-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
TimeXer.py
225 lines (183 loc) · 8.81 KB
/
TimeXer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import torch
import torch.nn as nn
import torch.nn.functional as F
from layers.SelfAttention_Family import FullAttention, AttentionLayer
from layers.Embed import DataEmbedding_inverted, PositionalEmbedding
import numpy as np
class FlattenHead(nn.Module):
def __init__(self, n_vars, nf, target_window, head_dropout=0):
super().__init__()
self.n_vars = n_vars
self.flatten = nn.Flatten(start_dim=-2)
self.linear = nn.Linear(nf, target_window)
self.dropout = nn.Dropout(head_dropout)
def forward(self, x): # x: [bs x nvars x d_model x patch_num]
x = self.flatten(x)
x = self.linear(x)
x = self.dropout(x)
return x
class EnEmbedding(nn.Module):
def __init__(self, n_vars, d_model, patch_len, dropout):
super(EnEmbedding, self).__init__()
# Patching
self.patch_len = patch_len
self.value_embedding = nn.Linear(patch_len, d_model, bias=False)
self.glb_token = nn.Parameter(torch.randn(1, n_vars, 1, d_model))
self.position_embedding = PositionalEmbedding(d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
# do patching
n_vars = x.shape[1]
glb = self.glb_token.repeat((x.shape[0], 1, 1, 1))
x = x.unfold(dimension=-1, size=self.patch_len, step=self.patch_len)
x = torch.reshape(x, (x.shape[0] * x.shape[1], x.shape[2], x.shape[3]))
# Input encoding
x = self.value_embedding(x) + self.position_embedding(x)
x = torch.reshape(x, (-1, n_vars, x.shape[-2], x.shape[-1]))
x = torch.cat([x, glb], dim=2)
x = torch.reshape(x, (x.shape[0] * x.shape[1], x.shape[2], x.shape[3]))
return self.dropout(x), n_vars
class Encoder(nn.Module):
def __init__(self, layers, norm_layer=None, projection=None):
super(Encoder, self).__init__()
self.layers = nn.ModuleList(layers)
self.norm = norm_layer
self.projection = projection
def forward(self, x, cross, x_mask=None, cross_mask=None, tau=None, delta=None):
for layer in self.layers:
x = layer(x, cross, x_mask=x_mask, cross_mask=cross_mask, tau=tau, delta=delta)
if self.norm is not None:
x = self.norm(x)
if self.projection is not None:
x = self.projection(x)
return x
class EncoderLayer(nn.Module):
def __init__(self, self_attention, cross_attention, d_model, d_ff=None,
dropout=0.1, activation="relu"):
super(EncoderLayer, self).__init__()
d_ff = d_ff or 4 * d_model
self.self_attention = self_attention
self.cross_attention = cross_attention
self.conv1 = nn.Conv1d(in_channels=d_model, out_channels=d_ff, kernel_size=1)
self.conv2 = nn.Conv1d(in_channels=d_ff, out_channels=d_model, kernel_size=1)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.norm3 = nn.LayerNorm(d_model)
self.dropout = nn.Dropout(dropout)
self.activation = F.relu if activation == "relu" else F.gelu
def forward(self, x, cross, x_mask=None, cross_mask=None, tau=None, delta=None):
B, L, D = cross.shape
x = x + self.dropout(self.self_attention(
x, x, x,
attn_mask=x_mask,
tau=tau, delta=None
)[0])
x = self.norm1(x)
x_glb_ori = x[:, -1, :].unsqueeze(1)
x_glb = torch.reshape(x_glb_ori, (B, -1, D))
x_glb_attn = self.dropout(self.cross_attention(
x_glb, cross, cross,
attn_mask=cross_mask,
tau=tau, delta=delta
)[0])
x_glb_attn = torch.reshape(x_glb_attn,
(x_glb_attn.shape[0] * x_glb_attn.shape[1], x_glb_attn.shape[2])).unsqueeze(1)
x_glb = x_glb_ori + x_glb_attn
x_glb = self.norm2(x_glb)
y = x = torch.cat([x[:, :-1, :], x_glb], dim=1)
y = self.dropout(self.activation(self.conv1(y.transpose(-1, 1))))
y = self.dropout(self.conv2(y).transpose(-1, 1))
return self.norm3(x + y)
class Model(nn.Module):
def __init__(self, configs):
super(Model, self).__init__()
