-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlayers.h
813 lines (697 loc) · 28.7 KB
/
layers.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
#include "Halide.h"
using namespace Halide;
#include "halide_image.h"
using namespace Halide::Tools;
class Layer {
public:
Layer(Layer* in) {
// The first layer in the pipeline does not have an input layer
if (in) {
// Get the halide function that computes values
// of the input layer
assert(in->forward.defined());
// Record the input layer
in_layer = in;
}
}
// Layer that serves as an input to the current layer
Layer* in_layer;
// Number of output dimensions
virtual int out_dims() = 0;
// Size of output dimension i, 0 <= i < out_dims()
virtual int out_dim_size( int i) = 0;
// Storage for layer parameters
std::vector<Image<float> > params;
std::vector<Image<float> > param_grads;
std::vector<Image<float> > params_cache;
// Halide function that computes the output of the layer
Func forward;
// Vector of halide functions which compute the gradients
// with respect to layer parameters
std::vector<Func> f_param_grads;
// Halide function which computes gradient with respect
// to layer input
Func f_in_grad;
// Defines the functions which compute gradient of the objective
// function with respective to parameters and input. Given a function
// which computes the derivate of the objective with respect to layer
// outputs. Does this recursively for the input layer.
virtual void back_propagate(Func dforward) = 0;
virtual ~Layer() {};
};
class SoftMax: public Layer {
public:
Var in_dim, n;
int num_classes, num_samples;
// Expects 2-dimensional input layer (num_classes x num_samples)
SoftMax(Layer* in, int schedule = 0) : Layer(in) {
assert(in->out_dims() == 2);
Func in_f = in_layer->forward;
num_classes = in->out_dim_size(0);
num_samples = in->out_dim_size(1);
// Define forward
Func exp_max, expo, normalizer;
RDom r(0, num_classes);
exp_max(n) = maximum(in_f(r.x, n));
expo(in_dim, n) = exp(in_f(in_dim, n) - exp_max(n));
normalizer(n) = cast(in_f.output_types()[0], 0);
normalizer(n) += expo(r.x, n);
forward(in_dim, n) = expo(in_dim, n)/normalizer(n);
if (schedule) {
// Local schedule
exp_max.compute_at(forward, n);
expo.compute_at(forward, n);
normalizer.compute_at(forward, n);
forward.compute_root().parallel(n);
}
}
void back_propagate(Func labels) {
if (!f_in_grad.defined()) {
assert(labels.defined());
assert(forward.defined());
Expr label = clamp(labels(n), 0, num_classes -1);
Expr t = (forward(in_dim, n) - 1)/num_samples;
Expr f = (forward(in_dim, n)/num_samples);
f_in_grad(in_dim, n) = select(in_dim == label, t, f);
in_layer->back_propagate(f_in_grad);
}
}
// Returns a halide function that computes softmax loss given
// the correct labels for each sample
Func loss(Func labels) {
// Should loss be a layer?
// Check if labels is defined
assert(labels.defined());
// Check if the dimensions make sense
assert(labels.dimensions() == 1);
// TODO Figure out if there is a scalar type
Var x;
Func loss_p;
RDom r(0, num_samples);
loss_p(x) = cast(forward.output_types()[0], 0);
// The clamp is necessary. Otherwise, halide will assume that the
// label can be anything during bounds inference.
