-
Notifications
You must be signed in to change notification settings - Fork 269
/
Copy pathrun_demo_hand_with_tracker.py
385 lines (317 loc) · 18.7 KB
/
run_demo_hand_with_tracker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
import tensorflow as tf
import numpy as np
from utils import cpm_utils, tracking_module, utils
import cv2
import time
import math
import importlib
import os
from config import FLAGS
cpm_model = importlib.import_module('models.nets.' + FLAGS.network_def)
joint_detections = np.zeros(shape=(21, 2))
def main(argv):
global joint_detections
os.environ['CUDA_VISIBLE_DEVICES'] = str(FLAGS.gpu_id)
""" Initial tracker
"""
tracker = tracking_module.SelfTracker([FLAGS.webcam_height, FLAGS.webcam_width], FLAGS.input_size)
""" Build network graph
"""
model = cpm_model.CPM_Model(input_size=FLAGS.input_size,
heatmap_size=FLAGS.heatmap_size,
stages=FLAGS.cpm_stages,
joints=FLAGS.num_of_joints,
img_type=FLAGS.color_channel,
is_training=False)
saver = tf.train.Saver()
""" Get output node
"""
output_node = tf.get_default_graph().get_tensor_by_name(name=FLAGS.output_node_names)
device_count = {'GPU': 1} if FLAGS.use_gpu else {'GPU': 0}
sess_config = tf.ConfigProto(device_count=device_count)
sess_config.gpu_options.per_process_gpu_memory_fraction = 0.2
sess_config.gpu_options.allow_growth = True
sess_config.allow_soft_placement = True
with tf.Session(config=sess_config) as sess:
model_path_suffix = os.path.join(FLAGS.network_def,
'input_{}_output_{}'.format(FLAGS.input_size, FLAGS.heatmap_size),
'joints_{}'.format(FLAGS.num_of_joints),
'stages_{}'.format(FLAGS.cpm_stages),
'init_{}_rate_{}_step_{}'.format(FLAGS.init_lr, FLAGS.lr_decay_rate,
FLAGS.lr_decay_step)
)
model_save_dir = os.path.join('models',
'weights',
model_path_suffix)
print('Load model from [{}]'.format(os.path.join(model_save_dir, FLAGS.model_path)))
if FLAGS.model_path.endswith('pkl'):
model.load_weights_from_file(FLAGS.model_path, sess, False)
else:
saver.restore(sess, 'models/weights/cpm_hand')
# Check weights
for variable in tf.global_variables():
with tf.variable_scope('', reuse=True):
var = tf.get_variable(variable.name.split(':0')[0])
print(variable.name, np.mean(sess.run(var)))
# Create webcam instance
if FLAGS.DEMO_TYPE in ['MULTI', 'SINGLE', 'Joint_HM']:
cam = cv2.VideoCapture(FLAGS.cam_id)
# Create kalman filters
if FLAGS.use_kalman:
kalman_filter_array = [cv2.KalmanFilter(4, 2) for _ in range(FLAGS.num_of_joints)]
for _, joint_kalman_filter in enumerate(kalman_filter_array):
joint_kalman_filter.transitionMatrix = np.array(
[[1, 0, 1, 0], [0, 1, 0, 1], [0, 0, 1, 0], [0, 0, 0, 1]],
np.float32)
joint_kalman_filter.measurementMatrix = np.array([[1, 0, 0, 0], [0, 1, 0, 0]], np.float32)
joint_kalman_filter.processNoiseCov = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]],
np.float32) * FLAGS.kalman_noise
else:
kalman_filter_array = None
if FLAGS.DEMO_TYPE.endswith(('png', 'jpg')):
test_img = cpm_utils.read_image(FLAGS.DEMO_TYPE, [], FLAGS.input_size, 'IMAGE')
test_img_resize = cv2.resize(test_img, (FLAGS.input_size, FLAGS.input_size))
test_img_input = normalize_and_centralize_img(test_img_resize)
t1 = time.time()
predict_heatmap, stage_heatmap_np = sess.run([model.current_heatmap,
output_node,
],
feed_dict={model.input_images: test_img_input}
)
print('fps: %.2f' % (1 / (time.time() - t1)))
correct_and_draw_hand(test_img,
cv2.resize(stage_heatmap_np[0], (FLAGS.input_size, FLAGS.input_size)),
kalman_filter_array, tracker, tracker.input_crop_ratio, test_img)
