-
Notifications
You must be signed in to change notification settings - Fork 27
/
_pkgdown.yml
129 lines (117 loc) · 2.38 KB
/
_pkgdown.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
url: https://dials.tidymodels.org/
template:
package: tidytemplate
bootstrap: 5
bslib:
primary: "#CA225E"
includes:
in_header: |
<script defer data-domain="dials.tidymodels.org,all.tidymodels.org" src="https://plausible.io/js/plausible.js"></script>
development:
mode: auto
figures:
fig.width: 8
fig.height: 5.75
navbar:
components:
articles:
text: Articles
menu:
- text: How to create a tuning parameter function
href: https://www.tidymodels.org/learn/develop/parameters/
reference:
- title: Parameter sets
contents:
- parameters
- update.parameters
- starts_with("range_")
- starts_with("value_")
- title: Grid creation
contents:
- starts_with("grid_")
- title: Parameter objects for preprocessing
contents:
- all_neighbors
- freq_cut
- harmonic_frequency
- initial_umap
- max_times
- max_tokens
- min_dist
- min_times
- min_unique
- num_breaks
- num_hash
- num_runs
- num_tokens
- over_ratio
- prior_slab_dispersion
- token
- trim_amount
- validation_set_prop
- vocabulary_size
- weight
- weight_scheme
- window_size
- title: Parameter objects for modeling
contents:
- activation
- adjust_deg_free
- class_weights
- cost
- deg_free
- degree
- dist_power
- dropout
- Laplace
- learn_rate
- mixture
- momentum
- mtry
- mtry_prop
- neighbors
- num_clusters
- num_comp
- num_knots
- penalty
- predictor_prop
- prune_method
- starts_with("rate_")
- rbf_sigma
- regularization_method
- select_features
- smoothness
- stop_iter
- summary_stat
- surv_dist
- survival_link
- target_weight
- threshold
- trees
- weight_func
- title: Parameter objects for specific model engines
contents:
- bart-param
- conditional_min_criterion
- confidence_factor
- extrapolation
- max_nodes
- max_num_terms
- num_leaves
- regularization_factor
- rule_bands
- scale_pos_weight
- shrinkage_correlation
- title: Parameter objects for post-processing
contents:
- buffer
- range_limits
- title: Finalizing parameters
contents:
- finalize
- title: Developer tools
contents:
- encode_unit
- new_quant_param
- parameters_constr
- unknown