-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathcvt_model_1d.py
executable file
·847 lines (693 loc) · 27.1 KB
/
cvt_model_1d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
from functools import partial
from itertools import repeat
# from torch._six import container_abcs
import collections.abc as container_abcs
import logging
import os
from collections import OrderedDict
import numpy as np
import scipy
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from einops.layers.torch import Rearrange
from timm.models.layers import DropPath, trunc_normal_
from scipy import ndimage
# From PyTorch internals
def _ntuple(n):
def parse(x):
if isinstance(x, container_abcs.Iterable):
return x
return tuple(repeat(x, n))
return parse
to_1tuple = _ntuple(1)
to_2tuple = _ntuple(2)
to_3tuple = _ntuple(3)
to_4tuple = _ntuple(4)
to_ntuple = _ntuple
class LayerNorm(nn.LayerNorm):
"""Subclass torch's LayerNorm to handle fp16."""
def forward(self, x: torch.Tensor):
orig_type = x.dtype
ret = super().forward(x.type(torch.float32))
return ret.type(orig_type)
class QuickGELU(nn.Module):
def forward(self, x: torch.Tensor):
return x * torch.sigmoid(1.702 * x)
class Mlp(nn.Module):
def __init__(self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Module):
def __init__(self,
dim_in,
dim_out,
num_heads,
qkv_bias=False,
attn_drop=0.,
proj_drop=0.,
method='dw_bn',
kernel_size=3,
stride_kv=1,
stride_q=1,
padding_kv=1,
padding_q=1,
with_cls_token=True,
**kwargs
):
super().__init__()
self.stride_kv = stride_kv
self.stride_q = stride_q
self.dim = dim_out
self.num_heads = num_heads
# head_dim = self.qkv_dim // num_heads
self.scale = dim_out ** -0.5
self.with_cls_token = with_cls_token
self.conv_proj_q = self._build_projection(
dim_in, dim_out, kernel_size, padding_q,
stride_q, 'linear' if method == 'avg' else method
)
self.conv_proj_k = self._build_projection(
dim_in, dim_out, kernel_size, padding_kv,
stride_kv, method
)
self.conv_proj_v = self._build_projection(
dim_in, dim_out, kernel_size, padding_kv,
stride_kv, method
)
self.proj_q = nn.Linear(dim_in, dim_out, bias=qkv_bias)
self.proj_k = nn.Linear(dim_in, dim_out, bias=qkv_bias)
self.proj_v = nn.Linear(dim_in, dim_out, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim_out, dim_out)
self.proj_drop = nn.Dropout(proj_drop)
def _build_projection(self,
dim_in,
dim_out,
kernel_size,
padding,
stride,
method):
if method == 'dw_bn':
proj = nn.Sequential(OrderedDict([
('conv', nn.Conv1d(
dim_in,
dim_in,
kernel_size=kernel_size,
padding=padding,
stride=stride,
bias=False,
groups=dim_in
)),
('bn', nn.BatchNorm1d(dim_in)),
('rearrage', Rearrange('b c f -> b f c')),
]))
elif method == 'avg':
proj = nn.Sequential(OrderedDict([
('avg', nn.AvgPool1d(
kernel_size=kernel_size,
padding=padding,
stride=stride,
ceil_mode=True
)),
('rearrage', Rearrange('b c f -> b f c')),
]))
elif method == 'linear':
proj = None
else:
raise ValueError('Unknown method ({})'.format(method))
return proj
def forward_conv(self, x, f):
if self.with_cls_token:
cls_token, x = torch.split(x, [1, f], 1)
x = rearrange(x, 'b f c -> b c f')
if self.conv_proj_q is not None:
q = self.conv_proj_q(x)
else:
q = rearrange(x, 'b c f -> b f c')
if self.conv_proj_k is not None:
k = self.conv_proj_k(x)
else:
k = rearrange(x, 'b c f -> b f c')
if self.conv_proj_v is not None:
v = self.conv_proj_v(x)
else:
v = rearrange(x, 'b c f -> b f c')
