-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathtest.py
315 lines (283 loc) · 19.7 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
"""
Created on April, 2018
@author: Siyuan Huang
Test the SUNCG or SUNRGBD dataset
"""
import torch
import torch.nn as nn
import argparse
import os
import os.path as op
import torch.optim
from models.model_res import Bdb3dNet
from models.model_res import PosNet
from utils.net_utils import get_rotation_matix_result, get_rotation_matrix_gt, to_dict_tensor, get_bdb_2d_result, get_bdb_3d_result, get_bdb_3d_gt, get_layout_bdb, get_bdb_evaluation, physical_violation, get_yaw_roll_error
import config
from scipy.io import savemat
from utils.sunrgbd_utils import get_iou_cuboid, get_corners_of_bb3d, get_iou
import time
import numpy as np
def str2bool(v):
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
# Training settings
parser = argparse.ArgumentParser(description='PyTorch 3D Network')
parser.add_argument('--cuda', default=True, help='use cuda?')
parser.add_argument('--seed', type=int, default=123, help='random seed to use. Default=123')
parser.add_argument('--testBatchSize', type=int, default=1, help='testing batch size')
parser.add_argument('--threads', type=int, default=1, help='number of threads for data loader to use')
parser.add_argument('--metadataPath', type=str, default='metadata/', help='data saving dir')
parser.add_argument('--dataset', type=str, default='sunrgbd', help='sunrgbd or suncg. Default=sunrgbd')
parser.add_argument('--cls_reg_ratio', type=float, default=10, help='the ratio between the loss of classification and regression')
parser.add_argument('--obj_cam_ratio', type=float, default=1, help='the ratio between the loss of classification and regression')
parser.add_argument('--branch', type=str, default='jointnet', help='posenet, bdbnet or jointnet')
parser.add_argument('--model_path_pose', type=str, default='sunrgbd/models_final/joint_posenet_full.pth', help='the directory of trained model')
parser.add_argument('--model_path_bdb', type=str, default='sunrgbd/models_final/joint_bdbnet_full.pth')
parser.add_argument('--vis', type=bool, default=False, help='whether to visualize the result')
parser.add_argument('--save_result', type=bool, default=False, help='whether to save the result')
opt = parser.parse_args()
print opt
dataset_config = config.Config(opt.dataset)
bins_tensor = to_dict_tensor(dataset_config.bins(), if_cuda=opt.cuda)
device = torch.device("cuda" if opt.cuda else "cpu")
if opt.cuda and not torch.cuda.is_available():
raise Exception('No GPU found, please run without --cuda')
torch.manual_seed(opt.seed)
print '======> loading dataset'
posenet = PosNet().to(device)
bdb3dnet = Bdb3dNet().to(device)
pretrained_path_pose = op.join(opt.metadataPath, opt.model_path_pose)
pretrained_path_bdb = op.join(opt.metadataPath, opt.model_path_bdb)
if opt.branch == 'posenet':
posenet.load_weight(pretrained_path_pose)
if opt.branch == 'bdbnet':
bdb3dnet.load_weight(pretrained_path_bdb)
if opt.branch == 'jointnet':
posenet.load_weight(pretrained_path_pose)
bdb3dnet.load_weight(pretrained_path_bdb)
from data.sunrgbd import sunrgbd_test_loader
test_loader = sunrgbd_test_loader(opt)
cls_criterion = nn.CrossEntropyLoss(size_average=True, reduce=True)
reg_criterion = nn.SmoothL1Loss(size_average=True, reduce=True)
mse_criterion = nn.MSELoss(size_average=True, reduce=True)
