-
Notifications
You must be signed in to change notification settings - Fork 559
/
mcd.py
358 lines (307 loc) · 15.1 KB
/
mcd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
"""
@author: Junguang Jiang
@contact: [email protected]
"""
import random
import time
import warnings
import argparse
import shutil
import os.path as osp
from typing import Tuple
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
from torch.optim import SGD
import torch.utils.data
from torch.utils.data import DataLoader
import torch.nn.functional as F
import utils
from tllib.alignment.mcd import ImageClassifierHead, entropy, classifier_discrepancy
from tllib.utils.data import ForeverDataIterator
from tllib.utils.metric import accuracy, ConfusionMatrix
from tllib.utils.meter import AverageMeter, ProgressMeter
from tllib.utils.logger import CompleteLogger
from tllib.utils.analysis import collect_feature, tsne, a_distance
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def main(args: argparse.Namespace):
logger = CompleteLogger(args.log, args.phase)
print(args)
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
cudnn.benchmark = True
# Data loading code
train_transform = utils.get_train_transform(args.train_resizing, scale=args.scale, ratio=args.ratio,
random_horizontal_flip=not args.no_hflip,
random_color_jitter=False, resize_size=args.resize_size,
norm_mean=args.norm_mean, norm_std=args.norm_std)
val_transform = utils.get_val_transform(args.val_resizing, resize_size=args.resize_size,
norm_mean=args.norm_mean, norm_std=args.norm_std)
print("train_transform: ", train_transform)
print("val_transform: ", val_transform)
train_source_dataset, train_target_dataset, val_dataset, test_dataset, num_classes, args.class_names = \
utils.get_dataset(args.data, args.root, args.source, args.target, train_transform, val_transform)
train_source_loader = DataLoader(train_source_dataset, batch_size=args.batch_size,
shuffle=True, num_workers=args.workers, drop_last=True)
train_target_loader = DataLoader(train_target_dataset, batch_size=args.batch_size,
shuffle=True, num_workers=args.workers, drop_last=True)
val_loader = DataLoader(val_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.workers)
test_loader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.workers)
train_source_iter = ForeverDataIterator(train_source_loader)
train_target_iter = ForeverDataIterator(train_target_loader)
# create model
print("=> using model '{}'".format(args.arch))
G = utils.get_model(args.arch, pretrain=not args.scratch).to(device) # feature extractor
# two image classifier heads
pool_layer = nn.Identity() if args.no_pool else None
F1 = ImageClassifierHead(G.out_features, num_classes, args.bottleneck_dim, pool_layer).to(device)
F2 = ImageClassifierHead(G.out_features, num_classes, args.bottleneck_dim, pool_layer).to(device)
# define optimizer
# the learning rate is fixed according to origin paper
optimizer_g = SGD(G.parameters(), lr=args.lr, weight_decay=0.0005)
optimizer_f = SGD([
{"params": F1.parameters()},
{"params": F2.parameters()},
], momentum=0.9, lr=args.lr, weight_decay=0.0005)
# resume from the best checkpoint
if args.phase != 'train':
checkpoint = torch.load(logger.get_checkpoint_path('best'), map_location='cpu')
G.load_state_dict(checkpoint['G'])
F1.load_state_dict(checkpoint['F1'])
F2.load_state_dict(checkpoint['F2'])
# analysis the model
if args.phase == 'analysis':
# extract features from both domains
feature_extractor = nn.Sequential(G, F1.pool_layer).to(device)
source_feature = collect_feature(train_source_loader, feature_extractor, device)
target_feature = collect_feature(train_target_loader, feature_extractor, device)
# plot t-SNE
tSNE_filename = osp.join(logger.visualize_directory, 'TSNE.pdf')
tsne.visualize(source_feature, target_feature, tSNE_filename)
print("Saving t-SNE to", tSNE_filename)
# calculate A-distance, which is a measure for distribution discrepancy
A_distance = a_distance.calculate(source_feature, target_feature, device)
print("A-distance =", A_distance)
return
if args.phase == 'test':
acc1 = validate(test_loader, G, F1, F2, args)
print(acc1)
return
# start training
best_acc1 = 0.
