-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathmain.py
449 lines (400 loc) · 21.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
# ------------------------------------------------------------------------
# Modified from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
# ------------------------------------------------------------------------
import os, io
import argparse
import datetime
import json
import random
import time
from pathlib import Path
import numpy as np
import torch
from torch.utils.data import DataLoader, DistributedSampler
import datasets
import util.misc as utils
from datasets import build_dataset, get_coco_api_from_dataset, DistributedWeightedSampler
from engine import evaluate, train_one_epoch, lvis_evaluate
from models import build_model
from timm.utils import get_state_dict
def get_args_parser():
parser = argparse.ArgumentParser('CORA: Adapting CLIP for Open-Vocabulary Detection with Region Prompting and Anchor Pre-Matching', add_help=False)
parser.add_argument('--lr', default=1e-4, type=float)
parser.add_argument('--lr_linear_proj_names', default=[], type=str, nargs='+')
parser.add_argument('--lr_linear_proj_mult', default=0.1, type=float)
parser.add_argument('--lr_backbone', default=0.0, type=float)
parser.add_argument('--batch_size', default=2, type=int)
parser.add_argument('--weight_decay', default=1e-4, type=float)
parser.add_argument('--epochs', default=50, type=int)
parser.add_argument('--lr_drop', default=40, type=int)
parser.add_argument('--clip_max_norm', default=0.1, type=float, help='gradient clipping max norm')
parser.add_argument('--text_len', default=77, type=int)
parser.add_argument('--no_auto_resume', action='store_true')
parser.add_argument('--save_best', action='store_true')
parser.add_argument('--model_ema', action='store_true')
parser.add_argument('--model_ema_decay', default=0.99992, type=float)
parser.add_argument('--no_model_ema', action='store_true')
# Model parameters
parser.add_argument('--frozen_weights', type=str, default=None,
help="Path to the pretrained model. If set, only the mask head will be trained")
parser.add_argument('--multiscale', default=False, action='store_true')
parser.add_argument('--stage1_box', default=300, type=int)
parser.add_argument('--use_deformable_attention', action='store_true')
parser.add_argument('--only_deform_enc', action='store_true')
# * Backbone
parser.add_argument('--backbone', default='resnet50', type=str,
help="Name of the convolutional backbone to use")
parser.add_argument('--model_path', default='', type=str)
parser.add_argument('--dilation', action='store_true',
help="If true, we replace stride with dilation in the last convolutional block (DC5)")
parser.add_argument('--position_embedding', default='sine', type=str, choices=('sine',),
help="Type of positional embedding to use on top of the image features")
parser.add_argument('--ovd', action='store_true')
parser.add_argument('--no_clip_init_image', action='store_true')
parser.add_argument('--pe_temperature', default=20, type=int)
parser.add_argument('--box_conditioned_pe', action='store_true')
parser.add_argument('--box_proj_dim', default=128, type=int)
parser.add_argument('--pe_proj_dim', default=-1, type=int)
parser.add_argument('--region_prompt_path', default='', type=str)
parser.add_argument('--target_class_factor', default=1.0, type=float)
parser.add_argument('--resample_factor', default=1.0, type=float)
parser.add_argument('--filter_classes', action='store_true')
parser.add_argument('--eval_embedding', default='', type=str)
parser.add_argument('--rpn', action='store_true')
parser.add_argument('--matching_threshold', default=-1., type=float)
parser.add_argument('--pseudo_box', default='', type=str)
parser.add_argument('--backbone_feature', default='layer3', choices=['layer3', 'layer4'], type=str)
parser.add_argument('--end2end', action='store_true')
parser.add_argument('--disable_init', action='store_true')
parser.add_argument('--disable_spatial_attn_mask', action='store_true')
# ovd control flags
parser.add_argument('--use_nms', action='store_true')
parser.add_argument('--no_nms', action='store_true')
parser.add_argument('--iou_rescore', action='store_true')
parser.add_argument('--eval_gt', action='store_true')
parser.add_argument('--no_target_eval', action='store_true')
parser.add_argument('--anchor_pre_matching', action='store_true')
parser.add_argument('--aggresive_eval', action='store_true')
parser.add_argument('--global_topk', action='store_true')
parser.add_argument('--softmax_along', default='class', choices=['class', 'box', 'none'])
parser.add_argument('--no_efficient_pooling', action='store_true')