result_save_path = op.join(opt.metadataPath, opt.dataset, 'results_full')
if not op.exists(result_save_path):
os.mkdir(result_save_path)
IoU3D = dict()
IoU2D = dict()
EVALUATE_OBJECT = ['recycle_bin', 'cpu', 'paper', 'toilet', 'stool', 'whiteboard', 'coffee_table', 'picture', 'keyboard', 'dresser', 'painting', 'bookshelf', 'night_stand', 'endtable', 'drawer', 'sink', 'monitor', 'computer', 'cabinet', 'shelf', 'lamp', 'garbage_bin', 'box', 'bed', 'sofa', 'sofa_chair', 'pillow', 'desk', 'table', 'chair']
OBJ_CATEGORY_CLEAN = ['recycle_bin', 'cpu', 'paper', 'toilet', 'stool', 'whiteboard', 'coffee_table', 'picture',
'keyboard', 'dresser', 'painting', 'bookshelf', 'night_stand', 'endtable', 'drawer', 'sink',
'monitor', 'computer', 'cabinet', 'shelf', 'lamp', 'garbage_bin', 'box', 'bed', 'sofa',
'sofa_chair', 'pillow', 'desk', 'table', 'chair']
def joint_loss(cls_result, cls_gt, reg_result, reg_gt):
cls_loss = cls_criterion(cls_result, cls_gt)
if len(reg_result.size()) == 3:
reg_result = torch.gather(reg_result, 1, cls_gt.view(reg_gt.size(0), 1, 1).expand(reg_gt.size(0), 1, reg_gt.size(1)))
else:
reg_result = torch.gather(reg_result, 1, cls_gt.view(reg_gt.size(0), 1).expand(reg_gt.size(0), 1))
reg_result = reg_result.squeeze(1)
reg_loss = reg_criterion(reg_result, reg_gt)
return cls_loss, opt.cls_reg_ratio * reg_loss
def joint_size_loss(reg_result, cls_gt, reg_gt):
if len(reg_result.size()) == 3:
reg_result = torch.gather(reg_result, 1, cls_gt.view(reg_gt.size(0), 1, 1).expand(reg_gt.size(0), 1, reg_gt.size(1)))
else:
reg_result = torch.gather(reg_result, 1, cls_gt.view(reg_gt.size(0), 1).expand(reg_gt.size(0), 1))
reg_result = reg_result.squeeze(1)
reg_loss = reg_criterion(reg_result, reg_gt)
return opt.cls_reg_ratio * reg_loss
def test_epoch(epoch):
total_loss_record = AverageMeter()
yaw_reg_loss_record = AverageMeter()
yaw_cls_loss_record = AverageMeter()
roll_reg_loss_record = AverageMeter()
roll_cls_loss_record = AverageMeter()
size_reg_loss_record = AverageMeter()
size_cls_loss_record = AverageMeter()
ori_reg_loss_record = AverageMeter()
ori_cls_loss_record = AverageMeter()
centroid_reg_loss_record = AverageMeter()
centroid_cls_loss_record = AverageMeter()
corner_loss_record = AverageMeter()
bdb_loss_record = AverageMeter()
phy_loss_record = AverageMeter()
lo_ori_reg_loss_record = AverageMeter()
lo_ori_cls_loss_record = AverageMeter()
lo_coeffs_loss_record = AverageMeter()
lo_centroid_loss_record = AverageMeter()
yaw_error_record = AverageMeter()
roll_error_record = AverageMeter()
offset_2d_loss_record = AverageMeter()
if opt.branch == 'posenet' or opt.branch == 'jointnet':
posenet.eval()
if opt.branch == 'bdbnet' or opt.branch == 'jointnet':
bdb3dnet.eval()
with torch.no_grad():
for i, sequence in enumerate(test_loader):
sequence_id = sequence['sequence_id']
if opt.branch == 'posenet' or opt.branch == 'jointnet':
image = sequence['image'].to(device)
K, yaw_reg, yaw_cls, roll_reg, roll_cls, lo_ori_reg, lo_ori_cls, lo_centroid, lo_coeffs = \
sequence['camera']['K'].float().to(device), \
sequence['camera']['yaw_reg'].float().to(device), \
sequence['camera']['yaw_cls'].long().to(device), \
sequence['camera']['roll_reg'].float().to(device), \
sequence['camera']['roll_cls'].long().to(device), \
sequence['layout']['ori_reg'].float().to(device), \
sequence['layout']['ori_cls'].long().to(device), \