best_results = None
for epoch in range(args.epochs):
# train for one epoch
train(train_source_iter, train_target_iter, G, F1, F2, optimizer_g, optimizer_f, epoch, args)
# evaluate on validation set
results = validate(val_loader, G, F1, F2, args)
# remember best acc@1 and save checkpoint
torch.save({
'G': G.state_dict(),
'F1': F1.state_dict(),
'F2': F2.state_dict()
}, logger.get_checkpoint_path('latest'))
if max(results) > best_acc1:
shutil.copy(logger.get_checkpoint_path('latest'), logger.get_checkpoint_path('best'))
best_acc1 = max(results)
best_results = results
print("best_acc1 = {:3.1f}, results = {}".format(best_acc1, best_results))
# evaluate on test set
checkpoint = torch.load(logger.get_checkpoint_path('best'), map_location='cpu')
G.load_state_dict(checkpoint['G'])
F1.load_state_dict(checkpoint['F1'])
F2.load_state_dict(checkpoint['F2'])
results = validate(test_loader, G, F1, F2, args)
print("test_acc1 = {:3.1f}".format(max(results)))
logger.close()
def train(train_source_iter: ForeverDataIterator, train_target_iter: ForeverDataIterator,
G: nn.Module, F1: ImageClassifierHead, F2: ImageClassifierHead,
optimizer_g: SGD, optimizer_f: SGD, epoch: int, args: argparse.Namespace):
batch_time = AverageMeter('Time', ':3.1f')
data_time = AverageMeter('Data', ':3.1f')
losses = AverageMeter('Loss', ':3.2f')
trans_losses = AverageMeter('Trans Loss', ':3.2f')
cls_accs = AverageMeter('Cls Acc', ':3.1f')
progress = ProgressMeter(
args.iters_per_epoch,
[batch_time, data_time, losses, trans_losses, cls_accs],
prefix="Epoch: [{}]".format(epoch))
# switch to train mode
G.train()
F1.train()
F2.train()
end = time.time()
for i in range(args.iters_per_epoch):
x_s, labels_s = next(train_source_iter)[:2]
x_t, = next(train_target_iter)[:1]
x_s = x_s.to(device)
x_t = x_t.to(device)
labels_s = labels_s.to(device)
x = torch.cat((x_s, x_t), dim=0)
assert x.requires_grad is False
# measure data loading time
data_time.update(time.time() - end)
# Step A train all networks to minimize loss on source domain
optimizer_g.zero_grad()
optimizer_f.zero_grad()
g = G(x)
y_1 = F1(g)
y_2 = F2(g)
y1_s, y1_t = y_1.chunk(2, dim=0)
y2_s, y2_t = y_2.chunk(2, dim=0)
y1_t, y2_t = F.softmax(y1_t, dim=1), F.softmax(y2_t, dim=1)
loss = F.cross_entropy(y1_s, labels_s) + F.cross_entropy(y2_s, labels_s) + \
(entropy(y1_t) + entropy(y2_t)) * args.trade_off_entropy
loss.backward()
optimizer_g.step()
optimizer_f.step()
# Step B train classifier to maximize discrepancy
optimizer_g.zero_grad()
optimizer_f.zero_grad()
g = G(x)
y_1 = F1(g)
y_2 = F2(g)
y1_s, y1_t = y_1.chunk(2, dim=0)
y2_s, y2_t = y_2.chunk(2, dim=0)
y1_t, y2_t = F.softmax(y1_t, dim=1), F.softmax(y2_t, dim=1)
loss = F.cross_entropy(y1_s, labels_s) + F.cross_entropy(y2_s, labels_s) + \
(entropy(y1_t) + entropy(y2_t)) * args.trade_off_entropy - \
classifier_discrepancy(y1_t, y2_t) * args.trade_off
loss.backward()
optimizer_f.step()
# Step C train genrator to minimize discrepancy
for k in range(args.num_k):
optimizer_g.zero_grad()
g = G(x)
y_1 = F1(g)
y_2 = F2(g)
y1_s, y1_t = y_1.chunk(2, dim=0)
y2_s, y2_t = y_2.chunk(2, dim=0)
y1_t, y2_t = F.softmax(y1_t, dim=1), F.softmax(y2_t, dim=1)
mcd_loss = classifier_discrepancy(y1_t, y2_t) * args.trade_off
mcd_loss.backward()
optimizer_g.step()
cls_acc = accuracy(y1_s, labels_s)[0]
losses.update(loss.item(), x_s.size(0))
cls_accs.update(cls_acc.item(), x_s.size(0))
trans_losses.update(mcd_loss.item(), x_s.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
def validate(val_loader: DataLoader, G: nn.Module, F1: ImageClassifierHead,
F2: ImageClassifierHead, args: argparse.Namespace) -> Tuple[float, float]:
batch_time = AverageMeter('Time', ':6.3f')
top1_1 = AverageMeter('Acc_1', ':6.2f')
top1_2 = AverageMeter('Acc_2', ':6.2f')
progress = ProgressMeter(
len(val_loader),
[batch_time, top1_1, top1_2],
prefix='Test: ')
# switch to evaluate mode
G.eval()
F1.eval()
F2.eval()
if args.per_class_eval:
confmat = ConfusionMatrix(len(args.class_names))
else:
confmat = None
with torch.no_grad():
end = time.time()
for i, data in enumerate(val_loader):
