-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathemgsafwd.m
748 lines (636 loc) · 28 KB
/
emgsafwd.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
function [result] = emgsafwd(varargin)
global debug
% [result] = emgsafwd(config, layers, cparams);
%
% emgsafwd.m is part of the CR1Dmod forward modeling package, and contains
% the code used to calculate the response of electrode arrays on the surface
% of a 1D layered half space.
%
% Input:
% config : structure defining the configuation (generated by cr1dmod)
% layers : structure defining layer-parameters (generated by cr1dmod)
% cparams: structure defining calculation options (generated by compute)
% name: optional name to display in the waitbar window
%
% Output:
% result: structure containing the calculated responses as well
% as information on the configuration, such as the
% geometric factor.
%
% Written by:
% Thomas Ingeman-Nielsen
% The Arctic Technology Center, BYG
% Technical University of Denmark
% Email: [email protected]
cpu_t=cputime;
global Rkern estimate
Rkern = [];
estimate = [];
if isappdata(0,'debug') && getappdata(0,'debug')
dbstop if all error
debug = 1;
else
debug = 0;
end
if ( nargin < 3 )
disp('A call to emgsafwd must provide three input arguments!');
return
end
if ( nargin == 4 ) && ~isempty(varargin{4})
modelname = [varargin{4} ': '];
else
modelname = [];
end
% Set up structures of parameters...
ok = 0;
if ( isstruct(varargin{1}) )
config = varargin{1};
if ( isstruct(varargin{2}) )
layers = varargin{2};
if ( isstruct(varargin{3}) )
cparams = varargin{3};
ok = 1;
end
end
end
if ~ok
disp('Non-structure inputs have not been implemented yet!');
return
end
if ~isfield(cparams,'noPrint') || ~cparams.noPrint
disp('Routine: EMgsafwd');
end
% Set up vectors of layer parameters
eps0 = 8.85418782.*1e-12;
mu0 = 4e-7.*pi;
lparams.h = [layers.thickness].'; lparams.h(end) = []; % only include layers above halfspace
omega = cparams.freq.*2.*pi;
sigma = 1./Z_CR(omega, [layers.rho].', [layers.tau].', [layers.c].', ...
[layers.m].');
if layers(1).mu == 0
cparams.nonmag = 1;
else
cparams.nonmag = 0;
end
if ~isfield(cparams,'noDialog') || ~cparams.noDialog
h1 = waitbar(0,[modelname 'Please wait...']);
noDialog = 0;
else
noDialog = 1;
end
% setup config structure for dipole-dipole calculations
if strcmpi(config(1).type, 'Dipole-Dipole')
for k = 1:length(config(1,1).Aspac)
for m = 1:length(config(1,1).Nspac)
config(k,m) = config(1,1);
config(k,m).C1 = [-config(k,m).Aspac(k)-...
0.5*config(k,m).Aspac(k)*config(k,m).Nspac(m) 0 0]; % transmitter dipole C1 a C2 P2 a P1
config(k,m).C2 = [config(k,m).C1(1)+...
config(k,m).Aspac(1) 0 0]; % transmitter dipole o------o o------o
config(k,m).P1 = [config(k,m).C2(1)+... % receiver dipole Tx n*a Rx
config(k,m).Nspac(m)*config(k,m).Aspac(k) 0 0];
config(k,m).P2 = [config(k,m).P1(1)+... % receiver dipole
config(k,m).Aspac(k) 0 0];
% Here we interchange C1 and C2, remember then to also change
% cosine calculation
C2 = config(k,m).C2;
config(k,m).C2 = config(k,m).C1;
config(k,m).C1 = C2;
config(k,m).Cwire = [config(k,m).C1;config(k,m).C2];
% Calculate length of each wire element
config(k,m).S = sqrt(sum(diff(config(k,m).Cwire).^2,2));
config(k,m).Pwire = [config(k,m).P1;config(k,m).P2];
% Calculate length of each wire element
config(k,m).T = sqrt(sum(diff(config(k,m).Pwire).^2,2));
%config(k,m).cosines = 1;
config(k,m).cosines = (diff(config(k,m).Cwire)*diff(config(k,m).Pwire).') ...
./(abs(config(k,m).S)*abs(config(k,m).T).'); % calculate cosines of angles between wire elements
config(k,m).R = [];
for s = 1:length(config(k,m).S)
for t = 1:length(config(k,m).T)
config(k,m).R = [config(k,m).R; sqrt(sum( ...