loss_p(0) += -log(forward(clamp(labels(r.x), 0, num_classes - 1),
r.x))/num_samples;
return loss_p;
}
int out_dims() { return 2;}
int out_dim_size( int i) {
assert(i < 2);
int size = 0;
if (i == 0)
size = num_classes;
else if (i == 1)
size = num_samples;
return size;
}
};
class Affine: public Layer {
public:
Var in_dim, n, unit_dim;
// num_units is the number of units in the layer
// num_inputs is the size of each input sample
int num_units, num_samples, num_inputs;
float reg;
// parameters for scheduling
Var par;
Affine(int _num_units, float _reg, Layer* in,
int schedule = 0) : Layer(in) {
Func in_f = in_layer->forward;
num_units = _num_units;
reg = _reg;
// Create parameters
num_inputs = in->out_dim_size(0);
num_samples = in->out_dim_size(1);
Image<float> W(num_inputs, num_units), b(num_units);
params.push_back(W); params.push_back(b);
// Define forward
RDom r(0, num_inputs);
// Initialize reduction to baises
forward(unit_dim, n) = b(unit_dim);
// Dot product
forward(unit_dim, n) +=
in_f(r.x, n) * W(r.x, unit_dim);
if (schedule) {
forward.compute_root().fuse(unit_dim, n, par).parallel(par);
forward.update().fuse(unit_dim, n, par).parallel(par);
}
}
void back_propagate(Func dout) {
assert(dout.defined());
if (!f_in_grad.defined()) {
Func dW, db;
Image<float> W = params[0];
Image<float> b = params[1];
RDom r1(0, num_units);
// initializing to zero
f_in_grad(in_dim, n) =
cast(dout.output_types()[0], 0);
f_in_grad(in_dim, n) +=
dout(r1.x, n) * W(in_dim, r1.x);
RDom r2(0, num_samples);
// initializing to regularized weights
dW(in_dim, unit_dim) = cast(dout.output_types()[0],
reg*W(in_dim, unit_dim));
Func in_f = in_layer->forward;
dW(in_dim, unit_dim) +=
dout(unit_dim, r2.x) * in_f(in_dim, r2.x);
f_param_grads.push_back(dW);
// initializing to zero
db(unit_dim) = cast(dout.output_types()[0], 0);
db(unit_dim) += dout(unit_dim, r2.x);
f_param_grads.push_back(db);
// Create storage for gradients and caching params
Image<float> W_grad(num_inputs, num_units);
param_grads.push_back(W_grad);
Image<float> W_cache(num_inputs, num_units);
params_cache.push_back(W_cache);
Image<float> b_grad(num_units);
param_grads.push_back(b_grad);
Image<float> b_cache(num_units);
params_cache.push_back(b_cache);
in_layer->back_propagate(f_in_grad);
}
}
int out_dims() { return 2;}
int out_dim_size( int i) {
assert(i < 2);
int size = 0;
if(i==0)
size = num_units;
else if(i==1)
size = num_samples;
return size;
}
};
class DropOut: public Layer {
public:
Var x, y, z, w;
// Threshold value between 0-1 representing the probability
// with which a unit's output will be dropped
float thresh;
// Mask containing the drop out coefficients in the forward pass
Func mask;
DropOut(float _thresh, Layer* in) : Layer(in) {
thresh = _thresh;
Func in_f = in_layer->forward;
// Define forward
// See if there is a better way to do this
Expr scale = 1.0f/(1.0f - thresh);
switch(in_layer->out_dims()) {
case 1:
mask(x) = select(random_float() > thresh,
scale, 0.0f);
forward(x) = mask(x) * in_f(x);
break;
case 2:
mask(x, y) = select(random_float() > thresh,
scale, 0.0f);
forward(x, y) = mask(x, y) * in_f(x, y);
break;
case 3:
mask(x, y, z) = select(random_float() > thresh,
scale, 0.0f);
forward(x, y, z) = mask(x, y, z) * in_f(x, y, z);
break;
case 4:
mask(x, y, z, w) = select(random_float() > thresh,
scale, 0.0f);
forward(x, y, z, w) = mask(x, y, z, w) * in_f(x, y, z, w);
break;
default:
assert(0);
}
// The mask has to be stored at root. It will be incorrect to
// recompute the mask since the random number generator will
// generate different values.