parser.add_argument('--use_efficient_pe_proj', action='store_true')
parser.add_argument('--text_dim', default=1024, type=int)
parser.add_argument('--add_gn', action='store_true')
parser.add_argument('--bg_threshold', default=-1.0, type=float)
parser.add_argument('--class_oracle', action='store_true')
parser.add_argument('--score_threshold', default=2.0, type=float)
parser.add_argument('--classifier_cache', default='', type=str)
# debug
parser.add_argument('--visualize', action='store_true')
parser.add_argument('--objectness_alpha', default=1.0, type=float)
parser.add_argument('--split_class_p', default=0.0, type=float)
parser.add_argument('--eval_tau', default=100, type=int)
parser.add_argument('--iou_relabel_eval', action='store_true')
parser.add_argument('--test_attnpool_path', default='', type=str)
# * Transformer
parser.add_argument('--enc_layers', default=6, type=int, help="Number of encoding layers in the transformer")
parser.add_argument('--dec_layers', default=6, type=int, help="Number of decoding layers in the transformer")
parser.add_argument('--dim_feedforward', default=2048, type=int, help="dimension of the FFN in the transformer")
parser.add_argument('--hidden_dim', default=256, type=int, help="dimension of the transformer")
parser.add_argument('--dropout', default=0.1, type=float, help="Dropout applied in the transformer")
parser.add_argument('--nheads', default=8, type=int, help="Number of attention heads in the transformer attention")
parser.add_argument('--num_queries', default=300, type=int, help="Number of query slots")
parser.add_argument('--fix_reference_points', action='store_true')
# * Segmentation
parser.add_argument('--masks', action='store_true', help="Train segmentation head if the flag is provided")
# Loss
parser.add_argument('--no_aux_loss', dest='aux_loss', action='store_false',
help="Disables auxiliary decoding losses (loss at each layer)")
# * Matcher
parser.add_argument('--set_cost_class', default=2.0, type=float, help="Class coefficient in the matching cost")
parser.add_argument('--set_cost_class_rpn', default=2.0, type=float, help="Class coefficient in the matching cost")
parser.add_argument('--set_cost_bbox', default=5.0, type=float, help="L1 box coefficient in the matching cost")
parser.add_argument('--set_cost_giou', default=2.0, type=float, help="giou box coefficient in the matching cost")
# * Loss coefficients
parser.add_argument('--mask_loss_coef', default=1.0, type=float)
parser.add_argument('--dice_loss_coef', default=1.0, type=float)
parser.add_argument('--cls_loss_coef', default=2.0, type=float)
parser.add_argument('--cls_loss_coef_rpn', default=2.0, type=float)
parser.add_argument('--bbox_loss_coef', default=5.0, type=float)
parser.add_argument('--giou_loss_coef', default=2.0, type=float)
parser.add_argument('--focal_alpha', default=0.25, type=float)
parser.add_argument('--contrastive_loss_coef', default=1.0, type=float)
parser.add_argument('--class_group', default='', type=str)
parser.add_argument('--semantic_cost', default=-1., type=float)
parser.add_argument('--topk_matching', default=-1, type=int)
# dataset parameters
parser.add_argument('--dataset_file', default='coco')
parser.add_argument('--coco_path', type=str, default='data/coco')
parser.add_argument('--lvis_path', default='', type=str)
parser.add_argument("--label_map", default=False, action="store_true")
parser.add_argument('--coco_panoptic_path', type=str)
parser.add_argument('--remove_misclassified', action='store_true')
parser.add_argument('--repeat_factor_sampling', action='store_true')
parser.add_argument('--repeat_threshold', default=0.001, type=float)
parser.add_argument('--condition_on_text', action='store_true')
parser.add_argument('--condition_bottleneck', default=128, type=int)
parser.add_argument('--output_dir', default='', help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda', help='device to use for training / testing. We must use cuda.')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint, empty for training from scratch')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N', help='start epoch')
parser.add_argument('--eval', action='store_true')
parser.add_argument('--eval_target', action='store_true')
parser.add_argument('--eval_every_epoch', default=1, type=int, help='eval every ? epoch')
parser.add_argument('--save_every_epoch', default=5, type=int, help='save model weights every ? epoch')
parser.add_argument('--num_workers', default=2, type=int)
parser.add_argument('--debug', action='store_true',
help="For debug only. It will perform only a few steps during trainig and val.")