(config(k,m).Cwire(s:s+1,:)- ...
config(k,m).Pwire(t:t+1,:)).^2,2))];
config(k,m).R = [config(k,m).R; sqrt(sum( ...
(config(k,m).Cwire(s:s+1,:)- ...
config(k,m).Pwire([t+1,t],:)).^2,2))];
end
end
config(k,m).Rmin = min(config(k,m).R);
config(k,m).Rmax = max(config(k,m).R);
% calculate distance between electrodes
config(k,m).r = sqrt(sum(([...
config(k,m).P2-config(k,m).C2;...
config(k,m).P2-config(k,m).C1;...
config(k,m).P1-config(k,m).C2;...
config(k,m).P1-config(k,m).C1]).^2,2));
% prepare result structure
result(k,m).Aspac = config(k,m).Aspac(k);
result(k,m).Nspac = config(k,m).Nspac(m);
result(k,m).G_factor = 2*pi*(...
1/config(k,m).r(4)- ...
1/config(k,m).r(3)- ...
1/config(k,m).r(2)+ ...
1/config(k,m).r(1))^(-1);
result(k,m).Z = omega.'; %allocate space for Z
end % m
end % k
cparams.Rmin = min(min([config.Rmin]));
cparams.Rmax = max(max([config.Rmax]));
else % if it is a general surface array
for k = 1:length(config(:))
config(k).Cwire = [config(k).C1;config(k).Cwire;config(k).C2];
config(k).S = sqrt(sum(diff(config(k).Cwire).^2,2)); % Calculate length of each wire element
config(k).Pwire = [config(k).P1;config(k).Pwire;config(k).P2];
config(k).T = sqrt(sum(diff(config(k).Pwire).^2,2)); % Calculate length of each wire element
config(k).cosines = (diff(config(k).Cwire)*diff(config(k).Pwire).') ...
./(abs(config(k).S)*abs(config(k).T).'); % calculate cosines of angles between wire elements
config(k).R = [];
for s = 1:length(config(k).S)
for t = 1:length(config(k).T)
if config(k).cosines(s,t) ~=0
config(k).R = [config(k).R; sqrt(sum((config(k).Cwire(s:s+1,:)...
-config(k).Pwire(t:t+1,:)).^2,2))];
config(k).R = [config(k).R; sqrt(sum((config(k).Cwire(s:s+1,:)...
-config(k).Pwire([t+1,t],:)).^2,2))];
end % if
end % t
end % s
% calculate distance between electrodes
config(k).r = sqrt(sum(([config(k).P2-config(k).C2; config(k).P2-config(k).C1; ...
config(k).P1-config(k).C2; config(k).P1-config(k).C1]).^2,2));
% prepare result structure
result(k).G_factor = 2*pi*(1/config(k).r(1)-1/config(k).r(2)-1/config(k).r(3)+ ...
1/config(k).r(4))^(-1);
result(k).Z = omega.'; %allocate space for Z
end
cparams.Rmin = min(min([config.R]));
cparams.Rmax = max(max([config.R]));
end % if
if ( ~cparams.Rspline )
% In the case no spline interpolation is wanted
% return handle to FD calculation routine
estimate = [];
switch cparams.domain
case {'FD'}
P_handle = @P_fun;
Q_handle = @Q_fun;
case {'TD'}
disp('Not implemented yet!');
end % switch
elseif ~isempty(cparams.Rmin) % If there is coupling
% If spline interpolation is wanted
% setup some parameters and return handle to spline evaluation
Rlim = (floor(log2([cparams.Rmin cparams.Rmax]).*cparams.Rsp_NDEC+100)-[102 97])./cparams.Rsp_NDEC;
cparams.R = 2.^(Rlim(1):1./cparams.Rsp_NDEC:Rlim(2));
if debug
disp('Evaluation distances for the creation of the spline function:');
disp(cparams.R);
assignin('base','R_values',cparams.R);
end
P_handle = @eval_Rspline;
Q_handle = @Q_fun;
else
Q_handle = @Q_fun;
end
original_Quad_tol = cparams.Quad_tol;
lo = length(omega); % number of frequencies
lc = prod(size(config)); % number of configurations
lt = lo.*lc; % total number of calculations
for k = 1:lo % cycle over frequencies