if self.with_cls_token:
q = torch.cat((cls_token, q), dim=1)
k = torch.cat((cls_token, k), dim=1)
v = torch.cat((cls_token, v), dim=1)
return q, k, v
def forward(self, x, f):
if (
self.conv_proj_q is not None
or self.conv_proj_k is not None
or self.conv_proj_v is not None
):
q, k, v = self.forward_conv(x, f)
q = rearrange(self.proj_q(q), 'b t (h d) -> b h t d', h=self.num_heads)
k = rearrange(self.proj_k(k), 'b t (h d) -> b h t d', h=self.num_heads)
v = rearrange(self.proj_v(v), 'b t (h d) -> b h t d', h=self.num_heads)
attn_score = torch.einsum('bhlk,bhtk->bhlt', [q, k]) * self.scale
attn = F.softmax(attn_score, dim=-1)
attn = self.attn_drop(attn)
x = torch.einsum('bhlt,bhtv->bhlv', [attn, v])
x = rearrange(x, 'b h t d -> b t (h d)')
x = self.proj(x)
x = self.proj_drop(x)
return x
@staticmethod
def compute_macs(module, input, output):
# T: num_token
# S: num_token
input = input[0]
flops = 0
_, T, C = input.shape
H = W = int(np.sqrt(T-1)) if module.with_cls_token else int(np.sqrt(T))
H_Q = H / module.stride_q
W_Q = H / module.stride_q
T_Q = H_Q * W_Q + 1 if module.with_cls_token else H_Q * W_Q
H_KV = H / module.stride_kv
W_KV = W / module.stride_kv
T_KV = H_KV * W_KV + 1 if module.with_cls_token else H_KV * W_KV
# C = module.dim
# S = T
# Scaled-dot-product macs
# [B x T x C] x [B x C x T] --> [B x T x S]
# multiplication-addition is counted as 1 because operations can be fused
flops += T_Q * T_KV * module.dim
# [B x T x S] x [B x S x C] --> [B x T x C]
flops += T_Q * module.dim * T_KV
if (
hasattr(module, 'conv_proj_q')
and hasattr(module.conv_proj_q, 'conv')
):
params = sum(
[
p.numel()
for p in module.conv_proj_q.conv.parameters()
]
)
flops += params * H_Q * W_Q
if (
hasattr(module, 'conv_proj_k')
and hasattr(module.conv_proj_k, 'conv')
):
params = sum(
[
p.numel()
for p in module.conv_proj_k.conv.parameters()
]
)
flops += params * H_KV * W_KV
if (
hasattr(module, 'conv_proj_v')
and hasattr(module.conv_proj_v, 'conv')
):
params = sum(
[
p.numel()
for p in module.conv_proj_v.conv.parameters()
]
)
flops += params * H_KV * W_KV
params = sum([p.numel() for p in module.proj_q.parameters()])
flops += params * T_Q
params = sum([p.numel() for p in module.proj_k.parameters()])
flops += params * T_KV
params = sum([p.numel() for p in module.proj_v.parameters()])
flops += params * T_KV
params = sum([p.numel() for p in module.proj.parameters()])
flops += params * T
module.__flops__ += flops
class Block(nn.Module):
def __init__(self,
dim_in,
dim_out,
num_heads,
mlp_ratio=4.,
qkv_bias=False,
drop=0.,
attn_drop=0.,
drop_path=0.,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
**kwargs):
super().__init__()
self.with_cls_token = kwargs['with_cls_token']
self.norm1 = norm_layer(dim_in)
self.attn = Attention(
dim_in, dim_out, num_heads, qkv_bias, attn_drop, drop,
**kwargs
)
self.drop_path = DropPath(drop_path) \
if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim_out)
dim_mlp_hidden = int(dim_out * mlp_ratio)
self.mlp = Mlp(
in_features=dim_out,
hidden_features=dim_mlp_hidden,
act_layer=act_layer,
drop=drop
)
def forward(self, x, f):
res = x
x = self.norm1(x)
attn = self.attn(x, f)
x = res + self.drop_path(attn)
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class ConvEmbed(nn.Module):
""" Image to Conv Embedding
"""
def __init__(self,
in_chans=2048,
out_chans=2048,
stride=1,
kernal_size=3,
padding=1,
norm_layer=None):
super().__init__()