# Show visualized image
# demo_img = visualize_result(test_img, stage_heatmap_np, kalman_filter_array)
cv2.imshow('demo_img', test_img.astype(np.uint8))
cv2.waitKey(0)
elif FLAGS.DEMO_TYPE in ['SINGLE', 'MULTI']:
while True:
# # Prepare input image
_, full_img = cam.read()
test_img = tracker.tracking_by_joints(full_img, joint_detections=joint_detections)
crop_full_scale = tracker.input_crop_ratio
test_img_copy = test_img.copy()
# White balance
test_img_wb = utils.img_white_balance(test_img, 5)
test_img_input = normalize_and_centralize_img(test_img_wb)
# Inference
t1 = time.time()
stage_heatmap_np = sess.run([output_node],
feed_dict={model.input_images: test_img_input})
print('FPS: %.2f' % (1 / (time.time() - t1)))
local_img = visualize_result(full_img, stage_heatmap_np, kalman_filter_array, tracker, crop_full_scale,
test_img_copy)
cv2.imshow('local_img', local_img.astype(np.uint8))
cv2.imshow('global_img', full_img.astype(np.uint8))
if cv2.waitKey(1) == ord('q'): break
elif FLAGS.DEMO_TYPE == 'Joint_HM':
while True:
# Prepare input image
test_img = cpm_utils.read_image([], cam, FLAGS.input_size, 'WEBCAM')
test_img_resize = cv2.resize(test_img, (FLAGS.input_size, FLAGS.input_size))
test_img_input = normalize_and_centralize_img(test_img_resize)
# Inference
t1 = time.time()
stage_heatmap_np = sess.run([output_node],
feed_dict={model.input_images: test_img_input})
print('FPS: %.2f' % (1 / (time.time() - t1)))
demo_stage_heatmap = stage_heatmap_np[len(stage_heatmap_np) - 1][0, :, :,
0:FLAGS.num_of_joints].reshape(
(FLAGS.heatmap_size, FLAGS.heatmap_size, FLAGS.num_of_joints))
demo_stage_heatmap = cv2.resize(demo_stage_heatmap, (FLAGS.input_size, FLAGS.input_size))
vertical_imgs = []
tmp_img = None
joint_coord_set = np.zeros((FLAGS.num_of_joints, 2))
for joint_num in range(FLAGS.num_of_joints):
# Concat until 4 img
if (joint_num % 4) == 0 and joint_num != 0:
vertical_imgs.append(tmp_img)
tmp_img = None
demo_stage_heatmap[:, :, joint_num] *= (255 / np.max(demo_stage_heatmap[:, :, joint_num]))
# Plot color joints
if np.min(demo_stage_heatmap[:, :, joint_num]) > -50:
joint_coord = np.unravel_index(np.argmax(demo_stage_heatmap[:, :, joint_num]),
(FLAGS.input_size, FLAGS.input_size))
joint_coord_set[joint_num, :] = joint_coord
color_code_num = (joint_num // 4)
if joint_num in [0, 4, 8, 12, 16]:
joint_color = list(
map(lambda x: x + 35 * (joint_num % 4), FLAGS.joint_color_code[color_code_num]))
cv2.circle(test_img, center=(joint_coord[1], joint_coord[0]), radius=3, color=joint_color,
thickness=-1)
else:
joint_color = list(
map(lambda x: x + 35 * (joint_num % 4), FLAGS.joint_color_code[color_code_num]))
cv2.circle(test_img, center=(joint_coord[1], joint_coord[0]), radius=3, color=joint_color,
thickness=-1)
# Put text
tmp = demo_stage_heatmap[:, :, joint_num].astype(np.uint8)
tmp = cv2.putText(tmp, 'Min:' + str(np.min(demo_stage_heatmap[:, :, joint_num])),
org=(5, 20), fontFace=cv2.FONT_HERSHEY_COMPLEX, fontScale=0.3, color=150)
tmp = cv2.putText(tmp, 'Mean:' + str(np.mean(demo_stage_heatmap[:, :, joint_num])),
org=(5, 30), fontFace=cv2.FONT_HERSHEY_COMPLEX, fontScale=0.3, color=150)
tmp_img = np.concatenate((tmp_img, tmp), axis=0) \
if tmp_img is not None else tmp
# Plot FLAGS.limbs
for limb_num in range(len(FLAGS.limbs)):
if np.min(demo_stage_heatmap[:, :, FLAGS.limbs[limb_num][0]]) > -2000 and np.min(
demo_stage_heatmap[:, :, FLAGS.limbs[limb_num][1]]) > -2000:
x1 = joint_coord_set[FLAGS.limbs[limb_num][0], 0]
y1 = joint_coord_set[FLAGS.limbs[limb_num][0], 1]
x2 = joint_coord_set[FLAGS.limbs[limb_num][1], 0]
y2 = joint_coord_set[FLAGS.limbs[limb_num][1], 1]