lparams.z = i.*omega(k).*mu0.*([layers.mu].'+1);
if strcmp(cparams.calc_type,'Quasi')
% setup free-space parameters
lparams.z0 = i.*omega(k).*mu0;
lparams.y0 = 0;
lparams.k0_sq = 0;
% Permittivity is neglected in the quasi-static half-space response
lparams.y = sigma(:,k);
% Non-magnetic first layer is assumed
lparams.z(1,:) = lparams.z0(1,:);
else
% Use the full solution
lparams.z0 = i.*omega(k).*mu0;
lparams.y0 = i.*omega(k).*eps0;
lparams.k0_sq = -lparams.z0.*lparams.y0;
lparams.y = sigma(:,k) + i.*eps0.*[layers.eps_r].'*omega(k);
end
lparams.k_sq = -lparams.z.*lparams.y;
if ( cparams.Rspline && isfield(cparams, 'R'))
gsa_driver(cparams, omega(k), lparams);
end
for m = 1:lc % cycle over configurations
r_un = unique(config(m).r);
drawnow;
P_term = 0;
if ~all(isequal(config(m).cosines, 0))
% tolerance for each segment integration should add up to Quad_tol
cparams.Quad_tol = original_Quad_tol/ ...
sum(sum(config(m).cosines&1));
total_num = length(config(m).S).*length(config(m).T);
for s = 1:length(config(m).S)
for t = 1:length(config(m).T)
if config(m).cosines(s,t) ~=0
if debug
disp(['Integration pass: ' ...
num2str((s-1)*length(config(m).T)+t) ...
' of ' num2str(total_num)]);
end
P_term = P_term + ...
lparams.z0./4./pi.* ... % removed from the P-function and added here!
dblquad(P_handle, 0, config(m).T(t), 0, ...
config(m).S(s), cparams.Quad_tol, @quad, ...
config(m).Pwire(t:t+1,:), ...
config(m).Cwire(s:s+1,:), ...
config(m).T(t), config(m).S(s), ...
omega(k), lparams, cparams).* ...
config(m).cosines(s,t);
end
end
end
end
if debug
disp('Evaluating Q-function');
end
Q = feval(Q_handle, r_un, omega(k), lparams, cparams);
result(m).Z(k) = (P_term + ...
Q(config(m).r(1)==r_un)-Q(config(m).r(2)==r_un)- ...
Q(config(m).r(3)==r_un)+Q(config(m).r(4)==r_un));
if ~noDialog
titlestr = [modelname 'Just did: \omega = ' num2str(round(omega(k) ...
*1000)/1000) ' Config: ' num2str(m)]; % 'Hz, Aspac = ' ...
% num2str(Aspac(m)) 'm, Nspac = ' sprintf('%4.2f',Nspac(n))];
waitbar(((k-1)*lc+m)/lt, h1, titlestr);
end
end % m (config)
end % k (omega)
if ~noDialog
close(h1);
end
if ~isfield(cparams,'noPrint') || ~cparams.noPrint
disp(['Time spent: ' num2str(cputime-cpu_t) ' s']);
end
%****************************************************
% Subfunctions
%****************************************************
% -------------------------------------------------------------------------
function gsa_driver(cparams, omega, lparams)
global Rkern debug
if debug
disp(['GSA driver: ' num2str(omega)])
end
switch cparams.domain
case {'FD'}
if strcmp(cparams.calc_type,'Quasi')
% Quasi static Halfspace response assumes also nonmagnetic first layer
%disp('quasi+nonmag')
r = cparams.R;
kern = 2./(lparams.k_sq(1).*r.^3).*( ...
(i.*lparams.k_sq(1).^0.5.*r+1).* ...
exp(-i.*lparams.k_sq(1).^0.5.*r) - 1);
if ~isempty(lparams.h)
switch cparams.hank_type
case {'NHT'}
for k = 1:length(r)
kern(k) = kern(k) + ...% j.*omega.*4.*pi.*1e-7./4./pi.*...
NJCST('J0', @P_kernel_quasinonmag, ...
cparams.R(k), cparams.Seg_tol, ...
cparams.NHT_tol, cparams.Max_seg, ...
omega, lparams);
end
case {'FHT'}
for k = 1:length(r)
kern(k) = kern(k) + ...% j.*omega.*4.*pi.*1e-7./4./pi.*...