# nn.Conv1d(in_channels=512*4, out_channels=512, kernel_size=3,
# stride=1, padding=1, bias=False), # should we keep the bias?
# nn.ReLU(),
# nn.BatchNorm1d(512),
self.proj = nn.Conv1d(
in_chans, out_chans,
kernel_size=kernal_size,
stride=stride,
padding=padding
)
self.norm = norm_layer(out_chans) if norm_layer else None
def forward(self, x):
B, C, F = x.shape
x = rearrange(x, 'b c f -> b f c')
x = self.proj(x)
if self.norm:
x = self.norm(x)
x = rearrange(x, 'b f c -> b c f')
return x
class VisionTransformer(nn.Module):
""" Vision Transformer with support for patch or hybrid CNN input stage
"""
def __init__(self,
patch_size=16,
patch_stride=16,
patch_padding=0,
in_chans=3,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4.,
qkv_bias=False,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
init='trunc_norm',
**kwargs):
super().__init__()
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
self.rearrage = None
self.patch_embed = ConvEmbed(
# img_size=img_size,
in_chans=2048,
)
with_cls_token = kwargs['with_cls_token']
if with_cls_token:
self.cls_token = nn.Parameter(
torch.zeros(1, 1, embed_dim)
)
else:
self.cls_token = None
self.pos_drop = nn.Dropout(p=drop_rate)
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
self.cls_head = nn.Linear(32, 1)
trunc_normal_(self.cls_head.weight, std=0.02)
blocks = []
self.dropout = nn.Dropout(p=0.6)
self.fc1 = nn.Linear(2048, 512)
self.fc2 = nn.Linear(512, 128)
self.fc3 = nn.Linear(128, 1)
self.relu = nn.ReLU()
self.drop_out = nn.Dropout(0.7)
self.sigmoid = nn.Sigmoid( )
self.m = 2
self.R_EASY = 8 # 95-96 AUUC
self.R_HARD = 16
# self.R_EASY = 4
# self.R_HARD = 8
self.M = 4
for j in range(depth):
blocks.append(
Block(
dim_in=embed_dim,
dim_out=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[j],
act_layer=act_layer,
norm_layer=norm_layer,
**kwargs
)
)
self.blocks = nn.ModuleList(blocks)
if self.cls_token is not None:
trunc_normal_(self.cls_token, std=.02)
if init == 'xavier':
self.apply(self._init_weights_xavier)
else:
self.apply(self._init_weights_trunc_normal)
def _init_weights_trunc_normal(self, m):
if isinstance(m, nn.Linear):
logging.info('=> init weight of Linear from trunc norm')
trunc_normal_(m.weight, std=0.02)
if m.bias is not None:
logging.info('=> init bias of Linear to zeros')
nn.init.constant_(m.bias, 0)
elif isinstance(m, (nn.LayerNorm, nn.BatchNorm2d)):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def _init_weights_xavier(self, m):
if isinstance(m, nn.Linear):
logging.info('=> init weight of Linear from xavier uniform')
nn.init.xavier_uniform_(m.weight)
if m.bias is not None:
logging.info('=> init bias of Linear to zeros')
nn.init.constant_(m.bias, 0)
elif isinstance(m, (nn.LayerNorm, nn.BatchNorm2d)):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def select_topk_embeddings(self, scores, embeddings, k):
_, idx_DESC = scores.sort(descending=True, dim=1)
idx_topk = idx_DESC[:, :k]
idx_topk = idx_topk.unsqueeze(2).expand([-1, -1, embeddings.shape[2]])
selected_embeddings = torch.gather(embeddings, 1, idx_topk)
return selected_embeddings
def easy_snippets_mining(self, actionness, embeddings, k_easy):