mask.compute_root();
}
void back_propagate(Func dout) {
assert(dout.defined());
if(!f_in_grad.defined()) {
switch(in_layer->out_dims()) {
case 1:
f_in_grad(x) = dout(x) * mask(x);
break;
case 2:
f_in_grad(x, y) = dout(x, y) * mask(x, y);
break;
case 3:
f_in_grad(x, y, z) = dout(x, y, z) * mask(x, y, z);
break;
case 4:
f_in_grad(x, y, z, w) =
dout(x, y, z, w) * mask(x, y, z, w);
break;
default:
assert(0);
}
in_layer->back_propagate(f_in_grad);
}
}
int out_dims() { return in_layer->out_dims();}
int out_dim_size( int i) {
return in_layer->out_dim_size(i);
}
};
class ReLU: public Layer {
public:
Var x, y, z, w;
int vec_len = 8;
ReLU(Layer* in, int schedule = 0) : Layer(in) {
Func in_f = in_layer->forward;
// Define forward
switch(in_layer->out_dims()) {
case 1:
forward(x) = max(0, in_f(x));
// schedule
if (schedule) {
//forward.compute_root();
//forward.vectorize(x, vec_len);
}
break;
case 2:
forward(x, y) = max(0, in_f(x, y));
// schedule
if (schedule) {
//forward.compute_root();
//forward.vectorize(x, vec_len);
//forward.parallel(y);
}
break;
case 3:
forward(x, y, z) = max(0, in_f(x, y, z));
// schedule
if (schedule) {
//forward.compute_root();
//forward.vectorize(x, vec_len);
//forward.parallel(z);
}
break;
case 4:
forward(x, y, z, w) = max(0, in_f(x, y, z, w));
// schedule
if (schedule) {
//forward.compute_root();
//forward.vectorize(x, vec_len);
//forward.parallel(w);
}
break;
default:
assert(0);
}
}
void back_propagate(Func dout) {
assert(dout.defined());
if (!f_in_grad.defined()) {
Func in_f = in_layer->forward;
switch(in_layer->out_dims()) {
case 1:
f_in_grad(x) = dout(x) * select( in_f(x) > 0, 1, 0);
break;
case 2:
f_in_grad(x, y) = dout(x, y) *
select( in_f(x, y) > 0, 1, 0);
break;
case 3:
f_in_grad(x, y, z) = dout(x, y, z) *
select(in_f(x, y, z) > 0, 1, 0);
break;
case 4:
f_in_grad(x, y, z, w) = dout(x, y, z, w) *
select(in_f(x, y, z, w) > 0, 1, 0);
break;
default:
assert(0);
}
in_layer->back_propagate(f_in_grad);
}
}
int out_dims() { return in_layer->out_dims();}
int out_dim_size( int i) {
return in_layer->out_dim_size(i);
}
};
class Convolutional: public Layer {
public:
Var x, y, z, n;
// number of channels, height and width of the input to the layer
int num_samples, in_ch, in_h, in_w;
// number of filters, filter height, filter width, padding and stride
int num_f, f_h, f_w, pad, stride;
float reg;
Func f_in_bound;
// parameters for scheduling
Var y_t, z_t, par;
int o_block_size = 16;
int y_block_size = 32;
int vec_len = 8;
Convolutional(int _num_f, int _f_w, int _f_h, int _pad, int _stride,
float _reg, Layer* in, int schedule=0) : Layer(in) {
assert(in_layer->out_dims() == 4);
num_samples = in_layer->out_dim_size(3);
in_ch = in_layer->out_dim_size(2);
in_h = in_layer->out_dim_size(1);
in_w = in_layer->out_dim_size(0);
reg = _reg;
assert( (in_h + 2 * _pad - _f_h) % _stride == 0);
assert( (in_w + 2 * _pad - _f_w) % _stride == 0);
num_f = _num_f; f_h = _f_h; f_w = _f_w;
pad = _pad; stride = _stride;
// Boundary condition
// This creates a padded input and avoids checking boundary
// conditions while computing the actual convolution
f_in_bound = BoundaryConditions::constant_exterior(
in_layer->forward, 0,
0, in_w,
0, in_h);
// Create parameters
Image<float> W(f_w, f_h, in_ch, num_f), b(num_f);
params.push_back(W); params.push_back(b);
// Define forward
RDom r(0, f_w, 0, f_h, 0, in_ch);
// Initialize to bias
forward(x, y, z, n) = b(z);
forward(x, y, z, n) += W(r.x, r.y, r.z, z) *
f_in_bound(x*stride + r.x - pad,
y*stride + r.y - pad,
r.z, n);
if (schedule) {
forward.update().reorder(y, x, r.z);
// blocking spatially with vectorization
//f_in_bound.compute_at(f_simple, n);
forward.compute_root();
forward.fuse(z, n, par).parallel(par);
forward.update().reorder(x, y, r.z);
forward.update().split(y, y, y_t, y_block_size);
forward.update().split(z, z, z_t, o_block_size);
forward.update().reorder(y_t, z_t, y, r.z, z);
forward.update().vectorize(x, vec_len);
forward.update().fuse(z, n, par).parallel(par);
//forward.update().fuse(y, par, par).parallel(par);
forward.update().unroll(r.x);
forward.update().unroll(r.y);
// There are performance implications to this and seems to
// be incompatible with some schedules. Have to investigate
// this more closely.