FJCST('J04', cparams.R(k), -1, 0, 1, ...
cparams.FHT_err, @P_kernel_quasinonmag, ...
omega, lparams);
end
end
end
elseif cparams.nonmag
% nonmagnetic layered halfspace
%disp('nonmag');
r = cparams.R;
kern = 2./((lparams.k_sq(1)-lparams.k0_sq).*r.^3).* ...
((i.*lparams.k_sq(1).^0.5.*r+1).* ...
exp(-i.*lparams.k_sq(1).^0.5.*r) - ...
(i.*lparams.k0_sq.^0.5.*r+1).* ...
exp(-i.*lparams.k0_sq.^0.5.*r));
if ~isempty(lparams.h)
switch cparams.hank_type
case {'NHT'}
for k = 1:length(r)
kern(k) = kern(k) + ...% j.*omega.*4.*pi.*1e-7./4./pi.*...
NJCST('J0', @P_kernel_nonmag, ...
cparams.R(k), cparams.Seg_tol, ...
cparams.NHT_tol, cparams.Max_seg, ...
omega, lparams);
end
case {'FHT'}
for k = 1:length(r)
kern(k) = kern(k) + ...% j.*omega.*4.*pi.*1e-7./4./pi.*...
FJCST('J04', cparams.R(k), -1, 0, 1, ...
cparams.FHT_err, @P_kernel_nonmag, ...
omega, lparams);
end
end
end
else
% full solution
%disp('full solution');
switch cparams.hank_type
case {'NHT'}
for k = 1:length(cparams.R)
kern(k) = ... % j.*omega.*4.*pi.*1e-7./4./pi.*...
NJCST('J0', @P_kernel_full, cparams.R(k), ...
cparams.Seg_tol, cparams.NHT_tol, ...
cparams.Max_seg, omega, lparams);
end
case {'FHT'}
for k = 1:length(cparams.R)
kern(k) = ... % j.*omega.*4.*pi.*1e-7./4./pi.*...
FJCST('J04', cparams.R(k), -1, 0, 1, ...
cparams.FHT_err, @P_kernel_full, omega, ...
lparams);
end
end
end
case {'TD'}
disp('Not implemented yet!');
end % switch
strct = spline(cparams.R,kern);
strct.R = cparams.R;
strct.kern = kern;
strct.estimate = [];
if ~isempty(Rkern)
% Rkern(end+1) = strct; % This line is used to save the splines for
% later review
Rkern = strct;
else
Rkern = strct;
end
if debug
disp('End of GSA driver');
end
% -------------------------------------------------------------------------
function kern = eval_Rspline(y, x, Pwire, Cwire, T, S, omega, ...
lparams, cparams)
global Rkern
P = repmat(diff(Pwire)./T,length(y),1)...
.*repmat(y.', 1, 3) + repmat(Pwire(1,:),length(y),1); % Pwire-element coordinates (will be a vector)
C = diff(Cwire)./S.*x + Cwire(1,:); % Cwire-element coordinates (will be a scalar)
r = sqrt(sum((P-repmat(C,length(y),1)).^2,2)); % distances are calculated
kern = ppval(r, Rkern(end));
%Rkern(end).estimate = [Rkern(end).estimate; r]; % use this line to save
%r-values of estimation points.
% -------------------------------------------------------------------------
function P = P_fun(y, x, Pwire, Cwire, T, S, omega, lparams, cparams)
P = repmat(diff(Pwire)./T,length(y),1)...
.*repmat(y.', 1, 3) + repmat(Pwire(1,:),length(y),1); % Pwire-element coordinates (will be a vector)
C = diff(Cwire)./S.*x + Cwire(1,:); % Cwire-element coordinates (will be a scalar)
r = sqrt(sum((P-repmat(C,length(y),1)).^2,2)); % distances are calculated
% cparams.calc_type = 'Quasi';
if strcmp(cparams.calc_type,'Quasi')
% Quasi static Halfspace response assumes also nonmagnetic first layer
%disp('quasi+nonmag')
P = 2./(lparams.k_sq(1).*r.^3).*((i.*lparams.k_sq(1).^0.5.*r+1).* ...
exp(-i.*lparams.k_sq(1).^0.5.*r) - 1);
if ~isempty(lparams.h)
switch cparams.hank_type
case {'FHT'}
for k = 1:length(r)
P(k) = P(k) +... % j.*omega.*4.*pi.*1e-7./4./pi.*...
