYply5aRk5MDwE9+8hNKSkqYMGECubnGOWAEQRAEQRAEIR7UHqzlX9f/i3AwzMwbZ3LOD9vdqaf/1+m4c9zU7K9hx7M7EjjK2KPf1A+bOszQiLiMQk1sbzjSYNg2BCEWyD26IAiC0Fu2HI30tY/OPOm1C6drYvu64mqavIF4DksQhCHEvlf30VbTRtrINCZePLFXy+judm+918ihRWmra2Pfa9oE0zmf7X2EvM7Yc8cC2uR4NazGcmimQY+QHzZtWEzWpyhKtLddT7LrimiE/EXtdXJ6lPxQ622XGPkk4xvf+Ean+DmXy8Xvf/97fv/733f5/nPPPRdVPfkEoigK99xzD/fcc0+325o9ezZvvfVWl68VFRWxYcOGTj/71Kc+Ff3/11xzDddcc0236160aBHbtm3r9nVBEARBEARBSBba6tp45opnaKttY+TCkVz1j6s6Cc/ONCdnfOsM3v7u27z/k/eZddMsLLbBMe9ZF9uNjJCHdme7iO2C2ZB7dEEQBKE/qKrKlmP1AMwbc/KErAm5KYwblsLh6hY+OFDNZbNGxHmEgiAMBTb/fTMARV8s6vU9qivDRUt5C77G+DjbK3dUEvKHyBybSf7c/D4vX3BaAfYUO221bVTurGT47OEGjDKxxLKvXSd7YjblW8qpPdiz2D7hwvZo/5S8FGoP1tJSIc52QRAEQRAEQRAEoReEAiH+/Zl/U7OvhvTR6dz4yo1d9pmdfvfpeIZ5qD1Yy/Z/bk/ASI2heo8mtudMzTF0O5ljMgGiPXSCIAiCIAjJzOHqFupbAzhtFqbmp5/0uqIoLJ2mJZRIlLwgCEZQd7hOE0sVTWzvLXoPd7yc7bqo78n19Gt5q13rbQfN3T4Yqd4dmQQfQ7Fdd7bXFdd1+Xr9kXpq9tegWBXGnjc2+nO9t32oOdtFbBcEQRAEQRAEQegHqqry5j1vcmjVIewpdm5adhOp+V33ljtSHZxx/xkAvP/TwdPd3jFG3kiks10QBEEQhMGE3tc+a2QGjm7cpBdO1xyc7+ytJBgaHNeOgiCYh62PbQVg/NLxZI7N7PVyeoy8ryE+znZvgybquzJc/V5HNEr+3ZIYjMh8GOJsn5ANdC+26672UQtHdfrb6GK7ONsFQRAEQRAEQRCEHvn4jx+z8c8bQYHr/nkd+XNOHWm34K4FeHI91BXXse2p5I9rVlU1fjHykc52X4Mv+rBFEARBEAQhWdkc6WvvKkJeZ15hJlkeOw1tATYe6VrsEARB6A/hYJgt/9gCwLwvz+vTsvHubNed7c50Z7/XoTuvS1YPvt72QGuAusPad0SsY+SBbmPko33tF47v9HO9s72lUsR2QRAEQRAEQRAE4RQcfPMgb31D605e+oulTL16ao/LOFIcLPn2EkBzt4cCIUPHaDRNJ5rwN/ux2CzRiDmjcKQ4cOe4AYmSFwRBEAQh+dGd7UWjM7t9j81q4fypWrewRMkLghBLDr51kKYTTbhz3Ey5ekqfltVj5OPlbNe3MxCxfcS8EThSHXjrvFRsH1zn0+p91aCCO8fd76j9rtDv8etL6k9K5guHwhxa1bXYLs52QRAEQRAEQRAEoUcCrQFevPlF1LDK3C/MjcbD94bT7jyNlLwU6g/Xs+3J5Ha36672rAlZWO1Ww7cX7W0/ImK7IAiCIAjJS6s/yN7yRgCKCk89YfHC6Vpv+6o9Fajq4HJjCoKQOLb8XXO1z/nsHGxOW5+W1UXveCWORZ3tGf0X2612K4VnDc7e9o4R8oqitL9Q/A5s/1e/15s+Mh2r00o4GKbhWOd78PIt5bTVtuFMdzLy9JGdXkvJk872IUc4LF03Zkb+PoIgCIIgCIIZKdtShrfOS2p+Kpf/+fLON7Q94EhxsOQBzd3+wf98QMifvO72ePW16+hR8tLbPniRe0DzI38jQRCEgbPtWANhFQoyXOT30EF81qRcHDYLR2paOVg5tIQLQRCMobm8mX3L9gF9j5CHDs72+vh2tg/E2Q4detsHmdhevSdS7dYxQl5VYfn98MrXoPpAv9arWBSyxmsTwj4ZJV+8shjQ4vk/OfE+GiM/xJztfZuyMkhwOBxYLBZKS0vJzc3F4XD06QFZbwmHw/j9frxeLxbLkJ7X0CdUVcXv91NVVYXFYsHhcCR6SIIgCIIgCIIQpWxzGQAFpxX02QUAcNpXT2PN/62hvqSerU9sZf7t82M9xLgQFdunxUlsH6OJ7RIjP/iI1z06yH16f5H7dEEQhNix5ZjWrduTqx0gxWljyYQc3t1XxYrdFUwanmb08ARBGORsfWIrakhl9Bmj+9Xx7cyMr7Pd3+jXtjsAZzu0i+1HVh8hHApjsQ6Oe4GOzvYoxz6GmoPgSIX/fBtufQn6cX+VPSGb6j3V1BXXwYXtPz+0ousIeWiPkR9qzvYhKbZbLBbGjRtHWVkZpaWlhm1HVVXa2tpwu92GPSgYzHg8HgoLC+UBiCAIgiAIgmAqyreUA5A/L79fy9s9ds78zpm8de9bfPA/HzD3c3OxOoyPYY81+gz6uDnbdbFdYuQHHfG6Rwe5Tx8ocp8uCIIwcKJ97YWZvXr/0unDeXdfFav2VHDXeRONG5ggCMlHOASKpddCqqqq0Qj5oi8X9WuTrvQ4d7Y3DryzHSK97WkOvPVab/uIohGxGF7C6VJs3/o0ZIyGSx6C52+FvW/AtCv6vG69t722uN3Z7m/xc3TNUQAmXDThpGV0Z3ugJYC/xY8jZWhM0h2SYjtoM+cLCwsJBoOEQsZENwYCAd5//33OPvts7Ha7IdsYrFitVmw2mzz8EARBEARBEEyH7mwfMa//N+fzvzKfNf+3hoajDWx5bAunfeW0WA0vbsQ7Rl462wc38bhHB7lPHwhyny4IgjBwVFVly1Hd2Z7Zq2WWThvOf7+8k63H6qls8pKXduroeUEQhggBLzx6IUy8AJY+2KtFjrx/hNqDtTjSHMz49Ix+bTbqbK+Pj7Ndd9C7eqjd6AmLzcKYs8ZwYPkBSt4tGRRie9AXjEa8R8V2fwvsfBkW3QlTr4CJS+Gt72rHid3dp/VnT8wGoO5gXfRnR94/QjgQJmNMRvT1jjjSHNhcNoLeIC2VLTjGidg+6FEUBbvdbtgNttVqJRgM4nK55CZeEARBEARBEAYBQV+Qql3azPGB3Jzb3Zq7/c173uSDn33A3M/P7VckfaLwNfpoKm0CpLNdiB1G36OD3KcLgiAIieV4XRvVzX7sVoUZBRm9WmZ4uos5ozLYdryBd/ZUcuPphQaPUhCEpOD9/wfl26HuCJzzQK+EVN3VPvOmmThS+yeCRjvbG5PL2Q4w5tyI2P5eCYvvWzzg9SWa2gO1qCEVZ4aT1BGao5w9y8DfBHNv1hIPLvlf+NMiWPM7OPc7fVp/V8724hVaX/v4C8d3OQlXURRShqfQcKSBlooWssb1XJkyGJDcL0EQBEEQBEEQhF5SubOScDCMO8dN+uj0Aa1r/h3zSStIo/FYI1sf2xqbAcYJ3dWeOiJ1wA6D3qLHyDeXNRP0BeOyTUEQBEEQhFiyOeJqn16Qgcve+xqhpdOGA7BqT4Uh4xIEIcko3wFrfgtzbgZfgxYT3gNtdW3s/vduAOZ9eV6/N62L3r76OIntDbET28edNw6IuLND4QGvL9F0jJCPCt9b/wljzoRs7Xdl2ERYfBd8+BttYkYfyJ4QcbYX16GqKgCHVmp97V1FyOuk5A293nYR2wVBEARBEARBEHpJNEK+aMSAo5RtLhtnfvdMAD742QdJJSDHO0IewDPMg82tuf8bjzfGbbuCIAhG0eILEgqriR6GIAhxJNrXPjqzT8tdOEMT2z84UE2rP3muGQVBMIBQEF69G4ZNhit/B4VnwJanelxsxz93EPQGGT57OAWnFfR787qz3dvgjQqwRhJ1tmcMXGzPn5uPM8OJr8HHzud2Dnh9ieakvva6I3D4fSi6pfMbz74f3Fnw1vf6tP7MsZkoFoVAa4Dm8maaSpu0pD8Fxp0/rtvl9N72loqWPm0vmRGxXRAEQRAEQRAEoZeUbykHIH9efkzWN+/L80gbmUbj8Ub2L9sfk3XGg6jYPi1+YruiKNEoeeltFwQh2dl5ooFFP3+bLz+xIdFDEQQhjuh97fPG9C1Wd8rwNEZlufEFw3x4oNqIoQmCkCysf1iLj7/qj2BzQNGtcGg11B/tdhFVVdn8yGYAir5cNKCJ43pnuxpSCbQE+r2e3qCqarSzPRbOdovNwhnfOgOAt77xFq3VrQNeZyLRxfboffm2Z8GRCtOv7vxGZypc9D+w93U4+Hav1291WKP34HXFdRSv1CLkC+YX4MnxdLtcynBxtguCIAiCIAiCIAjdEHW2z+t/X3tHbC4b066fBsDhdw7HZJ3xoHpP/J3tAJljMgFoOCpiuyAIyUubP8Q9z22hyRfk3X1VVDR6Ez0kQRDigDcQYlepls7TV2e7oigSJS8IAtQUw7s/h0Vfg1HztZ9NvxrsHtj6bLeLlW0qo2J7BVanldm3zO76TRv/AY9fAeFTx6vbPfaosuitN/YaJuQLEQ5o44lVfdmSby8hb2YerdWtrPjmipisM1F0craHw1qE/IxrwJFy8ptnXq/Fy//nAQj6e72N7IlalHxtcW00Qn78ReNPuYwutrdUirNdEARBEARBEARB6EA4GKZim/Zwc0RRbMR2aO+NK3mvJGbrNJpExMhDe297/ZH6uG5XEAQhljz0nz0UV7U/fBThTBCGBjtPNBAMqwxLdTIqy93n5S+arontb++plAoKQRiKhMPw2tchLR/O6xAH7kyFmddqQms3Qvnmv2uu9umfmo47u4vzT6AN3n0ISj6Aw++dchiKomBNsQLGi+16hDyAI9URk3VaHVaufORKUGDbk9soXlEck/XGm3AwTM3+GiAith/5UEs3mHtr1wsoClz6v1B7CD76c6+3kzVBS2KpPVDLoVWRvvYLu+9rB4mRFwRBEARBEARBELqhel81QW8QR6ojOrs7Fow5ewwomlu8udz8MWuhQIjag7VA4sR2iZEXBCFZeXdvJU+uOwLAOZO1fs1Vu0VsH0rEod5WMCl6X/u8wsx+RTgvGJdNustGTYufdcU1MR6dIAimZ/MTmqB65e+izmU1rBL0BQnOuAnqjxA6uFr77w7/2ura2PHMDkCrMeuSLU9DazVkFMLHf+9xKFGxvcFYsV1fvyPNgWLpf/T9Jxm1aBSn/9fpALz+ldfxt/Te6W0WaotrCQfC2FPsZIzOgC3/hOwJULio+4XyZ8Lpt8Pq/4PGsl5tRxfb976yl5aKFuweO6MWjzrlMlFn+xAS222JHoAgCIIgCIIgCEIyoEfI58/Nj+mNvjvbzfDZw6nYVkHJ6hJm3jAzZus2grpDdYSD2k19+qj0uG472tkuMfKCICQh1c0+7v/3dgC+sGQsN59eyOr9VawprqHFFyTFKY/pBjPhsMpPXt/DixutjJ/XxOzC2E3cE5KDLce0vvaiwr71tevYrRauKRrJk+uO8Niaw5w5Kb6THgVBSCCNpbDyh1B0Gw32Ig4+somD/znIoVWH8Df5AZW7787k+APf5ZVXLu1yFdkTsxlzzpiTXwgFYM3vYcZ1MOYMWP4tqD8GmaO7HY7VE19ne6wi5Dty/v+cz75X9lFfUs+7P3yXi391ccy3YSTRCPlpuSj+Jtj9Kpz9Lc3BfirO/S7s+Ld2PF3/SI/b0Y0GVbu07Y09dyy2Hq5ZU/Kks10QBEEQBEEQBEHogvIt5QDkz8uP+brHnjcWgJJ3S2K+7ljTsa+9P66sgRDtbBdnuyAISYaqqnznxR1UN/uYPDyVBy6ZysS8VMbmePAHw3xwoCrRQxQMJBxWeeDF7Tz10TFaQwrv7JO/91Bkc6QGp6gws9/r+PwZYwF4e28lh6uHjmNQEIYyQW+AlifuxNdm4dEHx/Hbwt/y+h2vs/flvRGhHUBhy5aZTJ9+AKfTd9I6FIvCkgeWdH3/tuMFaDgKZ90Hs28ARypseuyUY4pbjHyD9rs4050xX7czzcnlf7kcgI9++xEnNpyI+TaMpFNf+66XIeSDOTf1vKA7E5Y+CDv+BUfW9vj27AmdJweOv/DUfe0wNGPkZcqsIAiCIAiCIAhCL9Cd7SPmxa6vXWfsuWP56LcfJUVve6L62qFDjPzRBtSwGtOEAUEQBCN5bsMxVu2pwGG18NsbinDZtYfUS6cN5+8fHmbF7goumRn77xch8YQiQvu/Nx2P/uxA5dBxegkaZQ1tlDd6sVoUZo/K6Pd6xuemcsHUPN7eW8ljaw7zk6vNnYgkCEL/8NZ72fncTg7+5yDO429w7ZXv8fwLV3J8bzOKRWHkwpFMvHQiky6dRPakbE1Eby7H9shcvrlqHOHZn+20Povdgt1tP3lD4RB88GuYchkMn6H9bM5NsOkJOOcBsHUtcutiuy6GG4XubHdmxF5sB5h06SRm3TyLHc/sYNnty7h9w+1YI9doZqd6d+S+fPow2PonGH8eZIzs3cJzb9EmVCz/NnxlNVi6/52zxndOY+mN2K7HyHvrvYT8IayO5NinA0Gc7YIgCIIgCIIgCD2ghtWos31EUezFEL23vWZfDU1lTTFffyyJiu3T4i+2pxWkoVgUQv7QkIqkEwQhuTlU1cxPlu0G4P6LpzC9oL2CY+n04YDW5R4MhRMyPsE4QmGVb/9bE9qtFoVPzdMegh8UsX3Iofe1T81Pw+MYmP/tS2eOA+CFjcdpaA0MdGiCIJiQF296kTfufIOjK7dy0fkr2V88FefCT3H9c9dzf9X9fGntlzjnB+dQcFoBrgwXznQnzoIxKBOXYt/7vPbfHf51KbQD7FkGNQfgzPvaf7bgy1p/++5Xux1fvJzteme7Ec52nYt/ezHuHDcV2ypY96t1hm0n1ujO9oLxrXDsIyi6pfcLWyxw2f+Dip2w8R+nfKsj1UFqvuZUTytI05z0PeDOcmOxafJzS+XQcLeL2C4IgiAIgiAIgtADdYfr8DX6sDqthojM7iw3+XO1eHqzu9s7xsjHG6vdStrINEB62wVBSA4CoTD3Pr+VtkCIxeNzoiKZzmljssj02KlrDbA5IsYJg4NQWOX+F7bx4mZNaP/djXO561zNDXaoukUmVwwxNh/R+9ozB7yuxRNymJqfRlsgxHMbjg54fYIgmI/a4loAbrlnJ+5MO5MefpVrHr+GmTfMxJ3t7n7BubfA8Q1Qta/njagqfPArGHc2jF7Q/vPcyTDuHPi4+z7vuMXIG9jZrpOSm8LFv9b62t978D1qDtQYtq1YEQ6Fo5PgR/AOuDJgyuV9W8nI+TDvNnjnp9BSfcq3Zk3Q3O3jLxzfqyo5xaIMud52EdsFQRAEQRAEQRB6QI+QHz5ruGGxctHedhOL7aqqJjRGHqS3XRCE5OIPbx9g2/EG0l02fvWZOVg+UX9hs1o4f0oeACt3lydiiIIBhMIq33phGy9tOYHVovD7G4u4YnYBBRkuHBaVQEilpKY10cMU4siWY/UAzCvMOvUbe4GiKHwxMnHnibUlMnFDEAYhvkYfEyYcZqTzAyyXPYSSnt+7BadcCu5s2PJ0z+89+DaUb4ezvnXya6ffDsc/hrJtXS4aFdsb4iO2O9Idhm5n9m2zGX/heEK+EMtuX4YaVg3d3kCpL6kn6A1id1twHX0FZn0a7P2YkHDBj0CxwItfhlD3SSkTL5mIYlGY89k5vV61LrYPld52EdsFQRAEQRAEQRB6QI+Qz5/Xy4cc/WDsuWMBKHm3xLBtDJTm8mZ8jT4Uq0L2xOyEjCGjUOs5rT9Sn5DtC4Ig9JaNJbX88d2DAPzs2lkUZHbtRNOj5FfurkBVzf1wV+iZUFjlm//ayssRof0PNxVx+WytgsZiUciPHAYHKsxdGyPEDn8wzI4T2iTBohiI7QBXzSlgWKqD0gYv/9kpE3UEYdDhbeKKK1YRGHGm5lbvLTYnzP4MbHvulOIpAB/8EkaepjnbP8nkSyF9ZLfu9mhne73Bne2RTngjY+RBm8R0xV+vwO6xc2T1Ebb8Y4uh2xsoeoT83LNqUZrK+naMdCRlGHzmSSj5EN64T0s76IKzvncWD9Q9wLjzx3X5eperHi7OdkEQBEEQBEEQBKEDurN9xLzY97XrjDlrDIpFofZALY0nGg3bzkDQXe1Z47OwOQfWN9pfMsZoYrvEyAuCYGaavAHu/ddWwipcWzSSK+cUdPvesyfn4rBaKKlppbhqaDyQHKwEQ2Hu+9dWXtlais2i8MebirhsVudrh3yP9iB7/xB5+CzA7rJG/MEwmR47Y3M8MVmny27lloVjAPjHmsMxWacgCOYgHAwzY8o20tJaCF74K+hFbHcnim6Flko4uKr79xxZC0fXwVnf7Hr9VhvM/wLs+De01Z38smfwxMjrZI3L4ryfngfAim+toKnMvJPidLF99swdkDcdCor6v7JxZ8NVv4fNT8KHv+nyLYpF6fOEh9ThWs+7dLYLgiAIgiAIgiAIqKraLrYXGSe2uzJd5BeZu7c9kX3tOlGxXWLke8WDDz6Ioiid/k2dOjX6+rnnnnvS61/96lc7rePo0aNcfvnleDwe8vLyuP/++wkGg/H+VQQhqfjxst0cq21jZKabH18945TvTXXaWDwhB4CVuyvjMTzBAIKhMPf+axuv6kL7zfO4dNbJ1w0jdLG90rwP8YXYsuVopK99dGavum57y62LxuCwWthytJ7NR08WwwRBSE78zX5SUlppbvbgGDWp7yvInwX5s08dJf/BryBvBky+pPv3zP8chIOw9ZmTXopbjHycnO06C7++kILTCvA1+PjPf/0nLtvsD9W7q3G52ihI26K52gf63TL3ZjjnAXj7x7DzxZiMUXe2S4y8IAiCIAiCIAiCQFNpE61VrShWhbxZeYZuy+y97YnuawfpbO8PM2bMoKysLPrvww8/7PT67bff3un1//u//4u+FgqFuPzyy/H7/axdu5YnnniCxx9/nB/+8Ifx/jUEIWlYvqOMf286jqLAb26YS7rL3uMyepT8qj0VRg9PMIBQWOXef21j2TZNaH/4lnlcMrPr6hmJkR96bDlaD8Smr70juWlOrp6rpWY8+qG42wVhsOBr9GG3BwgEHVgd1v6tpOg22P8mNFed/FrpFs31ftZ9YDmFRJiaB9Ovhg1/h3C400tRsT1OznZnRnzEdovNwpV/vxLFqrDnxT3sfWVvXLbbV6p2VzFr1l4UVJh9Q2xWeu53YdZn4OU74ej6Aa9OxHZBEARBEARBEIYU3nov4VC45zcOUXRXe+60XOzungWTgWD23vao2D4tgc72QomR7ys2m438/Pzov2HDOv/9PB5Pp9fT09Ojr61YsYLdu3fz9NNPM3fuXC699FJ++tOf8vDDD+P3++P9qwiC6VFVlZ+9sQeAO8+ZwOnjsnu13NJp2mSuzUfrqGoytv9UiD3vH6hi2bZS7FaFP90yj4tndC20Q3uM/OHqFgJy/TUk0F3nsepr78gXlmj9uW/uLOdEfVvM1y8IQvzxNfmw24MEQ47+r2TWp0CxwPbnT37tg19D1jiYfk3P6zn9dqg9BIfe6fRji0eTFuMmtsfJ2Q6QPyefJd9eAsB7D74Xt+32FlVVqdpTxdy5u/CPPA9Sc2OzYkWBq/8Io06DZ2+CmuIBrU6PkR8qne2JKdkTBEEQBEEQBMEUVO6s5C9z/sKsW2Zx7ZPXJno4pqR8SzlgbF+7jt7bXldcR8OxBjJGZxi+zb5gphh5b70XX6Mvrg9ekpUDBw5QUFCAy+Vi8eLFPPTQQxQWFkZf/+c//8nTTz9Nfn4+V155JT/4wQ/weLRO2XXr1jFr1iyGDx8eff/FF1/MnXfeya5duygq6rof0Ofz4fO1C4aNjY0ABAIBAoGAEb9mr9C3ncgxCOYkVsfGrtJGTtS34bZbuPPssb1e3zCPjZkF6ewsbWTlrjI+PX/kgMYhxJfSWs21debEHM6bnNPt3z0QCJDlAI/DSqs/xIHyBiblpcZzqEnHxyW1fPnJzUwbkc5nFxVy0fQ87Nbk8Y9VN/s4XteGosD0/JRTnhP6cx6alOtm8fhs1h2q5bEPD/HAxZMHPGZBALlmSiQttS3Y7QFCqrP/+9+ehnXypShbniJ42h3tMePV+7HtWUbosl+jhlUI97D+/HnY8maifvQ3QmPOAbRjQne2+xp8hh4jbZFJRLYUW2y2o6pYNvwVvA2Ez36g27fN++o8PnzoQyp3VNJS14IjdQATH2JMw9EGslJKKSioxH/6rTHe/xa4/nFsj18C//wUwc+9CZ7eTRz9JM5s7T69uby5X2M0yzmot9sXsV0QBEEQBEEQhjDHPzqOGlbZ/tR2Ft6zkIL5BYkekunQne3587p3qcUKZ7qTEfNHULqhlJL3Sphz2xzDt9lbfE0+Go9rgmkixXZHigN3jpu2mjbqj9QzfNbwnhcawixcuJDHH3+cKVOmUFZWxo9//GPOOussdu7cSVpaGjfffDNjxoyhoKCA7du388ADD7Bv3z5eeuklAMrLyzsJ7UD0v8vLy7vd7kMPPcSPf/zjk36+YsWKqJCfSFauXJnoIQgmZaDHxn+OKYCVSWlB3ln5Vp+WLbQq7MTKs6t3kFKxbUDjEOLLxjLt795QXcny5ctP+V5FgVxHkCN+hRfe+oC5OWp8BpmkPLbPQlvAwuaj9Ww+Wk+GXWVJfpjFeSrp5tE+uuVYM4CNdJvKB++s6NUyfT0PzXQorMPKP9cdZrL/IM5+pk4LQlfINVP8adzSyGmOAL6AtcfvlFOR65/EGVWvsvbfD1OfMh6AoiN/JdeeyaoT6YTLerfuMc4FzDnwOO++/ARtTs1FrYvtQW+Q1195HYvDmElQ9RX1AGzcsZE9vj0DWpct2MK8o48womEzAKursmhyj+r2/fYcO4GaAK/8+RVSZ5hnYlzj5kaKinbR0ubh7cNh1JL+HyPd4cn/Kmfv/wlNf7uSdRO/TdjS94S/tsPaRIm643UDOo4TfQ5qbW3t1ftEbBcEQRAEQRCEIUxbTXvc5OoHV3PTspsSOBpzoovtI4qMd7aD1ttuRrG9Zn8NoHWvubPcCR1LRmEGbTVtNBxpELG9By699NLo/589ezYLFy5kzJgx/Otf/+JLX/oSd9xxR/T1WbNmMWLECC644AKKi4uZMGFCv7f73e9+l/vuuy/6342NjYwePZqLLrqoU0x9vAkEAqxcuZILL7wQu93YWgghuYjVsfHXP60Dmrj5nFlcNq9v7vRxZU0s/9M6DjTbOG/pebj729MqxJ2S9w5ByUEmjh3NZZfN6PZ9+nE2b+IIjmwtJ23kZC47v//n2sGONxDiOxvfBcLccNpI3t5bRXWzn+XHrKwsVbhsZj63LSpkzihzJQF15KPDtbBjIzkZKVx22ZmnfG9/z0OXhFVW/n4NJTWttOTN5NqFhT0vJAg9INdMiWNP2x7sBwNYHBlcdtll/V9R+GLUPz7DmaklhC+9G+qPYtu6nvDSH3PJ6Vf3fj3+c+D3L3JBxhHC53+OQCDAijfbJw+du/jcaGR4rNkb2EuAAOddct7AJnyX78D20hfBV0vw+sexrvge5zq2E7rsjm4XaV3Syv7X9jPGNoaFly3s/7ZjzMf7PmTWrD0cbzmTSy+/yrDtKMdnkPP0tVweXE7o6r+0pyP0kubyZvbdu49gY5BLLr4ESx9TacxyDtIT2npCxHZBEARBEARBGMK0VrfP0t3/+n5ObDjByAUSXavTWt1K4zHt5ip/rvHOdtB629f+31rT9babIUJeJ3NMJuVbyqW3vR9kZmYyefJkDh482OXrCxdqD5IOHjzIhAkTyM/P5+OPP+70noqKCgDy87v/TDidTpzOkyP+7Xa7KR7YmmUcgvkYyLFRWt/G7rImLApcOGNEn9cza3QWIzPdnKhv4+MjDSydLpOJkgVvSHOnp7ocvfq7T8lPB8oprm6Vc9EpeHd/DW2BMAUZLn5x/RwCIZXlO8p4fG0JW4/V8+q2Ml7dVsac0Zl84YyxXDZrBA6buSLm/WHtf1OcvT+39Oc89MUzx/HDV3fx5PpjfO6M8VgsfRNFBKE75Jop/oTaQjgcAUIW9wD3vR3m3oz140ewXvoL+PhP4M7EuuCLWPuyXnsmFN2Kdds/sZ7/32C3o1gVnOlOfI0+wq1hQ44RVVWjne2pw1L7v43NT8Hyb0HuFLjtZWzZ46DpBMqqH2G54IeQ0fXzj1ELR7H/tf2Uby431WdAOfoRKcPaaPRcauy4xi2B6/6K8sLnseSMh/O/36fFM0ZkgAKoEGgI9HtCRqLPQb3dtrmuPgRBEARBEARBiCutNZrYbo2451Y/uDqRwzEdZVs0V3v2xOy4dYMXnlmIYlWoP1xP/ZH6uGyzN1TvNY/Yrve215fUJ3YgSUhzczPFxcWMGNF1UsPWrVsBoq8vXryYHTt2UFlZGX3PypUrSU9PZ/r06YaPVxCSiVV7tIko88dkkZPa9+8MRVG4MCKwr9xdEdOxCcbS5g8BWhd7b9B72vdXNBk2psHAm7u0upKLZ+ajKAoOm4Vrikbyyl1LePWuJVxXNBKH1cK2Y/V84/mtnPGLd/j1yv1UNHoTPPJ2WnzasZFicLb79fNGke6ycbi6hXf2Vva8gCAIpsXX6MNuDxC2xiBNbO7N4GuADY9qovOiO8GR0vf1LPgytNbA7leiP3Jmatc63npjzrmBloDWKw/9uxcPtMGrd8Frd8PsG+CLKyB7nPba/M9p+2H9n7pdvGCBVrFXuqG079s2EKVVuy+35E00fmMzroWlD8L7/087fvqAxWbBM0yrD2upaDFgcOZCxHZBEARBEARBGMK0VWsx8qd//XQUq8KB5Qc4/tHxBI/KPJRv0R7yjpgXnwh5AGeak4LTtBv7kvdK4rbdnoiK7dMSL7ZnT8wGoPZgbYJHYn6+9a1vsXr1akpKSli7di3XXnstVquVm266ieLiYn7605+yadMmSkpKeO211/jsZz/L2WefzezZswG46KKLmD59Orfddhvbtm3jrbfe4vvf/z533XVXl851QRjK6AL50mn9d6Try769t4JwWLq8k4UWXxAATy8FVV1sP1zdgj8YNmxcyUwgFGZV5DN1yYyTk1TmjM7k1zfMZc13zuebF05meLqT6mYfv3/7AEt+8Q7/9ewWNh2pRVUT+zlq9WvHRorD2IDZFKeNm07X4uP/seawodsSBMFY/E1+HI4A2D0DX1nOBBizBFb+AGxOWHB7/9cz4Xz4+JHoj3QB3CixXXe1K1YFu6ePzubaQ/DohbDj33D1n+Cq34Pd1f66M02bQLDpcWir63IV+j153aG6qEnBDCj+JlQV7BlxqlBZ8g2Y9zlt0sJvZsHLX4UtT0PtYejhOzYlT5vY0VzRHIeBJhYR2wVBEARBEARhCKPfNI5aNCraDy7u9nb0vvb8efGJkNcZe95YAI68dySu2z0VZnK250zOAdp75IXuOX78ODfddBNTpkzhM5/5DDk5Oaxfv57c3FwcDgerVq3ioosuYurUqXzzm9/k+uuvZ9myZdHlrVYrr7/+OlarlcWLF3Prrbfy2c9+lp/85CcJ/K0EwXw0eQOsP6Sdky4cQPz76eOySXPaqG72s/V4fYxGJxhNayDibLf3TmzPT3eS5rQRDKuU1Ax+t1d/+OhQLY3eIDkpDk4bm93t+3LTnPzXBZP48IHz+ePNRSwYm0UwrLJsWynX/3kdV/7xQ17YeAxv5G8Ub3Rnu8dpfJvr584Yi9WisLa4ht2lveuYFQTBfPiaNGe7GguxHWDuLaCGNXHZndn/9Sz4MpzYCGVbAXBlauK1t8FYsd2Z7kTpS1/43jfgr+eCvwW+vAqKbun6fQu/CqGA5vrvAneWOzrJu3SjedztSrAZn8+BMyMGyQe92qACV/wGbnwWpl0BFTvh1bvh93PhNzPgxdth0xNQU3yS+K5Hxw8FZ7t0tguCIAiCIAhCN+x4dgcjikaYQlw0Cr2z3ZPj4azvn8W2p7Zx8M2DHFt3jNGLRyd4dIlHF9tHFMXP2Q5ab/uaX6zh8LvmcCaFg+GosG2Gz0P2pHZnezgUxmKVeeTd8dxzz3X72ujRo1m9uufJNWPGjGH58uWxHJYgDDpW768iEFIZn5vC+Nz+dVICOGwWzp2ax7JtpazcXcG8wqwYjlIwitaos713j1oVRWHi8FS2HK1nf0UTk4enGTm8pOTNXdo12EUzhmPtRf+43WrhitkFXDG7gJ0nGnhibQmvbitl54lG7v/3dh76z15uOn00ty4aw4h4CRS0px6k9LJiYCAUZLq5dGY+r28v4x9rDvPLT88xfJuCIMQeX6MPe3oQxdmPuPeumHkdVO+DM/5rYOuZfAlkjMa68R9gvQRXRkRsN8jZrov4+nZ6pK0ePvw1rPkdTL0CrvkTuE7h/k7N04T4j/4Ci+8C+8nfDQULCqg9WEvphlImXhyH2PZeYAm34PM5cabFMWXMYoWpl2n/QEsDOLoeSj7U/u38tzahIzUfzvomLLwDgJTh2jHcUjn4xXZ5IiEIgiAIgiAIXXB8/XFeuvklnrnimYTHTxpJW40WI+8Z5iF7QjZzPifudh1fo4/aA1pMeX5RfJ3thUsKsdgsNBxpMEUved3hOsKBMHaPnYzRcYqrOwUZhRlYHVZCvhCNx8S5JQiJ5lBVM5/56zo+94+PefC1XTy25jDv7qvkcHULgdDQiMjW464vHECEvM7SaXmd1imYn9Y+drYDTM7TBPb9QyBata+Ewypv7dKO/4u7iJDviZkjM/h/n57D+u9ewLcvmUJBhovaFj8Pv1vMmf/7Lg/9Z0+sh9wtLdFjIz6ety+eqfURv7a1lKomX1y2KQhCbNFj5BVXjMR2uxsu/Al4uk8J6RUWK5z2BZTdL2EPNuHMiE+M/Cn72v2tsPMleO4W+OUkWPtHuPCncMPTpxbadRbfrXXRb32my5fN2NtuDbdozvb+9NjHCncWTLkULv4ZfGU1PFACN78A6SNg54vRt+liu8TIC4IgCIIgCMIQpe6w1ttVV1zHsbXHEjwaYwiHwrTVtovtAGd//2wsNgvFK4oH7e/dW8q3aX3t6aPSScmN0YOOXuJIdURv7M3gbtcj5HOm5KD0wl1mNBarJRrpJ1HygpB4nt94jI8P17J6fxWPry3hx8t284XHNnDeL99j6g/e5Jz/9y6f/cfH/PDVnfxrw7FBJ8AHQmHe2VsJDCxCXufcKXnYLAoHKpspqe6dE2j78Xre3iPifKLQxfa+9HJPikSrHqhoMmRMycyWY3VUNflIc9o4Y0L/E3WyUxx87dyJvP/t8/jLrfM4fVw2obDK42tKYjfYHoh2tjuNd7YDzCvMoqgwE38ozNPrzVNHJAhC7/E3tmK1hrG4TZh6Mu9zoIYZXbsGZ6Ym9voajJnYo6/3JFE5FID9K+ClOzSB/d9fgMYTsPRBuHcnLPm6Fn3eG3ImwLSrYO0fIHxy3cjIBSMBOLHhxEB+lZhiU9oSL7Z/ElcGTL4IRi8Eb330x0MpRl7EdkEQBEEQBEHoAj1eHWD709sTOBLj8NZ7UcOaa9+drUWmZY3LYs7nNXf7ez96L1FDMwXlWzSxfcS8+EbI65ipt716j3n62nWkt10QzIPeDXzdvJF85ZzxXDIjn6n5abjsFkJhlSM1rby/v4on1x3h2y9u59N/WddrETkZ2FDS3i1dFIPY9wy3nYXjtQlFq3oQ0P3BMA/9Zw9XP7yGLz2xkWO1rad8v2AMuqDq7oOzfdJw3dkuYvsneXOndg12wbQ8HLaBP762WS1cMnMEj9x2GgC+YBh/MD6TfvTO9pQ4dLbrfCnibn/m46OEwoM3oUsQBivhVu17weKJ74TvXpEyDIZNIdVXbniMfNTZnuGEcBhK1sDr98IvJ8Mzn4bSLbDkHvivzXDHe1oUfHpB3ze05B6oOwx7XjvppfyifBSLQnNZM40nEp+opoZVbJY2vF4njjRHoodzMq5MLc4/QjRGfgiI7dLZLgiCIAiCIAhd0FFs3/X8Li793aVY49C1GE/0CHlnurPT73b2f5/Ntse3cWjVIY5+eJTCMwsTNcSEove158+Lb4S8zthzx/Lhzz/k8LuHUVUVpbez8w1Ad7abSWzPnizOdkEwA6qqsisitn/+jLHMHpXZ6bXKJh+Hq1s4UtPCoaoWnv34KFuP1XPZ7z/gwatm8On5oxJ6fosFq3Zrrvbzp+b1qlu6NyydNpw1B2tYubuCL581vsv3HKxs5hvPb2Fnh4e/lU1eRmd7YjIGoff0x9k+OeL2KqlpxRcM4bQNruvM/qKqKm/u0sT2S2bG9hos1dX+92nyBshJNd4VGHW2x/E+4uIZ+WR57FQ1+VhXXMOZk8xz/SYIQs+E27TIbWtKeoJH0jWqMw1bU5vhMfJ6Z7sz3QlPXQOHV0PGaJh3G8z8FOTP6r2D/VSMnAfjzoYPfwvTr+m0TkeKg9wZuVTuqKR0QynpIxP7N/G3+HE5/bS2uszlbNdxZ3ZytqfkSYy8IAiCIAiCIAxpOort3jovB/5zIIGjMQb9d3TnuDv9PHNsJnO/MBcY2u52XWwfUZQYZ/voM0ZjsVtoPNZI/eH6hIxBJyq2TzPPw1pxtguCOShv9FLb4sdqUZg8vHPcqaIoDE93sWh8DjcsKOS7l03jP984m4Xjsmn1h/j2v7dz1zObqW/1J2j0A0dVVVbu0YTBpTGIkNdZGul+31BSS11L5/2jqipPrz/CFX/4gJ0nGsny2MlJ0dxNTd5gzMYg9B5dbO+Lsz0/3UWa00YorHJ4ECU9DJTdZY0cq23DZbdw9uTcmK7balGione8Pivx7mwHsFstXDZLu359dat5oo8FwXQE/bB3OQSNiUHvL6pXEyZtqeYU23GmYw+14srUnO2Gxch3dLaX79D61e/ZrvXPj5gdG6FdZ8k3oGwrHH7/pJf0ercuo+Tb6mDHv0GNT4qIv8mP0+nDH3Bic5nQS+3KhKAXAtpEiWiMfOXgv84RsV0QBEEQBEEQuqCtWnN96zeQO57ekcjhGEJrjSa2633tHTnrv8/CYrdw+J3DHHk/8THm8SboDVK1uwpIXIy8I8XByNO1jrhE9rarqiox8oIgdIseIT8xNxWXvWehcWSmm2duX8S3L5mCzaKwfEc5l/z2A9YerDZ6qIawv6KZY7VtOG0Wzoqhe3R0toep+WmEVXh3X2X05zXNPm5/ciPff2Un3kCYsyYN481vnM3EPO1hZrNPxPZEoLuXPX0Q2xVF6dDbPvgdX73lrUiE/DmTcw0RqHV3e9zEdl98O9t1rp6rXUO+ubMcb+DkHmJBGNKoKuxZBg+fDs/dpPV1m4io2J5uUrHdlY49ZLyzPSq2pzvB3wxZY8FikKQ54XzNKb/mtye9pPe2l24o7fxC/TF49GJ48UtQc9CYcX0CX6MPp9NPUHWbMxnKnan9b8TdHo2Rr2xBjdOEhEQhYrsgCIIgCIIgdEFLlTbzdt4d8wDYt2yfYTeRiUJ3tntyThbbM8dkUvTFIgDee/C9eA7LFFTsqEANqXiGeUgbmdbzAgYx9tyxQGJ721sqW/DWe1EsCjmTchI2jk+ii+0NRxoIirgkCAlDj5CfUdD7B8JWi8LXzp3Iy19bwvhhKZQ3ernl0Y94aPmeuPUoxwq9U/3MicNiLgxeGHHK69t4b18lF//2A1btqcRhtfCDK6bzxBdOZ3i6i7Q4C4hCO/5gmEBIe4Dclxh5IJoGcUB626MYFSGvk+ayA1qMfDzQxfZ4OtsBThuTRUGGiyZfkPc6TNgRhCFP6RZ4/HJ4/lbImQDTr4Z1D4PPRJOeAtrEf1tGRoIH0jWqMx1bqM34zvaIY96VZoGQHxyphmwH0FzyS74Bxe9A2bZOL+nO9tKNpe2CcfkO+PtSaNa+s2irM25sHdDF9pCSEpft9RlXpva/kd52PUY+HAjjrRtcz9M+iYjtgiAIgiAIgtAFuhA9/oLx5M7IJeQLsfvfuxM8qtiid7Z35WwHOOt7mru95N0SSlaXxHFkiad8i3bTPGLeiITOGB973liAaG97ItAj5DPHZZoqqi4lLwVnuhM1rFJ3KD4PNwRBOJldpQ0ATO+D2K4za1QGr3/9TG46vRBVhb++f4hr/7SGg5XJIzyu2K0J4bGMkNfRxfbV+6r40as7+fxjG6hu9jF5eCqv3r2EL505DkukIz7VqZ2fm0Vsjztt/nbXcF9i5AEmRcT2/eJsB6C4qpn9Fc3YLArnT439ZwqITkxpjNNnRa8YSHHG9xrKYlG4cq4mEL26tbSHdwvCEKCxFF7+KvztXGithVtehFtfhIt/Dr4m2PhookcIQDgYRglp9+kOk4rteoy8MzPibG8w1tmekh6ZiOk0eBL89Gsgcwys+X2nHw+fNRyrw4q3zktdcR0Uvwv/uBTS8uG2V7Q3eRuMHVsEX5MPp9NH2GJSsf0Tznab0xZNixzsve0itguCIAiCIAhCF0Rd37keZt86G4DtT29P5JBiTned7ToZhRnM+7Lm7B9q3e16X3v+PGNcVb1l9GKtt73pRJN2Y58Aon3tJoqQBy1+V6LkBSHx6M72/ojtoLk9H7puFn+7bT5ZHju7Shu54g8f8uKm47EcpiFUNnrZdqwegAum5sV8/TMLMhie7qTFH+KJdVrCyefPGMtrd5/JtBGd93c0GluSPuJOa0Db53argsPWt0etkyMx8vuTaIKJkbwVcbWfMXEYGW67IdvQne3xqlzQKwbiHSMPcPUcLfr47b2VNMbJyd8Tx+ta+fWKfRyrbU30UIShgr8F3n0Ifj8PDqyEK34DX/0QJi3VXs8YBUW3aFHy/sQfl/5mPw6H9nm1Z2UmdjDd4UzDHo6fs92dEjlfOw10tgNYbXDGf8Gul6CupP3HDiv5c7XnAi2r/gH//BQULoTPvwHDJmtvipfY3tCCwxEkbDN4X/SXTzjbod3d3lIxuHvbRWwXBEEQBEEQhE+gqmq72D7Mw6ybZwFwZPURGo7G5yYqHpyqs13nrO+dhdVh5cjqIwntDY83utg+oigxfe06do+dUYtGAYnrbTdjX7uOiO2CkFga2gIcr9PcVzNGDMx9ddGMfN76xtmcNWkY3kCY77y0nRP1bbEYpmGs2qNFM88dnUleuivm67dYFC6eoT3cHZbq4LHPL+DBq2bgsp8s2kUFRHG2x50Wn+Zcdnfxd+kJPUb+SE0rvqD0aut97ZfMMG6yY3vlQrxi5CPO9jjHyANMG5HGpLxU/MEwb0b2baL5x4cl/P6dg1z98Bo2HalN9HCEwUw4DFv+CX+YDx/+GhZ+Bb6+BU77oiaqduTMezW3+6bHEzLUjviafNjt2vnJlmrOznY9Rt6Zrl17+Jv8hEOxrwHSne0uT+R8bbSzHWDuLeDOgrV/7PTjggUjWLLkY0aX/xRm3wg3PaeJ/44UsNjiFiMfrK8HQDUyUn8g6M72DvtD720XZ7sgCIIgCIIgDDH8TX7CAe1m0ZPjIaMwI9qdveOZHQkcWWxpq9ZEjO6c7QDpo9KZd3u7uz1RUebxJBQIUbFdiwUeMS+xYjskvrfdrM52gOzJ2YCI7YKQKHZHXO2jstxkeAbuQs1Ld/HEF05n0fhsAiGVh989OOB1GonepX6hARHyOvddOJmfXzuLN79xNuedwj0fjZH3mcO9OpRoG0BMeF6ak3SXjVBY5VDV4HZ89cSJ+ja2HW9AUYz9TKVHxXbjJ6aEwiptAe348PSxYiAWKIrC1ZEo+ddMEiVf2+KL/K+fmx75iFe3nkjwiIRBy6tf0/4VLoa7N8CFPwZXN+J11liYcxOs+R0EEtsr7Wv04XAEUVXAFvuJfDHBlY6CitPdfh7VhfFYoq/T6dLF9jhMPnB44PSvwJanoUW7DyYcYsG4f7F06YdsOXQxXP1HsEauexUFXBlxc7aHmiIidjz2RX+wu8HqjMbIA6RGUnxaKgf3dY6I7YIgCIIgCILwCXRXu91jxx4RD2bdqrnbtz+1fdAIzr1xtgOc+d0zsTqtHP3gKC/d/BJH3j8yaPZBV1TvrSbkC+FIc5A1PivRw0l4b3tUbJ9mPrFdd7bX7hdnlCAkgmhf+4jYPfCzWBTuXapFcr6w8RjH6xIf6doVrf4gHx7Uzo9GCoOZHgc3LyxkWKrzlO/T3brxisYW2mmJxIT3ta8dNDF0crS3fWhHya+IRMgvGJNNbtqpj/eBoKdAxMPZrkfIQ/w723WunqtFya8trqayMbEiIkBzxOk/LNWJPxjmnue28vu3DwzqewshAXgbYeeLcMGP4NOPaWJ6T5x1H7RUwpanDB/eqfA3+bHbAwSCDk3INSMRoddGKza3dm4zIkpe74J3ufzaD+Ll5j79dm3ff/w3CLTBvz7LsOZlvPbahfznxbmEQ584X7kyO4nLRhJqimzHFQeXf39xZ3aOkR8uMfKCIAiCIAiCMCTp2NeuM/366VidVqp2V1GxrSJRQ4sp0d8z59Rie/rIdM787pkA7HxuJ4+f8zgPT3uYtb9aG13HYKJ8i/awd0TRCBRL4h9wjFo0CqvDSnNZM7UH4isq+1v8NBzRxDQzOttzJkmMvCAkkt1lmrN9RsHAIuQ/ycLxOZwxISfibi+O6bpjxfv7q/EHwxRme5iUl/goT93ZHg+3rtCZqLO9nzHhkyJi+4FBHq/aE3rM+UUzjJu8ApAWx89Ka+TYsCjgtCXmMfzobA/zCjMJq/D69rKEjKEjLZEJQT+4Yhq3nzUOgF+v3M99/9omVQpC7Di4CkJ+mHl975fJmQCzPg0f/gaCsXdp9xbN2R4gGHIkbAw9oruqvY2G9rbrznaHLfL3iEeMPIAnG+Z9ThPbn7gKit9BveEZdh2YT6A1QNWeqs7vj6OzPdyibcfiie21d0xxZ3WafCAx8oIgCIIgCIIwRGmJxHh2dHy7Ml1MuXIKANuf3p6QccWathotRr4nZzvAOT88h9s33M682+dhT7FTs6+Gld9aya9H/poXb3qRw+8cRg0PDkeK3teeP8+4vtC+YHfbGbVY620vea8krtvWRWzPME+PkzISQfYkLUa+ubzZkOhCQRBOjR4jP6Mg9lGW917Y7m4/Vmu+iV16hPzSacNRTOA8a4+RF7E93gzE2Q5EJ2sMZWd7dbOPDSXahMKLDexrh46d7cZ/VnRhOcVpS+h5Qne3v7ot8VHy+jkq3WXnvy+fzs+unYnVovDylhPc+vePqG3xJ3iE8SUcVgkPknsoU7H3dcifBVlj+rbcWd+CxlLY+kynH6uqSqAtPjUtemd7SDUu4WOgqBGxXfE14srUxHZfQ2zvxcKhMP4m7Xxgt/kARetHjxeLv6YlJNQegs+/jmXqJRScptVylG74xLk0jmK7GtmOkmJisd2V2cnZHo2RF2e7IAiCIAiCIAwtoo7vT4jQepT8jmd2EA6FDdm2t95r2Lo7oobVXsfIgxZzWnBaAVf+7Uq+WfZNrvjrFYyYP4KQP8TO53by5AVP8scpf+TD//2Q8q3lVOyoOOW/qj1Vcfk9+4Muto8oSnxfu47e217ybklct2vmCHkAV4YrOlO+5oC42wUhnngDIQ5Uag6VGSNjL7YvGJvNmROHEQybr7s9FFZ5Z28lYGyEfF9I1WPkxdked1qjzvb+ie16jLz+eRqKrNpdQViFmSPTGZ1t7OS+1EiMfGNcYuQHlnoQKy6bNQKrRWHbsXpKqhMrdnScgABwy8IxPP6FBaQ5bWwoqePaP62huGpofBZUVeW6P6/lgl+vxhsQV3/MCPpg/wqYemXfl82dDDOugQ9/DSHtHBEOhfnXdf/i/7L/j9pi41PGfI3mF9ujzvYOYnusne3+5vaJNzZrm+Zqj+ekpcxCuO1luOM9GDkfgIIFmth+YsOJzu/9RGy6kShebWKeNS3xdXfd4s7s7GzPkxh5QRAEQRAEQRiSdCe2T7p0Eu5sN81lzYaInqUbS/lVwa94/Suvx3zdn8Tb4EWNdI25c9x9WtaZ5mT+HfO5Y+Md3LHpDuZ/dT6ONAe1B2t5+ztv89eiv/KX2X855b8/Tf8Tb3ztDSN+tQGhhlXKt0Zi5OeZSGyP9LaXrC6J63ajYrsJI+R19N52iZIXhPiyv6KJUFgly2MnP91lyDa+sXQSAP/edNxU7vbNR+uobfGT4bazYKw5HnamOTUBUZzt8ac1ss89/RRUJ0ccX0dqWoas4PZmpK/9EoNd7ZAYZ7vH2b+JGLEiN83JkonatdxrCXa3N0XF9vZ9ctakXF762hmMynJzpKaV6/60lnXFg/+67nhdG1uP1XO4uoWtx+oTPZzBw+EPwN8E067o3/Jn3w/1R2H78wC896P32PvKXoLe4MmOZgPwN/lxOAKEFGOurWKC3hduoNiuO+WtDivWYEv8IuQ7Mv4cyBwd/U9dbE+ksx1fE6oK9vTkcbZHO9srRWzvE++//z5XXnklBQUFKIrCK6+80un15uZm7r77bkaNGoXb7Wb69On85S9/6fQer9fLXXfdRU5ODqmpqVx//fVUVAyOXkxBEARBEATB/HQntlsdVqZ/ZjpgTJT82l+uJdgW5MjqIzFf9yfRI+QdqQ5szv67bUbMG8EVf76Cb5Z+k6sevYrRZ4wmJS/llP88udp+3f7UdnxN5or+ri2uxd/kx+aymUpgLpiv3dg3lzUb0ofXHdV7RGwXBKFr2iPkMwyLRz5tbDZnTdLc7X98xzzu9lW7tWdU50/Nw2Y1h49FnO2JozUikHv66WzPTXOS4bYTVhkyjt6ONHoDrDmoXW9cMjOeYrvxzna9YiDRznaAq+do15KvbD2BqiYutlyfgKBPENKZNDyNV+5aQlFhJg1tAW579CNe2HgsEUOMG9uPt4tzW47WJ24gg429yyBrLORN79/yw2fA1Cvg/V+y79VdfPCzD6IvtdW1xWaMp0BztgcJW0wstttTCGNB8TbizNAc+N6GGIvtkYowZ4YT/M3gSI3p+vvDyAVaJUfF9gqCHSc3ujLjJrYrwWZ8PidOgya6xoRPONv1GPnmiuaEfv8YTczvCFpaWpgzZw4PP/xwl6/fd999vPnmmzz99NPs2bOHb3zjG9x999289tpr0ffce++9LFu2jBdeeIHVq1dTWlrKddddF+uhCoIgCIIgCEKXdCe2A8y5bQ4Ae17cQ6A1dg/pmsqa2PPiHgAaTzQafhOi/459dbV3hyPVQdEXi/jimi/yrYpv9fgvZ0oOwbYge1/eG5Ptx4ryLZqzavjs4Vhs5hBQQNu/qfnaTWo84gt1zB4jD+1ie+3++O0XQRBgl4F97R35xlKtu/3fm49ztMYc7vaVu9v72s1CtLPdH5T+3zjT5h+Y2K4oStTdfqBi6Int7+6tJBBSmZCbwsQ8452L6ZEY+fg42wd2bMSSi2YMx2mzcKiqJXr+jjehsNoerd+F239YqpNnb1/EFbNHEAyrfPvF7ewtT8xY48GOEx3F9roEjmQQEQ7D3uWaWD6QiYDnfBvqDrP/5w8BYItM0mmrjYPYHulsV62xuU83BEUhaHWDr8k4Z7sutqc7wdeYGGf7J8gYk4FnmIdwIEzFtg7mYFdGJ3HZSCzBZrxeh7ZfzEo3zvZgW7BTPcBgI+ZPjy699FL+53/+h2uvvbbL19euXcvnPvc5zj33XMaOHcsdd9zBnDlz+PjjjwFoaGjg0Ucf5de//jXnn38+8+fP57HHHmPt2rWsX78+1sMVBEEQBEHoFcdqW9ksN8BDhrZq7Sa6K7F91OJRZI7LxN/sZ++rsROKN/1tE+Gg1mEebAsa7l7uS197rFEUhdm3zgaMSQgYCHpfe/48451VfSV7YjYAtQfjIyqHQ+GoW1yc7YIgfJJdpZpIMN1gsX3+mCzOnpxLKKzyh3cOGLqt3lBc1cyh6hbsVoWzJ5vn3Ki7dVW13U0rxIeooDqApKBJ0d72ppiMKZl4c2ckQj4OrnZo/6zEo3KhNfJZTB3AsREr0lz26AShV7ee6OHdxtDx3JTSzT5x2a38/sYiLpiah6rC0+uNT/xKFDtO1Ef//+aj9YPa8Rk3jm+AlkqY1o++9g7406dRUjaVRaetoXDJSOZ/Revs9tYZnzDma/ThcATAZmKxHQhY3YbGyOtOeVeGC3zNphDbFUXpurddj5GPw2fYqrbg85lcbP+Es92R4sCeok10G8y97XH/pj/jjDN47bXX+OIXv0hBQQHvvfce+/fv5ze/+Q0AmzZtIhAIsHTp0ugyU6dOpbCwkHXr1rFo0aIu1+vz+fD52iMoGxu1WW+BQIBAwPhYoK7Qt5uo7QvmRY4NIV7IsSZ0hxwbvcMfDPP23kqe33iCNZHOuF99ahZXzTFPj/NgwIzHY3MkwtOZ5exyXDNumsGan69h21PbmPqpqQPeXigQYtNfN3X6Wd2ROmypxl2uN5VrD3Nd2a6E7Pupn57Kuz94l8NvH6b2SC1pBSffPCfi2CjbqontebPzTHVMAmSMy4APoXpfdVzGVn+4npAvhNVpxTPCY7r9oZM+ThP6avbX4Pf7+xVnbYbzkFn3ryB0RSissjfyPWK0sx207vb391fx0pYT3H3+RMbkpBi+ze7QI+QXTxhGmsvew7vjh9NmwWZRCIZVmn1BU41tsNMWiPRy2/vvXp6cpznb9w8xZ3ubP8R7+6oAuGRGfO6x9M9Gqz9EMBQ2tAoiFhMxYsnVcwt4Y0cZr20r5TuXTsNqMaYCpDv0CHm7VcF5igQpi0XhS2eN4+29lby8+QQPXDJ10J3TVFVlR4cY+epmH8fr2hidHf+J0IOKvcsgJRdGLej3KlRV5fU7XqfmvSJuv/1ZbnzIzcYPtOuOeMTI+5v82F0BsJv7WAhaPeBrj5HXO9ZjRWdnexM4Ex8jD1pv+8H/HOzc2+7OBDWsjdNl7HWxlTZ8PieONIeh2xkQrkwIeiHgBbs2GSMlL4X6w/U0VzRHTQSDjbh/0//hD3/gjjvuYNSoUdhsNiwWC4888ghnn302AOXl5TgcDjIzMzstN3z4cMrLy7td70MPPcSPf/zjk36+YsUKPJ7EnphWrlyZ0O0L5kWODSFeyLEmdIccG11T2QbrKy18VKnQHOz8AOJHr2zHV7KFlMF1r28KzHQ8VpVoD/22H9zOoeWHTnrdO1KbZV38VjGvPvMq9syBHRB1H9bRXNaMLdOGNcWK74SPt195m/Qjxt2oVa6pBKDeV8/y5csN286pSJmWQsueFl588EXyrsnr9n3xPDZK92k3zfsq9lG2vCxu2+0NVSHtuNyxegcNc4zvhGvZq806t2ZaefOtNw3fXn8JB8KgaA9kXnv2tQF9HhN5HmptNUc8tiD0hpKaFlr9Idx2K+OGGf/wc15hFudMzmX1/ir+8M5BfvnpOYZvszv0CPkLp3X/vZUIFEUhzWWjrjWg9bZnJHpEQ4dYCKqTdWd7xdBytr9/oIq2QIiRmW5mjjR+4g60O9tBc7dneowTLFqjne2Jj5EHOGdKLukuGxWNPj4+XMviCTlx3b4utqc4bT1Ojlw8PocJuSkUV7XwypYT3LZ4bBxGGD+O1rbS6A3isFqYkJfKnrJGthyrF7F9IKgq7HkdplwGlv5/5j7+48fseGYHirWAtuwzcO/4I+6s3wHgrTXe2e5v8uNID4AjcRMLe0PA6kYx0Nmui/dRsT3NHMlzem97J7HdFbno8jYYLrbblTZ8PgdpZne2g+Zut2t/t9ThqdQfrqelUpztMeMPf/gD69ev57XXXmPMmDG8//773HXXXRQUFHRys/eV7373u9x3333R/25sbGT06NFcdNFFpKfH52LtkwQCAVauXMmFF16I3S5P5IV25NgQ4oUca0J3yLFxMr5gmJW7K3h+43HWH26Pi89Lc3L9vAKunVvAXc9u5UBlC5vChfzispkJHO3gwozH4z7vPgDOu/w8cmfkdvmexx57jLKNZRTUFbDg5v7PnAd46ldPAbDwawsp21TGoROHmDZqGnMuM05MeG/te5RSyoRZE7jososM286p2Hx8M2/e/SahLSEu+9tlJ72eiGPj4NcOAnDuZeeSX2SOG3qdXU27ePWZV/H4PFx22cn7K9bsC+zjAAfIHZcbl+0NhKNjj1J/uJ6iwiIKzyzs8/JmOA/p6WyCkAzofb9TR6TFzRl574WTWb2/ipe3nODu8yYydlj8H0LXNPvYFKkVusBEfe06qRGxvSkO8dhCO60D7GyH9hj5I7WteAMhXANwyScTb+3SjFUXz8jvVzJNf7BbLbjsFryBME1eY8X2luixYQ5nu9Nm5bJZI3huwzFe23Yi7mJ7k1effNDz/lAUhdsWjeHBZbt5ct0Rbl00Jm7HSDzQ+9qnjUijqDCLPWWNbD5Sx1VzChI8siSmcg/UHYbL/l+/V3F0zVFW3LcCgIt+eRHuay6Cf1xM3kitAjkeznZfow/72ABBl8nFdosnPp3tGU7wmyNGHojGyFftqcLX5MOZ5tSc3KCJ7Yw2bNvhYBi7zUtrq9vcMfL6/mirj06S0HvbJUY+RrS1tfG9732Pl19+mcsvvxyA2bNns3XrVn75y1+ydOlS8vPz8fv91NfXd3K3V1RUkJ/f/cMup9OJ03nyAWa32xP+0NYMYxDMiRwbQryQY03oDjk2tNn1v3v7AC9sPEZdqxbhqyhw7uRcbjq9kPOn5kWjBX9x/Wyu//M6XtxcyqfmF8b94cRgxyzHYzgUpq1Wu4lOH5He7Zjm3DaHso1l7H52N2d844x+b69iRwXHPjiGYlU4/Wun896P3gOgtbzV0P2h3wyn5qUmbL/PunEWK+5dQcW2Cur21ZE3s2uXYLyODVVVaa3S3MXp+d3/7RNF3lRt/9Qfqo/L2Lw1kWNkeOKOkd6SMzmH+sP1NBxqwH5e/8eayPOQ2fexIHQk2tc+In7mhrmjMzlvSi7v7tPc7b/6TPzd7e/srURVYebIdAoyzdelmuq0A22as12IG7p7eSBi+7BUB1keO3WtAQ5WNjNz5OCPJgiEwtFahnj1teukuex4Az4avcZWuLQ7uc0zeeKquQU8t+EYy3eU8+BVM3Da4jc2PQWiY7rAqbhu/ij+9819HKhs5qPDtSwaP3juv/UI+ZkjMygqzOTxtbDlWH1iB5Xs7H0dHGkw7ux+Ld5c3swLn36BcDDMjBtmsPCehdrDoXFnM7zySeCy+HS2N/mw24OEXOaITe+OoN7Znq+J7bGOkdc726POdoc59kfq8FTSR6fTeKyRss1ljD1nbAexvd7Qbfub/TidPurqMjSR36x0dLZH0MX25kFcl2NcKU0X6P3pFkvnzVqtVsLhMADz58/Hbrfz9ttvR1/ft28fR48eZfHixfEcriAIgiAIQ4BnPz7K394/RF1rgBEZLu65YBIfPnA+j33hdC6akd+pw2/+mGxuWag5Jv/75R14A6FEDVswEG+dF1Tt/7uzu3+QPuOGGShWhRMfn6Bmf02/t7fh4Q0ATLt2Gukj00kbqc3YbjxhrMu1rVqbUODOSZxY4MnxMOmySQBs/+f2hI1Dx9fo0yLJAU+u+SIcsyZkAdBc1oy/xW/49vSIt5Q8c7sqQBPbAWoP1CZ4JIIwNNgdcbbPKIivIHjP0skAvLzlOIer4++M2RfpqV84zpyCT1okxrxZnO1xpTUG7mVFUaLu9gOVQyNKfvvxBhq9QbI8duaPyYrrtnWxt8ngiSnRigGTONtBO38NT3fS0Bbg/f3Vcd12c4cY+d6Q7rJzTZEW2fzU+iOGjSsR6M722aMymFeoHf+7SxvkGcNA2Ps6TLoQbH0XIUOBEC985gWay5rJnZHLVX+/qj1J4exv42zZx+TJh6KT8o3E1+jD4Qhg9ZjDyd0dAasHxRsnZ7uv0TTOdugiSr5jjLyB+Bp9OJ1+/EEnVpPUk3RJR2d7hNTh2mSJwexsj7nY3tzczNatW9m6dSsAhw8fZuvWrRw9epT09HTOOecc7r//ft577z0OHz7M448/zpNPPsm1114LQEZGBl/60pe47777ePfdd9m0aRNf+MIXWLx4MYsWLYr1cAVBEARBGOLoMaifP2MsH3z7PO69cDIjT+FU+vYlU8lNc3KouoU/vVccr2EKcaS1WnM2uzJdWE8R4Zk6PJUJF00A+i8Ue+u9bH9KW3bBXVoUfXqkr7LphLEPWltrtN/TMyyxovLs22YDsOOfO1DDakLHov/t7Sl27G7zuYzdWe7oBJC64roe3j1wkklsz56UDTCgiS+CIPQOVVU7iO3xre2bOzqT86fmEVbhD28fiOu2oV0oyjThdwRoMfKAONvjTKx6uSdHHkTvH8Sur458fFibIHf6uOy41VHo6BNTjBbb9WMj1UTOdqtF4crZWgzyq1tPxHXbfRXbAW5bNAaAt3aWU9lovKs4HqiqGhXbZ47MYFSWm2GpDgIhNZocI/SR+qNQtg2mXdGvxVc9sIqjHxzFkebghpduwJHaoV5i7JkE8k7jrLM+ikuMvL/Jh90ewJJiHnG5K6LOdoPEdn+jNrncmeYAXzM4zeFsh/Yo+ZPE9g7ishH4mjSxPaSYzxjQiVM420Vs7wMbN26kqKiIoqIiAO677z6Kior44Q9/CMBzzz3HggULuOWWW5g+fTq/+MUv+NnPfsZXv/rV6Dp+85vfcMUVV3D99ddz9tlnk5+fz0svvRTroQqCIAiCILCnTHtYfObEYZ1c7N2R4bbz4JUzAPjzewc5OEScJ0MJXXDtjbM5KhQ/vQNV7btQvPWJrQRaA+TOyGXMOdqDpLQC7abacLFd/z1zEnujNvnyyTgznDQea+TIB4l1rOgR8im55hWXsydqonLtQeMd3K2Vkf2RBGK77mwXsV0QjKei0UdNix+rRWFKfvwfBH9jqZaI8srWExyqiq8oqXehp/YyAjnepOoCojjb44rubHcPUGyflBdxtlcMjfuLjw9r39mnJyApIs2lTZhpMjpG3mSd7TpXz9Vcmav2VMQ1CUOP1U/rg9g+vSCd08ZkEQyrPLfhmFFDiytHalpp8gZx2CxMHp6GoigURdztW47WJ3ZwycreN8DqgIkX9nnRnc/vZP1v1gNwzRPXRO8roigK6vTrKSioINDiJ+Q3Nn0g1NqCooAtLb4TGvtKICK2OzO0JAFvg7dfz0S6Q4+R92QooIbAaZ79oYvtJzZEJizZHGD3xMXZ7nL5CCnmmXjQJXY3WJ2dJh/ozxQkRr4PnHvuuaiqetK/xx9/HID8/Hwee+wxTpw4QVtbG3v37uW+++5rj+UAXC4XDz/8MLW1tbS0tPDSSy+dsq9dEARBEAShP/iDYYojD2mnjuj9w+LLZuVzwdQ8AiGV7760g3CC3bhCbGmp0mba9sbxPfXqqThSHdQdquPY2r49/FHDKhv/tBHQXO369XDcYuRrtFn5iXa221w2pn96OgDbn05slHz0b2/CCHmdeIrt+o2wPgvdzERj5A/WEg6FEzwaQRjc7C7THiROyE3BdYoEGKOYPSqTC3R3+zsH47ptXShK7YNQFE/E2Z4YdLG9L27drpg0hJztobDKxhItpWfhuOy4bz9eMfKtJuxsB5g5Mp3xw1LwBsKs2FUet+0293N/3LZYm5T8zEdHCQ6C67ztEVf7tBHp2CMT/osKMwER2/vN3jdg3Dng6psgW7O/hte+9BoAS76zhGnXTuvyfbasYVgsKnZ7wFB3ezgURglqE55tqWZ3tnvA14QrIrarIZVAS+wmMOkx8u6UyHnaRDHyBfM1sb3+cH3UxIArw3ixvb4Zuz2IajP//TnuzE7O9miMfKU42wVBEARBEAYdxVXNBEIqaU7bKaPjP4miKPzkmpl4HFY2lNTx/MbBMcNe0Ig6vnshQts9dqZ/ShOKl315WZ+i0w6tOkTN/hqc6U7m3DYn+nM9Rr6lsoWQQZ19qqr26fc0mtm3agkBu1/YTTCBAoHubDfDPumOrIma6yUeYnsyxchnFGZgdVgJ+UI0HjN2ooogDHV2nUhMX3tHvhHpbn9164noxMl4oIvYZhXb2zvbjXXrGkGzL8ibO8sJJeEkVj0q3D3AySeTI53tx+paaTPYOZlo9pQ10uQLkuq0MW1E/N2K7WK7sZ8VXVw2m7NdURSumqtHyZfGbbv9iZEHuGRmPjkpDsobvazaU2nE0OLKTr2vfWT792jRaO0af/NR46uiBh0tNXBkTb8i5Df+dSOBlgBjzhnD+T89v9v3Wdza38rp9OOtM67OwN/kx27Xzku29MRdZ/WGgMWNooaw2/1YbJrMGMsoeV+DJra7PJHnAw7zuLldma7oZO/SjXqUfGYncdkIgg3a+lW7efZFt7gyOzvbJUZeEARBEARh8LK3XHtYPHVEWqeUnd4wMtPNfRdqD3ofWr6HyqbB0R8n9E1sBzj/5+eTPiqd6r3VvPCZFwgHe+e22PDwBgDmfG5Op044zzAPFrsFVGguN0ZA8DX6ouN05/R+oolRjDlrDOmj0/E1+Nj/+v6EjUN3tidDjLx0tnfGYrVE941EyQuCsexKUF97R2aNymDptOGEVXju46Nx225zksTIxzMWOlY88OJ2vvr0Jv6yujjRQ+kTobCKN6BdUw3U2T4s1Ul2igNVhYOVg9vd/lGkr/20sVlx72uHDjHyBn9W2lMPzOVsh/Yo+Q8PVlPd7IvLNvsTIw/gtFm5YcFoAJ5en9jaqViw/Xg9ALM6iO1zRmdgUaCswUtZg/G94IOK/W+CqsKUy/q86IE3DgBa0pwuGHdJJMLc5fIZ6mz3NflwODSx3WryzvaAVXteovia2qPkYym2R5ztLndkUpSJnO3QRZR8HJztoUbtGUDYbq590SXdONt9jb6EGiyMRMR2QRAEQRCGLHvLtD7Eqfn9e1j8+TPGMnNkOo3eID99fU8shyYkkL6K7Wkj0rjxtRuxe+wcWnmI/9zznx6XqS+pZ9+yfQAs+NqCTq8pFsXw3nY9Qt7usWN32w3ZRl9QLAqzbpkFJDZKPupslxh5wsFw9DhJBrEdpLddEOLFrkiM/PQEuFE7smi8dj6saoqPSAQdxHaTOtv1SQCNSfYQs7iqmeU7ygBNSEummOi2DilEngF2tgNMytOj5Ad3b7ve174wAX3tEMcYeX//nNzxYNywFOaMyiAUVvlP5PNnNP11tgPcvLAQRdEmB8Qz0STWhMNqNCFm1qh2sd3jsEWfS2yVKPm+sfd1GL0QUvP6tFhtcS01+2qw2CxMuGjCqd8ciad3On201Rootjf6sNsj5yW7ee9JAYLWyKR9byOuTJf2fxtiJ7br63I6/doPTCq2l26IONvdmcaL7U2a2K64zdNf3y2fcLY7M5xYI9dJg7W3XcR2QRAEQRCGLHvKtYdY/Y0utFkt/OK62VgUWLatlHf3JX+knQBt1X3vMh9RNILr/nkdKLDxTxv5+I8fn/L9G/+yEVQYv3Q8w6YOO+l1PUreqN52fUKBGVztOnqU/IHlB2itaU3IGKITLcwstk/QxKWGYw2GzgjXXf6KRcGTY9790ZHsyeJsFwSjaWgLcCzykHl6Ap3t0C6WxVNYNr3Y7kzOzva/ri5GjaTHlzV4eXtv8lxT653cigLOU7kie4keJb+/cvCK7aqq8nHE2X56AvraoYOz3eDPSosv4mw3WYy8zhkTtfuQeCUp6Oem/ojto7I8XDBVE1P/uT5+iSaxpqSmhSZfEKfNEp1coxPtbT9WH/+BJSv+Fih+p18R8rqrvfCsQlwZrlO/Oepsj1+MPA5zT3jWne34OojtBjjbHQ5ziu0jF2jpIKUbSlFVVXO2dxCXjSDcoon5itvcFQPASc52RVGik/gHa5S8iO2CIAiCIAxZ9pa1x8j3l5kjM/jCknEAfP/lnVH3gpC89LfLfOo1U7ngoQsAePOeNzn41sEu3xf0Btn8980ALLh7QZfvSRtprLNdF7PN1E2eNyOP/Ln5hANhdr+wOyFjSIbOdk+uB0eaA1SoO2xclLweIe/J9aAkIN61P4izXRCMZ0/k2mlkpptMj6OHdxtLekQsa2yLTz+5qqrRCGSzxsjrExCSKUa+rKGNl7doEaxnRoS/ZIqJjsaEO2x9rqXqismRmNWDg9T1BZqwW9cawGW3dIrRjifx6GwPhdVo8kEsUg+MIDtyHq+P03m0JXKvnNbPc+iti8YA8MKmY0l7370j0tc+vSAdm7WzNDOvMNLbfkR623vNwbch6IWpl/d5UV1sn3T5pJ7f3NHZHqcYebM72wMdne0ZsRXbQ4EQwTbtM+6wRdZpMrE9f24+ilWhubxZe24Thxj5cKu2fktK8jnboUNve6WI7YIgCIIgCIOGmmYflZHY0SnDB3bRft+FkxmZ6eZEfRu/XXUgFsMTEshA3M1Lvr2EOZ+bgxpW+fdn/k3V7qqT3rPz+Z201bSRUZjB5Csmd7kePUbeaGe72RzLs25NbJR8MnS2K4oSlyj5ZOpr1xGxXRCMxwx97Trp7vg4U3V8wTCBkGa/NmMkNLS7dZPJ2f7oB4cJhFQWjsvmoetmoSjwwYFqDiVJTLQuHrpjJKZOGgLOdr2vfV5hFo4YpAH0h/Q4xMh3rBgw6zkjw6OdMxriJLZHne39dPqfPSmXwmwPTd4gy7aVxnJocWPHcU0s62qiie5s33GiAX8weeo0Esre1yFvBmSP79Ni/mY/Je+VADD58q7vyTvh0CZCOZ3+OMTI6852c92rf5Jg1NneEHW2+xpiU+2ju9oBbBYvWGxg6yF9IM7YPXbyZmppGyc2nNDE5Q5ObiNQ27TrcEtqlqHbiQmfcLZDe2+7xMgLgiAIgiAMIvZFIuTH5HgG/PAjxWnjp9fMAODRDw+zq9TY2ayCseiCa3/czYqicMVfr6DwrEJ8jT6evfLZqLCts+HhDQCcdudpWKxdX44b7WzXu7jN5uCeddMsFIvCsTXHqDsUf0dHMnS2Q3x625NZbK8vqSeYRK5OQUgm9GucREfIQ8cY+TiJRB3OK2aNhI7GyCfJObC+1c8zH2tx0HeeO4HR2R7OnxKJif4oOWKi26LO9tiI7XqM/LHatqR17vZEoiPkoWOMvHHnDz0JwxKjigEjyIxMWqpvje95tL/33xaLwq2LCgF4ct0RLbq5B4KhML9bdYBLfvs+aw9W92u7sUR3tnclto8blkKmx44vGGZvuTGTrgcVoQDsf7NfEfKH3j5EyB8ia3wWOVNyel7AYiWounG5fIbHyCeLsz1ocaKigLcRZ6YTiJ2zXRfb7R47lmCzNtkhBukxsaZTb3scnO2Kv4lwWMGenvjr8B5xZUJb52c6UWe7xMgLgiAIgiAMHvS+9qn5sYmiOn/qcC6fNYJQWOW7L+0gFO75xl8wJ/2NkdexOW3c8NINZI7LpO5QHc9f93xU+Dvx8QlKN5RidVgp+lJRt+vQO9sNi5E3YWc7aI7+cRdotQw7ntkR9+0ng7Md2sX2umIDY+QjN8D67PNkICUvBWe6U4vYN3DfCMJQZnfU2Z74rsh4x8jrwlmKw4rVpPUaqXGIxo4lT647Qqs/xLQR6ZwzOReAWxdHYqI3HosK2WamJTJGd4wmYGSnOBiWqkV7x6tHO56oqspHh7UEmkSK7frEFCOd7e3njNhUDBiBXgcSL2e73mHf3xh5gE/PH43DZmFXaSNbe+g2P1rTyqf/uo7frNrP3vImvvbMZo7Vtp5yGSMJh9VoQsysUSd/jyqKQtHoTECi5HtFyYeauDm1/33tky6f1OvPZ8iSgtNprNiuO9vDqhWsdsO2ExMUixbt7ot9jLzukHemO8HXBE5zissde9txZYC/GULGfa8ogWZ8PgfOdHO5/LvEnaVVPATajwldbBdnuyAIgiAIwiAi2teeH7uL9h9dOZ00l43txxt4Ym1JzNYrxI+gL4i/yQ8MzPXtGebh5tdvxpnu5OgHR3njq2+gqmrU1T7zxpmnFHSjzvbSodPZrjP71tmAFiXfG7dKrAi0BQi0aA8axdneobM9z9z7oiOKokiUvCAYiC8Yiop/ZoqRb/GHCIaMj9vVRTmzxkEDpHVwtsfjOzQQCvc7WaDVH+SxNYcBzdWuix3nTMpldLabxiSJiW7zt0/CiBWT8iJR8oPwYfTR2lYqGn3YrUq0nzoRpMUhRr5VTz0w8Tkj06M72/1x2d5Ane0AWSkOrpytuUmfWn+ky/eoqsq/Nx3n0t+9z5aj9aQ5bUzITaG+NcCd/9yEN5CYiTyHa1po9gVx2S1MzO16QmtR5HOxpYeJBAJahHxGIeTP6tNiqqr2ra89QtiaistlcIx8pLM9qDoN20ZMcaZrne2RGHlvQ2yd7c4MJ/iawWnOCeBRZ/vGUlRXZAKNge52S1AX25Pg+HBnav/bIUpen8gvznZBEARBEIRBxN6Is33aiNg42wHy0l08cMlUAH61Yh+l9cbdhAnGoMerK1YlOju7v+ROz+VTz38KxaKw9fGtrPrOKnY+txOABXctOOWyurO98USjIQ/L26q139NsznaAqddOxea2UbOvhrJNZXHbru72t9gtpr95zZqgPYSTGPmTEbFdEIxjf3kzwbBKpsfOiAF+R8aCjs7IeMSm69tIHYAj02j0sYXVzn3RRnHDX9ex5BfvRBMP+sLzG45R1xqgMNvDZTPzoz+3WBRuXai5259cXxLXiXf9QXfqxqqzHWBS5GH0gYrB19uu97XPGZWJyx67fdZX9Bj5Zl/QsEQy3dnucSbu9+wJPUa+oS1A2OBkNlVVaYlMTkkd4ASE2yIJGK9vL6O2pfNEgYbWAHc/u4VvvbCNFn+I08dm859vnMWTX1pIdoqDnSca+dGruwa0/f6i97VPH5GOrZs6Mb23fcvR+jiNKkkJh2HvG1qEfB+TI8q3ltNU2oTdY2fsOWN7vZzqSMXh8NNWZ3xne5jEX2f1Cle65mzXO9vrY9vZ3u5sj91zu1iSNzMPm8uGt95LY03kM21gb7sl3IrP5zT98wpAi5EHaKuP/kh/tiBiuyAIgiAIwiAhGAqzv0KPkY+tM+vm0wuZPyaLFn+IH766y/QPCIXORCPkczwoMYiInXjJRC7+7cUArP2/tYT8IQoWFDDy9JGnXE53tgdaAtEbzVhiZme7M83J1Gu0SSs7n9kZt+1G+9qHeUwb9amjO9vrS+oJGSSmJKvYnj1J2zcitgtC7NldpokEMwrSTXGetFstuCNiXWOb8WK7Lpylmdil6rZb0S9fmg107IImnG0/3kCTN8hXn95EQx86nwOhMI+8fwiAr5wz/iTR6dOnaTHRO080su24sf2nA6U1oHe2x+64mDRcd7YPPrHdDH3t0Hmyji4Ax5qosz2Gx0as0RNCwio0GTxpqdUfQr81HqjYPmdUBrNGZuAPhnlh47Hoz9cV13DJ797nje1l2CwK9188hWfvWMSoLA8jM9384aYiLAo8v/EYz358dEBj6A96X/vsUZndvmfO6EwURUuBqG6O/X3goKF0CzSVDShCfvzS8dj6MoHOmRGXzna7PUjYkhxiuxpxtjszYtvZrjvkXRku8JtXbLfareTP1SYMVh6ITPwx0NluU1vw+Rw40hyGbSNmdOFsj3a2V4rYLgiCIAiCMCgoqWnFFwzjtlspzI6t2GixKDx03SzsVoVVeyp4a1d5TNcvGMtA+9q74vS7T+e0O0+L/ndPrnYAu9uOK0u7wTait73jpAIzokfJ735+N2owPhNWkqWvHSBtRBo2tw01pNJwxJibef0GOJk620Gc7YJgJLtM1Neuk+7WHpL3N8q8L8Qi/thoFEVp76I2WDjzBsIEI07Yo7Wt3Pevrb12xr62tZTSBi/DUp1cP2/USa9npzi4YvYIAJ5a13VMtFlo1d3LMXS2T87TvnsHY4y8WcR2l92KIzLJw6go+WYDjo1Y47Jbcdm1/dBocG+7vj8sCtFt9hdFUbhtkeZuf/qjI3gDIX7xn73c/Pf1lDV4GTcshRfvPIO7zpuItcME6iUTh/Gti6cA8KNXd7EtzlHturN95sjuv0fTXXYmRc4B4m4/BXuXgScHChf1edH+RMgDKJ4MnE6fsTHyjVqMfNhivgS6LtE7242Kkded7Q7z3pMOnzMcgKrDutheb9i2bEpb8sTId+Fs158tSGe7IAiCIAjCIGFvufaweEp+GpYYuJc/yeThaXzl7AkA/Oi1XXF5ACzEBl1wjWVnt6IoXPK7S5h922wmXjKRmTfM7NVyaQXa7O3GE32PZu0JPS7fjM52gPEXjseT66G1qpWmbfFxdUWd7SbvawdQLArZEyK97cXGRMnr0W7J5mzXxfbaA8ZF7AvCUKVdbE98X7uOHgUdj2stXZAbqCPTaKLx2AY725si+1xRwGmz8PbeSv747sEelwuHVf6yuhiAL505rtsocV1IW7a9lLqW+PRJ9wfdvRzLqPDJEWf7ifq2PiUGmJ2yhjaO1rZiUWD+mMT1teu097Ybs49b/eafoAOQ6dYckvUGH2vRKg6nLSbpKFfOKSDDbedYbRsX/Go1f1ldjKrCjQtG8/p/ncmc0ZldLnfnORO4aPpw/KEwdz696aQYeqMIhVV2lerO9lNPWisaHeltP1pn+LiSlj2vw5RLwdK3c29LVQvHPzoOwKTL+ia2W1Iytc52A2PkNWd7ANVm/ntS4OTO9hg5230NyREjD5CarwnIjdWR85qRznZLW/LEyJ/C2d5W02ZYQl8iEbFdEARBEIQhx96y2Pe1f5K7z5/I2BwPFY0+fvnWPsO2I8QWI5ztoMWLXfvktdzyn1t6HVWn97bH2tmuqqphv2essNqtzLxRm5RQtzo+D5n0fZIMznZoj5I3orddVdWkj5FvLm82pIJBEIYqobDKnjJNbJ8+wjxie3rkOzWeMfJm7myH9skARvfYN3UQzv7nGu07+zer9vPevspTLrdqTwUHKptJc9q4ZVFht++bOzqTmSPTtZjoTce6fV+i0QVVTwyjwrNSHIyPXI+sPzx4klp0V/uMgozopJBE0i62G/NZafFFYuTNLrZ7tL9FfZuxonOLL7YTltwOK5+eryVjnKhvI9Nj5y+3zuMX188+5T5XFIVffmYO44elUNrg5evPbiFkcF89wOHqZlr8Idx2KxNyT+3SnTcmE4DNIrZrqKomYNaVQOlW2PFvqDkAU6/s86oOvnkQVMifm0/6qL5dz1jTs3A6fYR8IQIGJUHone3YzXmf/klUZzr4GrS4d2IotuvO9gwn+Jo1Ud+k6PfLjZUqoHRycseSoC+Iw+7TnO1pSSC2291gdXbaHx3rGnWzw2BCxHZBEARBELpEVVU2H62LPkAaTOjO9lj3tXfEZbfys2tnAfDU+iNsOiI3ysmAmURovbc91s52f7OfUMSF5c4xbzydHiVfv74eX5PxoqmeauAeZt590pGsCZrjxQix3d/sJxh58JwMTv+OuDJc0RnzNQcGj0AhCInmSE0Lrf4QLruF8T2IBPFE7xs2ypnakeYYC0VGkWqwW1dHFyjTXXY+fdpobl5YiKrCPc9t5Vht1w9QVVXlT+9prvZbF48h/RSCa6eY6PVHex1RH2+izvYYR4UvmTAMgLUHq2O63kTyUURsX5jgCHkdXfA33Nlu4hh5gIzIedRwZ7s39k7/L5w5jnHDUjh/ah5v3nM2l8wc0avl0l12/nLbfNx2Kx8erOZXK4yfHL89EiE/oyC9U7R9VxQVZkWXCYbCho/NNKgqvPldePp6eOQC+P08+N9x8JMc+EUh/G4O/O0cePFLWoT8+HP6vIn+RsgDWNMycTq1SSlGRcn7mrQYecWRJPdgrs7Odt2RPlD0OPp2Z7t5rj0/iX6/3FLZFtkfxjjb/U1+XC5f8nS2g+Zu7+BsVyxKdH8Nxih5EdsFQRAEQeiS1furuO5Pa/n2v7cneigxZ0/E2T4139goqiUTh3H9vFGoKnzvpR0EhtKNcpJiRrE91s52PULe5rJh9yTeVdQdBQsKyJ6UjepXObTikOHb02dWJ5uzve5g7Cfy6K52e4odR0qS3Mh3QHrbBSH26BHyU/N7FgniSXuMvPGTQ5MlRj7a2R6nGHndHfyjK6czZ1QGDW0B7vznJrxdxIN+dLiWrcfqcdgsfGHJ2B63cdWckaS5bBytbeX9A1UxHX+saDNKbJ+ofZetKR4832Vm6WvXMdzZHj02zH3OaHe2xylGPobpICMz3bz7rXP5x+cXkB9x1vaWycPT+N9PaZN7//ReMW/tKo/ZuLpix4me+9p1Juamkua00eoPsX8QClLd0loD6/+kiat502DqZXDG3XD5L+FTj8Ftr8Adq+GebXDvLs052wfCwTDFb2kTvvojtiuuDFwuTUz21sXGwf1JtBj5IDiT454UZ3qnzvagNxidtD0Q/I3apAbN2W7uGHnd2d5S1aL1lBsktvuafDidfgJhNxZrksi6rsyTnP56b7v+zGEwkSR/FUEQBEEQ4o0+8/rNneVx6zGLB43eACfqNbHRSGe7zn9fPo0sj519FU088oHxgqEwMNqqzdNlHo2RL42t2K5PKHDnuGPSl2gUiqIw4jTNndJQYlzvmU4ydbaDsTHyel+7fiOcbIjYLgixx4x97dAxRt54Z3uyxMjrAqLhMfKRh+n69pw2K