-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathMax min flow.cpp
153 lines (89 loc) · 2.65 KB
/
Max min flow.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
#include <bitd/stdc++.h>
#define V 6
using namespace std;
/* Returns true if there is a path from source 's' to sink 't' in residual graph. Also fills parent[] to store the path */
int bfs(int rGraph[V][V], int s, int t, int parent[])
{
bool visited[V];
memset(visited, 0, sizeof(visited));
queue <int> q;
q.push(s);
visited[s] = true;
parent[s] = -1;
while (!q.empty())
{
int u = q.front();
q.pop();
for (int v = 0; v < V; v++)
{
if (visited[v] == false && rGraph[u][v] > 0)
{
q.push(v);
parent[v] = u;
visited[v] = true;
}
}
}
return (visited[t] == true);
}
/* A DFS based function to find all reachable vertices from s. */
void dfs(int rGraph[V][V], int s, bool visited[])
{
visited[s] = true;
for (int i = 0; i < V; i++)
{
if (rGraph[s][i] && !visited[i])
dfs(rGraph, i, visited);
}
}
/* Prints the minimum s-t cut */
void minCut(int graph[V][V], int s, int t)
{
int u, v;
int rGraph[V][V];
for (u = 0; u < V; u++)
{
for (v = 0; v < V; v++)
rGraph[u][v] = graph[u][v];
}
int parent[V];
while (bfs(rGraph, s, t, parent))
{
int path_flow = 65536;
for (v = t; v != s; v = parent[v])
{
u = parent[v];
path_flow = min(path_flow, rGraph[u][v]);
}
for (v = t; v != s; v = parent[v])
{
u = parent[v];
rGraph[u][v] -= path_flow;
rGraph[v][u] += path_flow;
}
}
bool visited[V];
memset(visited, 0, sizeof(visited));
dfs(rGraph, s, visited);
for (int i = 0; i < V; i++)
{
for (int j = 0; j < V; j++)
{
if (visited[i] && !visited[j] && graph[i][j])
cout << i << " - " << j << endl;
}
}
return;
}
int main()
{
int graph[V][V] = { {0, 16, 13, 0, 0, 0},
{0, 0, 10, 12, 0, 0},
{0, 4, 0, 0, 14, 0},
{0, 0, 9, 0, 0, 20},
{0, 0, 0, 7, 0, 4},
{0, 0, 0, 0, 0, 0}
};
minCut(graph, 0, 5);
return 0;
}