-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathinference.py
974 lines (918 loc) · 48.7 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
"""
Created on Oct 10, 2017
@author: Siyuan Huang
Inference process for generating parse graph
"""
import config
import os
import shutil
import copy
from camera import multi_project3dPtsToOpengl, project3dPtsToOpengl, intersection_cuboid, center_to_corners, intersection_over_layout, intersection_2d_ratio, rotation_matrix_3d_z
import numpy as np
import sys
from osmesa.render_scene import render_scene, read_metadata, alignment_check
from sklearn.metrics import mean_squared_error
import random
import pickle
from mcmc import metropolis_hasting
from object_loader import OBJ_SAVER_SIMPLIFIED
import scipy.io
import time
import json
import matplotlib.pyplot as plt
from shapely.geometry import Point
from shapely.geometry.polygon import Polygon
from camera import rectangle_shrink
from sample_human import HumanSample
paths = config.Paths()
metadata_root = paths.metadata_root
proposal_root = paths.proposal_root
inference_root = os.path.join(proposal_root, 'inference')
stats_root = os.path.join(metadata_root, 'sunrgbd_stats')
save_root = 'result'
class Inference(object):
def __init__(self, pg, est_depth, est_seg, est_normal, lambda_depth, lambda_seg, lambda_normal, save_path):
self.pg = pg
self.est_depth = est_depth
self.est_seg = est_seg
self.est_normal = est_normal
self.lambda_depth = lambda_depth
self.lambda_seg = lambda_seg
self.lambda_normal = lambda_normal
self.save_path = save_path
self.energy_landscape = list()
if pg.objects == None:
self.num_object = 0
pg._objects = list()
else:
self.num_object = len(pg.objects)
self.obj_info = list()
self.dataset_path = 'data'
self.model_path = os.path.join(self.dataset_path, 'models_scaled')
self.scale = 1.0
self.normal_scale = 1.0
self.record = list()
self.inference_step = 0
self.count_prior = False
self.bool_intersection = np.zeros((self.num_object, 1))
with open(os.path.join(stats_root, 'size', 'size_sampler.pickle'), 'rb') as f:
self.size_sampler = pickle.load(f)
f.close()
with open(os.path.join(stats_root, 'size', 'size_mean_cov.pickle'), 'rb') as f:
self.size_mean_cov = pickle.load(f)
# init the object size of terminal nodes
# Transfer the information in all the terminal nodes to OpenGL coordinates
@staticmethod
def pg_to_opengl(pg):
pg = copy.deepcopy(pg)
K = pg.camera.K
for obj_index, object in enumerate(pg.objects):
if object.terminal is None:
continue
new_center = project3dPtsToOpengl(object.terminal.obj_center, pg.layouts.R_C, pg.layouts.T_C).T
object.terminal.set_center(new_center)
# change size to opengl coordinates
object.terminal.set_size(object.terminal.obj_size[np.array([0, 2, 1])])
floor = multi_project3dPtsToOpengl(np.array(pg.layouts.floor), pg.layouts.R_C, pg.layouts.T_C)
pg.layouts.set_floor(floor)
ceiling = multi_project3dPtsToOpengl(np.array(pg.layouts.ceiling), pg.layouts.R_C, pg.layouts.T_C)
pg.layouts.set_ceiling(ceiling)
mwall = multi_project3dPtsToOpengl(np.array(pg.layouts.mwall), pg.layouts.R_C, pg.layouts.T_C)
pg.layouts.set_mwall(mwall)
lwall = multi_project3dPtsToOpengl(np.array(pg.layouts.lwall), pg.layouts.R_C, pg.layouts.T_C)
pg.layouts.set_lwall(lwall)
rwall = multi_project3dPtsToOpengl(np.array(pg.layouts.rwall), pg.layouts.R_C, pg.layouts.T_C)
pg.layouts.set_rwall(rwall)
return pg
def load_obj(self, pg):
pg = copy.deepcopy(pg)
print 'loading CAD model'
for i in range(self.num_object):
for j in range(len(pg.objects[i].proposals)):
pg.objects[i].set_terminal(pg.objects[i].proposals[j])
obj_id = pg.objects[i].terminal.obj_id
row = read_metadata(obj_id)
if row is None:
continue
up_string = row[4]
front_string = row[5]
unit = row[6]
if unit == "":
print 'no unit'
continue
if not alignment_check(up_string, front_string):
continue
print obj_id
filename = os.path.join(self.model_path, obj_id + '.obj')
info = OBJ_SAVER_SIMPLIFIED(filename)
self.obj_info.append({'info': info})
print '{} exists and align success'.format(pg.objects[i].obj_type)
break
print 'CAD model loaded successfully'
layout_type = 'mwall'
filename = os.path.join(self.model_path, 'suncgwall.obj')
info = OBJ_SAVER_SIMPLIFIED(filename, layout_type=layout_type)
self.obj_info.append({'info': info})
layout_type = 'floor'
filename = os.path.join(self.model_path, 'suncgfloor.obj')
info = OBJ_SAVER_SIMPLIFIED(filename, layout_type=layout_type)
self.obj_info.append({'info': info})
layout_type = 'ceiling'
filename = os.path.join(self.model_path, 'suncgfloor.obj')
info = OBJ_SAVER_SIMPLIFIED(filename, layout_type=layout_type)
self.obj_info.append({'info': info})
layout_type = 'lwall'
filename = os.path.join(self.model_path, 'suncgsidewall.obj')
info = OBJ_SAVER_SIMPLIFIED(filename, layout_type=layout_type)
self.obj_info.append({'info': info})
layout_type = 'rwacll'