3++dT7ZKQ52nmjkB6/sRFU7u9H/HHG1f+a0UeSl9SyMaTHRowF4ev2RWA4/ZrQYECMPsGh8DooCByubqWw0RtSJJ9XNPg5WaqLhgrHmENv1iSlGTdZp9elObnM72/XO9oZWg2Pk/eabsHTVnAK+uGQcAN/61zYOVRknbO843ru+dgCLRWFuYSYwxKLkdZHy/O/D1X+Ei/4HzvomnPZFmHkdTDgPCuZC1tg+C+0Ax9Yew1vvxTPMw8jTR/Z9fM50bLYQVmvQsN52X6PmbLe4kkVsTwNvI47U9kn8uit9IERj5NPs4G8Gh3nvS/XJ+i2VLeDK6OTkjiW+Rk1sDylJcmzASc52aO9t1585DCZEbBcEQRAEoUv0+MdgWOWN7aUJHk3s0PvaCzJcZMTB1Zud4uD7l08H4HerDnCkZvBdUA4mhoKzvbXGPL9jT6SO0G6qm8uNd3ToMfJJ52w/VEc4xqkZydrXrqOL7bX7Yz8RQRCGKrv1vnazie3RGHnjne3JEiMfFdvj5GzvuD8KMt384aYiLAq8sOk4z37c3rW+q7SB1fursChwx1kTer0dvdf97b2V3cbTJxKjYuQzPY7o5Ja1g8DdvrFE+06eMjyNLJOk5hgdI9/sSw5nu35PHLcYeZPtj+9eNpXTx2bT5Avy1ac3RSdWxZJQWI1OWpvVC2c7QNHoTAC2HK2P+XhMiy9Sn2ZQP/f+1/cDMPGSif1zBru0cTmdfkNj5O32ABaPeZ3cHVGd6aCGsIS9WuQ7sYmS1wV7T5oKqKZ2tuuT9b11XlRnhnHO9vpm7PYgYat5Jx6cxCmc7RIjLwiCIAjCkOF4h5m6L285kcCRxJZoX/uI+D0svm7eSJZMzMEXDPP9Llw+gnkwk9iuO9tj3dke/R1zEv879kRqfuRGrMz4G7HofkkSZ3v66HQsdgshfyjmEzIGi9guznZBiA2qqrK7VO+a7Z1IEC90YblROtuj6OOLn7O98+TVJROHcf/FUwF48LVdbD1WD7S72q+YXUBhH65BJuSmcubEYagqPPvx0RiMPLa0GhgVrve2rxkEve0fmSxCHoyPkY92tpvc2a53tjcYHiOvfVbMlg5it1r44y1F5KU52V/RzHde2hHz+/XiqmbaAiE8Divjc3snlOm97VuODSFnuy9yT+My5lnNQPragegkAJfLZ0iMfDgUJtASwG4PYE0xr7jcCX1iRIfedm997JztrpRg5+2YEHe2GyVSsRS0pBomtgfrtXNB2JZE9+jibBcEQRAEQYDj9e3Okc1H6ympHhwXQvHqa++Ioij8zzWzcNgsfHCgmle3Dp6kgMGG7m42g+CqO9tbKloIB2PnXNY7280woaAnomJ7HJzt0Rj5JNgvABarhazx2kO4WEfJ62K7Jy859sUn6Si2y+QmQRg4lU0+qpv9WJT4Xj/1hnS9sz0OMfLJI7ZH3LpxjpHvyFfPGc/FM4bjD4X52tOb2Hy0juU7yiKv9d7VrnProjEAPL/hGL7gyV3wicQoZzvAGRM1sX1tcfJ/n5mtrx3aayiMcrbrne1mc3J/kvh1tp+chmEW8tJc/OmWedgsCsu2lfLYmpKYrl+PkJ9RkI7V0rsar7kRZ/uhqhbqDY74Nw3e3jnbw6EwTWV9m2xcX1JP1e4qFKvChIv7/j2kjUu7BnI6/YbEyPubtb+zwxHAkixiuz4xwhdjsT3ijne5I+clp3nd3BarBXeOVmsQDKec5OSOFcGGyMQbR5IcG9Cls13EdkEQBEEQhhTBUJiyyAXylOHahdwrWweHuz0RznaAccNS+Pr5EwH4yeu7qWsZIjfMSYSqqqZytqfkpmCxWVDDakzF5o6d7WYnJV+7ETNabA8Hw9EowGSJkQfInmBMb7se6Zasne1ZE7JA0RwR+sQBQRD6z66Iq31Cbiouu7kcmnGNkfcmidgetxj5rp3toE00/eWn5zB+WAqlDV5u/Nt6wiqcOyW3X1UES6flkZ/uoqbFz5s7ywc89lhipHt5wdgs7FaFE/VtHKkxX4R+b2loC0SrKBaaSGzXj12jPivJ19lurNjeEnG2m3V/nDY2m+9fPg2Any/fE50gEgt2nNC+R2eNzOz1MlkpDsYP0+5LtkQSQuKOGkZR4zjBqZcx8svvWs5vRv2G7f/c3utV739Di5AffcZo3Fn9vA+Oxsj7DImR193cdnsQqzs5BFW1g7PdmaHFyMe0s90VeW5m4hh5aE+E8wVdhjnbQ0312v8xscv/JLpytud16LgfZIjYLgiCIAjCSZQ3egmGVexWhdvPHg/AK1tOJL2jIhxW2VeuzYCelgBn1h1nT2Dy8FRqW/z8fPmeuG9fODWBlgAhvVvRBGK7YlGineWxjJJPqs72iLO9pdzYGzF9n6AkxyQEnayJxjjbWyu1/ZGsMfI2p43MsZmARMkLQizYHemZnWGyvnZIUIy8ySKQP0la3GLktX3elbNd+7mdv9w2H4/Dij+S0HNnP1ztADarhZsXat3tT6070q91GIXubHfbY39ceBw2ikZr3/XJ3Nu+6UgtqqpNPs5LdyV6OFGMjpFvMbBiIJa0O9uNnQzeng5y8gQds/C5M8Zy9dwCgmGVu57ZTGVjbKLCo2L7qL59j84tzAQS1NseaMP28+GMrFsfv216G8HmApvjlG8r31KOGlZZdvsyyrf1bgLWgCPkAZxalY5RMfL+Jj+KEsZmC4HD/PfqQLvw62uImbNdVdWoYO9wJInYHpmw7/W5ThKXY0W4WXO2K27zXY93i3S2C4IgCIIw1NH72kdmurl0Zj5uu5WSmtZo52KycqyulVZ/CIfNwrhh8ReRHDYLD103C4AXNh1n/aHkfWg2GNEd3zaXDbvHHA+B9N72WHZyt1Vrn+9kEJX1yQa+Rh8BA902eoS8O9uNxZo8t0jZE41xtid7ZztAziTpbReEWLErKrabq68dOsTIS2d7lHg52/X90Z3YDjB5eBr/96nZKAosHp8zoAjxGxeMxmZR2HikLjoBxAwY7V4+Y6L2fbamOHl726N97WPN42qHdme7dLZHxHaDne3t6SDm3R+KovDQdbOYMjyNqiYfX/vnZgKhgdV5BUPhaEJMX5ztAPP03vajCehtt7nAasceimOqhq+xV65dX5Pmeg62BfnXdf/qMdI90Bqg5N0SACZfPrn/4+sQI2+E2O5r9OFwRD6HdvPfqwOGdLaHfCHCAe1z57Rpf2uzR6fr983eVqfmbDfAqBRu1c4jSkoSie3uTAi2QdAX/ZHEyAuCIAiCMKTQxfbR2R5SnDYunjEc0NztyYze1z55eCq2BAlq88dkc8NpowF4YePxhIxB6JqOEfKK0rsuPaPRe9uHqrPdme5EcWh/i7728vUF/W+fTBHyIGL7qcierO0bEdsFYeDsMrGzPcNtrDNVR1XV5BHbI+NLZGd7R66YXcDqb53Ho58/bUDXV3npLi6emQ/AU+vN4W5XVZXWQMTZbkBnO8CSSG/7uuIawuHkTBkzY187GJ+M0RL5DJrd2R4V2w3ubG+JTj4w9/7wOGz85bb5pDltbDxSN+BEuuKqFryBMCkOazQWvrcURZztW4/Vx//zryjgykyA2N6zqBqNW0+xU3eojlc++wrqKfbP4XcOE/QGySjMIHdGbv/HZ3MQVhzGxcg3+bDbdbE9Se7DnKlE+ruiMfJ633p/0f++KGCztHXYjnnx5GrPVlqa7BDyQzD2kzHUNu163JKaGfN1G4YrU/vfDu523dneUtVyys9tMiJiuyAIgiAIJ3G8TruhGhXpsrqmaCQAy7aXDXhmdyKJ9rXnJ/Zhse5QOVaXvN2LgxEz9bXr6GJ7U2nshGYz/p7doSgK9qxIn2aZcTFjLVWauJwM+6QjutheV1wX05oPPdJNn3WejORM1s6ztftjOxFBEIYaTd4AR2u1743+dG0bje5MbWwLGFp31OoPRU1KZo+RjzrbfcYKZ9EY+V5EQhfmeGIiON62aAygTQBuMXgyQW/wBsLR4yLFIEF1zqhMPA4rtS1+9pYbN/HQKFr9QXYc19x4ZhXbDYuRj9RTmX2Cjh4j7w+G8QaM6+dOlglLoFUe/PqGuQA8tqaEV7f233Sw/Xg9ADNGZmCx9G3C0ZThaXgcVpq8QYqrEhC57ErHHoyj+9TbGO1FPxW6GHv1P67G6rSy//X9fPDzD7p9v97XPumKSQOeVB+2puJy+Xt00/eHTs72ZImRVyzaBAlfU8yc7XqEvDPNieJvAasDbM4BD9VI9EnqzQ2RiXefiE6PCb4mwmEFe6r5rse7xZ2p/W+HaH19YoIaUtvr/AYJIrYLgiAIgnASxyKzdEdlaRdBZ04cxrBUB7Utfj44UJXIoQ2IvRFn7NQE9LV3RN+vx2sH14VlsmNGEdqQGPka7fPtyTHP73kqomJ7uXEPmPQYef3GL1nIHJOJYlEItAZitn/CwXD0GElmZ7sutouzXRAGRmUkqjXNaSPTc+oO1USgx8iH1fZ+ZCPQhV2LAm67eSOQoUNnu8Fu/94622PJwnHZjMx00xYI8XFJ4idT6THhYNxx4bBZoiL12iSMkt9ytJ5gWKUgwxWdyG0W2mPkYz8xJRRWaQvone3mPmekOm1YIyKwkVHy7THy5hfbAS6cPpy7z5sIwHde3BGduN9Xdup97SP7XsVis1qYPUpbLhG97aozw3Qx8mpYxd+s9XiPOWcMl//5cgDe/eG7HHzz4MnvV9VoX/uAIuT19TnScDqN62y32yPfK8nibAftbxbDGHl9MoUz3dnrtINEoz9HaK6JnO+9DTHfhuJvwudz4MxwxXzdhtGFs91qt+LO1q4HBluUfHJ8uwmCIAiCEFc+6Wy3WS1cOaeAx9aU8PKWUs6fOrxP6wuGwnz3pR24HVZ+fNWMhEV06zfI00Ykdibo6MiFZXmjF38wjMNm/PzHg5VNPPjabmaMTOfGBYX97qxv8QVZtq2Ul7acoKa5d/FgNywYzR1nT+jX9uJJ1N1sIsE16myPkdiuqqopJxWcCltWxHVkYIy8Gf/2vcHqsJIxJoP6w/XUHqwlbcTAH0Tox4diUaI3wclI1Nl+sJZwKIwlQdUhgpDs6CKzWd3cLrsFu1UhEFJp8gYME3GafO3xx2apmumO1A5uXVVVDRtvozf+x4aiKJwxIYcXNh1n/aEazpuSF7dtd0VrZIKH227ts2O1L5wxIYf39lWxtriGL5813rDtGMFHh7RJbwvH55jus5MWTYGI/WelrYND3Oyx6YqikOm2U9Pip77NT75BQk6LLzli5Dty74WT2Xa8ng8OVPPVpzbx2n+dGZ3k1Vu2R8R2XTTvK0WFWaw/VMvmo3V8ZsHofq2j37gysbfEXjTsll442/0tfogkijjTnRR9oYgTH51g01838eLNL3LHpjvIGpcVfX/ljkoajzVic9sYe97YgY/RmYHLFYcY+WRxtoP2N/M14oqcOwYcI9/QUWyvSAqxXZ+k3lCtwCQ6ObljhRJsxudzavslWejC2Q5agl5bbVu0vm6wIE8cBEEQBEE4Cb2zXXdgA1wbiZJfsau8z7P/H19bwgubjvPkuiO8u68ydgPtAy2+IEciTvJEO9tzU504bRbCKpQ3xH5GdFc8v+EYHx6s5q+rD3HeL9/j5kfW89q2UnzB3rnAdp5o4Hsv7+D0n63iOy/t4OPDtRRXtfTqX01k5rnZMaMInVYQ2872QGuAYOThuDsnOYTUeMTI6872ZOtsh9j3tus3vJ5hnqQWqDMKM7A6rIT8IRqOxvEhoSAMMppNLo4oitIhSt44J7cuEqWZdD90RJ9wEAyr+ILG1T/pMfV9FZ4GyqLx2mSq9YfM4GyPj3P5jAlab/tHh2qSrtLrI5P2tUO72G5EMkZrhzQMZxwmVg+UjEiUvKHOdpNP3uoKq0XhdzcWMTLTTUlNK/c9v61P3enBUJjdpdp93Mx+ONsBikZnAolxtuNKxx6Koxjma+rR2e5v0p4tWGwWbJFj6ZLfXULBggK8dV5e+NQLBNraj2M9Qn7c+eOwuwf+faV4MnA6tRj5WNfXdIqRt5vnmUSPGOVsz3CCvxkcSSC2R54j1JdHjgkDnO3WUAterwNHmvmSprqlC2c7tPe26/V1g4Xk+XYTBEEQBCEuBENhyhu1i+PRHaL+Zo3MYHxuCoeqWnhrVwWfmj+qV+s7VtvKr1bsj/73b1cd4LwpeXF3NuyvaEJVITfNSU5qYmeCKorCyCw3h6paOF7XSmEc4rwrIjcsIzPdlDa0sba4hrXFNWR57Hxq/ihuPL2QCbmpnZZp8gZ4bVspz358lJ0dxN6xOR5uPL2QOaMy6c2fsSAjOURdM4rtsY6R1+PBrQ4rjtTkuEmLi9henZwx8qCJ7YdWHoqZ2D4Y+toBLFYL2ROzqdpdRe2B2k4OF0EQeo/eOWxWsR0g3WWjtsVPowFR0DrNCXBx95cUhw1FAVXV3O0uA+LNA6Ew3oAm+sYzRh5g0QRNbN95ooEmbyA62SIRtERi5D1OY8X26SPSyfLYqWsNsP14PfPHmE+47gpfMMSWY/WAOcV2t92K1aIQCsc+GSM6Uclh/jQMgEy3sWK7qqpJ1dnekewUB3++dR6f+ss6Vu2p4M+ri7krEi/fEwcqm/EFw6Q6bYzL6d+1dVGhdg27v7Ip7uc81WW+GHldiHWkOaKfLZvTxmde/Ax/m/c3yjaXsfyu5Vz16FUoihKNkJ90+aSYDNGSkoHTeRQ1pMXZO9Ni92xJi5HXne1JdC+mO9uHxbizPd0ZmYBhfrFdf45Qd8JAsV1tTT5nu90NVkeXznaQGHlBEARBEAY5ZQ1eQmEVh83CsA6itKIoXFc0kl+u2M8rW070SmxXVZUfvrqTtkCIOaMz2V/exPbjDbyzt5ILpvUtin6g7C03R1+7zqgsT0Rsj338WFdURTpX7794CqeNzeJfG4/zrw3HKG/08sgHh3nkg8OcPi6bm04fTWF2Ci9sPMZr20qjjh2H1cIlM/O58fTRLDZhDGQsaKuOdJmbSGzXY+T9zX58jb4B31jporI7x500f0NbdiTiMx6d7Sb62/cW3dled7AuJuvTne3J3NeukzM5h6rdVdTsr2HCReavshAEM6K7l1MNFhMHQrpbd7YbJ7Y3mdzh3xGLRSHVYaPJF6TZFyQ3hkKATlOHPvh4C2cjM90UZns4WtvKxpI6zpuauCj5Nt3Zbjd2H1gsCosn5LB8RzlrD9Ykjdi+/XgD/mCYYakOxvezwspItGQMG/WtAZq8QUb0z3jcJdHUAxOfOzuS6dEm4Ta0GZNI5g2E0Q3hySa2A8welclPr57BAy/u4Jcr9jFrZAZnT87tcbkdkQj5GQXp/a6ayE1zMjrbzbHaNrYda+DMScP6tZ5+EW//HAeXAAEAAElEQVSxvRcx8p36vDuQMTqD65+7nqcvepqtj21l1KJRTLt+GsfXHQdi09cOmrPd5dY+J221bTEV25Pa2d5coTnRaRfL+4v+N3ZluJJGbNfvnZtrgqhWB8onnNyxwEYrPp+DlGQS2xUF3FknOdt1sX2wOdvNn2MjCIIgCEJcOab3tWe6T7ohvHquFiW/pri6V/Hnb+wo4919VditCr/69Gw+e8YYQHO3xzpyqyf2lpmjr11HTw3Q97fRVDZpf6+8NCejsjzcd+FkPnzgPB793GksnZaHRYGPD9dy7/PbuP7Pa3luwzFa/SEm5Kbw/cunsf57F/D7m4o4Y8KwpBFp+4oZne2OFEf0pjUWUfKtNeb7HXvCnqmJKPHobE/qGPni2MbIDwaxPXuytm9q9tckeCSCkLw0R5ztZhZH9BjzjgJwrGlJMkem7sBvNmif6JVSbrsVWwIqRxZHouTXHUrs+V0/LtwGx8gDLI5Eya8prjZ8W7Hi4w4R8ma9f9CTGWJ9/ki2fvIMg53tuqtdUYyvXTCKGxYUcuOC0agq3PPcFo7V9nwfv+P4wPradYpGa+72LUdjM7m217gy4hwj3wtne1PXYjvA+AvGc/7PzwfgP//1H97/n/dRwyp5M/PIKIzNbBrFlYHbo31OvHWxrQTs5Gy3uWK6bkPRne0xjpF3pDsiYntqD0skHneWG8WqAAqqI90QZ7vN0obP54jpBI+44Mo8ydmux8gPNme7iO2CIAiCIHQi2teefbIYNzrbw4KxWagqvLbtxCnX09AW4MfLdgPwtXMnMjEvja+cPQGPw8qOEw2s2hPf7vY9JnS2A3FztldGbkrzOtyU2qwWLpg2nL9/bgFrvnM+9104mZGZbpw2C9cVjeSFry5m1X3n8OWzxpOdkhyR4wPBjGI7xDZKPvo7xqG6IFbYsiKCQRw625MxRj5rgvbwrfZgbUwmMQ0msT1nsibGDHWx/cEHH0RRlE7/pk6dGn3d6/Vy1113kZOTQ2pqKtdffz0VFRWd1nH06FEuv/xyPB4PeXl53H///QSDxgmbgnlIBsFIF8sMjZHXO9uTIEYe2icFNPmM2Se6MJmo/bFogjaZan2Cxfa2gF6zYLx4uCQSn7/5SH3UUW929L72heNyEjyS7klz6pN1YvtZ0Z3tKY7kOGfoYnuDQQkhyRar3x0PXjWDWSMzqGsNcPFv3+cHr+zkYGX392i6s72/fe068wozAXj246NsjoHgrqoqdS09pxiozgzsoTZQwwPeZo+EQ1o/dw8u5qizvRvBccm3lzD12qmE/CE++u1HQOwi5LUNp+N0RpztMX6WozvbQ4oLLEkk2znTOnW2+5v8hEP9P2Z8DR0mVCSJs12xKNHnSGFr2kni8kBRVRW71Zt8MfIA7kxo63ze0p816M8eBgtJ9KkVBEEQBCEeRMX2rK57tq8p0tztL28pPeV6/vfNvVQ1+Rifm8LXztPie7NTHHzujLEA/HbV/ri521VVjTrbp+abw9mu79/jcXC2ewOh6EPR3LSuZ0iPyHDz9Qsm8eED57H3p5fw6xvmsmCseV0oRqC7m80mtutR8k2lAxfb9c52s/2Op8KerT38a6lqIRyM/YMeVVWjkxCS0dmeNV4T230NvujfdyCI2D44mTFjBmVlZdF/H374YfS1e++9l2XLlvHCCy+wevVqSktLue6666Kvh0IhLr/8cvx+P2vXruWJJ57g8ccf54c//GEifhUhziSDo1t3thsaI+9tF4qSAeOd7QkW28e397YbOcmiJ1oiyQ9ug2PkAcYNS2FEhgt/KMzGI7FJszGSYCjMppJ2Z7tZMczZ7tfWlywu7kxPxNlu0Hk0Gb5LeoPLbuXPt85j2oh0Wv0hnlp/hKW/fp9b//4RK3dXEAq3P98IhMLsjjyDmD0qc0DbvXJOAaOy3JQ2ePn0X9bxu1UHCPZTzNxT1sitj37ETY+s7zTeLnFloKCCLw5Rz77IvW4/Y+R1FEXhmsevid4HQIzFdlc6Tofm3G6rjbHY3uTDbg+gWpLI1Q5aGoGvUYt9j6D/nfpDpxj5XkzAMAv6s4QgKTEX24NtQZxOn+ZsTzax3ZV5Uox8+qh0MsdlDopnDh0RsV0QBEEQhE4cj8ShdSe2Xz5rBHarwp6yRvaWdx1rvaGklmc+OgrAz6+dhdPW/pDhjrPGk+Kwsqu0kRW7K7pcPtaUNXhp9AaxWRQmmORirl1sN97ZXqnfkNospPfwUFR3PQ411LDaLkSbzN2sO9tjEiPfobM9WbCl27RINtWYTi9fgy8q4ifTJAQdu9tO+ijtGKk9OPCH73qUm96jlszoD9nqS+oJ+oa2C9tms5Gfnx/9N2yYFkfc0NDAo48+yq9//WvOP/985s+fz2OPPcbatWtZv349ACtWrGD37t08/fTTzJ07l0svvZSf/vSnPPzww/j9xnS7CuahOQmc7eluY8SyjkSFoiRztjcbdO7TXcBpkYkO8WZEhpuxOR7CKmw4nDjhudWvfz6MF1QVReGMSJT82mLzTyLbVdpIiz9EusvGlOHmFUrSDKqhaPXpqQfJcc7I1J3tBsXIRycsJUmH/akYleVh+dfP5JkvL+Si6cOxKPDhwWpuf3Ij5/7yXf72fjENrQEOVDTjD4ZJc9oY00VqYF/ISXWy/J6zuHpuAaGwym9W7eeGv63vVZS9TnWzj+++tIPLf/8Baw7WcKiqJeq87xZXpva/MRYOu8QXudftIUbe3+SPvK17wdGZ7uSGl2/AmeEka3wWoxePjtkwcaZht/lRlHDMY+R9jT7s9iCqNcnuSV0Z4G3Eardgi1yTDSRK/iRnu8O83yEd0YXjQNgT8xh5X5MPp9OPz+/AnpKYa69+48486Rwy8ZKJ3HPoHq7+x9UJGZJRJMc3viAIgiAIcaPd2d71BX6mx8F5U/JYsbuCV7aU8p1LO98M+YNhvvfSDgA+c9qoqPNEJyvFweeXjOXhd4v57aoDXDht+End8LFGnxQwITe1k/CfSEZHbrjLG734giFDx1XVrN3o5KY5h6SQ3hu89V7UyMx+s0WspxZofVYxiZFPws52xaKQMjyF5tJmmsubo5MPYoWeaOBIdWBLEhHlk2RPzKbxeCO1B2sZtWjUgNY1mJztKXkpONOd+Bp91BXXkTs9N9FDShgHDhygoKAAl8vF4sWLeeihhygsLGTTpk0EAgGWLl0afe/UqVMpLCxk3bp1LFq0iHXr1jFr1iyGDx8efc/FF1/MnXfeya5duygqKupymz6fD5+v3dXS2Kh9FwcCAQKBxDlR9W0ncgzJRFPE5ei2KabdZx675iOpb/UNaIynOjYa27SH+26bxbT7oSMpETdtwwD3SXfUt2if7VSnNWH74/SxWZTUtLL2YBVnT0yMc7opcly4+vD5GMg5aOHYTF7cfJw1B6oIXDChz8vHk3XFVQCcNiaLUChIyKTJ96kO/fzhjemx3NCmfUb6es5I1HdUakQEr2sx5pzR0Krdj6Y4EnfOiDULxmSwYMwcjte18c+Pj/HCpuMcq23j58v38uuV+6OTTGYUpMXkM+C2wi+vn8lZE3N4cNkeNh2p45Lfvc+DV0zj6jkjur3P9wXDPLHuCH9afSiaxnHpjOHcf/EkRmd5Tvn3CNlSsAHB5hrILBzYL9ATzbXYgaAtBfUUY2qNJAPaUmynHHvmpEzu3HsnVruVkBoiFIjNSUiJ7BOn009LdUtMj2dfow9HbgDV5jb956TjuUqxebCFAwTamnBlumhua6a5qpnUUf3rWm9r0J5J2lJtqBVNhO0ewibfHwCunEhnvd9NSmsdoRiOuaWmhWynjxCepKvysjjSsbTVEezH/jDLfVtvt5+cT5MEQRAEQTAMPda8O2c7wLVFI1mxu4JXt57g2xdP6SSW/3V1MQcqm8lJcfC9y6Z1ufztZ43nibVH2FPWyIrd5Vwyc0Rsf4lPsKcs0tc+wjwzYnNSHLjsFryBMGX1XsYOM07Y0p3ted30mgntjm9nuhOryeIeY9nZ3lat3bgmk7MdIHV4qia2G9Dbnsx97TpZE7Moea8kNs72QSS2K4pCzpQcWipbYt6pmEwsXLiQxx9/nClTplBWVsaPf/xjzjrrLHbu3El5eTkOh4PMzMxOywwfPpzy8nIAysvLOwnt+uv6a93x0EMP8eMf//ikn69YsQKPJ/Gft5UrVyZ6CEnBwSMWwMKRg/tY3rI30cPpkuNlCmBl3+FjLF9+ZMDr6+rY2Fes7Yfjhw+wfPn+AW/DaOoqtfFu2r6L7JqdMV//R5F93lxbxfLly2O+/t7gbNDG8NbWEmaHixMyhp2Rz0fFib4fe/05B2n6rY0dJxr492vL8Zj4qe4be7V9k+YtT9gx0htqKrRxbt25j+WNe2K23q3HteOztrKU5cuP93n5eH9HHajTxnu0osaQv9fGKm393uZ6Ux8P/WUWMGUWbKpWeL/cQmlrmG3HNWerxxvbfWoH7psOTx20crgpxP0v7uTZ97bz6fHhTucEVYVttQqvHbFQ49Oe14xOUbl2bIgJ6SfYse4EO3rYVoq3nKXApjXvUJNWFrPfoSuym/dxFrD6o800u7pPQCzdqtUZltaUJuRYym3cyxmA0+lj58ad1C6PXbpKY3Uj9qkBGn0h1iTJ52TlypUMbzjAIuDt5S8TsGqi5OoVq0kr69/zt/IS7f5i94EdnOZuZfu+wxytNv/+qGrVJplVVvqw28tYHcO/ofdAIzfYQ3hDjqQ7h04pq2JMfQUrBjDuRN+3tbb2LkXExJdlgiAIgiDEG38wTHmjNut8dDfOdoDzpuaR7rJR1uDlo8O1LJ6gudcPVTXzh3cPAvDDK6eT6XF0ufz/Z++84yWp6rT/VHWozrdvvndyTkwkD1kyAwqIIgJiwOy7uqLrLmvaXd3XtPuqu7rqsrqKgihRgSEMWWRIw8www+RwJ9ycO1enev84dar7ztzQXV3VXafu+X4+fAaYDtXV3dVV5/k9zxP2ufHRc+fhP587gB89sx+Xr2gz1d2+22J97QARgWbV+3CgL4bjw0lzxfYoFdsZ6/6qIlRst6Ljm3a2GxIjz6CzHQAC7QFgKxDtrnzg4ESos53FvnZKw0Li6Bs+OFzR4yiKYiuxHQBu33w7RMf0bk+76qqrtH9fvXo1zjrrLMydOxd//OMf4fWaN3hz55134o477tD+OxKJYPbs2bj88ssRCtXu9ziTyWDTpk247LLL4HIxFsNYAx7o3wIMDuKMdaux4dSZtd6ccUlv68KDHTsRqG/Ghg2n6X6cyT4bj927DRjow+lrV2LDGQbG0ZrE1o178Fr/UcycuwgbLjewq1al44VDQMcBLJ4/Gxs2nGL445fCqZEUfvuDl9CZEHDeuy5DyFv97/Mbj+0Guo5hxZJF2HDpopLuU+kx6DdHX8ahgQTqFp2Oy1a0lH3/avE/R18FhiPYcP7puHipdZNl9mzaj7/0HEbrrLnYMMGguB52Pb0fOHYYSxfOw4YNy0q+X61+o2YcG8Ev9rwOxeXFhg0XGP74I68fAw7sxtwZbdiwYa3hj28VrgM5n37jyDB+++ox7O2J4ks3rMESE6oUPpjL4xd/6cB/Pn8Qbw2K6Mn68IP3rcSZ8xqwszOC//vkXrzRQa4NWoISvnTZIly3ZkZZ6y6Z0R5g91dwxqrFEFdsMPw1FCPsdwL7gQsuuwYITmzGePLJJ9GHPixdvRQXmPBZnQqhsw04+H14PGnMaJiJqzZcNfWdSuSd9DtwuTIINbZhwwZz93elFB+r3N1h4NAPccl5Z+D4zFfQebwTa5etxdINS3U99l1fuwtxxHHO+auBN4FVp5+DlcutvT8A4OWtL+Olx1+Cy9mMOqnb0Pfw2DPbgNcAhyeMKy3+2TgR8fWjEJ9/Stf+sMp1G01omwoutnM4HA6Hw9HoGU0hr5Bu76bA+EI5AHhcDly9uh2/f/0YHtnaifULG6EoCr768E6ks3mcv7gJ71kzY9Ln+vh5C/Drv3ZgT08UT77Tgw2rzHO37+mxnrMdIOkBRGwvvWtND31RMkDRMkmv2XTHymK7kc52K7/OyQi0kQg67mwfnwY1PrdSZ3s6lkY2qXZq2kRsn+5C+3iEw2EsWbIEBw4cwGWXXYZ0Oo2RkZEx7vbe3l60tbUBANra2vD666+PeYze3l7t7yZCkiRI0sm/Oy6XyxIit1W2w+okMnkAQNgvWXZ/hf1kmDAq5wzZxvE+G/E0iZ+t81l3PxQT8pHvXiKTN2V76eeizuuu2f6Y3ejC/CY/Dg/EsfV4FJeuaJ36TgaTypIKoqCO/aD3GHTuomYcGjiC1zqGsWGNNQdggMJ3Jmzx70ydn3xX4mljvyupLPmO6PlsANX/jWoMkuG7SDJryvNq3xXP9PjtPXdxK85dbO4xyeUC/vaypbhwaQv+9g/bcGQwgVt/9SbOWdiIVw4OQlHXdT51wQJ86sKF8Es6ZKAAMVU4MjE4zX7fsuSazBVoJC9uopvFyLWKN+ytzWfJXw+AONvTo2nDtiGfyyMTz8DtzkD0Bczf3wbhcrng9JNrUVc2Ca+akJmN6T+WpKOkoiUQJMdRpy886WfCKgTV9cZEzAUhNWLs5zOmrgW5g+wdQ/2NQDYJl5AHnPrWJGt93Vbqc/OVBw6Hw+FwOBrHiiLkp+r2vm4tWdzZuKMbqUwOD2w5js2HBuFxifjX61ZNef86nwsfPW8+AODHz+xHXu3LNppUJodD/USgW24hZztQSA84ZrbYzmPkp8TKIjR1tsd6YsirC3d6SQ6SKG2r9dJPhb+NCL9mONvpe8+0s90gsZ262l1+F9z+iQeuOGwTi8Vw8OBBtLe347TTToPL5cKzzz6r/f3evXtx9OhRrF+/HgCwfv167NixA319fdptNm3ahFAohBUrVlR9+znVJS6rAzh6FumrRMhDto32y5tBTN0PAQvvh2KC6nZGU+bsk0iK7I+gp7YLvmcvIELQ5kODNXn+RJrsB18VK4jOURPFXjlYm9dcKiwcOwAgqB4/6GfaKOiwgc9t7ddPoYl0UTmLTK6y643xoJ+HgIeN/cES6+bU4/HPn48bT58FRQH+eoAI7deunYHnvnwR7rh8qf7vocOFrChBSI0au9HjIY8CggNwTX6dKqtrG1KtjAQesqYkSWkkh4yrqUrHiMDscmUgevV1ndcMSV1nk0ch1ZH3JTWa0v1w8qj6HnvUcxi3tUwzE0HXE2LDDiAVAfLGHUuzETXBzmOtNc2S8ITJn8mRWm5FVeBiO4fD4XA4HI1CX/vUQtwZ8xowM+xFVM7i/i3H8a8bScfd3166BHNKFPJuP28+gh4n9vZGsXGnOR1gB/piyCtA2OdCq8Wc3bPUqd/jJncJ98fIxUozF9snhEaJW1Fs97f4ITgEKHkFsd7KnN1WHiqYjEA7WXCI98QNf2z63nub2OqxL6Z+IXFYJAYSSI3oX9iwW4Q8h/DlL38ZL774Ijo6OvDKK6/g+uuvh8PhwAc/+EHU1dXh9ttvxx133IHnn38eW7ZswUc/+lGsX78eZ599NgDg8ssvx4oVK/ChD30I27dvx1NPPYWvfe1r+NznPjeuc51jL2IMCGY0PtxosawY5sR2VdCi2200VMSvtXB29gIybPZqzcR2KqhWT2xfv7ARggDs74uhL6L/N99s4jLZN1Y+dgCFgRGjB1PoIIZfqt5noxJCRd/liAmDS1EGfktYJiA58f33rcHPbz0NN5w6Cw999hz8+KZ1mBmu/Pom4/AD1RDbUxFACgJTmDbkaI3FdlVY9nhkJA1cx6FubreUhSgxJrZTATgVgSdM0ob0XpMqiqINVLjdZJ9AYkNsp0l50SEHAAVIG2cUyMVGyL9IDIrt3jD5MzVSy62oClxs53A4HA6Ho0FF39kNU1+UiaKAa9eSqPhv/mknRhIZLGsL4nbVrV4KdV6XdvsfP7MfORPc7YW+9uCUbvtqQ4cazBbbC8523tk+EZoIbcEocdEhapFk0S79F2yZZAaZBFk88zayJSwHWsmCgynO9n72ne1SUIK/lWz/0EH97nYuttuT48eP44Mf/CCWLl2KG2+8EY2NjXj11VfR3Ew6dH/4wx/immuuwQ033IALLrgAbW1teOihh7T7OxwOPPbYY3A4HFi/fj1uvfVW3HbbbfiXf/mXWr0kThWJMyAyF5ypJjrbU2wJRVQEj5o0gEBF/GCNxfb1qrN9V3cEownz3v+JSNTAvRz2uXHKDLLYblV3u6IoiDMiNps1mBKT2XK2Ox2iti9GTBDbWfgtsQNXrmzDv9+4BqfOqTfsMTMOX3XEdjlakmtXc7bXykjg8kIRnJAkGalh4waetNflyQJu661JTIrmbK9cbM/EM1DUdUG3S1Yfnw2xnV5Dj9IwMAOd3EqcPJboqzPsMasGd7ZzOBwOh8OZjlDRtxRnOwBcv45EyecVMoD83RtWw1VmP+7HzpuPkMeJ/X0xbNxhvLtd62u3WIQ8UOxsN7uznTvbpyI5oMarW9TxTaPkK+ltpxHyolOsnRNAJ9TZzjvbJ4ZGyQ8fHNb9GPFeIrbT4QaOPbjvvvvQ1dUFWZZx/Phx3HfffVi4cKH29x6PBz/96U8xNDSEeDyOhx566KQu9rlz52Ljxo1IJBLo7+/Hv/3bv8Hp5Avm0wEW3KnU2Z7O5pHK5Ex5DquIy6VCBS3znO3kcUM13h8tIQ8WNPuhKMBrh6svPGsx8lUWlM9d2AQA+OuBgao+b6kk0jko6gy11cXVkEmDKQlNXLb2sEExYR85lo6YMLhCf0us/nngnEzG4YMgV0NsjwDS1EJizWPkBQGKKwiPx9gYeerYd7mzU0bpWw7RAbgDQCqixcjTKPhyoe+v4BDgFNT9y4jTnw7vRwbVNVEDh1TyCfJYQoBBsZ072zkcDofD4UxHjg0VOttLYXFrECtnEhH7trPnYu3scNnPGfK48PHzFwAAfvys8e72PT3E2b6i3Xpi++wGchHVG5FNWxzO5vIYjKvOdsYE1mpi9Xj14Awitkc6I7ofg75Gb6PXcikPUxFoU8X2nhgUxdhjBI2RZ9nZDgANCyvvbafOdl+LNb8HHA6nusjZHNJqd2/Awu7MgNuppc6a4eTO5RXNwcyKUFStGPlad7YDhd72Vw/p//3Ti+Zsd1VXUF1f1Ntu9HmREVBXuygA3irvm3IxK0aetc52AAh7SW/7aDJt+GPzGHl2SVczRr4EZzuNW6/p8LgUJM720ZTmwq4ULTrdlQHcDF6XSiFDnO3FwxSCrBoNGOls94Q9EJ0iUin1s2mguCzIUeRyIlxBNvbFGLizncPhcDgcznSkXGc7APz7+9fiH65ahn+4arnu5/3oufNQ53XhQF8Mj73dpftxTkRRFOxWY6eXtVvvpLTe59I6HrtGzImSH4ynoShksavRz8X2ibC82G6Asz0xaO3XOBn+NrLgkEvnDHUQANZ/70ulfhGJizRCbOcx8hwOByg4EQFrR0GLoqCJ4GZEyVPhEGBHKApIRECMmRQjT4carDB8QKPkN9egtz1Ro+SHM+c3wOUQ0DmSxNEhcxOy9KAlYridlh/wDBY5240cXGCtsx0w29nOntOfQ8hWLUY+UlIftSZKB91mb9GECL46SFIaUIDUqDFR8nSIwOXMsOdsB8ighAGd7XR/euo8QDoGOL2Ao/bnGqUgiAJ8TT6kUmp9o5HfGzkGWXZDCjFYDenyAg43d7ZzOBwOh8OZPsjZHHqj5MR2donOdgBY2hbEpy9cCK9b/4Vz0OPCJ84n3e3/YaC7vT8mYyiehigAi1usJ7YLglAUJW+O2N6vxpE1BiQ4RGsvdtUSqwuuITVBoiKxnb7GRmu+xslwSk54G8h3JdZjbJS83WLkudjO4XCMgoojHpcIZ5k1QdUmpLpTIyZ0DVPB2uUQIDmtvR8oWme7Sc52uk+sEKt/1gLy+7enJ4KRhPGO3Mmggmol10F68LmdWDebDNn99YD1etvjDLmYqbM9m1eQyuQNe9w4Y53tQKGSY9TUzvbap2FwyiPj9EGoVmf7FN3c+WweGXUYpJbOdsFTB6+fbIdRg+BkiECB05Fmr7MdKDjb64gYXGmMvBSSSvpMWA1/i7/I2W7c90bIRlWxnUEDjSAQdzt3tnM4HA6Hw5kudI+koCgk6q/BX/0p4Q+fMw9hnwsH++N4dLsx7vY9qqt9XpO/6otgpUJTBMwS2/vUAYoWi/a153N5PP3Fp7H/q/t1Tz8bAY0St6rYTp3tlcTI0852q77GqdCi5A3sbc8kMtqCDfMx8kaI7b1cbOdwOAVisnXcy1NBRSIzYuTjRfvB6i5dCn3P0tk85KyxVUX5vIJYmorttRfOWoIeLNR626sbJU9j5P01EFTPWUQc/X89aL3ednrsqHaXvR58LkdRDYVxIrM2cMCQ2B72mudsp8dmlpz+HIKVYuTTscJAlVTL9Q1PCL4A+Z6kho1Zw5CjMpzOLARBYdjZPlp5jPxosdgeYU5s9zX7oCgicoLXUHFZzMUhy+6aJjpUhDfMne0cDofD4XCmD8eGC33ttVhIDHpcuP1c4m5/eGunIY9J+9qXt1mvr51CUwTo/jeaPnUy2Kpiu+gQse/P+xB/J47+d/prsg25TE67qLOqEG2ks93bWHpyhZUItBOxPdqtfx+cCB2ycLgd7F64qlCxPdYdQzquz9lHne2B1oBh28XhcNiFLXeqeTHyLHYNFw9IFNcBGEEsnQVN27aCsx0odJhvPlg9l3c6m0dWTeOqxVDvOQubAACvHhxE3qBUMKOIMzSoM7aGwphhnVxeQTJDKwbYEZdpjLwpzvY0O58JzlgyVYuRH50yRp66nh2SA45amimkELw+1dlukGlCjshwudRjEItiu9Gd7XUSIMcAia3rUjq0noWxQyqOfByyLLHpbAe4s53D4XA4HM70otDXXjsh7rzFZNHona5RQzrzqLN9WZt1p2HNd7ZTsd263U4tq1oAAH07+mry/NTxLYgCPPXW3E9GONtZ7mwHgGA72QdGOtuLI+RZcStOhLfeq31+hw8N63oMHiPP4XCKiTHkzCzEyBvvbI9ZqJ+8VByiAJ8qRBjd204dqm6HCI/LGkLi2Wpv+6tV7G2nEfIAtH1dTdbODsPrcmAwnsbeXuMGEY2ApWMHUDh+GOVsp0I7wNaQTthLBk+NrmNQFKUwgGGRAR1O6WQdPgiZOJAzfghjDCU428dEjNcSKQjJQ74nRsXIp6NpuN3qPmYxRl7tbJfqyHuTGk3pWtOjne2FGHnrGmfGg1bTpXPGDqk4kWA3Rh7gznYOh8PhcDjTi+Oqs3p2Q+1O7Je3h+AQBQzE0ppIXAm7e1Sxvd26J+iFznZznO20s73FwiflLStrK7Zrju8GL0SLdtIGZxChOR1NQ9b53UgOkIUA7mwvYPX6gHKpJEo+n81rAxlcbOdwOEDBEc2CyBzyqh3lJjjbqUhkFRd3qdD3LSobu0/oPraSaEbF9j09UQzrTHcpFxoh73aIcNXg/NHtFHHmfPK7/9cD1oqSp8cOVoRm+t02qoYioR4zRAGQnNa8thiPOtXZPmKws13O5pHJEdGNlc8Ep0DaoV4XpPQPfU+JopTUz02vg2saIQ8AnhAkN9kWI2PkXS71u+di8FrsBGe7klOQiZd/LBnrbGezsx0A0hmvoeKyU0gSsb3Wn329cGc7h8PhcDic6YQVnO0elwOLmomgtrOzsinQTC6PA33c2U4725stfFLevKoZQO3FdisLrlJQ0mLOo136xGbWne1UbI/3xA17TPres97XTqlEbE8MJACFJDywOpDB4XCMJSZbT1SdCM3ZzmPkNQIGC4gU6pS30vBBU0DC4hZynvDa4eq426mzvZa95Oeqve3P763NOfREFGLkrZF8MBVGi+1xdRDD73YylZxkVmc7/TwA7KQdcApkHOq1o5mu1EwCUHKAVDfpzazjbA/B5STrN0bFyKcj6YLYzrCz3eVzQVSHjPREyY95j9MxwM1YjLy6rpBMSsY62x1JtmPkubOdw+FwOBzOdOLYEO1sr+2J/SkziAv9na7KJqf39UaRySkIepw1HSCYitkNZNv6ozJSGWM7NYHiGHnrnpTTGPn+nf1QatA5yYLYDlTe287K65yIQJvxzvbiGHk7UInYTiPkfU0+yyY8cDic6hJjyJ0aop3tPEZeI6hur1kx8lYS24HiKPnyfwP1QJ3tvhpG6V+1sh2CAPz1wKB2LWcFaD83C8cOAAiqwzoxg1IgqLhcy0EMPYR9ZLA3YrCzndYK+NwOOER2hg84hKqI7dQ1z0qMvCcEl5AEoBgWIy9H5UKMPJPO9jpAjkAQhEJv+6gOsX2UvMeeOg8gR5hzttN1hWTcbZiTW8krcDtlyLJbM2AwB3e2czgcDofDmU5YwdkOAKfMJNPMlTrbtx8j9189q87SjoI6r0tbvDXD3d6nXpA2W7izvXFJIwSngHQsjZGOkao/PysidKW97bSb3tdo7dc5EWZ0tmsx8jYT24cPlN/ZzvvaORzOibDkTg15zXO2sxojXxAQjRXb6T4OSi5DH7dS1i8kYvvmg9VxttOodF8NBeXZDT6ct6gJAHD/m8dqth0nUjh2sPGdMdzZzlhnPaXOa06MfIzRdBAOIeOkMfLGuXRPQlavb6fo505HSU1IzQVHKQRBUOByZYyLkY/I7Dvbc2kgkyr0tlfqbJdjgMSYs129lo5HnIZ9Z9LxNDwemXFnez13tnM4HA6Hw5kepDI5zQE92ybO9u3HRgAAa2aFK9wicxEEwbTedkVRCp3tFna2i04RnjlkGKD37d6qPz8VXL1N1k1AALiz3YzOdups5zHyXGzncGpNXM5if69xxzcjYEkwMlosKybG0H4optDZbo6z3Wr1ArS/fG9vFIMx2fTnS2YKbt1a8oEzZgMA/vjmceRqkBA1HiylYgCF40fEqM72NFuvnxKmne2JNPIGfpboYEqQsf3BIWjOdjNdqbJ6/jNVZ7tVnO3qUIDHIxsmtqejabjd6jHIxeD1Oh2UKOpt1yW2jxaL7Qx2tqvrCtERh2FiuxyRIUlppDMSnBY79yoZb5jURWTTtd4SU+FiO4fD4XA4HHSNEMer3+3QLrJrxQpVbO8cSWI4rv9EbPvxEQDAmtlhA7bKXApiu7HO9kgyi3QuD8Dane0A4JlLLsh6tvdU/blZEaErcbZn5SzSMfJ9YrWPmzrb09E00hUcG4rRYuQt/t6XSv3CegDA6LFRZMsUV7jYzuHUlq8+vAOX/fAlvH64OhHYpcCSG1HrbDfYkQkU9oPVxOWpoNtrdIx8zKJO/6aAhCWtZDCvGt8jzdleY7H9shWtqPe50BNJ4aV9/TXdFkpctsYgQqnQFIioQckYNEaflddPoc72vALE0sYdN2g8Pwu/JZyTyYoeKBDMdbbTx2YoRh4AJCltXIx8sbOdRbGdvnepgthOhfNy0N7jOiq2T/6ZsBqas33UBcUgJ3d6JAqnM4es4Ld0auekeMLkT5u727nYzuFwOBwOB8e0CHlfzU/eQh4X5qox13rd7Yl0FvtUd9haJsR28nqNFtv7omSSOORxwlPDPslS8M4nAnDf231Vf+7kgDpsYnF3MxXb9TjbaYS84BBI/xmDuINuuNRhoFiPMVHy2qCFTWLk/S1+uANuQAFGDo+Udd9YL9mn/lZrfw84HDuSyeWxaRdJdnn5wECNt6YAS1HQZsbIxxjaD8XQ7TWqh5pCBUk64GAl1qu97ZsPmR8ln6Sd7TVOPJCcDrz31FkAgPveOFrTbaGwdOwAjE/GSDDm7Kd4XA54XEQqGE0Yd9woJB1Y+3qUMwGCCHjqLBEjL6upfVaIkQeIsz1p0BoO7WxXBCfgZLCXW3O2j2rrDRXFyAdEICcDbrZi5KU6CaJLRColQTDIyZ0ZJhVxipPh63RvmPxp8952LrZzOBwOh8PR4str3ddOWTmD9La/06Xvgm5nZwR5BWgNSWgNWV9YpPv9mMEx8rQaoIWBfeCdS/ZBLWLkWXG2azHyXeWL7fQ1ehu8EEQ2p6EFQUCgjVxsG9XbTisErD5oUSqCIOiOkufOdg6nduzsHEVcFe52d1dWo2MkLDnbTY2RT7ElHFKCJjnb6T62mrMdAM5WxfZXqyC2U/ey1wLu5ZvUKPlnd/dpw7a1hKVjB1CIN5/uznYACHuJyDdioNheGL6w3oAOp0Q8deY6UlNUbGckRl5zthsXI0+d7YrTGmtyZUOd7XIUUlh/Z3tqlNzH61fPXRiLkRcEAf5mP1Ip9TNqwJBKZpic0ygutgYPxsCd7RwOh8PhcKYL1FE9u8EaYuMpqqi4U6eznZW+dorZznYr97VTvPPIReXQwSEt7rxasCK2B2fod7YnBtl4jVNhdG+7FiNvE2c7oL+3PdGn9tdzsZ3DqTrFLlwriu0sxKfzGPmTMbuz3Ypi+1mq2L6vN4YBk3vbtV5uCwiqi1uDOG1uPbJ5BQ9u6az15mhiMysDKoUYeWO+K1Rc9tc49UAPWm970rjrscLAUu2/KxydSCGTne1R4mAWJ/+MpCNpdXNq3dlOrsuNipHP5/LIxDMkRt7N6LWYdHKMPBXOy4EOVHg86vkcY2I7QNYWjBTbsxHV2e5mb19oaM724ZpuhtlwsZ3D4XA4HI4m8lrF2X4KdbZ36jsxZamvHSjs906jne3qhQoLYruzzgl/mx9QgL53qhslz4zYTmPku6PI5/Jl3Vd7jY3Wfo1TQXvbjXC25zI5bdreLs52AKhfRHrbB/eX5+rjznYOp3a8eqgwHHN8OIlREwRjPdBOahYEEhojH0/nkC3zN3IqmI2RN83ZTj6fVnSpNvjdWNZGzhVeO2Rub3tCcy9b43PxAdXd/oc3jkJRlJpuS5yxGHWjkzFoUgkrr78Yeiw18neItaQDzsko3rD5MfIldHPTGHmp1usb7iAUCPB4ZKRjaeQyuYoejpoN3O4MBNbFdjmiO0Y+n8sjHaX7Qh34YVBs97f4kUyq6ZIGfG9y0REAgCDVVfxYNYM623mMPIfD4XA4HLtjtRj5U2aQE/XDg3Ht4rwcqNjOQl87UEgUGIiltf5HI+hnKEYeAFpWtQCofpQ8K2J7oDUAQRSg5BRNGC0V2tlu9dc4FdTZbkRnO33fIQCeeja+I6XQspJ8j3q29pR1P97ZzuHUhkwujzc7iCjodpAlmj0Wcbez5M4sdlnrOXecDGbFdq2zffo424HqRckntM52awyjXL2qHQHJiY7BBF47bO6gwVRoxw4GBnWAYme7MQJzgrHXX0xYFdtNiZG36DGDUwJSnbkiWSpSiCGfBMvEyIsiIAUgSUQQrjRKXhOYpSwgMXq97nACLv8YZ7s8Ul7CTHHCodut3pdFsX1MjHzlTu58fAQAIPim/o5YFpcXcLh5jDyHw+FwOBz7c2yIOtutcWLfFJDQFvJAUcqPUx2MydrrWTmTjcnPOq9LW7A8bqC7nXa2Nwes72wHaiO2ZxIZZNTFJKsL0aJT1DrLy42S1zrbG60xUKMXTWw3wNle7PYXHfa5LJp5xkwAQPdb3SW7LBRF4c52DqdGvH18FIl0DvU+F85f3AQA2GURsZ0lN6LLIcLrIsJWJGmsuMyqUKR1tk9TsX2z2WK7bC2x3S858e41MwAAf3jjWE23Jc7YgIpZznarpB6UA42RN8PZHmBwf3BUPHXWcLZbRWwHcRn768hnO1lhHSB17Ht8eQguhq/FPCHibNcZIy+Pkv3gcDvgVNR9yqDY7msxNkZeSZDrAsHHxvrmuAgCcbdzZzuHw+FwOBw7k8rktE7D2RYR2wFgJe1tLzNK/m319gua/ajzWi/eciLM6G3XOtstcDFaCtSR2/d29WLkqeAqukS4g+6qPa9eaJR8pLM8IcY2ne102MCAznY79rUDpLPdE/YgJ+fQt6O071ImnkFWFae42M7hVBfqvj1rfqOW7GOV3nbWBLOQl2xnxCB3KiWaYms/UGjMu+Ex8jLZv9QNbDXOmt8AQQAO9MW0lCczSGSsJ6jepEbJb9zRjVEDncnlkM8rzMWoa2K7QYMptGKASWe7j1wPjSQM7GxnaHCLU0DJK0gOJ5EdzUIxW2xPjZYkqmoOcCtct3tC8IfIsa5SZ7s2RODNAW6Gr02lEJCKQKoj60/lxshr+6FOIgMYAOAOGLqJ1cDf7Ec67YaiCMZ8b1IR5HIiXCH29sUYvGHubOdwOBwOh2NvqLgblJzaIqUV0Hrbu8pbcN5+bAQAsHZW2OAtMhca4W+Ks73WnWYlUuxsr1bXJBXb/c1+CIJQleeshJA6hFKusz05QL7nrDvbjexsj/erTm69fe17NgKHXqh4O4xGEAXMOIM42zrf6CzpPtTV7vK54PZbYPGKw5lGULH97AUNWN5OjvFWcLazKJiFVPHXSLE9k8tDzpIOePbEdjp8ML2c7fV+N5a1ke/Sa4fNc7fTqHCrONsBYPWsOixrC0LO5vGn7aWdAxhNoihVh4UKCqAwOJLO5iFnK6/0isvWG8QolToeI89R2fLfW/DD1h/i2H8dU53tI+Y9mRxlK0YeAKQgvH7V2T5UmWGCDhFInizgYlhs94QAebTgbNcrtock8pkAmBTbyTC/gHTOZ4yTW45Clt2QGKmHnBDubOdwOBwOh2N3qLg7s95rKbGRurvKdbZTsX31LLYilmab4GzvVy9WWoJsnJQ3LmuE6BSRGkkhcrw6QgMrfe2Uae9sb7eQs/25bwOP3QFUaTCkHDSx/fXSFtq1vnbuaudwqko6m8ebHaTLcf3CJqxQz3329caQzeVruWmIpwsCrVVF1ROh22lkjHy8yOnKytABpRAjb5xopiiK5pS38ufi7AUNAIDNB00U22lUuIU+F4IgaO72379+rGrDq8XQ74woAB4XG8vOxYM0RkTJa531FhrEKBUaIz9iRoy8hb4rnKnxNpAh7Ww0SzrbU6PmXfcwGCMPKQSvn3xPKo6RV1+XW2JcbFed7XrFdho776nzAHKMCO0iG78jxdBr6pTsMcTZLmSikGXJGokOlcCd7RwOh8PhcOzOsWFr9bVTaN/6gb4YUmX0Dm8/Tk5m18wOm7VppkCd7ccMcrYn0zktCpGVGHmn5ETTMtJXW63edubE9hmqs7urPGc3a69zIqizPTGQKLmPfCKos13XPsllgcH9wNBB4NhrFW2HGcw8k/S2d73eVdLttb72Vi62czjVZEfnCJKZHBr8bixuCWB2vQ9+twPpbB6HBuI13TbqzHSIAiQnG0tHIa/xznYqvHlcIlwONvYDhYrhqUweGYOGN1KZPLJ5RX18a8bIA8Dpc4nYvrPMhKxyoFHhPpe1BNXr182C2ylid3cEO8ocWjaC4shwKw1yT4ZDFDQh2BCxnbFUkGLCXiLmGNvZzu7+mM7QRLRcNAfFWwfk0kC2srj0CUlFpnS2Z+Uscup3S7JCcp8nBI9EHOkVx8iriYQud4btGHna2V5HxHbawV4qJznbGexrBwrJeamkZIi4LGZjqrPdAp/7SuDOdg6HwzmZVCaHe147gu5R49yXHA6ndlBnOxV7rUJ7nQf1PheyeQX7ektzsR4fTmIonobLIWhRrKxQiJE35thKOyolp4ggQwsbratbAXCxfSL0OtuTg+Rz5Wtk43VOhK/JB9EpAkpBINaL9t7rcbYPHyYLToID2Pq7irbDDKjY3r+rH+nY1J2bmtjOne0cTlWhrtuz5jdAFAWIYuH8ZZeJImEpxIqcmawIZjRG3gixjMKyI7NY2Iob1EUdVQcZRMHart121VU3YGZnu+Zst9Z+qPO5sGFlGwDgvjeOVf3544x+Z7TedgOGdVjubKcx8qMGxsjTdA3WPhPTHXrdmI2pznbAPKGsBGc7jVoHLNLZLoXgdhORvdIYeSoyu5xZwMXw9dgJzvZsKotsGedkVJxnXmxXr6kTcZchznYxH7eH2M6d7RwOh3Myj2ztxFcf3on/9/S+Wm8Kh8MxACruzm6wlggnCILmbt9ZorC4/fgIAGB5ewgei7lMpmKWwTHyfVFy4dcSkphZJAeAltWkt73v7b6qPB91N3ubrDVsMhF6O9tZGyqYCEEUNPd1pb3tNEZeV2d7/x7y56m3Ae88AqRr60A9kWB7EKFZISh5Bd1vdU95ey62czi14dVDQwCA9Qsbtf9HxfbdNe5tZ1EwK8TIm9A1zNB+oLgcohbjbdQAAu1/D1jctdzkJwvSAzHZtCh1TWy3YC/3B86YAwD487YuTfitFsXOdpYw1NnOcGd7IUZ+6mHNUqH7g8Xj6HSGxsjnojkoVAg3QDgcFzk6pdiuub/9LohWSJrxhOB2qmJ7hWs4dJDA6Uiz7WyXgoAcIaKweopAo+FLQXO210lAOspkXztQGOZPxNzIx0cqfjyHkkAqJVkj0aESuLO9fF566SW8+93vxowZMyAIAh555JGTbrN792685z3vQV1dHfx+P8444wwcPXpU+/tUKoXPfe5zaGxsRCAQwA033IDe3uq4mzgcztQcHiQLsj0Rk+KDOBxOVTmuxchbT2yk3aXvdJV2UcdqXzsAzFIvZofiaUPcR31RtvraKdzZPjl6nO25TE67cKVxgCwTaDOmt72izva+PeRi8dwvkIWA3Y9WtC1mUE5ve7yXi+0cTrVJZ/N48wgR289eUBDb6bnPLouI7SwJZqbEyDO4H4oJSGSfxAxyttPHsXKEPAA0qa5HOZs37LWfiOZetqDD/+wFDZjX6ENMzuLxt6ceujOSBKOR4aY42xkU26mzfcRQZzu7Tv/pDL1uVLIK0nn1GsEMsT2rxtNPESOvCbFWERylIJwiWUurOEZefW1OUWa7s91TB6QiEERBe5/KiZKnwjzrznYpJMHhdkCWJeRjQxU/nlNIcGc7IxgutsfjcaxZswY//elPx/37gwcP4rzzzsOyZcvwwgsv4O2338bXv/51eDyFheAvfvGLePTRR3H//ffjxRdfRFdXF9773vcavakcDkcnveqPn5EdThwOp3YcH7JmjDwArJyhOttLjFLV+tpnhc3aJNMIeVza4kbnSOXu9j51IKrFKhejJULF9oG9A2VFjuklOaDGqzMitlNnuzwqIx0vzXFCI+QFUdAi3ViG9rZX6mynqQa6ne0ty4GG+cC88y0dJV+S2M472zmcqrP9+AhSmTwa1b52SnGMvFmO3FJg0Z1qSox8il1nO1AQEI0SnKkQSR/XqvjcTvhUEXyghDoVPVBnu9eCYrsgCLjxjNkAgD9UOUo+nqbfGevtl8mgAySRCo8f+bxi2YqBUqDOdjmbRyqTq/jx0tk80tk8ACAoWXtIhzMWl88Fh/oZTiXU2HYzhDJZXeuZytle3OdtBaQ6OEHW0iqOkVeNEg5BBtwMX49JIe39pOsOqRGdznaGxXZBEOBr9iGVkgxxcrvEFNJpG4jtnjCQSZABG5ti+NnxVVddhauuumrCv//qV7+KDRs24Pvf/772/xYuXKj9++joKH75y1/i3nvvxcUXXwwA+N///V8sX74cr776Ks4+++xxH1eWZchyYVImEiFf7Ewmg0ymNoIgfd5aPT/HurD+2ehRu9qH42lmX8N0IJ9X8JPnDyA1LOAy/j5xToB+d0fjKQyqgl1bwGW57/SyViKA7umOIJmS4ZwkLiyby2OHGiN/SnvAcq+lFGaGPRhNZnC4P4r5DZWJor3qsbrJb7339USKfxc9zR54G7xIDiXR/XY32ta1mfrcsX4i2Er1kuX3EwCIXhHugBvpWBpDHUNoXNI45X1Gu8kQiqfeg1w+h1y+8oWzajHeOZNPPS6Mdo5W9J5Rsd1d5y77cZx9e5CfeSrymQyEVTfB+ejnkOk/CITn6N4eo2k9lQyudL7ROeXri/WS74GnwcPE98AMrHB+Pl33/XTlVbWv/ewFjWPiuJe2BiEKwGA8jf6ojJZQbYakCg5ma4uqxZgZI8/SfiiGDgnEDBpAoIMMLOyPpoCEo0MJDMRkzG8yVrzI5RXIqoBoVffy+06dhX9/eh/ePDKMA31RLGqpjmihDepYdL9MRMHZXtl3JVEkULO2DwByzHCIAnJ5BSOJDNrqKhsYKE5s4852thAEAd5GL2JdMSQ1sd0EZzt9zCmc7TRq3TKCoycEERk4HNmKne3pSBqCkIdDyDDubA+RlIJsGp6wB6NHR8sS29ORovdYjgH+ZrO21HT8LX4kk57CMEkFuJwppFIS3GpqD7N4w+TP1AgQaKnllphGVX/18/k8Hn/8cXzlK1/BFVdcga1bt2L+/Pm48847cd111wEAtmzZgkwmg0svvVS737JlyzBnzhxs3rx5QrH9O9/5Dv75n//5pP//9NNPw+er7UFq06ZNNX1+jnVh9bNxqNsBQMBgJIGNGzfWenM4E7BnRMDPdjsgOUQseXITLDhwz7EADz7xHAAnvA4FLz9vvWNSXgEkhwNyNo9fP/wkZkzyk94VB5IZJySHgr1vvIT91q2RnBCnLAIQ8fTLbyJ1sDI321sHyGMNdXVg48bDhmyf2dDfRccMBzAEPHPPM2jobjD1OfsOk274nYd24sjGI6Y+l1EIdQIQA555+BkEV029cBrbSYTUvCfP7O928TlTd4zEoe56fReiG/VFySt5RasQ2LxjM9xdZVy4Knlc078Xu1xrcWjjRjhyblwpenDwwW9hb/v1urbHDHLxHCAAox2j+NO9f4IrPLGbqPcQqW3YeZid74FZ1PL8PJFI1Oy5OdXn1cNUbB/7O+d1OzC/yY+D/XHs6o7UTGyPMyiYmREjz6LDvxith9pwZ7v1HapNATcR26OlR9iWSnEPuhWd7QDQEvLg4mUt2LSrF/e9fgxfu2ZFVZ6XxQoKoPCZrjRGPqG+flEAPC4L9EqXiSAICHtdGIynMZJMo62ust8gegyVnOKkg/Mca+JtIGJ7YlgBHG5zxHZZvZ6bwsVMXc+WERxVJ77HI1fc2S5HZbhc6rHHZb3EyZKh6QRyhLjTUV5nO72tp87DtLMdIOl5qSEJjmwEUBRA0LdAmc/mIblle8TIe8Lkz+QIF9uNoK+vD7FYDN/97nfx7W9/G9/73vfw5JNP4r3vfS+ef/55XHjhhejp6YHb7UY4HB5z39bWVvT09Ez42HfeeSfuuOMO7b8jkQhmz56Nyy+/HKHQ5JNRZpHJZLBp0yZcdtllcLmsfyHCqR4sfzYURcGdW54DkEMyL+DKK6+CKDKoaE0D9j97ANh9CHJOgDh7NTasnVXrTeJYCHocmrPiVGD725jXHMKGDetrvVnjck/363jzyAgaF67FhnUzJrzd/VuOA2/vwto5Dbjm6jOquIXGsV3Yi7dfOYLwzAXYcOXSih7rwbu3AP2DOPe01dhw2kyDttAcTvxdfPqZp/HmzjfRJrbh0g2XTv0AFbD/0/sBABdddRFa17aa+lxGMbxkGEc6j+CUWadg5YaVU95+T2oPDuAAmuc0Y8OGDVXYQuMY75zpreNv4ck/PIlGV6Pu15McSmJ7fjsA4Jobr4GznAXhoYNwbMtg+YXXY9n8CwEAovAClnb8BQuv+gUgWGchsetfujC4dxCnhE/Bog2LJrzd3o/vBQC865p3oWWVPS98p8IK5+c0nY1jf+RsDm92DAMA1i88OaFkeXsIB/vj2N0dxUVLa/OdjDHYuxwyyJlaTJTxGPmAxxxnOwv7ozFAFqUHSqzdKQcaE+4QBUhO6/zun8gHz5yNTbt68dDWTvzdlUshOc0fDCgcO6w5hDARIYO+K3H1s+F3O8eklrBEnY+I7aMG9LazmJLCKeBtIMJvYiip9nGPGP8kzMbIEyFYktIVx8ino2m43er3jeUYeZpOkBqtLEY+JAF9UcAdmOIe1sXf4keqywMBORKdrvN9laMyJClNxHbGKiJPotjZblOq7mwHgGuvvRZf/OIXAQBr167FK6+8gp///Oe48MILdT+2JEmQpJM/cC6Xq+ZiphW2gWNNWPxsRFIZ7cJSUYBUTkAd712yJNuOFxZsH9vZhxvOmF/DreFYlR41imt2g8+yx6OVM8N488gI9vTGJ93GnWp/89o59ZZ9LVMxp5GcgHeNyhW/hv4YuVhrr7fue3si9HexfW07AGBg54Cp264oitbZHmoPMbOf6mbWAQASfYmStjk9Sr7n/mZ/dV7jnseBXAY45TrDHrL4nIm+/vgUx4TJGB0hrgwpJMEbKNM9MHwQAOBsOwWgz3/qh4Dt98DV+Tow/3xd22QGs86ahcG9g+jd2ovl1y4f9zb5bB7JQfI9CM8KM/M9MItanp9P930/ndh+bBRyNo+mgBsLm09eSFwxI4TH3u7Gru7aDWBQdypLvcuFzmXjY+QDjApFQRojLxuzT1iLkQdgkrNd7eR2OSwtqF6wuBltIQ96Iik8s6sPV69uN/052XW2GzOsQ18/i33tlDo1JWTEgEoOVj8PHAIV25NUbDegf/okUuq5jqdu0pvRXnPLiO2qsCxJMiIVxsjLkWJnO8Mx8kXOdl1i+2jRe3yMbWe7r9mHgZT6WU2O6Bbb0yNReJ05ZPIeOCyapFMyxc52m1LV8cumpiY4nU6sWDE2umj58uU4evQoAKCtrQ3pdBojIyNjbtPb24u2NnM7OzkcztT0nhD/MmpgHx7HOLK5PLYeHdb++y/7BzEYM36RwQok0ll88u438Yc3jtZ6U5jkuBp3Naveuif0K1VhbWfX5JFl24+NAADWzgqbvEXmQd+HY8OVRwn3R8nxuoXB6de2NeScr/ftXlOfRx6VkVf7Nr2N7MS1BWeSi85IZ2kiDI1Lr8przMrAo38LPP4lIribQKCdCFPRbn0R8gCQ6Cf7xNes49jXt5ssBgWLrk3mnA00LAC23aN7m8xgxpkkDaTz9c4Jb5MYTAAKAIGt7wGHwzKb1b72s07oa6csbyeLlbtrKLazGJ9e56Wd7cY52+l+CDAUp1+MWc52FmLkmwMkanjAhOtgVgRVp0PE+08nCXf3Vel6Oc7od0aLka9wMCVR5GxnlbAqthvpbGchDYNzMvTaIDmYJEKZKTHy1NnOaox8GtlUFpkK1sdJjLz6O20LZ3shRp4K6KVQcLa7mY+R9zX7kKJiewXfm/QQuWbIi+y6/DWmgbO9qmK72+3GGWecgb179475//v27cPcuXMBAKeddhpcLheeffZZ7e/37t2Lo0ePYv16a8bbcjjTiZ7IWLF9JGl8JBuncvb2RhFP5xCQnJjlV5DNK3h8R3etN8sUXtzbj6d39eKf/ryLD3/ooFOdMp3dYF2BZeVMdcG5K4J8fvwe81Qmhz09RHhbMztcrU0znFnq+3C8ws6vbC6PQTUysyVYm67XSmhe0QxBFBDviyPWGzPteagI7fK74PJaf9GYQsX2aGdpYnNiUBWWm6owVPPOI0C8D0gMAPvN6b4OtpPXH+uJQVHGPyZMRbw/DkDnPunfCzQvG9u7JgjA2puBXX8q9A5agJlnkgqJztc7J9xX8b7CvhB5lyaHUxVePUQWztYvODlCHgBOUcX2Q/0xpDK5qm1XMSy6EUNFnct6fx9OJMq4s50KXBHDxHba2W79/dGkDpyaIbYn1e+ljwFB9cbTZwMAXj4wgGNDlQ/0TgWLgzoAd7YXE/YRMdOI9T5WPw8cAnW2p4ZTaoy8SZ3tDglwTm4SsFyMvOrE93jJ9yRVgbtdjsiFGHmmne1qOoFOZzvtbJcCApDPMi22+1v8SCbVtbgKvjeZ4SEAgOKygdju8gEON3e2l0MsFsO2bduwbds2AMDhw4exbds2zbn+d3/3d/jDH/6Au+66CwcOHMBPfvITPProo/jsZz8LAKirq8Ptt9+OO+64A88//zy2bNmCj370o1i/fj3OPvtsozeXw+GUSQ93tjPBliPE1b52dh3OaCauzYe3TuxqY5nOESJKJjM5PLjleI23hj3o/rOys31hcwBup4ionMXRCRaI3umKIJdX0BSQ0F7HnrhMoe/DSCKjLWbqYTCehqKQHskGv0Umv8vA5XOhYXEDAHPd7VRsr4oIbSAhdQClVLGdRuWb7lpWFOC1nwELLwbaVpvm8g60kQvNfCavux+Pvvf+Zh3Ogf7dRGw/kTUfBDJJMnBgEVpXt0J0iUgOJjFyeGTc21Cx3d/CsIuCw2GIVCaHt9QEqrMnENubgxIa/W7kFWBvT20GeFh0I1Jnal4p9CZXSpzB/VAM3Sf0/awUKkSGWBDbaYx8zHiDgCaoMhDpOrvBh9Pn1pPTtMNDpj8fdXaz9p0xajAlnlbFZQYGMSZCi5E3wNnO+jF0uqPFyA+a2NmeihQc0ZOQVisQLSO2q0JwoJ6suSYrMEyko+lCjLybrbWJMRQ52yvpbPd61X3Bstje7C9yto/ofpzcKBXb2d0XGoKgJmSM1HpLTMNwsf3NN9/EunXrsG7dOgDAHXfcgXXr1uEb3/gGAOD666/Hz3/+c3z/+9/HqlWr8D//8z948MEHcd5552mP8cMf/hDXXHMNbrjhBlxwwQVoa2vDQw89ZPSmcjgcHfSe6Gw34OSbYzxvdpAFvFPnhHFqowKHKGDr0RF0DMRrvGXGU+wA/t2rRyZ0PnPGpxAjb11nu8shYnkbObGcKEpei5CfXWfp3sSpCEhO1PvI4gYdhNBDn3qR0uh3wyGyuT9aV7cCAHq3my+26xJca0jZMfLVcrYffwPo2gqc9Rlg7S3AvieB+IDhT+NwO7TBgVi3vuQD3THy+RwwsH98sb1uFrDgIktFyTslJ9rWkrj7zjfGH7qL93KxncOpJtuOjUDO5tEclLBwgt8fQRBqHiXPotjucYlwOch5T8SgoXAav87SfijG6Bj5GENOfyq2m1GnlqSd7QyI7QAwU73WG0mYn0zIqpM5WJSMUQkJWY2RZ+z1FxP2GdfZHpPZHL7gELQY+aEkiYA2xdk+Wuj6nuxm1NlulZo8hwtwehEIE7Fdr7NdyStIx9JFznaGr8nUfQI5Ao9qgik1Rj6XySGr1gBJkvpbxbLY3uI3JEY+Gx0h/+Jhd1+MwRvmzvZyuOiii6Aoykn//PrXv9Zu87GPfQz79+9HMpnEtm3bcO211455DI/Hg5/+9KcYGhpCPB7HQw89xPvaORyL0BsZ+yPJne3WhDrbT50TRsgNnLuQOEQf2WY/d3uxIHloII6XDxgv7NiVVA4YVgdmrCy2A8CKGSSO6p2u8Rectx8fAQCsYbivnaL1tut07AJAH+1rt8rUtw40sZ0720+COttj3TEoJQwYVe11vvZz0lu+6FJg1fsBCMCO+015Kupu19vbrsXIlyu2jxwBsimgeen4f7/uVuDoZmDwoK7tMoPiKPnxoM72QKsNouk4HAagEfJnT9DXTlkxgxzrd9VIbGcxRl4QBC1KPlKhYEZhSVwej6D6/hnnbFdj5CXr1+80ap3tJjjb0+zEyANFHdxVWL8pHDvYGESgGBYjn2Yn9WAijPy80EEfln5LOAVOdrabILaX6Gy3XIw8AHhC8IXIZ1xv4lpa/Y2yhbMdIO+lDme7XKQ3uN3q77ab3etTX7MPuZwTmYyzou9NPjYCABC8dQZtWY3hznYOh8MpQDvb6boQF9utR89oCp0jSYgCsGYW+TF+z5oZAEiUvFH9hVahSxXbFzSR6c+7Nx+p5eYwxZB6Lhv2ubRJfqtCe9t3dk7ubGe5r51CBx+OD+vvVOyLkjeXxb52ChfbJybQFgAEIJ/Na0LpZCQHyXHS12ji64x0kb7yMz8FiCLgbwSWXmmay7u4t10PmrO93Pe+bw/5s2X5+H+/7GrSVbftXl3bZQZUbO96vWvcv9c621vY+h5wOKyy+SAV2xsmvd1y9ThXK2d7nFE3olGCGYVFh38xdLujBsfIM9HZrjrbY3IWqYwxtQKUJGOCah3t4K5CMiGLgzoAtEGdip3t6iAGyzHytLN91IgY+TQ9hrLxXeGMRXO2D6tiuxmOVDlSkoPZcjHyACCF4AuoYrvOGHltiMCj/k45rW2EmRIppKuzne4Hl88FMRsrPBaj0NS4VEpCNjKo+3GUBFkDFXw2Edu5s53D4XAK0Bj5eY3kR4OL7daDutqXt4e0xZXLljfD53bgyGACW1VR0i5QZ/uXryAuw2f39OLYBL3enLEMyWRqxuqudgA4RXW27+qKnDQwMpJIo0ONyV49i/0T0NkNRPA6XkHnV78mtlvoQrRMqNjev6sfOYMXSCnU3extsv53oBjRKWou5FKi5KsyVPDmrwCnB1h7c+H/rb0F6NkBdL9t+NMF2snrrzRGvuwKgf495KI/2D7+37u8wKobgO2/J5HzFmDGGWTgrvutbuSz+ZP+nne2czj6GU1kyroeSmVy2rn4+gn62ikr2sk5ze7uaE1qkmKMulNDqiPTsBh51sV2LUbemP0R0cR2aw/qAqRX3u0gy5703NgoWHW2GxELPhU0Npw1sZkOkKQyeWRyJ58vlQodNvAxduwsRutsT1aeClE4hlr/mME5mbHO9jARxvP6vx/jIkfLipF3B93GPn8leELw+shxVW+MvKz+PnmDChHaRcblOk8ISI1CqiNrUanREsX20aLkAllNr2M4Rt4dcMMhOYjYPqw/gVVJRpDLiXAFbXKtzp3tHA6HU6BH/ZFcoi7yGzHpyjGWN48MAQBOm1uv/T+f24krTiF1HI9stU+UfFzOatP55y1uwvmLm6AowD2vHa3xlrHBkHrOOytsfTfjsrYgHKKAwXhaS9igvH2cTHrOa/RpU/gsY4yzXY2RZ1hsr5tbB3fQjXwmj8G9+ieBJ4NVZztQ6G2Pdk0eo57P5rVpcupMMJxMCnjzf4m4XhwBuOhSwN9iisubiu16Y+S1977cGPn+PSRCfpLoZ6y9BYh0Aode0LVtRtO0tAnuoBuZRAb9u/pP+nve2c7h6ONAXwznf/85XPiD53F4YOqUEQDYenQE6WweLUEJ85sm/84taPbD7RARk7MVDeDppeBGZEswMzJGXlEUTThjNUY+YFaMPAP7QxAENGlR8saK7QnGOtu1Du4qdLbHGR1QKf6OV5KMoTn7GRs2KKZO+7wYGSPPxneFMxZPQ8GdnHeHACUPpPUNO09IKkJc81NgyRh5KQTJQ46remPk6evy+PPsR8gDFTvbpToJkKmznd0YeUEQtN72XAXOdqSiSKUkSCF2UyvHwJ3tHA6HQ8jm8tpF6tI2sphuxKQrx1ios71YbAeA69aRGNlHt3dVNKltJairPehxIuRx4UNnzwUA/OGNo4ZHBdqRQYac7R6XA4tbyIn2zhOcvHaKkAcK70dFne3qhUozw2K7IAimR8knB9R4dQbFdtrbfvzV45PeTrvoFwCvWd/1dx4CEgPAmZ8c+/8dLmD1jcCOPwJZY88XtBh5nc52mmqgy9nevGzy28w8DWhaapkoeUEUMPOMiXvbeWc7h1M+MTmLT/9uCyIpMvj56d9uQSI9tTizWe1rX79w8r52AHA5RCxpI9/LXd0mdKROgqIozPbsGhkjL2fzyORIqgBrwiElqDnbK98f6WwespqQwoLYDgBN6rmw0b3tCcbcy1RsNzuZMJdXkFSvw1kTV10OEV4X2eZKvi809YC1Y2cxWme7ETHyjA5fcAjU2Q4FSGfVfzfalSpHSnO2R60otgchucl26Y2Rp/H4Hn8ecNlg+PmEzvZ0NI18CWvQY4Yp5AggiICLvXWaYvzNRGxX1N51XWSikGW3tRIdKsETBpLDtd4K0+BiO4fDKZn+mIy8AjhFAQubeYy8FUmks3iniwiRp88b2wN57sJGNAUkDCcyeGnfyc42FqFi+8wwOem/ZHkrZoa9GE5k8Njb3bXcNCagne00ttzqrJhBLsDe6Rq74LxddbavnhWu9iaZwqx6GiNfeWd7M8Od7YD5ve3U3Vy24GoBll1PBN+Xv/My9j22b8Lb0dfoCXsgOk049VcU4NWfAYsuA5oWnfz3a28GEoPA/qcNfdpAm/4YeUVRCp3t5Tjb83mgf9/UYrsgAOtuAfY8ZpmpbRolP5nYzp3tHE5pKIqCv3/gbRzoi6E1JKE5KGFvbxR3PrTjpKqbE3n1EO1rnzxCnrJcHXDepTPFQy9yNo+sGl3PmqNbc7YbcJ1a7AZn1aVKBa54OodchXUExfuDFeGs0U8WpweNdrargrLPxcZ+qPNWp7M9XjR0xKLYTIdIKknGoINXrA0bFEPT4qJytmKjRpTxdJDpjsPlgOgj15ApWV1bSBk8AJiaurNdUZSCGGslQ4EnBLeTrEtWGiPv8ebs5WyvK6xF0fduMmjcvKfOQ9IT3MHJ0+QYwN/iRzLpgVLBgIqYiUGW3dYaMqkEb5jHyHM4HA5QiJBvCUraybfZF2uc8th+bBS5vIK2kAcz6saKbE6HiPesIYvtD9skSr5TnRylTmCHKOCWs+cAAO7e3FGrzWIGljrbAWCl2tte7GxXFAXbVGf72tns97UDhfcjksrqHmjSOtsZPyGvltjOorN9zYfX4NRPngoowIMffHDCfZQYNPk1HnsN6HkbOPvT4/996ylA+1pg2z2GPq3W2d5TvtieiWeQVR1LZe2XkSNANgm0TCG2A8DqDwC5DLDzwbK3zwxmnkmc7V1vdJ30d1xs53DK45cvH8bjO7rhcgj4r1tOw09vPhUOUcCftnXhN690THi/VCaHbUdHAJQuttNBw93dkSluaSxxhkXmkJeKZZU7uQtx0A6IIpsLvsUCV7yE9IXJoBHyPrcDTgcby4lNAepsN1hsp852HiM/hoTa1+4UBUhmDHmajBHJGHGZVgywdewsJlR03Kh0cEk7jjI4fMEhOIPkvUvGVWet0WK7HB1bRTYO2WQWipo0YynRUaqDSyTrkpXGyEveHPNObgCkEiAVgcPtgFM9JyslSn6ssz3KdF87xdfsgyxLEGT95/FiPk7EdisNmVSCJwxkEoYnH1oF9s58OBxOzehVe5Jb6zxarJQRjgGOcWyhfe3z6seNprxejZLftKtXWywxmp2do4Y7ByaCOttnhAti8QdOnw23U8Tbx0c1EdYMth8b0Z6fVaiznTqprc4p4zjbu0dTGIjJcIgCTplhD7Hd53ZqLpxOHVFkiqIUxHbGT8i52D4xgiBgw082YP7F85GOpfH7d/8esd6ThWftNTaa9Bpf/RnQuBhYcPHEt1l3K7DvKSDWZ9jT0hh5PZ3tNELeITngDpQRx9a/l/w5lbMdAIJtpLPe4CEDvVCxvXdHLzJFg5LpWFr7b8uI7aPHgSf+ATj4fK23hMM5ic0HB/GdJ/YAAL5+zQqcNrceZ85vwD9uWA4A+Pbju/FGx9C4933ryDDSuTzaQh7MK/GYvLxddbZ3VVtsJ2KR1+WAgzGROag624241qGCG8uOTMnpgFsVxiuNktf2B0OimWkx8rSznRH3srZ+k8pWnHAwGbEiYXWqqgwrYsTxQ3O2MzKIMR5Oh6gNHlSaZslj5NnHESCf5USUfD8MTe7K54B0dMoYeer+hgC4/C7jnr9SPCE4QK639TrbaYy8W8oAbotcj1WC6mwHUFZvuzxa3NluH7E9mfTAkdOfUOXIxyHLkrWGTCrBGyZ/2tTdzsV2DodTMr3qlFlbyIM6b3U6vzjlofW1z6kf9+9XzgxhYbMfcjaPJ3f2GP78v3/9KK75z5fx2XveMvyxx6PrhBh5AGgMSLhmdTsA4O5J3EWV8NyeXlz707/ivO89h4/87+t4cmdPxfFq1SaayiKRZcvZTt1d3aMpbaCD9rUvawvC42J3QeNE6HuiJ0p+NJlBWv08stzZDgAtK1sAANHOqObQNop8Nq/1qrEotgMk1u/9978fDYsbMHp0FH+4/g+aY5uSHDTxNY4eB3Y/Cpz1KUCc5LJi5Q2A6AB23G/YU1NnezqaRjpe3gJ6cX1AWQvB/XtInF1oZmm3X3cL0LkF6NtT1vaZQXBmEIH2AJScgu6thZoV6mp3+VzlDR6YQWIIeOqrwH+cCrz2M+Av/17b7eFwTqBnNIW/+f1byOUVvHfdTHzo7Lna333s3Hl495oZyOYVfPaet9AXOXlRsRAh31DysYfGyHeOJKt63RVj2IlIHZmRZOXOdpb3QzF0WKA4Bl4PVGxnpa8dKDjb+412tlOxnRFBla7fAOYaJlgXVo1wtseos53RfUDR0hAq/LzEGP9McArO9uioerwz0tkuqyLkFM724gh5Sw3ySEE4FHI9pbeznb42lztrE2c76WwHCmI7FdInY6yzPQZIAfO2sUr4W0hnuxPlp/FRnELSXjHynjD50yJ1e0bDxXYOh1MyPdTZXiS2x9M55kRGu5LPK5rYfvq88cV2QRDw3lNnAQAe2WZslPwrBwfw9Ud2AgDePj6KvIkT8xTq+p15glj84fXzAACPvd1tisv+ly8fBkCqil/Y249P/24Lzvnuc/jBU3twbMhYQdAsqCu/3udiZgEx6HFhfhOZ9H1HdXjZra+dQtMGjum4YKN97XVeFyQnGwuAEyGFJITnhwEAfTuMc0UDasybepjyNrAxcDIe3gYvbn7sZnjqPTi++Tj+fPufx3QGU2HZ22jCa3zjl2T6fs1Nk9/O1wAsvQrYeg85cBqAFJQ0V0O5ve26+toBIrY3Ly29O27JlYC33hLudkEQMPOMk6PkLREhn04QYf3Ha4EtvwbOvwO47FvAkVeA5HDttovDKSKdzeOz92zBQCyNZW1B/Ov1q8Ys9gqCgO++dxWWtAbQH5Xxf+7detI10mZVbF+/sLQIeQCo87m0odJqRsnTuPEAI67dYkKag7dyQZEKh0FGzpUnoiAgVrZP6P2p+5cFmtRBsoGo0WI7jZFn47PhdIja57hS8XQy4ozF65+IEd+VBMPHz2I0g02F1ZFcbGcfR5B8lpNDGcDlN1hsV89tpnAxjxFirYQUgphLQhDy+mPk1d8nlysNuNhdl9CQQqR6LZfRettLcbbTznYitkds4Wz3NxOx3SUmSYqDDpxiArIswR2s8WC8UXBnO4fD4RB6Rwtie6hoMpq7263Bwf4YIqksvC6HFjk5HrS3/ZWDg+gZ1RdzdCKH+mP4zO/eQlYV2JOZHHqjxjz2ZIwXIw8Aa2aHsWZWHdK5PP7w5jFDn/NAXxR/PTAIUQDu/cRZ+MxFC9EUcKM/KuOnzx/E+d9/Hh/65WvYuKMb6ax1B1FO7LtnhRValLwqttusr50yq0G/s70vYo8IeYpZUfJUhPbUeyAy2ClZTOOSRtz4wI0QnSJ23LsDf/m/f9H+zrTO9kySCKPrbi3tQnjtrUDfO0D3dsM2IdBGpt3LjZKnMfL+5jIF5v49pUXIU5wSsOpG4O0/ALnKHZaVMuNM8vvf+Xph2K6mYnsuA7z5K+A/1gHPfwdY+0Hg89uAi/4BWPV+QMkB+zdVf7s4nHH49uO78NbREQQ9TvziQ6fBO46Q5Jec+PmtpyEoOfF6xxC+s7GQapFM57R6o1L72in0vL6aYjvLjm4qBBvR2a6JRAw5uceDilyVuHWL78+Ss71ZdbYPlpmCMxWsOdsBMrwDAMMm9razfOwAgKBEY+Snd2c7AIS9RNgZSer/vGRzeaQyZE2E1c8Ep6izfSip9nGPGPfg1NkuTb6eo0WtW01wVB35kiQjNZwaM/ReKpqz3WGTGHmaUiBHy4qRT0fIe2ynGHnqbAdQGCwpE7cjxZ3tDMH2yiKHYwBdI0nc89oRpDL6JoymE9TZ3lYnwSEK2kX2SIWTrhxjeFN1ta+ZXQeXY+LD++wGH86c1wBFAf68vXJ3+2gig4//5k2MJjNYOzuM2apIeFgVM8wik8ujV/1MzgqfLBh/SHW33/PqUUN76X67+QgA4NLlrThnYRP+/spleOUfLsHPbjkV5y9uAgD8Zf8APnvPWzjnu8/ie0/uQTJtvePL8XEi+FlgpdrLvrOLpCfs6CRT1Wtmh2u4VcZDne3HdTjb+2Pke9Fik5Nxs8V2ViPkT2T+xfNx1U+uAgA8/7XnseuBXQCA5AD5DBnubN/xAHEdn/Hx0m6/8GIg0Apsu9ewTaC97bEenc72ct77fJ50tjcvLeu5sO4WINZLBPcaQ3vbi8X2WC/Zd1UV2xUFeOdh4KdnAY/dAcy/APg/bwBXfQ8INJPbhNqBGacCex6v3nZxOBPw0FvHcbd6/vejD6zF3MaJvy8LmgP49xvXAAB+9dfD+PN2kiTx1tFhZHIK2us8mNNQ3u8OHTSsZm97jMFubgqNkY8aMBBOBTc/46IZfR8rj5En+zTEkLO9MUA7282KkWfns0FjwSt1Kk9GIRWDnf1SjOZsr+C7UuhsZ3MfUOhwRiXrfXTwAAD8jDv9pzPU2Z4YTBBXqpHOdjVuvOQYeautcahd8x5PGvlsHpl4+d8XOkjgdKTtESOv7hOkRgtiewlGrzHvcTpG6tsYx9fsQypF9oFecdnlknlnO0NwsZ0z7fnek3vw1Yd34pGtxkZq25HiGHmg6GKNO9stwZsdaoT83IYpb3vdOrLg/vDWriluOTmZXB6fuWcLDg3EMaPOg/++7TQsbSUnRIcGzBXbe0ZTyCuA2yFqXXzFXLO6HfU+FzpHknh2tzEiXUzO4sG3yLHiNlXMBwC3U8RVq9rx29vPwl++8i78n3ctQnNQwkAsjZ+9cBD3bzHWXW8EVMSdqZ78ssIp1NneOYpDAzHE5Cx8bgcWt7B/Il5MobNdR4y85mxn672dCLPF9rLdzRbm9E+djrO+cBYA4OHbHkbXm13mONsVBXjtF8CSK4DGhaXdx+EEVn8A2PFHIGvMgjftbS83Rp4628uKkR89BmQSQMvysp4L7WuANR8EnvgKMHSovPsazIzTibN9+OCw9rnQnO2tVfoe9OwE7roYuP8jQMN84FMvATfcRf79RJZuAA48Y9jnhcPRw66uCP7x4R0AgM9fshiXLG+d8j6Xn9KGz15Ejo1//8Db2NcbxeaDaoT8gsayu0ZXqINFu3uqGCPPcOyvGTHyrDvbqYAYq9DZzmIcNI2RH0lkDK2/Y9HZboRTeSpoXzmrwipNxtAbI5/PK4XPBqP7gBL2Vi62x9TBA7dDZL7ebDqjOdsHqbPdjBh5RsV2dUjA6yffEz1R8vS1OQQZcNtAbNec7RHiUkd5MfKeOo+tnO3JJNkHig5xOStnIbnTxNluk+RKuHyA6OLOdg7HruztIZE11YzlYxUaI9+miu1ah5OJF2uc0nnrKBHbT5ugr72Yq1e1w+0Qsbs7gj06F+4URcE3//wOXjk4CJ/bgV9+5Ay0BD1ap/Zhk8X2QoS8B6J48qKlx+XAB86YAwCaG6lSHn7rOGJyFgua/Th30fgRoLMbfPjyFUvxyj9cjFvOIs+/s9PAixGD6FRPdmczFiNPxfaOwQRe3j8AgLjdHeN8BliGvi/HhxJlR5HRzna7xcj37exD3shFUps52ymX//vlWHTVImSTWdx37X0Y3EsEHkNf55FXgN4dwFmfLu9+a28hbvh9TxmyGVRsLzdGXldne/9e8me5znYA2PADINACPHA7kK3dOZO33ouGxWQgr+tNMmxX1Rj5/r3A3e8Bsingw48Ctz4ItK+e+PbLNhBXQ8dfJr4Nh2Mio4kMPv27LUhl8rhwSTO+cMniku/7pcuX4rxFTUhmcvjUb7fg+b19AMqPkAeAFe0k1Wdfb8xQsXAyWI6CLojtxsXIs97Zbpyznb0Y+XqfW7tOGIwZ9xvMonvZCKfyVMQZPnYAhc+23uNHsigxk6XPxngYYa4pfB640M4yWmc7FduNFMlSJXa2q2sclhMc1SGBkBrOldRhlqDOdgdkwGUDI4DmbI9otW/HXp7agDRmoEKOAVLAtE2sFrSzHQCyI0Nl3z89HIHTmYMsu61XoaAXQVATMkZqvSWmwMV2zrRGURQcUZ09B02OvGadaCqDuDqh21anOtvVyWjubK89AzFZE7dPnT212F7nc+Fdy8jZ4MM6Ux3+968duPe1oxAE4D9uWqf1Sc5vIidEpovtw+P3tRdzy1lzIArAywcGcKCvPOfjiSiKgt+oov1tZ8+d0pXkcog4bxGJld/TU54QVA00ZztjYntjQEK7egz6/evkhH2NzfraAWBmmIiAUTmLSLK8xR4qtjdb7UJUJ/UL6+HyuZBNZjF8cNiwx6Viu7eJre/AVIgOEe+7731oPqUZ0a4oBvepYnujgWL7az8HmpYCCy4q734ty4CZpwHb7jFkM7QY+TKd7bpSDfp3A+4AUDe7rOcCQBaP3vcroGcH8Ny3yr+/gZwYJZ/oU/eF2WL78BHg7utIlcBHHifR8VPRsgIIzwX2bDR32zicccjnFXzxj9twdCiBWfVe/PimtWUN9jlEAT++aS1m1HlweCCOd9QI+PULyxfbZ9V7EZCcSGfzOFSla9a45k5lTyyiYlk6m6+4Kk6LkWdwPxRDnfmVdrZHNLGdnRh5URTQ4CfrFkZFyefziiaqeplytpsvticYTD8optIUCCouiwLgcbG95G7Eeh895rCeDjLdObmz3WBnu+CYsqvcss52VVgONhCDRGp4agf3idDXJiopmzjb1fU5OYK1H1kL0Sni0DOHcPSvRye9mzxaLLbbw9nu8ruQFchnW+4rP6kxPUjWcrLwQZykLpY5PGHubOdw7Eh/VNYukg72VybE2R3ajR30OLVeMs3Zzjvba84Wta99SWtAm1ifiuvVKPk/be1CvsxO8+f39uHbj5M+4DuvWoZLVxQiNavlbO8qoXN8doMPFy8j2/a7Vytzt28+NIgDfTH43Q7ccNqsku6zTB1A2NsTNbQ33gg6Ge1sB4BT1N72vb1kiMFufe0AWbij9QjHhhNl3bdPPV7bRWwXHSJaVrYAMDZK3lBn+3AH8PKPyAS2BZBCEj746AfHvDbDnO0jR4E9jwFnfYpMJZfL2puB/ZuAaOXvJZ2UL1ts1+tsb1qi7zUDwIx1wKXfBF75D+DAs/oewwCo2N71OnG2V6WzPdoL/PY6wOkGPvQw4Ju67gYA2ddLNwB7nyDVBRxOFfnJ8wfw3J4+SE4RP7/1NIR95btJGgMSfnbraXCri2Mzw16tJqYcRFHAsjY1Sr5KaWyF3mV2hERKwO3UDtWVRsnbJUY+IJHrQ6M621lytgPQzqmNEttT2Zz2s8SSY7caNYAxhgd1gMpj5KlBxe92ll0ZYjXqtOEM/YkQmrOdcZf/dIeK7YnBBBHJjBbbpeCU11hUkHaHLObuVSPT/WHy3dcVIx+VASgQ80mbdbZHEJ4XxtqPrgUAvPDNFya9W2Ggwg2k7SG2C4IAZ4hc+6YH+su+f2aYuOHzDvZd/mPgznYOx550DBYEjO7RVMUXn3amV/3RoxHyQCGib4Q722vOW6rYftrcqV3tlIuWtiDkcaInksKrhwdLvt/enij+5t6tyCvAjafPwifOXzDm76nYfnQoYWrUpSYWT7Fo+eFz5gIAHtxyvKLv+N2vELH++lNnluzmmNPgg9flgJzNo2PQOukZB/tjiKSyEKFgFoNi+8qZY/u81swK12ZDTEZvb3t/zF6d7QDQstoEsb3fALE9nwNe/RnwX+uBZ74J/OYaIFb+RZQZ1M+vxwce+QAcbgcckgPBmQZdrL7xP4A7CKy5Sd/9V94AiE7S3V4hWmd7j87O9nLe+/49QPOysp7nJM7+HLDwEuDhTwOxPn2PsWcj0PuO7k3QnO1vdEJRFPNj5JPDwG+vBzJJ4LY/AcG28u6/bAMQ7QK6tpqzfRzOOGRyebygxr5/+7qVWDlTf4LOmtlhfPu6lRAEYMOqNt3iywq1RmdXlcR2lmPkRVHQYt8rdXLbJUbeqM52Vl2qtLd9wKAYedrJDQAehnqotc72CsTTqYgz7mwPVZgCQV8/633tQFHtgAEx8qx+HjgER+CEGHkjRbJUpNDxPQk0at1yMfJODyC64A+pYrvOGHmHIwcBeXuI7U432S8yOWc9/6vnQ3SKOPzsYRz5y/gmKEVRtM52yZcHlDxZc7ABvuYgUik3ciMDZd83O6pGz7ttJrZzZzuHY0+OnCB+HeLu9gnpUX/0WovE9mpMRnNK401NbC/RLQbSaX716nYAwCMlRskPxmTc/ps3EJOzOGt+A7593aqTFg1bQxK8LgdyeQXHhspz5JZDobN9crH43IVNWNDkR1TO6o7M7xpJYtNuIvLdtn5eyfdziAKWVNmJVAp/UvfDsrDCVPQhhTrbAaDB79blEmOBgthe3veoXx2OarFaxFoF0N52Sznb+/YAv7oSePJOYN2HgI8+AUS6gF9dDgwdMmw7K2HOuXPwiTc+gY+88BF46gwYvkgngC2/AU790JRRfxPirQeWXQ1svaditzKNkdfb2V5yjLyiEGd7S4ViuygC1/8cgAI88hkgX8ZAWjYNPPZF4L4PAi/9QPcmtK1tg+gUEe+NI3IsUhDbW00Q2+UYcM+NQLQb+NAjQP288h9jznpyMb73CYM3jsOZGJdDxO8/eTZ+fNNavP90HdURJ3DjGbPxxlcvxZ1XLdf9GLSuqVrnk1SUZVUgoYOxkQqvU1keOijGqM52ev8Qc2K7sc72hOre9rkdEMuol6g1RoinUxFTUzF8DF5jAsXOdn3flUSRs511wgYkWUZtkg4y3aGd7ZlEBjln0ARn+9RDjZaNkRcEwBOCL0C++3pj5N1u9Xtmhxh5gLjbU+ScNTw3jLUfWwsAePGfXhz35jk5h3yGXBt7POq+sIGzHSBpeqmUhFyk/M72bEStUZSmHkhhCu5s53DsyZHBsQIGj5KfmJ7IyWI7j5G3BnI2hx3Hycnu6WU42wHgurXE4fbEjp4pOw3lbA6f+u0WHB9OYm6jDz+/9TS4nSf/jAiCUJUoeSq2T+XMFkUBH1pP3O2/3dwBRYe4c+9rR5HLKzh7QQOWtJZ3wrdcFdv3lCkGmYWiKHh4GxHbT29mM5a32Nm+ZlYd8xF9EzGrnlxoleNsT6Zz2qJGi9WmvivAUmJ7LgO8+APgF+cT1+5HnwA2fB+Yew5w+9OAIAL/cxnQ+ZZh21oJratbMevs0qovpmTXI2Rx5cxPVPY4a28hHegVupWpsz3Rn0CuxF7erJzVFmtKjpEfPQ6kY5U72wEg0EIE9wPPAK/+tLT7RHuB37wbeOu3QMMCYFTf4BgAOD1O7ft0bPOxQn+90c72rAz84Vagbxdw6wP6BxUcLmDx5cBe3tvOqS6S04Fr1fNkI2gKSBWJcitUsX1XV0TXuWy5sO5GpAlsEYOc7azuBwrd/qhhMfLsdLYDRc72qEFie4ZNQbkane1xxgdUApqzXW+MvH2c7bQ+xQhnO6ufBw7B4XdAcJBzmHTWS66LcgYlw5bYzW1ZsR0ApCA8PuK8LzdGXskrSMfScLnU75nLxGqvauIJAXJhKOOCr14A0SXi8HOHceSlk93t9P2FALid6sCCTcR2f4sfqZQH+fhI2ffNRcl9FI899oWGjZ3t/NeOM62hsc5OUUA2r+BAHxfbJ4J2trfVFU5stElX7myvKTs7R5HO5dHod2NuY3mi0RnzGjAz7EXnSBKX//AlSOOI55REOofOkSSCHid++eEzUO+fuCtpfrMfu7ojpontiqIUOttLcDXfcNos/OCpvdjXG8Nf9g/ggiXNJT+XnM3hvjeOAijP1U6hHZt7eqzhbH/r6DCODSXhdzuwqp7N6oy2kAcNfjeG4mlb9rVTZjeU72zvi5JjtcclMr8wXEzrKiIOjhwegRyRDbnIplHiJbubASIO/+n/AH27gXO/AFz494CryDFePw/42NPAvTcCv74GuPFuYPGlFW+rZdhxPzD3XH0O5WIWvgsItgPb7gVmnqr7YXyNPohOEflsHvHeOEKzpp74Tg6S3w7BIcBbaipG/x7yZ/NSvZs6lkWXAuf8DfDMP5P9Odk+6NwC3HcroOSAjzwO7H8a2P77ip5+xpkz0P1WNw48cQBQAAhkXxpGLgs8eDtw5BXg1geBmadV9njLNpDageGOyj97HA6jLG0LQhSAwXga/VEZLSFzq2JYd3SHKhTMKKw7/CkBLUa+sv1B3b7TvbM9rjnb2doPVDw1c/2G9UEd+tmOp3PI5RU4yhySSjD62RiP4iRLRVF0DbjTYyjrVRzTHUEQ4G3wItGfgJz2wAuQAWx/Y+UPXmaMvDtosc52AJBC8HhVsb3MGPm0Wm/icqlrczZ0tgNA3Zw6rLt9Hbb8fAte+OYL+PDzHx5zcy1CPihByKjajGSP6HRfsw+pfgluHU5uJUEGFkSf/korS+Kt5852DseOUGf7mfNJ9PbBPut0KlsNGiPfNo6znXe215Y3Owp97eVeAImigA+eSeIxjw4lsL8vNuE/nSNJuBwC/uuWU7GoZfKTngWqs/2QSWL7YDyNVCYPQQDaSohGDnlceP9pxNl5xx+3a674UnhiRw8GYmm0hTy4bEVr2du6TIv9tIaznUbpX76iBYyZMTQEQcC7lrZAFIB3LW2p9eaYhh5ne1+00NduJ8e/t8GrCal9O3V2XRex99G9GD0yCsEhIDw/PPUdMklg0zeAuy4mUXGfeA649JtjhXaKvxH48KPA/POB33+ACMp2INYPHHoRWHVD5Y8lOkjn+477iQNaJ4IoaPHnpUbJa33tjT4IpS6g9u8h/Xl1c3Rt57hc/A2gbSURpeUJtn3rPcCvrgJCM4BPvgjMOQuom0li2Stwk9De9v0b9wMoDC0YQj4PPPp5Evt+493ke1Apiy4FHG4eJc+Z1nhcDixoJuff1ehtp+5MdgUzGiNvkLOdMXH5RIzqsC+I7aw526nYbkxXeTJdiJFnCSqemtnZHlPFZlYHdYoHSWI6vi+sDxsUQ9f7cnlFdwUFrRVg9fPAKeCpJ9e9qaQ69G6UUCZHSorItrSz3VMHyUXWzMuNkZfV9RvJq37H7NDZDqjO9rHnq+f/4/kQXSI6XuhAxwsdY/5uzPtLr43t4mxv9iOZlCBmyj9/VxKjyGYdcAXtMXig4Q1zZzuHYzcURdGc7Rcva8ErBwd5jPwk9I4XI8872y3BFrWv/fR55UXIUz5z0SKcu6gJqczU3bHzm/wlidtajHy/OWI7dbU3ByRIztIWOb5y5TK83jGM3d0R3P7rN/DAZ84p6SL47s0dAICbz5oDl6N8MYI62ztHkoikMgjVcHEqnc3jsbe7AQDvWTMDkX3HarYtlfKv16/EHZcvwcwpagRYhna2HxtKlOwm6NfEdgtehFZI6+pWRI5H0Pt2L2afo79DNx1LY+PnSCT1+i+tR6B1iguXI68QN/voceDirwHnfJ5EW0+G2wd84B7g8S+Sbu5oN3DeHUSoZ5Vdj5DtX36tMY+35mbg5R8COx4A1t2i+2GC7UFEO6OI9ZR2Dkf72suqD+jfAzQtIZ3rRuF0Azf8EvjFBcDGv1O73FVyGeDprwGv/RxYdytw9f8DnOp3OjQLUPJArAeo01cPMPMMIrZr3fVG9bUrCvD0V8mAyXvvApZeaczjSkFg/gUkSv7szxjzmBwOgyxvD+FAXwy7uiO4yORhwzjjglnIS7Y7Uqmz3SbCGRXHK+lszxcJbqztj6agwc52RnvJi5MJ83nFlL75gtjM1r6hSE4H3E4R6WwekVRGW/MqFVY/G+PhcTngcYlIZfIYSWR0DdnwGHn74Gv0YQhDiMdVZ7lRve2pCNCyfMqbWVpsl0JwOwcBlB8jr9WbUeOy2yYx8ic42wGgbnYdTv34qXjzZ2/ihX96AR954SPa38mj44jtbpuI7WqMvJjToTmlIpBltzUTHSrBEwYycbLuMdXaGmNwZztn2jKSyGiT2e9aRhYrOgbjyOamFhynIz1ajPw4ne1cbK8ZiqJoYvtpZfa1UxyigHVz6rF+YeOU/5QitAMwvbO9c7j0CHmKX3Lifz58OpoCEvb0RPG3921FLj955+XOzlG8dXQELoeAm87UJ+6FfW60q/ttb09t3e0v7uvHSCKD5qCE9QsaarotleJxOWwttAPQXl88nSu5W7FPPVa3WPEitEJaVpPf6p7tPRU9znNffw6RYxGE54dx0TcvmviG+RzwwveA/90A+JuAT78MnP+l0i8GHE7g3f8BXHQn8Oy/ABu/TB6TVXY+CCx4lzFxgQDQvARYcR3wzDeB5LDuh6G97bHu0i5eNWd7qX3tANC3p6RFoLJpXEiE9O2/B7b/Qd3AAeC31wNv/A+w4d+A9/ykILQDxNkOVNTb3rS8CS5/4XNsWF/7i98HXv0v4Op/A1a/35jHpCy9Cuj4a0WfFQ6HdZa3k0XHaqQlFWLk2RSM6HBrJTHyisKuuHwihRh5/WI7dagC7MXIN6r1Z8Y729naDyF1/SavANEKBi8mI2EDJ3OhhqL8fZRQPxt+xj4bE1Hpmh+PkbcPXrXiLhFRryEMc7aPltbZTh3gVjQVSEE4Hfqc7TQe30/Fdhs72wHibne4HTjy4hEcfv6w9v+1YYo6CUjTGHl7iO2+Zh9kWYILOsT2dAyy7LbmkEkleMPkTxu627nYzpm2UFd7W8iD+Y1++NwOZHIKjg6V3o07Xcjm8ppbcrwY+dEE6XDiVJ+OwQQG42m4HSJWzrROhwsV23siKe2C20hoDHy5YuvMsBf/fdtpcDtFPLO7D997cs+kt6eu9qtWtqMlqL8bU+ttr0Ls52Q8vPU4AODaNTPK7p/jVB+Py6E51Ev9bSqOkbcbratJjcPxV44jr3MwrmtLF17/j9cBAFf/7Gq4JnKrxPqB370XeOE7wEX/AHz0CSIOl4sgkPu/+8fAm78C7v8wiaRnjZFjwNHNwKr3Gfu4V36XxMg/80+6H4KK7aXGyGtu7uYSBWZFAfr3GtfXfiJrPgCsvgl4/A7gnUeA/76IOOlv+zNw5idOTkMIqWJ75LjupxQdImacPkP774rF9nQceORzwAv/F7jkG8AZH6/s8cZj6QbSW79/k/GPPQ357ne/C0EQ8Ld/+7fa/7vooosgCMKYfz796U+Pud/Ro0dx9dVXw+fzoaWlBX/3d3+HbNYcwYZzMivUaqJdXQa5ySaB9ShkKpZVEiOfSOdAL3FZj5Gn72MsnUV+imHjiaDCo9shwuNiawijWT2fHorLUw5blwKr7mWPywGv+t6NljjIWy7aoA7DYnOwgmEdeuz0MTqodCJhLxlUKXXw+0RYrxXgFPA2krW32Kj62TbK2S5HbRAjH4ITRGMot7Odvi5vUP1tsmlnOyU0K4RTP3EqAOCFb76gaQlaZzt1touusQPnDONvITHyLkf5epOQjUKWJWt+7ivBEyZ/2rC3nYvtnGkL7Wuf2+iDKApYoC66HjQp9pplBuNp5BXigG4MFA7wYR858U7n8iVFkHOMh7raV82qKzlOvRqEfW40qA6CjgHjB1j0iu0AcOqcevzgfasBAP/90iH84Y2j495uOJ7Gn7Z1AQBuWz9X55YSltPe9ho620eTGTyzm3RdX3/qzJptB6c86GfnxX39Jd2eiu3NVpz4rpC5F8yF0+NE79u92PR35Qtu+Wwej37iUSh5BSs/uBKLrlg0/g07XgZ+fh7Q+w5w2yNELBcrPL6e9hHgpnuB/c8Af/gQwNqA2jsPAU4PsOxqYx831E7E2S2/Bo6+pushgqrTs1Rne0L9TSrZ2R7pBNJRoHmZru0riav/DQi0kGEMXyPwyReAeeeOf1tPHeAOAJGuip5yxhkGie09O8mAwDsPAdf9jKQ/mEFoBjBjHYmS51TEG2+8gV/84hdYvXr1SX/3iU98At3d3do/3//+97W/y+VyuPrqq5FOp/HKK6/gN7/5DX7961/jG9/4RjU3f1pDxfbDA3GkMuYlpeTyiubOZFZsV4fCK4mRp6KZKEATKFmFOtEVBUjo/OxQ4ZE1VzsA7bo0rwDDBvSVs9rZDhT1tieN723PFq0LsSyu0s+4ntoF2znbK/y8xBlPSeEUoGJ7dAgABGPEdkUhgqxncrFdySuaA9ySoqMUgiOviu3lxsir6zfegLqmbhdnuzS+sx0AzrvzPDjcDhz9y1F0PN8BoDB04KnzqAMYAbYr+IrwN/uRSkmQXKmyjYpiNk6c7XZb3+POdg7HflBn+7xGssC4sJk4ow708d72E+lRJ8yaA9IYN6zf7dD+24yLNc7UbDkyBAA4XWeEvJmYGSWvJ0a+mGvXzsTnL1kMAPjaIzvx6qHBk25z/5ZjkLN5rGgP6Y7opyxTF0dr6Wx/cmc30tk8lrQGtMVajvV5zxoiiD2ytbOkE3M7i+2hmSFcd/d1AIBXf/gqtty1paz7v/Yfr6Fnaw889R5c8cMrTr5BPg+89G/Ab94NNC4isfELLqp8wylLrwJuvBs4sInEhrPEzgeBJVeYE+V2+seAGacCj/0t6ewqk0CbyTHy/WoCipliuxQkwxgX/SPwsScn72IXBOJuryBGHgBmnlkYutLV2a4owBu/BO66GHC4gU++CKy9uaJtmpKlG8jAStaYzt3pSCwWwy233IK77roL9fUnn9v4fD60tbVp/4RChfOFp59+Grt27cLvfvc7rF27FldddRW+9a1v4ac//SnSaX4dUA2agxKaAm7kFXOrieJFqVSsCmY0Rj5SQd1ZtKhrWGB8wVdyinCq1+16o+Sps51Fl7/LIaJeFQ2N6G2Pq25dH4PfD5pOqNepPBnxdGGQg2VxNVhBjHzMds72yj4vdH+wOKTDGYunniTnJQdlIo4bIZJlEiS5Spo8pTMdL5xnWrK72hOCmCXXoqmRFJQyElQ0kdmfBwQHua6yA57xne0AWdc59ZNj3e10P7hDblVst0eEPEDWHVIpD1yuLNIj5a0JO5S4PWPkbexs5792nGmL5mxvIoutVGw/2M/F9hOhfe2tJ/R1C4KAsNeFwXgao8kM2uvs3Z9sRSrtazeT+U1+bDkyjMMDxn+nKnG2U/72ksU42B/D429349O/24I/fe5czFWHb3J5Bb999QgA4mqvdIFtuRojv7cninxegViDCPeHtxJh5rp1M5lfMJxOXLGyDV99ZAcODcSx/fgo1s4OT3r7fi1G3mYn4yqnvP8UDPzLAF74xgvY+NmNaFjUgPnvmj/l/UY6RvD8158HAFz2g8sQaA2MvUF8EHj4k8CBZ4kz96I7See60Sy5HFh1I/DUPwKLLydd8FZn4ADQvR04/8vmPL7oAN79I+KO3vwT4LwvlnV3rbO9p0Rnuxoj72sqVWzfCzi9QLiyhJMpaVleei983cyKYuSBE8T2cp3tyRHg0c8Du/4EnH47cMW/Aq4qnAMu3QA8/69Ax1+ARZea/3w25HOf+xyuvvpqXHrppfj2t7990t/fc889+N3vfoe2tja8+93vxte//nX4fOS7snnzZqxatQqtra3a7a+44gp85jOfwTvvvIN169ad9HiyLEOWC8JWJEIWmDKZDDIZcyKMS4E+dy23QS9LW4MYiA1ix/FhrGirsAJiAkZi5NrPKQoQlRwyDCaYeV3kXDeSLO+zVvzZGI2T/RCQnEx+Vk4kIDkxksxgOJZEo698IXBE2x8OJvdHo9+N4UQGvSMJLGys7DcrliLCj8ch6NoXtTwG1XnJ+e1gNGn489PvjMshQFTyTB47AGIqAchnvtx9FFMTILxOfZ8NwFq/UbSSYzhW/r4ACvtDcljj9XDKh75v7jARgeP9cSir6pBPDCNf6XsaG4QLQNbphTLJY8VVs5zoFKE4FMt9lgSnH450FIACKAJigzF4wqXV+iXVtU23NwvF7WOqnmmyY5Xg9MOZiSMjJwHx5HWVs798Nt666y0cffko9j+1X0sEcAfdyCVHIbqDyFrsfdaL4BaQUcg5e+RIJ8KB0tMLHEoCqZQEh4/Nc68JcfrJdz82MOl3H7DOb2Kpz8/Fds605URn+6IWLrZPRK8qtreNM0lVp4rtZkxGcyZnNJHBvl7yeT3VomI7ABwyw9munpDOqEBsF0UB//7+NTg+lMD246P42K/fwEOfPRd1Xhde3NeHY0NJhDxOXLu28sj1+U1+uB0i4ukcjg8nMaexutFQnSNJvHqIpCAY8Xo41SMgOXHFKW3407YuPLK1swSxnRyv7djZTrngaxdgcM8gdty7A3+84Y/4+GsfR+PixglvrygKNn5uIzKJDOZeMBfrPnaCIHT0VeD+jwI5Gbj1AfNFvCv+L3G3P/WPwHv/29znMoKdDwDuILD4MvOeo30NcPZngRe+B5xyPVA/r+S70hh50zrb+3YDzUsA0UKBYKGZpOagAurm1MHf4ke8L176vgCA428CD3wUSI6SpIYV11a0HWXRegoQngPs2cjFdh3cd999eOutt/DGG2+M+/c333wz5s6dixkzZuDtt9/G3//932Pv3r146KGHAAA9PT1jhHYA2n/39PSM+5jf+c538M///M8n/f+nn35aE/FryaZN5VeS1BopKQIQ8dSrOxHse9uU5+hJAIATbiGPJ554wpTnMJu9owIABzr7h7FxY/n1E5s2bcI+9TGUdFLXY1gNMe8AIODp51/CPh2GsS0DZH+kY6Ns7g+ZfHeeefl1jOytrM5n9yHyWJ1HD2PjxoO6H6cWx6DkKNn2v765DeLxrYY+Nj12uIQ8m58RlZF+so/efPsd1A/uLOu+RzrJfQ/sfgcby7zviVjhN2qom7yere/sw8b4nrLvPxghx51tb7yKgV2Gbx6niuw/vh8A0HWwC6PnCRje9zbeTlb2PQ+kunAJgM1bd2Fo/8QVJ6njZI1D8AqWPC+ZOXwQp0OBFMhCjrnwxENPQGorzfzQ+2YvAECWhyHnHHiKwWPneMeq9pEDOBPApsceQsYZOPlOAOovq8fAYwP48xf/DM8csn51pOcIOg/vgV9O42UG98VEyCJ5fa89+SRyR/aXfL+zlTjS6SD27tqGgy795xuWQ1HwbsGBXVteweGjpV0T1vo3MZEorSKXi+2cactR1dk+p+EEZ3tfDIqicOdnETRGvi10snhDO5xGK4jo4+jjraPE1T6/yY+mgPVcrAtMipGPy1ltuENvjDzF43LgrttOx7U//SsO9sfxf+59C//7kTNw92biar/x9NnwGtDF53SIWNwawDtdEezuiVRdbP+z2j1/1vyGitIAOLXhunUz8adtXXh0exe+evVyuBzji37ZXB6DasRai91ipooQBAHv+eV7MHRwCJ2vdeL31/wet796O7wTHA923b8L+zfuh8PtwDW/uKbw+57PA5v/E3jmn4HZZwI3/JI4hs0m0Axc/q/Anz4LrL7R2qKhogA7HgCWX2O+c/miO4F3HgE2/h1w8x9L7mgrdraXcv5Wfoz8XnMj5PUQmgnsf7qihxAEAeu/tB677t+FuReU4Nqn35dn/4V0p3/4MaDeZLf/iQgCsPRq4qi/+t9t0+NXDY4dO4YvfOEL2LRpEzye8YexPvnJT2r/vmrVKrS3t+OSSy7BwYMHsXDhQl3Pe+edd+KOO+7Q/jsSiWD27Nm4/PLLx0TUV5tMJoNNmzbhsssug8vlqtl26CGzvRvPPbADCakBGzacacpzbD8+Cmx/DeGAFxs2XGDKc5jNnM4I/mvXq1BcHmzYcGHJ9xvz2dg/DOzahramMDZsOMvEra0OPzv0CoZ6Y1h92lk4b9HEQ4oTMfL6MWD/bsyb2YYNG9Yav4Em83T0bRzY2YPZi1dgwzmV/X698NBOoLcLq1csxYbzp05YOpFaHoP+mn4Hbw91YtaCpdhw0QJDH3vbsRFg++uoZ/jYAQBvbdyD1/uPYsbchdhw+ZKy7vvbrteBkRGcfcapuPKU1qnvMA5W+o06+uIhPNd9AA3ts7Fhwyll3//OLc8CyOGKSy7C3IbaD9lxyod+Hs+66Cx0fL8DHsWDUMtshAJhzNqwoaLHFjq3ALuBsy+8nAzVTkDXG13Ygz0INASwocLnNAPhgBvo+C80tDvRvR84e+3ZaD+1vaT7Pv/X59GNbjS1+iAF6y35+iZismOVcNgPHP5PXHbBWRMmxMXWxfBfz/wX4nviEGNkjWvlaSsxq+kFIOdlal9MxSM/2g4AWDFzJmaX8boSL30esuzG+ZedjxmnzzBr82qCsL8BpyycieXnTb4/rPKbSBPapoKL7ZxpSSSV0QSJuaroNa/JB1EAIqks+mOyrV2B5TJRjDxQ6PziYnv1sXKEPADMM0ls71Jd7UGPU+tjrISWkAd33XY63v/zzfjL/gH8ze+34oW9/QCAW882TkhY1hbCO10R7OmO4opT2gx73KlQFAUPbyVxw9ev4652Fjl/URMa/W4MxtN4ef8A3rWsZdzbDcTSUBTAIQpo8Nmk62sCnB4nbnrkJtx15l0Y3DeI+99/P2554hY4XGOHY5LDSTzxeTL9ft6d56FpWVFs++afAJu+AZz7t8DFXwMcVTxxX3sz8PZ9wGNfBD77KuA2Jwq4Ynp2AIP7gSu/a/5zSQFgw/eB+24Gdj1CHO4lQCsB8pk8koPJKePhEwNlONsVhYjtS68saVuqRt1MINYHZNOAU/93/dyvnItzv3Lu1DeM9QOPfBo48Extvi/FLL0KeO1nQPc2IvpzSmLLli3o6+vDqaeeqv2/XC6Hl156CT/5yU8gyzIcjrHHz7POIuLigQMHsHDhQrS1teH1118fc5veXuLGaWsb/7xGkiRI0snDXy6Xq+YCgpW2oxxWzybn/Xt7Y3A6zekSV+uoEfA4mds/lPoAuW6NpbK6XoPL5UIqR9zPQQ97n5PxCKrX7amsouv1JDJkf4S8bib3R7NqHBhK6PtMFJNS49Er3Re1OAY1qN+NqJwz/LnlHDkeBSS2vzN1PvK7FU/ny34dibT62fBJFe8DK/xG0WNpRMexNJ9XkEiTH5Sw31Pz18KpjIBqUEsNpSB6w4AcgVjpe5ola4WuQAMwyWPlEuRzJIUq/16Zgr8BABBqArr3A9lo6d+XbILExktSDoI7YM3XNwXjHqv85HzVlU1M+N7Wz6nHaZ86Da/9+DVEj5OUOl+DD2ImBviaKv98WQhnmAw55keHy3qPXU4ZqZQEf4Ofyc/GpHjCcMgROEp8XbX+TSz1uS2Uh8jhVA/qam8KuBFUxTrJ6dBc7gf7jI+9ZplCjPwkYjuPka86bx4hseCWFdvVioaRRAbD6nCLERw3oK/9RFbOrMOPbloLQQCe2EmiUC9a2qwNDBjBcjXqeE9PadNwRrG7O4p9vTG4HSKuWlXadC3HWjgdIt69hkyxPry1c8Lb9akR8k0BN0TR/o7PQFsANz92M1x+Fw4/exhPfP4JKMrYWNBn/uEZxHvjaFzaiPPuPG/sA/TsAOacA1z2z9UXDgUBuOZHRDB9oQpCtl52PgD4GoEFpbsCK2LZ1cCya4An/gFIjZZ0F4fbAa/avTpVb7uSV5AcJL8hJTnbo92APAo0l9ilXi1CMwEoQLSrOs/34MeArm3ALQ/W5vtSzNxzAE8diZLnlMwll1yCHTt2YNu2bdo/p59+Om655RZs27btJKEdALZt2wYAaG8n5w7r16/Hjh070NfXp91m06ZNCIVCWLFiRVVeB6cwKB6Ts6YNO0dTZOE3ILHrzQip16jxdA7ZnL7e6JhM9kPQw+5+KIa+n1FZXx9sTCafN1b3R3OQCKgDMbnix6ICotfN3r4Iq8mEZtQAxtPks+WXKk+GqyW0p5weC8shQfeBAel4VkD7vOj4vaGfB4Dt3xMOgV5vJYeSUDzhkq/VJkVW18akybtN5Cg5bktWTe/zkLSmYAM536D946UgR8hrc7sygNtG6Q9SHflTnnz989y/PxfOovMKKSQBcowM4tsIVz0xfWRHBkq+j5LPQ3LLkGU3pKBFP/uV4A0DqZFab4XhcLGdMy2hfe1zG8cKaVqUPO9tH8NkMfJh7myvCZlcnsS0ATjdomK71+3ADDUNwcje9i4TxHYAuOKUNnzlikJU8G3rjY3HXdZGTsD39JTWK2wU1NV+yfIWbTiGwx40leDpXT3a4u+J9KsXodMpmaV1dStu+P0NgABs+fkWvP6fBdfl0ZeP4q3/fgsAcM0vroHzxEWexADgb0LNaFwIXPgVYPNPge7ttduOicjngZ0PASuuq664etX3gHQMeO7bJd+l1N725FASSp4MZPhKqfPoV7spm5eWvC1VoW4W+XN04uEbQ+nbDZz1KWCxBSoPHC5g8RXAXi62l0MwGMTKlSvH/OP3+9HY2IiVK1fi4MGD+Na3voUtW7ago6MDf/7zn3HbbbfhggsuwOrVqwEAl19+OVasWIEPfehD2L59O5566il87Wtfw+c+97lx3escc5CcDtSr4kdvpHLRcDziMhXM2BVHigVhPYJZ8f38DAqq4xFQTQaxCvcHq2J7U4AkwRgjtrMrqBbWb4wbhqfY4dgBFD7j0VT5a1wxNRqE9X1ACXvJ90aPuYZeszpFAZKTyw+sQ8X2fDaPnBgwSGxXr92kyauFqCBtWcFR3X5/vSq2D5cutqej5FjsdKYBl43EdnUAAanJxfZgexCnf+b0wt3qPORzMcVngjWkpnrkciLy0eGS75ONxeFw5InYbtVBk0rwhIHkSK23wnD4rx1nWnJEdbbPPWGhdWELEdsP9HGxvZg+9cSmZRJn+4gJF2ucidndHUEqk0fI49SGRKzI/Gbjo+Q71RPXSvvax+PTFy7Aly5bgo+fNx8XLRk/qlsvy1QxqGMwri3QmE0ur+BPal87j5Bnm9Wz6rCgyY9UJo+n1PSFE+nTxHYbnohPwtJ3L8Vl378MAPDUF5/C/if2I5fO4bFPPQYAWPuxtZh34byT75gYJK7tWnLO50kf+J8/D+Sqc1womeOvA6PHgJU3VPd562YB7/oq8PpdwPEtJd1F623vnvz8jfa1S3USHKUskPftAZweoH5eSdtRNULq8TxSBbE9KwPxfiBkoY64pVcBvTuB4SO13hLb4Ha78cwzz+Dyyy/HsmXL8KUvfQk33HADHn30Ue02DocDjz32GBwOB9avX49bb70Vt912G/7lX/6lhls+PWlVr8lo1ZfRUDciy05El0OEV62W0Su2U+EwwKi4fCLBCty6xfdjV2wn58eDscrXLQrOdgbFdjOd7bI9BlRo+mVlzna29wGl4Gwv/3tTPHxhRuUJp7q4vC44veRzncn7jBHJUhHAHQDEyY+lmthuVcFRdeb7Q+S3ITVc+vkZfW0u0WZiOxXLp3C2A6TajH62fM0+Ira7rbvOrQd/SwCplAQlUbrYnh4gLng5LcHlt6FxyqbOdnv8+nM4ZXJEdbbPO8nZTv6bO9sLxOWsFjXXNl5nu9oLPJq0mEhgc97sKPS1Wzkuen6TH389MIjDA8Z9pzpNcrYDgCAI+JtLFhv+uABZ4GkKSBiIydjbE8W6OeYnEmw+OIi+qIywz4WLlho7PMCpLoIg4Lp1M/H/Nu3DI9s6ccNps066TWEwyqIXoSay/kvr0b+7H9t+tQ0PfOABrHjfCvTv6oev2YfLf3D5+HeKD9bW2Q4Ql+57/gP4n0uB138BrP9cbbenmB0PEFF3zvrqP/eZnwS2/x547AvARzdNefNSne2J/jL62gHibG9aPOUCUNWRAiRKffS4+c8V7SZ/WklsX3QpILqAvU8AZ3+61lvDLC+88IL277Nnz8aLL7445X3mzp2LjRt5qkCtaQ15sKcnqlV9GU3MJu7UkNeJZCaHiA53KlAUI8/4fqDQ10Hj4MuFunypEMkajQHjY+R9DAqqdapTWU8s+FTYxdWtdzCluKPcx3iUPqWugiRLO1SScMbia/QhcjwCOeOD16gY+RIczNT97Q65K39OM3AHAAjwBchnvqwYedUw4RBle8XIuzyAwz2lsx0g9YAfePgD6NvRh9bVrcDjsSmrBVjD1+xD6ohUViJEengQfgB5MWDPgSVPGOjdVeutMBzubOdMSzomcLYvUp3th/p5ZzuFOiYCknPck2TN2Z7gzvZqsuUoEdtPn9dQ4y2ZnPlN5DtlpLOdxsjPMEFsN5tCb3t1ouRpv/fVq9rh5tFtzHPdWuJm/euBgXEX2Glne3Ng+ontgiDgmp9dg7kXzkU6msa2/90GALjyR1fC2zDOsUJRSIx8rZ3tADDrdCIuP/dt6zh1c1lg1yPAKdcDYg2OHQ4n8O4fAT07Ib5x15Q3L9XZPnJkBECJfe0A0L+XJA9YkdCs6jjbI2ovfMhC6SieEDD/AmDv47XeEg6nJtBqr95Rk5ztsj0EkpAqCkd0ioo0bp114ZAS0MT2ypztrH4uaIz8YCwNRVEqeizqXvZxZ/sYCscO9vZLMXSgpNzvSjKT0/7dbs72VCaPVNHrK4W4OnzB6jGDczL0ujolS0BOBjIVnoekIiWJqpaPkRdFQArB6yfH1XJi5Olrcwg2c7YDZJBCLk1cXnTFIpzz5XMgKAqplLOZ2O5v8SOVkiBmph4+oGRHyLq/YjOXv4ZNne185Z0zLTkyQWf7AlUY7BxJahcK0x26iNM6gVOSdn7pXcTg6GPHcXLCsm52uLYbMgULmsh3zMgBFjNj5M1mWZsqtneXfoKll2Q6hyd3Ekcij5C3B3MafThtbj3yCvBntR6gGBoj3zxO5cd0wOF24MYHb0T9QpIasfDyhVj5wZXj3ziTALIpwFdjZzvlkq8D3nrg8TvIIECt6XiJRIevel/ttmHmacCZn4T44nfhTQ9MetNAmyq295wstufSObzzx3fw28t+i0duewQAEJxRwsW7ogD9u60rttfNrE5nuya2W8jZDpAo+Y6/AsnSo/g4HLtAr8t6o2aJ7dSdyrpgRgSeiM7Y9JjNYuQDPEYeAJDO5RGpMJUvIVNnO3vfESqejiYrHzo4EbukYhSOHeWtcdEKDkEAPC57LLcHJCccapJiue72wueBve8JZ3xob3sqoTrMKxXK5Gih23uym1k9Rh4APCFIHrKd5cTIU9e+qKQAd4npa6zgCZXkbB9DWr2el+wlMPub/UilPHDkS099zY4OkX9x22vwQIN3tnM49iCRzqJX/aGed4Kzvd7vRqOfnDQY6cRlGepsHy9CHgDqfPpjpTj66VdFNasLzvNVsb1jMI58vvKL+Uwur30mZzHobF/WRi4kdlfB2b5pdy/i6Rxm1Xtx2lzzI+s51YEOTtDUgmL6p2lnezG+Rh9ue+Y2nP+183Hd3ddNHLcVV8Vbn0XSQaQgcPW/AweeAXY+WOutAXY8CDQsBNrX1nY7Lv4aIAWx6vjvJr3ZeM72wX2D2PSVTfh/s/4fHvjAAzj0zCFAABZesRAX/dNFUz93rJfEvFlVbA/NBCJViJGPdBJXgtXcBUs3AEoO2P9MrbeEw6k6rep1Wc9o5XHY4xG1iaM7RIfCK4yRt4srs2Jnu8x2jLzH5dCi9PsriJJXFAWJDLtx6WE1Rj6TK0SeG0XcZmJ7TM6WtYahDSq57dNRLghCUZqlXrGd7c8Dp4BPXUOPx6jYXmGUvDxaVoy8pcV2KQjJTbazrBh5VZ8QlaRNne1liu1ytHBfG+Fv8SOZlOAU4iUPuuVjI+RfrHYdbhTeMJCJAzl76UlcbOdMO44OkQj5Oq8LYd/JfS8L1Sh53ttOoMJm6wROSe3Em4vtVSOZzmkRZfV+i3YWqcyq98IpCkhlCiJ5JfSMppBXALdD1NwJLLGsveBsN9pJcCKPqGLs9etm2uZin0MqAVwOAbu6I9h7wtAGF9sJ4XlhXPytixFonWQaOjFI/qx1Z3sxS68CVlwHPPkPQGKodtuRlYHdjwIrbyDWnFriCSF3wVfQPvrWpFPPtLN99Ngodvx+B37zrt/gJ0t/gld+8AoS/QkE2gM4/2vn4wuHvoBbn7wVLStbpn7u/j3kT6uK7dV0tlvN1Q6Q19++lkfJc6YlrUFyXdZnmrPdHl3lFcfI20xs1wTECp3tIUad7QDQpJ4jD1YgtqdzeeRUAdbLoLPd4xK1ejGj13Cos5v170xQIscORSm8plKI29TJHdZZHan9ljB8zOCMhTrb4xH1Pa1UbE9FynK2u4MWXv+UQnA7icheqrNdyStIx1Rney5pr852QJ+zXRPb7SUw+5p9kGUJHimlfZ6nIhcj3y/BZ6/BAw1PmPxpM3c7F9s5046OASK2n+hqpyxsVsX2Pi62A4UY+bYJxPbiGHkjnMucqRlSL3JcDsHyi2BOh4g56nfNiLQI2tfeHvZAFNkTkBe1BOAUBURSWXSb1LMJkAWkF/f1AwCuXcsj5O1Evd+Ni5YSofCRbQWhTVGUgtg+TWPky4KK7VaJkadc9T0gmwY2fb1227B/E3EZ1DJCvpjWVeTPkY4Jb0Kd7SOHR/DQzQ+h44UOCKKAxVcvxk1/uglfPPpFXPytixGeFy79efv2AA4JqJ+ne9NNJTQLSA4BmdKdE7qIdFpTbAeAZVcTZ3vWHHcvh2NV2jRnu0lie9oebsRghbHpdhPbA5K+HmqAnGcWYuTZdLYD0FIMB2LliYbF0Ah5APC52BNVBUHQLZ5ORaGCgu3vjMclwqmuNZRz/KBJAXbpa6fQNMtyhzM0Z7vN9sd0hna2x4bVY1+lIpkcKcnBzEqMvEsk12Wldran40XH4GwScNksRl6Ps53GyNusp9zldSGd88PjSSHRnyjpPkpiFNmsA66AvfaFhjdM/rRZbzsX2znTjqND4/e1UxY2k/9/gDvbAUwdI0/j+fIKEOU991VhSF0caPC7mXAsa73tBojtnarYPpPBCHkAkJwObaBnT495ve2Pvd2NXF7B6ll1WNRi0xOzaQyNkv/T1k5tyGkkkUE6lwcANAUsPPFtFTSxvbG223EiwTbgsn8Gtv4OOLK5Ntuw80EicDcvrc3zn4Ciit3CyJEJbxOaGdIWX0KzQrjwny7EFzq+gJsfuxlL37MUolPHJU//HqBpMeCw6AJhnTpIRTvVzcKqznYAWHIlkI4CR16p9ZZwOFWlRT3eDcRkZNXffiOxS/RvxTHyKd7ZTkllCm5ulvcHTUYbqMDZTiPk3U4RTgebS6pab3uZseBTEdcGVNgbQihGEARdwzp0UMnH+Os/ETqcobezneVjBmcs1NkeHVSPfUY420twMMuqqUCycoKfFIITREQtNUaeDhE4XICQTdnQ2V6nw9mu3t5mznYAyDsD8HhkxPtKWxtXUqOQZbe1h0wqgTvbORx70DFIfvzmTuBsp8LUwRIPfnaH9tu3BMcX2z0uBzwucijRG9HHKY/BOHlPGvxs/OBqve1GiO3DbIvtQCFKfne3eb3tDxVFyHPsx8XLWhCUnOgaTeH1DhI33qdegIZ9LkhOey3wmEJ8gExLuyyYAnDqh4FAG3BgU/WfW44Be58AVt1Q/eeeCE8YGYcPwvDEYrvL58JHXvoIbnv2Nnyh4wu46JsXoW52XWXP27/HMgMH4xJSj++jJve2R7oLz2U12lYB/hbg0PO13hIOp6o0+SU4RAF5pTKH7kTEbeLoLsTIc2c7UFlne1QdWBAFwM9gdDqlKUid7RWI7Zpbl939QHvbjY6Rp58tnw2czDTBIVrGsA5NPbDD6y+G1m+WO5xhl98STgHa2R4dyAKiq3JHqhwlguxUN2PE2e5QyJpnOppGPjv1MCTtovfXqyYqW3a2l7nuadMYeQBQpDpVbC/R3ClHkUpJcIdsaqbhznYOxx4cGZzK2U7E9sMDcW16ezrTO4WzHSjqbTd4MpozPkNq1FCjxfvaKfObCt+pSukaJWL7DJbF9jYSk7Wnxxyx/VB/DNuPjcAhCrhmtUXdiJyK8Lgc2LCqHQDwiDpYwfvayyQxAPgaar0V4yOKQPMSYPBA9Z977xMkwu6U91b/uSdCEBB3t0waIw8AbWvaMP/i+RCNcJkpCtC3G2heXvljmQUVwCMm9rbnskCsx7rOdkEAFl4MHHyu1lvC4VQVURS033uaQmYkdomCDnmpM7X8a9RcXtEioe0iFGmd7XIWilLeOkckVRDNWEhWmwhDnO1p9gVVLRbcaGe7TSooAH01FNrrZ3gQYzy09b5kecNddklJ4RSgzvbkUEp1LY9U9oB2ipGXghCyBRE1NTL1+Rl9Xf4Gm4rtHh0x8rI9Y+QBQPDWQxQVJHsHSrt9Jkac7XZd4/PWkz+5s53DYZupOttnhr2QnCLSuTyODZXWo2FXcnlFc0tO1NkOFCajy42V4uiDiu31zIjtZLDFCLH9OHW21zMstqvO9j3d5sTIP7KNRAqfv7gJzXY9KePgOjW14PEd3UhlcuiLkou5iVJIOCeQGLReX3sxjYuBgRqI7TsfAGadCdTPrf5zT0Jcap40Rt74J+wni0dWdra7POQzPGqi2B7rBZS8dZ3tABHbe3YAsb5abwmHU1Va1WuzXhPE9phNoqCpM1VPjHwiXRDY7BKBTIcGcnkFqUx59QN0YIHlvnagILb3R/UnQmhR4QwLqmGd4ulU0EEdOwyoULG9nONH3Kbisl5zTSzFne12gzrbk4NJ4kqtJEY+mwayKSLITgF1gLuDFl4DlUIQ5Ii2jaVEydN4fF+dKrbbLUZeCumIkY8CTg/gtPB7rRMhEAYApAf6S7q9mI3bO0be5QNWXAcEW2u9JYbCxXbOtELO5jRn7ETOdlEUsEB1tx+c5r3tgzEZubwCUZi8A7hOZ4cTRx/sOdvJd+3oUAKZCnslaWf7LIad7ctVZ/uhgThSauefkbx6kHRRb1jZbvhjc6zDWfMb0F7nQTSVxXN7+rTBKO5sL5H4oPX62otpXAQMHQTyxnfxTkhiCDjwLLDqfdV7zhJJuFsmjZE3nL7d5M8WCzvbAeI4j5gYI0/74K3qbAeABReRPw+9UMut4HCqTqu68Ga02K4oSpHYzrawGqJimY4Y+ZgqGrocgm3qeXxuB0R1PT8q6+teDjI+eEDFdlrLpoek5mxn93NhVmd7wcnM7r6hFGLkSz9+0NQDP8OpB+NBPy/l1g7QwRQuttsHbwNZh0sMJlRnewVie4nd3PlsHhn1WGVp0VHtJ/c2kGHI5HAJYrvqbPeF1LQZ1/g6BbN4QkA6CuTLWPdMR23pagcAZx1Zf8oMlia2O/IxyLJk7c99JQgCcONvgPkX1HpLDIWL7ZxpxfHhJBSFxDpNJh5rve3TXGynsYTNQQnOSWJZtRgygyejOeNDxfYGRsT21pAEr8uBXF6pKC1CURR0jbAfI98akhD2uZDLKzhQaldPiSiKgn19JJ5+xYypJ4Q57CKKAq5dS9ymD2/tRJ96ocbTDEokMQj4rexsX0Qm/c2MCD+R3Y8CSg445frqPWeJxKVmYPQYiTWvBgP7ANEJ1M+vzvPppW6Wuc52+vmzstgebAVaV/Eoec60o80kZ7uczWtVaqwLZiF1ILxcYRmwX187AAiCoL2ecgTE4tuzL7ZX3tket0GMPO3gNjJGPpPLI612FNvhe1Ncu1Aq1NnuY/zYeSJ6hzNiNqkk4RSgMfLyqAxFqqss/lkT2ydft6LubwDWjtOWQkA+g0Aj+b6khqc+P6OOfR/dBXZ0tgPl9bbLUVv2tQOAs4GsP+VGh0q6vUNJQJbd1k504JwEF9s504rivvbJusYWNpNpMqOFMNboGVX72ieJkAe4s73aDDImtguCYEiU/FA8rUUetofZjcoWBAHL2tQoeYN72/tjMkYSGYhCYWiIY1/eeyoR21/Y24f96pAFF9tLJDFgbWd70yLyZzV723c+QKaKAy3Ve84SSbhbICg5c13cxQx3AOE5gMPii4OhmeYOZES6SLybJ2zecxjBwouAg88DZXYQczgs06Jen/WM6hcNx6NYWGLdnVmZs10V2xkXl0+EunVjZYvt9oqRH6ggRj5pgxh5vR3ckxEvPnbYQFwNac720te4bOtsV2sjy+5sV/edHYYvOARvUZ1jTgxU5myn8eJTxMhTQdohOeCw8nFXfR3BJnI9UlKMvGqY8Aaos91mYjt9b8vpbbex2C41kXWWfKw0sd0pJO0dI29TuNjOmVbQvva5E/S1UxZqMfKVd0yzDHVKtJYqthscQ6aHf318Fy78wfM4PqzfQW11WIuRB4D5zZWL7TRCviUoMR/nuEyNkje6t31/LxkQmtPgg8fF9j7iTM2S1iBWtIeQySn4y/4BAIXFd84UJCweI183BxBd1RPbszLQ8TKw7JrqPF+ZxKVm8i/DHdV5wuEOoH5edZ6rEupmmu9sD80gEW9WZuHFQKynEP/P4UwD6DB0X9RYZ7vmzHQ7IIoW/+5PQbFYppQ5jKPFYdtMNKOiVzluXcBGznZ1KDWZyY0Rh8uB9pL7GBYQtVhwA9dvqOPf7RThmiQVkRXoZ72cFAi7OttpkmW55hr6XeFiu30QnSI8qvElo/gNipGfwtmuCtKWFxxVgTjYqIrtpcTIq659j1+NWXfbLEZeqiN/ltPbLsfsK7a3km5yJTFS0u2dYtLeMfI2hf0zIA6nDIqd7ZNBHaEH+mJlX5jbiZ4SxfawRZzt+3qj+J+XD+PIYAK/ermjpttiJsOq2F7PkNi+QHW2H6pAbKcR8jPr2Y2QpyxvN8fZvq+XPN7iVnuenHJO5vp1M8f8N+9sL4FcFkgOWztG3uEEGuZXT2wfOQooeaB5WXWer0yS7kYoglhFsf0IG2J7aBYgj5YXzVcOkS5rR8hT5qwHnB4eJc+ZVrRqznZjxfZC5zL74giNkc8rBSGwVKhIxLq4fCIBHQIiAERS9ojV97sd8LjIMqjeKPlkRhXbGR5spk5lI9dv4jarXtBTuWBfZ7u+4Yy49nvC7neFczK0tz2d8wKpEf0PlLKb2E5eRyBM0jhLiZGnr83jI/fhznbY2tnubwsjnXZCkEsbUnE7U8TZztf4mIKL7ZxpRccgcTvPm8LZPr/JD0EgFx80sns60qv+8LfVTeFsN2EyWg8/fma/liB6/5ZjSKSr1O1aZQZZdLbTGPkK0iKOD7Pf107RnO09xjrb96nO9iWtPEJ+uvCetTPGmE5ZFduFHX/EyuP3VOfJkmpsl5Wd7QDQuLh6YjsVsRus2VGuCE4iLA8drsKTKWqM/Fzzn6tS6tRhG7Pc7ZEuIMiA2O7yAnPP4WI7Z1rRVkd+743ubLeTE1FyinA5yElSpExR0Y6d7YB+Z3tMc7azHSMvCEIhSj6mb53HDu5lM5ztMZn9eP1igjpi5O00rFRM2EfWnaKpLLK5fEn3URQFsbQ96zimO7S3PZ32VuhsV4eFp4iRp+5vywuO6uvwh8h5VCkx8jQiX/KqA4Eu9tc6x0AHKcpytkcBtz3XM33NPqRSEsRcZGpjp6LA7ZK5s51BuNjOmVaU6mz3uByYpbpnD07j3vayY+Rr6Gzf0xPB4zu6AZAutmgqi0e2dtVse8wik8tr+5mVznYAhnS20xj5WTYQ25e0BiEIZJHHyPjP/aqzfQl3tk8bWkMenLuw4NBmtbNdGD2GWcOvVOfJEoPkT5+Fne0A0LgQGNhfnecaOgw43JYWVpX6udVxtieHgXSUEWe7Krab1WXPirMdIFHyR/4KZIwVHjkcq0JrYyKpLJJlurYnIybbp2NXEAQtSj5ShmAG2Fc0o6JXrMz9UehsZ39/NGpiuz5nO3Uvsywqm9nZbodjB1D4rEfKcrbT+gl2PxvjESr63pe6PxLpnGaEsctngkPwqea1ZEoiYrveNFg5AjgkwDn5+gVrznZfkHxHSnG2U7Hd7cmQlC7RXscOXc72tI2d7c1+pFIeSK4U5NHJz0GUdBIOR553tjMIF9s504ZsLq85Y+c1TR3Nsoj3tmuxhG0MiO0/foYIElevasenL1wAALh7c4ftagCGE+RkTBAKE8YsQMX2nkhKdz9e57B9YuS9bgfmq0M/e7qNif9VFKUQI99iz5NTzvhcp0bJe10OZhczlPr5kLLRyqbjSyVO+u2t72xfROLds/oWg8ti+DBxcosWvjQIV0lsH1bd80yI7TMACOY42/N5IMqY2J5NAUc313pLOJyqEJScmthnpLs9pjrb7RL7S6PkI8nyrj/sGiMfrLCzPWSD/dEcINfQ+sV26uBmd19QZ3sqk0cqY8ywTtxmAyr6OtvVQQyb7AOK0yFqx46RRGkDGvQYIwrkGpVjH6izPZlwkxoyvXVWqciUrnaAPbHd4yPr4iV1tquvzS3l7BchD6gDBK7y1nhsHCPv9DiRznrh8cjo2jK5OTA9RNasZNkNd5CdtX8OF9s504iukRSyeQWSU0RrcHLxGAAWamL79HW20852GlM4EVT0rZXYvqsrgid29kAQgC9cuhjvP202PC4Re3qieKNjuCbbZBZDtK/d54ZDFKa4tXUI+9yaE79jUN8AS9eoGiNfx77YDgDLtN52Y6Lk+6IyIqksRAFY0Dx5egfHXmxY1YZ3LW3G7efNhyCwc1woRmkgQ1LC0CHzn4w62/0WF9ubFgNQqhOdPnTYshHyFKV+fpXEdvU5WBDbHS4g0ApETBDb4/1APltwz1udlhVkX/Aoec40QRCEQm+7gWK7Xd2p5URBA0XOdoYF1fHQeqjLFdtl6mxnO0YeQCFGPqrP1W0HZ3tAcmprCUat4RQGdezxndETI29XZztQVB1Z4uelOB2E1etTzvjQzvZEVBUA9Q7Ly6Mliaqa+9vqgqPDCbh88HjI9pYSI08j8t2uDOC24RqeIJCBCt7ZruFqbIbHI2PLz7dMervMEKk+TGc9cNpg0HE6wcV2zrSBCnxzGnwQSxApF7YQsf3ANI2RT6Sz2hSv1WPkf/zsPgDE1b6kNYg6nwvXrSWLw3dv7qjJNplFQWxnb6Gj0ih5OznbgaLedoOc7dTVPq/RDw+fHp9W+NxO/O9Hz8SXr1ha603RTz0R2zFcDbF9ABAcgCds/nNVQuMi8udgFaLkhw8D9RYX28NzgdQIiXk3k+EO8tnwhs19HqOom2mOs50K+Kw42wWBuNsPPl/rLeFwqkZryPjedru5U/XGyGtDBzZb4CzEyOvrbLfDEEaTQTHyLA9iCIKAsNfY3vbCoI49rkNDepzt2iAGu5+NiaBpCKWu+dltcItTgDrbY6Pqd1232B4tdHpPdjNWnO0AIIUgSWR7S4mRp6/N5czY09kOkPe4rM72mK3F9rrFc+DzJbH74d2Idk28FpwZIWK74gzwgSXG4GI7Z9pQal87Zbo722mEvN/tmHKCnYrtMTmLTC5v+rYV807XKJ56p5e42i9ZrP3/D62fCwB4cmcP+gxcgKo1VGxv9DNwonkCmtiuo5ohkc5iWF0IsI/YTk4gd/cYJbaTY9Xi1oAhj8fhVBVPCLIzCKEaLu7EEImQt/pFi7+ZXJwOHjD3efJ5IjBb3NmOMPldx/ARc59nuAOon2vucxhJaKY5zvZIV+HxWWHBu4DeHUCsr9ZbwuFUBToQbWyMvM3Edq/au1xmjHzMpkJRoMIYeTvE6jcZFCPvZdy9rDmVS4wFnwq7pUHQNbCYnC25mtDOAnPYq6ZZljicQQd07PJbwilAO9ujQ6qklBrR90B2i5EHAE8IbicxCZUSI09d+05HGnDbVGwvx9meywLZpK3Fds/K8zFnThcWzj+ILXdN7G7PjhKxPe/i67uswcV2zrShYzABAJjXWNoP2CLV2d45kkQybUyPFUvQOMKpXO3A2O62SJXd7T9Su9rfvXoGFrcWfpBPmVGH0+fWI5tXcO/rR6u6TWZCxXYayc4SlTjbu0bIiWrQ49QcKqyzvJ1cWBzoixoypLJfdbYvabXviSnH3sSlVgjVcLbHBwB/k/nPUymCQNztZovtsV7SdW11ZzuNdTc7Sn74CBsR8pS6WeaJ7Q43GUxhhQUXkT8PvVDLreBwqkabJrbrEw3Hw25iUVAqPwoasK/YHtTpbI9oYjv712FNQSLYDMYqi5H3M+7gps72YYOc7VqEuk2+M/S7kssrSJbQa5/PK4WKAcY/G+NR7nCGXY+hnIKzPTJIxXa9zvZIac52GrVu9Rh5AJBCcLvI9ka7otj3+L5Jb04HCZyiDLhsGCMPlOdsT6tGJLeNBebTb0ckcA6uv/5J7L/neeQm+H3JRUYAAEIJAykca8HFds604Ygqts9tKu0HrMHvRr3PBUUBDg1MP3d7bxliu9MhIqieRJfa4WQEOztHsWlXL0QB+HyRq51y2znzAAD3vna06o57s6CLAg0BBk40T2CB+t07pENsP04j5MP2cLUDwKx6LwKSE5mcgkM63P4nQmPkF3OxncMoMam1Ov3kiQF2BMTGRcCAyWL7sLrPrS4we8KAVFcFsb3D+vuimJAaI1+i66pkIp1AsB0QGbpcDLYCrat4bztn2tBiQme73dypmrO9THE5rvZP2y1GXuuhLtvZTjvb2d8fNCGu0hh5r4vtfRH2qU7lpDHOdu07YxNx1ed2gLZPlhIlXyzI2+X4WYxWO1BqjHyai+12hTrbI73q/9ArtqdKE9vTEXKMYsLZLgXhdiSx7vZ1gAI8cOMD6Hqza8Kb00EChyADLvusdY7BU1e6s11WxXYbO9shivB//G5kcxKuPP8P2PvIznFvlo+NAAAELxfbWYOh1RMOpzJojHypznagOEq+ciGMNahDoq1uarEdKEy6VrO3/UfPkCnB96yZoSURFHPlKW1oCkjoi8p46p2eqm2XmRRi5NkT2+c363e2d47YT2wXBEGLkt/TU0aH0TgoioL9aoz8Eh4jz2GUqjnbE4Nsie1mO9vpgIPVo9MFgWyjmWJ7LgOMHmdLbK+bCWTi+iMcJyLSxVaEPGXhu4jYbvTwAYdjQaiz3cjKrJjNRGats73Ma1S7ujLp6ymnhzqdzUPOksF1O4jtzao7sl+v2K5VLbDtXja6s51+Z+zi6hYEoej7MvU+ouKyIAAel/2W2uvK/LwUYuTt8XngFPA2qJ3tA2nSM54c0fdAsj1j5JGK4OqfXY2Fly9EJpHBvVffi+FDwyfdVMkrWoy8iJR9Y+TLcbZrYru9BWZHuBn7fP+IGTN6oTz1jXFvk0+MIpNxwBWwaeKBjbHfGQCHMw75vIIjQzRGvvQDFRVwD/ZZ19meyeXx21eP4Jj6+oyCdraX4mwHCiff1RLb3z4+gmd290EUgL8Zx9UOAG6niJvPmgMAuPsVkzteq8SQGttV72NPbJ/bQL57o8kMhuPlTdDTGHm79LVTlrWrve3dlfW290RSiMpZOERBi+vncFgjLrVBSAzqv2Av+YkYEtubFhEnfvLkC3TDGD4MBGewMU1fP6/gxDeD0eOAkmNLbKeC+KjBUfKRLiA0w9jHrAYLLybVCH27ar0lHI7ptKoLz0Y62wsx8vYQSKg4XI64DNhYbKcx8nLp1+zF/e522B9NAfK9iaaySJUQD34iCfU+Prt0thu0fmO3CgqgkARRSjJGQh1U8rudEATB1O2qBeEyzTXa4JbEfvUEZyw0Rj45mCTJY7pj5KNlxchLQQbEdon0kztcDrz//vejdU0r4n1x3HPVPUgMjl2zTxetiYqKnWPkg2U421XtRbK/gWjxJz+ITZsuxCmzXsDopntO+nslGYEsS2wMmXDGwMV2zrSgJ5JCOpuHUxTQXqJTGyg42w/0W1ds/+XLh/H1R3biA7/YjL6ocQstNEa+rcQDu3bybdBk9FTQrvZr187U3qfxuPnMOXCIAl7vGMLu7srcw1ZgSI2Rb2QwRt7rdmCG+v0rN0q+U42Rn2EjZzsALGsjFxeVOtv3qa72eY0+SE62F34405e41EL+Zchkd3tikI3OdoA42wFg8KB5zzF0GGiwdl+7Rv08c53t9LHDFnf5F0PFdqN72yOdbIrtc9YDTg+PkudMC1qLOtsVg9IctBh5mwhmIS8Vy8q7RrVtjLxUfmc7dfX63A44HewvIdZ5XXA5iBg6WOYAOFAQVb2MR4WHvWQ9wWhnu50i1MsZ1qHOdtaHMCai8Hkp7Ttjt8EtTgEaI59NZaFIocpi5G3nbK/TXNxSSMItG29BaHYIg/sGcd+19yFTNKxCX5fgECBkE/Z1tnv0ONttHCOvUje7DqPtN2HXrsXw/eXLJ6+ByRHIshvuEHtr/9Md9s+UOZwS6FAj5Gc3+Mq6QFzYQibLrOpsz+UV/HYzcWx3jabwybu36JrOHg/qkCg5Rr6KzvZtx0bw3B7V1X7xoklv21bnwZWntAEA7t7Mvrudxsg3MBgjD+iPkrdjjDwALFed7XsqdLbvV/val/C+dg7DxNyt5F/MFNsVRe1sZ0Rsb1hI/jQzSn64A6hnSGwfOQbkynMolszIEUAQgbrZ5jy+GQTbAMFBXPlGoSjsxsi7PMDcc7nYzpkWtKgLz+ls3jDBLG43sZ3HyI+h4GzPljygQYVGO0TIAyQenPa2D5YZJZ/J5ZHOkUh9P+OiasGpbFRnu72OHUDh+FFSjLzNOutPpNzaSLsNbnEKuINuiE6yrp5zBPWJ7fkckI6WJKoyJbZLoYJgDCA4I4hbnrgFUp2EY389hoc/9DCUPPntpRHyUkiCkEmQSH47orr9S4Lezm1/ZzsAnP7ZM/DnP1+OWMSN/B8+DGQKBkohHSXOdhYSHThj4GI7Z1pwRI1rmVtGXzsALGomP/yHB+LI5a3X/fjcnj50jiRR53WhzuvCtmMj+MoDbxvibOjVGSNv1ELPZNCu9uvWzcSCSVztlA+tJw61R7Z2VrVT3gwGWRfbm6jYXt4AC3W22y1GnorjPZFU2dH6xexTxfbFXGznMEzW6YfiazRXbE/HgFwa8DWY9xxGIgVIxLupYvthdmLT6+eRmPeIgcJyMcMdQGgW4GToN1Z0AMF2Y53tiSEgJ7PpbAdIb/uRV8YsWHA4dkRyOrRrgl6DEs7sFgWtJ0Y+l4fWUW6X/UChryeTU7TXOBU0FYBGatsBmhI3UKbYnkgXjA1em4jtxg3q2E9s1uVst6mTO+wtr3ZAG1iyyZAOp4AgCFpve1YIAKmR8h+kjG5uKkq7gwxcn40Tmd5ySgtueuQmONwO7H5wN5760lMAioYIghKQTgBum8bIe9QBhHwJ5xxpGiM/PdY1F1yyAP457fjjH64BencDT92p/Z2QjUOW3WwMmXDGwMV2zrSAiu3l9LUDRNhzO0XI2bwm9lmJuzd3AABuOnM2fn7raXCKAv68vQv/8Wxli/L5vII+tRendGc7OfExW8x+6+gwXtjbD4co4PMXj9/VfiJnzW/AktYAkpkcHtxi0gJ9FVAUBcNqbBedxmeN+U1kOKIcZ3s2l9eSFmbZzNke9LgwW71Q2dOj391OY+SXtE6PCVCOfVHqF5grtscHyJ+sxMgDQONCYGC/OY+dipBYfVZi5Ol2mhUlP9wB1DMUIU+pm2lsZzsV7ll0tgOktz2bAo5urvWWcDim06I6XnpGjRHbY0W9w3ZAT4x8qigozm6uzOL3tbiLfTJo5LydRFTa2z4QLW/YOamK7U5RgJvxSH2jzRIFJ7N9xOaC2D71PqL1Aj6bHDtPJOxT1/tK/LzYbXCLMxba257N+/Q526nYbrsY+RCQSQC5sd+TeRfNw3W/uQ4A8NqP/j979x0eR3W1AfydreqrLlmyLGO5d7kbbJqxDTYdQmiGEEKHACYOHym0EOD7SKOFQOiEEghgmgM2zaYY3HtvqlYvK+1KW+f7Y3ZWkq2VdlfbZvb9PQ+PsDS7ulpdzc6dc885P+KHv/3Q1Ys+zSg9Rs2Z7RClSgb9sbVJves16nkf6YugETDtpmmoqcnFN5vPATa8CGx7BwCgcTHYrlTKvjok8lOZp4x8oJntWo2AYZ5M3IMx1rf9YH07vtnfAEEArpxZjNklWXjo/PEAgL9+vg8fb6sO+rkbLDY43SIEoWsh2h/vYi1EZch8kXu1X1BaiKHZ/m2eEAQBV80eCgB47YcyuGOwSoE/zB1Ob4WFjGRlZhbIf0+H6v0PtteYO+EWAYNW4/d8VJKB9m0XRREH6uRge3zsACUVyzwhvP3JrY3Sx6Ss8H2PUMsaHr7XpPmw9FEpZeRNRVKZ97AG24eG57nDKa0wtJntZs81pFIz23PHAil5LCVPcUHeGF1nDixD15d2m5zFrI4AiTfY3uF/ZrscbE/Qa6BXeED1WBqN4A1++du3XW1l5IGuexz1AWe2S69FokELQRBCPq5I8gZPQ5QsIb82agqupnrLyPuf2a709gK+eCshdDj8qqSp1lYcJJH7ttuciUEG2z33voymPg9z2pxweTY5KSLoKGfq244PLI+/dDzO+N8zAACfLf0MW1/ZCgAwpOoBu0XdPdsB//q229qlyn5xZPLPJkOXqMPXHxbDMuhs4KPbgfp90IpSsF0RFR2oB3WtHIh8OBJkZjsAlHjKlMdasF3u1T5vdC6KMqU35UtnDMEv5kg3zO96eyu2VLQE9dzyzZrsFKPfNxjki+9A++EFYmNZM9bsk7La++vVfqwLSguRatThcIMF3x5oCNMIw6vRIv1eUow6GHXKXMTJZeSPNFr83vQgV5UYlJ4AjUbZNzV6MyZ/YH3bq1s70W5zQqcRgjrHEcWSsGe2e4PtSspsHw40HfSv9FqgmjzBdqVktmv1gGkwM9uPZSoMbc92c5XUBz4lN3TPGUmCIGW3H/wq2iMhCru8VCnYLleBGginy41Oh6cftUoCJHKA2O5yo9Ph6udoiRxsV2uQyBts9zOzXc7qTVNRGfns1IGVkVdD5QdvWXBrqHq2e14bFf3dBFJG3mqTy8ir5+fvTk6ucblFv84d7NmubnJmu82eAHS0BP4EcuC1n8x2e7fqI4YUBQQd5Z/HR4/yE5ediOm3TAdEYNtr2wAAiSat1CZNtZntng0VHc39H2szx00JeVliRiLGXzYegIDPv10s3et4+yoYNa1Sz3YlbDKhHhhsJ9UTRdGb2T4kwMx2ACjJjb1gu8Xm9JZDX+LJ2Jbds2gMTh+dC5vTjete3YDqlsDL38tlCPP97NcOdF18h7OMvNyr/aIphSgOMKiYbNThoqmDAXSV31eaJoX3aweAwRmJ0GkEdDrcft8UrG719GtXWQl52ehB0gX57iAz2+V+7SdkJ8Og49s6KZuYeQJgbQhuh7w/5DLySunZDgDZI6TScm3BV6zxqfmItABOzAj9c4dLxtDwBNs7W6WbAErJ8u8ubbCUje5HppFfzNVSH3gll/ArOR2o3Q601UZ7JERhlefJbK8NQbDd0q0ftVpKQacYdJATkP0tJW9Te7A9wD72asxsz5HLyLcHFmiWg+1JKshelpMlLHYX7M6Bbei0O92wuzwbdVSwEUE2OEO6f+hPEot8/kxR0c/fXYJeC6PnXoM/rQfU2H6CusjB9s4O4wAz2/sOrMol5PXJemiUUGnG2HcWtyAIOPPxMzHqvFHezyXJyf1qDbbnjAQSTMDm1/o/1tYWd8F2AJh+83QAwPa3D8F6xrNASxlMSfUsI69QCjhTEQ1MfbsNVrsLGkEK9AWqJEcK6splmmPB8i1VaLM5MTQrCXOH98zO02oEPH7pZIzKS0V9mw2/eGWDt6SXv+QgaF4Awfb0EPf8OtbGsmZ8s78BOo2A2/zs1X6sJbOlbLUv9tShoskayuFFRKMKgu06rca76cXfvu1yZnuBWoPtnsz2vTVt3jYBgdjvCbazhDypQsYw6WO4stutjdIiWKegRUuWp5JL44HQP3fzYSmTW0mlUMMVbG8u63p+pTEVAi5b12aSgWo7qtwS8rJhp0ofD30dzVEQhV2e5yZcSILtnkxEvVZQbBWtY2k0AlI9wR5/S8l3uqT3xBQVBZe7CzSzXY3loOUy8o0BZrbLpcKTVLAZJTVB7738G2jChKXbXFLLRh0AOGNsLgRBCrb3d//IYlPP3PAly3Mfyp/7OOzZrm6JmdK9OWu7XurF7QrsnrO3zLqx78z2Hn3NlcDYd2Y7AGi0Glz0xkUonFkIAEjL9fyNGFRapTLBBJx0B7Dhpa6qer7Y2wFDfJWRB4CCqQUonFEIl92FTcstwNl/BQB0dhphTFXI3CevkAfb16xZg3POOQcFBQUQBAHLly/3eeyNN94IQRDwt7/9rcfnm5qacMUVVyAtLQ3p6em49tpr0d4eO4FOUpZyTwn5gvTEoG4adJWR97/HdDiJoohXv5duCC+ZPbTXstqpCXo8f/U0ZCUbsOuoGXe8tSWgPuXyzZp8k/8n9bQwZ7av3lsHAFg0YZC3bH6gSnJSMHdENkQR+NePZaEcXkQ0e4LtWQoOtgPd+rb7G2xvUXdme3FWMlKNOticbuysDnxX8L5a6f1xRF78XZSS+oiZnmB7uHqUWxuU1a8dANKHABpdeILtTYeVU0JeljG0/4V6MOQAvhKD7WnSzRqYQ1RK3lyl/GB7Si6QP4F920n15EpktSHo2W5Radnfrr7L/q1T5TLyasrQ7U7OUG+3+fd6mL2Z7eopI5+VElwZ+Q45s12v/Lmh1Qje1gCtHQMrJS9vyDDqNNApIfvUT7mpCZh5glQN6787jvZ5rJpaDPhyyiipvdDyzVX9Hssy8uom92y3tHneF/oILveqs1VqWdVPgFnObFdMwNHP/uT6JD2u+O8VWPjXhZhx/Xj5k2EeXBTNvFG6B/PVw30fZ2vrdwOGWk2/Rcpu3/CPDXCPvwQff34+tm8frZyNJuQV8qsgi8WCSZMm4emnn+7zuPfffx8//PADCgqOv5FzxRVXYOfOnVi1ahU+/vhjrFmzBtdff32oh0pxYiD92oGuYHuTxe4t4x1N6w43YW9tGxL1WlzsKYvem6LMJDx31VQYtBqs3FWLx1bu9ft7DKSMfEuYgu3lnp3EYwsG9sa7ZJaU3f72+gq/+/bFCjmzPUPhwXa5b/thPzewVLVI87EwiMoUSqDVCJhdIgX/Vu+tD/jxzGwnVUkwSQuxcARTASmzXWnBdq1eKm3eEK7MdgUG2ztb/Ov7FojmI9JOeqXND0Dq7QZI5d9DwVzdFcBXspLTgUNfha68PlEMkiuRhaJnuzc4orJgkbwp3Oxn2XS5jLyayqZ3F0gfauk4R4/HqUF2kGXk1Za9nJEUmuqEcsa/GrOYF0+U7ll/sq3vYLva5kZvLp4qXRv+d0dNj2oGxxJFUZUVMaiLXEa+vdnz++1sCewJ5N7c/VRX8wbblRJw9COzXZaYkYhZd8xCSqbnNTCoONhuSAJOvRvY/g5Qs933cbY2wBifSUTjLhmHxMxEtJa14sB/D2DrppFoa0uFIVXZ9//jUciD7WeddRYeeughXHDBBT6Pqaqqwm233YbXX38den3P3bG7d+/Gp59+iueffx4zZ87EnDlz8OSTT+Ktt95CdXUYelWS6sn92ouD6NcOAIkGrTejNhb6tr+6VsrIPr+00Bvg9mVqcSb+7+KJAIBnvj6I/2z0L+MpqDLynoWa3ekOSxBbDrYPCTKrXTZvTB4K0xPRbHXgo63KOqc0qSSz/YRs6eLpcIN/f09VzdLvXq2Z7QBwyqgcAMCa/YEF291uEfs9LS5GMrOd1CJzGNAUpsx2SyOQnN3/cbEma3joM9uddqC1UpmZ7UBX2fdQaT4iPbeSSurLkrIBrQFo7T/TqF+iKD2P0jPbAWDYaUB7LVC3K9ojIQobeb3W0G6D0zWwvstycERNQVUASEuQy8gHltmu1iCR/HPFc892OdjebLUH9HfT4VBPz3YAMCVJ9xUGHGxXcRbzmePyoRGArZWtfZaSj4fM9ilDMnBCdjI6HC78d0eNz+M6HW7IhTXV2o4j3smZ7W3NnrBSoH3bO81+ZTDb26R7oIoJtusTpDWZXCbfHw7PeUWv0jLystIl0n2ezx/wfYytPS57tgOALkGH0mtLAQA/PvEjnJ7WR4qZ++QV8Xc9t9uNJUuWYNmyZRg3btxxX1+7di3S09Mxbdo07+fOOOMMaDQa/Pjjjz6D+DabDTZbVwkos1naReRwOOBwhCfTtj/y943W9yfJIU+AvCgjIejfxbDsJFS1dGDf0VZMLhz4iT/YuVFj7sRnO6WL2sunF/r1+MXjc7G35gQ8s/ow7nlvGwpNBkwrzuj7+7RKZbuzknV+j9GoEaHVCHC5RdSbrQFlxftDDrYPSjUM+G/qsumD8adV+/H3rw5g1gnpIR9ruDS0SZsgTIlav1+DWDwPDcmQLhYO1Vv6HZcoit4y8nkp+pj6OULpxBOkv8lN5S1oNFu9GTj9qWrpgNXugl4roCAtsL+NWJwbFL+6z0dtxglA40G4wjA3tZZ6IGtEWJ47nDQZJ0Cz779whnLcTYegF91wphVBjOHX47hzVcpg6AE4Gw5CzDl+LREsbdMRwFSkuLkh06UWwN1SDvdAx99pht5hgTM5L6bnhV8KpkGnS4B73yq4M0f2e3gsvC/yPZkClZVsgE4jwOkWUd9uwyBT8JtT1Row6yojH1jPdrW9DrIUo/R6+NuzvSuzXT1l5DOTDdAIgFuUNrTn+nk/wGKTg+3qmBvpIapO2O55XdT4N5OTasSsYVn4/mAjVmw/ihtOKen1ODm7Xy0bMXojCAIuLC3En1ftw7sbK31W2ux+bknSq/f1iGdyz/bWes8m5Y6WwJ7A1tZVcr2vwzyZ7YrK7jWmBrb5wO4Jtqs5sx2QqvXN+z3wzs+AI98CQ+ccf4xc8SBOTb1hKr7/0/c4tOqQ93OKaaFAXhG/Evrf//1f6HQ6/PKXv+z16zU1NcjNze3xOZ1Oh8zMTNTU+N4598gjj+CBB47fHbNy5UokJUX3hLVq1aqofv94t+2QFoCA+sO7saI1uMwWjUUDQIPP1+1ASt22kI0t0LmxokIDp1uDklQRhzZ9g0P9PwQAMFIEJmdqsKVJg1+8vA5LJ7iQ3cd6srJRes32bVmHtn3+jy9Bo4XFLeDjlV+iIIR/djYX0NAuna72bPwW5VsH9nwZDiBFp8XhRisW/W01rhnpQokC2sLsPSLNw8oDe7DCvDugx8bSeajVDgA6VDRZ8OHHK6Dro8ZKuwPodEi/+61rv8ZO9bSAO05ughZ1ncBT//kck7P8K3m7s1kAoEW2wY1Vn30a1PeNpblBtGrVKoysd2JYw258umJFyJ9/XkMFjjpysSsMzx1OxQ0dmNR8BJ9+/AHcmtDc7M4xb8OJAL7cfBgdu6Jfuac/3nOVKGKRNgn7fvgMBw6Hbikzr2onatImYafC5obsJGcCOvesx8bOgY0/taMSpwP4fkcZmo8o87XoblbiCAjr3sHaJv8rOETzfdFq9Z01R9QbjUZAbqoR1a2dqDUPLNiu1oBZWqInsz3Anu1qzciUf652PzcfqLHigVYjIDPZgIZ2Oxra/Q+2d6gsoJruLSM/sHaJVm/JcHW8LsdaPHEQvj/YiE/6CrbHSdn0C6ZIwfa1hxpR2WzF4Izjb/x1tSTRQqNRYMUo6pdcRr5VDtMEmtlu8y+zXXFl5AHp5wqkh73D015TzT3bZWPOAwZNBj6/H7h21fEV5WxtUlu3OJVZkonhZw7Hgf9KFQ21Ri20KrneiCcRvQrYuHEjHn/8cWzatAlCiEs03nPPPVi6dKn332azGUVFRViwYAHS0qITRXM4HFi1ahXmz59/XLl8ipzfb/4SgBMXzp8TdE/j1vUVWP3hbrhTc7Fo0ZQBjymYuWF3uvHQn9cAsOO2syZh0YT8gL7nvPkuXP7CeuyoNuPNShPevn5Gr7vTO+wudKz9AgDwk8Xz/c6wBYC/7vsWlkYrJk2bjelD+86eD8S+2jZg3VqkJehw8bkLQvKcs+ZaccsbW7Cnth1/363HPWeNwpKZRSE/N4XSP8t+AFrNOHX2NJzmKTven1g8D4miiEe3fwmr3YXxM0/BsBzf5ZJ2VJmBDT8gN9WIc88Oze8+Vm3CHryythzWtCFYtMi/bM2qbw8De/ZjSskgLFo0MaDvF4tzg+JX9/lo2NcB3fL3sOj0OX7teA+EbtetGDZ+GobOXhTS5w03ocwE4V8v4cxZY4Ds/jN0/aHZUAPxsB6nnXcloIndRVxv5yrd0RKMzkvAyEUh+j26XdBt+wVOKD0NxdOVNTdk2g8+AlorkDfA10Q4+CWwB5i98KKuXvAKpvnxCDRfP4xF808D9H0HIWPhfVGuzkYUiNy0BFS3dqKmtRMoCv55LCoNmKV51rz+lpH39mxXadBM/rn8z2xXX7AdALKSjZ5gu63/gz0sdnVmtrcOOLNdnVUxZAvH5eP3y3dgW2UryhutGNJLi0pv1QOVvgaywRlJmD0sC2sPNeL9TVW4bd6I447xvpeo7JxBXeQy8i01bogQIARTRt6fzPY2BWa2J6RJP5+/5Mz2eAi2azTAGfcDr50P7PkEGHN2z6/b2/3ahKFm02+e7g22K2qTCXlF9J3vm2++QV1dHYYMGeL9nMvlwl133YW//e1vOHLkCPLz81FXV9fjcU6nE01NTcjP9x1cNBqNMBqPn4R6vT7qQYRYGIPadDpccLnFfi/mW6x2mD2Lw2G5JuiDLGE0Mt8EADjcYA3p7zKQufHprmrUt9uRm2rEoomF0PeVDuzjez1/9XSc9/S3OFBvwZ3v7MALV0+DTtvzeaqktGMk6rXITE0MKPicnmQAGq1ot7tD+jpVm6XF35CspJA9b0meCe/dchL+593t+HBrNf7wyR7sPNqGhy+YgIQYLXXV7OmllpOWGPDrEGvnoaFZydh11IyKFhtGFaT7PK62XZqPBemB/8xKc9roPLyythzf7G+ETqfz62/vYL1UYn/UoLSgX59YmxsU3/R6PXQ50k0bfVs5kFoauid3OQCbGdrUPGiVNufzRgMA9K1HgEEhKp1uLgfSh0BvVEYrlR7nqswToG0tD93vsbUWcNmhzS5R3tyQpQ8GKn6EZqDjt9YCEKDPGCyV+1O6EfOBz++F/ugGoOR0vx4SzfdFvh9TMOSWWHWellPB6spGVFeARN487n8ZeemjWgOHcgAs8J7t6jo/ZacasLcWAQXbrXb2bO+NRaXnDll2ihGzS7Lw3QEpu/2mU4/Pbrfau7K51e7CKYVYe6gR722uwq2nDz/uvoXaN19QV2a76IYUHO1sCewJbGYgrcCPw+Iks13QADoF/YwDUXIaMOxU4IsHgVFndW36d9oAlz2uy8gDwPCzhsNUbEJrWauy5j15RbQg75IlS7Bt2zZs2bLF+19BQQGWLVuGzz77DAAwe/ZstLS0YOPGjd7Hffnll3C73Zg5c2Ykh0sxShRFnPPkt5j58Bf4dIfv1gIAcKRR2iGWn5aAxAFc9JbkSGVMKpqt6HS4gn6egXh17REAwGUzhsAQYKBdlm9KwPNXTUeCXoPV++rx0CfHlyKvMXd6jw00y9sUop3Rx5L7tQ/JDO1OvySDDo9fOhm/WzwGWo2A9zZV4eJ/fI/K5tgs4dlokS40s5KV/4Z7gieb/eEVu/HSd4d9lq6rbJaCyYUZwZfEVIqZJ2TBoNOgurUTB+r8K+m8v64NADAyL35LLZEKZQ6TPjb52yzFT9ZG6WNSdmifNxJS8gBDKtCwP3TP2XQYyPS/tHZMyRgKNB8J3fPJz5UxNHTPGWlphUBbNeAe4HWquVqab2oItANA7hggJR84+GW0R0IUNvkmKdhe0zqwYLtae7anJQRZRl5lr4MsxZvZ3v/r4XKLqiwjD0gBVCDQYLvKysiHqGe7nPGfrLKqGN0tniAFBj/ZXt3r19VW9aAvZ00YhES9FocbLNhU3nzc1+UWFWo9hxKgM+qgT5bOH25dgD3KAXWXkU8wSeXQ/eXoAPTJx5dUV7N59wENe4Gtb3Z9zua5B2qM73ubGq0G026cBgBISFdGUgT1FPJge3t7uzeQDgCHDx/Gli1bUF5ejqysLIwfP77Hf3q9Hvn5+Rg1ahQAYMyYMTjzzDNx3XXXYd26dfjuu+9w66234tJLL0VBQf+7nkj9yhqt2F/XjnabEzf+ayP+9NleuNy99zcua5R6nxT3UuYpENkpBiQbtBBFoLqlY0DPFYxd1WasP9IMnUbA5TOH9P+APkwYbMJfL5kMAHj5+yP41w9lPb5e6wm25wVxMROuYHuFJ9heFOJgOwAIgoBfzB2G166dgcxkA3ZUmXHOk9/iuwMNIf9eA2G1O9HpcAMAMlMUVELJh/MnFyJBr8GhBgse+GgXZjz8Be789xasO9wEUez6e65ukebj4HT1B9sTDVrMPCETALB6X32/x7vdIvbXShekI4JskUEUkxIzgMRMoDFcwfas0D5vJAgCkFUCNB4I3XM2HwYyFBxsb60AXP5l5fWr2XMtlD6wa6yoMg0G3E6gva7/Y/tirvIr00QxBEHKaD/4dbRHQhQ2uZ51W63Z/6Bhb9TaczjQMvKdLumGt9qCy7JAMtst9q5j1DYvuoLt/vcrt6osoBqqnu3xkMm8cFwetBoBO6rMONJgOe7rVu9roN4NB7IUow5njZcqz767qeq4r8vnDbWdM6inxEzpHp1LmxJ4sN3PMvL2NuncZExVULDdmBp4GXlDHJSQ765wCjD2fOCrRwCHZ6OoXA0gzjPbAWD6LdNRem0pTv7dydEeCgUh5MH2DRs2oLS0FKWlUtnPpUuXorS0FPfee6/fz/H6669j9OjRmDdvHhYtWoQ5c+bgueeeC/VQSaG2VrYA6NpN/NRXB/Dzl9ejtZfSV0capCDt0CzfPaH9IQiCN7O2KgrB9td+OAIAWDg+H3lpA9/ZdNaEQfjVAqnn630f7sS3+7sCy3JGRH4Q30derIUr2B7qzPbuTizJxke3zcGEQhOarQ4seeFHPLfmYI/AbzQ1em4CGHQaVZQmmz82Dz/+5gz84bxxGJ2fCrvTjfc3V+GSZ9fijL+sxvPfHEKTxY6qFul3XxAHwXYAOGVkDgD/gu1VLR3ocLhg0GpQHMa/DaKoyCoJfWa7xfNel6zAYDsAZA0HGg+G5rlEUcrmVmomd8ZQKbBsrgzN8zUfAVIHAXoF7x5PK5Q+mo+/6RkQc7W6gu0AMOUqYOYN0rwnUiF53SZvmg5Wm0r77KYlypntLCMPdK2p99W2odnSd5BVDsgbtJqYbbUWLG+wvS3wzHa1BFRDdf9GrRt1ustKMeLEEmkN8cn2oz2+5naLsDrk7H71vgbdXTR1MADg463Vx1X/jIfNF9TVt90pJgMdLYE9WM2Z7cGUkY+Hfu3HOv33QNtRYP0/pX/L1QAMDLYbU4049/lzMfr80dEeCgUh5MH2U089FaIoHvffyy+/3OvxR44cwR133NHjc5mZmXjjjTfQ1taG1tZWvPjii0hJie8yEtRla4W0Y+4nUwfj8Usne0uin/PUt9h9tOcbmpzZPmSAme1AV7CvqjmywfZWqwPLN0ulqq6ePTRkz3vLacNxQWkhXG4RN7++EQfrpQxZuYx8ninwG85yZvtAe34dK1xl5I9VmJ6Id26cjYunDoZbBB5esQe3vbl5wDu9Q6HZM4asZEPA5f1jlSlRjyWzh+K/t8/F8ltOwqXTi5Bk0OJgvQUPfbIbsx7+At94NoIUxlmwfd3hpn5bVuyrlS5Gh+UkQ6eNaFcYovDLHAY0hSiwLLN6gu1KzGwHgOwRQGOIysi31wEOq7LLyAOhKyWv5I0HMpN00xOtA9yAoMZge/FsYMqS+CrPSHElL0TBdrWWkZd7jbf5WUbepvIy8iU5KRhXkAaHS8SHW3sviS2TXzM1Zvlne6rFNfSz4aA7ObM9USUbD0yJoenZHi/B1cUTBgEAVhwTbO9wuLz7+dTat/5Ys4dlocCUAHOnE5/vru3xNZaRjw9y33aHOzmwzHZRlDK//chgVmSwPSEtiMz2gSUIKlL2cGlD9Dd/luaPXS4jz2A7KRvvzpPiyJntk4rScd7kQrx704kYnJGI8iYrLvz79/io24KxrCk0me1AV7Av0mXk39lYgQ6HC6PzUzF9aEbInlcQBDxy4QRMLc6AudOJX7yyAS1We1cZ+dTgg+2hzGwXRTFiwXYASNBr8djFE/GH88ZBpxHw8bajPkucR1Kj5yZARpLyS8gfSxAETC5Kx6MXTcSPv5mHhy+YgAmFJthdbu8NjcGZ8RFsH56bggJTAmxON3441Njnsfs8JeRHsoQ8qVFmGDLbrU2ARu/XLvqYlDUcsNQHnjnQm+bD0kellpE3FQGChsH27hIzAF1iCDLbVVZGnigOyMH2mgEH26Xr7hSVZO3KusrIB5bZrsYAs+yiKdIGrXc39b1BS85sV+NrEVRmu01d2cuhKiOv1o06x1o4Lh9ajYCd1WYc7lZKXi6bLghAgj4+brNrNAIumCJVVXp3Y8/zSDxUOqCuzHabIzGwYLvDCoguqbd5P+Qy8oZUBd0HNaYF2LPdGp+Z7QBwyt1SGfnvnuh6zRhsJ4WLj6sAUg2Hy42d1dKb+KSidADAuAITPrp1DuaOyEaHw4Xb3tyMP36yC06XO2Q92wF4y8hXRjDY7naL3p7qS2YXhzyjOUGvxbNLpqIwPRGHGyy46V+bUOnJ3M8fQGZ7KIPt9W022JxuaITIlRIXBAFLZg/FW9fPwphBaT5LnEdSk6eMfJYK+rX3JTVBj8tnDsFHt83Bx7fNwdWzi3HzqSUYFScBZUEQcLKfpeT3ezLbR+ax8gupUOYwKbAcyK7w/lgapKx2pWa3ZpVIH0OR8d8kB9uHDvy5okFnANIGM9jenSAApkKgdQDBdlu7dLNMLklPRIqQ58n4aut0estcB8ObnaqyzMyuMvL9r1FFUfRmtqs5cHje5ALoNAK2VbZ61xS96cps10dqaBHT1bM9gGC7Q/obSVRBWzcASPfcvzF3OuFyB59UIG+QV9tGnWNlJBu8peS7Z7d7N2EYdKqpQuiPCz2bdtbsb0BdW9dmr7Y42XwR7xIypXvGNpsR6Gzx/4HeoKpKy8gneMrIu93+HW+3xF/PdlnaIGDWjcAPfwcaD0ifM/L+Jikbg+2kKPtq29DpcCPVqMMJ3bLVM5INePmaGbjxFOlG9D+/OYzLn/8RDZ4AZUiC7VEoI79mfz2ONFqRmqDD+ZPDc+MzO8WIF342DckGLdYeasS2SmkzQzC94dM9WdctIQy2y1ntBemJ0Ee4VPa0oZlY8cs5Pkuc3/bmZnx/sCEi2e5ycD8zWd3B9u7GF5rwwHnj8eszR8fVolUuJb+mn2D7vjppkTIiTjYiUJzJGiZ9DGV2u7URSM4O3fNFWtZw6WMo+rY3HwZS8pS9sM8oDk2w3W4FLHVAevHAnyva0goH1se+zXPjmJntRIqSmqBHsif4V2v2P3B4LLVmI8qBYqvdBaer75vfdqcbLlFad6jtdeguK8WIU0flAgD+00d2e5uKy0FnezIlGy12uP0MNHcPqqqBnCwBAOYB3MORN+okqeR16cvZE6VS8h9v6wq2y5ntSSrZhOGvkpwUlA5Jh8st4oPNXRVGu95L4uv1iDdyZnuH1RhYZru8mT5BpcF2YyoAsassen/iObMdAE66A9AapHLyEAB9HJbUJ1VhsJ0URe7XPrHIBI2mZ/BNqxHwP2eNxtOXT0GSQYt1h5sASL24QrET2xtsj2Bm+2trpaz2i6cODuuu0NH5aXjy8lJ0f0kHktk+kIXasSJZQr43x5Y4/+MF470lzj/aWo3L//kjTv/zarz47eGwBt0b4zDYHq9OHJ4NrUbAwXoLKjzz/1hut4gDdSwjTyqWKQfbQ9i33doAJGWG7vkizZgKpOQDDSHo2958RLkl5GWZJ4Qm2N4iXWspPrMdkPq2DySzXS5Bz2A7keKEom+7WktBdy+BLgePfZGDhoB6Aqq+XDxV2sy/fHOVz6xmNZeRz0qWgjcut+h3soCcwa2WoKpOq0Gq5+99IAkTat2o05sFY/Oh0wjYfdSMg/XSelyeF2o7d/qje0sK+X5YV0uS+Hs94oncs93arg8s2G7zBNv7KRcuiiJsnjYfxlQlBds95fFtflboc3TEd7A9MR2Yu1RKjDCmAhqGKknZOINJUbZWtAAAJg1O93nM4omD8P7NJ2GoZ5fdsJzQlCCRy8jXtHYOqMSWv9ptTny5tw4AsGRW+LOtTh+dh98sGgMAMOg0yA3iYkYOtg+051d30Q62d5eaoMcVM4vx0W1z8NGtc3D5zCFIMepwuMGCBz/ehbX99NgeiGZPsD2LwXbVMyXqUeppk7Fmf+/Z7RXNVnQ63DDqNDHxt0EUcokZQGJm6DPbkxSc2Q5I2e1yibWBaDosBauVLGNoaILt8nOoIdieVgiYq/s/zhf5sakMthMpTSiC7XLp3xSVBVb1Wo03ONpfKfl2OWhm0B63uV9tThudi/QkPWrNNnx3oKHXY7qC7eorI2/Qabz3Lxr9KCXvdovocKgr2A4AphD0bbeorJd9XzKSDThpuLSeWOHJbve24IjDTO6zJw6CQavBnpo27DoqBRdZRj4+yJntFrMOcHZKvbf9IQfm+ykj7+xwQnSJnkMVFGyXM/b9bYcXz2XkZTOul9afBpaQJ+VjsJ0UZWtlC4Cufu2+jMpPxQe3zsFd80fi3rPHhuR756YmQKcR4HSLPfoRhUtZowWiKAVXQ7VhoD/XzjkBj108EU9eVhpUyfb0pK6e7f6WYuuPHGwvirGA4oTBJjx8wQT8+Jt53rLf6w83h+37yZntGQy2x4X+Ssnvq5V20ZfkpECr8huBFMcyhwGNIQy2WxReRh4AskMUbG8+rPzM9oyhQEcz0NEysOdpPgLoEqSy+kpnKgTaawBXkD2bzVVAUhagD7y6ERFFl9y3PdhguyiKqs5OlTOz+81sV3HZ9GMZdVqcO0naXPWuj1LyXT3b1fl6ZKVIa+t6P4LtcqAdUFe5dPkezkAy29vjrGz4Yk8p+U88fdvl9gJqmhf+Sk8y4IyxUkuKdzdKFZLk9xK1njdIkpgpJaS1NXv+7v3Nbpd7tvdTRl4uIS9VFlfQhi95E4H8c/bHYWXpdH0icM7jwNSfRXskRAPGYDsphtXuxL5a6c2qr8x2mSlRj9vmjcD4QlNIvr9WI3hLq0eib3tFk/Q9BkcwyCwIAn4yrQgLx+UH9Xh5Z7hbBNrtQd7oPUZFDGW29ybZqMO8MdLiYkNZU9i+T5NFutBkZnt8ONkTbP/uQCMcvfSWlM+FI/O485NULKskDJntWaF7vmjIGi71bB9I2xJbG2CpV0dmO9BVBj5YzUekfu1qKFmXNhgQ3V291wNlrmYJeSKFyvOsU2tag+vZ3ulwQ94rrcZsxHyTFBT4ak9dn8fFW4bqhZ4S0J/trPEG1rtrV3nQLDtF2qTS0N5/Vrfcl1sQgAS9Cq4ZPNITpfsLrdbggu3dN+qo8dzRm4Vj86HXCthT04YDde3euZGsoooHgZBLyX+wpQoOlzvu5kO8ksvItzV6zod+B9vlMvL9BNu7lZAXBAUlmMjl8f0tI2+3MrMdAEYuAE69O9qjIBow9VwhkurtqDLDLUq79oPpJx4KkezbHutB5t4k6LUw6qTTSrCLtWPFUhl5X6YMyQAAbC5vCVuLgSZvz3YFlU+ioE0oNCEz2YB2mxOby1uO+/p+T7B9BPu1k5plDgtdz3ZRVE+w3WEJPpgKqKdsupyZ33R4YM/TXAZkhL9dT0SYpP673t7rgTJXS6XoiUhx8lIHVka+e6/yJL36AkY/P2koAODZNYf6LBluscdXr+FJg00oyUlGp8ONFduPv7ZQc892AMiRg+1tfmS2y/3a9VplBX76MdAy8janG07PPZB4Ca6akvSYI5eS334UVs/5MylOfv5jnTwyB9kpBjRa7Fi9t9573oiX+RCv5DLyLfIets4W/x7YaZYyuTV9X2vIme2KKiEPdCsj7+fmA4clvnu2E6kMg+2kGP70aw83uW97JILtXUHmxLB/r1CSs9tbB1CGTNbpcKHWc4EVa2Xkuxudn4pkgxbttq7qC6HW6A22M7M9Hmg0AuaOkBbwq/cdn4Ejl5EfyWA7qVlmiZSB7W+/s750tgJuhwqC7SOkjwMpJe8Ntis8sz0xQ8qIGGjf9uYjyt94IJMD5a29lwPul7mKme1ECiVvRg822O7NRFRpr/JzJhZgfGEa2m1OPPml7/fQeCojD0iV7S6aKmWlyiWgu+sqI6+gEr4ByPaUkW/wo4y83Jc8UWWlwtMTB1ZG3tJto06yyl6bviya4Cklv+2od5NOvGa267UanDdZugZ9d1OlN9M/NU7Oo/FqQJnt/ZSQlw5TaLDdkAIImgAz2+O8jDyRijDYTorhb7/2cPJmtkegjLwSMrp7071v+0BVNkuvQYpRh4yk2F3g67QalHqy2zeUhb5vu8Pl9u4OZhn5+HHyCKmU/Opj+ra73CIO1svBdpaRJxXLGiZ9DEUpeWuj9FHpPdszigFBCzTsD/45mg5LNwGU/loIgvR6DCTYLorqCrYnpAGG1AFmtjPYTqREcs/2mgFmtqs1E1GjEfA/Z44BALz+YxnKG629Hqf216E3F5QWQhCAdUeajntdzCrPbJfLyDf6UUa+w6HOFgPenu1BVia0egLNiXottCrcqOPLAk8p+b21bd7EoHg6bxxLLiX/xe46ZrbHiYT0BEAAOjs9lWcD6dneTwl5ALC3SedlQ6rC7oEKglRK3p+EAbcbcHYws51IRRhsJ8XwBtujmdnuCbZXR7CMfCxndPcmlJnt5d1eg1gv1TalWAq2bwpDsL3Zk9WuEbpeX1K/uSOlQNiOKnOPbIvyJitsTjcS9BoUZSjr/EAUkMwwBNuVntmu1UuB4cYBlNdvPixltcf4+6pfMoYOLNjeXifd4FBLsB2QSsm3BhFsd3RKfycsI0+kSHlp0s3uOrMNohh4Wys5yJyi0qAqAMwZkY25I7LhcIn408q9vR4jZ2SmqCyg2pdBpkRvSex3N/WsjKL2TP/sVLlne/+Z7d2Dymri7dke5P2brg0q6npd+mNK0mOuZ3P8l3ukSnTxlNl/rLEFaRgzKA12l9vbWpHBdnXTaDVISE+Aw6GDKOiADj/vhXaqPLMdAIwmaVNBfxyeDW4MthOpBoPtpAiN7TZUNEkB7gmDTVEbR6TKyLvcIio92fNKy2yXg8HB7ozuTt5Zr4RS+tOK5cz2ppA/t1xCPiPJoMqyjtS73NQEjB0kLUK+2d+V3S63Khiem8L5QOqWmAEkZoamb7s32K7wbG4AyB4xsDLyTYeBzKEhG05UDTTYrpb+9d2lFQaX2d5W7Xk8M9uJlCjX07Pd7nKjOYh1mFwKWq1BVdndZ44GAHy4tRo7qo7PwmvvjK+e7TI5K/W9zZVwu7s2a7TZ1F1GXq4aF0gZebUFEAfas90Sh9UgZIs9peTlnvVJcbbh4FgXTem5YTPezqPxSOrbLsCtSw0gs73Vr8x2ZQfbU/0rI+/wxBYMyrrvT0S+MdhOirDNsxAelpMc1czegm5l5IPJGPBXrbkTdpcbOo2AQabYDzR3ZxrgzujuypuUs+GgdEg6BAGoaOpAXZDlG31pYr/2uHXKKE8p+b1dwfb9nmD7yFz2a6c4kDkMaAxBZrulQfqYlDnw54q2rOFA4wDKyDcfVk9wOWMo0FoBuJz9HtqrljLpY3pxyIYUdabC4Hq2m+VgOzPbiZTIoNN4A4fB9G33ZqeqPDNzfKEJ50+WNhU9+t89x309HsvIA8DCcflIMepQ0dTRoy2aXA46TaUVD7oy2/0vI5+ksr7cA+3ZHi/njt6cMTYPBm3XbfV4fA26O29yobeVQLy1FYhXct92lybF/2B7p1kKRvfD1uYJtqcqMNieeQJQ8WP/xzks0kdmthOpBoPtpAhyD6RolpAHusrIW+yukASTfZHLpw/OSFTcBao3s70juJ3R3VU0K6dvfWqCHqPypAvGjSEuJd/IYHvcOmWkFGz/Zn+DN8tkX63Ur31EHoPtFAeySkJXRj7BJJVhV7qsEqC5DHAG8T7rcgAtFVIZeTXIOAFwO4PvUd58RKp2YEwJ6bCiKm1wcK+H+aj0MXVQaMdDRBGT6yklH0zfdrVm7fbmrgWjYNBq8O2BBqzZV9/ja11l5NX/OnSXaNBi0YR8AMC7G6UNW6IoeoPtas1sz/H0bK9v77/9gvw3orpge5InWSLIyoTy6xJvfzOAdO/r5JFdVbPUNjcClZNqxKme+xfx8F5CcmY74BCTgc4W/x5kawuojLwhTYH3QUuXAEe3AlWb+j7O7ikjb0gO/5iIKCIYbCdF6Aq2R6+EPAAk6LXITpHe6MNZSr5cof3aASDdU4bMHILNCErrWz9tqFxKPrTBdrlne1aKAi8yaUCmDMlAskGLRosdO6ulMlRyGfmReSoKDhH5kjksRGXkG9RRQh4AskYAoqsrKzsQrZXSYzPVEmwfKn0MtpR88xH1ZPnLTIWApR5w9l8StwdzlbQhRU0bD4jiTL6n1GowVba6ysirP1hUlJmEK2dJFU0e/e+eHmXTu3qUq/91ONaFnlLyn2w/ig67Cx0Ol7f3cqpaM9s9wXa70402W99VcjrscrBdXa+FfP8m2Mx2S5z2bJctnti1SZEBZuCiqdJ5JJv3ruJCoqflp92VFEAZebP6y8iPmC9tgN7wYt/HsWc7keow2B6Hvt5bh9mPfIGh//NJv/9NuP8zrDsc+h7UgRBFEVsrpTftSUXpUR0L0JXdXtUcvmC7HGRWQkb3seTM9oFm/oui6N10oJTXYaqnb3u4MtszkrhgiTcGnQYnDpcChGv218PpcuNQvVRqagTLyFM8yCyRAoedfvQ864ulEUjKCs2Yoi1ruPSxIYhS8s2HpY9qyWw3FQGChsH27uQy8IFmt5urWUI+jjz66KMQBAF33HGH93OdnZ245ZZbkJWVhZSUFFx00UWora3t8bjy8nIsXrwYSUlJyM3NxbJly+B0BtnGgUIuT85sbw1wsw3ir3z6racPR6pRh11Hzfhwa7X38+1xlOF/rBlDMzE4IxHtNidW7qrxbjzQCOrN2E00aJHs+dka+yklL1c9UNtr4S0jb7X32Hjir3g7dxxr3piuUvJqmxvBOGt8Ph48bxz+eMH4aA+FIkAuI2+zJwRWRj6h/0Q6e5t0TlZkGXmNFpj6M2DHu0BHi+/j7J4y8uzZTqQaDLbHEVEU8fRXB3DNy+txtNW/3e5tnU6s2lUT5pH1rbK5A00WO/RaAWMG9b/7Ldy8fdsjkNmulCBzd96d0UGWIZM1Wuyw2l0QBKAwQxl966cVS72Ad1a3otPhCtnzNlmkG2ZZLCMfl04e2dW3vazJCrvLjUS9FoMV8ndBNCCZw6SPAy0lb20EklWS2Z6aDxhSgMYDgT+26TAgaKUgtRroDFLWAIPtXUxSRhFaAw22VwFpBaEfD8Wc9evX49lnn8XEiRN7fP7OO+/ERx99hHfeeQerV69GdXU1LrzwQu/XXS4XFi9eDLvdju+//x6vvPIKXn75Zdx7772R/hHIBznYXts2gMx2lWYwHysz2YAbTy0BAPxp5V7YnNLaLV7LyAOARiN4s9v/s7ES5s6u10IQlNXaLhBZKXLf9r43qXRltqsroJrmCba7RaDdHvjmqa6qGPH3NwMAaQl63HRqCcYXpnmTL+KZIAi4avZQTPXcGyN1k4PtnZ3GADPb/ejZruTMdgCYsgRw2YFtb/s+xpvZzjLyRGoRn1dDcajd5sRdb2/BZzul7ITLZhThjjNGQtPHountDRV47LO9qGgKX1DZH1srWwAAo/PTkKCP/sJGzmyvZrC9V2khymyXX4NBaQkw6qL/e/fH4IxE5KYaUddmw9aKFswcFposyib2bI9rp4yQgu0by5uxyVM1YXhuCjQa9d70IvLK6hZsL5gc/PNYG4DcMSEZUtQJgtS3PZhge/NhIL0I0KpoCZBR3JWxHwinTcrmzigO/ZiiaSCZ7fnMQlK79vZ2XHHFFfjnP/+Jhx56yPv51tZWvPDCC3jjjTdw+umnAwBeeukljBkzBj/88ANmzZqFlStXYteuXfj888+Rl5eHyZMn4w9/+APuvvtu3H///TAYeJ0abd5gu58b67uTs1NTVFYiuy8/P+kEvPL9EVQ2d+BfP5Tj2jkndCsjHz+vQ3cXTSnEE1/sx3cHGnCgTmpdpdZ+7bLsFAPKm6xoaOs72N6V2a6uuZGg1yJRr0WHw4VWqwNpAf6+Lfb4rQYhu3P+SNw5f2S0h0EUcXLP9g6Lse8MbpnTDjg71V9GHpA2yI9eLJWSn3GdtIY/lpzZrmciDZFaxO/VUBw5WN+O61/dgIP1Fhi0Gjxw3jhcNmNIv48bM0jaaSYHPaPF26+9KLr92mVylnU4M9uV1qu8u64yZAMLtivxNRAEAVOLM/DfHTXYWN4csmC7XNIuM0WhF5k0IEOykjAsOxmHGix4+fsjAIAR7NdO8SIxQ/pvoH3brY3q6dkOSKXkg81sV0sJeVnGUKB2R+CPa6kAIKovs92QJP3NtFYG9jhzNTByYXjGRDHjlltuweLFi3HGGWf0CLZv3LgRDocDZ5xxhvdzo0ePxpAhQ7B27VrMmjULa9euxYQJE5CXl+c9ZuHChbjpppuwc+dOlJaWHvf9bDYbbLauAJbZLLUEcTgccDgGtlYYCPl7R3MM4ZCdLN3eqTF3BPyztXk2SifoBdW9Lr7oBOCXp5fgdx/swlNf7scFk/K8mw6MWjFuXofuCtIMmFacjg1lLXjVs+5INWpV/VrkeHpLv/z9YcwoNnmTB45l6ZReA6Nu4OeOWDsHmRJ16HC40GDuQH5qYMH2tg7pXkWCLn7OHeEWa/OD4ltf89Fgks6fljYdxM5WOPubs9Ym6AE4dckQ+zlWDrZrE5X7HiRMvhq6Ny6E89A3EIfMPv7rnW3QAXAIBkCBPyPPVRQJsTLP/P3+DLar3MqdNVj69la025zIT0vA36+cgilD/CttJGdVVzRZIYpi1EqHba3w9GsfnB6V73+sgjD3bLfYnGjwBFeHZCkn0CyTe7abB5rZ3qjM7H5vsP1I6Pq2N1ul+cAy8vHr5JE5ONRgwc5q6Sb1yDz2a6c4klkiBYkHwqKiMvKAFGw/8m3gj2suA4qmh3480ZQxFNjzceCPk0vPqy3YDkil9c3V/R8nczmA9lqWkVe5t956C5s2bcL69euP+1pNTQ0MBgPS09N7fD4vLw81NTXeY7oH2uWvy1/rzSOPPIIHHnjguM+vXLkSSUnRv8ZftWpVtIcQUpUWANChvN6MFStWBPTYw5UaABoc2rsLK5p3hmN4MSlJBPIStai1OvDrl79Aq0UAIGDrhh9xNH5ehh6GawVsgBbfH2oCANitbQHPJyUZLQBfabT48XAzFv31S1w/2oXshOOPO1gu/Y0c3rcHK8y7Q/K9Y+UcpHFqAQhYufo7lKcH1rd93yHpdak4tB8rbPvCMr54FSvzgwjofT62HZAqoDTWOiGWtODTj5fDrfF93zLJVov5AH7cuhsNh/qOMTQebQQAbN61Gfs1+4MfeDSJbswz5qH544exaehNx335hPoNGCfoseLTz6IwuNDhuYoiIdrzzGr1LxmZwXaVcrtF/O3zfXjiSynracbQTDx9xRTkpPqfGTs4Q7oB0mZzosXqQEYUAn1Olxvbq6Rg++Si9Ih//94Uenu2B16ezx8VzdIfb3qSPuASXrFADra32ZxwutzQaTVBPY9SS+nLfbo2ljeHbJOKXEY+I4nB9nh1ysgcb1Y7AIxkZjvFk8xhQOMAMtudNsDeBiSFptpITMgaLgVHO81AQv9l+AAAoiiVW594SXjHFmkZQ4GOZql0YWK6/49rPgxodF1l19XEVBhYGfm2GgAig+0qVlFRgdtvvx2rVq1CQkIvUaQwueeee7B06VLvv81mM4qKirBgwQKkpfl57goDh8OBVatWYf78+dDrlbfe8qWx3YbHtq1Gu1PA/IVnQh/AOuy16nVASwtmTyvFWePzwzjK2JM4rA43vbEF39bpYHO5AQALTj8ZBRnxeb09t9OB9/93NWxO6bUYMigHixZNifKowuu0ajNueH0zas02PL0vEc9cXoopQ9J7HPOf+o1AUyOml07CotKBvV/G2jnojZr1qD7cjFETSrFoQmB//x+/sQVoqMPUSeOxaEZReAYYZ2JtflB862s+1gyqwcH7D+Jo1VAIOiMWm/8F109eBfQ+7uMe3QrsAmbOnQex4PiKSN0dcB+ADTacPP9k5Jcq97pEk1WG5K//iPxTZhy3+V/z/X5oGlOwaNGiKI1uYHiuokiIlXkmV2jrD4PtKtTa4cAdb23GV3vrAQA/O3Eofrt4TECLbUDq3ZSXZkSt2YbyJmtUgu0H6tvR4XAh2aDFsJzYWOwO9pSRb2i3odPhCnkf+YomKWO+KENZQWaZqVvZNXOnM+g+495gu8Ky+8cVmGDUadBideBgvQXDcwc2b91uEc2ekvxZKQy2x6uZwzJh0Glg99z0GpHLzHaKI1klwKGvg3+8VdoVr7oy8oBUSr7QzxvglgbA3g5kqq2MvOfnaSkLMNh+BEgfAmhCex0XE9IKgYp1/h8vZ8GrceMBAZDKxNfV1WHKlK7zhcvlwpo1a/DUU0/hs88+g91uR0tLS4/s9traWuTnSzc48/PzsW5dz3lVW1vr/VpvjEYjjMbjN3vr9fqYuCkXK+MIlVyTDnqtAIdLREunGwXp/m+0t9qla8y0JKOqXhN/nDmhAFOLy7CxrKsyWXpyQty9DrJMvR4Lx+Xjw63Se4MpyaD612JycRY+uGUOrn1lPXZWm7HkpQ34008m4dxJXUH1Dof8NxK61yNWzkEZSdK5os3uDng8VofUs90Uh+eOcIuV+UEE9D4fUz0VFysPpAJXvA3NG5dC8/YVwOX/BgzJxz+JS7rPq0vJAvqZ2/Y2KekoOTNZ2X8HU5YAXz8M/c63gZNu7/k1VyegV/jPB56rKDKiPc/8/d7BpZxSzNpX24bznvoWX+2th1GnwV8umYT7zx0XcKBdJmcVR6tvu9yvfcJgE7Sa6JSxP5YpUY8kg3RjtjoMfduVmtEt02k1SDFK+3haB1BKXok92wHAoNNgkqcKw8aypgE/X2uHAy63VMqNme3xK8mgw4yhmZ7/13orbBDFhcxhgKVOyuIOhqVB+qiqzPYS6WMgGf/NnlL8aiubLv88cll4f7WUqe+1kJkKAXMAPdvlLHhmtqvWvHnzsH37dmzZssX737Rp03DFFVd4/1+v1+OLL77wPmbv3r0oLy/H7NlSj8nZs2dj+/btqKur8x6zatUqpKWlYezYsRH/meh4Go2A3FSpckGtObAqbBa71KtcXsfFE0EQcM9Zo7v+DRGJId5QrzQXTunafJWaEB9zIt+UgLdvmI0zxuTB7nTjl29uxhNf7IcoSmtxq10KKica1Pd6pCdJN5BbPBX1AtFuk16X5Dg8dxDFuyRPcpTL7oIjdxZw5btA9WbgXxcDtrbjHyB/zth3dSPRLXqD7cY0/zcOxqTkLGDc+cCGlwC3u+fX7FbAoKx73kTUNwbbVaSs0YKfPrsWRxqtKExPxLs3nYgLpwwe0HMWRTvYXunp1x4jJeQBaTHeVUo+9MF2pQaZu5Oz21usgS/WAMDmdOGo5waREjcdeEvJlw28b3ujZ8GbmqCDQcdTdjw7ZWQOAGBEXio0MbL5iCgiMj2B5eYg+7bLme3JKgq2J5iA5Fwps91fTSoNtidlSjdsAg22Nx8B0ovDMaLoSxsslda3+3n9bq4GDCn93vgi5UpNTcX48eN7/JecnIysrCyMHz8eJpMJ1157LZYuXYqvvvoKGzduxDXXXIPZs2dj1qxZAIAFCxZg7NixWLJkCbZu3YrPPvsMv/vd73DLLbf0mr1O0ZHruSkdaLC9vdMTbI+TwOqxpg3NxPyxeQCABC1C0gpMyeaOyEGupwVhqgJb2wUr2ajDs0um4hdzpKo5f1m1D3e9vRU2pwtWz4aUZIP6NmKY5GB7EMkSFpvndTGq73Uhor7pk/XQ6KX7lB2NHUDxbGDJcqB2B/DahUBna88HyJvn+2mDZm/vupes+GA7AEz7uXQv4/DXPT/vsPguuU9EisTIjUq0djjw85fXo9nqwMTBJnx02xyMLzQN+HnlQGdFlDPbJw9Oj8r396XQU0qeme29k4PtwWa2VzV3QBSBRL0WWVFoXzBQ0zzB9g0hCLY3ezYsBFuOn9Tj0hlFuGTaYCxbMCraQyGKLLnsebB9271l5FUUbAeA7BFA437/j28+AiTnAEaVtaEQBCCjOLBguygCzSrObJcz1P3t226ulh4T58GlePfXv/4VZ599Ni666CKcfPLJyM/Px3vvvef9ularxccffwytVovZs2fjyiuvxFVXXYUHH3wwiqOmY+WnyZnttoAe1y4HzFSYteuvu88cjRSjDoOTxWgPJeq0GgHXegLOk2LsXky4aTUCfnf2WPzxgvHQagS8t7kKS55f5w1EJ6ow2J6eKN1raLEGH2yPx6oYRPFOEARvdru10RM3KJoOXLUcaNgLvHYB0NHS9QCbGdAaAF3fAXRbm3QNo9FpoFXDRp6imUDuWGDDiz0/b7f2Xm6fiBSLV0Mq4HS5cesbm3Cw3oL8tAQ8f9W0kAXmollGvtPhwp4aqcTMxBjKbAfQldnezGB7b+QyZMEG27u/BkrMKpgyRAq2H6q3oMliH9DfY2M7g+0kSU3Q4/8unhTtYRBFXlImkJgBNB0K7vHWRkBrlDJ31SSrBDi61f/jmw939TdXm4yhgQXbO5qlmz1qDbZneDL2qzZKmzL6Y64CUgeFd0wUc77++use/05ISMDTTz+Np59+2udjiouLsWLFijCPjAYizxNsrwkgs93pcsPmlEqbxnPAbHhuCr5aOhdrvlwV7aHEhOtPHoaLpg5W5Ob3ULhiZjGKMpJwy+ubsO5IV3s4NW5I6bp/E3hlwq7MdvW9LkTUv8SsRLTXtEuZ7bLCqcBVHwKvnQ+8eq6U7Z6UKWW2+1FJy+bZMGhMMyrynvBxBEHKbv/v3YD5KJDmWXc5rICeLSKJ1ISZ7Srw4Me78M3+BiTqtXj+6mnI9SywQyGawfad1a1wuUVkpxhRYArdzxQKBZ5ge2WIM9vdbtFbRUDJwfaBZrYrvZR+RrIBJTnS7sRNA8xub/KUkY/XmxxERACkvu3BBtstDUBytvqydrOGS9n+op8ZeE2Hu6oEqE3G0K4y+f5Qa/96WfoQYNQi4Is/+FdK3lwNpBX2fxwRxby8tMB7tls8PZcBBszSk/Rg5y6JIAjITlFJoCNIJ4/Mwbs3n4jBGV3BkCRVZrbLbQADu38jiiIsnl72atyEQET9kzPbO5qOuT9eMBm4+iOgtRJ45VxpTW4z91tCHoC3X7shVUX3QSf+FNAlAJte7fqcnWXkidSGywiFe3XtEby6tgwA8NefTg5J6fju5IBvdUsHHC53SJ+7P1srpN4uk4tMMbfAGxymMvL17TbYnG5oNQIGpcfWBoNAmIJcrMnUkN0/rTgTwMBLyTdZpB2dzGwnoriWWTKwzPakzNCOJxbkjgPs7cCBz/07vvmweoPLGUOB1grA5fTv+Oayrsep1cKHAUs98O1f+z9WLiNPRIqXF0TP9nZPL2qDVgMDI81EPYzMS8XyW07CaaNycNqoHOSkqqB/8DGC7dluc7rhckubPtmznSg+JWZJ98e9ZeS7y58A/OwToL0WeOUcaT0fYGa7aiSkARMuBja90rVmdXSwjDyRynAlpWBr9tXjgY92AQB+feYonDk+P+TfIyfVCKNOA7cYnv7kfdla2QIgNnuEecvIh/g1kYPMBekJ0GuV++dpGmAZ+QrPjsghmcotpzPV07d9oJntjRa5jLyKLjKJiAKVOWwAPdsbgKTs0I4nFpScDoxYALx/gxQs7YvdIt3kUHMZebfT/x7lwS/RPAAAV9ZJREFUzUeABBOQmB7GQUVZ5gnAibcB3z3ed4l9twtoO8pgO5FKBNOzvasMNINlRL3JTjHipWtm4KVrZsRcIkgoBNuzvd3WtcmRme1E8SnRc9+2Rxn57nLHSAF3axOw52PAmNrvc6oy2A4A066R1qv7V0r/djCznUhtlBvNi3MH6tpwy+ub4HKLuHBKIW46pSQs30cQhKiVkt9a0QIg9vq1A11l5I+2dHp38oZCeaPyM7qBgZeR92a2Zyn3dZg6VAq2b61sgd0ZfFWIZm+wXR+ScRERKVJWCWCpA2xtgT/W0ggkZYV+TNGm0QDn/0MqR/efa/vO6pYzuVVbRt7zc/nbt735iLqz2mVzl0otFD77re9j2usA0cUy8kQqIbeUq231P7O9rVN6/0hJYLCMKB5lJHf1bBf9bU+Ero06SQYtNBr1bUIgov71mdkuyxkJXLMCSC0AUvtPFLS1eYLtaqskUlAKFEwBNrwo/dtuBQzKve9NRMdjsF2Bmix2/PzlDWizOTF9aAYeuXBCWHfXRiPY3mK144jnjXrS4NCWxg+FvLQE6DQCnG4R9W3+Zw30Rw3l04Hgd0YDUt8vNfStH5adjIwkPWxON3ZUtwb9PMxsJyKClNkOBFdK3tooBRzVKDkLuPhFoOJH4Ks/+j7O26NcpcF2UxEAgcH2YxmSgQV/kLJIDnzR+zFyVQRmthOpQr5JCra32ZzeQFh/vJntzEwlikvy/RuHS4TV04PdH+3eqhg8dxDFK2/Pdl+Z7bKsEuDmtcDiv/T7nKrNbAeAaT+X2sA1HwEcVkDPMvJEasJgu8LYnW7c+K+NKG+yoigzEf+4ciqMuvCWeyuKQrB9W6UUnByalYT0pNjrVa3VCN4bGVUtoXtd5CBzkYKDzEBXZrs5iMz2FqsDbZ5F2+AM5b4OgiCEpJR8kyfYnsWe7UQUzwYUbG9QZ2a7bMgsYN69wLd/Afb76N/edFgqUZeSG9mxRYrOAJgGM9jem3EXAsVzgE//B3D1cl0ml95nZjuRKqQYdUg2SPcH/O3bLgfbUxgwI4pLCXoNDDrp9nAgfdstNikwz3MHUfySM9s7mvxos5qYLvUu74ccbDekqfA+6PgLpb71G19hZjuRCjHYriCiKOK372/HusNNSDXq8MLV05GVEv5dXnLgtyKCwXZvCfkY7Ncuk0vJVzaHrm+7ajLbPT3bWzrsAT9Wfg3y0oxI0Cu7b+DU4kwAwIYjAw+2ZzLYTkTxLCkTSEgPvG+72y31h1NzsB0ATvylp3/79UBrL33Lmw9LwWUV9hn1yjwBOLBK+n33xeUEWivjJ9guCMBZ/ws0HgB+fPb4r5urAa1R+hsjIlXIMwXWt53ZqUTxTRAEpHsSJlqs/t/D8VbFMCr7vg0RBa/fnu1BsLdJ5yHVlZEHpMpjky4FNr/Gnu1EKsRgu4I8t+YQ3tlYCY0APHl5KUbmpUbk+0ajjPzWyhYAwKQY7NcuG+wJtle1MNh+rIH0bFfLawAA0zx92zeWNwfU+0wmiiKD7UREsqwSKUM7EJ0tUj9qtZaRl3Xv3/5uL/3bmw6rt4S87LTfSYHj504Banb4Ps5cKc2J9OLIjS3a8scD064Fvn4UaKvt+TVzlVRCXs0bMYjiTF6qHGxnZjsR+UdOmGgNoBWgxc4WFETxTi4j32fP9gCpuow8AEy7BrDUA24ng+1EKsNgu0Ks3lePRz/dAwD4/dljceqoyJUB9QbbQ/jG2RdRFLGlQiojP7ko9vq1ywozpGB7dYiC7R12F+o8/d+VHmg2eXdFBx9sV3opfQCYUGiCXiugvs2GCn9KKh3DanfB5nQDYLCdiAiZw4CmADPb5SxntWe2A936t687vn9782Ep81vNhswErv8aSDABL8wHdr7f+3Fyqfl4yWyXnfYbQKsHvnig5+fN1SwhT6Qy+aYAg+2eHs3MTiWKX3Lf9sDKyLMqBlG885aRD2Fmu+qD7bljgOKTpP9nGXkiVWGwXSH+umofRBG4bEYRfnbi0Ih+7yJPSRhzpzOgXa7BOtraiYZ2G7QaAeMKYjjYLme2h6iMfGWzFGROTdB5g9VKZfLsirY53eh0uAJ6bIWKMtsT9FqML5Tm8Iayfsra9kLOajfqNEgy8OYXEcW5zJLAe7ZbG6SPSSrPbJf11r/d7QJayuMjuJw+BPj5SmDkmcA7PwO+eFBqJdBd8xFA0ACmomiMMHqSMoF5vwe2vA5Ubuj6vLlaymwnItXI9dycrvEz2N7uzWxX9hqUiIIn38MJJGGi3SZv1GGwnSheyZntHc0dEN2BV/TsjVxG3pCq4qSjaT+XPuqTozsOIgopBtsVYFtlC7ZUtMCg1eCuBaMgRLjMY5JBh2xPb/iK5vBnt8v92kflpcZ0z+6CEJeRl1/booykiP+OQy3FoIPG8yOYAywlr6Yy8gAwdYinlHxZ4H3bGz3B9qxkg+LnBBHRgGUOA9prAVub/4+xyMH2OMhslx3bv721UipRp/bMdpkhScrwP+N+4Ju/AG9dBnS2dn29+QiQNhjQqfjmjS9TrgbyJwArlnVtQpDLyBORauSnSZntdf72bO+Ug+2xu/YmovDy9mzvCLxnO88dRPFL7tkOEehs8W+TX39Un9kOAGPOBU77rbRZnohUg8F2BXh1bRkAYNGEfG/QO9KGeN48I9G3fYsC+rUDXWXkq5o7gurHfSy5TL8agswajdBVSj7Og+3evu1BBNubLNIFZmZKHAYEiIiOlVUifQykb7u1EYAAJGaEZUgx6dj+7Y37pc+rvWd7d4IAzLkTuOIdoGwt8M95QIPndWg+AmTEUb/27jRa4KzHgOpNUoa72w20HWUZeSKVkYPt/ma2sxQ0EQXVs93Gnu1E8U5r0MLguWcZqr7tcRFs1xmAU34NJKRFeyREFEIMtse4ZosdH26tBgBcFeHy8d15+7ZHINi+TQH92oGuMvIWuwvmDueAn6/c09N7SJY6gsxysL01gGC7w+VGtadSgFqC7VOKpQDP3to2mDsD23jQZJGOz0xW8QUmEZG/ModJHwPp225tABLTAW2c3QTs3r/9v3fHZ9l0ABgxH7juS+nn/+fpwL6VQHNZ/AbbAaB4NjDhEuDz+4Hmw4DLzsx2IpXJTQusZ3s7g+1EcS89ydOzPaAy8jx3EFHo+7bb2jzB9lTeCyUiZWGwPcb9e0MF7E43xhemoTSKmd6RCra73CK2V0nB9ljPbE/Qa5GVLC1IKlsG/rrIr22RSoLMpiAWa9UtHXCLUo/yHJVcVOWmJmBIZhJEEdhc3hLQY72Z7Unsn0hEhKRMICG9K0PZH9am+OnXfiy5f3vjAcAUp2XTASB7OPCLz4Hik4A3LgFqtsVH//q+zH8AcHQAH90u/ZvBdiJVyTd1lZH3pwKbxS6XgmbAjChemQZURp7nDqJ4JvdtZ2Y7EcU7BttjmMst4l8/SCXkr5o9NKo9m+UAcEWYg+2H6tvRbnMiUa/F8JyUsH6vUJBLyVeHoC9NhcrKpweT2d59w4GaepRP82S3bzzSFNDj5J7tzGwnIvIYMgs4tNr/4y0NQHKcBtsBqX/76LOBwmnRHkl0JaQBl74BnLxM6l+fOy7aI4qutALglGXAkW88/2YZeSI1yfG0nrO73Gj2Y+Nzu80FgNmpRPFMLiMfWGY7zx1EBCRlS/exLbWWkDwfg+1EpFQMtsewr/fWobK5A+lJepw7KboZJ5HKbN9aKWW1Tyg0QaeN/ekpl5Kvah7Y6yKKoup6lXt3Rlv93xmtttdAJpeS31geWN/2pnbptctiz3YiIsmIBUD5WqCjxb/jrY1AUlZYhxTTNBrgktekkvLxTqMBTv8tcOcuYNRZ0R5N9M26WWrNoNEByTnRHg0RhZBBp0G2Z/1Q09r/pvCunu3asI6LiGJXeqJ0zggkWcJq57mDiICsUdJ6u25n3YCfy+10w+lp1WpI5b1QIlKW2I9mxrFX1kpZ7T+dVoQEfXQvXuU+4lXNHXC63GH7PlsrWgAAk2K8X7usQA62twysL01Dux0dDhcEoSuAr3TpnmC7OYjMdrUF26cNlYLtm8tbAvr7afJmtvMCk4gIgBRsF13Aoa/8O97aEN/BdkAKMquoWsyAmQr5egCAzgic/w9gzlJpjhCRquSmevq2t/UfbG/vlG5qpxrZuoooXgWT2e7dqGNgZjtRPMufnA8AqN1SO+Dnkvu1A+zZTkTKwzsrMepwgwVr9tVDEIArZxVHezjIS02AQauB0y3iqB+744Ml92sfX6iMYHthiILtcpC5wJQIg04df5bBlJGvUFnfetnI3FSkGnWw2l3YU9Pm9+OarAy2ExH1kF4E5I4F9q3073hLnGe2E/VlyEwp25+IVEfu217LzHYi8kMwPdvbvecOBtuJ4lnepDwAQM3WGoiiOKDnkkvI6xJ00Bp4XUJEyqKOqJ4KvebJaj99VG5MBB41GgGDM6XAcrj6tjtdbuypMQNQULA9Qw62D2wDQleQWR1Z7UC3ndEBBdulTQtqy2zXaASUyqXky/wvJc/MdiKiXoyYDxxYBbj9qBRibYzvnu1ERBSX8jx9TmvNtj6PE0URFk8p6BQGzIjilnz/ptPhRqfD5ddjLJ6e7Tx3EMW33HG5ELQCOho70Fblf4JRb+xt0n1QlpAnIiVisD0GWe1OvLOxAgCwZHb0s9pl4e7bfqjBgk6HG8kGLU7ISg7L9wi1rp7toclsV1OQOS2IzHY1vg6yaZ5g+4ZAgu3tDLYTER1nxELAUg8c3dz3cY4OwGFhZjsREcWdvDQps72iue+1e4fDBbcnCY3ZqUTxK8Wog1Yjtdnx9x4Oq2IQESBloWePlja412ytGdBzyZntxjSWkCci5WGwPQYt31yNtk4nhmYl4eQROdEejldRRniD7TurpRLyYwvSoNEoo5emHGxvaLf5vfu3N2oMMss92/3t+dVqdXgXdWrK8JfJwfZ1hxv9Kqtkc7rQ5lm8ZjHYTkTUpWgGYDQB+1f1fZy1UfqYxMx2IiKKLxMHS5XiPthShR2eVm29kctACwKQxHKtRHFLEISA7uGwKgYRdSf3ba/ZwmA7EcUvBttjjCiKeHXtEQBSr/ZYCjqHO7N9R5VUQn5cgTJKyANSqS35psRAetmXq7BXudzzy+znrmg56yI7xYgkg/oWa1OKM5Bk0KLWbPPO9b40W6TXTasRkJagD/fwiIiUQ6sHhp8O7Pus7+MsDdLHZGa2ExFRfDltVC7OHJcPh0vE7W9tRoe9943hchnoZIMOghA79x6IKPJMcitAa/9921kVg4i6k/u2126tHdDz2No8wfZUBtuJSHkYbI8x6480Y09NGxL0GvxkalG0h9ODHAgOV892ecf9uIK0sDx/OAiCEJJS8hUqzGw3BdizvSu7X31Z7QCQoNfilJFSpYrPdva/01Pu156RZIipTTdERDFhxEKgehPQXuf7GG9mO4PtREQUXwRBwCMXTkBuqhEH6y145L+7ez1OLgPNzFQi8ma2+3EPh1UxiKi7/ElSZvtAg+2dLVIiG3u2E5ESMdgeY+Ss9gtKC73BylgRzsx2t1vErmrlZbYDQIEcbG8J7nXpdLhQY5YuJtQUbE9PlC6MWjscfpVNV2Mp/WMtHCddfK7c5X+wPTM5ts4DREQxYfgZAATgwOe+j2EZeSIiimMZyQb86SeTAACvri3DV3uO36DW1smey0QkSU/y3MPxo4y8lVUxiKgbObO9cX8j7Jb+q2P4UrtNCtZnDs8MybiIiCKJwfYYUmfuxKc7pCDckllDozuYXsh9tJutDpg7/ctW9ldFsxVtNicMWg1G5KWE9LnDrTBDDrYHV0a+qqUDoggkG7TIVFFvbrmMvMstwuKjbGF38RBsP21ULnQaAftq23G4wdLnsY0WqXSSmuYEEVHIpOQAhVP6LiVvaQB0iYBBve8rREREfTl5ZA6uOWkoAGDZf7ahsd3W4+vMbCciWVdme/+BMjmznVntRAQAKXkpSMlPAUSgbnsf1ef6UfVDFQBg8OzBoRoaEVHEMNgeQ95YVw6nW8T0oRkYG4Ol1FMT9N7AX6hLye/0ZLWPHpQKvVZZ03KgZeQruvVrV9OO4AS9Bgad9Lv0p+dXhQr71h/LlKTH7BKpnHF/peTlzPasZPYpIiLq1YgFwMGvAJePDYDWRiCZWe1ERBTf7j5zNEbmpaCh3Ya7393eo+qYxS5ntjPYThTvunq2959cw406RHSs/MlSNc+aLf1X8+yNo8PhfWzR7NhqrUtE5A9lRTVVzOFy440fywEAS2YPje5g+hCuvu1K7NcuKxxgGXm1BpkFQfBmt7f60fMrHjLbAWDBWKm00ko/g+3MbCci8mHEAsDWClT82PvXrQ1AEsvPERFRfEvQa/G3n5bCoNXg8921eGt9hfdrcnYqg+1EJLcC9KdnOzfqENGx5FLyNVuDC7Yf3XgUbqcbKYNSkFakvPgAERGD7THis501qGuzISfViDM9fZ1jUbj6tu9QaL92oHsZ+eAy29UcZJbLkDW2953Z7nS5vZUBhmSp73Xobv5Y6e97U3kL6sy+Ww8w2E5E1I9Bk4HkXGD/yt6/bm1kv3YiIiIAYwvSsGzhKADAgx/t8ra0YnYqEcnSPZnt/vRsb5d7thtZRp6IJHJme+2W2qAeX/lDJQBg8KzBqqr8SkTxg8H2GPHq92UAgMtmDPGW3o5FQzx920MZbBdFETs9me3jCxUYbPdktte0dsLlFvs5+nhqDrYXewLnv/7PNmypaPF53NHWTjjdIgxaDfJSEyI0uujINyVgclE6AGDVbt8XoAy2ExH1Q6MBRswH9vkItlsagaSsyI6JiIgoRl075wScWJKFDocLd/x7CxwutzdgxmA7EcnBdn96tnOjDhEdS85sr91eC7fLHfDjvcF29msnIoWK3ahuHNlTY8a6I03QaQRcMXNItIfTpyHeMvLBZXH3ptZsQ6PFDq1GwOj81JA9b6TkpSVAqxHgcImob7MF/Phyz2upxmD7bxePxbCcZNSYO3HJP9bi3+vLez1OLqU/ODMRGo36dy8uGCddgH6203ewvZHBdiKi/o2YD9TvBlp6eX9hz3YiIiIvjUbAny+ZhLQEHbZWtODJL/ajvZOloIlIIrcBDKRnO88dRCTLGpkFXaIODosDzQebA3qsKIqoXNuV2U5EpEQMtseAV9dKWe0Lx+UjLy22s3rD0bN9Z7WU1T48JwUJeuWVoNJqBOR7fm+B9m0XRVG1PdsB4ITsZHxwy0lYMDYPdpcbd7+7Hb95fztsTleP4+Ts/qIM9b0GvVnoaRWx9mADzJ29L2TlzPYsBtuJiHwrOR0QtL2Xkrc2MLOdiIiom0GmRDx84QQAwFNfHcAPhxoBACksBU0U99KTPD3b/Sojz2A7EfWk0WqQOz4XQOB9282VZrRVt0HQCiiYWhCO4RERhR2D7VHW2uHA+5uqAABXzS6O8mj6J2dfVzZ3BFUyvTc7quR+7Wkheb5o6Orb7rsHd2+arQ7vImWw5znUJjVBj39cORV3zR8JQQDe+LEclz73A2q79StXcyn93pTkpKAkJxkOl4iv9tT1eoy3jHwKg+1ERD4lmIAhs4H9q3p+3u0CrE0MthMRER3j7IkFuLC0EG4R2HVUWoszYEZE6Z7M9taO/oPtVrunZ7uBG3WIqItcSr5mS2DBdrmEfP6kfOg9LS2IiJSGwfYo+2J3LTocLozKS8WMEzKjPZx+DTIlQqcRYHe5ewRLB2KHJ7N9nAL7tcsGe/q2VzUHVl6/wnN8flqCIrP6/aXRCLht3gi8ePV0pCXosLm8BYuf+BbrjzQBiL9gO9CV3b6yl1LyLreIFivLyBMR+WXkAuDQasDR7T24owWAyDLyREREvXjgvHE9Nnsz2E5EWSkGaAQpa31jWd8loJnZTkS9yZ8s3eus3eq7bWZvvCXk2a+diBSMwfYou3DKYCy/5STcd85YCELs96rWagTvorw8RKXkd1VLu+nHKzizvUAOtgdYRr4izoLMp43OxYe3zsGovFQ0tNtw2XM/4NW1R1RdSt8XOdj+9d46dDp6ltVv7XBALhyRkcRgOxFRn0YsBJwdwJHvuj5nbZA+MrOdiIjoOKkJevzlksnQeG5BpDJgRhT3UhP0uHiqFOi6/8OdcPdRzVLu2Z7CcwcRdZM/Kchg+w/s105EysdgewyYXJSOE4crJ/NKDoiGItjebLGjqkXKRBur4GC7XEa+OsAy8nJmezwFmYdmJ+O9m0/E4omD4HSLuPeDndhaKVU3iJdNBwAwodCE/LQEWOwufH+wocfXmiw2AEBagg56LU/TRER9yhkFmIYA+z/r+pxV6kGLJOVcXxEREUXSjBMy8dD5EzB3RDZOGsH3SyICli0cjVSjDturWvHOxgqfx1mY2U5EvcibKJWRN1eaYW30L27gtDlxdNNRAAy2E5GyMYpDAZMDwxUhCLbv9GS1D81KQmqCcnuyFA6wjHw8BZkBaUH21GWl+M2i0d5sCgAoylRn3/reaDQCFoyTLkKPLSXf2C6VkM9KMUZ8XEREiiMIUin5fZ8BoicDx8LMdiIiov5cPnMIXrt2JtIUvBYnotDJSTXi9jNGAAD+79O9Pvu3s4w8EfXGmGZExrAMAP5nt9dsqYHL5kJSdhIySjLCOTwiorBisJ0CNiSEme3efu0Fyu3XDnQvI98BUfRdautY3jLyWfETZJYJgoDrTy7Ba9fORHaKETOGZip6w0UwFoyVyiut2lULV7cSbU0W9msnIgrIiAVASxnQsF/6t7UREDRAIhfrRERERET+uvrEoRiem4JGix1/+3xfr8dYbFIrvBSjNpJDIyIFkPu212yp8ev47iXkldBil4jIFwbbKWAhDbZXeYLthcotIQ90Zba325wwdzj9fly8ZrZ3d9LwbPxwz+l46/pZ0R5KxM0clglToh6NFjs2ljV7P99kZbCdiCggQ+cCuoSuUvLWBiAxE9DwUpeIiIiIyF96rQb3nTMWAPDq2jLsq2077hhvGXkDM9uJqKe8SVIVT38z26t+qAIAFM4qDNuYiIgigXcgKWBDQlhGfpenjPx4hWe2Jxq0yPIERuUe9P1xuoGjrVKP93jq2d4bnVYDjSb+di/qtRrMG50LAFi5s2vHZ5OnjHxmEoPtRER+MSRJAff9K6V/WxpZQp6IiIiIKAhzR+Rg4bg8uNwiHvho53EVHFlGnoh8CTSzvWJtBQCgaHZR2MZERBQJDLZTwOTAcEO73bubNRjtNicONVgAAOMKlJ3ZDgCFGV2l5P3RbAPcIpCg1yCHvbnjlty3/bNdNd4FbKNcRj6FwXYiIr+NXAiUfQ90mqUy8snZ0R4REREREZEi/W7xWBh0Gnx3oBGf7ewZNLPapTLyDLYT0bHkzPb63fVwec4VvrQdbUNrWSsgAAXTCyIxPCKisAl5sH3NmjU455xzUFBQAEEQsHz5cu/XHA4H7r77bkyYMAHJyckoKCjAVVddherq6h7P0dTUhCuuuAJpaWlIT0/Htddei/b29lAPlYJkStTDlCj11q5oDj67ffdRKat9kCkBWSoINheYPMF2P1+TRpuUyT0kM4k9aeLYySNzYNRpUNHUgT01Unk2uWd7FsvIExH5b8R8wO0EDn0tlZFPyoz2iIiIiIiIFKkoMwk3njwMAPCHj3ejwxM0E0URFruc2c6e7UTUk2mICQnpCXA73KjfVd/nsVU/SiXkc8fnwpiq/NgAEcW3kAfbLRYLJk2ahKeffvq4r1mtVmzatAm///3vsWnTJrz33nvYu3cvzj333B7HXXHFFdi5cydWrVqFjz/+GGvWrMH1118f6qHSAHj7tjcGH2z39mtXQVY70JXZXu0pDd+fRpv0sSgjvkvIx7skgw5zR+QAgHe3uBxsZ892IqIAZAwFskdJfdutjUASM9uJiIiIiIJ106nDUWBKQFVLB55dcxCAlNUuV5VPYWY7ER1DEARvdnvN1r5Lycsl5AfPHhz2cRERhVvIg+1nnXUWHnroIVxwwQXHfc1kMmHVqlW45JJLMGrUKMyaNQtPPfUUNm7ciPLycgDA7t278emnn+L555/HzJkzMWfOHDz55JN46623jsuAp+jxBtsH0Ld9R5WU2T5O4f3aZYXpcma7f2XkGzulbPZ479dOwEK5lPzOWgAMthMRBW3EfGD/KsDSwJ7tREREREQDkGjQ4reLxwIAnvn6ICqbrd52khoBSNQzs52IjucNtvfTt73qBymzffAsBtuJSPmivgWxtbUVgiAgPT0dALB27Vqkp6dj2rRp3mPOOOMMaDQa/Pjjj70G8QHAZrPBZrN5/202S4Fch8MBh8MRvh+gD/L3jdb3D6fCdKm0S1lDe9A/386qFgDAmLxkVbxGealyaX1Lvz+Pw+FAoycBvjDdqIqfn4J3yohMaASptcKhulY0WqRzWZpRM+C5oebzEA0M5wbFklDNR2HYPOjWPgUAcCVkwM35rXg8V1GkxMJc4zwnIqJYs2hCPmYNy8QPh5rw8Ird+NWCUQCAZIOOLRGJqFf5k/MBALVba30e43a6UbWewXYiUo+oBts7Oztx991347LLLkNamlRKvKamBrm5uT2O0+l0yMzMRE2N791QjzzyCB544IHjPr9y5UokJUU3c3jVqlVR/f7h0ForANBi494yrNAcDvjxDjewr1YLQEDNng1YEfhTxJyKdgDQ4UhtK1asWNHv8Q02aQdw3cFdWNG8M7yDo5g3LFWDA2YNnnh3NRraNAAEbF33HSpC1LJIjechCg3ODYolA52PgujEWZoE6N2d2LyvAlUN/b8fkzLwXEWREs25ZrUGXzWMiIgoHARBwP3njsPiJ77Fiu01mDQ4HQCQzBLyRORD/qSuYLsoir1uzKndVgtnhxMJ6QnIHsUWcESkfFG7MnI4HLjkkksgiiKeeeaZAT/fPffcg6VLl3r/bTabUVRUhAULFngD+ZHmcDiwatUqzJ8/H3q9PipjCBfTwUb8+9BGdOpSsWjRSQE/fntVK9w//oiMJD0uP3++KnbDNlvt+NP2r2F2CJg3fyGMfZTTcjgc+J91XwIALpg/FyPyUiI0SopV9RlleGjFXuy1pcMltgEALlq8EImGgZVlU/N5iAaGc4NiSSjno7bzfWDPR5h84jxMGnZaiEZI0cJzFUVKLMw1uTobERFRLBmdn4Yls4rx8vdH8NfP9wEAko0sIU9EvcsZmwONToOOpg6YK80wFR3fQrbyh0oAQOHMQgga5ccFiIiiEmyXA+1lZWX48ssvewTD8/PzUVdX1+N4p9OJpqYm5Ofn+3xOo9EIo/H4FFC9Xh/1G3OxMIZQG5Yj/c4qWzqg1eqgCfBNcU+tlLUxvtAEg0Edfalz0nRI1GvR4XCh3urCCdkJPo9t7XCgwyW9ZifkpkHPPldx78wJBXhoxV7srpEC7Yl6LdKSfc+hQKnxPEShwblBsSQk83HUmcCej6BLywM4t1WD5yqKlGjONc5xIiKKVXeeMRIfbKlCs1VqeZLCzHYi8kGXoEP26GzU7ahD7dbaPoPtLCFPRGqhifQ3lAPt+/fvx+eff46srKweX589ezZaWlqwceNG7+e+/PJLuN1uzJw5M9LDJR8GpSdAqxFgd7pR12YL+PE7qlsBAOMKjn+zVSpBEFCYkQgAqGru6PPYiibp6zkphgFnLpM6DM5IwvjCro1Hmcnq2IRCRBRxY88HTv89kDsu2iMhIiIiIlIFU5IeyxaO9v47ycBgOxH5Jvdtr9nSe1vgyrWeYPtsBtuJSB1CHmxvb2/Hli1bsGXLFgDA4cOHsWXLFpSXl8PhcODiiy/Ghg0b8Prrr8PlcqGmpgY1NTWw2+0AgDFjxuDMM8/Eddddh3Xr1uG7777DrbfeiksvvRQFBQWhHi4FSa/VoCBdyrqtaA68t+DOaqlEYvfgohoUpkvB9uqWfoLtntesKDMp7GMi5Vg4tqt6B4PtRERBMqYAJ/8K0PIGIBERERFRqPx0epH3Ph57thNRX/Im5QGQ+rYfy9pgRdOBJgBA4YzCiI6LiChcQh5s37BhA0pLS1FaWgoAWLp0KUpLS3HvvfeiqqoKH374ISorKzF58mQMGjTI+9/333/vfY7XX38do0ePxrx587Bo0SLMmTMHzz33XKiHSgM0xBMoLm8MLNjudLmx56gUbFdTZjsAb2Z7ZT/B9nJPZnuR53giAFgwjsF2IiIiIiIiIoo9Wo2ARy+ciLGD0nB+KROiiMg3OdjeW2Z75Y9SVnv26Gwk8t44EalEyLchnnrqqRBF0efX+/qaLDMzE2+88UYoh0VhUJSRBKAR5U2BBdsP1ltgc7qRYtShWGWZ3XJm+wdbqnCovt3ncTurpDL6DLZTdyPzUjA0KwlHGq3IYrCdiIiIiIiIiGLI+EITVtw+N9rDIKIYlz9JSihqOtgEW5sNxlSj92veEvLs105EKsKaPxQ0uQR6RYDB9h2eQPPYQWnQaISQjyuaRualAgDKGq0o8yPjf2ReSriHRAoiCALOmVSAJ788gGE5ydEeDhEREREREREREVFAknOTkTIoBe1H21G3vQ5FJxZ5v1b5A/u1E5H6MNhOQfOWkQ802F4tBdvHqaxfOwCcPjoXT15WisZ2W5/HudxulO/biQVj8yI0MlKKX84bgfGFJswdkR3toRAREREREREREREFLH9yPg4cPYCarTXeYLvb5UbVuioAzGwnInVhsJ2CFmywfWe11K99vMr6tQNS/6pzJvXft8rhcGBF0w5oVZbZTwOn12qwsFvvdiIiIiIiIiIiIiIlyZuUhwP/PYDarbXez9Xvqoe9zQ5DigE543KiODoiotDSRHsApFxysL2uzYYOu8uvx7jdInZ5gu1qzGwnIiIiIiIiIiIiIopn+ZOlZKKaLTXez8kl5AtnFEKjZWiKiNSDZzQKWnqSHqlGqThCZbN/2e3lTVa025ww6jQYnsN+5UREREREREREREREapI/SQq2122vg9vlBtAt2D6rMGrjIiIKBwbbKWiCIKAowFLycr/20YPSoOPuNSIiIiIiIiIiIiIiVckckQldog4OqwNNB5oAAJVrpWA7+7UTkdow2kkDEmjf9h1VnhLyBSwhT0REREREFG7PPPMMJk6ciLS0NKSlpWH27Nn473//6/36qaeeCkEQevx344039niO8vJyLF68GElJScjNzcWyZcvgdDoj/aMQERERkUJotBrkTcgDANRurUVnSycadjcAYLCdiNRHF+0BkLINyQos2L7Tk9k+vsAUtjERERERERGRZPDgwXj00UcxYsQIiKKIV155Beeddx42b96McePGAQCuu+46PPjgg97HJCUlef/f5XJh8eLFyM/Px/fff4+jR4/iqquugl6vx8MPPxzxn4eIiIiIlCFvUh6q1lWhZksNEtITAAAZJRlIzkmO8siIiEKLwXYaELmMfIUfwXZRFLGzmpntREREREREkXLOOef0+Pcf//hHPPPMM/jhhx+8wfakpCTk5+f3+viVK1di165d+Pzzz5GXl4fJkyfjD3/4A+6++27cf//9MBgMYf8ZiIiIiEh58idL15e1W2uhNWoBMKudiNSJwXYakEDKyNeYO9FksUOrETAqPzXcQyMiIiIiIqJuXC4X3nnnHVgsFsyePdv7+ddffx3/+te/kJ+fj3POOQe///3vvdnta9euxYQJE5CXl+c9fuHChbjpppuwc+dOlJaW9vq9bDYbbDab999ms7Tx2uFwwOFwhOPH84v8vaM5BopNnBsUCZxn1BfOD4oloZiPWeOyAABHtxyFy+UCAAyaMYhzXOF4rqJIiJV55u/3Z7CdBqR7sF0URQiC4PNYuV/7iNwUJOi1ERkfERERERFRvNu+fTtmz56Nzs5OpKSk4P3338fYsWMBAJdffjmKi4tRUFCAbdu24e6778bevXvx3nvvAQBqamp6BNoBeP9dU1Pj83s+8sgjeOCBB477/MqVK3uUqY+WVatWRXsIFKM4NygSOM+oL5wfFEsGMh9dHVKAvb26HdZGKVnviOMI6lbUhWRsFF08V1EkRHueWa3+tdBmsJ0GpDA9EYIAdDrcuP61jbh85hCcPCIHWs3xQfcdVVK/9nHs105ERERERBQxo0aNwpYtW9Da2or//Oc/uPrqq7F69WqMHTsW119/vfe4CRMmYNCgQZg3bx4OHjyIkpKSoL/nPffcg6VLl3r/bTabUVRUhAULFiAtLXptxRwOB1atWoX58+dDr9dHbRwUezg3KBI4z6gvnB8US0I1HytLKtF8sBlumxu6RB0uuOkCaJmIp2g8V1EkxMo8kyu09YfBdhoQg06DC0sH491NlVi1qxardtWiMD0RP51ehEumFSHflOA9Vu7XPr6Q/dqJiIiIiIgixWAwYPjw4QCAqVOnYv369Xj88cfx7LPPHnfszJkzAQAHDhxASUkJ8vPzsW7duh7H1NbWAoDPPu8AYDQaYTQaj/u8Xq+PiZtysTIOij2cGxQJnGfUF84PiiUDnY/5k/PRfLAZAFAwrQAJSQn9PIKUgucqioRozzN/v7cmzOOgOPDnSyZh5Z0n45qThsKUqEdVSwf+smofTnz0C/zilfX4fFctnC43dlYzs52IiIiIiCja3G53j37q3W3ZsgUAMGjQIADA7NmzsX37dtTVdZX7XLVqFdLS0ryl6ImIiIiIepM3qasd0eBZg6M4EiKi8GFmO4XEyLxU3HfOONx95mh8uqMGb6wrx7rDTfh8dx0+312HvDQjas3SzZyxBcxsJyIiIiIiioR77rkHZ511FoYMGYK2tja88cYb+Prrr/HZZ5/h4MGDeOONN7Bo0SJkZWVh27ZtuPPOO3HyySdj4sSJAIAFCxZg7NixWLJkCf7v//4PNTU1+N3vfodbbrml18x1IiIiIiJZ/uSuSkgMthORWjHYTiGVoNfi/NJCnF9aiAN17XhrXTne3VTpDbQPy05GipHTjoiIiIiIKBLq6upw1VVX4ejRozCZTJg4cSI+++wzzJ8/HxUVFfj888/xt7/9DRaLBUVFRbjooovwu9/9zvt4rVaLjz/+GDfddBNmz56N5ORkXH311XjwwQej+FMRERERkRIw2E5E8YBRTwqb4bkp+N3ZY7HszFH4bGctPt9Vi3MmFUR7WERERERERHHjhRde8Pm1oqIirF69ut/nKC4uxooVK0I5LCIiIiKKA6YiE07/4+nQ6DVILUiN9nCIiMKCwXYKO6NOi3MnFeBcBtqJiIiIiIiIiIiIiOLG3N/MjfYQiIjCShPtARARERERERERERERERERESkNg+1EREREREREREREREREREQBYrCdiIiIiIiIiIiIiIiIiIgoQAy2ExERERERERERERERERERBYjBdiIiIiIiIiIiIiIiIiIiogAx2E5ERERERERERERERERERBQgBtuJiIiIiIiIiIiIiIiIiIgCxGA7ERERERERERERERERERFRgBhsJyIiIiIiIiIiIiIiIiIiChCD7URERERERERERERERERERAFisJ2IiIiIiIiIiIiIiIiIiChADLYTEREREREREREREREREREFiMF2IiIiIiIiIiIiIiIiIiKiADHYTkREREREREREREREREREFCAG24mIiIiIiIiIiIiIiIiIiAKki/YAwkUURQCA2WyO2hgcDgesVivMZjP0en3UxkGxh3ODIoVzjXzh3KBYwvlIvnBuUKTEwlyT167yWlZtYmGNDsTG75piE+cGRQLnGfWF84NiCecj+cK5QZEQK/PM33W6aoPtbW1tAICioqIoj4SIiIiIiIjIP21tbTCZTNEeRshxjU5ERERERERK1N86XRBVum3e7XajuroaqampEAQhKmMwm80oKipCRUUF0tLSojIGik2cGxQpnGvkC+cGxRLOR/KFc4MiJRbmmiiKaGtrQ0FBATQa9XV8i4U1OhAbv2uKTZwbFAmcZ9QXzg+KJZyP5AvnBkVCrMwzf9fpqs1s12g0GDx4cLSHAQBIS0vjSYd6xblBkcK5Rr5wblAs4XwkXzg3KFKiPdfUmNEui6U1OhD93zXFLs4NigTOM+oL5wfFEs5H8oVzgyIhFuaZP+t09W2XJyIiIiIiIiIiIiIiIiIiCjMG24mIiIiIiIiIiIiIiIiIiALEYHsYGY1G3HfffTAajdEeCsUYzg2KFM418oVzg2IJ5yP5wrlBkcK5Fj/4uyZfODcoEjjPqC+cHxRLOB/JF84NigSlzTNBFEUx2oMgIiIiIiIiIiIiIiIiIiJSEma2ExERERERERERERERERERBYjBdiIiIiIiIiIiIiIiIiIiogAx2E5ERERERERERERERERERBQgBtuJiIiIiIiIiIiIiIiIiIgCxGA7ERERERERERERERERERFRgBhsVzC32x3tIVAMKi8vx7Zt26I9DIoDPAdRb3gOIiIi6onXTPGDv2vqDa+PKZJ4HqLe8DxERETUU6ivmRhsV6D6+nq0t7dDo9HwIpp62LJlC4YOHYo9e/ZEeyikYjwHkS88B1Gs4rmKenPo0CF8+umn0R4GqRivmeIHf9fkC6+PKVJ4HiJfeB6iWMTzFPWGa3SKhHBdMzHYrjC7d+/G7Nmzceutt6K1tZUX0eS1detWzJ07F0uXLsUll1xy3Nc5TygUeA4iX3gOolhUXV2NlpYWaDQauFyuaA+HYsiWLVswYsQIVFdXR3sopFK8Zoof/F2TL7w+pkjheYh84XmIYg3X6OQL1+gUCeG8ZmKwXUEqKytxzTXXQKfT4eDBg7jnnnt4EU0AgB07dmDu3Lm48cYb8ac//QlutxsrV67ESy+9hOXLlwMA5wkNGM9B5AvPQRSL9uzZg0mTJuHcc89FQ0MDtFotF/MEQLrpOGfOHNx55534+c9/ftzXea6igeI1U/zg75p84fUxRQrPQ+QLz0MUa7hGJ1+4RqdICPc1E4PtCvL1118jMTERL7/8Ms4++2xs3ry5x4Tgm1P8evrpp9He3o4rrrgCnZ2dWLBgAX7/+9/jV7/6FZYuXYoZM2bAbrdDo9FAFMVoD5cUiucg8oXnIIo11dXVuP766zFs2DAAwJIlS7iYJwDSDZ6TTz4ZP//5z/GnP/0JLpcL//73v/GXv/wFTzzxBFwuFzQaLpFoYHjNFD/4uyZfeH1MkcLzEPnC8xDFEq7RyReu0SlSwn3NJIh8N1UMt9uNTz75BOeccw4A4NFHH8UHH3yA0tJSPPzww0hPT4fb7faefFwuF7RabTSHTBF07rnn4scff8TgwYNRWFiIRx99FBkZGTh06BCuu+46FBYWYtWqVdEeJikYz0HUF56DKJYsX74cTz/9NO69915UV1fjqaeeQkpKCl577TVkZ2fz/BTH7r33Xjz00EN45513cNppp+GSSy6B1WpFXV0d7HY7DAYDVqxYgZEjR0IURQiCEO0hkwLxmil+8HdNfeH1MUUCz0PUF56HKFZwjU6+cI1OkRLuayYG2xXM5XLhT3/6E5YvX47S0lI88sgjMJlMePzxx3H77bdHe3gUIU6nEzqdDgBw3nnnYceOHVi5ciVKSkq8x7zyyiu499578fnnn2PEiBHRGiqpDM9BBPAcRLHrs88+w8KFCwEAb731Fp5++mmkpKTg1VdfRU5ODhfzceymm27CqlWroNPpMHz4cDz55JNIT0+H1WrF5ZdfjpaWFmzatInzg0KG10zxg79rAnh9TNHF8xABPA9RbOIanXzhGp2iIdTXTAy2x7CKigps3LgRDocDpaWlGD58uPdr8kWT0+nEn//8Z++EcDqdeP7557F3715eKKlYR0cHEhMTvbu5ul9Ef/rppzj11FORkJDg3Ynzn//8B7/97W+xZs0a5OXlRXn0pBQ8B5EvPAeR0oiiiLfffvu43fOPPfYYLrnkEhQXF0d7iBQB3c9VN910EzZs2IDXXnsNo0eP9h6zevVqXHjhhfj4448xe/bsaA2VFIbXTPGDv2vyhdfHFCk8D5EvPA+RknCNTgDX6BRekb5m0oX6B6DQ2LZtGxYuXIjMzEy0t7ejrq4OjzzyCC655BIUFBR4J4JOp8OvfvUriKKIBx98EEajEZs2beLFs4rt2rULixYtwhNPPIFzzz0XoihCp9N5d/+deeaZ3mPlkhffffcdhg0bhuTk5GgNmxSG5yDyhecgikVHjhzB6tWr0dLSgrlz52LSpEneHc/y3PzJT34CAHjqqadw1VVXoaCgAC+++CLOPffcaA6dwqy9vR0pKSkA0ONc9cwzz+Crr77C0KFDAcB7U9JutyM7O5s3HMlvvGaKH/xdky+8PqZI4XmIfOF5iGIN1+jkC9foFAlRuWYSKeY0NTWJpaWl4t133y22tLSIR48eFR977DExKSlJvP3228WDBw96j3W5XKIoiuLNN98spqWliTt27IjWsCkCysrKxHHjxok5OTlidna2+OGHH4qiKIput7vX4/fu3SsuW7ZMzMjIELdt2xbJoZKC8RxEvvAcRLFo27ZtYnZ2tjhlyhRx1KhRok6nE3/1q1+JmzZt8h7jcDhEUZTm6uuvvy4mJyeLGRkZ4ubNm6M0aoqEHTt2iBkZGeLzzz/f4/NOp9PnY5YtWyaeeuqpYnNzc5hHR2rAa6b4wd81+cLrY4oUnofIF56HKNZwjU6+cI1OkRCtayYG22NQXV2dOHr0aPGTTz7p8flXX31VzM7OFn/961+LHR0d3s//5z//EQ0GQ483LFIfu90uPvjgg+JFF10kfvrpp+KNN94omkymHhfR3S+kN2/eLN5yyy1iSUkJL1QoIDwHUW94DqJYZDabxblz54p33XWX2NnZKYqiKL788sviyJEjxUsvvVRcu3at99juF9DJycm86ahyFRUV4qRJk8QhQ4aIBoNBfOGFF/o8fuPGjeKyZctEk8kkbt26NUKjJKXjNVP84O+aesPrY4oknoeoNzwPUazhGp184RqdIiVa10wMtscYt9stHjx4UMzLyxPfe+89URRF7xuTKIriiy++KAqCIK5YsaLH4yorKyM6ToqONWvWiK+99pooitLO1WMvoruzWCzi2rVrOTcoIDwHUV94DqJY09bWJo4dO/a4RdrHH38sTp48Wbz66qvFsrIy7+dXrlwpFhcXixs3boz0UCmCnE6n+PTTT4sXXnihuHbtWvGBBx4QBUHwuZg/ePCgeOedd4qjR48Wt2zZEuHRklLxmil+8HdNfeH1MUUCz0PUF56HKJZwjU694RqdIiWa10wMtseo6667TiwsLBSrq6tFUZR2Kso7EX/2s5+Jp5xyitjR0SHa7fZoDpOi7NChQ8ddRHd0dIjffPNNj5MIUaB4DiJ/8BxE0eR2u8Xa2lpxwoQJ4l//+ldRFHteQL///vtiRkaG+I9//KPH42prayM5TIqSTZs2if/5z39EURRFm80m3n///T4X8y6XSzxw4ID3PY8oELxmih/8XZM/eH1M4cTzEPmD5yGKFq7RqS9co1MkReOaSRP61vM0EKIoAgDuuOMODB8+HD/96U9RXV0NvV4Pl8sFACguLoYoikhISIBer4/mcClK5HlywgknYNmyZbjsssuwZMkSLF++HL/5zW9wwQUXoL29PcqjJCXiOYj8wXMQxQJBEJCbm4vzzz8fv/3tb7F//34YjUbY7XYAwPnnn4+bbroJjz32GCwWC5xOJwAgNzc3msOmCCktLcVFF10EADAYDFi2bBnuv/9+/OIXv8CLL74IALDZbPj4449x9OhRlJSUYNCgQdEcMikMr5niB3/X5A9eH1M48TxE/uB5iKKNa3TqC9foFAnRvGZisD3GCIIAABg7dizuuusuOJ1OnH322Th06BB0Oh0AoLGxESkpKejo6PBOHooPbrcbgDRPHA4HAGDYsGH49a9/jcsuuwwXXnghXnrpJXzyySfIysqK5lBJoXgOor7wHESxRD7/LFu2DKeccgpOO+00lJWVwWAweOdqSUkJ0tPTodfrvecwik9JSUm46667vIv5559/HnfffTeuvvpqaDRcElHgeM0UP/i7pr7w+pgigech6gvPQxQruEanQHCNTuEQzWsmntFijMvlglarhdlsxjnnnIOMjAz88Y9/xPjx4zFnzhwAwA8//IBvvvkGiYmJUR4tRZI8N+rr65GTk9Nj183QoUPR3NwMk8mE7777DmPHjo3iSEnJeA4iX3gOolgjCAJEUURqaioeeeQR3HnnnZgxYwaWL1+O8ePHIzU1Fdu3b0diYiLsdjsMBkO0h0wR5Ha7vQt0URQhCAKSk5Pxq1/9CqIo4vrrr4fJZMLKlSu5W56Cwmum+MHfNfnC62OKFJ6HyBeehyiWcI1OfeEanSIhmtdM3CISQ+x2O7RaLcrKypCRkYF//vOfmDNnDj744AM8/vjjKC0txYknnoj169dj0qRJ0R4uRVD3uVFYWIinn37a+zW3243nnnsOn376Kb744gtePJNfRFE8bucWz0EE9D83eA6iWOFyuSAIAhobG5GXl4fnnnsOZ5xxBk499VTMnTsXc+fOxUsvvYQnn3wSKSkp0R4uRZDL5YJGo0FtbS1qa2u9O5sBwGg0oqysDCaTCd9//z2mT58exZGSUjmdTl4zxQleH5MvvD6mcOA6nXzhOp2UgGt08oVrdIqEaK/TBZG1hSJu7969ePXVV1FZWYnS0lKcdtpp3l9ueXk5Zs6ciQsuuABPPvkktFptlEdLkeTv3Hjqqad6lFP54