//f_in_bound.compute_at(forward, n);
f_in_bound.compute_at(forward, z_t);
}
}
void back_propagate(Func dout) {
assert(dout.defined());
if (!f_in_grad.defined()) {
Func dW, db;
int out_w = this->out_dim_size(0);
int out_h = this->out_dim_size(1);
Image<float> W = params[0];
Image<float> b = params[1];
RDom r1(0, out_w, 0, out_h, 0, num_samples);
// intialize to regularized weights
dW(x, y, z, n) = cast(dout.output_types()[0],
reg * W(x, y, z, n));
dW(x, y, z, n) += dout(r1.x, r1.y, n, r1.z) *
f_in_bound(r1.x*stride + x - pad,
r1.y*stride + y - pad,
z, r1.z);
f_param_grads.push_back(dW);
// intialize to zero
db(x) = cast(dout.output_types()[0], 0);
db(x) += dout(r1.x, r1.y, x, r1.z);
f_param_grads.push_back(db);
RDom r2(0, num_f);
// intialize to zero
f_in_grad(x, y, z, n) = cast(dout.output_types()[0], 0);
f_in_grad(x, y, z, n) += dout(x, y, r2.x, n) * W(x, y, z, r2.x);
// Create storage for gradients and caching params
Image<float> W_grad(f_w, f_h, in_ch, num_f);
param_grads.push_back(W_grad);
Image<float> W_cache(f_w, f_h, in_ch, num_f);
params_cache.push_back(W_cache);
Image<float> b_grad(num_f);
param_grads.push_back(b_grad);
Image<float> b_cache(num_f);
params_cache.push_back(b_cache);
in_layer->back_propagate(f_in_grad);
}
}
int out_dims() { return 4; }
int out_dim_size( int i) {
assert(i < 4);
int size = 0;
if (i == 0)
size = (1 + (in_w + 2 * pad - f_w)/stride);
else if (i == 1)
size = (1 + (in_h + 2 * pad - f_h)/stride);
else if (i == 2)
size = num_f;
else if (i == 3)
size = num_samples;
return size;
}
};
class MaxPooling: public Layer {
public:
// number of color channels in input in_c
// height and width of the input in_h, in_w
int num_samples, in_ch, in_h, in_w;
// height and width of the pool
// stride at which the pooling is applied
int p_h, p_w, stride;
Var x, y, z, n;
// parameters for scheduling
Var par;
int vec_len = 8;
MaxPooling(int _p_w, int _p_h, int _stride, Layer* in,
int schedule = 0) : Layer(in) {
assert(in_layer->out_dims() == 4);
num_samples = in_layer->out_dim_size(3);
in_ch = in_layer->out_dim_size(2);
in_h = in_layer->out_dim_size(1);
in_w = in_layer->out_dim_size(0);
assert((in_h - _p_h) % _stride == 0);
assert((in_w - _p_w) % _stride == 0);
p_w = _p_w; p_h = _p_h; stride = _stride;
// Define forward
Func in_f = in_layer->forward;
RDom r(0, p_w, 0, p_h);
forward(x, y, z, n) = maximum(in_f(x * stride + r.x,
y * stride + r.y,
z, n));
if (schedule) {
forward.vectorize(x, vec_len);
forward.compute_root().fuse(z, n, par).parallel(par);
}
}
void back_propagate(Func dout) {
assert(dout.defined());
if (!f_in_grad.defined()) {
Func in_f = in_layer->forward;
Func pool_argmax;
RDom r1(0, p_w, 0, p_h);
pool_argmax(x, y, z, n) = argmax(in_f(x * stride + r1.x,
y * stride + r1.y,
z, n));
pool_argmax.compute_root();