select_idx = torch.ones_like(actionness).cuda()
select_idx = self.dropout(select_idx)
actionness_drop = actionness * select_idx
actionness_rev = torch.max(actionness, dim=1, keepdim=True)[0] - actionness
actionness_rev_drop = actionness_rev * select_idx
nor_len = embeddings.shape[0]//2
easy_abn= self.select_topk_embeddings(actionness_drop, embeddings, k_easy)
easy_nor = self.select_topk_embeddings(actionness_rev_drop, embeddings, k_easy)
har_nor= self.select_topk_embeddings(actionness_drop, embeddings, 32 // self.R_HARD)
easy_nor = easy_nor[:nor_len,:,:]
easy_abn = easy_abn[nor_len:,:,:]
hard_nor = har_nor[:nor_len,:,:]
return easy_abn, easy_nor, hard_nor
def hard_snippets_mining(self, actionness, embeddings, k_hard):
aness_np = actionness.cpu().detach().numpy()
aness_median = np.median(aness_np, 1, keepdims=True)
aness_bin = np.where(aness_np > aness_median, 1.0, 0.0)
# print(aness_bin)
# exit(1)
hard_ano_mask = np.zeros(aness_bin.shape)
region_len = 10
num_threshold = region_len-2
for b in range(aness_bin.shape[0]):
## find pesudo abnormal region with 8 snippets
for i in range(32-region_len):
counts = np.count_nonzero(aness_bin[b, i:i+region_len] == 1)
# print(counts)
if counts > num_threshold:
# if this is a pesudo abnormal region
# apply the reverse values (incorrect low scores with 0 as peusdo labels - should be 1 - so)
hard_ano_mask[b, i:i+region_len] = 1 - aness_bin[b, i:i+region_len]
# all_ind = np.where(aness_bin == 1)
# for i in range(all_ind[0]):
# for b in range(aness_bin.shape[0]):
# ## find pesudo abnormal region with 8 snippets
# for i in range(32-region_len):
erosion_M = ndimage.binary_erosion(aness_bin, structure=np.ones((1,self.M))).astype(aness_np.dtype)
erosion_m = ndimage.binary_erosion(aness_bin, structure=np.ones((1,self.m))).astype(aness_np.dtype)
idx_region_inner = actionness.new_tensor(erosion_m - erosion_M)
hard_ano_mask = torch.tensor(hard_ano_mask)
idx_region_inner = torch.add(hard_ano_mask, idx_region_inner) # combine two type of anomalies
aness_region_inner = actionness * idx_region_inner
# print(aness_region_inner)
# exit(1)
hard_ano = self.select_topk_embeddings(aness_region_inner, embeddings, k_hard)
dilation_m = ndimage.binary_dilation(aness_bin, structure=np.ones((1,self.m))).astype(aness_np.dtype)
dilation_M = ndimage.binary_dilation(aness_bin, structure=np.ones((1,self.M))).astype(aness_np.dtype)
idx_region_outer = actionness.new_tensor(dilation_M - dilation_m)
aness_region_outer = actionness * idx_region_outer
hard_abn = self.select_topk_embeddings(aness_region_outer, embeddings, k_hard)
nor_len = embeddings.shape[0]//2
## transitional areas between abnormal and normal events has to happen for the abnormal videos
hard_abn = hard_abn[nor_len:,:,:]
hard_ano = hard_ano[nor_len:,:,:]
# hard_ano = torch.cat((hard_ano, hard_abn), dim=0)
return hard_ano, hard_abn
def forward(self, x):
k_easy = 32 // self.R_EASY
k_hard = 32 // self.R_HARD
if len(x.size()) > 3:
x = x.squeeze(2)
x = self.patch_embed(x)
B, T, F = x.size()
if B != 1:
normal_size = B // 2
else:
normal_size = 1
# print()
cls_tokens = None
x = rearrange(x, 'b t f -> b f t')