filename = os.path.join(self.model_path, 'suncgsidewall.obj')
info = OBJ_SAVER_SIMPLIFIED(filename, layout_type=layout_type)
self.obj_info.append({'info': info})
return pg
def load_result(self, pg):
pg = copy.deepcopy(pg)
print 'loading CAD model'
for i in range(self.num_object):
obj_id = pg.objects[i].terminal.obj_id
filename = os.path.join(self.model_path, obj_id + '.obj')
info = OBJ_SAVER_SIMPLIFIED(filename)
self.obj_info.append({'info': info})
print '{} exists and align success'.format(pg.objects[i].obj_type)
print 'loading CAD model successfully'
layout_type = 'mwall'
filename = os.path.join(self.model_path, 'suncgwall.obj')
info = OBJ_SAVER_SIMPLIFIED(filename, layout_type=layout_type)
self.obj_info.append({'info': info})
layout_type = 'floor'
filename = os.path.join(self.model_path, 'suncgfloor.obj')
info = OBJ_SAVER_SIMPLIFIED(filename, layout_type=layout_type)
self.obj_info.append({'info': info})
layout_type = 'ceiling'
filename = os.path.join(self.model_path, 'suncgfloor.obj')
info = OBJ_SAVER_SIMPLIFIED(filename, layout_type=layout_type)
self.obj_info.append({'info': info})
layout_type = 'lwall'
filename = os.path.join(self.model_path, 'suncgsidewall.obj')
info = OBJ_SAVER_SIMPLIFIED(filename, layout_type=layout_type)
self.obj_info.append({'info': info})
layout_type = 'rwacll'
filename = os.path.join(self.model_path, 'suncgsidewall.obj')
info = OBJ_SAVER_SIMPLIFIED(filename, layout_type=layout_type)
self.obj_info.append({'info': info})
return pg
def one_step_support_initial(self, pg_ori, e_total_ori, obj_index):
pg = copy.deepcopy(pg_ori)
with open(os.path.join(stats_root, 'support', 'support_relation.json'), 'r') as f:
support_relation = json.load(f)
f.close()
obj_type = pg.objects[obj_index].obj_type
if obj_type == 'vanity':
supporting = support_relation['bathroomvanity']
else:
supporting = support_relation[obj_type]
num_total = 0
for _, value in supporting.iteritems():
num_total += value
prob_max = 0
prob_max_type = None
for key, value in supporting.iteritems():
supporting[key] = value / float(num_total)
if supporting[key] > prob_max:
prob_max = supporting[key]
prob_max_type = key
distance_floor = pg.objects[obj_index].terminal.obj_center[2] - pg.layouts.floor[0][2]
if prob_max_type == 'wall' or distance_floor > 2.0:
print '{} is supported by wall'.format(obj_type)
pg.objects[obj_index]._supported_obj = 'wall'
return pg, e_total_ori
support_energy = list()
for j in range(self.num_object):
if obj_type == pg.objects[j].obj_type:
support_energy.append(0)
elif pg.objects[j].terminal.obj_center[2] > pg.objects[obj_index].terminal.obj_center[2]:
support_energy.append(0)
else:
if pg.objects[j].obj_type not in supporting.keys() or supporting[pg.objects[j].obj_type] < 1 / 10.0:
prior_energy = 1 / 10.0
else:
prior_energy = supporting[pg.objects[j].obj_type]
cu1 = center_to_corners(pg.objects[j].terminal.obj_center, pg.objects[j].terminal.obj_size, pg.objects[j].terminal.angle)
cu2 = center_to_corners(pg.objects[obj_index].terminal.obj_center, pg.objects[obj_index].terminal.obj_size, pg.objects[obj_index].terminal.angle)
area_intersect_ratio = 1 - intersection_2d_ratio(cu1, cu2)
height_distance = np.abs(pg.objects[j].terminal.obj_center[2] + pg.objects[j].terminal.obj_size[2] / 2 - (pg.objects[obj_index].terminal.obj_center[2] - pg.objects[obj_index].terminal.obj_size[2] / 2))
likelihood_energy = np.exp(-height_distance*3-area_intersect_ratio)
print pg.objects[obj_index].obj_type, pg.objects[j].obj_type, height_distance, area_intersect_ratio
support_energy.append(prior_energy * likelihood_energy)
# compute the supporting relation with the floor
prior_energy = supporting['floor']
likelihood_energy = np.exp(-distance_floor*3)
support_energy.append(prior_energy * likelihood_energy)
# compute the supporting relation with the wall
supported_index = support_energy.index(max(support_energy))
if supported_index != len(support_energy) - 1:
pg.objects[obj_index]._supported_obj = pg.objects[supported_index].obj_type
pg.objects[supported_index]._supporting_obj = pg.objects[obj_index].obj_type
height_distance = pg.objects[obj_index].terminal.obj_center[2] - pg.objects[supported_index].terminal.obj_center[2]
move_dis = height_distance - (pg.objects[obj_index].terminal.obj_size[2] +
pg.objects[supported_index].terminal.obj_size[2]) / 2
print move_dis
pg.objects[obj_index].terminal.move_downface(move_dis / 2)
pg.objects[supported_index].terminal.move_upface(move_dis / 2)
print '{} is supported by {}'.format(obj_type, pg.objects[supported_index].obj_type)
else:
pg.objects[obj_index]._supported_obj = 'floor'
print '{} is supported by floor'.format(obj_type)
print pg.objects[obj_index].terminal.obj_center[2], pg.layouts.floor[0][2], pg.objects[obj_index].terminal.obj_size[2] / 2
height_distance = pg.objects[obj_index].terminal.obj_center[2] - pg.layouts.floor[0][2]
