-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathdac_loss.py
143 lines (116 loc) · 5.04 KB
/
dac_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
"""
loss function definitions for deep abstaining classifier.
"""
import torch
from torch.autograd import Variable
import torch.nn.functional as F
from torch.nn.modules.loss import _Loss
import pdb
import math
#for numerical stability
epsilon = 1e-7
#loss calculation and alpha-ramping are rolled into one function. This is invoked
#after every iteration
class dac_loss(_Loss):
def __init__(self, model, learn_epochs, total_epochs, use_cuda=False, cuda_device=None,
alpha_final=1.0,alpha_init_factor=64.):
print("using dac loss function\n")
super(dac_loss, self).__init__()
self.model = model
#self.alpha = alpha
self.learn_epochs = learn_epochs
self.total_epochs = total_epochs
self.alpha_final = alpha_final
self.alpha_init_factor = alpha_init_factor
self.use_cuda = use_cuda
self.cuda_device = cuda_device
#self.kappa = kappa #not used
# if self.use_cuda:
# self.alpha_var = Variable(torch.Tensor([self.alpha])).cuda(self.cuda_device)
# else:
# self.alpha_var = Variable(torch.Tensor([self.alpha]))
self.alpha_var = None
self.alpha_thresh_ewma = None #exponentially weighted moving average for alpha_thresh
self.alpha_thresh = None #instantaneous alpha_thresh
self.ewma_mu = 0.05 #mu parameter for EWMA;
self.curr_alpha_factor = None #for alpha initiliazation
self.alpha_inc = None #linear increase factor of alpha during abstention phase
self.alpha_set_epoch = None
def __call__(self, input_batch, target_batch, epoch):
if epoch <= self.learn_epochs or not self.model.training:
#pdb.set_trace()
loss = F.cross_entropy(input_batch, target_batch, reduction='none')
#return loss.mean()
if self.model.training:
h_c = F.cross_entropy(input_batch[:,0:-1],target_batch,reduction='none')
p_out = torch.exp(F.log_softmax(input_batch,dim=1))
p_out_abstain = p_out[:,-1]
#pdb.set_trace()
#update instantaneous alpha_thresh
self.alpha_thresh = Variable(((1. - p_out_abstain)*h_c).mean().data)
#update alpha_thresh_ewma
if self.alpha_thresh_ewma is None:
self.alpha_thresh_ewma = self.alpha_thresh #Variable(((1. - p_out_abstain)*h_c).mean().data)
else:
# self.alpha_thresh_ewma = Variable(self.ewma_mu*((1. - p_out_abstain)*h_c).mean().data + \
# (1. - self.ewma_mu)*self.alpha_thresh_ewma.data)
self.alpha_thresh_ewma = Variable(self.ewma_mu*self.alpha_thresh.data + \
(1. - self.ewma_mu)*self.alpha_thresh_ewma.data)
# print("\nloss details (pre abstention): %d,%f,%f,%f,%f\n" %(epoch,p_out_abstain.mean(),loss.mean(),h_c.mean(),
# self.alpha_thresh_ewma))
return loss.mean()
else:
#calculate cross entropy only over true classes
h_c = F.cross_entropy(input_batch[:,0:-1],target_batch,reduce=False)
p_out = torch.exp(F.log_softmax(input_batch,dim=1))
#probabilities of abstention class
p_out_abstain = p_out[:,-1]
# avoid numerical instability by upper-bounding
# p_out_abstain to never be more than 1 - eps since we have to
# take log(1 - p_out_abstain) later.
# pdb.set_trace()
if self.use_cuda:
p_out_abstain = torch.min(p_out_abstain,
Variable(torch.Tensor([1. - epsilon])).cuda(self.cuda_device))
else:
p_out_abstain = torch.min(p_out_abstain,
Variable(torch.Tensor([1. - epsilon])))
#update instantaneous alpha_thresh
self.alpha_thresh = Variable(((1. - p_out_abstain)*h_c).mean().data)
#if (epoch == 5):
# pdb.set_trace()
try:
#update alpha_thresh_ewma
if self.alpha_thresh_ewma is None:
self.alpha_thresh_ewma = self.alpha_thresh #Variable(((1. - p_out_abstain)*h_c).mean().data)
else:
self.alpha_thresh_ewma = Variable(self.ewma_mu*self.alpha_thresh.data + \
(1. - self.ewma_mu)*self.alpha_thresh_ewma.data)
if self.alpha_var is None: #hasn't been initialized. do it now
#we create a freshVariable here so that the history of alpha_var
#computation (which depends on alpha_thresh_ewma) is forgotten. This
#makes self.alpha_var a leaf variable, which will not be differentiated.
#aggressive initialization of alpha to jump start abstention
self.alpha_var = Variable(self.alpha_thresh_ewma.data /self.alpha_init_factor)
self.alpha_inc = (self.alpha_final - self.alpha_var.data)/(self.total_epochs - epoch)
self.alpha_set_epoch = epoch
else:
# we only update alpha every epoch
if epoch > self.alpha_set_epoch:
self.alpha_var = Variable(self.alpha_var.data + self.alpha_inc)
self.alpha_set_epoch = epoch
loss = (1. - p_out_abstain)*h_c - \
self.alpha_var*torch.log(1. - p_out_abstain)
#calculate entropy of the posterior over the true classes.
#h_p_true = -(F.softmax(input_batch[:,0:-1],dim=1) \
# *F.log_softmax(input_batch[:,0:-1],dim=1)).sum(1)
#loss = loss - self.kappa*h_p_true
# print("\nloss details (during abstention): %d, %f,%f,%f,%f\n" %(epoch,p_out_abstain.mean(), h_c.mean(),
# self.alpha_thresh_ewma, self.alpha_var))
return loss.mean()
except RuntimeError as e:
#pdb.set_trace()
print(e)
# loss_fn_dict = {
# 'dac_loss' : dac_loss
# }