if self.cls_token is not None:
# stole cls_tokens impl from Phil Wang, thanks
cls_tokens = self.cls_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
x = self.pos_drop(x)
for i, blk in enumerate(self.blocks):
x = blk(x, F)
if self.cls_token is not None:
cls_tokens, x = torch.split(x, [1, F], 1)
x = rearrange(x, 'b f c -> b c f')
cls_prob = self.cls_head(cls_tokens)
cls_prob = self.sigmoid(cls_prob)
embeddings = x
features = x
scores = self.relu(self.fc1(features))
scores = self.drop_out(scores)
scores = self.relu(self.fc2(scores))
scores = self.drop_out(scores)
scores = self.sigmoid(self.fc3(scores))
easy_abn, easy_nor, hard_nor = self.easy_snippets_mining(scores.squeeze(2), embeddings, k_easy)
hard_abn,hard_abn_2 = self.hard_snippets_mining(scores.squeeze(2), embeddings, k_hard)
# hard_nor = torch.cat((hard_nor, hard_nor_2), dim=0)
# print(easy_abn.shape)
# print(easy_nor.shape)
# print(hard_nor.shape)
# print(hard_abn.shape)
# exit(1)
contrast_pairs = {
'E_Abn': easy_abn,
'E_Nor': easy_nor,
'H_Abn': hard_abn,
'H_Abn2': hard_abn_2,
'H_Nor_top_k': hard_nor
}
return x, cls_tokens, cls_prob, scores, contrast_pairs, embeddings
class ConvolutionalVisionTransformer(nn.Module):
def __init__(self,
in_chans=3,
num_classes=1000,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
init='trunc_norm',
spec=None):
super().__init__()
self.num_classes = num_classes
self.num_stages = spec['NUM_STAGES']
for i in range(self.num_stages):
kwargs = {
'patch_size': spec['PATCH_SIZE'][i],
'patch_stride': spec['PATCH_STRIDE'][i],
'patch_padding': spec['PATCH_PADDING'][i],
'embed_dim': spec['DIM_EMBED'][i],
'depth': spec['DEPTH'][i],
'num_heads': spec['NUM_HEADS'][i],
'mlp_ratio': spec['MLP_RATIO'][i],
'qkv_bias': spec['QKV_BIAS'][i],
'drop_rate': spec['DROP_RATE'][i],
'attn_drop_rate': spec['ATTN_DROP_RATE'][i],
'drop_path_rate': spec['DROP_PATH_RATE'][i],
'with_cls_token': spec['CLS_TOKEN'][i],
'method': spec['QKV_PROJ_METHOD'][i],
'kernel_size': spec['KERNEL_QKV'][i],
'padding_q': spec['PADDING_Q'][i],
'padding_kv': spec['PADDING_KV'][i],
'stride_kv': spec['STRIDE_KV'][i],
'stride_q': spec['STRIDE_Q'][i],
}
stage = VisionTransformer(
in_chans=in_chans,
init=init,
act_layer=act_layer,
norm_layer=norm_layer,
**kwargs
)
setattr(self, f'stage{i}', stage)
in_chans = spec['DIM_EMBED'][i]
dim_embed = spec['DIM_EMBED'][-1]
self.norm = norm_layer(dim_embed)
self.cls_token = spec['CLS_TOKEN'][-1]
# Classifier head
self.head = nn.Linear(dim_embed, num_classes) if num_classes > 0 else nn.Identity()
trunc_normal_(self.head.weight, std=0.02)
def init_weights(self, pretrained='', pretrained_layers=[], verbose=True):
if os.path.isfile(pretrained):
pretrained_dict = torch.load(pretrained, map_location='cpu')
logging.info(f'=> loading pretrained model {pretrained}')
model_dict = self.state_dict()
pretrained_dict = {
k: v for k, v in pretrained_dict.items()
if k in model_dict.keys()
}
need_init_state_dict = {}
for k, v in pretrained_dict.items():
need_init = (
k.split('.')[0] in pretrained_layers
or pretrained_layers[0] is '*'
)
if need_init:
if verbose:
logging.info(f'=> init {k} from {pretrained}')