move_dis = height_distance - pg.objects[obj_index].terminal.obj_size[2] / 2
print move_dis
pg.objects[obj_index].terminal.move_downface(move_dis)
e_total = self.compute_total_likelihood(pg, if_vis=True) + self.compute_prior(pg)
return pg, e_total
def support_initial(self, pg_ori, e_total_ori):
for i in range(self.num_object):
pg_ori, e_total_ori = self.one_step_support_initial(pg_ori, e_total_ori, i)
return pg_ori, e_total_ori
def record_accept(self):
accepted_times = len(self.energy_landscape)
shutil.copy(os.path.join(self.save_path, 'normal.png'), os.path.join(self.save_path, 'normal', 'normal_accepted_' + str(accepted_times) + '.png'))
shutil.copy(os.path.join(self.save_path, 'depth.png'), os.path.join(self.save_path, 'depth', 'depth_accepted_' + str(accepted_times) + '.png'))
shutil.copy(os.path.join(self.save_path, 'segmentation.png'), os.path.join(self.save_path, 'seg', 'seg_accepted_' + str(accepted_times) + '.png'))
# compute total likelihood, return energy
def compute_total_likelihood(self, pg, show_energy=False, if_vis=True):
self.inference_step += 1
render_depth = render_scene(pg=self.pg_to_opengl(pg), save_path=self.save_path, if_vis=if_vis, render_type='depth', obj_info=self.obj_info)
render_seg = render_scene(pg=self.pg_to_opengl(pg), save_path=self.save_path, if_vis=if_vis, render_type='segmentation', obj_info=self.obj_info)
render_normal = render_scene(pg=self.pg_to_opengl(pg), save_path=self.save_path, if_vis=if_vis, render_type='normal', obj_info=self.obj_info)
render_normal = render_normal / 255.0 * 2 - 1
e_normal = self.compute_normal_error(render_normal)
e_depth = self.compute_depth_error(render_depth)
e_seg = self.compute_seg_error(render_seg)
e_total = e_depth + e_seg + e_normal
if show_energy:
print 'e_total is :{}. e_depth is :{}. e_seg is :{}. e_normal is :{}'.format(e_total, e_depth, e_seg, e_normal)
return e_total
def compute_depth_error(self, depth):
depth_error_map = mean_squared_error(self.est_depth, depth)
fig = plt.figure()
ii = plt.imshow(np.abs(self.est_depth - depth), interpolation='nearest')
fig.colorbar(ii)
plt.savefig(os.path.join(self.save_path, 'depth_error.png'))
plt.close()
return self.lambda_depth * depth_error_map
def compute_seg_error(self, seg):
m, n = seg.shape[:2]
seg_error_map = self.est_seg != seg
scipy.io.savemat(os.path.join(self.save_path, 'seg_error.mat'), mdict={'seg': seg_error_map})
return self.lambda_seg * np.sum(seg_error_map) / float(m * n)
def compute_normal_error(self, normal):
m, n = normal.shape[:2]
normal_error_map = self.est_normal - normal
scipy.io.savemat(os.path.join(self.save_path, 'normal_error.mat'), mdict={'normal': normal_error_map})
return self.lambda_normal * np.sum(normal_error_map ** 2) / (m * n)
# compute total prior, return energy
def compute_prior(self, pg):
if self.count_prior:
# prior for the size of the object
pg = copy.deepcopy(pg)
size_prior = 0
area_conf = 0
for index in range(self.num_object):
size = copy.deepcopy(pg.objects[index].terminal.obj_size) / 2
obj_type = copy.deepcopy(pg.objects[index].obj_type)
mean, cov = self.size_mean_cov[obj_type]
for i in range(3):
energy = np.abs(size[i] - mean[i]) / mean[i] * 0.1
size_prior += energy
self.bool_intersection = np.zeros((self.num_object, 1))
for i in range(self.num_object - 1):
for j in range(i + 1, self.num_object):
obj1 = pg.objects[i].terminal
obj2 = pg.objects[j].terminal
cu1 = center_to_corners(obj1.obj_center, obj1.obj_size, obj1.angle)
cu2 = center_to_corners(obj2.obj_center, obj2.obj_size, obj2.angle)
area_intersect = intersection_cuboid(cu1, cu2)
if area_intersect > 0:
print 'area of intersection between {} and {} is: {}'.format(pg.objects[i].obj_type,
pg.objects[j].obj_type,
area_intersect)
if area_intersect > 1e-6:
self.bool_intersection[i] = 1
self.bool_intersection[j] = 1
area_conf += area_intersect
for i in range(self.num_object):
cu1 = center_to_corners(pg.objects[i].terminal.obj_center, pg.objects[i].terminal.obj_size,
pg.objects[i].terminal.angle)
cu2 = np.array(pg.layouts.corners)[[4, 5, 6, 7, 0, 1, 2, 3], :]
area_intersect_over_layout = intersection_over_layout(cu1, cu2)
if area_intersect_over_layout > 0:
print '{} out of the layout with {}'.format(pg.objects[i].obj_type, area_intersect_over_layout)
area_conf += area_intersect_over_layout
if area_intersect_over_layout > 1e-6:
self.bool_intersection[i] = 1
return area_conf + size_prior
else:
return 0
# compute depth posterior according to the parse graph
def depth_likelihood(self, pg):
depth = render_scene(pg=self.pg_to_opengl(pg), save_path=self.save_path, render_type='depth', obj_info=self.obj_info)
depth_like = self.compute_depth_error(depth)
return depth_like
# compute seg posterior according to the parse graph
def seg_likelihood(self, pg):
seg = render_scene(pg=self.pg_to_opengl(pg), save_path=self.save_path, render_type='segmentation', obj_info=self.obj_info)