YcfkJOTg5KSkmgNnRRk9+7deOKJJ1BZWYkpU6bg9NNPxymnnAKA56B45+/c4DmIok3eEV1WVoZRo0bhf//3f3H77bcDAJYvX46ysjIAwOLFizF8+PBoDpUirPvcGDNmDB566CEsXboUgHST8p133sHNN9+Mzz77DFOnTo3yaCnWHTx4EP/6179w6NAhzJgxA0uWLEFaWhoAoLq6GlOnTuU1k0pwjU6+cI1OkcJ1OvnCdTopAdfo5AvX6BRqsbpOZ7A9wnbu3Ik5c+bgjDPOQGZmJlasWIG8vDxcd911uOGGG/Diiy/iwIED+OMf/+jd4SOX1SB1C2ZuEAVqz549mDVrFubNm4fs7Gx8/vnnyM3NxZlnnon77rsPL730Evbv389zUBwKZm4QhdvRo0fR3NzcayZGTU0NJk6ciIsuughPPfUUbzrGGX/nxtNPP93jpuOePXuQnJyMoqKiSA6XFGj79u0488wzMXnyZGg0Gnz66ae47bbb8Je//AWiKOLvf/87ampq8OCDD/KaSeG4RidfuEanSOE6nXzhOp1iDdfo5AvX6BQJsbxOZ7A9gtrb23HRRRehtLQUjz76KABpB+LkyZNhNBpxzz334Je//GWUR0nRwLlBkeByuXDXXXehsbERr732GgCgqqoKTz75JD7++GNccskluPfee6M8SooGzg2KRbt378a0adMwffp0/OMf/8Do0aMBdF0kv//++9i3bx9+/etf88ZSnOHcoHCrrKzEggULsHjxYjz22GMAgJUrV+KCCy7Ad999h8mTJ/foOUjKxXUY+cK5QZHCtRj5wrlBsYbrMPKFc4MiIdbX6bqofNc4JQgCmpubUVpaCgDo6OjAkCFDcPrpp6OlpQVvvvkmRo0ahYULF0Z5pBRpnBsUCVqtFuXl5XC5XN7PFRYWYunSpUhISMD777+P3Nxc3HjjjVEcJUUD5wbFmvr6etx4441YsGAB1q1bh5tuugl///vfMWbMGO/C7Pzzz+ciLQ5xblC4iaKIjz76CMXFxfjVr34FQOr9NnHiRBQUFKCzsxMAGGhXCa7DyBfODYoUrsXIF84NiiVch5EvnBsUCUpYp/MOQYSIooi2tjZUVFTg6NGjAIDExERUVFRgz549WLJkCSwWC95///0oj5QijXODIkEuYjJ16lRYrVaUl5d7v5abm4vrrrsOo0ePxvLly2Gz2aI1TIoCzg2KRYcPH8YJJ5yA+++/Hxs2bMDevXtx8803Y/fu3d5jui/UWKgpfnBuULgJgoCZM2eitLQUeXl5AACdTof8/HzodDrv9TopH9dh5AvnBkUK12LkC+cGxRquw8gXzg2KBEWs00WKqD//+c+iIAjiddddJ957771iSkqKeP3114uiKIpvvfWWOGzYMLGpqUl0uVxRHilFGucGRcK6devElJQU8X/+53/Ezs5OURRF0e12i6Ioips2bRIFQRDXrl0bzSFSlHBuUCxpbW0VN2zY4H3Pq6ysFPPz88VTTz1V3LVrl/c4p9MZrSFSlHBuUDi53W7ve1/3z8nGjh0rvvnmm95/L1++XNy+fXvExkfhwXUY+cK5QZHCtRj5wrlBsYLrMPKFc4PCTSnrdJaRD6MjR45g7dq1qK2txamnnooRI0Zg6dKlSE5Oxj//+U9kZWXhd7/7He6++24AQG1tLdLT05GRkRHlkVO4cW5QJLS2tkKj0SA1NdW7a3D69Ol47rnncOWVVyIxMRF33HEH0tLSAAAZGRkYN24cEhMTozlsigDODYp1aWlpmDp1KgDAbrejsLAQGzduxNSpU3HzzTfj73//O0pKSvC3v/0NhYWFuOKKK6I8YooUzg0Kh97eF2WCIMDpdEKj0SAxMRHp6ekAgN/85jd47LHHcODAgSiMmILFdRj5wrlBkcK1GPnCuUGxjOsw8oVzg8JFaet0BtvDZPv27Tj99NMxZswYbN++Hc8//zzGjBmDp59+GjfccAMuv/xyGAwGGI1G72P279+PkpISdHZ2wmg0so+FSnFuUCTs2rULP/vZz3DFFVfgmmuuQVpaGtxuNwDgsssug8ViwfXXX4/KykpccMEFGD9+PJ599lm0trYiNzc3yqOncOLcoFh07AV09/c5g8EAp9OJgoICbNq0CVOmTMGtt96KrKwsfPjhh9iyZUv0Bk5hx7lB4dbb++KxtFotAHgX83/4wx/wxBNPYO3atSguLo70kClIXIeRL5wbFClci5EvnBsUa7gOI184NygSFLlOj3gufRxob28X58yZI956661iR0eH6HA4xOeee06cM2eOOGHCBPHo0aOiKIre0hq7d+8W77jjDjEtLU3ctm1bNIdOYca5QZFQVlYmTpw4UczMzBTHjRsnPvvss2Jra6soij1LrKxYsUKcPn26mJ+fL44aNUocOnSouGnTpmgNmyKAc4Ni0c6dO8Xp06eLf/vb37zzsTdyybEjR46IgiCImZmZnJcqx7lB4dbX+2JvZs+eLY4aNUo0Go3i+vXrIzhSGiiuw8gXzg2KFK7FyBfODYo1XIeRL5wbFAlKXadrIh/eV7+Ojg40NDTgtNNOQ0JCAnQ6Ha655ho8+OCDSEtLw0UXXYTm5mZoNBq0tLRg5cqV2LJlC1avXo0JEyZEe/gURpwbFG5utxurVq3C4MGDsXbtWsyaNQuPPfYY3nrrLZjNZgiCALfbDbfbjbPOOgsfffQRPv/8c7zyyiv44YcfUFpaGu0fgcKEc4NiUXl5OS677DIcPHgQ//znP73zsTdarRYdHR3485//jOTkZHzzzTeclyrGuUHh1t/7IgBvqTq32422tjYcPXoUBw4cwIYNGzBt2rRoDp8CxHUY+cK5QZHAtRj5wrlBsYbrMPKFc4MiQdHr9KiF+VXMbreLs2bNEu+6664en3e73eInn3wizpgxQ3zggQe8uxMbGhrEpqamaAyVIoxzgyJh37594ocffuj997XXXisOHz5cfPbZZ8WWlhZRFKXMjO47pCk+cG5QLHG5XOLzzz8vLlq0SNy7d2+P+dhbJocoiuL+/fvFGTNmiD/++GM0hkwRwrlBkeLP+6Iods23L774gpmsCsV1GPnCuUGRwrUY+cK5QbGC6zDyhXODIkmp63QG28PA5XKJv/rVr8QZM2aIa9asOe7r119/vXjSSSfxIikOcW5QtPR2EfTqq6/2WYKF4gPnBkWTvxfQss7OTrG9vT2SQ6Qo4dygaOntffHll19mcE3huA4jXzg3KJq4FiNfODcoWrgOI184NyialLBOF0TRk3NPIdXS0oK5c+ciJSUFTz31FCZPngytVgsAePvtt/HAAw/g22+/RUZGRpRHSpHGuUGR5HK5vPPrF7/4BVavXo277roLGzZswPLly7Fx40YUFxdHeZQUDZwbFKvk+bhs2TJceumlSEtLw2uvvYZzzz0XJpMp2sOjKOLcoHDi+6L6cR1GvnBuUKTxPYd84dygWMR1GPnCuUHhpqT3RQbbw8But8NgMKChoQGzZ89GTk4O7rzzTpx//vnQ6XT45S9/ia1bt+LTTz9FUlJStIdLEcS5QZHgdruh0Wi8/3Y4HNDr9QCA6667Di+88AKSk5OxevVqTJkyJVrDpCjg3KBYpqQLaIoszg0KF74vxg+uw8gXzg2KFL7nkC+cGxSruA4jXzg3KJyU+r6o6f8Q6suxexVcLhcMBgOqq6thNpuxfv16pKSk4OGHH0ZxcTEWLlyIf/3rX3jiiSe4UFM5zg2KhN7mmUajQX19Pb7//nsAgF6vh8vlAgAkJycjIyMDP/74Y0y9GVHocW6QErjdbu//a7VaOBwOAMDzzz+PU089FTfffDP+/e9/Y+XKlVyoxRnODQo1vi/GD67DyBfODYoUvueQL5wbFOu4DiNfODcoHNT0vshge5CcTieArsngdrvhdDqh1WpRVlaG6dOn45NPPkF6ejref/99PPHEE7jtttvw05/+FOvXr8fkyZOjOHoKJ84NioT+5tnkyZOxbds27/FarRZvvvkmnnjiCaxcuRJjx46Nyrgp/Dg3KFap6QKaQotzg8KJ74vxg+sw8oVzgyKF7znkC+cGxSKuw8gXzg0KNzW+L7KMfBB2796NJ598EvX19SgoKMCll16K2bNnAwCqqqowatQoXHnllXjmmWcgimKPkgekbpwbFAmBzDNBELyPs9lsqKurQ1FRUbSGTmHGuUGxyOl0QqfTectAud1uuN1u6HQ6lJWV4cQTT8Tvf/973Hjjjd7HvPnmm7jiiiuwfv16TJ06NYqjp3Di3KBw4/ti/OA6jHzh3KBI4XsO+cK5QbGG6zDyhXODIkGt74tcRQRo586dOOmkkyCKInJyclBbW4uTTz4Zzz//PKxWK2pqanDLLbfg73//OwRB4EItjnBuUCQEOs+6MxqNMftmRAPHuUGxaPfu3fjlL3+Jn/zkJ7jzzjuxdu1aaDQa6HQ6VFVVYdy4cTjnnHNwww039HjchRdeiLKyMi7UVIxzg8KN74vxg+sw8oVzgyKF7znkC+cGxRquw8gXzg2KBDW/LzKzPQA2mw1XXHEFCgoK8MQTTwAAjh49itNPPx2HDh3Cww8/jLvuuguiKB43EUjdODcoEjjPyBfODYpFO3fuxNy5c/HTn/4UgiCgqakJ7777Lp555hlcfvnl2L17N95++2088sgjvLkdZzg3KNz4vhg/+LsmXzg3KFI418gXzg2KNVyHkS+cGxQJan9f1EV7AEricDiwf/9+zJ8/H4BUVmPQoEE46aSTMGzYMCxbtgyjR4/G4sWLozxSijTODYoEzjPyhXODYo3NZsN9992HK6+8sscF9NatW3HLLbegtbUVd911F6ZMmaLIC2gKHucGRQLfF+MHf9fkC+cGRQrnGvnCuUGxhOsw8oVzgyJF7e+L3IYSAKPRiOLiYqxfvx5ms9nbq+KDDz7AHXfcgauvvhqPPPIIrFZrtIdKEca5QZHAeUa+cG5QrJEvoMeNGweg5wX0GWecgWXLluGTTz7hQi0OcW5QJPB9MX7wd02+cG5QpHCukS+cGxRLuA4jXzg3KFLU/r7IYLsf3G43AECv12PevHnYuXMnzj77bPzmN7/BuHHjcPHFF2P+/PlYuHAhqqqq4HA4ojxiihTODYoEzjPyhXODYpXaL6ApeJwbFE58X4wf/F2TL5wbFCmca+QL5wbFIq7DyBfODQq3eHlfZBn5PrS0tCA9PR0ajQZOpxM6nQ633347MjIy8OWXX2Lfvn344x//iNtvvx2AdGJKS0uL8qgpEjg3KBI4z8gXzg2KVW63GxqNxnsB/dZbb+Hss8/GnDlz8MQTT2DJkiWYP38+Ghsb8fXXXyv2ApoCx7lB4cT3xfjB3zX5wrlBkcK5Rr5wblAs4jqMfOHcoHCLt/dFQRRFMdqDiEW7d+/G4sWLceWVV+LBBx8EANjtdhgMBu8xDocDer3e+++bbroJhw4dwvLly5GYmBjxMVNkcG5QJHCekS+cGxSL5AtoAN4LaAB49dVX8eWXX6K9vR1z5871XkC///77uP/++7FmzRqYTKZoDZsigHODwo3vi/GDv2vyhXODIoVzjXzh3KBYw3UY+cK5QZEQj++LzGzvRUVFBS6//HLodDq8//770Ol0uPfee2EwGHqcgOSP33//Pd544w288cYb+OabbxQ5Ecg/nBsUCZxn5AvnBsWiYy+gdTqd9wL6qquuwlVXXXXcBfTKlSuRn5/f4yKb1Idzg8KN74vxg79r8oVzgyKFc4184dygWMN1GPnCuUGREK/viwy2H0MURbz55psoKCjAHXfcge+++w5vvvkmAODee++FTqeDy+WCVquFIAhwu91oaGjApk2bsGbNGkycODHKPwGFC+cGRQLnGfnCuUGxKF4voKl/nBsUbnxfjB/8XZMvnBsUKZxr5AvnBsUarsPIF84NioR4fl9ksP0YgiDgqquuQl5eHubPn49JkyYBAN58802Iooj77rsPWq3W29NCo9Hg3HPPxWmnnYbU1NQoj57CiXODIoHzjHzh3KBYE88X0NQ3zg2KBL4vxg/+rskXzg2KFM418oVzg2IJ12HkC+cGRUpcvy+K1K/q6mrxvvvuE0ePHi3ef//93s+///77otPpjOLIKNo4NygSOM/IF84NirajR4+KL7/8siiKolhbW9vrfHS5XD0eYzabIzpGig7ODYoGvi/GD/6uyRfODYoUzjXyhXODoonrMPKFc4OiJV7eF5nZDuDo0aOoqKhAc3MzzjjjDGi1WgCA2+2GIAgYNGgQrr/+egDAW2+9BVEU0draiscffxyVlZUoKCiI5vApjDg3KBI4z8gXzg2Kdfn5+bj66qsBALm5ubjhhhsASPMRAO677z5oNBosX74c55xzDrRarfJ3qpJfODcoHPi+GD/4uyZfODcoUjjXyBfODYplXIeRL5wbFC58X5TEfbB927ZtOPfcc2E0GlFbW4tBgwbh3nvvxcKFC5GZmQm32w0AKCgowA033ABRFPHggw8iPT0d69evV81EoONxblAkcJ6RL5wbFIt4AU2+cG5QuPF9MX7wd02+cG5QpHCukS+cGxRruA4jXzg3KBL4vthN5JLoY09dXZ04evRo8Te/+Y148OBBsaqqSvzpT38qjhkzRrzvvvvEuro6URRF0e12ex+zZMkSMS0tTdy5c2e0hk0RwLlBkcB5Rr5wblAs2rp1q1hcXCyOHDlSNJlM4ujRo8U33nhDbGxsFEVRKjcmz8nq6mrx3nvvFQVBEDMyMsQNGzZEc+gUZpwbFG58X4wf/F2TL5wbFCmca+QL5wbFGq7DyBfODYoEvi/2FNfB9p07d4pDhw497gRy9913ixMmTBD/7//+T7RYLN7PP//882J6erq4adOmSA+VIoxzgyKB84x84dygWMMLaPKFc4Mige+L8YO/a/KFc4MihXONfOHcoFjCdRj5wrlBkcL3xZ400c6sjyaHwwGn0wmr1QoA6OjoAAA8+uijOO200/DMM8/gwIED3uPPPvtsbNq0CaWlpVEZL0UO5wZFAucZ+cK5QbGmvr4enZ2duPDCCzFs2DAUFBTgrbfewrnnnov33nsPL7/8MqxWKwRBAAC88MIL+Oijj/D1119j7NixUR49hRPnBkUC3xfjB3/X5AvnBkUK5xr5wrlBsYTrMPKFc4Mihe+LPQmiKIrRHkQ0zZgxAykpKfjyyy8BADabDUajEQAwffp0DB8+HG+++SZcLpe3rwXFB84NigTOM/KFc4NiydatW3H22WfjjTfewNy5c9HR0YHExEQAwO23346PPvoIy5cvx8SJEwEAtbW1sFqtOOGEE6I5bIoAzg2KFL4vxg/+rskXzg2KFM418oVzg2IF12HkC+cGRRLfF7vEVWa7xWJBW1sbzGaz93PPPvvs/7d376xVbXsYh98sE29RG4sgYmEhJMEL2QQ7b5WVFmIKExAsDSjkC2gTEEWEaKlgo34DK7ETUfHSaHpLIwSJRJBc1ik8hu3Ze+ydHHCuSebzlIsIMxm/rP8YDHXlw4cPGR0dTZJs2rQpi4uLSZKjR49mfn4+SdZ9CE2nDaqgM0q0Qd0dOnQou3btytWrV5MkW7Zsyffv35MkU1NT2blzZ65du5YkWVpaSl9fn4NaQ2iD38FcbA5rTYk2qIrWKNEGdeYcRok2+F3MxX/WmMv26enpnDlzJseOHcvAwEAePnyYJBkYGMjU1FSePHmSkZGRLCwspNX68WOZmZlJb29vFhcX0/D/AGBd0wZV0Bkl2qCObKAp0Qa/m7nYHNaaEm1QFa1Rog3qxjmMEm1QBXPx33V3+gGqMD09naNHj+b8+fMZHh7OmzdvcuHChQwODmZoaCinT59Ob29vxsfHc/DgwfT392fjxo15/PhxXrx4ke7uRvyYGkkbVEFnlGiDOpqens7ExEQ+f/6cT58+5caNGxkbG1vZQF+6dCkjIyN59OjRysHszxvoDRs2rHz2F+uLNvjdzMXmsNaUaIOqaI0SbVA3zmGUaIMqmIurs+4/s312djbnzp1Lf39/pqamVl4/ceJEDhw4kNu3b6+89vXr10xOTmZ2djabN2/OxYsXMzg42InHpgLaoAo6o0Qb1NHfbaDv3LmTly9fZmhoKN++fcvTp08zPj6ebdu2/WUDvX///k5/C/wm2uB3Mxebw1pTog2qojVKtEHdOIdRog2qYC6u3rr/KwULCwv58uVLzp49myRZXl5Oq9XK3r17Mzs7myRpt9tpt9vZvn17rl+//svXsX5pgyrojBJtUDezs7OZmJjI2NhYbt26lSQZHR3N27dvc//+/QwNDWXr1q05depUjh8//ssG+tWrV43aQDeNNqiCudgc1poSbVAVrVGiDerEOYwSbVAVc3H11v1le19fXx48eJB9+/YlSZaWltJqtbJ79+58/PgxSdLV1ZWurq7Mzc1lx44dK6+xvmmDKuiMEm1QNzbQlGiDKpiLzWGtKdEGVdEaJdqgTpzDKNEGVTEXV68Rv1k/Q1heXk5PT0+SH282MzMzK19z7dq13Lt3L4uLi0maGUMTaYMq6IwSbVAnPzfQR44cSfJjA50ku3fvXjmMdXV1pdVqZW5ubuXPaXL90wZVMRebw1pTog2qojVKtEFdOIdRog2qZC6uzrr/l+1/1mq10m63Vxb65xvPlStXMjk5mXfv3qW7u1E/Ev5LG1RBZ5Rog7pY7QZ606ZNuXz5crq7uxu5gW4ibVAlc7E5rDUl2qAqWqNEG9SBcxgl2qBq5uI/a9x3/jOG7u7u7NmzJzdv3syNGzfy+vXrHDp0qNOPRwdpgyrojBJtUCc20JRog6qYi81hrSnRBlXRGiXaoC6cwyjRBlUyF8sa91v2882mp6cnd+/ezY4dO/Ls2bP88ccfHX4yOk0bVEFnlGiDurGBpkQbVMFcbA5rTYk2qIrWKNEGdeIcRok2qIq5WNaIz2z/OydPnkySPH/+PMPDwx1+GupEG1RBZ5Rog7r43w305OSkDTRJtEG1zMXmsNaUaIOqaI0SbVAHzmGUaIOqmYt/1dVut9udfohOmZ+fT29vb6cfgxrSBlXQGSXaoE5ev36dw4cP5/379xkcHOz041Aj2qAq5mJzWGtKtEFVtEaJNqgL5zBKtEGVzMVfNfqyHQCAf2cDTYk2AAAAquUcRok2oDNctgMAAAAAAADAGjX2M9sBAAAAAAAA4P/lsh0AAAAAAAAA1shlOwAAAAAAAACskct2AAAAAAAAAFgjl+0AAAAAAAAAsEYu2wEAAAAAAABgjVy2AwAAAAAAAMAauWwHAAAAAAAAgDVy2Q4AAAAAAAAAa/QfFK9z3e2X304AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "pipeline_loaded.fit(new_ts)\n", + "forecast_new_ts = pipeline_loaded.forecast()\n", + "\n", + "plot_forecast(forecast_ts=forecast_new_ts, test_ts=test_ts, train_ts=new_ts, n_train_samples=HORIZON * 2)" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "dc78eb6f", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "{'segment_d': 11.162075802124274,\n", + " 'segment_b': 4.703408652853966,\n", + " 'segment_c': 18.357231604941372,\n", + " 'segment_a': 5.587809488492237}" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "smape(y_true=test_ts, y_pred=forecast_new_ts)" + ] + }, + { + "cell_type": "markdown", + "id": "c43b3f34", + "metadata": {}, + "source": [ + "As we can see, these predictions are better. There are two main reasons:\n", + "1. Change of distribution. In a new data there can be some change of distribution that saved pipeline hasn't seen. In our case we can see a growth in segments `segment_c` and `segment_d` after the end of `old_ts`.\n", + "2. New pipeline has more data to learn." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.6" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} From a8b53e33ef5b78d92a6101f50f1808c082b4b3f1 Mon Sep 17 00:00:00 2001 From: "d.a.bunin" Date: Fri, 13 Jan 2023 11:28:05 +0300 Subject: [PATCH 10/12] Fix dependencies, fix changelog --- CHANGELOG.md | 6 +----- 1 file changed, 1 insertion(+), 5 deletions(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index f22d7eef7..f6f3137f5 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -10,17 +10,13 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0 ### Added - `RMSE` metric & `rmse` functional metric ([#1051](https://github.com/tinkoff-ai/etna/pull/1051)) - `MaxDeviation` metric & `max_deviation` functional metric ([#1061](https://github.com/tinkoff-ai/etna/pull/1061)) -- +- Add saving/loading for transforms, models, pipelines, ensembles; tutorial for saving/loading ([]()) - Add `SaveModelPipelineMixin`, add `load`, add saving and loading for `Pipeline` and `AutoRegressivePipeline` ([#1036](https://github.com/tinkoff-ai/etna/pull/1036)) - Add `SaveMixin` to models and transforms ([#1007](https://github.com/tinkoff-ai/etna/pull/1007)) - - Add `SaveEnsembleMixin`, add saving and loading for `VotingEnsemble`, `StackingEnsemble` and `DirectEnsemble` ([#1046](https://github.com/tinkoff-ai/etna/pull/1046)) ### Changed - -- Change returned model in get_model of BATSModel, TBATSModel ([#987](https://github.com/tinkoff-ai/etna/pull/987)) -- -- -- Change returned model in `get_model` of `HoltWintersModel`, `HoltModel`, `SimpleExpSmoothingModel` ([#986](https://github.com/tinkoff-ai/etna/pull/986)) - Notebook with inference demo ([#1065](https://github.com/tinkoff-ai/etna/pull/1065)) - - Add `SaveNNMixin` to fix saving/loading of NNs ([#1011](https://github.com/tinkoff-ai/etna/issues/1011)) From 0de0b5d52df17268922e41ebf56fad9f74476fce Mon Sep 17 00:00:00 2001 From: "d.a.bunin" Date: Fri, 13 Jan 2023 11:49:22 +0300 Subject: [PATCH 11/12] Fix dependencies, fix changelog --- CHANGELOG.md | 22 +- poetry.lock | 1016 ++++++++++++------------------------------------ pyproject.toml | 2 +- 3 files changed, 260 insertions(+), 780 deletions(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index f6f3137f5..30584c4ef 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -10,25 +10,27 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0 ### Added - `RMSE` metric & `rmse` functional metric ([#1051](https://github.com/tinkoff-ai/etna/pull/1051)) - `MaxDeviation` metric & `max_deviation` functional metric ([#1061](https://github.com/tinkoff-ai/etna/pull/1061)) -- Add saving/loading for transforms, models, pipelines, ensembles; tutorial for saving/loading ([]()) -- Add `SaveModelPipelineMixin`, add `load`, add saving and loading for `Pipeline` and `AutoRegressivePipeline` ([#1036](https://github.com/tinkoff-ai/etna/pull/1036)) -- Add `SaveMixin` to models and transforms ([#1007](https://github.com/tinkoff-ai/etna/pull/1007)) +- Add saving/loading for transforms, models, pipelines, ensembles; tutorial for saving/loading ([#1068](https://github.com/tinkoff-ai/etna/pull/1068)) +- +- +- +- +- - -- Add `SaveEnsembleMixin`, add saving and loading for `VotingEnsemble`, `StackingEnsemble` and `DirectEnsemble` ([#1046](https://github.com/tinkoff-ai/etna/pull/1046)) ### Changed - -- Notebook with inference demo ([#1065](https://github.com/tinkoff-ai/etna/pull/1065)) -- -- Add `SaveNNMixin` to fix saving/loading of NNs ([#1011](https://github.com/tinkoff-ai/etna/issues/1011)) +- +- +- - - ### Fixed - -- Remove documentation warning about using pickle in saving/loading catboost ([#1020](https://github.com/tinkoff-ai/etna/pull/1020)) -- Fix saving/loading ProphetModel ([#1019](https://github.com/tinkoff-ai/etna/pull/1019)) - - - +- +- +- ## [1.14.0] - 2022-12-16 ### Added - Add python 3.10 support ([#1005](https://github.com/tinkoff-ai/etna/pull/1005)) diff --git a/poetry.lock b/poetry.lock index 3ec007388..bdbb45658 100644 --- a/poetry.lock +++ b/poetry.lock @@ -26,7 +26,7 @@ typing-extensions = {version = ">=3.7.4", markers = "python_version < \"3.8\""} yarl = ">=1.0,<2.0" [package.extras] -speedups = ["Brotli", "aiodns", "cchardet"] +speedups = ["aiodns", "brotli", "cchardet"] [[package]] name = "aiosignal" @@ -169,7 +169,7 @@ python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" dev = ["cloudpickle", "coverage[toml] (>=5.0.2)", "furo", "hypothesis", "mypy", "pre-commit", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "six", "sphinx", "sphinx-notfound-page", "zope.interface"] docs = ["furo", "sphinx", "sphinx-notfound-page", "zope.interface"] tests = ["cloudpickle", "coverage[toml] (>=5.0.2)", "hypothesis", "mypy", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "six", "zope.interface"] -tests-no-zope = ["cloudpickle", "coverage[toml] (>=5.0.2)", "hypothesis", "mypy", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "six"] +tests_no_zope = ["cloudpickle", "coverage[toml] (>=5.0.2)", "hypothesis", "mypy", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "six"] [[package]] name = "autopage" @@ -215,7 +215,7 @@ lxml = ["lxml"] [[package]] name = "black" -version = "22.10.0" +version = "22.12.0" description = "The uncompromising code formatter." category = "main" optional = true @@ -353,7 +353,7 @@ optional = true python-versions = ">=3.6.0" [package.extras] -unicode-backport = ["unicodedata2"] +unicode_backport = ["unicodedata2"] [[package]] name = "click" @@ -551,7 +551,7 @@ python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" wrapt = ">=1.10,<2" [package.extras] -dev = ["PyTest", "PyTest (<5)", "PyTest-Cov", "PyTest-Cov (<2.6)", "bump2version (<1)", "configparser (<5)", "importlib-metadata (<3)", "importlib-resources (<4)", "sphinx (<2)", "sphinxcontrib-websupport (<2)", "tox", "zipp (<2)"] +dev = ["PyTest (<5)", "PyTest-Cov (<2.6)", "bump2version (<1)", "configparser (<5)", "importlib-metadata (<3)", "importlib-resources (<4)", "pytest", "pytest-cov", "sphinx (<2)", "sphinxcontrib-websupport (<2)", "tox", "zipp (<2)"] [[package]] name = "dill" @@ -790,7 +790,7 @@ six = ">=1.9.0" [package.extras] aiohttp = ["aiohttp (>=3.6.2,<4.0.0dev)", "requests (>=2.20.0,<3.0.0dev)"] -enterprise-cert = ["cryptography (==36.0.2)", "pyopenssl (==22.0.0)"] +enterprise_cert = ["cryptography (==36.0.2)", "pyopenssl (==22.0.0)"] pyopenssl = ["cryptography (>=38.0.3)", "pyopenssl (>=20.0.0)"] reauth = ["pyu2f (>=0.1.5)"] @@ -831,7 +831,7 @@ optional = true python-versions = ">=2.7,!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*" [package.extras] -docs = ["Sphinx", "docutils (<0.18)"] +docs = ["docutils (<0.18)", "sphinx"] test = ["faulthandler", "objgraph", "psutil"] [[package]] @@ -978,7 +978,6 @@ pexpect = {version = ">4.3", markers = "sys_platform != \"win32\""} pickleshare = "*" prompt-toolkit = ">=2.0.0,<3.0.0 || >3.0.0,<3.0.1 || >3.0.1,<3.1.0" pygments = "*" -setuptools = ">=18.5" traitlets = ">=4.2" [package.extras] @@ -1029,9 +1028,9 @@ python-versions = ">=3.6.1,<4.0" [package.extras] colors = ["colorama (>=0.4.3,<0.5.0)"] -pipfile-deprecated-finder = ["pipreqs", "requirementslib"] +pipfile_deprecated_finder = ["pipreqs", "requirementslib"] plugins = ["setuptools"] -requirements-deprecated-finder = ["pip-api", "pipreqs"] +requirements_deprecated_finder = ["pip-api", "pipreqs"] [[package]] name = "jedi" @@ -1292,7 +1291,7 @@ importlib-metadata = {version = "*", markers = "python_version < \"3.8\""} MarkupSafe = ">=0.9.2" [package.extras] -babel = ["Babel"] +babel = ["babel"] lingua = ["lingua"] testing = ["pytest"] @@ -1323,7 +1322,7 @@ attrs = ">=19,<22" typing-extensions = {version = ">=3.7.4", markers = "python_version < \"3.8\""} [package.extras] -code-style = ["pre-commit (==2.6)"] +code_style = ["pre-commit (==2.6)"] compare = ["commonmark (>=0.9.1,<0.10.0)", "markdown (>=3.2.2,<3.3.0)", "mistletoe-ebp (>=0.10.0,<0.11.0)", "mistune (>=0.8.4,<0.9.0)", "panflute (>=1.12,<2.0)"] linkify = ["linkify-it-py (>=1.0,<2.0)"] plugins = ["mdit-py-plugins"] @@ -1388,7 +1387,7 @@ python-versions = "~=3.6" markdown-it-py = ">=1.0,<2.0" [package.extras] -code-style = ["pre-commit (==2.6)"] +code_style = ["pre-commit (==2.6)"] rtd = ["myst-parser (==0.14.0a3)", "sphinx-book-theme (>=0.1.0,<0.2.0)"] testing = ["coverage", "pytest (>=3.6,<4)", "pytest-cov", "pytest-regressions"] @@ -1451,7 +1450,7 @@ pyyaml = "*" sphinx = ">=3.1,<5" [package.extras] -code-style = ["pre-commit (>=2.12,<3.0)"] +code_style = ["pre-commit (>=2.12,<3.0)"] linkify = ["linkify-it-py (>=1.0,<2.0)"] rtd = ["ipython", "sphinx-book-theme (>=0.1.0,<0.2.0)", "sphinx-panels (>=0.5.2,<0.6.0)", "sphinxcontrib-bibtex (>=2.1,<3.0)", "sphinxcontrib.mermaid (>=0.6.3,<0.7.0)", "sphinxext-opengraph (>=0.4.2,<0.5.0)", "sphinxext-rediraffe (>=0.2,<1.0)"] testing = ["beautifulsoup4", "coverage", "docutils (>=0.17.0,<0.18.0)", "pytest (>=3.6,<4)", "pytest-cov", "pytest-regressions"] @@ -1639,7 +1638,6 @@ python-versions = ">=3.7,<3.11" [package.dependencies] llvmlite = ">=0.38.0rc1,<0.39" numpy = ">=1.18,<1.23" -setuptools = "*" [[package]] name = "numpy" @@ -1916,7 +1914,6 @@ numpy = ">=1.21" pandas = ">=0.19" scikit-learn = ">=0.22" scipy = ">=1.3.2" -setuptools = ">=38.6.0,<50.0.0 || >50.0.0" statsmodels = ">=0.13.2" urllib3 = "*" @@ -1989,10 +1986,8 @@ matplotlib = ">=2.0.0" numpy = ">=1.15.4" pandas = ">=1.0.4" python-dateutil = ">=2.8.0" -setuptools = ">=42" setuptools-git = ">=1.2" tqdm = ">=4.36.1" -wheel = ">=0.37.0" [[package]] name = "protobuf" @@ -2231,11 +2226,11 @@ tqdm = ">=4.57.0" typing-extensions = ">=4.0.0" [package.extras] -all = ["cloudpickle (>=1.3)", "codecov (==2.1.12)", "colossalai (>=0.1.10)", "coverage (==6.4.2)", "deepspeed (>=0.6.0)", "fairscale (>=0.4.5)", "fastapi", "gym[classic-control] (>=0.17.0)", "hivemind (>=1.0.1)", "horovod (>=0.21.2,!=0.24.0)", "hydra-core (>=1.0.5)", "ipython[all]", "jsonargparse[signatures] (>=4.15.2)", "matplotlib (>3.1)", "omegaconf (>=2.0.5)", "onnxruntime", "pandas (>1.0)", "pre-commit (==2.20.0)", "protobuf (<=3.20.1)", "psutil", "pytest (==7.1.3)", "pytest-cov (==4.0.0)", "pytest-forked (==1.4.0)", "pytest-rerunfailures (==10.2)", "rich (>=10.14.0,!=10.15.0.a)", "scikit-learn (>0.22.1)", "torchvision (>=0.10)", "uvicorn"] +all = ["cloudpickle (>=1.3)", "codecov (==2.1.12)", "colossalai (>=0.1.10)", "coverage (==6.4.2)", "deepspeed (>=0.6.0)", "fairscale (>=0.4.5)", "fastapi", "gym[classic_control] (>=0.17.0)", "hivemind (>=1.0.1)", "horovod (>=0.21.2,!=0.24.0)", "hydra-core (>=1.0.5)", "ipython", "jsonargparse[signatures] (>=4.15.2)", "matplotlib (>3.1)", "omegaconf (>=2.0.5)", "onnxruntime", "pandas (>1.0)", "pre-commit (==2.20.0)", "protobuf (<=3.20.1)", "psutil", "pytest (==7.1.3)", "pytest-cov (==4.0.0)", "pytest-forked (==1.4.0)", "pytest-rerunfailures (==10.2)", "rich (>=10.14.0,!=10.15.0.a)", "scikit-learn (>0.22.1)", "torchvision (>=0.10)", "uvicorn"] colossalai = ["colossalai (>=0.1.10)"] deepspeed = ["deepspeed (>=0.6.0)"] dev = ["cloudpickle (>=1.3)", "codecov (==2.1.12)", "coverage (==6.4.2)", "fastapi", "hydra-core (>=1.0.5)", "jsonargparse[signatures] (>=4.15.2)", "matplotlib (>3.1)", "omegaconf (>=2.0.5)", "onnxruntime", "pandas (>1.0)", "pre-commit (==2.20.0)", "protobuf (<=3.20.1)", "psutil", "pytest (==7.1.3)", "pytest-cov (==4.0.0)", "pytest-forked (==1.4.0)", "pytest-rerunfailures (==10.2)", "rich (>=10.14.0,!=10.15.0.a)", "scikit-learn (>0.22.1)", "uvicorn"] -examples = ["gym[classic-control] (>=0.17.0)", "ipython[all]", "torchvision (>=0.10)"] +examples = ["gym[classic_control] (>=0.17.0)", "ipython", "torchvision (>=0.10)"] extra = ["hydra-core (>=1.0.5)", "jsonargparse[signatures] (>=4.15.2)", "matplotlib (>3.1)", "omegaconf (>=2.0.5)", "protobuf (<=3.20.1)", "rich (>=10.14.0,!=10.15.0.a)"] fairscale = ["fairscale (>=0.4.5)"] hivemind = ["hivemind (>=1.0.1)"] @@ -2358,7 +2353,7 @@ urllib3 = ">=1.21.1,<1.27" [package.extras] socks = ["PySocks (>=1.5.6,!=1.5.7)"] -use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"] +use_chardet_on_py3 = ["chardet (>=3.0.2,<6)"] [[package]] name = "requests-oauthlib" @@ -2480,8 +2475,8 @@ optional = true python-versions = "*" [package.extras] -nativelib = ["pyobjc-framework-Cocoa", "pywin32"] -objc = ["pyobjc-framework-Cocoa"] +nativelib = ["pyobjc-framework-cocoa", "pywin32"] +objc = ["pyobjc-framework-cocoa"] win32 = ["pywin32"] [[package]] @@ -2507,7 +2502,7 @@ falcon = ["falcon (>=1.4)"] fastapi = ["fastapi (>=0.79.0)"] flask = ["blinker (>=1.1)", "flask (>=0.11)"] httpx = ["httpx (>=0.16.0)"] -pure-eval = ["asttokens", "executing", "pure-eval"] +pure_eval = ["asttokens", "executing", "pure-eval"] pymongo = ["pymongo (>=3.1)"] pyspark = ["pyspark (>=2.4.4)"] quart = ["blinker (>=1.1)", "quart (>=0.16.1)"] @@ -2528,19 +2523,6 @@ python-versions = ">=3.7" [package.extras] test = ["pytest"] -[[package]] -name = "setuptools" -version = "65.5.1" -description = "Easily download, build, install, upgrade, and uninstall Python packages" -category = "main" -optional = false -python-versions = ">=3.7" - -[package.extras] -docs = ["furo", "jaraco.packaging (>=9)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-hoverxref (<2)", "sphinx-inline-tabs", "sphinx-notfound-page (==0.8.3)", "sphinx-reredirects", "sphinxcontrib-towncrier"] -testing = ["build[virtualenv]", "filelock (>=3.4.0)", "flake8 (<5)", "flake8-2020", "ini2toml[lite] (>=0.9)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "pip (>=19.1)", "pip-run (>=8.8)", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=1.3)", "pytest-flake8", "pytest-mypy (>=0.9.1)", "pytest-perf", "pytest-timeout", "pytest-xdist", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel"] -testing-integration = ["build[virtualenv]", "filelock (>=3.4.0)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "pytest", "pytest-enabler", "pytest-xdist", "tomli", "virtualenv (>=13.0.0)", "wheel"] - [[package]] name = "setuptools-git" version = "1.2" @@ -2559,7 +2541,6 @@ python-versions = ">=3.6" [package.dependencies] packaging = ">=20.0" -setuptools = "*" tomli = ">=1.0.0" [package.extras] @@ -2760,21 +2741,21 @@ aiomysql = ["aiomysql", "greenlet (!=0.4.17)"] aiosqlite = ["aiosqlite", "greenlet (!=0.4.17)", "typing_extensions (!=3.10.0.1)"] asyncio = ["greenlet (!=0.4.17)"] asyncmy = ["asyncmy (>=0.2.3,!=0.2.4)", "greenlet (!=0.4.17)"] -mariadb-connector = ["mariadb (>=1.0.1,!=1.1.2)"] +mariadb_connector = ["mariadb (>=1.0.1,!=1.1.2)"] mssql = ["pyodbc"] -mssql-pymssql = ["pymssql"] -mssql-pyodbc = ["pyodbc"] +mssql_pymssql = ["pymssql"] +mssql_pyodbc = ["pyodbc"] mypy = ["mypy (>=0.910)", "sqlalchemy2-stubs"] mysql = ["mysqlclient (>=1.4.0)", "mysqlclient (>=1.4.0,<2)"] -mysql-connector = ["mysql-connector-python"] +mysql_connector = ["mysql-connector-python"] oracle = ["cx_oracle (>=7)", "cx_oracle (>=7,<8)"] postgresql = ["psycopg2 (>=2.7)"] -postgresql-asyncpg = ["asyncpg", "greenlet (!=0.4.17)"] -postgresql-pg8000 = ["pg8000 (>=1.16.6,!=1.29.0)"] -postgresql-psycopg2binary = ["psycopg2-binary"] -postgresql-psycopg2cffi = ["psycopg2cffi"] +postgresql_asyncpg = ["asyncpg", "greenlet (!=0.4.17)"] +postgresql_pg8000 = ["pg8000 (>=1.16.6,!=1.29.0)"] +postgresql_psycopg2binary = ["psycopg2-binary"] +postgresql_psycopg2cffi = ["psycopg2cffi"] pymysql = ["pymysql", "pymysql (<1)"] -sqlcipher = ["sqlcipher3_binary"] +sqlcipher = ["sqlcipher3-binary"] [[package]] name = "statsmodels" @@ -2794,7 +2775,55 @@ scipy = ">=1.3" [package.extras] build = ["cython (>=0.29.26)"] develop = ["cython (>=0.29.26)"] -docs = ["ipykernel", "jupyter_client", "matplotlib", "nbconvert", "nbformat", "numpydoc", "pandas-datareader", "sphinx"] +docs = ["ipykernel", "jupyter-client", "matplotlib", "nbconvert", "nbformat", "numpydoc", "pandas-datareader", "sphinx"] + +[[package]] +name = "statsmodels" +version = "0.13.3" +description = "Statistical computations and models for Python" +category = "main" +optional = false +python-versions = ">=3.7" + +[package.dependencies] +numpy = {version = ">=1.17", markers = "python_version != \"3.10\" or platform_system != \"Windows\" or platform_python_implementation == \"PyPy\""} +packaging = ">=21.3" +pandas = ">=0.25" +patsy = ">=0.5.2" +scipy = [ + {version = ">=1.3", markers = "(python_version > \"3.7\" or platform_system != \"Windows\" or platform_machine != \"x86\") and python_version < \"3.12\""}, + {version = ">=1.3,<1.8", markers = "python_version == \"3.7\""}, + {version = ">=1.3,<1.9", markers = "python_version == \"3.8\" and platform_system == \"Windows\" and platform_machine == \"x86\" or python_version == \"3.9\" and platform_system == \"Windows\" and platform_machine == \"x86\""}, +] + +[package.extras] +build = ["cython (>=0.29.32)"] +develop = ["colorama", "cython (>=0.29.32)", "cython (>=0.29.32,<3.0.0)", "flake8", "isort", "jinja2", "joblib", "matplotlib (>=3)", "oldest-supported-numpy (>=2022.4.18)", "pytest (>=7.0.1,<7.1.0)", "pytest-randomly", "pytest-xdist", "pywinpty", "setuptools_scm[toml] (>=7.0.0,<7.1.0)"] +docs = ["ipykernel", "jupyter-client", "matplotlib", "nbconvert", "nbformat", "numpydoc", "pandas-datareader", "sphinx"] + +[[package]] +name = "statsmodels" +version = "0.13.4" +description = "Statistical computations and models for Python" +category = "main" +optional = false +python-versions = ">=3.7" + +[package.dependencies] +numpy = {version = ">=1.17", markers = "python_version != \"3.10\" or platform_system != \"Windows\" or platform_python_implementation == \"PyPy\""} +packaging = ">=21.3" +pandas = ">=0.25" +patsy = ">=0.5.2" +scipy = [ + {version = ">=1.3", markers = "(python_version > \"3.9\" or platform_system != \"Windows\" or platform_machine != \"x86\") and python_version < \"3.12\""}, + {version = ">=1.3,<1.8", markers = "python_version == \"3.7\""}, + {version = ">=1.3,<1.9", markers = "python_version == \"3.8\" and platform_system == \"Windows\" and platform_machine == \"x86\" or python_version == \"3.9\" and platform_system == \"Windows\" and platform_machine == \"x86\""}, +] + +[package.extras] +build = ["cython (>=0.29.32)"] +develop = ["colorama", "cython (>=0.29.32)", "cython (>=0.29.32,<3.0.0)", "flake8", "isort", "jinja2", "joblib", "matplotlib (>=3)", "oldest-supported-numpy (>=2022.4.18)", "pytest (>=7.0.1,<7.1.0)", "pytest-randomly", "pytest-xdist", "pywinpty", "setuptools_scm[toml] (>=7.0.0,<7.1.0)"] +docs = ["ipykernel", "jupyter-client", "matplotlib", "nbconvert", "nbformat", "numpydoc", "pandas-datareader", "sphinx"] [[package]] name = "statsmodels" @@ -2817,7 +2846,7 @@ scipy = [ [package.extras] build = ["cython (>=0.29.32)"] -develop = ["Jinja2", "colorama", "cython (>=0.29.32)", "cython (>=0.29.32,<3.0.0)", "flake8", "isort", "joblib", "matplotlib (>=3)", "oldest-supported-numpy (>=2022.4.18)", "pytest (>=7.0.1,<7.1.0)", "pytest-randomly", "pytest-xdist", "pywinpty", "setuptools-scm[toml] (>=7.0.0,<7.1.0)"] +develop = ["colorama", "cython (>=0.29.32)", "cython (>=0.29.32,<3.0.0)", "flake8", "isort", "jinja2", "joblib", "matplotlib (>=3)", "oldest-supported-numpy (>=2022.4.18)", "pytest (>=7.0.1,<7.1.0)", "pytest-randomly", "pytest-xdist", "pywinpty", "setuptools-scm[toml] (>=7.0.0,<7.1.0)"] docs = ["ipykernel", "jupyter-client", "matplotlib", "nbconvert", "nbformat", "numpydoc", "pandas-datareader", "sphinx"] [[package]] @@ -2877,11 +2906,9 @@ markdown = ">=2.6.8" numpy = ">=1.12.0" protobuf = ">=3.9.2,<4" requests = ">=2.21.0,<3" -setuptools = ">=41.0.0" tensorboard-data-server = ">=0.6.0,<0.7.0" tensorboard-plugin-wit = ">=1.6.0" werkzeug = ">=1.0.1" -wheel = ">=0.26" [[package]] name = "tensorboard-data-server" @@ -2947,7 +2974,7 @@ python-versions = ">=3.7" webencodings = ">=0.4" [package.extras] -doc = ["sphinx", "sphinx_rtd_theme"] +doc = ["sphinx", "sphinx-rtd-theme"] test = ["flake8", "isort", "pytest"] [[package]] @@ -3079,6 +3106,14 @@ category = "main" optional = false python-versions = "*" +[[package]] +name = "types-docutils" +version = "0.19.1.1" +description = "Typing stubs for docutils" +category = "main" +optional = true +python-versions = "*" + [[package]] name = "types-pyyaml" version = "6.0.12.2" @@ -3087,6 +3122,17 @@ category = "main" optional = true python-versions = "*" +[[package]] +name = "types-setuptools" +version = "65.7.0.0" +description = "Typing stubs for setuptools" +category = "main" +optional = true +python-versions = "*" + +[package.dependencies] +types-docutils = "*" + [[package]] name = "typing-extensions" version = "4.4.0" @@ -3128,7 +3174,6 @@ PyYAML = "*" requests = ">=2.0.0,<3" sentry-sdk = ">=1.0.0" setproctitle = "*" -setuptools = "*" shortuuid = ">=0.5.0" six = ">=1.13.0" @@ -3186,17 +3231,6 @@ MarkupSafe = ">=2.1.1" [package.extras] watchdog = ["watchdog"] -[[package]] -name = "wheel" -version = "0.38.4" -description = "A built-package format for Python" -category = "main" -optional = true -python-versions = ">=3.7" - -[package.extras] -test = ["pytest (>=3.0.0)"] - [[package]] name = "widgetsnbextension" version = "3.6.1" @@ -3269,7 +3303,7 @@ wandb = ["wandb"] [metadata] lock-version = "1.1" python-versions = ">=3.7.1, <3.11.0" -content-hash = "68b004c3c9a351dd5943cad0438f16f6408e65789cf9da2d4069902c5bfcfd78" +content-hash = "9b4eb263928b260c85c66de360fae30e3160a2450f64a2d12be8922554066e4c" [metadata.files] absl-py = [ @@ -3373,21 +3407,13 @@ alabaster = [ {file = "alabaster-0.7.12-py2.py3-none-any.whl", hash = "sha256:446438bdcca0e05bd45ea2de1668c1d9b032e1a9154c2c259092d77031ddd359"}, {file = "alabaster-0.7.12.tar.gz", hash = "sha256:a661d72d58e6ea8a57f7a86e37d86716863ee5e92788398526d58b26a4e4dc02"}, ] -alembic = [ - {file = "alembic-1.8.1-py3-none-any.whl", hash = "sha256:0a024d7f2de88d738d7395ff866997314c837be6104e90c5724350313dee4da4"}, - {file = "alembic-1.8.1.tar.gz", hash = "sha256:cd0b5e45b14b706426b833f06369b9a6d5ee03f826ec3238723ce8caaf6e5ffa"}, -] -antlr4-python3-runtime = [ - {file = "antlr4-python3-runtime-4.9.3.tar.gz", hash = "sha256:f224469b4168294902bb1efa80a8bf7855f24c99aef99cbefc1bcd3cce77881b"}, -] +alembic = [] +antlr4-python3-runtime = [] anyio = [ {file = "anyio-3.6.2-py3-none-any.whl", hash = "sha256:fbbe32bd270d2a2ef3ed1c5d45041250284e31fc0a4df4a5a6071842051a51e3"}, {file = "anyio-3.6.2.tar.gz", hash = "sha256:25ea0d673ae30af41a0c442f81cf3b38c7e79fdc7b60335a4c14e05eb0947421"}, ] -appnope = [ - {file = "appnope-0.1.3-py2.py3-none-any.whl", hash = "sha256:265a455292d0bd8a72453494fa24df5a11eb18373a60c7c0430889f22548605e"}, - {file = "appnope-0.1.3.tar.gz", hash = "sha256:02bd91c4de869fbb1e1c50aafc4098827a7a54ab2f39d9dcba6c9547ed920e24"}, -] +appnope = [] argon2-cffi = [ {file = "argon2-cffi-21.3.0.tar.gz", hash = "sha256:d384164d944190a7dd7ef22c6aa3ff197da12962bd04b17f64d4e93d934dba5b"}, {file = "argon2_cffi-21.3.0-py3-none-any.whl", hash = "sha256:8c976986f2c5c0e5000919e6de187906cfd81fb1c72bf9d88c01177e77da7f80"}, @@ -3415,25 +3441,14 @@ argon2-cffi-bindings = [ {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ed2937d286e2ad0cc79a7087d3c272832865f779430e0cc2b4f3718d3159b0cb"}, {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:5e00316dabdaea0b2dd82d141cc66889ced0cdcbfa599e8b471cf22c620c329a"}, ] -async-timeout = [ - {file = "async-timeout-4.0.2.tar.gz", hash = "sha256:2163e1640ddb52b7a8c80d0a67a08587e5d245cc9c553a74a847056bc2976b15"}, - {file = "async_timeout-4.0.2-py3-none-any.whl", hash = "sha256:8ca1e4fcf50d07413d66d1a5e416e42cfdf5851c981d679a09851a6853383b3c"}, -] +async-timeout = [] asynctest = [ {file = "asynctest-0.13.0-py3-none-any.whl", hash = "sha256:5da6118a7e6d6b54d83a8f7197769d046922a44d2a99c21382f0a6e4fadae676"}, {file = "asynctest-0.13.0.tar.gz", hash = "sha256:c27862842d15d83e6a34eb0b2866c323880eb3a75e4485b079ea11748fd77fac"}, ] -atomicwrites = [ - {file = "atomicwrites-1.4.1.tar.gz", hash = "sha256:81b2c9071a49367a7f770170e5eec8cb66567cfbbc8c73d20ce5ca4a8d71cf11"}, -] -attrs = [ - {file = "attrs-21.4.0-py2.py3-none-any.whl", hash = "sha256:2d27e3784d7a565d36ab851fe94887c5eccd6a463168875832a1be79c82828b4"}, - {file = "attrs-21.4.0.tar.gz", hash = "sha256:626ba8234211db98e869df76230a137c4c40a12d72445c45d5f5b716f076e2fd"}, -] -autopage = [ - {file = "autopage-0.5.1-py3-none-any.whl", hash = "sha256:0fbf5efbe78d466a26753e1dee3272423a3adc989d6a778c700e89a3f8ff0d88"}, - {file = "autopage-0.5.1.tar.gz", hash = "sha256:01be3ee61bb714e9090fcc5c10f4cf546c396331c620c6ae50a2321b28ed3199"}, -] +atomicwrites = [] +attrs = [] +autopage = [] babel = [ {file = "Babel-2.11.0-py3-none-any.whl", hash = "sha256:1ad3eca1c885218f6dce2ab67291178944f810a10a9b5f3cb8382a5a232b64fe"}, {file = "Babel-2.11.0.tar.gz", hash = "sha256:5ef4b3226b0180dedded4229651c8b0e1a3a6a2837d45a073272f313e4cf97f6"}, @@ -3442,37 +3457,22 @@ backcall = [ {file = "backcall-0.2.0-py2.py3-none-any.whl", hash = "sha256:fbbce6a29f263178a1f7915c1940bde0ec2b2a967566fe1c65c1dfb7422bd255"}, {file = "backcall-0.2.0.tar.gz", hash = "sha256:5cbdbf27be5e7cfadb448baf0aa95508f91f2bbc6c6437cd9cd06e2a4c215e1e"}, ] -beautifulsoup4 = [ - {file = "beautifulsoup4-4.11.1-py3-none-any.whl", hash = "sha256:58d5c3d29f5a36ffeb94f02f0d786cd53014cf9b3b3951d42e0080d8a9498d30"}, - {file = "beautifulsoup4-4.11.1.tar.gz", hash = "sha256:ad9aa55b65ef2808eb405f46cf74df7fcb7044d5cbc26487f96eb2ef2e436693"}, -] +beautifulsoup4 = [] black = [ - {file = "black-22.10.0-1fixedarch-cp310-cp310-macosx_11_0_x86_64.whl", hash = "sha256:5cc42ca67989e9c3cf859e84c2bf014f6633db63d1cbdf8fdb666dcd9e77e3fa"}, - {file = "black-22.10.0-1fixedarch-cp311-cp311-macosx_11_0_x86_64.whl", hash = "sha256:5d8f74030e67087b219b032aa33a919fae8806d49c867846bfacde57f43972ef"}, - {file = "black-22.10.0-1fixedarch-cp37-cp37m-macosx_10_16_x86_64.whl", hash = "sha256:197df8509263b0b8614e1df1756b1dd41be6738eed2ba9e9769f3880c2b9d7b6"}, - {file = "black-22.10.0-1fixedarch-cp38-cp38-macosx_10_16_x86_64.whl", hash = "sha256:2644b5d63633702bc2c5f3754b1b475378fbbfb481f62319388235d0cd104c2d"}, - {file = "black-22.10.0-1fixedarch-cp39-cp39-macosx_11_0_x86_64.whl", hash = "sha256:e41a86c6c650bcecc6633ee3180d80a025db041a8e2398dcc059b3afa8382cd4"}, - {file = "black-22.10.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:2039230db3c6c639bd84efe3292ec7b06e9214a2992cd9beb293d639c6402edb"}, - {file = "black-22.10.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:14ff67aec0a47c424bc99b71005202045dc09270da44a27848d534600ac64fc7"}, - {file = "black-22.10.0-cp310-cp310-win_amd64.whl", hash = "sha256:819dc789f4498ecc91438a7de64427c73b45035e2e3680c92e18795a839ebb66"}, - {file = "black-22.10.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:5b9b29da4f564ba8787c119f37d174f2b69cdfdf9015b7d8c5c16121ddc054ae"}, - {file = "black-22.10.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b8b49776299fece66bffaafe357d929ca9451450f5466e997a7285ab0fe28e3b"}, - {file = "black-22.10.0-cp311-cp311-win_amd64.whl", hash = "sha256:21199526696b8f09c3997e2b4db8d0b108d801a348414264d2eb8eb2532e540d"}, - {file = "black-22.10.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1e464456d24e23d11fced2bc8c47ef66d471f845c7b7a42f3bd77bf3d1789650"}, - {file = "black-22.10.0-cp37-cp37m-win_amd64.whl", hash = "sha256:9311e99228ae10023300ecac05be5a296f60d2fd10fff31cf5c1fa4ca4b1988d"}, - {file = "black-22.10.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:fba8a281e570adafb79f7755ac8721b6cf1bbf691186a287e990c7929c7692ff"}, - {file = "black-22.10.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:915ace4ff03fdfff953962fa672d44be269deb2eaf88499a0f8805221bc68c87"}, - {file = "black-22.10.0-cp38-cp38-win_amd64.whl", hash = "sha256:444ebfb4e441254e87bad00c661fe32df9969b2bf224373a448d8aca2132b395"}, - {file = "black-22.10.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:974308c58d057a651d182208a484ce80a26dac0caef2895836a92dd6ebd725e0"}, - {file = "black-22.10.