sequence['layout']['centroid_reg'].float().to(device), \
sequence['layout']['coeffs_reg'].float().to(device)
# feature = posenet.resnet(image)
# np.save(op.join(result_save_path, 'feature', str(sequence_id[0].numpy())), feature.detach().cpu().numpy())
yaw_reg_result, roll_reg_result, yaw_cls_result, roll_cls_result, lo_ori_cls_result, lo_ori_reg_result, lo_centroid_result, lo_coeffs_result = posenet(
image)
yaw_cls_loss, yaw_reg_loss = joint_loss(yaw_cls_result, yaw_cls, yaw_reg_result, yaw_reg)
roll_cls_loss, roll_reg_loss = joint_loss(roll_cls_result, roll_cls, roll_reg_result, roll_reg)
lo_ori_cls_loss, lo_ori_reg_loss = joint_loss(lo_ori_cls_result, lo_ori_cls, lo_ori_reg_result,
lo_ori_reg)
lo_centroid_loss = reg_criterion(lo_centroid_result, lo_centroid) * opt.cls_reg_ratio
lo_coeffs_loss = reg_criterion(lo_coeffs_result, lo_coeffs) * opt.cls_reg_ratio
yaw_error = get_yaw_roll_error(bins_tensor['yaw_bin'], yaw_reg_result, yaw_cls_result, yaw_reg, yaw_cls)
roll_error = get_yaw_roll_error(bins_tensor['roll_bin'], roll_reg_result, roll_cls_result, roll_reg, roll_cls)
yaw_error_record.update(yaw_error.cpu().numpy(), opt.testBatchSize)
roll_error_record.update(roll_error.cpu().numpy(), opt.testBatchSize)
yaw_reg_loss_record.update(yaw_reg_loss.item(), opt.testBatchSize)
yaw_cls_loss_record.update(yaw_cls_loss.item(), opt.testBatchSize)
roll_reg_loss_record.update(roll_reg_loss.item(), opt.testBatchSize)
roll_cls_loss_record.update(roll_cls_loss.item(), opt.testBatchSize)
lo_ori_cls_loss_record.update(lo_ori_cls_loss.item(), opt.testBatchSize)
lo_ori_reg_loss_record.update(lo_ori_reg_loss.item(), opt.testBatchSize)
lo_centroid_loss_record.update(lo_centroid_loss.item(), opt.testBatchSize)
lo_coeffs_loss_record.update(lo_coeffs_loss.item(), opt.testBatchSize)
layout_bdb = get_layout_bdb(bins_tensor, torch.argmax(lo_ori_cls_result, 1), lo_ori_reg_result, lo_centroid_result, lo_coeffs_result)
if not op.exists(op.join(result_save_path, str(sequence_id[0].numpy()))):
os.mkdir(op.join(result_save_path, str(sequence_id[0].numpy())))
savemat(op.join(result_save_path, str(sequence_id[0].numpy()), 'layout.mat'), mdict={'layout': layout_bdb[0, :, :].cpu().numpy()})
if opt.branch == 'bdbnet' or opt.branch == 'jointnet':
patch = sequence['boxes_batch']['patch'].to(device)
bdb2d, bdb3d, bdb_pos, size_reg, size_cls, ori_reg, ori_cls, centroid_reg, centroid_cls, offset_2d = \
sequence['boxes_batch']['bdb2d'].float().to(device), \
sequence['boxes_batch']['bdb3d'].float().to(device), \
sequence['boxes_batch']['bdb_pos'].float().to(device), \
sequence['boxes_batch']['size_reg'].float().to(device), \
sequence['boxes_batch']['size_cls'].long().to(device), \
sequence['boxes_batch']['ori_reg'].float().to(device), \
sequence['boxes_batch']['ori_cls'].long().to(device), \
sequence['boxes_batch']['centroid_reg'].float().to(device), \
sequence['boxes_batch']['centroid_cls'].long().to(device), \
sequence['boxes_batch']['delta_2d'].float().to(device)
size_reg_result, size_cls_result, ori_reg_result, ori_cls_result, centroid_reg_result, centroid_cls_result, offset_2d_result = bdb3dnet(
patch)
size_cls_loss, size_reg_loss = joint_loss(size_cls_result, size_cls, size_reg_result, size_reg)
ori_cls_loss, ori_reg_loss = joint_loss(ori_cls_result, ori_cls, ori_reg_result, ori_reg)
centroid_cls_loss, centroid_reg_loss = joint_loss(centroid_cls_result, centroid_cls,