seg_like = self.compute_seg_error(seg)
return seg_like
# compute normal posterior according to the parse graph
def normal_likelihood(self, pg):
normal = render_scene(pg=self.pg_to_opengl(pg), save_path=self.save_path, render_type='normal', obj_info=self.obj_info)
normal = normal / 255.0 * 2 - 1
normal_like = self.compute_normal_error(normal)
return normal_like
# propose the moving method
def q_moving_proposal(self):
r = random.random()
if r < 0.95:
return 0, 0.95 # propose gradient descent algorithm
if 0.95 <= r <= 1:
return 1, 0.05 # propose gradient ascent algorithm
def one_step_layout_moving(self, pg_ori, e_total_ori, T, move_type):
print 'adjust {} with T = {} and scale = {}'.format(move_type, T, self.scale)
corner_ori = pg_ori.layouts.corners
corner_des = copy.deepcopy(corner_ori)
delta = 0.05 * self.scale
rotate_angle = 5.625 / 180 * np.pi * self.scale
# in our normal coordinates,
if move_type == 'mwall': # move mwall
for i in [0, 1, 5, 4]:
corner_des[i] += [0, delta, 0]
elif move_type == 'lwall':
for i in [1, 2, 6, 5]:
corner_des[i] += [delta, 0, 0]
elif move_type == 'rwall':
for i in [0, 3, 7, 4]:
corner_des[i] += [delta, 0, 0]
elif move_type == 'floor':
for i in [0, 1, 2, 3]:
corner_des[i] += [0, 0, delta]
elif move_type == 'ceiling':
for i in [4, 5, 6, 7]:
corner_des[i] += [0, 0, delta]
elif move_type == 'rotate':
layout_center = 0.5 * (corner_des[0] + corner_des[2])
layout_center[2] = 0
corner_des = rotation_matrix_3d_z(rotate_angle).dot(np.array(corner_des - layout_center).T).T + layout_center
pg_des = copy.deepcopy(pg_ori)
pg_des.layouts.set_corners(corner_des)
e_total_des = self.compute_total_likelihood(pg_des) + self.compute_prior(pg_des)
gradient = (e_total_ori - e_total_des) / np.abs(delta)
gradient_type, move_prob = self.q_moving_proposal()
# generate pg_new
if move_type == 'ceiling':
move_scale = 0.5 * self.scale
elif move_type == 'floor':
move_scale = 0.1 * self.scale
else:
move_scale = 0.3 * self.scale
if gradient_type == 0: # do gradient descent
move_dis = gradient * move_scale
rotate_angle *= np.sign(gradient)
else:
move_dis = - gradient * move_scale
rotate_angle *= -np.sign(gradient)
# avoid too large gradient
if np.abs(move_dis) > 0.5:
move_dis = 0.2
corner_new = copy.deepcopy(pg_ori.layouts.corners)
if move_type == 'mwall': # move mwall
for i in [0, 1, 5, 4]:
corner_new[i] += [0, move_dis, 0]
elif move_type == 'lwall':
for i in [1, 2, 6, 5]:
corner_new[i] += [move_dis, 0, 0]
elif move_type == 'rwall':
for i in [0, 3, 7, 4]:
corner_new[i] += [move_dis, 0, 0]
elif move_type == 'floor':
for i in [0, 1, 2, 3]:
corner_new[i] += [0, 0, move_dis]
elif move_type == 'ceiling':
for i in [4, 5, 6, 7]:
corner_new[i] += [0, 0, move_dis]
elif move_type == 'rotate':
layout_center = 0.5 * (corner_new[0] + corner_new[2])
layout_center[2] = 0
corner_new = rotation_matrix_3d_z(rotate_angle).dot(np.array(corner_new - layout_center).T).T + layout_center
pg_new = copy.deepcopy(pg_ori)
pg_new.layouts.set_corners(corner_new)
e_total_new = self.compute_total_likelihood(pg_new, show_energy=False) + self.compute_prior(pg_new)
accept = metropolis_hasting(e_total_ori, e_total_new, move_prob, 1 - move_prob, T)
if accept:
self.record_accept()
self.energy_landscape.append(e_total_new)
pg_ori = copy.deepcopy(pg_new)
e_total_ori = e_total_new
if move_type == 'mwall':
if move_dis > 0:
print 'move the middle wall to the front, gradient is:{}, move distance is :{}'.format(gradient,
move_dis)
else:
print 'move the middle wall to the back, gradient is:{}, move distance is :{}'.format(gradient,
move_dis)
if move_type == 'lwall' or move_type == 'rwall':
if move_dis > 0:
print 'move the {} to the left, gradient is:{}, move distance is :{}'.format(move_type, gradient,
move_dis)
else:
print 'move the {} to the right, gradient is:{}, move distance is :{}'.format(move_type, gradient,
move_dis)
if move_type == 'floor' or move_type == 'ceiling':
if move_dis > 0:
print 'move the {} to the up, gradient is:{}, move distance is :{}'.format(move_type, gradient,
move_dis)
else:
print 'move the {} to the down, gradient is:{}, move distance is :{}'.format(move_type, gradient,
move_dis)
if move_type == 'rotate':
print 'rotate the layout with {}'.format(rotate_angle / np.pi * 180)
self.record.append(1)
else:
self.record.append(0)
return pg_ori, e_total_ori
# adjust layout
def layout_adjust(self, pg_ori, e_total_ori, T):
r = random.random()
if 0 < r < 0.2:
move_type = 'rotate'
elif 0.2 < r <= 0.4:
move_type = 'mwall'
elif 0.4 < r <= 0.6:
move_type = 'lwall'
elif 0.6 < r <= 0.8:
move_type = 'rwall'
elif 0.8 < r <= 0.9:
move_type = 'ceiling'
elif 0.9 < r <= 1:
move_type = 'floor'
# move_type = 'rotate'
return self.one_step_layout_moving(pg_ori, e_total_ori, T, move_type)
def one_step_object_adjust(self, pg_ori, e_total_ori, T, move_object, move_type, move_face=None):