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:72ef3925f30e12a184889aac03d77d031056860ccae8a1e519f6cbb742736383"}, - {file = "black-22.10.0-cp39-cp39-win_amd64.whl", hash = "sha256:432247333090c8c5366e69627ccb363bc58514ae3e63f7fc75c54b1ea80fa7de"}, - {file = "black-22.10.0-py3-none-any.whl", hash = "sha256:c957b2b4ea88587b46cf49d1dc17681c1e672864fd7af32fc1e9664d572b3458"}, - {file = "black-22.10.0.tar.gz", hash = "sha256:f513588da599943e0cde4e32cc9879e825d58720d6557062d1098c5ad80080e1"}, -] -bleach = [ - {file = "bleach-5.0.1-py3-none-any.whl", hash = "sha256:085f7f33c15bd408dd9b17a4ad77c577db66d76203e5984b1bd59baeee948b2a"}, - {file = "bleach-5.0.1.tar.gz", hash = "sha256:0d03255c47eb9bd2f26aa9bb7f2107732e7e8fe195ca2f64709fcf3b0a4a085c"}, -] + {file = "black-22.12.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9eedd20838bd5d75b80c9f5487dbcb06836a43833a37846cf1d8c1cc01cef59d"}, + {file = "black-22.12.0-cp310-cp310-win_amd64.whl", hash = "sha256:159a46a4947f73387b4d83e87ea006dbb2337eab6c879620a3ba52699b1f4351"}, + {file = "black-22.12.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d30b212bffeb1e252b31dd269dfae69dd17e06d92b87ad26e23890f3efea366f"}, + {file = "black-22.12.0-cp311-cp311-win_amd64.whl", hash = "sha256:7412e75863aa5c5411886804678b7d083c7c28421210180d67dfd8cf1221e1f4"}, + {file = "black-22.12.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c116eed0efb9ff870ded8b62fe9f28dd61ef6e9ddd28d83d7d264a38417dcee2"}, + {file = "black-22.12.0-cp37-cp37m-win_amd64.whl", hash = "sha256:1f58cbe16dfe8c12b7434e50ff889fa479072096d79f0a7f25e4ab8e94cd8350"}, + {file = "black-22.12.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:77d86c9f3db9b1bf6761244bc0b3572a546f5fe37917a044e02f3166d5aafa7d"}, + {file = "black-22.12.0-cp38-cp38-win_amd64.whl", hash = "sha256:82d9fe8fee3401e02e79767016b4907820a7dc28d70d137eb397b92ef3cc5bfc"}, + {file = "black-22.12.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:101c69b23df9b44247bd88e1d7e90154336ac4992502d4197bdac35dd7ee3320"}, + {file = "black-22.12.0-cp39-cp39-win_amd64.whl", hash = "sha256:559c7a1ba9a006226f09e4916060982fd27334ae1998e7a38b3f33a37f7a2148"}, + {file = "black-22.12.0-py3-none-any.whl", hash = "sha256:436cc9167dd28040ad90d3b404aec22cedf24a6e4d7de221bec2730ec0c97bcf"}, + {file = "black-22.12.0.tar.gz", hash = "sha256:229351e5a18ca30f447bf724d007f890f97e13af070bb6ad4c0a441cd7596a2f"}, +] +bleach = [] boto3 = [ {file = "boto3-1.26.9-py3-none-any.whl", hash = "sha256:27efa5eb229364bc4643d9e182de0891f73c21b65ef80b5bd02a977caeaf595c"}, {file = "boto3-1.26.9.tar.gz", hash = "sha256:15b059251990706c5d5a556c42a6e6e781a51edadf48a42afdd06bd313adfaf2"}, @@ -3481,48 +3481,8 @@ botocore = [ {file = "botocore-1.29.9-py3-none-any.whl", hash = "sha256:c876a7c6a07d7f86f46a8cc765f0d38999b84ac1d7b0666d6ce08c0503e13145"}, {file = "botocore-1.29.9.tar.gz", hash = "sha256:01f168e2418419a6d8b335ecc4330faa6a7332d5a097029fc9b4a3ae3c41cea2"}, ] -bottleneck = [ - {file = "Bottleneck-1.3.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:75ed4ffbe26672da14d9e9e29b7bca79f82c7ecf1e8a32f1d3f7b4dda53b486e"}, - {file = "Bottleneck-1.3.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c8f5562e5f27ab39775758b3d57c6144e29ca33edc76ee60cb220b5a99d5a1f5"}, - {file = "Bottleneck-1.3.5-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5d26675caa9ce86a299877b14e909bc456c0d1fec30ae63bbb52a20b01beedb9"}, - {file = "Bottleneck-1.3.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:cc1395aabff7db940f2cd952b8e42f014461feecd563c6dddb9077022a361a80"}, - {file = "Bottleneck-1.3.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:d17af36baa48cd68c83eeefd830236410981556987c5ea9d8212f99c64c696ae"}, - {file = "Bottleneck-1.3.5-cp310-cp310-win32.whl", hash = "sha256:fe75dff7ad1ec63cd832aa7529fc60ef78ce13ee29318a1437b0634c01ad59f4"}, - {file = "Bottleneck-1.3.5-cp310-cp310-win_amd64.whl", hash = "sha256:9a53cfddc71bdfa14e444deab90173b658fbe98a784cdfee55725641b21be175"}, - {file = "Bottleneck-1.3.5-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:826ecaa26132179ce43b7796473eff62b232db47b39f3b6fcc4365488f3b0b00"}, - {file = "Bottleneck-1.3.5-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3283f98c01702404fde4c674b19ae444eaa2668da77124fcc6de40f82c6cda93"}, - {file = "Bottleneck-1.3.5-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f5f7cffb0de10d83901a942a50f1a8421776fc0489603ce938b31bdf867ab0e9"}, - {file = "Bottleneck-1.3.5-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:005578d5ffbef148d1bc8cdd74d71734a5add7379142e1add339ad68c20ad13b"}, - {file = "Bottleneck-1.3.5-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:538dc29cf97410cb767ea7f369806be487ba6fe125329e0cf410cb6dd225c891"}, - {file = "Bottleneck-1.3.5-cp36-cp36m-win32.whl", hash = "sha256:7b1c0f1a4ab2240dcee5df4968d0b70892d958435750c1dfb1c835b091436453"}, - {file = "Bottleneck-1.3.5-cp36-cp36m-win_amd64.whl", hash = "sha256:698c8b92da3c0638910a81a5c404e199080f0dd6d64c56de7d21dd90870c58cb"}, - {file = "Bottleneck-1.3.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:97d628e66f59255d65d6bcd43f58d64b976388d3cc4e330832a260793cdbdb2a"}, - {file = "Bottleneck-1.3.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:103fe3f2166667448271698394a15eae9d43a252dbb41a9d4397e08e4852934e"}, - {file = "Bottleneck-1.3.5-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a56e945a323896f9c76e99c1401e86bbca68ec0828b38d5832b5881fbacd5da2"}, - {file = "Bottleneck-1.3.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:8a7dbf8e79b9f6821df964b964cfe10ba58ad92334a3cca6e6c8cc5c72ec92d1"}, - {file = "Bottleneck-1.3.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:da08bd0978be264daff090d3cddeff809810bb58ef4dbad418fcb1de0770dafb"}, - {file = "Bottleneck-1.3.5-cp37-cp37m-win32.whl", hash = "sha256:a4280a609b37b12827b3c86fe72869bb580462ae06c970f904412a0bc1b9ba12"}, - {file = "Bottleneck-1.3.5-cp37-cp37m-win_amd64.whl", hash = "sha256:1dc6bc824ff24e55edb5e0738e7e9de838091471406df63a20a12cca006eab2d"}, - {file = "Bottleneck-1.3.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:930a2e86ef95eab1a5ef00467de45d316a8dfb0de9604aa23cdbf7fefbdab765"}, - {file = "Bottleneck-1.3.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e069baf7a3208aaa55e3d2c2fa315661cd61a1e0c5cc33be42111e9520fa5802"}, - {file = "Bottleneck-1.3.5-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f3bb670f70c86978b99566e39959b151e211c814b336cacda6931109f19b280a"}, - {file = "Bottleneck-1.3.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:9a4cb657afba02c01471e78879bc01652268a8d23dec3c8ea432df174c10f61d"}, - {file = "Bottleneck-1.3.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:0b624ebe4660545534f6408dbe069157600d89392caabfc0c337f2a01aa2c990"}, - {file = "Bottleneck-1.3.5-cp38-cp38-win32.whl", hash = "sha256:c907f1be11ab6e2b9c980a61feabee21dbe16d62db1e605fbffe6a85d2a8a23b"}, - {file = "Bottleneck-1.3.5-cp38-cp38-win_amd64.whl", hash = "sha256:73084b263d5ec3091e92664ae1276258db2865e6801b7f99864af42baebd6d2d"}, - {file = "Bottleneck-1.3.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:f0eaf6e9dc1a8efe56b90b790c0bd47453639c4a6427d6206c8bd26f7c06c3a6"}, - {file = "Bottleneck-1.3.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b5cffd0b4a7b929f94412586e78ca3506b3c2b50d213f7a4aaff67f913736e38"}, - {file = "Bottleneck-1.3.5-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5a87a21081fb27995ef2123d85a5cc392a3aab707189c6ba98b4a4808d0905d0"}, - {file = "Bottleneck-1.3.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:04c938dea6ca735bed69e0e01b3d83c31da4861c10d3332363a4f697db02a341"}, - {file = "Bottleneck-1.3.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:5712542be5b067f10c064139227757008ecd6e494967e26ecc03e24d5953e6c4"}, - {file = "Bottleneck-1.3.5-cp39-cp39-win32.whl", hash = "sha256:f24fc607466edf97d46aeafe0ac4797e0f7b654aef4a547b1699bb8ae15db3ff"}, - {file = "Bottleneck-1.3.5-cp39-cp39-win_amd64.whl", hash = "sha256:dce5ba9eaab354fdc13c7969f026ef2e9f4757415f565a188322e6cc9a296ce5"}, - {file = "Bottleneck-1.3.5.tar.gz", hash = "sha256:2c0d27afe45351f6f421893362621804fa7dea14fe29a78eaa52d4323f646de7"}, -] -cachetools = [ - {file = "cachetools-5.2.0-py3-none-any.whl", hash = "sha256:f9f17d2aec496a9aa6b76f53e3b614c965223c061982d434d160f930c698a9db"}, - {file = "cachetools-5.2.0.tar.gz", hash = "sha256:6a94c6402995a99c3970cc7e4884bb60b4a8639938157eeed436098bf9831757"}, -] +bottleneck = [] +cachetools = [] catboost = [ {file = "catboost-1.1.1-cp310-none-macosx_10_6_universal2.whl", hash = "sha256:93532f6807228f74db9c8184a0893ab222232d23fc5b3db534e2d8fedbba42cf"}, {file = "catboost-1.1.1-cp310-none-manylinux1_x86_64.whl", hash = "sha256:7c7364d79d5ff9deb56956560ba91a1b62b84204961d540bffd97f7b995e8cba"}, @@ -3544,92 +3504,18 @@ certifi = [ {file = "certifi-2022.9.24-py3-none-any.whl", hash = "sha256:90c1a32f1d68f940488354e36370f6cca89f0f106db09518524c88d6ed83f382"}, {file = "certifi-2022.9.24.tar.gz", hash = "sha256:0d9c601124e5a6ba9712dbc60d9c53c21e34f5f641fe83002317394311bdce14"}, ] -cffi = [ - {file = "cffi-1.15.1-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:a66d3508133af6e8548451b25058d5812812ec3798c886bf38ed24a98216fab2"}, - {file = "cffi-1.15.1-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:470c103ae716238bbe698d67ad020e1db9d9dba34fa5a899b5e21577e6d52ed2"}, - {file = "cffi-1.15.1-cp27-cp27m-manylinux1_x86_64.whl", hash = "sha256:9ad5db27f9cabae298d151c85cf2bad1d359a1b9c686a275df03385758e2f914"}, - {file = "cffi-1.15.1-cp27-cp27m-win32.whl", hash = "sha256:b3bbeb01c2b273cca1e1e0c5df57f12dce9a4dd331b4fa1635b8bec26350bde3"}, - {file = "cffi-1.15.1-cp27-cp27m-win_amd64.whl", hash = "sha256:e00b098126fd45523dd056d2efba6c5a63b71ffe9f2bbe1a4fe1716e1d0c331e"}, - {file = "cffi-1.15.1-cp27-cp27mu-manylinux1_i686.whl", hash = "sha256:d61f4695e6c866a23a21acab0509af1cdfd2c013cf256bbf5b6b5e2695827162"}, - {file = "cffi-1.15.1-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:ed9cb427ba5504c1dc15ede7d516b84757c3e3d7868ccc85121d9310d27eed0b"}, - {file = "cffi-1.15.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:39d39875251ca8f612b6f33e6b1195af86d1b3e60086068be9cc053aa4376e21"}, - {file = "cffi-1.15.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:285d29981935eb726a4399badae8f0ffdff4f5050eaa6d0cfc3f64b857b77185"}, - {file = "cffi-1.15.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3eb6971dcff08619f8d91607cfc726518b6fa2a9eba42856be181c6d0d9515fd"}, - {file = "cffi-1.15.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:21157295583fe8943475029ed5abdcf71eb3911894724e360acff1d61c1d54bc"}, - {file = "cffi-1.15.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5635bd9cb9731e6d4a1132a498dd34f764034a8ce60cef4f5319c0541159392f"}, - {file = "cffi-1.15.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2012c72d854c2d03e45d06ae57f40d78e5770d252f195b93f581acf3ba44496e"}, - {file = "cffi-1.15.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd86c085fae2efd48ac91dd7ccffcfc0571387fe1193d33b6394db7ef31fe2a4"}, - {file = "cffi-1.15.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:fa6693661a4c91757f4412306191b6dc88c1703f780c8234035eac011922bc01"}, - {file = "cffi-1.15.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:59c0b02d0a6c384d453fece7566d1c7e6b7bae4fc5874ef2ef46d56776d61c9e"}, - {file = "cffi-1.15.1-cp310-cp310-win32.whl", hash = "sha256:cba9d6b9a7d64d4bd46167096fc9d2f835e25d7e4c121fb2ddfc6528fb0413b2"}, - {file = "cffi-1.15.1-cp310-cp310-win_amd64.whl", hash = "sha256:ce4bcc037df4fc5e3d184794f27bdaab018943698f4ca31630bc7f84a7b69c6d"}, - {file = "cffi-1.15.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3d08afd128ddaa624a48cf2b859afef385b720bb4b43df214f85616922e6a5ac"}, - {file = "cffi-1.15.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:3799aecf2e17cf585d977b780ce79ff0dc9b78d799fc694221ce814c2c19db83"}, - {file = "cffi-1.15.1-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a591fe9e525846e4d154205572a029f653ada1a78b93697f3b5a8f1f2bc055b9"}, - {file = "cffi-1.15.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3548db281cd7d2561c9ad9984681c95f7b0e38881201e157833a2342c30d5e8c"}, - {file = "cffi-1.15.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:91fc98adde3d7881af9b59ed0294046f3806221863722ba7d8d120c575314325"}, - {file = "cffi-1.15.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:94411f22c3985acaec6f83c6df553f2dbe17b698cc7f8ae751ff2237d96b9e3c"}, - {file = "cffi-1.15.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:03425bdae262c76aad70202debd780501fabeaca237cdfddc008987c0e0f59ef"}, - {file = "cffi-1.15.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:cc4d65aeeaa04136a12677d3dd0b1c0c94dc43abac5860ab33cceb42b801c1e8"}, - {file = "cffi-1.15.1-cp311-cp311-win32.whl", hash = "sha256:a0f100c8912c114ff53e1202d0078b425bee3649ae34d7b070e9697f93c5d52d"}, - {file = "cffi-1.15.1-cp311-cp311-win_amd64.whl", hash = "sha256:04ed324bda3cda42b9b695d51bb7d54b680b9719cfab04227cdd1e04e5de3104"}, - {file = "cffi-1.15.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:50a74364d85fd319352182ef59c5c790484a336f6db772c1a9231f1c3ed0cbd7"}, - {file = "cffi-1.15.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e263d77ee3dd201c3a142934a086a4450861778baaeeb45db4591ef65550b0a6"}, - {file = "cffi-1.15.1-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cec7d9412a9102bdc577382c3929b337320c4c4c4849f2c5cdd14d7368c5562d"}, - {file = "cffi-1.15.1-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4289fc34b2f5316fbb762d75362931e351941fa95fa18789191b33fc4cf9504a"}, - {file = "cffi-1.15.1-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:173379135477dc8cac4bc58f45db08ab45d228b3363adb7af79436135d028405"}, - {file = "cffi-1.15.1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:6975a3fac6bc83c4a65c9f9fcab9e47019a11d3d2cf7f3c0d03431bf145a941e"}, - {file = "cffi-1.15.1-cp36-cp36m-win32.whl", hash = "sha256:2470043b93ff09bf8fb1d46d1cb756ce6132c54826661a32d4e4d132e1977adf"}, - {file = "cffi-1.15.1-cp36-cp36m-win_amd64.whl", hash = "sha256:30d78fbc8ebf9c92c9b7823ee18eb92f2e6ef79b45ac84db507f52fbe3ec4497"}, - {file = "cffi-1.15.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:198caafb44239b60e252492445da556afafc7d1e3ab7a1fb3f0584ef6d742375"}, - {file = "cffi-1.15.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5ef34d190326c3b1f822a5b7a45f6c4535e2f47ed06fec77d3d799c450b2651e"}, - {file = "cffi-1.15.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8102eaf27e1e448db915d08afa8b41d6c7ca7a04b7d73af6514df10a3e74bd82"}, - {file = "cffi-1.15.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5df2768244d19ab7f60546d0c7c63ce1581f7af8b5de3eb3004b9b6fc8a9f84b"}, - {file = "cffi-1.15.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a8c4917bd7ad33e8eb21e9a5bbba979b49d9a97acb3a803092cbc1133e20343c"}, - {file = "cffi-1.15.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0e2642fe3142e4cc4af0799748233ad6da94c62a8bec3a6648bf8ee68b1c7426"}, - {file = "cffi-1.15.1-cp37-cp37m-win32.whl", hash = "sha256:e229a521186c75c8ad9490854fd8bbdd9a0c9aa3a524326b55be83b54d4e0ad9"}, - {file = "cffi-1.15.1-cp37-cp37m-win_amd64.whl", hash = "sha256:a0b71b1b8fbf2b96e41c4d990244165e2c9be83d54962a9a1d118fd8657d2045"}, - {file = "cffi-1.15.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:320dab6e7cb2eacdf0e658569d2575c4dad258c0fcc794f46215e1e39f90f2c3"}, - {file = "cffi-1.15.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1e74c6b51a9ed6589199c787bf5f9875612ca4a8a0785fb2d4a84429badaf22a"}, - {file = "cffi-1.15.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5c84c68147988265e60416b57fc83425a78058853509c1b0629c180094904a5"}, - {file = "cffi-1.15.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3b926aa83d1edb5aa5b427b4053dc420ec295a08e40911296b9eb1b6170f6cca"}, - {file = "cffi-1.15.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:87c450779d0914f2861b8526e035c5e6da0a3199d8f1add1a665e1cbc6fc6d02"}, - {file = "cffi-1.15.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4f2c9f67e9821cad2e5f480bc8d83b8742896f1242dba247911072d4fa94c192"}, - {file = "cffi-1.15.1-cp38-cp38-win32.whl", hash = "sha256:8b7ee99e510d7b66cdb6c593f21c043c248537a32e0bedf02e01e9553a172314"}, - {file = "cffi-1.15.1-cp38-cp38-win_amd64.whl", hash = "sha256:00a9ed42e88df81ffae7a8ab6d9356b371399b91dbdf0c3cb1e84c03a13aceb5"}, - {file = "cffi-1.15.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:54a2db7b78338edd780e7ef7f9f6c442500fb0d41a5a4ea24fff1c929d5af585"}, - {file = "cffi-1.15.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:fcd131dd944808b5bdb38e6f5b53013c5aa4f334c5cad0c72742f6eba4b73db0"}, - {file = "cffi-1.15.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7473e861101c9e72452f9bf8acb984947aa1661a7704553a9f6e4baa5ba64415"}, - {file = "cffi-1.15.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6c9a799e985904922a4d207a94eae35c78ebae90e128f0c4e521ce339396be9d"}, - {file = "cffi-1.15.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3bcde07039e586f91b45c88f8583ea7cf7a0770df3a1649627bf598332cb6984"}, - {file = "cffi-1.15.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:33ab79603146aace82c2427da5ca6e58f2b3f2fb5da893ceac0c42218a40be35"}, - {file = "cffi-1.15.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5d598b938678ebf3c67377cdd45e09d431369c3b1a5b331058c338e201f12b27"}, - {file = "cffi-1.15.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:db0fbb9c62743ce59a9ff687eb5f4afbe77e5e8403d6697f7446e5f609976f76"}, - {file = "cffi-1.15.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:98d85c6a2bef81588d9227dde12db8a7f47f639f4a17c9ae08e773aa9c697bf3"}, - {file = "cffi-1.15.1-cp39-cp39-win32.whl", hash = "sha256:40f4774f5a9d4f5e344f31a32b5096977b5d48560c5592e2f3d2c4374bd543ee"}, - {file = "cffi-1.15.1-cp39-cp39-win_amd64.whl", hash = "sha256:70df4e3b545a17496c9b3f41f5115e69a4f2e77e94e1d2a8e1070bc0c38c8a3c"}, - {file = "cffi-1.15.1.tar.gz", hash = "sha256:d400bfb9a37b1351253cb402671cea7e89bdecc294e8016a707f6d1d8ac934f9"}, -] +cffi = [] charset-normalizer = [ {file = "charset-normalizer-2.1.1.tar.gz", hash = "sha256:5a3d016c7c547f69d6f81fb0db9449ce888b418b5b9952cc5e6e66843e9dd845"}, {file = "charset_normalizer-2.1.1-py3-none-any.whl", hash = "sha256:83e9a75d1911279afd89352c68b45348559d1fc0506b054b346651b5e7fee29f"}, ] -click = [ - {file = "click-8.0.4-py3-none-any.whl", hash = "sha256:6a7a62563bbfabfda3a38f3023a1db4a35978c0abd76f6c9605ecd6554d6d9b1"}, - {file = "click-8.0.4.tar.gz", hash = "sha256:8458d7b1287c5fb128c90e23381cf99dcde74beaf6c7ff6384ce84d6fe090adb"}, -] -cliff = [ - {file = "cliff-3.10.1-py3-none-any.whl", hash = "sha256:a21da482714b9f0b0e9bafaaf2f6a8b3b14161bb47f62e10e28d2fe4ff4b1626"}, - {file = "cliff-3.10.1.tar.gz", hash = "sha256:045aee3f3c64471965d7ad507ce8474a4e2f20815fbb5405a770f8596a2a00a0"}, -] +click = [] +cliff = [] cmaes = [ {file = "cmaes-0.9.0-py3-none-any.whl", hash = "sha256:cb365a7606d98547a8df615a6ce97f605e0addf8264eb785917777ea8d94e065"}, {file = "cmaes-0.9.0.tar.gz", hash = "sha256:425e621d453f9208601d41fbb86b54a200a2a472a11789c54d2f62cbff3aa709"}, ] -cmd2 = [ - {file = "cmd2-2.4.2-py3-none-any.whl", hash = "sha256:a77e3056751393270b4125c990cf527db132f15951a20a3a5dd2df4290aadf20"}, - {file = "cmd2-2.4.2.tar.gz", hash = "sha256:073e555c05853b0f6965f3d03329babdf9e38a5f2cea028e61a64cd7eeb74ad5"}, -] +cmd2 = [] cmdstanpy = [ {file = "cmdstanpy-1.0.8-py3-none-any.whl", hash = "sha256:10d8ccf3356ba012b62e72ceef9993a5382d75a7a07e8c2ee795f8363f07c816"}, {file = "cmdstanpy-1.0.8.tar.gz", hash = "sha256:d7e9e2ec96bb860b573ce56c8439fd11ec3289a8287231730b279fd3e85d2ba0"}, @@ -3646,10 +3532,7 @@ colorlog = [ {file = "colorlog-6.7.0-py2.py3-none-any.whl", hash = "sha256:0d33ca236784a1ba3ff9c532d4964126d8a2c44f1f0cb1d2b0728196f512f662"}, {file = "colorlog-6.7.0.tar.gz", hash = "sha256:bd94bd21c1e13fac7bd3153f4bc3a7dc0eb0974b8bc2fdf1a989e474f6e582e5"}, ] -convertdate = [ - {file = "convertdate-2.4.0-py3-none-any.whl", hash = "sha256:fcffe3a67522172648cf03b0c3757cfd079726fe5ae04ce29989ad3958039e4e"}, - {file = "convertdate-2.4.0.tar.gz", hash = "sha256:770c6b2195544d3e451e230b3f1c9b121ed02680b877f896306a04cf6f26b48f"}, -] +convertdate = [] coverage = [ {file = "coverage-5.5-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:b6d534e4b2ab35c9f93f46229363e17f63c53ad01330df9f2d6bd1187e5eaacf"}, {file = "coverage-5.5-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:b7895207b4c843c76a25ab8c1e866261bcfe27bfaa20c192de5190121770672b"}, @@ -3770,18 +3653,12 @@ debugpy = [ {file = "debugpy-1.6.3-py2.py3-none-any.whl", hash = "sha256:84c39940a0cac410bf6aa4db00ba174f973eef521fbe9dd058e26bcabad89c4f"}, {file = "debugpy-1.6.3.zip", hash = "sha256:e8922090514a890eec99cfb991bab872dd2e353ebb793164d5f01c362b9a40bf"}, ] -decorator = [ - {file = "decorator-5.1.1-py3-none-any.whl", hash = "sha256:b8c3f85900b9dc423225913c5aace94729fe1fa9763b38939a95226f02d37186"}, - {file = "decorator-5.1.1.tar.gz", hash = "sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330"}, -] +decorator = [] defusedxml = [ {file = "defusedxml-0.7.1-py2.py3-none-any.whl", hash = "sha256:a352e7e428770286cc899e2542b6cdaedb2b4953ff269a210103ec58f6198a61"}, {file = "defusedxml-0.7.1.tar.gz", hash = "sha256:1bb3032db185915b62d7c6209c5a8792be6a32ab2fedacc84e01b52c51aa3e69"}, ] -deprecated = [ - {file = "Deprecated-1.2.13-py2.py3-none-any.whl", hash = "sha256:64756e3e14c8c5eea9795d93c524551432a0be75629f8f29e67ab8caf076c76d"}, - {file = "Deprecated-1.2.13.tar.gz", hash = "sha256:43ac5335da90c31c24ba028af536a91d41d53f9e6901ddb021bcc572ce44e38d"}, -] +deprecated = [] dill = [ {file = "dill-0.3.6-py3-none-any.whl", hash = "sha256:a07ffd2351b8c678dfc4a856a3005f8067aea51d6ba6c700796a4d9e280f39f0"}, {file = "dill-0.3.6.tar.gz", hash = "sha256:e5db55f3687856d8fbdab002ed78544e1c4559a130302693d839dfe8f93f2373"}, @@ -3794,10 +3671,7 @@ docutils = [ {file = "docutils-0.16-py2.py3-none-any.whl", hash = "sha256:0c5b78adfbf7762415433f5515cd5c9e762339e23369dbe8000d84a4bf4ab3af"}, {file = "docutils-0.16.tar.gz", hash = "sha256:c2de3a60e9e7d07be26b7f2b00ca0309c207e06c100f9cc2a94931fc75a478fc"}, ] -entrypoints = [ - {file = "entrypoints-0.4-py3-none-any.whl", hash = "sha256:f174b5ff827504fd3cd97cc3f8649f3693f51538c7e4bdf3ef002c8429d42f9f"}, - {file = "entrypoints-0.4.tar.gz", hash = "sha256:b706eddaa9218a19ebcd67b56818f05bb27589b1ca9e8d797b74affad4ccacd4"}, -] +entrypoints = [] ephem = [ {file = "ephem-4.1.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0dc6e240cacd65820ec39687233d7de1cfd1ff3bf83fd62337831c201cd80d47"}, {file = "ephem-4.1.3-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:cf65bfd4753f2aacf5caa1c5b8bcba276b03cb59f13e9f2d9850c93efaf47fa7"}, @@ -4096,14 +3970,8 @@ grpcio = [ {file = "grpcio-1.50.0-cp39-cp39-win_amd64.whl", hash = "sha256:ea8ccf95e4c7e20419b7827aa5b6da6f02720270686ac63bd3493a651830235c"}, {file = "grpcio-1.50.0.tar.gz", hash = "sha256:12b479839a5e753580b5e6053571de14006157f2ef9b71f38c56dc9b23b95ad6"}, ] -hijri-converter = [ - {file = "hijri-converter-2.2.4.tar.gz", hash = "sha256:9e1d9fa4c220f6867da2abb1a96240675ae974abba951c686a781f4ef6ac218f"}, - {file = "hijri_converter-2.2.4-py3-none-any.whl", hash = "sha256:5ed4f4c284626e3916cd770e09346d5cc319e2a7762c22357838864908fd6e6d"}, -] -holidays = [ - {file = "holidays-0.13-py3-none-any.whl", hash = "sha256:ca944d20762f027770ceae2f21d037f959c9b206afe92db97161ce78538c275e"}, - {file = "holidays-0.13.tar.gz", hash = "sha256:c6f7c3ab8ada94806702da931d94d37cd61bcfa92cb4d39d351b6a9c5210675c"}, -] +hijri-converter = [] +holidays = [] hydra-slayer = [ {file = "hydra-slayer-0.2.0.tar.gz", hash = "sha256:6eeceae6fa3e3078462b7fc2e186274918c910004f082abe7fe334d0e8f26a3c"}, {file = "hydra_slayer-0.2.0-py3-none-any.whl", hash = "sha256:b21dee230df654c87fc5c1c87400ee68b8f1082d8341b0aed2c050792121854c"}, @@ -4112,10 +3980,7 @@ idna = [ {file = "idna-3.4-py3-none-any.whl", hash = "sha256:90b77e79eaa3eba6de819a0c442c0b4ceefc341a7a2ab77d7562bf49f425c5c2"}, {file = "idna-3.4.tar.gz", hash = "sha256:814f528e8dead7d329833b91c5faa87d60bf71824cd12a7530b5526063d02cb4"}, ] -imagesize = [ - {file = "imagesize-1.4.1-py2.py3-none-any.whl", hash = "sha256:0d8d18d08f840c19d0ee7ca1fd82490fdc3729b7ac93f49870406ddde8ef8d8b"}, - {file = "imagesize-1.4.1.tar.gz", hash = "sha256:69150444affb9cb0d5cc5a92b3676f0b2fb7cd9ae39e947a5e11a36b4497cd4a"}, -] +imagesize = [] importlib-metadata = [ {file = "importlib_metadata-5.0.0-py3-none-any.whl", hash = "sha256:ddb0e35065e8938f867ed4928d0ae5bf2a53b7773871bfe6bcc7e4fcdc7dea43"}, {file = "importlib_metadata-5.0.0.tar.gz", hash = "sha256:da31db32b304314d044d3c12c79bd59e307889b287ad12ff387b3500835fc2ab"}, @@ -4132,10 +3997,7 @@ ipykernel = [ {file = "ipykernel-6.16.2-py3-none-any.whl", hash = "sha256:67daf93e5b52456cd8eea87a8b59405d2bb80ae411864a1ea206c3631d8179af"}, {file = "ipykernel-6.16.2.tar.gz", hash = "sha256:463f3d87a92e99969b1605cb7a5b4d7b36b7145a0e72d06e65918a6ddefbe630"}, ] -ipython = [ - {file = "ipython-7.34.0-py3-none-any.whl", hash = "sha256:c175d2440a1caff76116eb719d40538fbb316e214eda85c5515c303aacbfb23e"}, - {file = "ipython-7.34.0.tar.gz", hash = "sha256:af3bdb46aa292bce5615b1b2ebc76c2080c5f77f54bda2ec72461317273e7cd6"}, -] +ipython = [] ipython-genutils = [ {file = "ipython_genutils-0.2.0-py2.py3-none-any.whl", hash = "sha256:72dd37233799e619666c9f639a9da83c34013a73e8bbc79a7a6348d93c61fab8"}, {file = "ipython_genutils-0.2.0.tar.gz", hash = "sha256:eb2e116e75ecef9d4d228fdc66af54269afa26ab4463042e33785b887c628ba8"}, @@ -4152,14 +4014,8 @@ jedi = [ {file = "jedi-0.18.1-py2.py3-none-any.whl", hash = "sha256:637c9635fcf47945ceb91cd7f320234a7be540ded6f3e99a50cb6febdfd1ba8d"}, {file = "jedi-0.18.1.tar.gz", hash = "sha256:74137626a64a99c8eb6ae5832d99b3bdd7d29a3850fe2aa80a4126b2a7d949ab"}, ] -jinja2 = [ - {file = "Jinja2-3.1.2-py3-none-any.whl", hash = "sha256:6088930bfe239f0e6710546ab9c19c9ef35e29792895fed6e6e31a023a182a61"}, - {file = "Jinja2-3.1.2.tar.gz", hash = "sha256:31351a702a408a9e7595a8fc6150fc3f43bb6bf7e319770cbc0db9df9437e852"}, -] -jmespath = [ - {file = "jmespath-1.0.1-py3-none-any.whl", hash = "sha256:02e2e4cc71b5bcab88332eebf907519190dd9e6e82107fa7f83b1003a6252980"}, - {file = "jmespath-1.0.1.tar.gz", hash = "sha256:90261b206d6defd58fdd5e85f478bf633a2901798906be2ad389150c5c60edbe"}, -] +jinja2 = [] +jmespath = [] joblib = [ {file = "joblib-1.2.0-py3-none-any.whl", hash = "sha256:091138ed78f800342968c523bdde947e7a305b8594b910a0fea2ab83c3c6d385"}, {file = "joblib-1.2.0.tar.gz", hash = "sha256:e1cee4a79e4af22881164f218d4311f60074197fb707e082e803b61f6d137018"}, @@ -4177,10 +4033,7 @@ jupyter-client = [ {file = "jupyter_client-7.4.5-py3-none-any.whl", hash = "sha256:feaad9c04871254067d3b8c41192b7aba8e9bbbf9df9830ecf2673939510c5b7"}, {file = "jupyter_client-7.4.5.tar.gz", hash = "sha256:63eae06c40e1f2d9afa14447511fddc065c95dea3f2491fda2acccf91221954a"}, ] -jupyter-console = [ - {file = "jupyter_console-6.4.4-py3-none-any.whl", hash = "sha256:756df7f4f60c986e7bc0172e4493d3830a7e6e75c08750bbe59c0a5403ad6dee"}, - {file = "jupyter_console-6.4.4.tar.gz", hash = "sha256:172f5335e31d600df61613a97b7f0352f2c8250bbd1092ef2d658f77249f89fb"}, -] +jupyter-console = [] jupyter-core = [ {file = "jupyter_core-4.11.2-py3-none-any.whl", hash = "sha256:3815e80ec5272c0c19aad087a0d2775df2852cfca8f5a17069e99c9350cecff8"}, {file = "jupyter_core-4.11.2.tar.gz", hash = "sha256:c2909b9bc7dca75560a6c5ae78c34fd305ede31cd864da3c0d0bb2ed89aa9337"}, @@ -4189,14 +4042,8 @@ jupyter-server = [ {file = "jupyter_server-1.23.2-py3-none-any.whl", hash = "sha256:c01d0e84c22a14dd6b0e7d8ce4105b08a3426b46582668e28046a64c07311a4f"}, {file = "jupyter_server-1.23.2.tar.gz", hash = "sha256:69cb954ef02c0ba1837787e34e4a1240c93c8eb590662fae1840778861957660"}, ] -jupyterlab-pygments = [ - {file = "jupyterlab_pygments-0.2.2-py2.py3-none-any.whl", hash = "sha256:2405800db07c9f770863bcf8049a529c3dd4d3e28536638bd7c1c01d2748309f"}, - {file = "jupyterlab_pygments-0.2.2.tar.gz", hash = "sha256:7405d7fde60819d905a9fa8ce89e4cd830e318cdad22a0030f7a901da705585d"}, -] -jupyterlab-widgets = [ - {file = "jupyterlab_widgets-1.1.1-py3-none-any.whl", hash = "sha256:90ab47d99da03a3697074acb23b2975ead1d6171aa41cb2812041a7f2a08177a"}, - {file = "jupyterlab_widgets-1.1.1.tar.gz", hash = "sha256:67d0ef1e407e0c42c8ab60b9d901cd7a4c68923650763f75bf17fb06c1943b79"}, -] +jupyterlab-pygments = [] +jupyterlab-widgets = [] kiwisolver = [ {file = "kiwisolver-1.4.4-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:2f5e60fabb7343a836360c4f0919b8cd0d6dbf08ad2ca6b9cf90bf0c76a3c4f6"}, {file = "kiwisolver-1.4.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:10ee06759482c78bdb864f4109886dff7b8a56529bc1609d4f1112b93fe6423c"}, @@ -4275,36 +4122,7 @@ lightning-utilities = [ {file = "lightning-utilities-0.3.0.tar.gz", hash = "sha256:d769ab9b76ebdee3243d1051d509aafee57d7947734ddc22977deef8a6427f2f"}, {file = "lightning_utilities-0.3.0-py3-none-any.whl", hash = "sha256:1ae9bdd8f1be3c81b1ac4820f6eeddcbafcc2505c57a5940054466f4763bc22d"}, ] -llvmlite = [ - {file = "llvmlite-0.38.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a7dd2bd1d6406e7789273e3f8a304ed5d9adcfaa5768052fca7dc233a857be98"}, - {file = "llvmlite-0.38.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:7a5e0ed215a576f0f872f47a70b8cb49864e0aefc8586aff5ce83e3bff47bc23"}, - {file = "llvmlite-0.38.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:633c9026eb43b9903cc4ffbc1c7d5293b2e3ad95d06fa9eab0f6ce6ff6ea15b3"}, - {file = "llvmlite-0.38.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b98da8436dbc29013ea301f1fdb0d596ab53bf0ab65c976d96d00bb6faa0b479"}, - {file = "llvmlite-0.38.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0c0adce1793d66d009c554809f27baeb6258bf13f6fbaa12eff7443500caec25"}, - {file = "llvmlite-0.38.1-cp310-cp310-win32.whl", hash = "sha256:8c64c90a8b0b7b7e1ed1912ba82c1a3f43cf25affbe06aa3c56c84050edee8ac"}, - {file = "llvmlite-0.38.1-cp310-cp310-win_amd64.whl", hash = "sha256:ab070266f0f51304789a6c20d4be91a9e69683ad9bd4861eb89980e8eb613b3a"}, - {file = "llvmlite-0.38.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:ed7528b8b85de930b76407e44b080e4f376b7a007c2879749599ff8e2fe32753"}, - {file = "llvmlite-0.38.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7db018da2863034ad9c73c946625637f3a89635bc70576068bab4bd085eea90d"}, - {file = "llvmlite-0.38.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4c1e5805c92e049b4956ed01204c6647de6160ab9aefb0d67ea83ca02a1d889a"}, - {file = "llvmlite-0.38.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5559e46c79b4017c3c25edc3b9512d11adc3689b9046120c685b0905c08d48a5"}, - {file = "llvmlite-0.38.1-cp37-cp37m-win32.whl", hash = "sha256:ef9aa574eff2e15f8c47b255da0db5dab326dc7f76384c307ae35490e2d2489a"}, - {file = "llvmlite-0.38.1-cp37-cp37m-win_amd64.whl", hash = "sha256:84d5a0163c172db2b2ae561d2fc0866fbd9f716cf13f92c0d41ca4338e682672"}, - {file = "llvmlite-0.38.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:a263252a68d85450110ec1f2b406c0414e49b04a4d216d31c0515ea1d59c3882"}, - {file = "llvmlite-0.38.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:de8bd61480173930f2a029673e7cd0738fbbb5171dfe490340839ad7301d4cf0"}, - {file = "llvmlite-0.38.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fbfbe546394c39db39a6898a51972aa131c8d6b0628517728b350552f58bdc19"}, - {file = "llvmlite-0.38.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8c4f26c6c370e134a909ac555a671fa1376e74c69af0208f25c0979472577a9d"}, - {file = "llvmlite-0.38.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f95f455697c44d7c04ef95fdfce04629f48df08a832d0a0d9eb2363186dbb969"}, - {file = "llvmlite-0.38.1-cp38-cp38-win32.whl", hash = "sha256:41e638a71c85a9a4a33f279c4cd812bc2f84122505b1f6ab8984ec7debb8548b"}, - {file = "llvmlite-0.38.1-cp38-cp38-win_amd64.whl", hash = "sha256:5c07d63df4578f31b39b764d3b4291f70157af7f42e171a8884ae7aaf989d1f7"}, - {file = "llvmlite-0.38.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4e11bd9929dcbd55d5eb5cd7b08bf71b0097ea48cc192b69d102a90dd6e9816f"}, - {file = "llvmlite-0.38.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:edfa2c761cfa56cf76e783290d82e117f829bb691d8d90aa375505204888abac"}, - {file = "llvmlite-0.38.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0e609f7312a439b53b6f622d99180c3ff6a3e1e4ceca4d18aca1c5b46f4e3664"}, - {file = "llvmlite-0.38.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9f53c3448410cc84d0e1af84dbc0d60ad32779853d40bcc8b1ee3c67ebbe94b1"}, - {file = "llvmlite-0.38.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9c8fac4edbadefa4dddf5dc6cca76bc2ae81df211dcd16a6638d60cc41249e56"}, - {file = "llvmlite-0.38.1-cp39-cp39-win32.whl", hash = "sha256:3d76c0fa42390bef56979ed213fbf0150c3fef36f5ea68d3d780d5d725da8c01"}, - {file = "llvmlite-0.38.1-cp39-cp39-win_amd64.whl", hash = "sha256:66462d768c30d5f648ca3361d657b434efa8b09f6cf04d6b6eae66e62e993644"}, - {file = "llvmlite-0.38.1.tar.gz", hash = "sha256:0622a86301fcf81cc50d7ed5b4bebe992c030580d413a8443b328ed4f4d82561"}, -] +llvmlite = [] loguru = [ {file = "loguru-0.5.3-py3-none-any.whl", hash = "sha256:f8087ac396b5ee5f67c963b495d615ebbceac2796379599820e324419d53667c"}, {file = "loguru-0.5.3.tar.gz", hash = "sha256:b28e72ac7a98be3d28ad28570299a393dfcd32e5e3f6a353dec94675767b6319"}, @@ -4325,48 +4143,7 @@ markdown-it-py = [ {file = "markdown-it-py-1.1.0.tar.gz", hash = "sha256:36be6bb3ad987bfdb839f5ba78ddf094552ca38ccbd784ae4f74a4e1419fc6e3"}, {file = "markdown_it_py-1.1.0-py3-none-any.whl", hash = "sha256:98080fc0bc34c4f2bcf0846a096a9429acbd9d5d8e67ed34026c03c61c464389"}, ] -markupsafe = [ - {file = "MarkupSafe-2.1.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:86b1f75c4e7c2ac2ccdaec2b9022845dbb81880ca318bb7a0a01fbf7813e3812"}, - {file = "MarkupSafe-2.1.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:f121a1420d4e173a5d96e47e9a0c0dcff965afdf1626d28de1460815f7c4ee7a"}, - {file = "MarkupSafe-2.1.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a49907dd8420c5685cfa064a1335b6754b74541bbb3706c259c02ed65b644b3e"}, - {file = "MarkupSafe-2.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:10c1bfff05d95783da83491be968e8fe789263689c02724e0c691933c52994f5"}, - {file = "MarkupSafe-2.1.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b7bd98b796e2b6553da7225aeb61f447f80a1ca64f41d83612e6139ca5213aa4"}, - {file = "MarkupSafe-2.1.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:b09bf97215625a311f669476f44b8b318b075847b49316d3e28c08e41a7a573f"}, - {file = "MarkupSafe-2.1.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:694deca8d702d5db21ec83983ce0bb4b26a578e71fbdbd4fdcd387daa90e4d5e"}, - {file = "MarkupSafe-2.1.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:efc1913fd2ca4f334418481c7e595c00aad186563bbc1ec76067848c7ca0a933"}, - {file = "MarkupSafe-2.1.1-cp310-cp310-win32.whl", hash = "sha256:4a33dea2b688b3190ee12bd7cfa29d39c9ed176bda40bfa11099a3ce5d3a7ac6"}, - {file = "MarkupSafe-2.1.1-cp310-cp310-win_amd64.whl", hash = "sha256:dda30ba7e87fbbb7eab1ec9f58678558fd9a6b8b853530e176eabd064da81417"}, - {file = "MarkupSafe-2.1.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:671cd1187ed5e62818414afe79ed29da836dde67166a9fac6d435873c44fdd02"}, - {file = "MarkupSafe-2.1.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3799351e2336dc91ea70b034983ee71cf2f9533cdff7c14c90ea126bfd95d65a"}, - {file = "MarkupSafe-2.1.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e72591e9ecd94d7feb70c1cbd7be7b3ebea3f548870aa91e2732960fa4d57a37"}, - {file = "MarkupSafe-2.1.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6fbf47b5d3728c6aea2abb0589b5d30459e369baa772e0f37a0320185e87c980"}, - {file = "MarkupSafe-2.1.1-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:d5ee4f386140395a2c818d149221149c54849dfcfcb9f1debfe07a8b8bd63f9a"}, - {file = "MarkupSafe-2.1.1-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:bcb3ed405ed3222f9904899563d6fc492ff75cce56cba05e32eff40e6acbeaa3"}, - {file = "MarkupSafe-2.1.1-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:e1c0b87e09fa55a220f058d1d49d3fb8df88fbfab58558f1198e08c1e1de842a"}, - {file = "MarkupSafe-2.1.1-cp37-cp37m-win32.whl", hash = "sha256:8dc1c72a69aa7e082593c4a203dcf94ddb74bb5c8a731e4e1eb68d031e8498ff"}, - {file = "MarkupSafe-2.1.1-cp37-cp37m-win_amd64.whl", hash = "sha256:97a68e6ada378df82bc9f16b800ab77cbf4b2fada0081794318520138c088e4a"}, - {file = "MarkupSafe-2.1.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:e8c843bbcda3a2f1e3c2ab25913c80a3c5376cd00c6e8c4a86a89a28c8dc5452"}, - {file = "MarkupSafe-2.1.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:0212a68688482dc52b2d45013df70d169f542b7394fc744c02a57374a4207003"}, - {file = "MarkupSafe-2.1.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8e576a51ad59e4bfaac456023a78f6b5e6e7651dcd383bcc3e18d06f9b55d6d1"}, - {file = "MarkupSafe-2.1.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4b9fe39a2ccc108a4accc2676e77da025ce383c108593d65cc909add5c3bd601"}, - {file = "MarkupSafe-2.1.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:96e37a3dc86e80bf81758c152fe66dbf60ed5eca3d26305edf01892257049925"}, - {file = "MarkupSafe-2.1.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:6d0072fea50feec76a4c418096652f2c3238eaa014b2f94aeb1d56a66b41403f"}, - {file = "MarkupSafe-2.1.1-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:089cf3dbf0cd6c100f02945abeb18484bd1ee57a079aefd52cffd17fba910b88"}, - {file = "MarkupSafe-2.1.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:6a074d34ee7a5ce3effbc526b7083ec9731bb3cbf921bbe1d3005d4d2bdb3a63"}, - {file = "MarkupSafe-2.1.1-cp38-cp38-win32.whl", hash = "sha256:421be9fbf0ffe9ffd7a378aafebbf6f4602d564d34be190fc19a193232fd12b1"}, - {file = "MarkupSafe-2.1.1-cp38-cp38-win_amd64.whl", hash = "sha256:fc7b548b17d238737688817ab67deebb30e8073c95749d55538ed473130ec0c7"}, - {file = "MarkupSafe-2.1.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:e04e26803c9c3851c931eac40c695602c6295b8d432cbe78609649ad9bd2da8a"}, - {file = "MarkupSafe-2.1.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b87db4360013327109564f0e591bd2a3b318547bcef31b468a92ee504d07ae4f"}, - {file = "MarkupSafe-2.1.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:99a2a507ed3ac881b975a2976d59f38c19386d128e7a9a18b7df6fff1fd4c1d6"}, - {file = "MarkupSafe-2.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:56442863ed2b06d19c37f94d999035e15ee982988920e12a5b4ba29b62ad1f77"}, - {file = "MarkupSafe-2.1.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3ce11ee3f23f79dbd06fb3d63e2f6af7b12db1d46932fe7bd8afa259a5996603"}, - {file = "MarkupSafe-2.1.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:33b74d289bd2f5e527beadcaa3f401e0df0a89927c1559c8566c066fa4248ab7"}, - {file = "MarkupSafe-2.1.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:43093fb83d8343aac0b1baa75516da6092f58f41200907ef92448ecab8825135"}, - {file = "MarkupSafe-2.1.