centroid_reg_result, centroid_reg)
#
offset_2d_loss = reg_criterion(offset_2d_result, offset_2d)
offset_2d_loss_record.update(offset_2d_loss.item(), opt.testBatchSize)
size_reg_loss_record.update(size_reg_loss.item(), opt.testBatchSize)
size_cls_loss_record.update(size_cls_loss.item(), opt.testBatchSize)
ori_reg_loss_record.update(ori_reg_loss.item(), opt.testBatchSize)
ori_cls_loss_record.update(ori_cls_loss.item(), opt.testBatchSize)
centroid_reg_loss_record.update(centroid_reg_loss.item(), opt.testBatchSize)
centroid_cls_loss_record.update(centroid_cls_loss.item(), opt.testBatchSize)
if opt.branch == 'jointnet':
r_ex_result = get_rotation_matix_result(bins_tensor, yaw_cls, yaw_reg_result, roll_cls, roll_reg_result)
r_ex_gt = get_rotation_matrix_gt(bins_tensor, yaw_cls, yaw_reg, roll_cls, roll_reg)
P_gt = torch.stack(((bdb_pos[:, 0] + bdb_pos[:, 2]) / 2 - (bdb_pos[:, 2] - bdb_pos[:, 0]) * offset_2d[:, 0], (bdb_pos[:, 1] + bdb_pos[:, 3]) / 2 - (bdb_pos[:, 3] - bdb_pos[:, 1]) * offset_2d[:, 1]), 1) # P is the center of the bounding boxes
P_result = torch.stack(((bdb_pos[:, 0] + bdb_pos[:, 2]) / 2 - (bdb_pos[:, 2] - bdb_pos[:, 0]) * offset_2d_result[:, 0], (bdb_pos[:, 1] + bdb_pos[:, 3]) / 2 - (bdb_pos[:, 3] - bdb_pos[:, 1]) * offset_2d_result[:, 1]), 1) # P is the center of the bounding boxes
# P is the center of the bounding boxes
bdb3d_result = get_bdb_3d_result(bins_tensor, ori_cls, ori_reg_result, centroid_cls,
centroid_reg_result, size_cls, size_reg_result, P_result, K, r_ex_result)
bdb3d_gt = get_bdb_3d_gt(bins_tensor, ori_cls, ori_reg, centroid_cls, centroid_reg, size_cls, size_reg,
P_gt, K, r_ex_gt)
corner_loss = 5 * opt.cls_reg_ratio * reg_criterion(bdb3d_result, bdb3d_gt)
# 2d bdb loss
bdb2d_result = get_bdb_2d_result(bdb3d_result, r_ex_result, K)
bdb_loss = 20 * opt.cls_reg_ratio * reg_criterion(bdb2d_result, bdb2d)
# physical loss
layout_3d = get_layout_bdb(bins_tensor, lo_ori_cls, lo_ori_reg_result, lo_centroid_result,
lo_coeffs_result)
phy_violation, phy_gt = physical_violation(layout_3d, bdb3d_result)
phy_loss = 20 * mse_criterion(phy_violation, phy_gt)
phy_loss_record.update(phy_loss.item(), opt.testBatchSize)
r_ex_out = get_rotation_matix_result(bins_tensor, torch.argmax(yaw_cls_result, 1), yaw_reg_result, torch.argmax(roll_cls_result, 1), roll_reg_result)
predict_bdb = get_bdb_evaluation(bins_tensor, torch.argmax(ori_cls_result, 1), ori_reg_result,
torch.argmax(centroid_cls_result, 1), centroid_reg_result,
size_cls, size_reg_result, P_result, K, r_ex_out)
# confidence = torch.gather(torch.nn.functional.softmax(size_cls_result), 1, size_cls.view(size_cls.size(0), 1).expand(size_cls.size(0), 1)).squeeze(1)
for i, evaluate_bdb in enumerate(predict_bdb):
class_name = OBJ_CATEGORY_CLEAN[size_cls[i]]
if class_name not in IoU3D.keys():
IoU3D[class_name] = list()
IoU2D[class_name] = list()
iou_3d = get_iou_cuboid(get_corners_of_bb3d(evaluate_bdb['basis'], evaluate_bdb['coeffs'], evaluate_bdb['centroid']), bdb3d_gt[i, :, :].cpu().detach().numpy())
box_1 = bdb2d_result[i, :].cpu().detach().numpy()
box_2 = bdb2d[i, :].cpu().detach().numpy()
box_1 = {'x1': box_1[0], 'y1': box_1[1], 'x2': box_1[2], 'y2': box_1[3]}
box_2 = {'x1': box_2[0], 'y1': box_2[1], 'x2': box_2[2], 'y2': box_2[3]}
iou_2d = get_iou(box_1, box_2)
# print sequence_id, class_name, iou_3d, iou_2d
IoU3D[class_name].append(iou_3d)
IoU2D[class_name].append(iou_2d)