parser.add_argument('--label_version', default='', choices=['', 'RN50x4base', 'RN50x4base_coconames', 'RN50x4base_prev', 'RN50base', 'ori', 'custom'])
parser.add_argument('--num_label_sampled', default=-1, type=int)
parser.add_argument('--clip_aug', action='store_true')
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
return parser
def _load_checkpoint_for_ema(model_ema, checkpoint):
"""
Workaround for ModelEma._load_checkpoint to accept an already-loaded object
"""
mem_file = io.BytesIO()
torch.save({'state_dict_ema':checkpoint}, mem_file)
mem_file.seek(0)
model_ema._load_checkpoint(mem_file)
def main(args):
utils.init_distributed_mode(args)
if args.frozen_weights is not None:
assert args.masks, "Frozen training is meant for segmentation only."
print(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
model, criterion, post_processors = build_model(args)
model.to(device)
model_ema = None
if args.model_ema:
# Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper
model_ema = utils.fast_ema(
model,
decay=args.model_ema_decay,
device='',
resume='',
skip_keywords=['classifier', 'backbone'])
def match_keywords(n, name_keywords):
out = False
for b in name_keywords:
if b in n:
out = True
break
return out
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=False)
model_without_ddp = model.module
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('Total number of params in model: ', n_parameters)
def match_keywords(n, name_keywords):
out = False
for b in name_keywords:
if b in n:
out = True
break
return out
param_dicts = [
{
"params":
[p for n, p in model_without_ddp.named_parameters()
if "backbone.0" not in n and not match_keywords(n, args.lr_linear_proj_names) and p.requires_grad],
"lr": args.lr,
},
{
"params": [p for n, p in model_without_ddp.named_parameters()
if "backbone.0" in n and p.requires_grad],
"lr": args.lr_backbone,
},
{
"params": [p for n, p in model_without_ddp.named_parameters()
if match_keywords(n, args.lr_linear_proj_names) and p.requires_grad],
"lr": args.lr * args.lr_linear_proj_mult,
}
]
optimizer = torch.optim.AdamW(param_dicts, lr=args.lr, weight_decay=args.weight_decay)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_drop)
dataset_val = build_dataset(image_set='val', args=args)
if args.debug:
dataset_train = dataset_val
else:
dataset_train = build_dataset(image_set='train', args=args)
if args.distributed:
# TODO: update case where not using distributed mode
if args.repeat_factor_sampling:
sampler_train = DistributedWeightedSampler(dataset_train, weight=dataset_train.rep_factors)
else:
sampler_train = DistributedSampler(dataset_train)
sampler_val = DistributedSampler(dataset_val, shuffle=False)
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
batch_sampler_train = torch.utils.data.BatchSampler(sampler_train, args.batch_size, drop_last=True)
data_loader_train = DataLoader(dataset_train,
batch_sampler=batch_sampler_train,
collate_fn=utils.collate_fn,
num_workers=args.num_workers)
data_loader_val = DataLoader(dataset_val,
args.batch_size,
sampler=sampler_val,
drop_last=False,
collate_fn=utils.collate_fn,
num_workers=args.num_workers)
if args.dataset_file == "coco_panoptic":
# We also evaluate AP during panoptic training, on original coco DS
coco_val = datasets.coco.build("val", args)
base_ds = get_coco_api_from_dataset(coco_val)
else:
base_ds = get_coco_api_from_dataset(dataset_val)
if args.frozen_weights is not None:
checkpoint = torch.load(args.frozen_weights, map_location='cpu')
model_without_ddp.detr.load_state_dict(checkpoint['model'])
output_dir = Path(args.output_dir)
if not args.no_auto_resume and not args.resume:
checkpoint_dir = os.path.join(str(output_dir), "checkpoint.pth")
if os.path.exists(checkpoint_dir):
args.resume = checkpoint_dir
best_performance = -1
if args.resume:
print(f"loading checkpoint from {args.resume}")