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:8e3dcf21f367459434c18e71b2a9532d96547aef8a871872a5bd69a715c15f96"}, - {file = "MarkupSafe-2.1.1-cp39-cp39-win32.whl", hash = "sha256:d4306c36ca495956b6d568d276ac11fdd9c30a36f1b6eb928070dc5360b22e1c"}, - {file = "MarkupSafe-2.1.1-cp39-cp39-win_amd64.whl", hash = "sha256:46d00d6cfecdde84d40e572d63735ef81423ad31184100411e6e3388d405e247"}, - {file = "MarkupSafe-2.1.1.tar.gz", hash = "sha256:7f91197cc9e48f989d12e4e6fbc46495c446636dfc81b9ccf50bb0ec74b91d4b"}, -] +markupsafe = [] matplotlib = [ {file = "matplotlib-3.5.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:a206a1b762b39398efea838f528b3a6d60cdb26fe9d58b48265787e29cd1d693"}, {file = "matplotlib-3.5.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:cd45a6f3e93a780185f70f05cf2a383daed13c3489233faad83e81720f7ede24"}, @@ -4420,67 +4197,7 @@ mistune = [ {file = "mistune-2.0.4-py2.py3-none-any.whl", hash = "sha256:182cc5ee6f8ed1b807de6b7bb50155df7b66495412836b9a74c8fbdfc75fe36d"}, {file = "mistune-2.0.4.tar.gz", hash = "sha256:9ee0a66053e2267aba772c71e06891fa8f1af6d4b01d5e84e267b4570d4d9808"}, ] -multidict = [ - {file = "multidict-6.0.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:0b9e95a740109c6047602f4db4da9949e6c5945cefbad34a1299775ddc9a62e2"}, - {file = "multidict-6.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:ac0e27844758d7177989ce406acc6a83c16ed4524ebc363c1f748cba184d89d3"}, - {file = "multidict-6.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:041b81a5f6b38244b34dc18c7b6aba91f9cdaf854d9a39e5ff0b58e2b5773b9c"}, - {file = "multidict-6.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5fdda29a3c7e76a064f2477c9aab1ba96fd94e02e386f1e665bca1807fc5386f"}, - {file = "multidict-6.0.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3368bf2398b0e0fcbf46d85795adc4c259299fec50c1416d0f77c0a843a3eed9"}, - {file = "multidict-6.0.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f4f052ee022928d34fe1f4d2bc743f32609fb79ed9c49a1710a5ad6b2198db20"}, - {file = "multidict-6.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:225383a6603c086e6cef0f2f05564acb4f4d5f019a4e3e983f572b8530f70c88"}, - {file = "multidict-6.0.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:50bd442726e288e884f7be9071016c15a8742eb689a593a0cac49ea093eef0a7"}, - {file = "multidict-6.0.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:47e6a7e923e9cada7c139531feac59448f1f47727a79076c0b1ee80274cd8eee"}, - {file = "multidict-6.0.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:0556a1d4ea2d949efe5fd76a09b4a82e3a4a30700553a6725535098d8d9fb672"}, - {file = "multidict-6.0.2-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:626fe10ac87851f4cffecee161fc6f8f9853f0f6f1035b59337a51d29ff3b4f9"}, - {file = "multidict-6.0.2-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:8064b7c6f0af936a741ea1efd18690bacfbae4078c0c385d7c3f611d11f0cf87"}, - {file = "multidict-6.0.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:2d36e929d7f6a16d4eb11b250719c39560dd70545356365b494249e2186bc389"}, - {file = "multidict-6.0.2-cp310-cp310-win32.whl", hash = "sha256:fcb91630817aa8b9bc4a74023e4198480587269c272c58b3279875ed7235c293"}, - {file = "multidict-6.0.2-cp310-cp310-win_amd64.whl", hash = "sha256:8cbf0132f3de7cc6c6ce00147cc78e6439ea736cee6bca4f068bcf892b0fd658"}, - {file = "multidict-6.0.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:05f6949d6169878a03e607a21e3b862eaf8e356590e8bdae4227eedadacf6e51"}, - {file = "multidict-6.0.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e2c2e459f7050aeb7c1b1276763364884595d47000c1cddb51764c0d8976e608"}, - {file = "multidict-6.0.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d0509e469d48940147e1235d994cd849a8f8195e0bca65f8f5439c56e17872a3"}, - {file = "multidict-6.0.2-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:514fe2b8d750d6cdb4712346a2c5084a80220821a3e91f3f71eec11cf8d28fd4"}, - {file = "multidict-6.0.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:19adcfc2a7197cdc3987044e3f415168fc5dc1f720c932eb1ef4f71a2067e08b"}, - {file = "multidict-6.0.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b9d153e7f1f9ba0b23ad1568b3b9e17301e23b042c23870f9ee0522dc5cc79e8"}, - {file = "multidict-6.0.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:aef9cc3d9c7d63d924adac329c33835e0243b5052a6dfcbf7732a921c6e918ba"}, - {file = "multidict-6.0.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:4571f1beddff25f3e925eea34268422622963cd8dc395bb8778eb28418248e43"}, - {file = "multidict-6.0.2-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:d48b8ee1d4068561ce8033d2c344cf5232cb29ee1a0206a7b828c79cbc5982b8"}, - {file = "multidict-6.0.2-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:45183c96ddf61bf96d2684d9fbaf6f3564d86b34cb125761f9a0ef9e36c1d55b"}, - {file = "multidict-6.0.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:75bdf08716edde767b09e76829db8c1e5ca9d8bb0a8d4bd94ae1eafe3dac5e15"}, - {file = "multidict-6.0.2-cp37-cp37m-win32.whl", hash = "sha256:a45e1135cb07086833ce969555df39149680e5471c04dfd6a915abd2fc3f6dbc"}, - {file = "multidict-6.0.2-cp37-cp37m-win_amd64.whl", hash = "sha256:6f3cdef8a247d1eafa649085812f8a310e728bdf3900ff6c434eafb2d443b23a"}, - {file = "multidict-6.0.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:0327292e745a880459ef71be14e709aaea2f783f3537588fb4ed09b6c01bca60"}, - {file = "multidict-6.0.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:e875b6086e325bab7e680e4316d667fc0e5e174bb5611eb16b3ea121c8951b86"}, - {file = "multidict-6.0.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:feea820722e69451743a3d56ad74948b68bf456984d63c1a92e8347b7b88452d"}, - {file = "multidict-6.0.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9cc57c68cb9139c7cd6fc39f211b02198e69fb90ce4bc4a094cf5fe0d20fd8b0"}, - {file = "multidict-6.0.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:497988d6b6ec6ed6f87030ec03280b696ca47dbf0648045e4e1d28b80346560d"}, - {file = "multidict-6.0.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:89171b2c769e03a953d5969b2f272efa931426355b6c0cb508022976a17fd376"}, - {file = "multidict-6.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:684133b1e1fe91eda8fa7447f137c9490a064c6b7f392aa857bba83a28cfb693"}, - {file = "multidict-6.0.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fd9fc9c4849a07f3635ccffa895d57abce554b467d611a5009ba4f39b78a8849"}, - {file = "multidict-6.0.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:e07c8e79d6e6fd37b42f3250dba122053fddb319e84b55dd3a8d6446e1a7ee49"}, - {file = "multidict-6.0.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:4070613ea2227da2bfb2c35a6041e4371b0af6b0be57f424fe2318b42a748516"}, - {file = "multidict-6.0.2-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:47fbeedbf94bed6547d3aa632075d804867a352d86688c04e606971595460227"}, - {file = "multidict-6.0.2-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:5774d9218d77befa7b70d836004a768fb9aa4fdb53c97498f4d8d3f67bb9cfa9"}, - {file = "multidict-6.0.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:2957489cba47c2539a8eb7ab32ff49101439ccf78eab724c828c1a54ff3ff98d"}, - {file = "multidict-6.0.2-cp38-cp38-win32.whl", hash = "sha256:e5b20e9599ba74391ca0cfbd7b328fcc20976823ba19bc573983a25b32e92b57"}, - {file = "multidict-6.0.2-cp38-cp38-win_amd64.whl", hash = "sha256:8004dca28e15b86d1b1372515f32eb6f814bdf6f00952699bdeb541691091f96"}, - {file = "multidict-6.0.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:2e4a0785b84fb59e43c18a015ffc575ba93f7d1dbd272b4cdad9f5134b8a006c"}, - {file = "multidict-6.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6701bf8a5d03a43375909ac91b6980aea74b0f5402fbe9428fc3f6edf5d9677e"}, - {file = "multidict-6.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a007b1638e148c3cfb6bf0bdc4f82776cef0ac487191d093cdc316905e504071"}, - {file = "multidict-6.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:07a017cfa00c9890011628eab2503bee5872f27144936a52eaab449be5eaf032"}, - {file = "multidict-6.0.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c207fff63adcdf5a485969131dc70e4b194327666b7e8a87a97fbc4fd80a53b2"}, - {file = "multidict-6.0.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:373ba9d1d061c76462d74e7de1c0c8e267e9791ee8cfefcf6b0b2495762c370c"}, - {file = "multidict-6.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bfba7c6d5d7c9099ba21f84662b037a0ffd4a5e6b26ac07d19e423e6fdf965a9"}, - {file = "multidict-6.0.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:19d9bad105dfb34eb539c97b132057a4e709919ec4dd883ece5838bcbf262b80"}, - {file = "multidict-6.0.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:de989b195c3d636ba000ee4281cd03bb1234635b124bf4cd89eeee9ca8fcb09d"}, - {file = "multidict-6.0.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:7c40b7bbece294ae3a87c1bc2abff0ff9beef41d14188cda94ada7bcea99b0fb"}, - {file = "multidict-6.0.2-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:d16cce709ebfadc91278a1c005e3c17dd5f71f5098bfae1035149785ea6e9c68"}, - {file = "multidict-6.0.2-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:a2c34a93e1d2aa35fbf1485e5010337c72c6791407d03aa5f4eed920343dd360"}, - {file = "multidict-6.0.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:feba80698173761cddd814fa22e88b0661e98cb810f9f986c54aa34d281e4937"}, - {file = "multidict-6.0.2-cp39-cp39-win32.whl", hash = "sha256:23b616fdc3c74c9fe01d76ce0d1ce872d2d396d8fa8e4899398ad64fb5aa214a"}, - {file = "multidict-6.0.2-cp39-cp39-win_amd64.whl", hash = "sha256:4bae31803d708f6f15fd98be6a6ac0b6958fcf68fda3c77a048a4f9073704aae"}, - {file = "multidict-6.0.2.tar.gz", hash = "sha256:5ff3bd75f38e4c43f1f470f2df7a4d430b821c4ce22be384e1459cb57d6bb013"}, -] +multidict = [] mypy = [ {file = "mypy-0.910-cp35-cp35m-macosx_10_9_x86_64.whl", hash = "sha256:a155d80ea6cee511a3694b108c4494a39f42de11ee4e61e72bc424c490e46457"}, {file = "mypy-0.910-cp35-cp35m-manylinux1_x86_64.whl", hash = "sha256:b94e4b785e304a04ea0828759172a15add27088520dc7e49ceade7834275bedb"}, @@ -4546,69 +4263,8 @@ notebook-shim = [ {file = "notebook_shim-0.2.2-py3-none-any.whl", hash = "sha256:9c6c30f74c4fbea6fce55c1be58e7fd0409b1c681b075dcedceb005db5026949"}, {file = "notebook_shim-0.2.2.tar.gz", hash = "sha256:090e0baf9a5582ff59b607af523ca2db68ff216da0c69956b62cab2ef4fc9c3f"}, ] -numba = [ - {file = "numba-0.55.2-cp310-cp310-macosx_10_14_x86_64.whl", hash = "sha256:dd05f7c0ce64b6977596aa4e5a44747c6ef414d7989da1c7672337c54381a5ef"}, - {file = "numba-0.55.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e36232eccd172c583b1f021c5c48744c087ae6fc9dc5c5f0dd2cb2286e517bf8"}, - {file = "numba-0.55.2-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:25410557d0deb1d97397b71e142a36772133986a7dd4fe2935786e2dd149245f"}, - {file = "numba-0.55.2-cp310-cp310-manylinux2014_i686.manylinux_2_17_i686.whl", hash = "sha256:676c081162cc9403706071c1d1d42e479c0741551ab28096ba13859a2e3e9b80"}, - {file = "numba-0.55.2-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:2665ef28e900b3a55bf370daa81c12ebc64cd434116accd60c38a95a159a3182"}, - {file = "numba-0.55.2-cp310-cp310-win32.whl", hash = "sha256:d7ac9ea5feef9536ab8bfbbb3ded1a0617ea8794d7547800d535b7857800f996"}, - {file = "numba-0.55.2-cp310-cp310-win_amd64.whl", hash = "sha256:29b89a68af162acf87adeb8fbf01f6bb1effae4711b28146f95108d82e905624"}, - {file = "numba-0.55.2-cp37-cp37m-macosx_10_14_x86_64.whl", hash = "sha256:6e0f9b5d1c8ea1bdef39b0ad921a9bbf0cc4a88e76d722d756c68f1653787c35"}, - {file = "numba-0.55.2-cp37-cp37m-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:135fb7694928f9f57b4ff5b1be58f20f4771fedd1680636a9affdead96051959"}, - {file = "numba-0.55.2-cp37-cp37m-manylinux2014_i686.manylinux_2_17_i686.whl", hash = "sha256:de1f93bd7e2d431451aec20a52ac651a020e98a4ba46797fad860bba338a7e64"}, - {file = "numba-0.55.2-cp37-cp37m-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:3eaf53e73e700370163e58257257299ac0d46fea4f244bf5476e4635bc31d808"}, - {file = "numba-0.55.2-cp37-cp37m-win32.whl", hash = "sha256:da4485e0f0b9562f39c78887149b33d13d787aa696553c9257b95575122905ed"}, - {file = "numba-0.55.2-cp37-cp37m-win_amd64.whl", hash = "sha256:5559c6684bf6cce7a22c656d8fef3e7c38ff5fec5153abef5955f6f7cae9f102"}, - {file = "numba-0.55.2-cp38-cp38-macosx_10_14_x86_64.whl", hash = "sha256:a85779adc5234f7857615d1bd2c7b514314521f9f0163c33017707ed9816e6e6"}, - {file = "numba-0.55.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:16a52a0641c342b09b39f6762dcbe3846e44aa9baaaf4703b2ca42a3aee7346f"}, - {file = "numba-0.55.2-cp38-cp38-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:46715180f87d5a1f3e4077d207ade66c96fc01159f5b7d49cee2d6ffb9e6539f"}, - {file = "numba-0.55.2-cp38-cp38-manylinux2014_i686.manylinux_2_17_i686.whl", hash = "sha256:d1c3cef3289fefb5673ceae32024ab5a8a08d4f4380bcb8348d01f1ba570ccff"}, - {file = "numba-0.55.2-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:68bb33eaef1d6155fc1ae4fa6c915b8a42e5052c89a58742254eaad072eab118"}, - {file = "numba-0.55.2-cp38-cp38-win32.whl", hash = "sha256:dfddd633141608a09cbce275fb9fe7aa514918625ace20b0e587898a2d93c030"}, - {file = "numba-0.55.2-cp38-cp38-win_amd64.whl", hash = "sha256:a669212aa66ffee4ad778016ac3819add33f9bcb96b4c384d3099531dd175085"}, - {file = "numba-0.55.2-cp39-cp39-macosx_10_14_x86_64.whl", hash = "sha256:dcde1a1a3a430fb5f83c7e095b0b6ac7adb5595f50a3ee05babb2964f31613c4"}, - {file = "numba-0.55.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:69b2e823efa40d32b259f5c094476dde2226b92032f17015d8cd7c10472654ce"}, - {file = "numba-0.55.2-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:20de0139d2267c8f0e2470d4f88540446cd1bf40de0f29f31b7ab9bf25d49b45"}, - {file = "numba-0.55.2-cp39-cp39-manylinux2014_i686.manylinux_2_17_i686.whl", hash = "sha256:09ff4d690abb05ffbb8a29a96d1cf35b46887a26796d3670de104beeec73d639"}, - {file = "numba-0.55.2-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:1105449247f338e49d63eb04a4aaa5c440bb5435df00f718c8e6e7afad841bb0"}, - {file = "numba-0.55.2-cp39-cp39-win32.whl", hash = "sha256:32649584144c35ced239937ab2c416ab22bbc1490ef8d90609c30fff9f6aa1b8"}, - {file = "numba-0.55.2-cp39-cp39-win_amd64.whl", hash = "sha256:8d5760a1e6a48d98d6b9cf774e4d2a64813d981cca60d7b7356af61195a6ca17"}, - {file = "numba-0.55.2.tar.gz", hash = "sha256:e428d9e11d9ba592849ccc9f7a009003eb7d30612007e365afe743ce7118c6f4"}, -] -numpy = [ - {file = "numpy-1.21.6-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:8737609c3bbdd48e380d463134a35ffad3b22dc56295eff6f79fd85bd0eeeb25"}, - {file = "numpy-1.21.6-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:fdffbfb6832cd0b300995a2b08b8f6fa9f6e856d562800fea9182316d99c4e8e"}, - {file = "numpy-1.21.6-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:3820724272f9913b597ccd13a467cc492a0da6b05df26ea09e78b171a0bb9da6"}, - {file = "numpy-1.21.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f17e562de9edf691a42ddb1eb4a5541c20dd3f9e65b09ded2beb0799c0cf29bb"}, - {file = "numpy-1.21.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5f30427731561ce75d7048ac254dbe47a2ba576229250fb60f0fb74db96501a1"}, - {file = "numpy-1.21.6-cp310-cp310-win32.whl", hash = "sha256:d4bf4d43077db55589ffc9009c0ba0a94fa4908b9586d6ccce2e0b164c86303c"}, - {file = "numpy-1.21.6-cp310-cp310-win_amd64.whl", hash = "sha256:d136337ae3cc69aa5e447e78d8e1514be8c3ec9b54264e680cf0b4bd9011574f"}, - {file = "numpy-1.21.6-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:6aaf96c7f8cebc220cdfc03f1d5a31952f027dda050e5a703a0d1c396075e3e7"}, - {file = "numpy-1.21.6-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:67c261d6c0a9981820c3a149d255a76918278a6b03b6a036800359aba1256d46"}, - {file = "numpy-1.21.6-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:a6be4cb0ef3b8c9250c19cc122267263093eee7edd4e3fa75395dfda8c17a8e2"}, - {file = "numpy-1.21.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7c4068a8c44014b2d55f3c3f574c376b2494ca9cc73d2f1bd692382b6dffe3db"}, - {file = "numpy-1.21.6-cp37-cp37m-win32.whl", hash = "sha256:7c7e5fa88d9ff656e067876e4736379cc962d185d5cd808014a8a928d529ef4e"}, - {file = "numpy-1.21.6-cp37-cp37m-win_amd64.whl", hash = "sha256:bcb238c9c96c00d3085b264e5c1a1207672577b93fa666c3b14a45240b14123a"}, - {file = "numpy-1.21.6-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:82691fda7c3f77c90e62da69ae60b5ac08e87e775b09813559f8901a88266552"}, - {file = "numpy-1.21.6-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:643843bcc1c50526b3a71cd2ee561cf0d8773f062c8cbaf9ffac9fdf573f83ab"}, - {file = "numpy-1.21.6-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:357768c2e4451ac241465157a3e929b265dfac85d9214074985b1786244f2ef3"}, - {file = "numpy-1.21.6-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:9f411b2c3f3d76bba0865b35a425157c5dcf54937f82bbeb3d3c180789dd66a6"}, - {file = "numpy-1.21.6-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:4aa48afdce4660b0076a00d80afa54e8a97cd49f457d68a4342d188a09451c1a"}, - {file = "numpy-1.21.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d6a96eef20f639e6a97d23e57dd0c1b1069a7b4fd7027482a4c5c451cd7732f4"}, - {file = "numpy-1.21.6-cp38-cp38-win32.whl", hash = "sha256:5c3c8def4230e1b959671eb959083661b4a0d2e9af93ee339c7dada6759a9470"}, - {file = "numpy-1.21.6-cp38-cp38-win_amd64.whl", hash = "sha256:bf2ec4b75d0e9356edea834d1de42b31fe11f726a81dfb2c2112bc1eaa508fcf"}, - {file = "numpy-1.21.6-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:4391bd07606be175aafd267ef9bea87cf1b8210c787666ce82073b05f202add1"}, - {file = "numpy-1.21.6-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:67f21981ba2f9d7ba9ade60c9e8cbaa8cf8e9ae51673934480e45cf55e953673"}, - {file = "numpy-1.21.6-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ee5ec40fdd06d62fe5d4084bef4fd50fd4bb6bfd2bf519365f569dc470163ab0"}, - {file = "numpy-1.21.6-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:1dbe1c91269f880e364526649a52eff93ac30035507ae980d2fed33aaee633ac"}, - {file = "numpy-1.21.6-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:d9caa9d5e682102453d96a0ee10c7241b72859b01a941a397fd965f23b3e016b"}, - {file = "numpy-1.21.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:58459d3bad03343ac4b1b42ed14d571b8743dc80ccbf27444f266729df1d6f5b"}, - {file = "numpy-1.21.6-cp39-cp39-win32.whl", hash = "sha256:7f5ae4f304257569ef3b948810816bc87c9146e8c446053539947eedeaa32786"}, - {file = "numpy-1.21.6-cp39-cp39-win_amd64.whl", hash = "sha256:e31f0bb5928b793169b87e3d1e070f2342b22d5245c755e2b81caa29756246c3"}, - {file = "numpy-1.21.6-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:dd1c8f6bd65d07d3810b90d02eba7997e32abbdf1277a481d698969e921a3be0"}, - {file = "numpy-1.21.6.zip", hash = "sha256:ecb55251139706669fdec2ff073c98ef8e9a84473e51e716211b41aa0f18e656"}, -] +numba = [] +numpy = [] numpydoc = [ {file = "numpydoc-1.5.0-py3-none-any.whl", hash = "sha256:c997759fb6fc32662801cece76491eedbc0ec619b514932ffd2b270ae89c07f9"}, {file = "numpydoc-1.5.0.tar.gz", hash = "sha256:b0db7b75a32367a0e25c23b397842c65e344a1206524d16c8069f0a1c91b5f4c"}, @@ -4621,41 +4277,12 @@ omegaconf = [ {file = "omegaconf-2.2.3-py3-none-any.whl", hash = "sha256:d6f2cbf79a992899eb76c6cb1aedfcf0fe7456a8654382edd5ee0c1b199c0657"}, {file = "omegaconf-2.2.3.tar.gz", hash = "sha256:59ff9fba864ffbb5fb710b64e8a9ba37c68fa339a2e2bb4f1b648d6901552523"}, ] -optuna = [ - {file = "optuna-2.10.1-py3-none-any.whl", hash = "sha256:d57dc1fd911d20697098bdef83836f8078387a3be2a5400ab26db15f8341e1f4"}, - {file = "optuna-2.10.1.tar.gz", hash = "sha256:8a12009b57757c1070b3bff2261c24824d6430c22926dd1e2ace33b3deff555f"}, -] +optuna = [] packaging = [ {file = "packaging-21.3-py3-none-any.whl", hash = "sha256:ef103e05f519cdc783ae24ea4e2e0f508a9c99b2d4969652eed6a2e1ea5bd522"}, {file = "packaging-21.3.tar.gz", hash = "sha256:dd47c42927d89ab911e606518907cc2d3a1f38bbd026385970643f9c5b8ecfeb"}, ] -pandas = [ - {file = "pandas-1.3.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:62d5b5ce965bae78f12c1c0df0d387899dd4211ec0bdc52822373f13a3a022b9"}, - {file = "pandas-1.3.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:adfeb11be2d54f275142c8ba9bf67acee771b7186a5745249c7d5a06c670136b"}, - {file = "pandas-1.3.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:60a8c055d58873ad81cae290d974d13dd479b82cbb975c3e1fa2cf1920715296"}, - {file = "pandas-1.3.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fd541ab09e1f80a2a1760032d665f6e032d8e44055d602d65eeea6e6e85498cb"}, - {file = "pandas-1.3.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2651d75b9a167cc8cc572cf787ab512d16e316ae00ba81874b560586fa1325e0"}, - {file = "pandas-1.3.5-cp310-cp310-win_amd64.whl", hash = "sha256:aaf183a615ad790801fa3cf2fa450e5b6d23a54684fe386f7e3208f8b9bfbef6"}, - {file = "pandas-1.3.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:344295811e67f8200de2390093aeb3c8309f5648951b684d8db7eee7d1c81fb7"}, - {file = "pandas-1.3.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:552020bf83b7f9033b57cbae65589c01e7ef1544416122da0c79140c93288f56"}, - {file = "pandas-1.3.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5cce0c6bbeb266b0e39e35176ee615ce3585233092f685b6a82362523e59e5b4"}, - {file = "pandas-1.3.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7d28a3c65463fd0d0ba8bbb7696b23073efee0510783340a44b08f5e96ffce0c"}, - {file = "pandas-1.3.5-cp37-cp37m-win32.whl", hash = "sha256:a62949c626dd0ef7de11de34b44c6475db76995c2064e2d99c6498c3dba7fe58"}, - {file = "pandas-1.3.5-cp37-cp37m-win_amd64.whl", hash = "sha256:8025750767e138320b15ca16d70d5cdc1886e8f9cc56652d89735c016cd8aea6"}, - {file = "pandas-1.3.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:fe95bae4e2d579812865db2212bb733144e34d0c6785c0685329e5b60fcb85dd"}, - {file = "pandas-1.3.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5f261553a1e9c65b7a310302b9dbac31cf0049a51695c14ebe04e4bfd4a96f02"}, - {file = "pandas-1.3.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8b6dbec5f3e6d5dc80dcfee250e0a2a652b3f28663492f7dab9a24416a48ac39"}, - {file = "pandas-1.3.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d3bc49af96cd6285030a64779de5b3688633a07eb75c124b0747134a63f4c05f"}, - {file = "pandas-1.3.5-cp38-cp38-win32.whl", hash = "sha256:b6b87b2fb39e6383ca28e2829cddef1d9fc9e27e55ad91ca9c435572cdba51bf"}, - {file = "pandas-1.3.5-cp38-cp38-win_amd64.whl", hash = "sha256:a395692046fd8ce1edb4c6295c35184ae0c2bbe787ecbe384251da609e27edcb"}, - {file = "pandas-1.3.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:bd971a3f08b745a75a86c00b97f3007c2ea175951286cdda6abe543e687e5f2f"}, - {file = "pandas-1.3.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:37f06b59e5bc05711a518aa10beaec10942188dccb48918bb5ae602ccbc9f1a0"}, - {file = "pandas-1.3.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2c21778a688d3712d35710501f8001cdbf96eb70a7c587a3d5613573299fdca6"}, - {file = "pandas-1.3.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3345343206546545bc26a05b4602b6a24385b5ec7c75cb6059599e3d56831da2"}, - {file = "pandas-1.3.5-cp39-cp39-win32.whl", hash = "sha256:c69406a2808ba6cf580c2255bcf260b3f214d2664a3a4197d0e640f573b46fd3"}, - {file = "pandas-1.3.5-cp39-cp39-win_amd64.whl", hash = "sha256:32e1a26d5ade11b547721a72f9bfc4bd113396947606e00d5b4a5b79b3dcb006"}, - {file = "pandas-1.3.5.tar.gz", hash = "sha256:1e4285f5de1012de20ca46b188ccf33521bff61ba5c5ebd78b4fb28e5416a9f1"}, -] +pandas = [] pandocfilters = [ {file = "pandocfilters-1.5.0-py2.py3-none-any.whl", hash = "sha256:33aae3f25fd1a026079f5d27bdd52496f0e0803b3469282162bafdcbdf6ef14f"}, {file = "pandocfilters-1.5.0.tar.gz", hash = "sha256:0b679503337d233b4339a817bfc8c50064e2eff681314376a47cb582305a7a38"}, @@ -4807,21 +4434,7 @@ prompt-toolkit = [ {file = "prompt_toolkit-3.0.32-py3-none-any.whl", hash = "sha256:24becda58d49ceac4dc26232eb179ef2b21f133fecda7eed6018d341766ed76e"}, {file = "prompt_toolkit-3.0.32.tar.gz", hash = "sha256:e7f2129cba4ff3b3656bbdda0e74ee00d2f874a8bcdb9dd16f5fec7b3e173cae"}, ] -prophet = [ - {file = "prophet-1.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:f094e0dbf53faf3ea556dbf8e6912a53a5c2c37918af362cdcf8ba211cab4dd0"}, - {file = "prophet-1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ff6c18c3ce5cb48b9365ac6d744d8ac9bdb22a522bbdfe6d5bb42d06f31e0acb"}, - {file = "prophet-1.1-cp310-cp310-win_amd64.whl", hash = "sha256:9cc9b22829263c180ef5e65e6dc7a5b81c17e5c950f266ef55bdecb0f238641b"}, - {file = "prophet-1.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:f743740eb0b9417023598cb8b0968a457a8a8806a5f89697ce789c9a255ad0a0"}, - {file = "prophet-1.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dea763ffeb50123642c17becab5450e41db10dff241b52e1be81cb469ffa1cf8"}, - {file = "prophet-1.1-cp37-cp37m-win_amd64.whl", hash = "sha256:1d10c1aa39412954962b2bbe7c1aab7c23aeabf168374296316603d7eeec8777"}, - {file = "prophet-1.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1f8ce8c62facdae4cd048f9156e8b0f902f574a6651637617adde829943a8edd"}, - {file = "prophet-1.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3724d4d8af25d3e951c3f442257086c78f14ca64f6352138b7bd1c438a44b041"}, - {file = "prophet-1.1-cp38-cp38-win_amd64.whl", hash = "sha256:92a7b5833e0293f877e4c8cd4b2ee172be98b01e1644703f2081eea30d8e0038"}, - {file = "prophet-1.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:72a0a11adc5d1ef8b774e50b1e1a763e94443ef041629a4ce5bb95bba1dc4c16"}, - {file = "prophet-1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:86d15dad5d8696e3341544a593adca31d6a24eb9245b5154163075385ab1b1de"}, - {file = "prophet-1.1-cp39-cp39-win_amd64.whl", hash = "sha256:4ec66394ac488d6e004ddaac3ff9b315a70f8b248b2eb6df46a584eab40a1dd6"}, - {file = "prophet-1.1.tar.gz", hash = "sha256:963b117d56fe0dabc247b5b36cdb20d7ce7ac6899e77ec4037040b773a713ffe"}, -] +prophet = [] protobuf = [ {file = "protobuf-3.20.3-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:f4bd856d702e5b0d96a00ec6b307b0f51c1982c2bf9c0052cf9019e9a544ba99"}, {file = "protobuf-3.20.3-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:9aae4406ea63d825636cc11ffb34ad3379335803216ee3a856787bcf5ccc751e"}, @@ -4871,12 +4484,34 @@ py = [ {file = "py-1.11.0.tar.gz", hash = "sha256:51c75c4126074b472f746a24399ad32f6053d1b34b68d2fa41e558e6f4a98719"}, ] pyasn1 = [ + {file = "pyasn1-0.4.8-py2.4.egg", hash = "sha256:fec3e9d8e36808a28efb59b489e4528c10ad0f480e57dcc32b4de5c9d8c9fdf3"}, + {file = "pyasn1-0.4.8-py2.5.egg", hash = "sha256:0458773cfe65b153891ac249bcf1b5f8f320b7c2ce462151f8fa74de8934becf"}, + {file = "pyasn1-0.4.8-py2.6.egg", hash = "sha256:5c9414dcfede6e441f7e8f81b43b34e834731003427e5b09e4e00e3172a10f00"}, + {file = "pyasn1-0.4.8-py2.7.egg", hash = "sha256:6e7545f1a61025a4e58bb336952c5061697da694db1cae97b116e9c46abcf7c8"}, {file = "pyasn1-0.4.8-py2.py3-none-any.whl", hash = "sha256:39c7e2ec30515947ff4e87fb6f456dfc6e84857d34be479c9d4a4ba4bf46aa5d"}, + {file = "pyasn1-0.4.8-py3.1.egg", hash = "sha256:78fa6da68ed2727915c4767bb386ab32cdba863caa7dbe473eaae45f9959da86"}, + {file = "pyasn1-0.4.8-py3.2.egg", hash = "sha256:08c3c53b75eaa48d71cf8c710312316392ed40899cb34710d092e96745a358b7"}, + {file = "pyasn1-0.4.8-py3.3.egg", hash = "sha256:03840c999ba71680a131cfaee6fab142e1ed9bbd9c693e285cc6aca0d555e576"}, + {file = "pyasn1-0.4.8-py3.4.egg", hash = "sha256:7ab8a544af125fb704feadb008c99a88805126fb525280b2270bb25cc1d78a12"}, + {file = "pyasn1-0.4.8-py3.5.egg", hash = "sha256:e89bf84b5437b532b0803ba5c9a5e054d21fec423a89952a74f87fa2c9b7bce2"}, + {file = "pyasn1-0.4.8-py3.6.egg", hash = "sha256:014c0e9976956a08139dc0712ae195324a75e142284d5f87f1a87ee1b068a359"}, + {file = "pyasn1-0.4.8-py3.7.egg", hash = "sha256:99fcc3c8d804d1bc6d9a099921e39d827026409a58f2a720dcdb89374ea0c776"}, {file = "pyasn1-0.4.8.tar.gz", hash = "sha256:aef77c9fb94a3ac588e87841208bdec464471d9871bd5050a287cc9a475cd0ba"}, ] pyasn1-modules = [ {file = "pyasn1-modules-0.2.8.tar.gz", hash = "sha256:905f84c712230b2c592c19470d3ca8d552de726050d1d1716282a1f6146be65e"}, + {file = "pyasn1_modules-0.2.8-py2.4.egg", hash = "sha256:0fe1b68d1e486a1ed5473f1302bd991c1611d319bba158e98b106ff86e1d7199"}, + {file = "pyasn1_modules-0.2.8-py2.5.egg", hash = "sha256:fe0644d9ab041506b62782e92b06b8c68cca799e1a9636ec398675459e031405"}, + {file = "pyasn1_modules-0.2.8-py2.6.egg", hash = "sha256:a99324196732f53093a84c4369c996713eb8c89d360a496b599fb1a9c47fc3eb"}, + {file = "pyasn1_modules-0.2.8-py2.7.egg", hash = "sha256:0845a5582f6a02bb3e1bde9ecfc4bfcae6ec3210dd270522fee602365430c3f8"}, {file = "pyasn1_modules-0.2.8-py2.py3-none-any.whl", hash = "sha256:a50b808ffeb97cb3601dd25981f6b016cbb3d31fbf57a8b8a87428e6158d0c74"}, + {file = "pyasn1_modules-0.2.8-py3.1.egg", hash = "sha256:f39edd8c4ecaa4556e989147ebf219227e2cd2e8a43c7e7fcb1f1c18c5fd6a3d"}, + {file = "pyasn1_modules-0.2.8-py3.2.egg", hash = "sha256:b80486a6c77252ea3a3e9b1e360bc9cf28eaac41263d173c032581ad2f20fe45"}, + {file = "pyasn1_modules-0.2.8-py3.3.egg", hash = "sha256:65cebbaffc913f4fe9e4808735c95ea22d7a7775646ab690518c056784bc21b4"}, + {file = "pyasn1_modules-0.2.8-py3.4.egg", hash = "sha256:15b7c67fabc7fc240d87fb9aabf999cf82311a6d6fb2c70d00d3d0604878c811"}, + {file = "pyasn1_modules-0.2.8-py3.5.egg", hash = "sha256:426edb7a5e8879f1ec54a1864f16b882c2837bfd06eee62f2c982315ee2473ed"}, + {file = "pyasn1_modules-0.2.8-py3.6.egg", hash = "sha256:cbac4bc38d117f2a49aeedec4407d23e8866ea4ac27ff2cf7fb3e5b570df19e0"}, + {file = "pyasn1_modules-0.2.8-py3.7.egg", hash = "sha256:c29a5e5cc7a3f05926aff34e097e84f8589cd790ce0ed41b67aed6857b26aafd"}, ] pycodestyle = [ {file = "pycodestyle-2.7.0-py2.py3-none-any.whl", hash = "sha256:514f76d918fcc0b55c6680472f0a37970994e07bbb80725808c17089be302068"}, @@ -4901,17 +4536,11 @@ pygments = [ pymeeus = [ {file = "PyMeeus-0.5.11.tar.gz", hash = "sha256:bb9d670818d8b0594317b48a7dadea02a0594e5344263bf2054e1a011c8fed55"}, ] -pyparsing = [ - {file = "pyparsing-3.0.9-py3-none-any.whl", hash = "sha256:5026bae9a10eeaefb61dab2f09052b9f4307d44aee4eda64b309723d8d206bbc"}, - {file = "pyparsing-3.0.9.tar.gz", hash = "sha256:2b020ecf7d21b687f219b71ecad3631f644a47f01403fa1d1036b0c6416d70fb"}, -] +pyparsing = [] pyperclip = [ {file = "pyperclip-1.8.2.tar.gz", hash = "sha256:105254a8b04934f0bc84e9c24eb360a591aaf6535c9def5f29d92af107a9bf57"}, ] -pyreadline3 = [ - {file = "pyreadline3-3.4.1-py3-none-any.whl", hash = "sha256:b0efb6516fd4fb07b45949053826a62fa4cb353db5be2bbb4a7aa1fdd1e345fb"}, - {file = "pyreadline3-3.4.1.tar.gz", hash = "sha256:6f3d1f7b8a31ba32b73917cefc1f28cc660562f39aea8646d30bd6eff21f7bae"}, -] +pyreadline3 = [] pyrsistent = [ {file = "pyrsistent-0.19.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:d6982b5a0237e1b7d876b60265564648a69b14017f3b5f908c5be2de3f9abb7a"}, {file = "pyrsistent-0.19.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:187d5730b0507d9285a96fca9716310d572e5464cadd19f22b63a6976254d77a"}, @@ -4948,10 +4577,7 @@ python-dateutil = [ {file = "python-dateutil-2.8.2.tar.gz", hash = "sha256:0123cacc1627ae19ddf3c27a5de5bd67ee4586fbdd6440d9748f8abb483d3e86"}, {file = "python_dateutil-2.8.2-py2.py3-none-any.whl", hash = "sha256:961d03dc3453ebbc59dbdea9e4e11c5651520a876d0f4db161e8674aae935da9"}, ] -pytorch-forecasting = [ - {file = "pytorch_forecasting-0.9.2-py3-none-any.whl", hash = "sha256:b5f92fec3565d4b70bb52456c6f4e864939a0bacae7559b448556306c3176693"}, - {file = "pytorch_forecasting-0.9.2.tar.gz", hash = "sha256:af7ebae532fe73b360a9c22d055233ce38e415936a77b3a0719a0bdd414bd98e"}, -] +pytorch-forecasting = [] pytorch-lightning = [ {file = "pytorch-lightning-1.8.1.tar.gz", hash = "sha256:5b60e5eb84dd16ee8dc408286f0074ab475bed385b09a702d678ccbde91e4818"}, {file = "pytorch_lightning-1.8.1-py3-none-any.whl", hash = "sha256:19b3fe28524cdfc4297e3b71490032a738c327668076ed0fce63a0c5f08cd45f"}, @@ -4996,13 +4622,6 @@ pyyaml = [ {file = "PyYAML-6.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:f84fbc98b019fef2ee9a1cb3ce93e3187a6df0b2538a651bfb890254ba9f90b5"}, {file = "PyYAML-6.0-cp310-cp310-win32.whl", hash = "sha256:2cd5df3de48857ed0544b34e2d40e9fac445930039f3cfe4bcc592a1f836d513"}, {file = "PyYAML-6.0-cp310-cp310-win_amd64.whl", hash = "sha256:daf496c58a8c52083df09b80c860005194014c3698698d1a57cbcfa182142a3a"}, - {file = "PyYAML-6.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:d4b0ba9512519522b118090257be113b9468d804b19d63c71dbcf4a48fa32358"}, - {file = "PyYAML-6.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:81957921f441d50af23654aa6c5e5eaf9b06aba7f0a19c18a538dc7ef291c5a1"}, - {file = "PyYAML-6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:afa17f5bc4d1b10afd4466fd3a44dc0e245382deca5b3c353d8b757f9e3ecb8d"}, - {file = "PyYAML-6.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dbad0e9d368bb989f4515da330b88a057617d16b6a8245084f1b05400f24609f"}, - {file = "PyYAML-6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:432557aa2c09802be39460360ddffd48156e30721f5e8d917f01d31694216782"}, - {file = "PyYAML-6.0-cp311-cp311-win32.whl", hash = "sha256:bfaef573a63ba8923503d27530362590ff4f576c626d86a9fed95822a8255fd7"}, - {file = "PyYAML-6.0-cp311-cp311-win_amd64.whl", hash = "sha256:01b45c0191e6d66c470b6cf1b9531a771a83c1c4208272ead47a3ae4f2f603bf"}, {file = "PyYAML-6.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:897b80890765f037df3403d22bab41627ca8811ae55e9a722fd0392850ec4d86"}, {file = "PyYAML-6.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50602afada6d6cbfad699b0c7bb50d5ccffa7e46a3d738092afddc1f9758427f"}, {file = "PyYAML-6.0-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:48c346915c114f5fdb3ead70312bd042a953a8ce5c7106d5bfb1a5254e47da92"}, @@ -5114,14 +4733,8 @@ qtpy = [ {file = "QtPy-2.3.0-py3-none-any.whl", hash = "sha256:8d6d544fc20facd27360ea189592e6135c614785f0dec0b4f083289de6beb408"}, {file = "QtPy-2.3.0.tar.gz", hash = "sha256:0603c9c83ccc035a4717a12908bf6bc6cb22509827ea2ec0e94c2da7c9ed57c5"}, ] -requests = [ - {file = "requests-2.28.1-py3-none-any.whl", hash = "sha256:8fefa2a1a1365bf5520aac41836fbee479da67864514bdb821f31ce07ce65349"}, - {file = "requests-2.28.1.tar.gz", hash = "sha256:7c5599b102feddaa661c826c56ab4fee28bfd17f5abca1ebbe3e7f19d7c97983"}, -] -requests-oauthlib = [ - {file = "requests-oauthlib-1.3.1.tar.gz", hash = "sha256:75beac4a47881eeb94d5ea5d6ad31ef88856affe2332b9aafb52c6452ccf0d7a"}, - {file = "requests_oauthlib-1.3.1-py2.py3-none-any.whl", hash = "sha256:2577c501a2fb8d05a304c09d090d6e47c306fef15809d102b327cf8364bddab5"}, -] +requests = [] +requests-oauthlib = [] rsa = [ {file = "rsa-4.9-py3-none-any.whl", hash = "sha256:90260d9058e514786967344d0ef75fa8727eed8a7d2e43ce9f4bcf1b536174f7"}, {file = "rsa-4.9.tar.gz", hash = "sha256:e38464a49c6c85d7f1351b0126661487a7e0a14a50f1675ec50eb34d4f20ef21"}, @@ -5153,44 +4766,8 @@ ruptures = [ {file = "ruptures-1.1.5-cp39-cp39-win_amd64.whl", hash = "sha256:b9e9194fe649e2c6a08347751fde1a11fd7ef3182eeb1687d019f494f923c657"}, {file = "ruptures-1.1.5.tar.gz", hash = "sha256:fcf1d51e0abfd1aaea7d414c98af5d939990f061944a9b6587a8defa0bb54cff"}, ] -s3transfer = [ - {file = "s3transfer-0.6.0-py3-none-any.whl", hash = "sha256:06176b74f3a15f61f1b4f25a1fc29a4429040b7647133a463da8fa5bd28d5ecd"}, - {file = "s3transfer-0.6.0.tar.gz", hash = "sha256:2ed07d3866f523cc561bf4a00fc5535827981b117dd7876f036b0c1aca42c947"}, -] -scikit-learn = [ - {file = "scikit-learn-1.0.2.tar.gz", hash = "sha256:b5870959a5484b614f26d31ca4c17524b1b0317522199dc985c3b4256e030767"}, - {file = "scikit_learn-1.0.2-cp310-cp310-macosx_10_13_x86_64.whl", hash = "sha256:da3c84694ff693b5b3194d8752ccf935a665b8b5edc33a283122f4273ca3e687"}, - {file = "scikit_learn-1.0.2-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:75307d9ea39236cad7eea87143155eea24d48f93f3a2f9389c817f7019f00705"}, - {file = "scikit_learn-1.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f14517e174bd7332f1cca2c959e704696a5e0ba246eb8763e6c24876d8710049"}, - {file = "scikit_learn-1.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d9aac97e57c196206179f674f09bc6bffcd0284e2ba95b7fe0b402ac3f986023"}, - {file = "scikit_learn-1.0.2-cp310-cp310-win_amd64.whl", hash = "sha256:d93d4c28370aea8a7cbf6015e8a669cd5d69f856cc2aa44e7a590fb805bb5583"}, - {file = "scikit_learn-1.0.2-cp37-cp37m-macosx_10_13_x86_64.whl", hash = "sha256:85260fb430b795d806251dd3bb05e6f48cdc777ac31f2bcf2bc8bbed3270a8f5"}, - {file = "scikit_learn-1.0.2-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:a053a6a527c87c5c4fa7bf1ab2556fa16d8345cf99b6c5a19030a4a7cd8fd2c0"}, - {file = "scikit_learn-1.0.2-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:245c9b5a67445f6f044411e16a93a554edc1efdcce94d3fc0bc6a4b9ac30b752"}, - {file = "scikit_learn-1.0.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:158faf30684c92a78e12da19c73feff9641a928a8024b4fa5ec11d583f3d8a87"}, - {file = "scikit_learn-1.0.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:08ef968f6b72033c16c479c966bf37ccd49b06ea91b765e1cc27afefe723920b"}, - {file = "scikit_learn-1.0.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:16455ace947d8d9e5391435c2977178d0ff03a261571e67f627c8fee0f9d431a"}, - {file = "scikit_learn-1.0.2-cp37-cp37m-win32.whl", hash = "sha256:2f3b453e0b149898577e301d27e098dfe1a36943f7bb0ad704d1e548efc3b448"}, - {file = "scikit_learn-1.0.2-cp37-cp37m-win_amd64.whl", hash = "sha256:46f431ec59dead665e1370314dbebc99ead05e1c0a9df42f22d6a0e00044820f"}, - {file = "scikit_learn-1.0.2-cp38-cp38-macosx_10_13_x86_64.whl", hash = "sha256:ff3fa8ea0e09e38677762afc6e14cad77b5e125b0ea70c9bba1992f02c93b028"}, - {file = "scikit_learn-1.0.2-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:9369b030e155f8188743eb4893ac17a27f81d28a884af460870c7c072f114243"}, - {file = "scikit_learn-1.0.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:7d6b2475f1c23a698b48515217eb26b45a6598c7b1840ba23b3c5acece658dbb"}, - {file = "scikit_learn-1.0.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:285db0352e635b9e3392b0b426bc48c3b485512d3b4ac3c7a44ec2a2ba061e66"}, - {file = "scikit_learn-1.0.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5cb33fe1dc6f73dc19e67b264dbb5dde2a0539b986435fdd78ed978c14654830"}, - {file = "scikit_learn-1.0.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b1391d1a6e2268485a63c3073111fe3ba6ec5145fc957481cfd0652be571226d"}, - {file = "scikit_learn-1.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc3744dabc56b50bec73624aeca02e0def06b03cb287de26836e730659c5d29c"}, - {file = "scikit_learn-1.0.2-cp38-cp38-win32.whl", hash = "sha256:a999c9f02ff9570c783069f1074f06fe7386ec65b84c983db5aeb8144356a355"}, - {file = "scikit_learn-1.0.2-cp38-cp38-win_amd64.whl", hash = "sha256:7626a34eabbf370a638f32d1a3ad50526844ba58d63e3ab81ba91e2a7c6d037e"}, - {file = "scikit_learn-1.0.2-cp39-cp39-macosx_10_13_x86_64.whl", hash = "sha256:a90b60048f9ffdd962d2ad2fb16367a87ac34d76e02550968719eb7b5716fd10"}, - {file = "scikit_learn-1.0.2-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:7a93c1292799620df90348800d5ac06f3794c1316ca247525fa31169f6d25855"}, - {file = "scikit_learn-1.0.