forked from plotly/dash-image-processing
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
545 lines (462 loc) · 18.1 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
import json
import os
import time
import uuid
from copy import deepcopy
import boto3
import dash
import dash_core_components as dcc
import dash_html_components as html
import requests
from dash.dependencies import Input, Output, State
from dotenv import load_dotenv, find_dotenv
from flask_caching import Cache
import dash_reusable_components as drc
from utils import STORAGE_PLACEHOLDER, GRAPH_PLACEHOLDER, \
IMAGE_STRING_PLACEHOLDER
from utils import apply_filters, show_histogram, generate_lasso_mask, \
apply_enhancements
DEBUG = True
app = dash.Dash(__name__)
server = app.server
if 'REDIS_URL' in os.environ:
# Change caching to redis if hosted on dds
cache_config = {
'CACHE_TYPE': 'redis',
'CACHE_REDIS_URL': os.environ["REDIS_URL"],
'CACHE_THRESHOLD': 400
}
# Local Conditions
else:
# Make sure that your credentials are saved inside your .env file, as
# given here:
# https://devcenter.heroku.com/articles/bucketeer#environment-setup
load_dotenv(find_dotenv())
# Caching with filesystem when served locally
cache_config = {
'CACHE_TYPE': 'filesystem',
'CACHE_DIR': 'cache-directory',
}
# S3 Client. It is used to store user images. The bucket name
# is stored inside the utils file, the key is
# the session id generated by uuid
access_key_id = os.environ.get('ACCESS_KEY_ID')
secret_access_key = os.environ.get('SECRET_ACCESS_KEY')
bucket_name = os.environ.get('BUCKET_NAME')
s3 = boto3.client('s3',
endpoint_url="https://storage.googleapis.com",
aws_access_key_id=access_key_id,
aws_secret_access_key=secret_access_key)
# Caching
cache = Cache()
cache.init_app(app.server, config=cache_config)
def store_image_string(string, key_name):
# Generate the POST attributes
post = s3.generate_presigned_post(
Bucket=bucket_name,
Key=key_name
)
files = {"file": string}
# Post the string file using requests
response = requests.post(post["url"], data=post["fields"], files=files)
return response
def serve_layout():
# Generates a session ID
session_id = str(uuid.uuid4())
# Post the image to the right key, inside the bucket named after the
# session ID
res = store_image_string(IMAGE_STRING_PLACEHOLDER, session_id)
print(res)
# App Layout
return html.Div([
# Session ID
html.Div(session_id, id='session-id', style={'display': 'none'}),
# Banner display
html.Div([
html.H2(
'Image Processing App',
id='title'
),
html.Img(
src="https://s3-us-west-1.amazonaws.com/plotly-tutorials/logo/new-branding/dash-logo-by-plotly-stripe-inverted.png"
)
],
className="banner"
),
# Body
html.Div(className="container", children=[
html.Div(className='row', children=[
html.Div(className='five columns', children=[
drc.Card([
dcc.Upload(
id='upload-image',
children=[
'Drag and Drop or ',
html.A('Select an Image')
],
style={
'width': '100%',
'height': '50px',
'lineHeight': '50px',
'borderWidth': '1px',
'borderStyle': 'dashed',
'borderRadius': '5px',
'textAlign': 'center'
},
accept='image/*'
),
drc.NamedInlineRadioItems(
name='Selection Mode',
short='selection-mode',
options=[
{'label': ' Rectangular', 'value': 'select'},
{'label': ' Lasso', 'value': 'lasso'}
],
val='select'
),
drc.NamedInlineRadioItems(
name='Image Display Format',
short='encoding-format',
options=[
{'label': ' JPEG', 'value': 'jpeg'},
{'label': ' PNG', 'value': 'png'}
],
val='jpeg'
),
]),
drc.Card([
drc.CustomDropdown(
id='dropdown-filters',
options=[
{'label': 'Blur', 'value': 'blur'},
{'label': 'Contour', 'value': 'contour'},
{'label': 'Detail', 'value': 'detail'},
{'label': 'Enhance Edge', 'value': 'edge_enhance'},
{'label': 'Enhance Edge (More)', 'value': 'edge_enhance_more'},
{'label': 'Emboss', 'value': 'emboss'},
{'label': 'Find Edges', 'value': 'find_edges'},
{'label': 'Sharpen', 'value': 'sharpen'},
{'label': 'Smooth', 'value': 'smooth'},
{'label': 'Smooth (More)',
'value': 'smooth_more'}
],
searchable=False,
placeholder='Basic Filter...'