self.task_name = configs.task_name
self.features = configs.features
self.seq_len = configs.seq_len
self.pred_len = configs.pred_len
self.use_norm = configs.use_norm
self.patch_len = configs.patch_len
self.patch_num = int(configs.seq_len // configs.patch_len)
self.n_vars = 1 if configs.features == 'MS' else configs.enc_in
# Embedding
self.en_embedding = EnEmbedding(self.n_vars, configs.d_model, self.patch_len, configs.dropout)
self.ex_embedding = DataEmbedding_inverted(configs.seq_len, configs.d_model, configs.embed, configs.freq,
configs.dropout)
# Encoder-only architecture
self.encoder = Encoder(
[
EncoderLayer(
AttentionLayer(
FullAttention(False, configs.factor, attention_dropout=configs.dropout,
output_attention=False),
configs.d_model, configs.n_heads),
AttentionLayer(
FullAttention(False, configs.factor, attention_dropout=configs.dropout,
output_attention=False),
configs.d_model, configs.n_heads),
configs.d_model,
configs.d_ff,
dropout=configs.dropout,
activation=configs.activation,
)
for l in range(configs.e_layers)
],
norm_layer=torch.nn.LayerNorm(configs.d_model)
)
self.head_nf = configs.d_model * (self.patch_num + 1)
self.head = FlattenHead(configs.enc_in, self.head_nf, configs.pred_len,
head_dropout=configs.dropout)
def forecast(self, x_enc, x_mark_enc, x_dec, x_mark_dec):
if self.use_norm:
# Normalization from Non-stationary Transformer
means = x_enc.mean(1, keepdim=True).detach()
x_enc = x_enc - means
stdev = torch.sqrt(torch.var(x_enc, dim=1, keepdim=True, unbiased=False) + 1e-5)
x_enc /= stdev
_, _, N = x_enc.shape
en_embed, n_vars = self.en_embedding(x_enc[:, :, -1].unsqueeze(-1).permute(0, 2, 1))
ex_embed = self.ex_embedding(x_enc[:, :, :-1], x_mark_enc)
enc_out = self.encoder(en_embed, ex_embed)
enc_out = torch.reshape(
enc_out, (-1, n_vars, enc_out.shape[-2], enc_out.shape[-1]))
# z: [bs x nvars x d_model x patch_num]
enc_out = enc_out.permute(0, 1, 3, 2)
dec_out = self.head(enc_out) # z: [bs x nvars x target_window]
dec_out = dec_out.permute(0, 2, 1)
if self.use_norm:
# De-Normalization from Non-stationary Transformer
dec_out = dec_out * (stdev[:, 0, -1:].unsqueeze(1).repeat(1, self.pred_len, 1))
dec_out = dec_out + (means[:, 0, -1:].unsqueeze(1).repeat(1, self.pred_len, 1))
return dec_out
def forecast_multi(self, x_enc, x_mark_enc, x_dec, x_mark_dec):
if self.use_norm:
# Normalization from Non-stationary Transformer
means = x_enc.mean(1, keepdim=True).detach()
x_enc = x_enc - means
stdev = torch.sqrt(torch.var(x_enc, dim=1, keepdim=True, unbiased=False) + 1e-5)
x_enc /= stdev
_, _, N = x_enc.shape
en_embed, n_vars = self.en_embedding(x_enc.permute(0, 2, 1))
ex_embed = self.ex_embedding(x_enc, x_mark_enc)
enc_out = self.encoder(en_embed, ex_embed)
enc_out = torch.reshape(
enc_out, (-1, n_vars, enc_out.shape[-2], enc_out.shape[-1]))
# z: [bs x nvars x d_model x patch_num]
enc_out = enc_out.permute(0, 1, 3, 2)
dec_out = self.head(enc_out) # z: [bs x nvars x target_window]
dec_out = dec_out.permute(0, 2, 1)
if self.use_norm:
# De-Normalization from Non-stationary Transformer
dec_out = dec_out * (stdev[:, 0, :].unsqueeze(1).repeat(1, self.pred_len, 1))
dec_out = dec_out + (means[:, 0, :].unsqueeze(1).repeat(1, self.pred_len, 1))
return dec_out
def forward(self, x_enc, x_mark_enc, x_dec, x_mark_dec, mask=None):
if self.task_name == 'long_term_forecast' or self.task_name == 'short_term_forecast':
if self.features == 'M':
dec_out = self.forecast_multi(x_enc, x_mark_enc, x_dec, x_mark_dec)
return dec_out[:, -self.pred_len:, :] # [B, L, D]
else:
dec_out = self.forecast(x_enc, x_mark_enc, x_dec, x_mark_dec)
return dec_out[:, -self.pred_len:, :] # [B, L, D]
else:
return None