-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathselect_training_images.py
82 lines (73 loc) · 3.04 KB
/
select_training_images.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import json
from datasets import load_dataset
import torch
import open_clip
import os
import numpy as np
import argparse
from tqdm import tqdm
from collections import Counter
parser = argparse.ArgumentParser("create a dataset with human preference")
parser.add_argument("--source_dataset", default='large_first_1m', type=str)
parser.add_argument("--positive_folder", type=str)
parser.add_argument("--negative_folder", type=str)
parser.add_argument("--meta_file", type=str)
parser.add_argument("--output_meta", type=str)
parser.add_argument("--quality", default=95, type=int)
args = parser.parse_args()
# Load the dataset with the `random_1k` subset
dataset = load_dataset('poloclub/diffusiondb', args.source_dataset, ignore_verifications=True)
with open(args.meta_file, 'r') as f:
meta = [json.loads(line) for line in f.readlines()]
pt2idx = dict()
for d in meta:
if d['blurry']:
continue
if d['prompt'] not in pt2idx:
pt2idx[d['prompt']] = []
pt2idx[d['prompt']].append(d['id'])
pt2idx = {k: v for k, v in pt2idx.items() if len(v) >= 4}
if not os.path.exists(args.positive_folder):
os.makedirs(args.positive_folder)
if not os.path.exists(args.negative_folder):
os.makedirs(args.negative_folder)
def softmax(scores):
mean = sum(scores) / len(scores)
new_score = [s - mean for s in scores]
exp = [np.exp(s) for s in new_score]
denom = sum(exp)
return [s / denom for s in exp]
positive_counter = 0
negative_counter = 0
with open(args.output_meta, 'w') as f:
# log images with the maximum confidence over ...
for batch_id, (prompt, ids) in tqdm(enumerate(pt2idx.items())):
scores = [meta[i]['score'] for i in ids]
probs = softmax(scores)
neg_probs = softmax([-s for s in scores])
if max(probs) > 2 / len(probs):
good_id = probs.index(max(probs))
file_name_good = f"{positive_counter}.jpg"
dataset['train'][ids[good_id]]['image'].save(os.path.join(args.positive_folder, file_name_good), quality=args.quality)
positive_counter += 1
f.write(json.dumps(dict(
id=positive_counter + negative_counter,
file_name=os.path.join(os.path.basename(args.positive_folder), file_name_good),
prompt=prompt,
type='positive',
confidence=max(probs),
batch_size=len(probs),
)) + '\n')
if max(neg_probs) > 2 / len(probs):
bad_id = neg_probs.index(max(neg_probs))
file_name_bad = f"{negative_counter}.jpg"
dataset['train'][ids[bad_id]]['image'].save(os.path.join(args.negative_folder, file_name_bad), quality=args.quality)
negative_counter += 1
f.write(json.dumps(dict(
id=positive_counter + negative_counter,
file_name=os.path.join(os.path.basename(args.negative_folder), file_name_bad),
prompt=prompt,
type='negative',
confidence=max(neg_probs),
batch_size=len(probs),
)) + '\n')