FJCST('J04', r(k), -1, 0, 1, cparams.FHT_err, ...
@P_kernel_quasinonmag, omega, lparams);
end
case {'NHT'}
for k = 1:length(r)
P(k) = P(k) +... % j.*omega.*4.*pi.*1e-7./4./pi.*...
NJCST('J0', @P_kernel_quasinonmag, r(k), ...
cparams.Seg_tol, cparams.NHT_tol, ...
cparams.Max_seg, omega, lparams);
end
end
end
elseif cparams.nonmag
% nonmagnetic layered halfspace
%disp('nonmag');
P = 2./((lparams.k_sq(1)-lparams.k0_sq).*r.^3).*( ...
(i.*lparams.k_sq(1).^0.5.*r+1).*exp(-i.*lparams.k_sq(1).^0.5.*r)...
- (i.*lparams.k0_sq.^0.5.*r+1).*exp(-i.*lparams.k0_sq.^0.5.*r));
if ~isempty(lparams.h)
switch cparams.hank_type
case {'FHT'}
for k = 1:length(r)
P(k) = P(k) +... % j.*omega.*4.*pi.*1e-7./4./pi.*...
FJCST('J04', r(k), -1, 0, 1, cparams.FHT_err, ...
@P_kernel_full, omega, lparams);
end
case {'NHT'}
for k = 1:length(r)
P(k) = P(k) +... % j.*omega.*4.*pi.*1e-7./4./pi.*...
NJCST('J0', @P_kernel_nonmag, r(k), ...
cparams.Seg_tol, cparams.NHT_tol, ...
cparams.Max_seg, omega, lparams);
end
end
end
else
% full solution
%disp('fullsol');
switch cparams.hank_type
case {'FHT'}
for k = 1:length(r)
P(k) = ... % j.*omega.*4.*pi.*1e-7./4./pi.*...
FJCST('J04', r(k), -1, 0, 1, cparams.FHT_err, ...
@P_kernel_full, omega, lparams);
end
case {'NHT'}
for k = 1:length(r)
P(k) = ... % j.*omega.*4.*pi.*1e-7./4./pi.*...
NJCST('J0', @P_kernel_full, r(k), cparams.Seg_tol, ...
cparams.NHT_tol, cparams.Max_seg, omega, lparams);
end
end
end
%estimate = [estimate; r, P];
% -------------------------------------------------------------------------
function Q = Q_fun(r, omega, lparams, cparams)
if strcmp(cparams.calc_type,'Quasi')
% Quasi static Halfspace response assumes also nonmagnetic first layer
%disp('quasi+nonmag')
Q = -lparams.z0./(2.*pi.*lparams.k_sq(1,:).*r);
if ~isempty(lparams.h)
switch cparams.hank_type
case {'FHT'}
for k = 1:length(r)
Q(k) = -1./4./pi.*...
(FJCST('J04', r(k), -1, 0, 1, cparams.FHT_err, ...
@Q_kernel_quasinonmag, omega, lparams)) + Q(k);
end
case {'NHT'}
for k = 1:length(r)
Q(k) = -1./4./pi.*...
(NJCST('J0', @Q_kernel_quasinonmag, r(k), ...
cparams.Seg_tol, cparams.NHT_tol, cparams.Max_seg, ...
omega, lparams)) + Q(k);
end
end
end
else
% full solution
%disp('full');
switch cparams.hank_type
case {'FHT'}
for k = 1:length(r)
Q(k) = 1./4./pi.*...
(FJCST('J04', r(k), -1, 0, 1, cparams.FHT_err, ...
@Q_kernel_full, omega, lparams));
end
case {'NHT'}
for k = 1:length(r)
Q(k) = 1./4./pi.*...
(NJCST('J0', @Q_kernel_full, r(k), cparams.Seg_tol, ...
cparams.NHT_tol, cparams.Max_seg, omega, lparams));
end
end
end
% -------------------------------------------------------------------------
function kern = P_kernel_full(lambda, varargin)
% kern = P_kernel(lambda, omega, eps, mu, sigma, h)
%
% Kernelfunction: (1+R_TE).*lambda./u0
%
% This version is for the full solution!