length = ((x1 - x2) ** 2 + (y1 - y2) ** 2) ** 0.5
if length < 10000 and length > 5:
deg = math.degrees(math.atan2(x1 - x2, y1 - y2))
polygon = cv2.ellipse2Poly((int((y1 + y2) / 2), int((x1 + x2) / 2)),
(int(length / 2), 3),
int(deg),
0, 360, 1)
color_code_num = limb_num // 4
limb_color = list(
map(lambda x: x + 35 * (limb_num % 4), FLAGS.joint_color_code[color_code_num]))
cv2.fillConvexPoly(test_img, polygon, color=limb_color)
if tmp_img is not None:
tmp_img = np.lib.pad(tmp_img, ((0, vertical_imgs[0].shape[0] - tmp_img.shape[0]), (0, 0)),
'constant', constant_values=(0, 0))
vertical_imgs.append(tmp_img)
# Concat horizontally
output_img = None
for col in range(len(vertical_imgs)):
output_img = np.concatenate((output_img, vertical_imgs[col]), axis=1) if output_img is not None else \
vertical_imgs[col]
output_img = output_img.astype(np.uint8)
output_img = cv2.applyColorMap(output_img, cv2.COLORMAP_JET)
test_img = cv2.resize(test_img, (300, 300), cv2.INTER_LANCZOS4)
cv2.imshow('hm', output_img)
cv2.moveWindow('hm', 2000, 200)
cv2.imshow('rgb', test_img)
cv2.moveWindow('rgb', 2000, 750)
if cv2.waitKey(1) == ord('q'): break
def normalize_and_centralize_img(img):
if FLAGS.color_channel == 'GRAY':
img = np.dot(img[..., :3], [0.299, 0.587, 0.114]).reshape((FLAGS.input_size, FLAGS.input_size, 1))
if FLAGS.normalize_img:
test_img_input = img / 256.0 - 0.5
test_img_input = np.expand_dims(test_img_input, axis=0)
else:
test_img_input = img - 128.0
test_img_input = np.expand_dims(test_img_input, axis=0)
return test_img_input
def visualize_result(test_img, stage_heatmap_np, kalman_filter_array, tracker, crop_full_scale, crop_img):
demo_stage_heatmaps = []
if FLAGS.DEMO_TYPE == 'MULTI':
for stage in range(len(stage_heatmap_np)):
demo_stage_heatmap = stage_heatmap_np[stage][0, :, :, 0:FLAGS.num_of_joints].reshape(
(FLAGS.heatmap_size, FLAGS.heatmap_size, FLAGS.num_of_joints))
demo_stage_heatmap = cv2.resize(demo_stage_heatmap, (FLAGS.input_size, FLAGS.input_size))
demo_stage_heatmap = np.amax(demo_stage_heatmap, axis=2)
demo_stage_heatmap = np.reshape(demo_stage_heatmap, (FLAGS.input_size, FLAGS.input_size, 1))
demo_stage_heatmap = np.repeat(demo_stage_heatmap, 3, axis=2)
demo_stage_heatmap *= 255
demo_stage_heatmaps.append(demo_stage_heatmap)
last_heatmap = stage_heatmap_np[len(stage_heatmap_np) - 1][0, :, :, 0:FLAGS.num_of_joints].reshape(
(FLAGS.heatmap_size, FLAGS.heatmap_size, FLAGS.num_of_joints))
last_heatmap = cv2.resize(last_heatmap, (FLAGS.input_size, FLAGS.input_size))
else:
last_heatmap = stage_heatmap_np[len(stage_heatmap_np) - 1][0, :, :, 0:FLAGS.num_of_joints].reshape(
(FLAGS.heatmap_size, FLAGS.heatmap_size, FLAGS.num_of_joints))
last_heatmap = cv2.resize(last_heatmap, (FLAGS.input_size, FLAGS.input_size))
correct_and_draw_hand(test_img, last_heatmap, kalman_filter_array, tracker, crop_full_scale, crop_img)
if FLAGS.DEMO_TYPE == 'MULTI':
if len(demo_stage_heatmaps) > 3:
upper_img = np.concatenate((demo_stage_heatmaps[0], demo_stage_heatmaps[1], demo_stage_heatmaps[2]), axis=1)
lower_img = np.concatenate(
(demo_stage_heatmaps[3], demo_stage_heatmaps[len(stage_heatmap_np) - 1], crop_img),
axis=1)
demo_img = np.concatenate((upper_img, lower_img), axis=0)
return demo_img
else:
return np.concatenate((demo_stage_heatmaps[0], demo_stage_heatmaps[len(stage_heatmap_np) - 1], crop_img),
axis=1)
else:
return crop_img
def correct_and_draw_hand(full_img, stage_heatmap_np, kalman_filter_array, tracker, crop_full_scale, crop_img):
global joint_detections
joint_coord_set = np.zeros((FLAGS.num_of_joints, 2))