if args.resume.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(args.resume, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.resume, map_location='cpu')
model_without_ddp.load_state_dict(checkpoint['model'])
if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
args.start_epoch = checkpoint['epoch'] + 1
if 'best_performance' in checkpoint:
best_performance = checkpoint['best_performance']
if 'model_ema'in checkpoint and model_ema is not None:
_load_checkpoint_for_ema(model_ema, checkpoint['model_ema'])
if args.eval:
# debug
if args.dataset_file == "lvis" and False:
test_stats, coco_evaluator = lvis_evaluate(
model_ema.ema if args.model_ema else model,
criterion,
post_processors,
data_loader_val,
base_ds,
device,
args.output_dir,
args.label_map,
False,
args,
)
else:
test_stats, coco_evaluator = evaluate(
model_ema.ema if args.model_ema else model, criterion, post_processors, data_loader_val, base_ds, device, args.output_dir, args=args
)
if args.output_dir:
utils.save_on_master(coco_evaluator.coco_eval["bbox"].eval, output_dir / "eval.pth")
return
print("Start training...")
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
sampler_train.set_epoch(epoch)
train_stats = train_one_epoch(
model, criterion, data_loader_train, optimizer, device, epoch, args.clip_max_norm, args=args, model_ema=model_ema
)
lr_scheduler.step()
if args.output_dir:
checkpoint_paths = [output_dir / 'checkpoint.pth']
if (epoch + 1) % args.save_every_epoch == 0:
checkpoint_paths.append(output_dir / f'checkpoint{epoch:04}.pth')
for checkpoint_path in checkpoint_paths:
utils.save_on_master({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'args': args,
'best_performance': best_performance,
'model_ema': get_state_dict(model_ema) if model_ema else -1,
}, checkpoint_path)
if (epoch + 1) % args.eval_every_epoch == 0:
if args.dataset_file == "lvis":
test_stats, coco_evaluator = lvis_evaluate(
model if model_ema is None else model_ema.ema,
criterion,
post_processors,
data_loader_val,
base_ds,
device,
args.output_dir,
args.label_map,
False,
args,
)
if utils.is_main_process():
APR = test_stats['APr']
if APR > best_performance:
best_performance = APR
if args.save_best:
best_path = output_dir / 'checkpoint_best.pth'
utils.save_on_master({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'args': args,
'best_performance': best_performance,
'model_ema': get_state_dict(model_ema) if model_ema else -1,
}, best_path)
else:
test_stats, coco_evaluator = evaluate(
model if model_ema is None else model_ema.ema, criterion, post_processors, data_loader_val, base_ds, device, args.output_dir, args=args
)
targetAP50 = test_stats['coco_eval_bbox'][-3]
if targetAP50 > best_performance:
best_performance = targetAP50
if args.save_best:
best_path = output_dir / 'checkpoint_best.pth'
utils.save_on_master({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'args': args,
'best_performance': best_performance,
'model_ema': get_state_dict(model_ema) if model_ema else -1,
}, best_path)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'test_{k}': v for k, v in test_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters}
if args.output_dir and utils.is_main_process():
with (output_dir / "log.txt").open("a") as f:
f.write(json.dumps(log_stats) + "\n")
# for evaluation logs
if coco_evaluator is not None:
(output_dir / 'eval').mkdir(exist_ok=True)
if "bbox" in coco_evaluator.coco_eval:
filenames = ['latest.pth']
filenames.append(f'{epoch:04}.pth')
for name in filenames:
torch.save(coco_evaluator.coco_eval["bbox"].eval, output_dir / "eval" / name)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training completed.\nTotal training time: {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser("CORA", parents=[get_args_parser()])
args = parser.parse_args()
if args.no_model_ema:
args.model_ema = False
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)