RDom r2(0, this->out_dim_size(0), 0, this->out_dim_size(1));
f_in_grad(x, y, z, n) = cast(dout.output_types()[0], 0);
Expr x_bin = clamp(r2.x * stride +
pool_argmax(r2.x, r2.y, z, n)[0], 0, in_w);
Expr y_bin = clamp(r2.y * stride +
pool_argmax(r2.x, r2.y, z, n)[1], 0, in_h);
f_in_grad(x_bin, y_bin, z, n) += dout(r2.x, r2.y, z, n);
in_layer->back_propagate(f_in_grad);
}
}
int out_dims() { return 4; }
int out_dim_size( int i) {
assert(i < 4);
int size = 0;
if (i == 0)
size = 1 + ((in_w - p_w)/stride);
else if (i == 1)
size = 1 + ((in_h - p_h)/stride);
else if (i == 2)
size = in_layer->out_dim_size(2);
else if (i == 3)
size = num_samples;
return size;
}
};
class DataLayer: public Layer {
public:
int in_w, in_h, in_ch, num_samples;
Var x, y, z, n;
DataLayer(int _in_w, int _in_h, int _in_ch, int _num_samples,
Image<float> &data) : Layer(0) {
in_w = _in_w; in_h = _in_w; in_ch = _in_ch;
num_samples = _num_samples;
// Define forward
forward(x, y, z, n) = data(x, y, z, n);
}
// Nothing to propagate
void back_propagate(Func dout) { assert(dout.defined()); return; }
int out_dims() { return 4; }
int out_dim_size( int i) {
assert(i < 4);
int size = 0;
if (i == 0)
size = in_w;
else if (i == 1)
size = in_h;
else if (i == 2)
size = in_ch;
else if (i == 3)
size = num_samples;
return size;
}
};
class Flatten: public Layer {
public:
Var x, y, z, n;
int out_width;
int num_samples;
Flatten(Layer *in, int schedule = 0) : Layer(in) {
assert(in->out_dims() >= 2 && in->out_dims() <= 4);
num_samples = in_layer->out_dim_size(in_layer->out_dims() - 1);
// Define forward
if (in_layer->out_dims() == 2) {
out_width = in_layer->out_dim_size(0);
forward(x, n) = in_layer->forward(x, n);
} else if (in_layer->out_dims() == 3) {
int w = in_layer->out_dim_size(0);
int h = in_layer->out_dim_size(1);
out_width = w * h;
forward(x, n) = in_layer->forward(x%w, (x/w), n);
} else if (in_layer->out_dims() == 4) {
int w = in_layer->out_dim_size(0);
int h = in_layer->out_dim_size(1);
int c = in_layer->out_dim_size(2);
out_width = w * h * c;
forward(x, n) = in_layer->forward(x%w, (x/w)%h, x/(w*h), n);
}
// schedule
if (schedule) {
forward.compute_root().parallel(n);
}
}
void back_propagate(Func dout) {
assert(dout.defined());
if(!f_in_grad.defined()) {
if(in_layer->out_dims() == 2)
f_in_grad(x, n) = dout(x, n);
else if(in_layer->out_dims() == 3) {
int w = in_layer->out_dim_size(0);
f_in_grad(x, y, n) = dout(y*w + x, n);
} else if (in_layer->out_dims() == 4) {
int w = in_layer->out_dim_size(0);
int h = in_layer->out_dim_size(1);
f_in_grad(x, y, z, n) = dout(z*w*h + y*w + x, n);
}
in_layer->back_propagate(f_in_grad);
}
}
int out_dims() { return 2; }
int out_dim_size( int i) {
assert(i < 2);
int size = 0;
if (i == 0)
size = out_width;
else if (i == 1)
size = num_samples;