print 'adjust {} with {} for object {}, T = {}, scale ={}'.format(move_type, move_face, pg_ori.objects[move_object].obj_type, T, self.scale)
# translate the object to avoid occlusion between objects
if move_type == 'translate':
size_ori = pg_ori.objects[move_object].terminal.obj_size
if move_face == 'x':
delta = 0.2 * size_ori[0] * self.scale
elif move_face == 'y':
delta = 0.2 * size_ori[1] * self.scale
elif move_face == 'z':
delta = 0.2 * size_ori[2] * self.scale
if pg_ori.objects[move_object]._supported_obj == 'floor':
print 'not moving'
return pg_ori, e_total_ori
pg_des = copy.deepcopy(pg_ori)
if move_face == 'x':
pg_des.objects[move_object].terminal.move_x(delta)
elif move_face == 'y':
pg_des.objects[move_object].terminal.move_y(delta)
elif move_face == 'z':
pg_des.objects[move_object].terminal.move_z(delta)
e_total_des = self.compute_total_likelihood(pg_des, if_vis=False) + self.compute_prior(pg_des)
gradient = (e_total_ori - e_total_des) / np.abs(delta)
if gradient == 0:
return pg_ori, e_total_ori
gradient_type, move_prob = self.q_moving_proposal()
if move_face == 'x':
move_dis = 0.2 * size_ori[0] * self.scale
elif move_face == 'y':
move_dis = 0.2 * size_ori[1] * self.scale
elif move_face == 'z':
move_dis = 0.2 * size_ori[2] * self.scale
move_dis *= np.sign(gradient)
if gradient_type == 1:
move_dis *= -1
pg_new = copy.deepcopy(pg_ori)
if move_face == 'x':
pg_new.objects[move_object].terminal.move_x(move_dis)
elif move_face == 'y':
pg_new.objects[move_object].terminal.move_y(move_dis)
elif move_face == 'z':
pg_new.objects[move_object].terminal.move_z(move_dis)
e_total_new = self.compute_total_likelihood(pg_new, show_energy=True) + self.compute_prior(pg_new)
accept = metropolis_hasting(e_total_ori, e_total_new, move_prob, 1 - move_prob, T)
if accept:
self.record_accept()
self.energy_landscape.append(e_total_new)
pg_ori = copy.deepcopy(pg_new)
e_total_ori = e_total_new
self.record.append(1)
print 'new energy is: {}, gradient is :{}, move_distance is :{}'.format(e_total_new, gradient, move_dis)
elif move_type == 'position':
size_ori = pg_ori.objects[move_object].terminal.obj_size
if move_face in ['rface', 'lface']:
delta = 0.2 * size_ori[0] * self.scale
elif move_face in ['upface', 'downface']:
delta = 0.2 * size_ori[2] * self.scale
elif move_face in ['frontface', 'backface']:
delta = 0.2 * size_ori[1] * self.scale
pg_des = copy.deepcopy(pg_ori)
if move_face == 'rface':
pg_des.objects[move_object].terminal.move_rface(delta)
elif move_face == 'lface':
pg_des.objects[move_object].terminal.move_lface(delta)
elif move_face == 'upface':
pg_des.objects[move_object].terminal.move_upface(delta)
elif move_face == 'downface':
if pg_des.objects[move_object]._supported_obj == 'floor':
print 'not moving'
return pg_ori, e_total_ori
pg_des.objects[move_object].terminal.move_downface(delta)
elif move_face == 'frontface':
pg_des.objects[move_object].terminal.move_frontface(delta)
elif move_face == 'backface':
pg_des.objects[move_object].terminal.move_backface(delta)
e_total_des = self.compute_total_likelihood(pg_des, if_vis=False) + self.compute_prior(pg_des)
gradient = (e_total_ori - e_total_des) / np.abs(delta)
if gradient == 0:
return pg_ori, e_total_ori
gradient_type, move_prob = self.q_moving_proposal()
move_scale = 0.2 * self.scale
if move_face in ['rface', 'lface']:
move_dis = move_scale * size_ori[0]
elif move_face in ['upface', 'downface']:
move_dis = move_scale * size_ori[2]
elif move_face in ['frontface', 'backface']:
move_dis = move_scale * size_ori[1]
move_dis *= np.sign(gradient)
if gradient_type == 1:
move_dis *= -1
pg_new = copy.deepcopy(pg_ori)
if move_face == 'rface':
pg_new.objects[move_object].terminal.move_rface(move_dis)
elif move_face == 'lface':
pg_new.objects[move_object].terminal.move_lface(move_dis)
elif move_face == 'upface':
pg_new.objects[move_object].terminal.move_upface(move_dis)
elif move_face == 'downface':
pg_new.objects[move_object].terminal.move_downface(move_dis)
elif move_face == 'frontface':
pg_new.objects[move_object].terminal.move_frontface(move_dis)
elif move_face == 'backface':
pg_new.objects[move_object].terminal.move_backface(move_dis)
e_total_new = self.compute_total_likelihood(pg_new, show_energy=True) + self.compute_prior(pg_new)
accept = metropolis_hasting(e_total_ori, e_total_new, move_prob, 1 - move_prob, T)
if accept:
self.record_accept()
self.energy_landscape.append(e_total_new)
pg_ori = copy.deepcopy(pg_new)
e_total_ori = e_total_new
self.record.append(1)
print 'new energy is: {}, gradient is :{}, move_distance is :{}'.format(e_total_new, gradient, move_dis)
else:
self.record.append(0)
elif move_type == 'normal':
angle_ori = pg_ori.objects[move_object].terminal.angle
angle_des = copy.deepcopy(angle_ori)
delta = 11.25 * self.scale * self.normal_scale
#
angle_des += delta
pg_des = copy.deepcopy(pg_ori)