if 'pos_embed' in k and v.size() != model_dict[k].size():
size_pretrained = v.size()
size_new = model_dict[k].size()
logging.info(
'=> load_pretrained: resized variant: {} to {}'
.format(size_pretrained, size_new)
)
ntok_new = size_new[1]
ntok_new -= 1
posemb_tok, posemb_grid = v[:, :1], v[0, 1:]
gs_old = int(np.sqrt(len(posemb_grid)))
gs_new = int(np.sqrt(ntok_new))
logging.info(
'=> load_pretrained: grid-size from {} to {}'
.format(gs_old, gs_new)
)
posemb_grid = posemb_grid.reshape(gs_old, gs_old, -1)
zoom = (gs_new / gs_old, gs_new / gs_old, 1)
posemb_grid = scipy.ndimage.zoom(
posemb_grid, zoom, order=1
)
posemb_grid = posemb_grid.reshape(1, gs_new ** 2, -1)
v = torch.tensor(
np.concatenate([posemb_tok, posemb_grid], axis=1)
)
need_init_state_dict[k] = v
self.load_state_dict(need_init_state_dict, strict=False)
@torch.jit.ignore
def no_weight_decay(self):
layers = set()
for i in range(self.num_stages):
layers.add(f'stage{i}.pos_embed')
layers.add(f'stage{i}.cls_token')
return layers
def forward_features(self, x):
for i in range(self.num_stages):
x, cls_tokens = getattr(self, f'stage{i}')(x)
if self.cls_token:
x = self.norm(cls_tokens)
x = torch.squeeze(x)
else:
x = rearrange(x, 'b c h w -> b (h w) c')
x = self.norm(x)
x = torch.mean(x, dim=1)
return x
def forward(self, x):
x = self.forward_features(x)
x = self.head(x)
return x
spec ={
'INIT': 'trunc_norm',
"NUM_STAGES": 1,
'PATCH_SIZE': [7, 3, 3],
'PATCH_STRIDE': [4, 2, 2],
'PATCH_PADDING': [2, 1, 1],
'DIM_EMBED': [32, 32, 32],
'NUM_HEADS': [8, 8, 8],
'DEPTH': [6, 6, 10],
'MLP_RATIO': [4.0, 4.0, 4.0],
'ATTN_DROP_RATE': [0.0, 0.0, 0.0],
'DROP_RATE': [0.0, 0.0, 0.0],
'DROP_PATH_RATE': [0.0, 0.0, 0.1],
'QKV_BIAS': [True, True, True],
'CLS_TOKEN': [True, True, True],
'POS_EMBED': [False, False, False],
'QKV_PROJ_METHOD': ['dw_bn', 'dw_bn', 'dw_bn'],
'KERNEL_QKV': [3, 3, 3],
'PADDING_KV': [1, 1, 1],
'STRIDE_KV': [2, 2, 2],
'PADDING_Q': [1, 1, 1],
'STRIDE_Q': [1, 1, 1],
}
def get_model_transformer():
# msvit = ConvolutionalVisionTransformer(
# in_chans=3,
# num_classes=20,
# act_layer=QuickGELU,
# norm_layer=partial(LayerNorm, eps=1e-5),
# spec = SPEC
# )
kwargs = {
'patch_size': spec['PATCH_SIZE'][0],
'patch_stride': spec['PATCH_STRIDE'][0],
'patch_padding': spec['PATCH_PADDING'][0],
'embed_dim': spec['DIM_EMBED'][0],
'depth': spec['DEPTH'][0],
'num_heads': spec['NUM_HEADS'][0],
'mlp_ratio': spec['MLP_RATIO'][0],
'qkv_bias': spec['QKV_BIAS'][0],
'drop_rate': spec['DROP_RATE'][0],
'attn_drop_rate': spec['ATTN_DROP_RATE'][0],
'drop_path_rate': spec['DROP_PATH_RATE'][0],
'with_cls_token': spec['CLS_TOKEN'][-1],
'method': spec['QKV_PROJ_METHOD'][0],
'kernel_size': spec['KERNEL_QKV'][0],
'padding_q': spec['PADDING_Q'][0],
'padding_kv': spec['PADDING_KV'][0],
'stride_kv': spec['STRIDE_KV'][0],
'stride_q': spec['STRIDE_Q'][0],
}
in_chans=3
stage = VisionTransformer(
in_chans=in_chans,
init='trunc_norm',
act_layer=nn.GELU,
norm_layer=partial(LayerNorm, eps=1e-5),
**kwargs
)
stage = stage.cuda()
# img = torch.ones([8, 32, 2048])
# img = img.cuda()
# out = stage(img)
# print("Shape of out :", out.shape) # [B, num_classes]
return stage