images, target = data[:2]
images = images.to(device)
target = target.to(device)
# compute output
g = G(images)
y1, y2 = F1(g), F2(g)
# measure accuracy and record loss
acc1, = accuracy(y1, target)
acc2, = accuracy(y2, target)
if confmat:
confmat.update(target, y1.argmax(1))
top1_1.update(acc1.item(), images.size(0))
top1_2.update(acc2.item(), images.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
print(' * Acc1 {top1_1.avg:.3f} Acc2 {top1_2.avg:.3f}'
.format(top1_1=top1_1, top1_2=top1_2))
if confmat:
print(confmat.format(args.class_names))
return top1_1.avg, top1_2.avg
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='MCD for Unsupervised Domain Adaptation')
# dataset parameters
parser.add_argument('root', metavar='DIR',
help='root path of dataset')
parser.add_argument('-d', '--data', metavar='DATA', default='Office31', choices=utils.get_dataset_names(),
help='dataset: ' + ' | '.join(utils.get_dataset_names()) +
' (default: Office31)')
parser.add_argument('-s', '--source', help='source domain(s)', nargs='+')
parser.add_argument('-t', '--target', help='target domain(s)', nargs='+')
parser.add_argument('--train-resizing', type=str, default='default')
parser.add_argument('--val-resizing', type=str, default='default')
parser.add_argument('--resize-size', type=int, default=224,
help='the image size after resizing')
parser.add_argument('--scale', type=float, nargs='+', default=[0.08, 1.0], metavar='PCT',
help='Random resize scale (default: 0.08 1.0)')
parser.add_argument('--ratio', type=float, nargs='+', default=[3. / 4., 4. / 3.], metavar='RATIO',
help='Random resize aspect ratio (default: 0.75 1.33)')
parser.add_argument('--no-hflip', action='store_true',
help='no random horizontal flipping during training')
parser.add_argument('--norm-mean', type=float, nargs='+',
default=(0.485, 0.456, 0.406), help='normalization mean')
parser.add_argument('--norm-std', type=float, nargs='+',
default=(0.229, 0.224, 0.225), help='normalization std')
# model parameters
parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet18',
choices=utils.get_model_names(),
help='backbone architecture: ' +
' | '.join(utils.get_model_names()) +
' (default: resnet18)')
parser.add_argument('--bottleneck-dim', default=1024, type=int)
parser.add_argument('--no-pool', action='store_true',
help='no pool layer after the feature extractor.')
parser.add_argument('--scratch', action='store_true', help='whether train from scratch.')
parser.add_argument('--trade-off', default=1., type=float,
help='the trade-off hyper-parameter for transfer loss')
parser.add_argument('--trade-off-entropy', default=0.01, type=float,
help='the trade-off hyper-parameter for entropy loss')
parser.add_argument('--num-k', type=int, default=4, metavar='K',
help='how many steps to repeat the generator update')
# training parameters
parser.add_argument('-b', '--batch-size', default=32, type=int,
metavar='N',
help='mini-batch size (default: 32)')
parser.add_argument('--lr', '--learning-rate', default=0.001, type=float,
metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('-j', '--workers', default=2, type=int, metavar='N',
help='number of data loading workers (default: 2)')
parser.add_argument('--epochs', default=20, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('-i', '--iters-per-epoch', default=1000, type=int,
help='Number of iterations per epoch')
parser.add_argument('-p', '--print-freq', default=100, type=int,
metavar='N', help='print frequency (default: 100)')
parser.add_argument('--seed', default=None, type=int,
help='seed for initializing training. ')
parser.add_argument('--per-class-eval', action='store_true',
help='whether output per-class accuracy during evaluation')
parser.add_argument("--log", type=str, default='mcd',
help="Where to save logs, checkpoints and debugging images.")
parser.add_argument("--phase", type=str, default='train', choices=['train', 'test', 'analysis'],
help="When phase is 'test', only test the model."
"When phase is 'analysis', only analysis the model.")
args = parser.parse_args()
main(args)