pg_des.objects[move_object].terminal.set_angle(angle_des)
e_total_des = self.compute_total_likelihood(pg_des, if_vis=True) + self.compute_prior(pg_des)
gradient_pos = (e_total_ori - e_total_des) / np.abs(delta)
# compute the energy for the negative case
pg_des_neg = copy.deepcopy(pg_ori)
angle_des_neg = copy.deepcopy(angle_ori)
angle_des_neg -= delta
pg_des_neg.objects[move_object].terminal.set_angle(angle_des_neg)
e_total_des_neg = self.compute_total_likelihood(pg_des_neg, if_vis=True) + self.compute_prior(pg_des_neg)
gradient_neg = (e_total_ori - e_total_des_neg) / np.abs(delta)
gradient_type, move_prob = self.q_moving_proposal()
if gradient_neg > gradient_pos:
gradient = gradient_neg
move_scale = -11.25 * self.scale * self.normal_scale
else:
gradient = gradient_pos
move_scale = 11.25 * self.scale * self.normal_scale
if gradient == 0:
return pg_ori, e_total_ori
if gradient_type == 0:
move_dis = np.sign(gradient) * move_scale
else:
move_dis = - np.sign(gradient) * move_scale
angle_new = copy.deepcopy(angle_ori)
angle_new += move_dis
pg_new = copy.deepcopy(pg_ori)
pg_new.objects[move_object].terminal.set_angle(angle_new)
e_total_new = self.compute_total_likelihood(pg_new, show_energy=True) + self.compute_prior(pg_new)
accept = metropolis_hasting(e_total_ori, e_total_new, move_prob, 1 - move_prob, T)
if accept:
self.record_accept()
self.energy_landscape.append(e_total_new)
pg_ori = copy.deepcopy(pg_new)
e_total_ori = e_total_new
self.record.append(1)
print 'new energy is {}, gradient is :{}, gradient_pos is :{}, gradient_neg is :{}, move_distance is :{}'.format(e_total_new, gradient, gradient_pos, gradient_neg, move_dis)
else:
self.record.append(0)
return pg_ori, e_total_ori
def multi_step_position_adjust(self, pg_ori, T, index, move_type):
print 'adjust lambda segmentation and re-compute the energy'
self.lambda_seg *= 2.0
self.lambda_depth *= 2.0
self.lambda_normal = 0.2
e_total_ori = self.compute_total_likelihood(pg_ori, show_energy=True) + self.compute_prior(pg_ori)
pg_ori, e_total_ori = self.one_step_object_adjust(pg_ori, e_total_ori, T, index, move_type,
move_face='frontface')
pg_ori, e_total_ori = self.one_step_object_adjust(pg_ori, e_total_ori, T, index, move_type,
move_face='backface')
pg_ori, e_total_ori = self.one_step_object_adjust(pg_ori, e_total_ori, T, index, move_type, move_face='rface')
pg_ori, e_total_ori = self.one_step_object_adjust(pg_ori, e_total_ori, T, index, move_type, move_face='lface')
pg_ori, e_total_ori = self.one_step_object_adjust(pg_ori, e_total_ori, T, index, move_type, move_face='upface')
pg_ori, e_total_ori = self.one_step_object_adjust(pg_ori, e_total_ori, T, index, move_type,
move_face='downface')
self.lambda_depth /= 2.0
self.lambda_seg /= 2.0
self.lambda_normal = 1.0
# compute energy with 1:1:1 setting
e_total_ori = self.compute_total_likelihood(pg_ori, show_energy=True) + self.compute_prior(pg_ori)
return pg_ori, e_total_ori
def multi_step_normal_adjust(self, pg_ori, T, index, move_type):
print 'adjust lambda normal and re-compute the energy'
self.lambda_normal *= 2.0
e_total_ori = self.compute_total_likelihood(pg_ori, show_energy=True) + self.compute_prior(pg_ori)
pg_ori, e_total_ori = self.one_step_object_adjust(pg_ori, e_total_ori, T, index, move_type)
self.lambda_normal /= 2.0
# compute energy with 1:1:1 setting
e_total_ori = self.compute_total_likelihood(pg_ori, show_energy=True) + self.compute_prior(pg_ori)
return pg_ori, e_total_ori
def multi_step_translate(self, pg_ori, T, index, move_type):
print 'adjust lambda normal and re-compute the energy'
self.lambda_seg *= 2.0
self.lambda_normal = 0.2
e_total_ori = self.compute_total_likelihood(pg_ori, show_energy=True) + self.compute_prior(pg_ori)
pg_ori, e_total_ori = self.one_step_object_adjust(pg_ori, e_total_ori, T, index, move_type, move_face='x')
pg_ori, e_total_ori = self.one_step_object_adjust(pg_ori, e_total_ori, T, index, move_type, move_face='y')
# compute energy with 1:1:1 setting
self.lambda_seg /= 2.0
self.lambda_normal = 1.0
e_total_ori = self.compute_total_likelihood(pg_ori, show_energy=True) + self.compute_prior(pg_ori)
return pg_ori, e_total_ori
def object_adjust(self, pg_ori, e_total_ori, T, if_random=False, if_initial=False, change_proposal=False):
if if_random:
if self.num_object == 0:
return pg_ori, e_total_ori
index = random.randint(1, self.num_object) - 1
print 'adjust the {}'.format(pg_ori.objects[index].obj_type)
r = random.random()
if 0 < r <= 0.5:
move_type = 'position'
pg_ori, e_total_ori = self.multi_step_position_adjust(pg_ori, T, index, move_type)
elif 0.5 < r <= 1.0:
move_type = 'normal'
pg_ori, e_total_ori = self.multi_step_normal_adjust(pg_ori, T, index, move_type)
elif if_initial:
if change_proposal:
for index in range(self.num_object):
print 'change proposals'
pg_list = list()
energy_list = list()
for i in [0, 1]: # try two proposals for each objects
