-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathinitial_state.py
163 lines (133 loc) · 5.2 KB
/
initial_state.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import torch
import random
import numpy as np
from tqdm import tqdm
from torch.utils.data import DataLoader
from datasets import Dataset
from transformers import PreTrainedTokenizerBase
from model.modeling_lina import LinaModel
from model.tools import delay_rvq, sequence_mask
from torch.nn.utils.rnn import pad_sequence
from functools import reduce
def filter_unk(x, tokenizer: PreTrainedTokenizerBase):
try:
tokenizer.encode(x)
return True
except:
return False
def speaker_state_dict(params: list[tuple[torch.Tensor]]) -> dict[str, torch.Tensor]:
state_dict = {}
for i, layer in enumerate(params):
if len(layer) == 2:
k, v = layer
state_dict[f"layer{i}_k"] = k
state_dict[f"layer{i}_v"] = v
else:
state_dict[f"layer{i}"] = layer
return state_dict
def filter_except(x):
try:
tokenizer.encode(x)
return True
except:
return False
def parse_speaker_state(path, device="cpu") -> list[torch.Tensor]:
with safe_open(path, framework="pt", device=device) as state:
keys = [k for k in state.keys() if k.endswith("_k")]
keys.sort(key=lambda x: int("".join([xx for xx in x if xx.isdigit()])))
params_list = []
for k in keys:
v = state.get_tensor(k[:-2] + "_v")
k = state.get_tensor(k)
params_list.append((k, v))
return params_list
def simple_collate(batch: list[dict], tokenizer: PreTrainedTokenizerBase):
audio_token, text = zip(*[(x["audio_token"], x["text"]) for x in batch])
orig_token = audio_token
audio_token_delayed = []
for x in audio_token:
x = x.squeeze()
if len(x.shape) == 1:
x = x.unsqueeze(0)
x = delay_rvq(x + 3, head_token=1, tail_token=2).transpose(-1,-2)
audio_token_delayed.append(x)
text_token = [torch.LongTensor(tokenizer.encode("[BOS]" + x + "[EOS]")) for x in text]
xlen, ylen = map(lambda x: [xx.shape[0] for xx in x], (text_token, audio_token_delayed))
x_mask, y_mask = map(lambda x: sequence_mask(x, device="cpu"), (torch.tensor(xlen), torch.tensor(ylen)))
audio_token, text_token = map(lambda x: pad_sequence(x, batch_first=True, padding_value=0), (audio_token_delayed, text_token))
encoder_mask = (x_mask.unsqueeze(1) * x_mask.unsqueeze(2))
crossatt_mask = (x_mask.unsqueeze(1) * y_mask.unsqueeze(2))
crossatt_mask[:, :, 0] = True
return {
"text_token": text_token,
"audio_token": audio_token,
"orig_token": orig_token,
"crossatt_mask": crossatt_mask,
"encoder_mask": encoder_mask,
"text": text,
"y_mask": y_mask,
"x_len": xlen,
"y_len": ylen,
}
bandwidth_id = torch.tensor(0)
def train_initial_state(
model: LinaModel,
dataset: Dataset,
tokenizer: PreTrainedTokenizerBase,
n_samples: int,
lr: float=0.1,
grad_acc:int=4,
batch_size:int=2,
scale:float=0.02,
save_every_k_steps:int=0,
seed:int=123,
rank:int=1,
):
if save_every_k_steps > 0:
save_every_k_steps_params = []
model.attentive_rnn.to_mode("fused_recurrent")
model = model.train()
parameters = model.attentive_rnn.get_init_state_tuning_params(lora=rank, device="cuda")
optimizer = torch.optim.Adam(reduce(tuple.__add__, parameters), lr=lr)
def inf_sampler_wo_replacement(length):
random.seed(seed)
while True:
idx = list(range(length))
random.shuffle(idx)
for i in idx:
yield i
def model_step(model, batch, parameters, batch_size):
batch = {k: v.cuda() if hasattr(v, "cuda") else v for k, v in batch.items()}
text_token = batch["text_token"]
audio_token = batch["audio_token"][..., :]
crossatt_mask = batch["crossatt_mask"]
encoder_mask = batch["encoder_mask"]
y_mask = batch["y_mask"]
x_len, y_len = batch["x_len"], batch["y_len"]
init_state = model.attentive_rnn.get_state_from_params(parameters, batch_size, scale=scale)
logits, loss, att, _, _ = model(text_token, audio_token, encoder_mask, crossatt_mask, logits_mask=y_mask, init_state=init_state)
return loss
train_dl = iter(DataLoader(dataset,
batch_size=batch_size,
sampler=inf_sampler_wo_replacement(len(dataset)),
num_workers=1,
collate_fn=lambda x: simple_collate(x, tokenizer)))
train_losses = []
k_steps = 0
for i in tqdm(range(n_samples//batch_size)):
batch = next(train_dl)
loss = model_step(model, batch, parameters, batch_size)
train_losses.append(loss.item())
loss.backward()
if i % grad_acc == grad_acc - 1:
optimizer.step()
optimizer.zero_grad()
k_steps += 1
if save_every_k_steps>0:
if k_steps%save_every_k_steps==0:
save_every_k_steps_params.append(deepcopy(parameters))
if save_every_k_steps > 0:
save_every_k_steps_params.append(parameters)
parameters = save_every_k_steps_params
model = model.eval()
return parameters, train_losses