local_joint_coord_set = np.zeros((FLAGS.num_of_joints, 2))
mean_response_val = 0.0
# Plot joint colors
if kalman_filter_array is not None:
for joint_num in range(FLAGS.num_of_joints):
tmp_heatmap = stage_heatmap_np[:, :, joint_num]
joint_coord = np.unravel_index(np.argmax(tmp_heatmap),
(FLAGS.input_size, FLAGS.input_size))
mean_response_val += tmp_heatmap[joint_coord[0], joint_coord[1]]
joint_coord = np.array(joint_coord).reshape((2, 1)).astype(np.float32)
kalman_filter_array[joint_num].correct(joint_coord)
kalman_pred = kalman_filter_array[joint_num].predict()
correct_coord = np.array([kalman_pred[0], kalman_pred[1]]).reshape((2))
local_joint_coord_set[joint_num, :] = correct_coord
# Resize back
correct_coord /= crop_full_scale
# Substract padding border
correct_coord[0] -= (tracker.pad_boundary[0] / crop_full_scale)
correct_coord[1] -= (tracker.pad_boundary[2] / crop_full_scale)
correct_coord[0] += tracker.bbox[0]
correct_coord[1] += tracker.bbox[2]
joint_coord_set[joint_num, :] = correct_coord
else:
for joint_num in range(FLAGS.num_of_joints):
tmp_heatmap = stage_heatmap_np[:, :, joint_num]
joint_coord = np.unravel_index(np.argmax(tmp_heatmap),
(FLAGS.input_size, FLAGS.input_size))
mean_response_val += tmp_heatmap[joint_coord[0], joint_coord[1]]
joint_coord = np.array(joint_coord).astype(np.float32)
local_joint_coord_set[joint_num, :] = joint_coord
# Resize back
joint_coord /= crop_full_scale
# Substract padding border
joint_coord[0] -= (tracker.pad_boundary[2] / crop_full_scale)
joint_coord[1] -= (tracker.pad_boundary[0] / crop_full_scale)
joint_coord[0] += tracker.bbox[0]
joint_coord[1] += tracker.bbox[2]
joint_coord_set[joint_num, :] = joint_coord
draw_hand(full_img, joint_coord_set, tracker.loss_track)
draw_hand(crop_img, local_joint_coord_set, tracker.loss_track)
joint_detections = joint_coord_set
if mean_response_val >= 1:
tracker.loss_track = False
else:
tracker.loss_track = True
cv2.putText(full_img, 'Response: {:<.3f}'.format(mean_response_val),
org=(20, 20), fontFace=cv2.FONT_HERSHEY_PLAIN, fontScale=1, color=(255, 0, 0))
def draw_hand(full_img, joint_coords, is_loss_track):
if is_loss_track:
joint_coords = FLAGS.default_hand
# Plot joints
for joint_num in range(FLAGS.num_of_joints):
color_code_num = (joint_num // 4)
if joint_num in [0, 4, 8, 12, 16]:
joint_color = list(map(lambda x: x + 35 * (joint_num % 4), FLAGS.joint_color_code[color_code_num]))
cv2.circle(full_img, center=(int(joint_coords[joint_num][1]), int(joint_coords[joint_num][0])), radius=3,
color=joint_color, thickness=-1)
else:
joint_color = list(map(lambda x: x + 35 * (joint_num % 4), FLAGS.joint_color_code[color_code_num]))
cv2.circle(full_img, center=(int(joint_coords[joint_num][1]), int(joint_coords[joint_num][0])), radius=3,
color=joint_color, thickness=-1)
# Plot limbs
for limb_num in range(len(FLAGS.limbs)):
x1 = int(joint_coords[int(FLAGS.limbs[limb_num][0])][0])
y1 = int(joint_coords[int(FLAGS.limbs[limb_num][0])][1])
x2 = int(joint_coords[int(FLAGS.limbs[limb_num][1])][0])
y2 = int(joint_coords[int(FLAGS.limbs[limb_num][1])][1])
length = ((x1 - x2) ** 2 + (y1 - y2) ** 2) ** 0.5
if length < 150 and length > 5:
deg = math.degrees(math.atan2(x1 - x2, y1 - y2))
polygon = cv2.ellipse2Poly((int((y1 + y2) / 2), int((x1 + x2) / 2)),
(int(length / 2), 3),
int(deg),
0, 360, 1)
color_code_num = limb_num // 4
limb_color = list(map(lambda x: x + 35 * (limb_num % 4), FLAGS.joint_color_code[color_code_num]))
cv2.fillConvexPoly(full_img, polygon, color=limb_color)
if __name__ == '__main__':
tf.app.run()