Skip to content

timholy/HemirealFactorizations.jl

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

31 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

HemirealFactorizations

Build Status codecov.io

Introduction

Cholesky factorizations over the hemireals can be computed for arbitrary symmetric matrices, including singular and indefinite matrices. For singular matrices, the behavior is reminiscent of the singular value decomposition, but the performance is much better.

Usage

After creating a symmetric matrix A, compute its Cholesky factorization over the hemireal numbers like this:

F = cholfact(PureHemi, A)

Then you can use F to solve equations, e.g.,

x = F\b

If A is singular, this should be the least-squares solution.

Supported operations

You can compute F*F' or say rank(F). You can also convert F into matrix form with convert(Matrix, F).

To support all operations, you need to be running at least a version of julia-0.5-dev that is current with master as of 2015-12-11. However, many operations also work on julia-0.4.

Options

F = cholfact(PureHemi, A, δ; blocksize=default)

where:

  • δ is the tolerance on the diagonal values of A during factorization; any with magnitudes smaller than δ will be treated as if they are 0.
  • blocksize controls the performance of the factorization algorithm.

About

Matrix factorizations over the hemireals

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages