diff --git a/R/bag_tree.R b/R/bag_tree.R index 1f8e650e9..915a13deb 100644 --- a/R/bag_tree.R +++ b/R/bag_tree.R @@ -10,6 +10,7 @@ #' More information on how \pkg{parsnip} is used for modeling is at #' \url{https://www.tidymodels.org/}. #' +#' @inheritParams boost_tree #' @inheritParams decision_tree #' @param class_cost A non-negative scalar for a class cost (where a cost of 1 #' means no extra cost). This is useful for when the first level of the outcome diff --git a/R/bart.R b/R/bart.R index 63c8d83e5..0251680b7 100644 --- a/R/bart.R +++ b/R/bart.R @@ -11,6 +11,7 @@ #' More information on how \pkg{parsnip} is used for modeling is at #' \url{https://www.tidymodels.org/}. #' +#' @inheritParams nearest_neighbor #' @inheritParams boost_tree #' @param prior_terminal_node_coef A coefficient for the prior probability that #' a node is a terminal node. Values are usually between 0 and one with diff --git a/R/boost_tree.R b/R/boost_tree.R index 59cbf6f79..f56da2fef 100644 --- a/R/boost_tree.R +++ b/R/boost_tree.R @@ -15,8 +15,8 @@ #' \url{https://www.tidymodels.org/}. #' #' @param mode A single character string for the prediction outcome mode. -#' Possible values for this model are "unknown", "regression", or -#' "classification". +#' Possible values for this model are "unknown", "regression", +#' "classification", or "censored regression". #' @param engine A single character string specifying what computational engine #' to use for fitting. #' @param mtry A number for the number (or proportion) of predictors that will diff --git a/R/c5_rules.R b/R/c5_rules.R index c48d0382b..87ec7bb83 100644 --- a/R/c5_rules.R +++ b/R/c5_rules.R @@ -13,7 +13,7 @@ #' More information on how \pkg{parsnip} is used for modeling is at #' \url{https://www.tidymodels.org/}. #' -#' @inheritParams boost_tree +#' @inheritParams nearest_neighbor #' @param mode A single character string for the type of model. #' The only possible value for this model is "classification". #' @param trees A non-negative integer (no greater than 100) for the number diff --git a/R/cubist_rules.R b/R/cubist_rules.R index b1eb3f237..be5c8f783 100644 --- a/R/cubist_rules.R +++ b/R/cubist_rules.R @@ -10,7 +10,7 @@ #' More information on how \pkg{parsnip} is used for modeling is at #' \url{https://www.tidymodels.org/}. #' -#' @inheritParams boost_tree +#' @inheritParams nearest_neighbor #' @param mode A single character string for the type of model. #' The only possible value for this model is "regression". #' @param committees A non-negative integer (no greater than 100) for the number diff --git a/R/discrim_flexible.R b/R/discrim_flexible.R index 3e3b04ec2..330e6bc25 100644 --- a/R/discrim_flexible.R +++ b/R/discrim_flexible.R @@ -11,7 +11,7 @@ #' More information on how \pkg{parsnip} is used for modeling is at #' \url{https://www.tidymodels.org/}. #' -#' @inheritParams boost_tree +#' @inheritParams nearest_neighbor #' @inheritParams discrim_linear #' @param num_terms The number of features that will be retained in the #' final model, including the intercept. diff --git a/R/discrim_linear.R b/R/discrim_linear.R index 1b9709b9c..469b8dc8f 100644 --- a/R/discrim_linear.R +++ b/R/discrim_linear.R @@ -13,7 +13,7 @@ #' More information on how \pkg{parsnip} is used for modeling is at #' \url{https://www.tidymodels.org/}. #' -#' @inheritParams boost_tree +#' @inheritParams nearest_neighbor #' @param mode A single character string for the type of model. The only #' possible value for this model is "classification". #' @param penalty An non-negative number representing the amount of diff --git