),
drc.CustomDropdown(
id='dropdown-enhance',
options=[
{'label': 'Brightness', 'value': 'brightness'},
{'label': 'Color Balance', 'value': 'color'},
{'label': 'Contrast', 'value': 'contrast'},
{'label': 'Sharpness', 'value': 'sharpness'}
],
searchable=False,
placeholder='Enhance...'
),
html.Div(
id='div-enhancement-factor',
style={
'display': 'none',
'margin': '25px 5px 30px 0px'
},
children=[
f"Enhancement Factor:",
html.Div(
style={'margin-left': '5px'},
children=dcc.Slider(
id='slider-enhancement-factor',
min=0,
max=2,
step=0.1,
value=1,
updatemode='drag'
)
)
]
),
html.Button(
'Run Operation',
id='button-run-operation',
style={'margin-right': '10px', 'margin-top': '5px'}
),
html.Button(
'Undo',
id='button-undo',
style={'margin-top': '5px'}
)
]),
dcc.Graph(id='graph-histogram-colors',
config={'displayModeBar': False})
]),
html.Div(
className='seven columns',
style={'float': 'right'},
children=[
# The Interactive Image Div contains the dcc Graph
# showing the image, as well as the hidden div storing
# the true image
html.Div(id='div-interactive-image', children=[
GRAPH_PLACEHOLDER,
html.Div(
id='div-storage',
children=STORAGE_PLACEHOLDER,
style={'display': 'none'}
)
])
]
)
])
])
])
app.layout = serve_layout
# Helper functions for callbacks
def add_action_to_stack(action_stack,
operation,
operation_type,
selectedData):
"""
Add new action to the action stack, in-place.
:param action_stack: The stack of action that are applied to an image
:param operation: The operation that is applied to the image
:param operation_type: The type of the operation, which could be a filter,
an enhancement, etc.
:param selectedData: The JSON object that contains the zone selected by
the user in which the operation is applied
:return: None, appending is done in place
"""
new_action = {
'operation': operation,
'type': operation_type,
'selectedData': selectedData
}
action_stack.append(new_action)
def undo_last_action(n_clicks, storage):
action_stack = storage['action_stack']
if n_clicks is None:
storage['undo_click_count'] = 0
# If the stack isn't empty and the undo click count has changed
elif len(action_stack) > 0 and n_clicks > storage['undo_click_count']:
# Remove the last action on the stack
action_stack.pop()
# Update the undo click count
storage['undo_click_count'] = n_clicks
return storage
# Recursively retrieve the previous versions of the image by popping the
# action stack
@cache.memoize()
def apply_actions_on_image(session_id,
action_stack,
filename,
image_signature):
action_stack = deepcopy(action_stack)
# If we have arrived to the original image
if len(action_stack) == 0:
# Retrieve the url in which the image string is stored inside s3,
# using the session ID
url = s3.generate_presigned_url(
ClientMethod='get_object',
Params={
'Bucket': bucket_name,
'Key': session_id
}
)
# A key replacement is required for URL pre-sign in gcp
url = url.replace('AWSAccessKeyId', 'GoogleAccessId')
response = requests.get(url)
print(len(response.text))
im_pil = drc.b64_to_pil(response.text)
return im_pil
# Pop out the last action
last_action = action_stack.pop()
# Apply all the previous action_stack, and gets the image PIL
im_pil = apply_actions_on_image(
session_id,
action_stack,
filename,
image_signature
)
im_size = im_pil.size
# Apply the rest of the action_stack
operation = last_action['operation']
selectedData = last_action['selectedData']
type = last_action['type']
# Select using Lasso
if selectedData and 'lassoPoints' in selectedData:
selection_mode = 'lasso'
selection_zone = generate_lasso_mask(im_pil, selectedData)
# Select using rectangular box
elif selectedData and 'range' in selectedData:
selection_mode = 'select'
lower, upper = map(int, selectedData['range']['y'])
left, right = map(int, selectedData['range']['x'])
# Adjust height difference
height = im_size[1]
upper = height - upper
lower = height - lower
selection_zone = (left, upper, right, lower)
# Select the whole image
else:
selection_mode = 'select'
selection_zone = (0, 0) + im_size
# Apply the filters
if type == 'filter':
apply_filters(
image=im_pil,
zone=selection_zone,
filter=operation,
mode=selection_mode
)
elif type == 'enhance':
enhancement = operation['enhancement']
factor = operation['enhancement_factor']
apply_enhancements(
image=im_pil,