pg_new = copy.deepcopy(pg_ori)
pg_new.objects[index].set_terminal(pg_new.objects[index].proposals[i])
for _ in range(1): # adjust the position and normal in three rounds
for j in range(2):
move_type = 'position'
pg_new, e_total_new = self.multi_step_position_adjust(pg_new, T, index, move_type)
for j in range(2):
move_type = 'normal'
pg_new, e_total_new = self.multi_step_normal_adjust(pg_new, T, index, move_type)
pg_list.append(pg_new)
energy_list.append(e_total_new)
max_index = energy_list.index(max(energy_list))
print 'best proposal for {} is {}'.format(pg_new.objects[index].obj_type, max_index)
pg_ori = copy.deepcopy(pg_list[max_index])
e_total_ori = energy_list[max_index]
else:
for _ in range(1):
for index in range(self.num_object):
# print index
# if index != 4:
# continue
print 'initial the {}'.format(pg_ori.objects[index].obj_type)
if self.bool_intersection[index] == 1:
print 'translate object {}'.format(pg_ori.objects[index].obj_type)
for i in range(2):
move_type = 'translate'
pg_ori, e_total_ori = self.multi_step_translate(pg_ori, T, index, move_type)
# let the normal scale be large at first to jump out of the local mode
if pg_ori.objects[index].obj_type in ['chair', 'sofa', 'desk', 'table', 'dresser',
'night_stand', 'sofa_chair', 'coffee_table']:
normal_scale = 3
else:
normal_scale = 1
for i in range(normal_scale, 0, -1):
self.scale *= (2 ** i)
move_type = 'normal'
pg_ori, e_total_ori = self.multi_step_normal_adjust(pg_ori, T, index, move_type)
self.scale /= (2 ** i)
for j in range(2):
# for the occluded object, we translate the object to avoid occlusion
print 'translate object {}'.format(pg_ori.objects[index].obj_type)
for i in range(2):
move_type = 'translate'
pg_ori, e_total_ori = self.multi_step_translate(pg_ori, T, index, move_type)
for i in range(2):
move_type = 'position'
pg_ori, e_total_ori = self.multi_step_position_adjust(pg_ori, T, index, move_type)
for i in range(2):
move_type = 'normal'
pg_ori, e_total_ori = self.multi_step_normal_adjust(pg_ori, T, index, move_type)
else:
for index in range(self.num_object):
move_type = 'translate'
pg_ori, e_total_ori = self.multi_step_translate(pg_ori, T, index, move_type)
move_type = 'position'
pg_ori, e_total_ori = self.multi_step_position_adjust(pg_ori, T, index, move_type)
move_type = 'normal'
pg_ori, e_total_ori = self.multi_step_normal_adjust(pg_ori, T, index, move_type)
return pg_ori, e_total_ori
# determine which type to adjust
def adjust_type(self, type_prob):
r = random.random()
if 0 < r <= sum(type_prob[:1]):
adjust_type = 'layout'
elif sum(type_prob[:1]) < r <= sum(type_prob[:2]):
adjust_type = 'proposal'
elif sum(type_prob[:2]) < r <= sum(type_prob[:3]):
adjust_type = 'property'
elif sum(type_prob[:3]) < r <= sum(type_prob[:4]):
adjust_type = 'support'
return adjust_type
# push the objects covered by the layouts to the front
def push_to_front(self, pg_ori):
pg_new = copy.deepcopy(pg_ori)
for index in range(self.num_object):
if index == 0:
print pg_new.objects[index].terminal.obj_center_proposals
for step in range(10):
center = pg_new.objects[index].terminal.obj_center
corners = copy.deepcopy(pg_new.layouts.corners)
p1, p2, p3, p4 = rectangle_shrink(corners[0], corners[1], corners[2], corners[3], 0.8)
point = Point(center[0], center[1])
polygon = Polygon([(p1[0], p1[1]), (p2[0], p2[1]), (p3[0], p3[1]), (p4[0], p4[1])])
if not polygon.contains(point) or pg_new.objects[index].terminal.obj_center[2] - pg_new.objects[index].terminal.obj_size[2] / 4 < pg_new.layouts.floor[0][2]:
pg_new.objects[index].terminal.set_center(copy.deepcopy(pg_new.objects[index].terminal.obj_center_proposals[step]))
else:
break
e_total_new = self.compute_total_likelihood(pg_new, show_energy=True) + self.compute_prior(pg_new)
return pg_new, e_total_new
# infer the best parse graph with lowest energy
def joint_infer(self, pg_cur):
pg_ori = self.load_result(pg_cur)
# adjust the object according to sampled human
skeleton_path = os.path.join(stats_root, 'skeleton', 'hoi_relation.pickle')
with open(skeleton_path, 'r') as f:
skeleton_stats = pickle.load(f)
f.close()
T = 0.00001
self.scale = 1
for _ in range(2):
sample = HumanSample(pg_ori, skeleton_stats, self.save_path)
pg_new, adjust_index = sample.sample()
if len(adjust_index) == 0:
break
pg_ori = copy.deepcopy(pg_new)
for i in range(2):
for index in adjust_index:
move_type = 'translate'
pg_ori, e_total_ori = self.multi_step_translate(pg_ori, T, index, move_type)
move_type = 'position'
pg_ori, e_total_ori = self.multi_step_position_adjust(pg_ori, T, index, move_type)
move_type = 'normal'
pg_ori, e_total_ori = self.multi_step_normal_adjust(pg_ori, T, index, move_type)
with open(os.path.join(self.save_path, 'human.pickle'), 'w') as f:
pickle.dump(pg_ori, f)
f.close()
print 'finish joint sampling'
def infer_pg(self):
start = time.time()
pg_ori = self.load_obj(self.pg)