a/R/discrim_quad.R b/R/discrim_quad.R index df89f8aab..eb1ad8715 100644 --- a/R/discrim_quad.R +++ b/R/discrim_quad.R @@ -13,7 +13,7 @@ #' More information on how \pkg{parsnip} is used for modeling is at #' \url{https://www.tidymodels.org/}. #' -#' @inheritParams boost_tree +#' @inheritParams nearest_neighbor #' @param mode A single character string for the type of model. The only #' possible value for this model is "classification". #' @param regularization_method A character string for the type of regularized diff --git a/R/discrim_regularized.R b/R/discrim_regularized.R index c27630d4d..776369627 100644 --- a/R/discrim_regularized.R +++ b/R/discrim_regularized.R @@ -13,7 +13,7 @@ #' More information on how \pkg{parsnip} is used for modeling is at #' \url{https://www.tidymodels.org/}. #' -#' @inheritParams boost_tree +#' @inheritParams nearest_neighbor #' @inheritParams discrim_linear #' @param frac_common_cov,frac_identity Numeric values between zero and one. #' diff --git a/R/gen_additive_mod.R b/R/gen_additive_mod.R index 05e091245..8777a6b37 100644 --- a/R/gen_additive_mod.R +++ b/R/gen_additive_mod.R @@ -10,7 +10,7 @@ #' More information on how \pkg{parsnip} is used for modeling is at #' \url{https://www.tidymodels.org/}. #' -#' @inheritParams boost_tree +#' @inheritParams nearest_neighbor #' @param select_features `TRUE` or `FALSE.` If `TRUE`, the model has the #' ability to eliminate a predictor (via penalization). Increasing #' `adjust_deg_free` will increase the likelihood of removing predictors. diff --git a/R/mars.R b/R/mars.R index 3a29f0f70..86c5330ef 100644 --- a/R/mars.R +++ b/R/mars.R @@ -12,7 +12,7 @@ #' More information on how \pkg{parsnip} is used for modeling is at #' \url{https://www.tidymodels.org/}. #' -#' @inheritParams boost_tree +#' @inheritParams nearest_neighbor #' @param num_terms The number of features that will be retained in the #' final model, including the intercept. #' @param prod_degree The highest possible interaction degree. diff --git a/R/mlp.R b/R/mlp.R index 1f134ffcb..909d982e0 100644 --- a/R/mlp.R +++ b/R/mlp.R @@ -10,6 +10,7 @@ #' More information on how \pkg{parsnip} is used for modeling is at #' \url{https://www.tidymodels.org/}. #' +#' @inheritParams nearest_neighbor #' @inheritParams boost_tree #' @param hidden_units An integer for the number of units in the hidden model. #' @param penalty A non-negative numeric value for the amount of weight diff --git a/R/naive_Bayes.R b/R/naive_Bayes.R index 24877c32c..ffe91ae66 100644 --- a/R/naive_Bayes.R +++ b/R/naive_Bayes.R @@ -11,7 +11,7 @@ #' More information on how \pkg{parsnip} is used for modeling is at #' \url{https://www.tidymodels.org/}. #' -#' @inheritParams boost_tree +#' @inheritParams nearest_neighbor #' @inheritParams discrim_linear #' @param smoothness An non-negative number representing the the relative #' smoothness of the class boundary. Smaller examples result in model flexible diff --git a/R/nearest_neighbor.R b/R/nearest_neighbor.R index 814673ef1..41b738095 100644 --- a/R/nearest_neighbor.R +++ b/R/nearest_neighbor.R @@ -11,7 +11,11 @@ #' More information on how \pkg{parsnip} is used for modeling is at #' \url{https://www.tidymodels.org/}. #' -#' @inheritParams boost_tree +#' @param mode A single character string for the prediction outcome mode. +#' Possible values for this model are "unknown", "regression", or +#' "classification". +#' @param engine A single character string specifying what computational engine +#' to use for fitting. #' @param neighbors A single integer for the number of neighbors #' to consider (often called `k`). For \pkg{kknn}, a value of 5 #' is used if `neighbors` is not specified. diff --git a/R/pls.R b/R/pls.R index 5b1d82b1d..491389d01 100644 --- a/R/pls.R +++ b/R/pls.R @@ -10,7 +10,7 @@ #' More information on how \pkg{parsnip} is used for modeling is at #' \url{https://www.tidymodels.org/}. #' -#' @inheritParams boost_tree +#' @inheritParams nearest_neighbor #' @param predictor_prop The maximum proportion of original predictors that can #' have _non-zero_ coefficients for each PLS component (via regularization). #' This value is used for all PLS components for X. diff --git a/R/poisson_reg.R b/R/poisson_reg.R index 71a1d56b0..b9e103ddd 100644 --- a/R/poisson_reg.R +++ b/R/poisson_reg.R @@ -10,7 +10,7 @@ #' More information on how \pkg{parsnip} is used for modeling is at #' \url{https://www.tidymodels.org/}. #' -#' @inheritParams boost_tree +#' @inheritParams nearest_neighbor #' @param mode A single character string for the type of model. #' The only possible value for this model is "regression". #' @param penalty A non-negative number representing the total diff --git a/R/proportional_hazards.R b/R/proportional_hazards.R index b144ff4a3..038e19c94 100644 --- a/R/proportional_hazards.R +++ b/R/proportional_hazards.R @@ -10,7 +10,7 @@ #' More information on how \pkg{parsnip} is used for modeling is at #' \url{https://www.tidymodels.org/}. #' -#' @inheritParams boost_tree +#' @inheritParams nearest_neighbor #' @inheritParams linear_reg #' @param mode A single character string for the prediction outcome mode. #' The only possible value for this model is "censored regression". diff --git a/R/rule_fit.R b/R/rule_fit.R index af6be8347..81a6ce48d 100644 --- a/R/rule_fit.R +++ b/R/rule_fit.R @@ -10,6 +10,7 @@ #' More information on how \pkg{parsnip} is used for modeling is at #' \url{https://www.tidymodels.org/}. #' +#' @inheritParams nearest_neighbor #' @inheritParams boost_tree #' @param penalty L1 regularization parameter. #' @details diff --git a/R/surv_reg.R b/R/surv_reg.R index 90d005d24..f5e72431d 100644 --- a/R/surv_reg.R +++ b/R/surv_reg.R @@ -11,7 +11,7 @@ #' More information on how \pkg{parsnip} is used for modeling is at #' \url{https://www.tidymodels.org/}. #' -#' @inheritParams boost_tree +#' @inheritParams nearest_neighbor #' @param mode A single character string for the prediction outcome mode. #' The only possible value for this model is "regression". #' @param dist A character string for the probability distribution of the diff --git a/R/survival_reg.R b/R/survival_reg.R index fff9b179a..0ab4cb7a9 100644 --- a/R/survival_reg.R +++ b/R/survival_reg.R @@ -9,7 +9,7 @@ #' More information on how \pkg{parsnip} is used for modeling is at #' \url{https://www.tidymodels.org/}. #' -#' @inheritParams boost_tree +#' @inheritParams nearest_neighbor #' @param mode A single character string for the prediction outcome mode. #' The only possible value for this model is "censored regression". #' @param dist A character string for the probability distribution of the diff --git a/R/svm_linear.R b/R/svm_linear.R index 4d3a27fa4..178368a40 100644 --- a/R/svm_linear.R +++ b/R/svm_linear.R @@ -13,7 +13,7 @@ #' More information on how \pkg{parsnip} is used for modeling is at #' \url{https://www.tidymodels.org/}. #' -#' @inheritParams boost_tree +#' @inheritParams nearest_neighbor #' @param cost A positive number for the cost of predicting a sample within #' or on the wrong side of the margin #' @param margin A positive number for the epsilon in the SVM insensitive diff --git a/R/svm_poly.R b/R/svm_poly.R index c9bdce79f..d031a2224 100644 --- a/R/svm_poly.R +++ b/R/svm_poly.R @@ -14,7 +14,7 @@ #' More information on how \pkg{parsnip} is used for modeling is at #' \url{https://www.tidymodels.org/}. #' -#' @inheritParams boost_tree +#' @inheritParams nearest_neighbor #' @param cost A positive number for the cost of predicting a sample within #' or on the wrong side of the margin #' @param degree A positive number for polynomial degree. diff --git a/R/svm_rbf.R b/R/svm_rbf.R index eb6cc7c60..8d2d69f8a 100644 --- a/R/svm_rbf.R +++ b/R/svm_rbf.R @@ -14,7 +14,7 @@ #' More information on how \pkg{parsnip} is used for modeling is at #' \url{https://www.tidymodels.org/}. #' -#' @inheritParams boost_tree +#' @inheritParams nearest_neighbor #' @param engine A single character string specifying what computational engine #' to use for fitting. Possible engines are listed below. The default for this #' model is `"kernlab"`. diff --git a/man/bag_tree.Rd b/man/bag_tree.Rd index 98f3c2829..08d029433 100644 --- a/man/bag_tree.Rd +++ b/man/bag_tree.Rd @@ -15,16 +15,17 @@ bag_tree( } \arguments{ \item{mode}{A single character string for the prediction outcome mode. -Possible values for this model are "unknown", "regression", or -"classification".} +Possible values for this model are "unknown", "regression", +"classification", or "censored regression".} \item{cost_complexity}{A positive number for the the cost/complexity parameter (a.k.a. \code{Cp}) used by CART models (specific engines only).} -\item{tree_depth}{An integer for maximum depth of the tree.} +\item{tree_depth}{An integer for the maximum depth of the tree (i.e. number +of splits) (specific engines only).} \item{min_n}{An integer for the minimum number of data points -in a node that are required for the node to be split further.} +in a node that is required for the node to be split further.} \item{class_cost}{A non-negative scalar for a class cost (where a cost of 1 means no extra cost). This is useful for when the first level of the outcome diff --git a/man/boost_tree.Rd b/man/boost_tree.Rd index aa7ff82b8..a36a4de25 100644 --- a/man/boost_tree.Rd +++ b/man/boost_tree.Rd @@ -19,8 +19,8 @@ boost_tree( } \arguments{ \item{mode}{A single character string for the prediction outcome mode. -Possible values for this model are "unknown", "regression", or -"classification".} +Possible values for this model are "unknown", "regression", +"classification", or "censored regression".} \item{engine}{A single character string specifying what computational engine to use for fitting.} diff --git a/man/decision_tree.Rd b/man/decision_tree.Rd index f0ae8fce7..fbdb31742 100644 --- a/man/decision_tree.Rd +++ b/man/decision_tree.Rd @@ -14,8 +14,8 @@ decision_tree( } \arguments{ \item{mode}{A single character string for the prediction outcome mode. -Possible values for this model are "unknown", "regression", or -"classification".} +Possible values for this model are "unknown", "regression", +"classification", or "censored regression".} \item{engine}{A single character string specifying what computational engine to use for fitting.} diff --git a/man/rand_forest.Rd b/man/rand_forest.Rd index aaae5dddc..1ec974b0e 100644 --- a/man/rand_forest.Rd +++ b/man/rand_forest.Rd @@ -14,8 +14,8 @@ rand_forest( } \arguments{ \item{mode}{A single character string for the prediction outcome mode. -Possible values for this model are "unknown", "regression", or -"classification".} +Possible values for this model are "unknown", "regression", +"classification", or "censored regression".} \item{engine}{A single character string specifying what computational engine to use for fitting.}