%omega = varargin{1};
lparams = varargin{2};
lambda_sq = lambda.^2;
u0 = sqrt(lambda_sq-lparams.k0_sq);
u = sqrt(repmat(lambda_sq,size(lparams.k_sq,1),1)- ...
repmat(lparams.k_sq, 1, size(lambda_sq,2)));
Y = u./repmat(lparams.z,1,size(lambda,2));
Y0 = u0./lparams.z0;
gamma = 0;
if ~isempty(lparams.h)
expuh2 = exp(-2.*u(1:end-1,:).*repmat(lparams.h,1,length(lambda)));
phi = (Y(1:end-1,:)-Y(2:end,:))./(Y(1:end-1,:)+Y(2:end,:)); % = (Yn-Yn+1)/(Yn+Yn+1)
for m = length(lparams.h):-1:1
gamma = expuh2(m,:).*(gamma+phi(m,:))./(gamma.*phi(m,:)+1);
end
end
phi1 = (Y0-Y(1,:))./(Y0+Y(1,:)); % as needed in the numerator
phi1mod = (2./lparams.z0)./(Y0+Y(1,:)); % as needed in the denominator
kern = ((gamma+1).*phi1mod.*lambda)./(gamma.*phi1+1); % = ((R_TE+1)/u0) *lambda
% -------------------------------------------------------------------------
function kern = P_kernel_nonmag(lambda, varargin)
% kern = P_kernel(lambda, omega, eps, sigma, h)
%
% Kernelfunction: (1+R_TE).*lambda./u0
%
% This version is for the nonmagnetic ground case!
%omega = varargin{1};
lparams = varargin{2};
lambda_sq = lambda.^2;
u0 = sqrt(lambda_sq-lparams.k0_sq);
u = sqrt(repmat(lambda_sq,size(lparams.k_sq,1),1)- ...
repmat(lparams.k_sq, 1, size(lambda_sq,2)));
Y = u./repmat(lparams.z,1,size(lambda,2));
%Y0 = u0./lparams.z0;
gamma = 0;
if ~isempty(lparams.h)
expuh2 = exp(-2.*u(1:end-1,:).*repmat(lparams.h,1,length(lambda)));
phi = (Y(1:end-1,:)-Y(2:end,:))./(Y(1:end-1,:)+Y(2:end,:)); % = (Yn-Yn+1)/(Yn+Yn+1)
for m = length(lparams.h):-1:1
gamma = expuh2(m,:).*(gamma+phi(m,:))./(gamma.*phi(m,:)+1);
end
end
kern = (4.*gamma.*u(1,:).*lambda)./(gamma.*(lparams.k_sq(1,:)- ...
lparams.k0_sq)+(u0+u(1,:)).^2);
% = layered-homhalf
% -------------------------------------------------------------------------
function kern = P_kernel_quasinonmag(lambda, varargin)
% kern = P_kernel(lambda, omega, eps, sigma, h)
%
% Kernelfunction: (1+R_TE).*lambda./u0
%
% This version is for the quasistatic nonmagnetic first layer case!
%omega = varargin{1};
lparams = varargin{2};
lambda_sq = lambda.^2;
u = sqrt(repmat(lambda_sq,size(lparams.k_sq,1),1)- ...
repmat(lparams.k_sq, 1, size(lambda_sq,2)));
Y = u./repmat(lparams.z,1,size(lambda,2));
%Y0 = lambda./lparams.z0;
gamma = 0;
if ~isempty(lparams.h)
expuh2 = exp(-2.*u(1:end-1,:).*repmat(lparams.h,1,length(lambda)));
phi = (Y(1:end-1,:)-Y(2:end,:))./(Y(1:end-1,:)+Y(2:end,:)); % = (Yn-Yn+1)/(Yn+Yn+1)
for m = length(lparams.h):-1:1
gamma = expuh2(m,:).*(gamma+phi(m,:))./(gamma.*phi(m,:)+1);
end
end
kern = (4.*gamma.*u(1,:).*lambda)./(gamma.*lparams.k_sq(1,:)+ ...