savemat(op.join(result_save_path, str(sequence_id[0].numpy()), 'bdb_3d.mat'),
mdict={'bdb': predict_bdb})
savemat(op.join(result_save_path, str(sequence_id[0].numpy()), 'r_ex.mat'), mdict={'r_ex': r_ex_out[0, :, :].cpu().numpy()})
bdb_loss_record.update(bdb_loss.item(), opt.testBatchSize)
corner_loss_record.update(corner_loss.item(), opt.testBatchSize)
total_loss = offset_2d_loss + phy_loss + bdb_loss + size_cls_loss + size_reg_loss + ori_cls_loss + ori_reg_loss + centroid_cls_loss + centroid_reg_loss + corner_loss + opt.obj_cam_ratio * (
yaw_cls_loss + yaw_reg_loss + roll_cls_loss + roll_reg_loss + lo_ori_cls_loss + lo_ori_reg_loss + lo_centroid_loss + lo_coeffs_loss)
if opt.branch == 'posenet':
total_loss = yaw_cls_loss + yaw_reg_loss + roll_reg_loss + roll_cls_loss + \
lo_ori_cls_loss + lo_ori_reg_loss + lo_centroid_loss + lo_coeffs_loss
if opt.branch == 'bdbnet':
total_loss = offset_2d_loss + size_cls_loss + size_reg_loss + ori_cls_loss + ori_reg_loss + centroid_cls_loss + centroid_reg_loss + corner_loss
total_loss_record.update(total_loss.item(), opt.testBatchSize)
if opt.branch == 'posenet':
print 'evaluation loss for %d epoch is %f, yaw_cls_loss is %f, yaw_reg_loss is %f, roll_cls_loss is %f, roll_reg_loss is %f, ' \
'lo_ori_cls_loss is %f, lo_ori_reg_loss is %f, lo_centroid_loss is %f, lo_coeffs_loss is %f' % \
(epoch, total_loss_record.avg, yaw_cls_loss_record.avg, yaw_reg_loss_record.avg,
roll_cls_loss_record.avg, roll_reg_loss_record.avg,
lo_ori_cls_loss_record.avg, lo_ori_reg_loss_record.avg, lo_centroid_loss_record.avg,
lo_coeffs_loss_record.avg)
if opt.branch == 'bdbnet':
print 'evaluation loss for %d epoch is %f, offset_loss is %f, corner_loss is %f, size_cls_loss is %f, size_reg_loss is %f, ori_cls_loss is %f, ori_reg_loss is %f, centroid_cls_loss is %f, centroid_reg_loss is %f' % \
(epoch, total_loss_record.avg, offset_2d_loss_record.avg, corner_loss_record.avg, size_cls_loss_record.avg,
size_reg_loss_record.avg, ori_cls_loss_record.avg, ori_reg_loss_record.avg,
centroid_cls_loss_record.avg,
centroid_reg_loss_record.avg)
if opt.branch == 'jointnet':
print 'evaluation loss for %d epoch is %f, offset_loss is %f, phy_loss is %f, bdb_loss is %f, corner_loss is %f, size_cls_loss is %f, size_reg_loss is %f, ori_cls_loss is %f, ori_reg_loss is %f, ' \
'centroid_cls_loss is %f, centroid_reg_loss is %f, ' \
'yaw_cls_loss is %f, yaw_reg_loss is %f, roll_cls_loss is %f, roll_reg_loss is %f, ' \
'lo_ori_cls_loss is %f, lo_ori_reg_loss is %f, lo_centroid_loss is %f, lo_coeffs_loss is %f' % \
(epoch, total_loss_record.avg, offset_2d_loss_record.avg, phy_loss_record.avg, bdb_loss_record.avg, corner_loss_record.avg, size_cls_loss_record.avg,
size_reg_loss_record.avg, ori_cls_loss_record.avg, ori_reg_loss_record.avg,
centroid_cls_loss_record.avg, centroid_reg_loss_record.avg,
yaw_cls_loss_record.avg, yaw_reg_loss_record.avg, roll_cls_loss_record.avg, roll_reg_loss_record.avg,
lo_ori_cls_loss_record.avg, lo_ori_reg_loss_record.avg, lo_centroid_loss_record.avg,
lo_coeffs_loss_record.avg)
print 'yaw average error is %f, roll average error is %f' % (yaw_error_record.avg, roll_error_record.avg)
for key, value in IoU3D.items():
print '%s: 3d iou is %f, 2d iou is %f' % (key, np.array(IoU3D[key]).mean(), np.array(IoU2D[key]).mean())
print total_loss_record.avg
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
test_epoch(1)