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:eabceab574f471de0b0eb3f2ecf2eee9f10b3106570481d007ed1c84ebf6d6a1"}, - {file = "scikit_learn-1.0.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:55f2f3a8414e14fbee03782f9fe16cca0f141d639d2b1c1a36779fa069e1db57"}, - {file = "scikit_learn-1.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:80095a1e4b93bd33261ef03b9bc86d6db649f988ea4dbcf7110d0cded8d7213d"}, - {file = "scikit_learn-1.0.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fa38a1b9b38ae1fad2863eff5e0d69608567453fdfc850c992e6e47eb764e846"}, - {file = "scikit_learn-1.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ff746a69ff2ef25f62b36338c615dd15954ddc3ab8e73530237dd73235e76d62"}, - {file = "scikit_learn-1.0.2-cp39-cp39-win32.whl", hash = "sha256:e174242caecb11e4abf169342641778f68e1bfaba80cd18acd6bc84286b9a534"}, - {file = "scikit_learn-1.0.2-cp39-cp39-win_amd64.whl", hash = "sha256:b54a62c6e318ddbfa7d22c383466d38d2ee770ebdb5ddb668d56a099f6eaf75f"}, -] +s3transfer = [] +scikit-learn = [] scipy = [ {file = "scipy-1.7.3-1-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:c9e04d7e9b03a8a6ac2045f7c5ef741be86727d8f49c45db45f244bdd2bcff17"}, {file = "scipy-1.7.3-1-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:b0e0aeb061a1d7dcd2ed59ea57ee56c9b23dd60100825f98238c06ee5cc4467e"}, @@ -5300,10 +4877,6 @@ setproctitle = [ {file = "setproctitle-1.3.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:7aa0aac1711fadffc1d51e9d00a3bea61f68443d6ac0241a224e4d622489d665"}, {file = "setproctitle-1.3.2.tar.gz", hash = "sha256:b9fb97907c830d260fa0658ed58afd48a86b2b88aac521135c352ff7fd3477fd"}, ] -setuptools = [ - {file = "setuptools-65.5.1-py3-none-any.whl", hash = "sha256:d0b9a8433464d5800cbe05094acf5c6d52a91bfac9b52bcfc4d41382be5d5d31"}, - {file = "setuptools-65.5.1.tar.gz", hash = "sha256:e197a19aa8ec9722928f2206f8de752def0e4c9fc6953527360d1c36d94ddb2f"}, -] setuptools-git = [ {file = "setuptools-git-1.2.tar.gz", hash = "sha256:ff64136da01aabba76ae88b050e7197918d8b2139ccbf6144e14d472b9c40445"}, {file = "setuptools_git-1.2-py2.py3-none-any.whl", hash = "sha256:e7764dccce7d97b4b5a330d7b966aac6f9ac026385743fd6cedad553f2494cfa"}, @@ -5332,14 +4905,8 @@ snowballstemmer = [ {file = "snowballstemmer-2.2.0-py2.py3-none-any.whl", hash = "sha256:c8e1716e83cc398ae16824e5572ae04e0d9fc2c6b985fb0f900f5f0c96ecba1a"}, {file = "snowballstemmer-2.2.0.tar.gz", hash = "sha256:09b16deb8547d3412ad7b590689584cd0fe25ec8db3be37788be3810cbf19cb1"}, ] -soupsieve = [ - {file = "soupsieve-2.3.2.post1-py3-none-any.whl", hash = "sha256:3b2503d3c7084a42b1ebd08116e5f81aadfaea95863628c80a3b774a11b7c759"}, - {file = "soupsieve-2.3.2.post1.tar.gz", hash = "sha256:fc53893b3da2c33de295667a0e19f078c14bf86544af307354de5fcf12a3f30d"}, -] -sphinx = [ - {file = "Sphinx-4.5.0-py3-none-any.whl", hash = "sha256:ebf612653238bcc8f4359627a9b7ce44ede6fdd75d9d30f68255c7383d3a6226"}, - {file = "Sphinx-4.5.0.tar.gz", hash = "sha256:7bf8ca9637a4ee15af412d1a1d9689fec70523a68ca9bb9127c2f3eeb344e2e6"}, -] +soupsieve = [] +sphinx = [] sphinx-mathjax-offline = [ {file = "sphinx-mathjax-offline-0.0.1.tar.gz", hash = "sha256:55c53aeb555620f8b0ec0b26083d58ba629edbf6e0306117c3ae3028fea9aed0"}, {file = "sphinx_mathjax_offline-0.0.1-py3-none-any.whl", hash = "sha256:df11439f39b342bc89a8562f1c6fc44b4c0e72a7a542e291a620bd02d8b26184"}, @@ -5416,29 +4983,56 @@ sqlalchemy = [ {file = "SQLAlchemy-1.4.44.tar.gz", hash = "sha256:2dda5f96719ae89b3ec0f1b79698d86eb9aecb1d54e990abb3fdd92c04b46a90"}, ] statsmodels = [ - {file = "statsmodels-0.13.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:3e7ca5b7e678c0bb7a24f5c735d58ac104a50eb61b17c484cce0e221a095560f"}, - {file = "statsmodels-0.13.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:066a75d5585378b2df972f81a90b9a3da5e567b7d4833300c1597438c1a35e29"}, - {file = "statsmodels-0.13.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f15f38dfc9c5c091662cb619e12322047368c67aef449c7554d9b324a15f7a94"}, - {file = "statsmodels-0.13.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5c4ccc6b4744613367e8a233bd952c8a838db8f528f9fe033bda25aa13fc7d08"}, - {file = "statsmodels-0.13.2-cp310-cp310-win_amd64.whl", hash = "sha256:855b1cc2a91ab140b9bcf304b1731705805ce73223bf500b988804968554c0ed"}, - {file = "statsmodels-0.13.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:b69c9af7606325095f7c40c581957bad9f28775653d41537c1ec4cd1b185ff5b"}, - {file = "statsmodels-0.13.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ab31bac0f72b83bca1f217a12ec6f309a56485a50c4a705fbdd63112213d4da4"}, - {file = "statsmodels-0.13.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5d680b910b57fc0aa87472662cdfe09aae0e21db4bdf19ccd6420fd4dffda892"}, - {file = "statsmodels-0.13.2-cp37-cp37m-win32.whl", hash = "sha256:9e9a3f661d372431850d55157d049e079493c97fc06f550d23d8c8c70805cc48"}, - {file = "statsmodels-0.13.2-cp37-cp37m-win_amd64.whl", hash = "sha256:c9f6326870c095ef688f072cd476b932aff0906d60193eaa08e93ec23b29ca83"}, - {file = "statsmodels-0.13.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:5bc050f25f1ba1221efef9ea01b751c60935ad787fcd4259f4ece986f2da9141"}, - {file = "statsmodels-0.13.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:426b1c8ea3918d3d27dbfa38f2bee36cabf41d32163e2cbb3adfb0178b24626a"}, - {file = "statsmodels-0.13.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:45b80fac4a63308b1e93fa9dc27a8598930fd5dfd77c850ca077bb850254c6d7"}, - {file = "statsmodels-0.13.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:78ee69ec0e0f79f627245c65f8a495b8581c2ea19084aac63941815feb15dcf3"}, - {file = "statsmodels-0.13.2-cp38-cp38-win32.whl", hash = "sha256:20483cc30e11aa072b30d307bb80470f86a23ae8fffa51439ca54509d7aa9b05"}, - {file = "statsmodels-0.13.2-cp38-cp38-win_amd64.whl", hash = "sha256:bf43051a92231ccb9de95e4b6d22d3b15e499ee5ee9bff0a20e6b6ad293e34cb"}, - {file = "statsmodels-0.13.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6bf0dfed5f5edb59b5922b295392cd276463b10a5e730f7e57ee4ff2d8e9a87e"}, - {file = "statsmodels-0.13.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a403b559c5586dab7ac0fc9e754c737b017c96cce0ddd66ff9094764cdaf293d"}, - {file = "statsmodels-0.13.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9f23554dd025ea354ce072ba32bfaa840d2b856372e5734290e181d27a1f9e0c"}, - {file = "statsmodels-0.13.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:815f4df713e3eb6f40ae175c71f2a70d32f9219b5b4d23d4e0faab1171ba93ba"}, - {file = "statsmodels-0.13.2-cp39-cp39-win32.whl", hash = "sha256:461c82ab2265fa8457b96afc23ef3ca19f42eb070436e0241b57e58a38863901"}, - {file = "statsmodels-0.13.2-cp39-cp39-win_amd64.whl", hash = "sha256:39daab5a8a9332c8ea83d6464d065080c9ba65f236daf6a64aa18f64ef776fad"}, - {file = "statsmodels-0.13.2.tar.gz", hash = "sha256:77dc292c9939c036a476f1770f9d08976b05437daa229928da73231147cde7d4"}, + {file = "statsmodels-0.13.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:b71bb64c6d4087dd6192eadfad390fbeb4074f676ef34c7e56579cead8c478e7"}, + {file = "statsmodels-0.13.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:658b634c273c2f287a0086e56a5d6b95ec3ddac991cbb020b34f731e932de0bd"}, + {file = "statsmodels-0.13.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ab9f63f432889b179967ab645aea7480e28731823a3b99850d7f7a561b624f93"}, + {file = "statsmodels-0.13.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1f432fb7f54ce5edccc83aa36566653cd04ee35bbbefdf0a2b7bd9c97c5da443"}, + {file = "statsmodels-0.13.3-cp310-cp310-win_amd64.whl", hash = "sha256:4cd64076c3ad366b10fd4e6f8ca6aeb1e398ec5480bddb65fba8889dd9eb550d"}, + {file = "statsmodels-0.13.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:33f9caff2dbdfef22505678407d2f549b32a4a2729eb8675b60eb2932fc0e883"}, + {file = "statsmodels-0.13.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:393f6a7ec85f65be9ac1a13be152dd14c65084436c48bcdf94cb21ef0b6cb79c"}, + {file = "statsmodels-0.13.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:12b56d13d9a2af7a1aadc3fe9f3d3c18a5727a651323d94e7c2047177adfb9ce"}, + {file = "statsmodels-0.13.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a61e0652f62b01981d8e857aa77550b42cf316c9d8e569b559869c248e3de834"}, + {file = "statsmodels-0.13.3-cp311-cp311-win_amd64.whl", hash = "sha256:5368bccd471bb8cef0a8957ba5f2a3e5b5ecc433b0783d9f602039df45c780d3"}, + {file = "statsmodels-0.13.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:1ecfb191958de187ba44b93316f4953b8b6588b5f68dcab218f76498a862dd7c"}, + {file = "statsmodels-0.13.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2ea2b481b15e9e501904a1c36efc5f9a202f87529e600a99c364fd7e4598ae88"}, + {file = "statsmodels-0.13.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5d270a11aac6720a8024e1136ab44036d0878f62995617bb5b9fc5c77ea3d3b8"}, + {file = "statsmodels-0.13.3-cp37-cp37m-win_amd64.whl", hash = "sha256:2185ed356823cd1c258c09b790f0c21d2fd49321e82c79f8f6dc546f1c671d7a"}, + {file = "statsmodels-0.13.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:9da39a36d114abcdcf8ebd351ed69229e23cb12b8a607996cb6511fa88e78b4d"}, + {file = "statsmodels-0.13.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:3b3a9942d0b462af4c68c3895095d304869cbec9d97f3c268f19a6ba7ba294dc"}, + {file = "statsmodels-0.13.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7fff0316420bc4f6fbd80dd77eb74f3834fcd0e4ca98ba9611b8a6d41ebbb979"}, + {file = "statsmodels-0.13.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:352041bc04eaf90232e54a86861a460365ef45f34f58529578487e6f640dadf3"}, + {file = "statsmodels-0.13.3-cp38-cp38-win_amd64.whl", hash = "sha256:61a0f39848ebacf5560e1539ca0037b8fc25cc9d1d7444bbef5bdc0a3c56087b"}, + {file = "statsmodels-0.13.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:78cd12b0ee543fa955d2bace18518fc7d2b57f13c65929b54445bf3e54955b08"}, + {file = "statsmodels-0.13.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:afccb80e3ddc969bfb5285f846ac2622861ffe192423087214d60e4c6e40e384"}, + {file = "statsmodels-0.13.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d3609824e1ced44722bd905564d8ce94df29d24e32a6dd67cc9255932aedcd7b"}, + {file = "statsmodels-0.13.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:81f8e71963a7bd169338fbb1472e34ec85ae4447414ac37bdae5cf6d1ac223bb"}, + {file = "statsmodels-0.13.3-cp39-cp39-win_amd64.whl", hash = "sha256:000c7a1ce6780834f5fbb63f9ae07a00863a00f602c7c470c942153692f5bbc3"}, + {file = "statsmodels-0.13.3.tar.gz", hash = "sha256:ed71df887334b1d332e71d33215122bdd54494dcb2248606b30bcfa6112e860a"}, + {file = "statsmodels-0.13.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:41b94ae84f1bf77a0dfadf88d153189735c96218bc72e2b8309bc74393f026bb"}, + {file = "statsmodels-0.13.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e5d7b16cbfae069effeda91ba713f36300b2afcb1ccd0c6d2617771910d97e0f"}, + {file = "statsmodels-0.13.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:57b4c90ccf776c6848aca94b7bd7e0d79f4b161baca179a8e2fbc727e2ff613b"}, + {file = "statsmodels-0.13.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ef075faad0a4ca9972dca7e2f3ed5538923c97639aa2ef7dcc6bff2398e15a24"}, + {file = "statsmodels-0.13.4-cp310-cp310-win_amd64.whl", hash = "sha256:aa1c157c7fae3f7be5daed308cb928bba320005de51cfb59681bec157a6fca99"}, + {file = "statsmodels-0.13.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:33dc53eda31ac4f0d06ab4b30d4877f8f09d417a1120f0b919b0258b95335f44"}, + {file = "statsmodels-0.13.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:b5e37fd711f7436c92c9e24a6fc0cb9f22d87fc0d2ce0f3ee47c11d75983f28a"}, + {file = "statsmodels-0.13.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d42683f2a8e51b67bc286a5bf4a573613ef1d1d12d66925367695f36a8667589"}, + {file = "statsmodels-0.13.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e0a92b3dd2bcd1bef6363c824421c8532f24d7f1a88f55f0d2bc99f6ad4ff2a2"}, + {file = "statsmodels-0.13.4-cp311-cp311-win_amd64.whl", hash = "sha256:98b33318d3366eeb3631a9caf317cc667a36866c4b69d488ffa70dee9af37959"}, + {file = "statsmodels-0.13.4-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:80a5014be675ed2d5ebc0ef4ccbb7d3dba63bab2d0d4f780b51429d51f3aa2e6"}, + {file = "statsmodels-0.13.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:91ec9ebfe4e74b33cc6b2007b3ee53d1fa7ceae90589fcd10de213bbebada2d7"}, + {file = "statsmodels-0.13.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ecba51dda0583afcb8b179df380b3e9217bde405e24490d4124ac9b0cd1bf20d"}, + {file = "statsmodels-0.13.4-cp37-cp37m-win_amd64.whl", hash = "sha256:00b41f3d2c2a563d95abc1b948cf54c910e8f4c1bc42696380344708ce6882d9"}, + {file = "statsmodels-0.13.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1818c0f366a50c873e56d8c18925c188c691e0c2cd80ea7cdcd2d3b71788290f"}, + {file = "statsmodels-0.13.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:e8be9d7e2d3c7b2dd8162022667e5352c96c3334087c6cb9e352f7dc310cca8e"}, + {file = "statsmodels-0.13.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:be5916bd3d63370bf53711dea3f309e08d634c72859973a22384ade2a00e6675"}, + {file = "statsmodels-0.13.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9bdcd7938c0cadbf4be632407dbc6cf5d9ce3234cfe1c9a37e9cc61d717e6e27"}, + {file = "statsmodels-0.13.4-cp38-cp38-win_amd64.whl", hash = "sha256:b10e712dc51c814db2578530d3d64e982d265312636b520952db63c555b9b4e2"}, + {file = "statsmodels-0.13.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:e44542d45d242c24eaf960e95e54cbc83cfeb07922e14c78f2771c4e81ffd6f7"}, + {file = "statsmodels-0.13.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:606e5aa5ca33a5468c5065f4b9dfc249d7f499f262c0d84a514f4346fd97f049"}, + {file = "statsmodels-0.13.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7e3e379d3c6ecdcb5065541c36a1b2421f6a27a8c4cbeec488b917631a7d207a"}, + {file = "statsmodels-0.13.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:719a0d175dae8466112d5847adc49e0f76adf4bb735b03ff2b73b97140712d09"}, + {file = "statsmodels-0.13.4-cp39-cp39-win_amd64.whl", hash = "sha256:7d50c9c9ecdf23e1b8339cfa839f689817467c4f4a4ae8561b655faa3dc53f5f"}, + {file = "statsmodels-0.13.4.tar.gz", hash = "sha256:8ee5d1b69f64bc0e9379667455ee3585849d5e6bcd3f3e48e58ba6cadadfead5"}, {file = "statsmodels-0.13.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c75319fddded9507cc310fc3980e4ae4d64e3ff37b322ad5e203a84f89d85203"}, {file = "statsmodels-0.13.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6f148920ef27c7ba69a5735724f65de9422c0c8bcef71b50c846b823ceab8840"}, {file = "statsmodels-0.13.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5cc4d3e866bfe0c4f804bca362d0e7e29d24b840aaba8d35a754387e16d2a119"}, @@ -5485,9 +5079,7 @@ tensorboard-data-server = [ {file = "tensorboard_data_server-0.6.1-py3-none-macosx_10_9_x86_64.whl", hash = "sha256:fa8cef9be4fcae2f2363c88176638baf2da19c5ec90addb49b1cde05c95c88ee"}, {file = "tensorboard_data_server-0.6.1-py3-none-manylinux2010_x86_64.whl", hash = "sha256:d8237580755e58eff68d1f3abefb5b1e39ae5c8b127cc40920f9c4fb33f4b98a"}, ] -tensorboard-plugin-wit = [ - {file = "tensorboard_plugin_wit-1.8.1-py3-none-any.whl", hash = "sha256:ff26bdd583d155aa951ee3b152b3d0cffae8005dc697f72b44a8e8c2a77a8cbe"}, -] +tensorboard-plugin-wit = [] termcolor = [ {file = "termcolor-2.1.0-py3-none-any.whl", hash = "sha256:91dd04fdf661b89d7169cefd35f609b19ca931eb033687eaa647cef1ff177c49"}, {file = "termcolor-2.1.0.tar.gz", hash = "sha256:b80df54667ce4f48c03fe35df194f052dc27a541ebbf2544e4d6b47b5d6949c4"}, @@ -5496,10 +5088,7 @@ terminado = [ {file = "terminado-0.17.0-py3-none-any.whl", hash = "sha256:bf6fe52accd06d0661d7611cc73202121ec6ee51e46d8185d489ac074ca457c2"}, {file = "terminado-0.17.0.tar.gz", hash = "sha256:520feaa3aeab8ad64a69ca779be54be9234edb2d0d6567e76c93c2c9a4e6e43f"}, ] -threadpoolctl = [ - {file = "threadpoolctl-3.1.0-py3-none-any.whl", hash = "sha256:8b99adda265feb6773280df41eece7b2e6561b772d21ffd52e372f999024907b"}, - {file = "threadpoolctl-3.1.0.tar.gz", hash = "sha256:a335baacfaa4400ae1f0d8e3a58d6674d2f8828e3716bb2802c44955ad391380"}, -] +threadpoolctl = [] tinycss2 = [ {file = "tinycss2-1.2.1-py3-none-any.whl", hash = "sha256:2b80a96d41e7c3914b8cda8bc7f705a4d9c49275616e886103dd839dfc847847"}, {file = "tinycss2-1.2.1.tar.gz", hash = "sha256:8cff3a8f066c2ec677c06dbc7b45619804a6938478d9d73c284b29d14ecb0627"}, @@ -5512,48 +5101,13 @@ toml = [ {file = "toml-0.10.2-py2.py3-none-any.whl", hash = "sha256:806143ae5bfb6a3c6e736a764057db0e6a0e05e338b5630894a5f779cabb4f9b"}, {file = "toml-0.10.2.tar.gz", hash = "sha256:b3bda1d108d5dd99f4a20d24d9c348e91c4db7ab1b749200bded2f839ccbe68f"}, ] -tomli = [ - {file = "tomli-2.0.1-py3-none-any.whl", hash = "sha256:939de3e7a6161af0c887ef91b7d41a53e7c5a1ca976325f429cb46ea9bc30ecc"}, - {file = "tomli-2.0.1.tar.gz", hash = "sha256:de526c12914f0c550d15924c62d72abc48d6fe7364aa87328337a31007fe8a4f"}, -] -torch = [ - {file = "torch-1.11.0-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:62052b50fffc29ca7afc0c04ef8206b6f1ca9d10629cb543077e12967e8d0398"}, - {file = "torch-1.11.0-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:866bfba29ac98dec35d893d8e17eaec149d0ac7a53be7baae5c98069897db667"}, - {file = "torch-1.11.0-cp310-cp310-win_amd64.whl", hash = "sha256:951640fb8db308a59d9b510e7d1ad910aff92913323bbe4bc75435347ddd346d"}, - {file = "torch-1.11.0-cp310-none-macosx_10_9_x86_64.whl", hash = "sha256:5d77b5ece78fdafa5c7f42995ff9474399d22571cd6b2de21a5d666306a2ff8c"}, - {file = "torch-1.11.0-cp310-none-macosx_11_0_arm64.whl", hash = "sha256:b5a38682769b544c875ecc34bcb81fbad5c922139b61319aacffcfd8a32f528c"}, - {file = "torch-1.11.0-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:f82d77695a60626f2b7382d85bc566de8a6b3e50d32080755abc040db802e419"}, - {file = "torch-1.11.0-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:b96654d42566080a134e784705f33f8536b3b95b5dcde357ed7879b1692a5f78"}, - {file = "torch-1.11.0-cp37-cp37m-win_amd64.whl", hash = "sha256:8ee7c2e8d7f7020d5bfbc1bb91b9591044c26bbd0cee5e4f694cfd7ed8649260"}, - {file = "torch-1.11.0-cp37-none-macosx_10_9_x86_64.whl", hash = "sha256:6860b1d1bf0bb0b67a6bd47f85a0e4c825b518eea13b5d6101999dbbcbd5bc0c"}, - {file = "torch-1.11.0-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:4322aa29f50da7f404db06cdf30896ea67b09f673af4a985afc7162bc897864d"}, - {file = "torch-1.11.0-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:e4d2e0ddd652f30e94cff750220324ec45705d4ecc69658f773b3cb1c7a28dd0"}, - {file = "torch-1.11.0-cp38-cp38-win_amd64.whl", hash = "sha256:34ce5ea4d8d85da32cdbadb50d4585106901e9f8a3527991daa70c13a09de1f7"}, - {file = "torch-1.11.0-cp38-none-macosx_10_9_x86_64.whl", hash = "sha256:0ccc85cd06227a3edf809e2c795fd5762c3d4e8a38b5c9f744c6e7cf841361bb"}, - {file = "torch-1.11.0-cp38-none-macosx_11_0_arm64.whl", hash = "sha256:c1554e49d74f1b2c3e7202d77056ba2dd7465437585bac64062b580f714a44e9"}, - {file = "torch-1.11.0-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:58c7814502b1c129a650d7092033bbb0bbd64faf1a7941631aaa1aeaddc37570"}, - {file = "torch-1.11.0-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:831cf588f01dda9409e75576741d2823453990dee2983d670f2584b37a01adf7"}, - {file = "torch-1.11.0-cp39-cp39-win_amd64.whl", hash = "sha256:44a1d02fd20f827f0f36dc26fdcfc45e793806a6ad52769a22260655a77a4369"}, - {file = "torch-1.11.0-cp39-none-macosx_10_9_x86_64.whl", hash = "sha256:50fd9bf85c578c871c28f1cb0ace9dfc6024401c7f399b174fb0f370899f4454"}, - {file = "torch-1.11.0-cp39-none-macosx_11_0_arm64.whl", hash = "sha256:0e48af66ad755f0f9c5f2664028a414f57c49d6adc37e77e06fe0004da4edb61"}, -] +tomli = [] +torch = [] torchmetrics = [ {file = "torchmetrics-0.10.2-py3-none-any.whl", hash = "sha256:43757d82266969906fc74b6e80766fcb2a0d52d6c3d09e3b7c98cf3b733fd20c"}, {file = "torchmetrics-0.10.2.tar.gz", hash = "sha256:daa29d96bff5cff04d80eec5b9f5076993d6ac9c2d2163e88b6b31f8d38f7c25"}, ] -tornado = [ - {file = "tornado-6.2-cp37-abi3-macosx_10_9_universal2.whl", hash = "sha256:20f638fd8cc85f3cbae3c732326e96addff0a15e22d80f049e00121651e82e72"}, - {file = "tornado-6.2-cp37-abi3-macosx_10_9_x86_64.whl", hash = "sha256:87dcafae3e884462f90c90ecc200defe5e580a7fbbb4365eda7c7c1eb809ebc9"}, - {file = "tornado-6.2-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ba09ef14ca9893954244fd872798b4ccb2367c165946ce2dd7376aebdde8e3ac"}, - {file = "tornado-6.2-cp37-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b8150f721c101abdef99073bf66d3903e292d851bee51910839831caba341a75"}, - {file = "tornado-6.2-cp37-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d3a2f5999215a3a06a4fc218026cd84c61b8b2b40ac5296a6db1f1451ef04c1e"}, - {file = "tornado-6.2-cp37-abi3-musllinux_1_1_aarch64.whl", hash = "sha256:5f8c52d219d4995388119af7ccaa0bcec289535747620116a58d830e7c25d8a8"}, - {file = "tornado-6.2-cp37-abi3-musllinux_1_1_i686.whl", hash = "sha256:6fdfabffd8dfcb6cf887428849d30cf19a3ea34c2c248461e1f7d718ad30b66b"}, - {file = "tornado-6.2-cp37-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:1d54d13ab8414ed44de07efecb97d4ef7c39f7438cf5e976ccd356bebb1b5fca"}, - {file = "tornado-6.2-cp37-abi3-win32.whl", hash = "sha256:5c87076709343557ef8032934ce5f637dbb552efa7b21d08e89ae7619ed0eb23"}, - {file = "tornado-6.2-cp37-abi3-win_amd64.whl", hash = "sha256:e5f923aa6a47e133d1cf87d60700889d7eae68988704e20c75fb2d65677a8e4b"}, - {file = "tornado-6.2.tar.gz", hash = "sha256:9b630419bde84ec666bfd7ea0a4cb2a8a651c2d5cccdbdd1972a0c859dfc3c13"}, -] +tornado = [] tqdm = [ {file = "tqdm-4.64.1-py2.py3-none-any.whl", hash = "sha256:6fee160d6ffcd1b1c68c65f14c829c22832bc401726335ce92c52d395944a6a1"}, {file = "tqdm-4.64.1.tar.gz", hash = "sha256:5f4f682a004951c1b450bc753c710e9280c5746ce6ffedee253ddbcbf54cf1e4"}, @@ -5594,18 +5148,20 @@ typed-ast = [ {file = "typed_ast-1.4.3-cp39-cp39-win_amd64.whl", hash = "sha256:9c6d1a54552b5330bc657b7ef0eae25d00ba7ffe85d9ea8ae6540d2197a3788c"}, {file = "typed_ast-1.4.3.tar.gz", hash = "sha256:fb1bbeac803adea29cedd70781399c99138358c26d05fcbd23c13016b7f5ec65"}, ] -typer = [ - {file = "typer-0.4.2-py3-none-any.whl", hash = "sha256:023bae00d1baf358a6cc7cea45851639360bb716de687b42b0a4641cd99173f1"}, - {file = "typer-0.4.2.tar.gz", hash = "sha256:b8261c6c0152dd73478b5ba96ba677e5d6948c715c310f7c91079f311f62ec03"}, -] -types-deprecated = [ - {file = "types-Deprecated-1.2.9.tar.gz", hash = "sha256:e04ce58929509865359e91dcc38720123262b4cd68fa2a8a90312d50390bb6fa"}, - {file = "types_Deprecated-1.2.9-py3-none-any.whl", hash = "sha256:53d05621e1d75de537f5a57d93508c8df17e37c07ee60b9fb09d39e1b7586c1e"}, +typer = [] +types-deprecated = [] +types-docutils = [ + {file = "types-docutils-0.19.1.1.tar.gz", hash = "sha256:be0a51ba1c7dd215d9d2df66d6845e63c1009b4bbf4c5beb87a0d9745cdba962"}, + {file = "types_docutils-0.19.1.1-py3-none-any.whl", hash = "sha256:a024cada35f0c13cc45eb0b68a102719018a634013690b7fef723bcbfadbd1f1"}, ] types-pyyaml = [ {file = "types-PyYAML-6.0.12.2.tar.gz", hash = "sha256:6840819871c92deebe6a2067fb800c11b8a063632eb4e3e755914e7ab3604e83"}, {file = "types_PyYAML-6.0.12.2-py3-none-any.whl", hash = "sha256:1e94e80aafee07a7e798addb2a320e32956a373f376655128ae20637adb2655b"}, ] +types-setuptools = [ + {file = "types-setuptools-65.7.0.0.tar.gz", hash = "sha256:0bb78efb7d91baaa7da3fe15dfac0461380ae23ce596708b87bdf368c50fbff7"}, + {file = "types_setuptools-65.7.0.0-py3-none-any.whl", hash = "sha256:8d20beda264fe2962599aa087373c9b897e7c99d9fe591772d817e872e0fe4eb"}, +] typing-extensions = [ {file = "typing_extensions-4.4.0-py3-none-any.whl", hash = "sha256:16fa4864408f655d35ec496218b85f79b3437c829e93320c7c9215ccfd92489e"}, {file = "typing_extensions-4.4.0.tar.gz", hash = "sha256:1511434bb92bf8dd198c12b1cc812e800d4181cfcb867674e0f8279cc93087aa"}, @@ -5614,10 +5170,7 @@ urllib3 = [ {file = "urllib3-1.26.12-py2.py3-none-any.whl", hash = "sha256:b930dd878d5a8afb066a637fbb35144fe7901e3b209d1cd4f524bd0e9deee997"}, {file = "urllib3-1.26.12.tar.gz", hash = "sha256:3fa96cf423e6987997fc326ae8df396db2a8b7c667747d47ddd8ecba91f4a74e"}, ] -wandb = [ - {file = "wandb-0.12.21-py2.py3-none-any.whl", hash = "sha256:150842447d355d90dc7f368b824951a625e5b2d1be355a00e99b11b73728bc1f"}, - {file = "wandb-0.12.21.tar.gz", hash = "sha256:1975ff88c5024923c3321c93cfefb8d9b871543c0b009f34001bf0f31e444b04"}, -] +wandb = [] wcwidth = [ {file = "wcwidth-0.2.5-py2.py3-none-any.whl", hash = "sha256:beb4802a9cebb9144e99086eff703a642a13d6a0052920003a230f3294bbe784"}, {file = "wcwidth-0.2.5.tar.gz", hash = "sha256:c4d647b99872929fdb7bdcaa4fbe7f01413ed3d98077df798530e5b04f116c83"}, @@ -5634,84 +5187,9 @@ werkzeug = [ {file = "Werkzeug-2.2.2-py3-none-any.whl", hash = "sha256:f979ab81f58d7318e064e99c4506445d60135ac5cd2e177a2de0089bfd4c9bd5"}, {file = "Werkzeug-2.2.2.tar.gz", hash = "sha256:7ea2d48322cc7c0f8b3a215ed73eabd7b5d75d0b50e31ab006286ccff9e00b8f"}, ] -wheel = [ - {file = "wheel-0.38.4-py3-none-any.whl", hash = "sha256:b60533f3f5d530e971d6737ca6d58681ee434818fab630c83a734bb10c083ce8"}, - {file = "wheel-0.38.4.tar.gz", hash = "sha256:965f5259b566725405b05e7cf774052044b1ed30119b5d586b2703aafe8719ac"}, -] -widgetsnbextension = [ - {file = "widgetsnbextension-3.6.1-py2.py3-none-any.whl", hash = "sha256:954e0faefdd414e4e013f17dbc7fd86f24cf1d243a3ac85d5f0fc2c2d2b50c66"}, - {file = "widgetsnbextension-3.6.1.tar.gz", hash = "sha256:9c84ae64c2893c7cbe2eaafc7505221a795c27d68938454034ac487319a75b10"}, -] -win32-setctime = [ - {file = "win32_setctime-1.1.0-py3-none-any.whl", hash = "sha256:231db239e959c2fe7eb1d7dc129f11172354f98361c4fa2d6d2d7e278baa8aad"}, - {file = "win32_setctime-1.1.0.tar.gz", hash = "sha256:15cf5750465118d6929ae4de4eb46e8edae9a5634350c01ba582df868e932cb2"}, -] -wrapt = [ - {file = "wrapt-1.14.1-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:1b376b3f4896e7930f1f772ac4b064ac12598d1c38d04907e696cc4d794b43d3"}, - {file = "wrapt-1.14.1-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:903500616422a40a98a5a3c4ff4ed9d0066f3b4c951fa286018ecdf0750194ef"}, - {file = "wrapt-1.14.1-cp27-cp27m-manylinux1_x86_64.whl", hash = "sha256:5a9a0d155deafd9448baff28c08e150d9b24ff010e899311ddd63c45c2445e28"}, - {file = "wrapt-1.14.1-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:ddaea91abf8b0d13443f6dac52e89051a5063c7d014710dcb4d4abb2ff811a59"}, - {file = "wrapt-1.14.1-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:36f582d0c6bc99d5f39cd3ac2a9062e57f3cf606ade29a0a0d6b323462f4dd87"}, - {file = "wrapt-1.14.1-cp27-cp27mu-manylinux1_i686.whl", hash = "sha256:7ef58fb89674095bfc57c4069e95d7a31cfdc0939e2a579882ac7d55aadfd2a1"}, - {file = "wrapt-1.14.1-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:e2f83e18fe2f4c9e7db597e988f72712c0c3676d337d8b101f6758107c42425b"}, - {file = "wrapt-1.14.1-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:ee2b1b1769f6707a8a445162ea16dddf74285c3964f605877a20e38545c3c462"}, - {file = "wrapt-1.14.1-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:833b58d5d0b7e5b9832869f039203389ac7cbf01765639c7309fd50ef619e0b1"}, - {file = "wrapt-1.14.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:80bb5c256f1415f747011dc3604b59bc1f91c6e7150bd7db03b19170ee06b320"}, - {file = "wrapt-1.14.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:07f7a7d0f388028b2df1d916e94bbb40624c59b48ecc6cbc232546706fac74c2"}, - {file = "wrapt-1.14.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:02b41b633c6261feff8ddd8d11c711df6842aba629fdd3da10249a53211a72c4"}, - {file = "wrapt-1.14.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2fe803deacd09a233e4762a1adcea5db5d31e6be577a43352936179d14d90069"}, - {file = "wrapt-1.14.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:257fd78c513e0fb5cdbe058c27a0624c9884e735bbd131935fd49e9fe719d310"}, - {file = "wrapt-1.14.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:4fcc4649dc762cddacd193e6b55bc02edca674067f5f98166d7713b193932b7f"}, - {file = "wrapt-1.14.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:11871514607b15cfeb87c547a49bca19fde402f32e2b1c24a632506c0a756656"}, - {file = "wrapt-1.14.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:8ad85f7f4e20964db4daadcab70b47ab05c7c1cf2a7c1e51087bfaa83831854c"}, - {file = "wrapt-1.14.1-cp310-cp310-win32.whl", hash = "sha256:a9a52172be0b5aae932bef82a79ec0a0ce87288c7d132946d645eba03f0ad8a8"}, - {file = "wrapt-1.14.1-cp310-cp310-win_amd64.whl", hash = "sha256:6d323e1554b3d22cfc03cd3243b5bb815a51f5249fdcbb86fda4bf62bab9e164"}, - {file = "wrapt-1.14.1-cp35-cp35m-manylinux1_i686.whl", hash = "sha256:43ca3bbbe97af00f49efb06e352eae40434ca9d915906f77def219b88e85d907"}, - {file = "wrapt-1.14.1-cp35-cp35m-manylinux1_x86_64.whl", hash = "sha256:6b1a564e6cb69922c7fe3a678b9f9a3c54e72b469875aa8018f18b4d1dd1adf3"}, - {file = "wrapt-1.14.1-cp35-cp35m-manylinux2010_i686.whl", hash = "sha256:00b6d4ea20a906c0ca56d84f93065b398ab74b927a7a3dbd470f6fc503f95dc3"}, - {file = "wrapt-1.14.1-cp35-cp35m-manylinux2010_x86_64.whl", hash = "sha256:a85d2b46be66a71bedde836d9e41859879cc54a2a04fad1191eb50c2066f6e9d"}, - {file = "wrapt-1.14.1-cp35-cp35m-win32.whl", hash = "sha256:dbcda74c67263139358f4d188ae5faae95c30929281bc6866d00573783c422b7"}, - {file = "wrapt-1.14.1-cp35-cp35m-win_amd64.whl", hash = "sha256:b21bb4c09ffabfa0e85e3a6b623e19b80e7acd709b9f91452b8297ace2a8ab00"}, - {file = "wrapt-1.14.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:9e0fd32e0148dd5dea6af5fee42beb949098564cc23211a88d799e434255a1f4"}, - {file = "wrapt-1.14.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9736af4641846491aedb3c3f56b9bc5568d92b0692303b5a305301a95dfd38b1"}, - {file = "wrapt-1.14.1-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5b02d65b9ccf0ef6c34cba6cf5bf2aab1bb2f49c6090bafeecc9cd81ad4ea1c1"}, - {file = "wrapt-1.14.1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:21ac0156c4b089b330b7666db40feee30a5d52634cc4560e1905d6529a3897ff"}, - {file = "wrapt-1.14.1-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:9f3e6f9e05148ff90002b884fbc2a86bd303ae847e472f44ecc06c2cd2fcdb2d"}, - {file = "wrapt-1.14.1-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:6e743de5e9c3d1b7185870f480587b75b1cb604832e380d64f9504a0535912d1"}, - {file = "wrapt-1.14.1-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:d79d7d5dc8a32b7093e81e97dad755127ff77bcc899e845f41bf71747af0c569"}, - {file = "wrapt-1.14.1-cp36-cp36m-win32.whl", hash = "sha256:81b19725065dcb43df02b37e03278c011a09e49757287dca60c5aecdd5a0b8ed"}, - {file = "wrapt-1.14.1-cp36-cp36m-win_amd64.whl", hash = "sha256:b014c23646a467558be7da3d6b9fa409b2c567d2110599b7cf9a0c5992b3b471"}, - {file = "wrapt-1.14.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:88bd7b6bd70a5b6803c1abf6bca012f7ed963e58c68d76ee20b9d751c74a3248"}, - {file = "wrapt-1.14.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b5901a312f4d14c59918c221323068fad0540e34324925c8475263841dbdfe68"}, - {file = "wrapt-1.14.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d77c85fedff92cf788face9bfa3ebaa364448ebb1d765302e9af11bf449ca36d"}, - {file = "wrapt-1.14.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8d649d616e5c6a678b26d15ece345354f7c2286acd6db868e65fcc5ff7c24a77"}, - {file = "wrapt-1.14.1-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:7d2872609603cb35ca513d7404a94d6d608fc13211563571117046c9d2bcc3d7"}, - {file = "wrapt-1.14.1-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:ee6acae74a2b91865910eef5e7de37dc6895ad96fa23603d1d27ea69df545015"}, - {file = "wrapt-1.14.1-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:2b39d38039a1fdad98c87279b48bc5dce2c0ca0d73483b12cb72aa9609278e8a"}, - {file = "wrapt-1.14.1-cp37-cp37m-win32.whl", hash = "sha256:60db23fa423575eeb65ea430cee741acb7c26a1365d103f7b0f6ec412b893853"}, - {file = "wrapt-1.14.1-cp37-cp37m-win_amd64.whl", hash = "sha256:709fe01086a55cf79d20f741f39325018f4df051ef39fe921b1ebe780a66184c"}, - {file = "wrapt-1.14.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:8c0ce1e99116d5ab21355d8ebe53d9460366704ea38ae4d9f6933188f327b456"}, - {file = "wrapt-1.14.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:e3fb1677c720409d5f671e39bac6c9e0e422584e5f518bfd50aa4cbbea02433f"}, - {file = "wrapt-1.14.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:642c2e7a804fcf18c222e1060df25fc210b9c58db7c91416fb055897fc27e8cc"}, - {file = "wrapt-1.14.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7b7c050ae976e286906dd3f26009e117eb000fb2cf3533398c5ad9ccc86867b1"}, - {file = "wrapt-1.14.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ef3f72c9666bba2bab70d2a8b79f2c6d2c1a42a7f7e2b0ec83bb2f9e383950af"}, - {file = "wrapt-1.14.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:01c205616a89d09827986bc4e859bcabd64f5a0662a7fe95e0d359424e0e071b"}, - {file = "wrapt-1.14.1-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:5a0f54ce2c092aaf439813735584b9537cad479575a09892b8352fea5e988dc0"}, - {file = "wrapt-1.14.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:2cf71233a0ed05ccdabe209c606fe0bac7379fdcf687f39b944420d2a09fdb57"}, - {file = "wrapt-1.14.1-cp38-cp38-win32.whl", hash = "sha256:aa31fdcc33fef9eb2552cbcbfee7773d5a6792c137b359e82879c101e98584c5"}, - {file = "wrapt-1.14.1-cp38-cp38-win_amd64.whl", hash = "sha256:d1967f46ea8f2db647c786e78d8cc7e4313dbd1b0aca360592d8027b8508e24d"}, - {file = "wrapt-1.14.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:3232822c7d98d23895ccc443bbdf57c7412c5a65996c30442ebe6ed3df335383"}, - {file = "wrapt-1.14.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:988635d122aaf2bdcef9e795435662bcd65b02f4f4c1ae37fbee7401c440b3a7"}, - {file = "wrapt-1.14.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9cca3c2cdadb362116235fdbd411735de4328c61425b0aa9f872fd76d02c4e86"}, - {file = "wrapt-1.14.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d52a25136894c63de15a35bc0bdc5adb4b0e173b9c0d07a2be9d3ca64a332735"}, - {file = "wrapt-1.14.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:40e7bc81c9e2b2734ea4bc1aceb8a8f0ceaac7c5299bc5d69e37c44d9081d43b"}, - {file = "wrapt-1.14.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:b9b7a708dd92306328117d8c4b62e2194d00c365f18eff11a9b53c6f923b01e3"}, - {file = "wrapt-1.14.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:6a9a25751acb379b466ff6be78a315e2b439d4c94c1e99cb7266d40a537995d3"}, - {file = "wrapt-1.14.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:34aa51c45f28ba7f12accd624225e2b1e5a3a45206aa191f6f9aac931d9d56fe"}, - {file = "wrapt-1.14.1-cp39-cp39-win32.whl", hash = "sha256:dee0ce50c6a2dd9056c20db781e9c1cfd33e77d2d569f5d1d9321c641bb903d5"}, - {file = "wrapt-1.14.1-cp39-cp39-win_amd64.whl", hash = "sha256:dee60e1de1898bde3b238f18340eec6148986da0455d8ba7848d50470a7a32fb"}, - {file = "wrapt-1.14.1.tar.gz", hash = "sha256:380a85cf89e0e69b7cfbe2ea9f765f004ff419f34194018a6827ac0e3edfed4d"}, -] +widgetsnbextension = [] +win32-setctime = [] +wrapt = [] yarl = [ {file = "yarl-1.8.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:abc06b97407868ef38f3d172762f4069323de52f2b70d133d096a48d72215d28"}, {file = "yarl-1.8.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:07b21e274de4c637f3e3b7104694e53260b5fc10d51fb3ec5fed1da8e0f754e3"}, diff --git a/pyproject.toml b/pyproject.toml index bf86a4ee7..8effc20e6 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -103,7 +103,6 @@ flake8-docstrings = {version = "^1.6.0", optional = true} mypy = {version = "^0.910", optional = true} types-PyYAML = {version = "^6.0.0", optional = true} codespell = {version = "^2.0.0", optional = true} -types-setuptools = {version = "^65.5.0", optional = true} click = {version = ">=8.0.1, <8.1", optional = true} semver = {version = "^2.13.0", optional = true} @@ -112,6 +111,7 @@ ipywidgets = {version = "^7.6.5", optional = true} jupyter = {version = "*", optional = true} nbconvert = {version = "*", optional = true} pyts = {version = "^0.12.0", optional = true} +types-setuptools = {version = "^65.7.0", optional = true} [tool.poetry.extras] From b0a59876c1a99ed71c94a0195bce93bdf669dafe Mon Sep 17 00:00:00 2001 From: "d.a.bunin" Date: Fri, 13 Jan 2023 12:27:34 +0300 Subject: [PATCH 12/12] Fix dependencies --- poetry.lock | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/poetry.lock b/poetry.lock index bdbb45658..5d48c599a 100644 --- a/poetry.lock +++ b/poetry.lock @@ -3288,14 +3288,14 @@ testing = ["flake8 (<5)", "func-timeout", "jaraco.functools", "jaraco.itertools" [extras] all = ["prophet", "torch", "pytorch-forecasting", "wandb", "optuna", "pyts"] -all-dev = ["prophet", "torch", "pytorch-forecasting", "wandb", "optuna", "click", "semver", "Sphinx", "numpydoc", "sphinx-rtd-theme", "nbsphinx", "sphinx-mathjax-offline", "myst-parser", "GitPython", "pytest-cov", "coverage", "pytest", "black", "isort", "flake8", "pep8-naming", "flake8-docstrings", "mypy", "types-PyYAML", "codespell", "flake8-bugbear", "flake8-comprehensions", "click", "semver", "jupyter", "nbconvert", "pyts"] +all-dev = ["prophet", "torch", "pytorch-forecasting", "wandb", "optuna", "click", "semver", "Sphinx", "numpydoc", "sphinx-rtd-theme", "nbsphinx", "sphinx-mathjax-offline", "myst-parser", "GitPython", "pytest-cov", "coverage", "pytest", "black", "isort", "flake8", "pep8-naming", "flake8-docstrings", "mypy", "types-PyYAML", "codespell", "flake8-bugbear", "flake8-comprehensions", "types-setuptools", "click", "semver", "jupyter", "nbconvert", "pyts"] auto = ["optuna"] classification = ["pyts"] docs = ["Sphinx", "numpydoc", "sphinx-rtd-theme", "nbsphinx", "sphinx-mathjax-offline", "myst-parser", "GitPython"] jupyter = ["jupyter", "nbconvert", "black"] prophet = ["prophet"] release = ["click", "semver"] -style = ["black", "isort", "flake8", "pep8-naming", "flake8-docstrings", "mypy", "types-PyYAML", "codespell", "flake8-bugbear", "flake8-comprehensions"] +style = ["black", "isort", "flake8", "pep8-naming", "flake8-docstrings", "mypy", "types-PyYAML", "codespell", "flake8-bugbear", "flake8-comprehensions", "types-setuptools"] tests = ["pytest-cov", "coverage", "pytest"] torch = ["torch", "pytorch-forecasting", "pytorch-lightning"] wandb = ["wandb"] @@ -3303,7 +3303,7 @@ wandb = ["wandb"] [metadata] lock-version = "1.1" python-versions = ">=3.7.1, <3.11.0" -content-hash = "9b4eb263928b260c85c66de360fae30e3160a2450f64a2d12be8922554066e4c" +content-hash = "78cfffbb71287b0db8af81005d304cbb6e63ed0b725970863bc5800410b70829" [metadata.files] absl-py = [