# Before initialize the layout, the prior may hurt the performance.
# We don't count the prior until we finish adjusting the layout
self.count_prior = False
e_total_ori = self.compute_total_likelihood(pg_ori, show_energy=True) + self.compute_prior(pg_ori)
self.energy_landscape.append(e_total_ori)
if not os.path.exists(os.path.join(self.save_path, 'normal')):
os.mkdir(os.path.join(self.save_path, 'normal'))
if not os.path.exists(os.path.join(self.save_path, 'depth')):
os.mkdir(os.path.join(self.save_path, 'depth'))
if not os.path.exists(os.path.join(self.save_path, 'seg')):
os.mkdir(os.path.join(self.save_path, 'seg'))
# adjust the layout
print 'optimize the layout'
for _ in range(30):
adjust_type = self.adjust_type([1, 0.0, 0.0, 0.0])
if adjust_type == 'layout':
pg_ori, e_total_ori = self.layout_adjust(pg_ori, e_total_ori, 0.001)
# push to the front
with open(os.path.join(self.save_path, 'layout.pickle'), 'w') as f:
pickle.dump(pg_ori, f)
f.close()
# push the object to the front to avoid local maximum
print 'push to the front'
pg_ori, e_total_ori = self.push_to_front(pg_ori)
# initialize the support relation
print 'support init'
pg_ori, e_total_ori = self.support_initial(pg_ori, e_total_ori)
# adjust the object
print 'optimize the object'
self.count_prior = True
e_total_ori = self.compute_total_likelihood(pg_ori, show_energy=True) + self.compute_prior(pg_ori)
# annealing
for T in [0.01, 0.001, 0.0001]:
pg_ori, e_total_ori = self.object_adjust(pg_ori, e_total_ori, T, if_initial=True, change_proposal=False)
for _ in range(20):
pg_ori, e_total_ori = self.layout_adjust(pg_ori, e_total_ori, 0.001)
self.scale /= 2.0
for T in [0.00001]:
pg_ori, e_total_ori = self.object_adjust(pg_ori, e_total_ori, T, if_initial=True, change_proposal=False)
for _ in range(20):
pg_ori, e_total_ori = self.layout_adjust(pg_ori, e_total_ori, 0.001)
for _ in range(self.num_object * 3):
pg_ori, e_total_ori = self.object_adjust(pg_ori, e_total_ori, T, if_random=True)
print 'optimize the object and layout together'
with open(os.path.join(self.save_path, 'joint.pickle'), 'w') as f:
pickle.dump(pg_ori, f)
f.close()
# check the support relations
pg_ori, e_total_ori = self.support_initial(pg_ori, e_total_ori)
with open(os.path.join(self.save_path, 'support.pickle'), 'w') as f:
pickle.dump(pg_ori, f)
f.close()
end = time.time()
print self.energy_landscape
print self.record
print self.inference_step
print 'total inference time is :{}'.format(end - start)
# infer layout and objects iteratively
def inference(index):
print 'infer 3D room layout and 3D object for sample {}'.format(index)
pg_root = os.path.join(proposal_root, 'pg', str(index) + '.pickle')
if not os.path.exists(pg_root):
print 'pg not existed'
with open(pg_root, 'r') as f:
pg = pickle.load(f)
f.close()
est_depth = np.load(os.path.join(proposal_root, 'depth', str(index) + '.npy'))
est_seg = np.load(os.path.join(proposal_root, 'segmentation', str(index) + '.npy')).T
est_normal = np.load(os.path.join(proposal_root, 'surface_normal', str(index) + '.npy'))
m, n = est_seg.shape[:2]
for k in range(m):
for l in range(n):
if est_seg[k, l] == 18:
est_seg[k, l] = 4
if m != pg.camera.K[1, 2] * 2 or n != pg.camera.K[0, 2] * 2:
pg.camera._K[1, 2] = m / 2.0
pg.camera._K[0, 2] = n / 2.0
m, n = est_normal.shape[:2]
if m != pg.camera.K[1, 2]*2 or n != pg.camera.K[0, 2]*2:
est_normal = est_normal[int(pg.camera.K[1, 2]*2), int(pg.camera.K[0, 2]*2), :]
save_path = os.path.join(save_root, str(index))
inference = Inference(pg, est_depth, est_seg, est_normal, 1, 1, 1, save_path)
inference.infer_pg()
def inference_human(index):
print 'infer 3D room layout, objects and human context for sample {}'.format(index)
pg_root = os.path.join('result', str(index), 'support.pickle')
if not os.path.exists(pg_root):
print 'result not existed, run inference first'
with open(pg_root, 'r') as f:
pg = pickle.load(f)
f.close()
est_depth = np.load(os.path.join(proposal_root, 'depth', str(index) + '.npy'))
est_seg = np.load(os.path.join(proposal_root, 'segmentation', str(index) + '.npy')).T
est_normal = np.load(os.path.join(proposal_root, 'surface_normal', str(index) + '.npy'))
m, n = est_seg.shape[:2]
for k in range(m):
for l in range(n):
if est_seg[k, l] == 18:
est_seg[k, l] = 4
if m != pg.camera.K[1, 2] * 2 or n != pg.camera.K[0, 2] * 2:
pg.camera._K[1, 2] = m / 2.0
pg.camera._K[0, 2] = n / 2.0
m, n = est_normal.shape[:2]
if m != pg.camera.K[1, 2] * 2 or n != pg.camera.K[0, 2] * 2:
est_normal = est_normal[int(pg.camera.K[1, 2] * 2), int(pg.camera.K[0, 2] * 2), :]
save_path = os.path.join(save_root, str(index))
inference = Inference(pg, est_depth, est_seg, est_normal, 1, 1, 1, save_path)
inference.joint_infer(pg)
def main():
opt = sys.argv[1]
index = int(sys.argv[2])
if opt == '-lo':
inference(index)
elif opt == '-human':
inference_human(index)
if __name__ == '__main__':
main()