return size;
}
};
class BatchNorm: public Layer {
public:
Var x, y, z, w;
int vec_len = 8;
float epsilon;
int num_samples, in_ch, in_h, in_w;
Func std;
Func normalize;
BatchNorm(Layer* in, float _epsilon = 0.001, int schedule = 0) : Layer(in) {
Func in_f = in_layer->forward;
epsilon = _epsilon;
num_samples = in_layer->out_dim_size(3);
in_ch = in_layer->out_dim_size(2);
in_h = in_layer->out_dim_size(1);
in_w = in_layer->out_dim_size(0);
// Define forward
Func c_mean;
RDom r_m(0, num_samples);
c_mean(x, y, z) = sum(in_f(x, y, z, r_m)) / num_samples;
RDom r_n(0, num_samples);
normalize(x, y, z) = sum((in_f(x, y, z, r_n) - c_mean(x, y, z)) * (in_f(x, y, z, r_n) - c_mean(x, y, z))) / num_samples;
std(x, y, z, w) = (in_f(x, y, z, w) - c_mean(x, y, z)) / sqrt(normalize(x, y, z) + epsilon);
std.compute_root();
// Create parameters
Image<float> W(in_w, in_h, in_ch), b(in_w, in_h, in_ch);
params.push_back(W); params.push_back(b);
forward(x, y, z, w) = b(x, y, z) + W(x, y, z) * std(x, y, z, w);
//TODO: Implement schedule for optimizing speed
if (schedule) {
}
}
void back_propagate(Func dout) {
assert(dout.defined());
if (!f_in_grad.defined()) {
Func in_f = in_layer->forward;
switch(in_layer->out_dims()) {
case 1:
break;
case 2:
break;
case 3:
break;
case 4: {
Func dW, db;
RDom r(0, num_samples);
//Compute db for the function
db(x, y, z) = cast(dout.output_types()[0], 0);
db(x, y, z) += sum(dout(x, y, z, r));
//Var fused_1;
f_param_grads.push_back(db);
//Compute dW for the function
Func mult_1;
mult_1(x, y, z, w) = dout(x, y, z, w) * std(x, y, z, w);
std.compute_root();
dW(x, y, z) = cast(dout.output_types()[0], 0);
dW(x, y, z) += sum(mult_1(x, y, z, r));
f_param_grads.push_back(dW);
//Compute dout for the function
Image<float> gamma = params[0];
Func dxhat;
dxhat(x, y, z, w) = dout(x, y, z, w) * gamma(x, y, z);
Func inv_var;
inv_var(x, y, z) = 1 / (num_samples * sqrt(normalize(x, y, z) + epsilon));
inv_var.compute_root();
Func mult_2;
mult_2(x, y, z, w) = dxhat(x, y, z, w) * std(x, y, z, w);
mult_2.compute_root();
f_in_grad(x, y, z, w) = (num_samples * dxhat(x, y, z, w) - sum(dxhat(x, y, z, r)) - std(x, y, z, w) * sum(mult_2(x, y, z, r))) * inv_var(x, y, z);
//f_in_grad.compute_root();
//f_in_grad.trace_stores();
// Create storage for gradients and caching params
Image<float> W_grad(in_w, in_h, in_ch);
param_grads.push_back(W_grad);
Image<float> W_cache(in_w, in_h, in_ch);
params_cache.push_back(W_cache);
Image<float> b_grad(in_w, in_h, in_ch);
param_grads.push_back(b_grad);
Image<float> b_cache(in_w, in_h, in_ch);
params_cache.push_back(b_grad);
break;
}
default:
assert(0);
}
in_layer->back_propagate(f_in_grad);
}
}
int out_dims() { return in_layer->out_dims();}
int out_dim_size( int i) {
return in_layer->out_dim_size(i);
}
};