(lambda+u(1,:)).^2);
% = layered-homhalf
% -------------------------------------------------------------------------
function kern = Q_kernel_full(lambda, varargin)
% kern = Q_kernel(lambda, omega, eps, mu, sigma, h)
%
% Kernelfunction: ((1-R_TM)*u0/y0 - (1+r_TE)*z0/u0)/lambda
%omega = varargin{1};
lparams = varargin{2};
lambda_sq = lambda.^2;
u0 = sqrt(lambda_sq-lparams.k0_sq);
u = sqrt(repmat(lambda_sq,size(lparams.k_sq,1),1)- ...
repmat(lparams.k_sq, 1, size(lambda_sq,2)));
Y = u./repmat(lparams.z,1,size(lambda,2));
Z = u./repmat(lparams.y,1,size(lambda,2));
Y0 = u0./lparams.z0;
Z0 = u0./lparams.y0;
gamma_TE = 0;
gamma_TM = 0;
if ~isempty(lparams.h)
expuh2 = exp(-2.*u(1:end-1,:).*repmat(lparams.h,1,length(lambda)));
phi_TE = (Y(1:end-1,:)-Y(2:end,:))./(Y(1:end-1,:)+Y(2:end,:)); % = (Yn-Yn+1)/(Yn+Yn+1)
phi_TM = (Z(1:end-1,:)-Z(2:end,:))./(Z(1:end-1,:)+Z(2:end,:)); % = (Zn-Zn+1)/(Zn+Zn+1)
for m = length(lparams.h):-1:1
gamma_TE = expuh2(m,:).*(gamma_TE+phi_TE(m,:))./(gamma_TE.*phi_TE(m,:)+1);
gamma_TM = expuh2(m,:).*(gamma_TM+phi_TM(m,:))./(gamma_TM.*phi_TM(m,:)+1);
end
end
phi1_TE = (Y0-Y(1,:))./(Y0+Y(1,:)); % as needed in the numerator
phi1mod_TE = 2./(Y0+Y(1,:)); % as needed in the denominator
phi1_TM = (Z0-Z(1,:))./(Z0+Z(1,:)); % as needed in the numerator
phi1mod_TM = -2.*Z(1,:).*Z0./(Z0+Z(1,:)); % as needed in the denominator
kern_TE = ((gamma_TE+1).*phi1mod_TE)./(gamma_TE.*phi1_TE + 1);
kern_TM = ((gamma_TM-1).*phi1mod_TM)./(gamma_TM.*phi1_TM + 1);
kern = (kern_TM-kern_TE)./lambda;
% -------------------------------------------------------------------------
function kern = Q_kernel_quasinonmag(lambda, varargin)
% kern = Q_kernel(lambda, omega, eps, mu, sigma, h)
%
% Kernelfunction: ((1-R_TM)*u0/y0 - (1+r_TE)*z0/u0)/lambda
%omega = varargin{1};
lparams = varargin{2};
%lambda = lambda.*induct;
lambda_sq = lambda.^2;
u = sqrt(repmat(lambda_sq,size(lparams.k_sq,1),1)- ...
repmat(lparams.k_sq, 1, size(lambda_sq,2)));
Y = u./repmat(lparams.z,1,size(lambda,2));
Z = u./repmat(lparams.y,1,size(lambda,2));
%Y0 = lambda./lparams.z0;
gamma_TE = 0;
gamma_TM = 0;
if ~isempty(lparams.h)
expuh2 = exp(-2.*u(1:end-1,:).*repmat(lparams.h,1,length(lambda)));
phi_TE = (Y(1:end-1,:)-Y(2:end,:))./(Y(1:end-1,:)+Y(2:end,:)); % = (Yn-Yn+1)/(Yn+Yn+1)
phi_TM = (Z(1:end-1,:)-Z(2:end,:))./(Z(1:end-1,:)+Z(2:end,:)); % = (Zn-Zn+1)/(Zn+Zn+1)
for m = length(lparams.h):-1:1
gamma_TE = expuh2(m,:).*(gamma_TE+phi_TE(m,:))./(gamma_TE.*phi_TE(m,:)+1);
gamma_TM = expuh2(m,:).*(gamma_TM+phi_TM(m,:))./(gamma_TM.*phi_TM(m,:)+1);
end
end
kern_TE = gamma_TE.*lparams.z0./(gamma_TE.*lparams.k_sq(1,:) + ...
(lambda + u(1,:)).^2);
kern_TM = gamma_TM./((gamma_TM+1).*lparams.y(1,:));
kern = (kern_TM+kern_TE).*4.*u(1,:)./lambda;