zone=selection_zone,
enhancement=enhancement,
enhancement_factor=factor,
mode=selection_mode
)
return im_pil
@app.callback(Output('interactive-image', 'figure'),
[Input('radio-selection-mode', 'value')],
[State('interactive-image', 'figure')])
def update_selection_mode(selection_mode, figure):
if figure:
figure['layout']['dragmode'] = selection_mode
return figure
@app.callback(Output('graph-histogram-colors', 'figure'),
[Input('interactive-image', 'figure')])
def update_histogram(figure):
# Retrieve the image stored inside the figure
enc_str = figure['layout']['images'][0]['source'].split(';base64,')[-1]
# Creates the PIL Image object from the b64 png encoding
im_pil = drc.b64_to_pil(string=enc_str)
return show_histogram(im_pil)
@app.callback(Output('div-interactive-image', 'children'),
[Input('upload-image', 'contents'),
Input('button-undo', 'n_clicks'),
Input('button-run-operation', 'n_clicks')],
[State('interactive-image', 'selectedData'),
State('dropdown-filters', 'value'),
State('dropdown-enhance', 'value'),
State('slider-enhancement-factor', 'value'),
State('upload-image', 'filename'),
State('radio-selection-mode', 'value'),
State('radio-encoding-format', 'value'),
State('div-storage', 'children'),
State('session-id', 'children')])
def update_graph_interactive_image(content,
undo_clicks,
n_clicks,
selectedData,
filters,
enhance,
enhancement_factor,
new_filename,
dragmode,
enc_format,
storage,
session_id):
t_start = time.time()
# Retrieve information saved in storage, which is a dict containing
# information about the image and its action stack
storage = json.loads(storage)
filename = storage['filename'] # Filename is the name of the image file.
image_signature = storage['image_signature']
# Runs the undo function if the undo button was clicked. Storage stays
# the same otherwise.
storage = undo_last_action(undo_clicks, storage)
# If a new file was uploaded (new file name changed)
if new_filename and new_filename != filename:
# Replace filename
if DEBUG:
print(filename, "replaced by", new_filename)
# Update the storage dict
storage['filename'] = new_filename
# Parse the string and convert to pil
string = content.split(';base64,')[-1]
im_pil = drc.b64_to_pil(string)
# Update the image signature, which is the first 200 b64 characters
# of the string encoding
storage['image_signature'] = string[:200]
# Posts the image string into the Bucketeer Storage (which is hosted
# on S3)
store_image_string(string, session_id)
if DEBUG:
print(new_filename, "added to Bucketeer S3.")
# Resets the action stack
storage['action_stack'] = []
# If an operation was applied (when the filename wasn't changed)
else:
# Add actions to the action stack (we have more than one if filters
# and enhance are BOTH selected)
if filters:
type = 'filter'
operation = filters
add_action_to_stack(
storage['action_stack'],
operation,
type,
selectedData
)
if enhance:
type = 'enhance'
operation = {
'enhancement': enhance,
'enhancement_factor': enhancement_factor,
}
add_action_to_stack(
storage['action_stack'],
operation,
type,
selectedData
)
# Apply the required actions to the picture, using memoized function
im_pil = apply_actions_on_image(
session_id,
storage['action_stack'],
filename,
image_signature
)
t_end = time.time()
if DEBUG:
print(f"Updated Image Storage in {t_end - t_start:.3f} sec")
return [
drc.InteractiveImagePIL(
image_id='interactive-image',
image=im_pil,
enc_format=enc_format,
display_mode='fixed',
dragmode=dragmode,
verbose=DEBUG
),
html.Div(
id='div-storage',
children=json.dumps(storage),
style={'display': 'none'}
)
]
# Show/Hide Callbacks
@app.callback(Output('div-enhancement-factor', 'style'),
[Input('dropdown-enhance', 'value')],
[State('div-enhancement-factor', 'style')])
def show_slider_enhancement_factor(value, style):
# If any enhancement is selected
if value:
style['display'] = 'block'
else:
style['display'] = 'none'
return style
# Reset Callbacks
@app.callback(Output('dropdown-filters', 'value'),
[Input('button-run-operation', 'n_clicks')])
def reset_dropdown_filters(_):
return None
@app.callback(Output('dropdown-enhance', 'value'),
[Input('button-run-operation', 'n_clicks')])
def reset_dropdown_enhance(_):
return None
# Running the server
if __name__ == '__main__':
app.run_server(debug=True)