-
Notifications
You must be signed in to change notification settings - Fork 5
/
mycider.py
256 lines (226 loc) · 10.2 KB
/
mycider.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import json
import numpy as np
import math
from collections import defaultdict
def transfer_result_to_res(data):
res = {}
for i in range(len(data)):
res[data[i]['image_id']] = [data[i]['caption']]
return res
def transfer_json_to_cider_gts(json_file):
print '... changing standard format for cider calculation'
with open(json_file) as f:
data = json.load(f)
image_index = data['image_ids']
index_caption = data['captions']
gts_caption = {}
for i in range(len(image_index)):
gts_caption[image_index[i]] = index_caption[i]
print '... finishing changing standard format'
return gts_caption
def precook(s, n=4, out=False):
"""
Takes a string as input and returns an object that can be given to
either cook_refs or cook_test. This is optional: cook_refs and cook_test
can take string arguments as well.
:param s: string : sentence to be converted into ngrams
:param n: int : number of ngrams for which representation is calculated
:return: term frequency vector for occuring ngrams
"""
words = s.split()
counts = defaultdict(int)
for k in xrange(1,n+1):
for i in xrange(len(words)-k+1):
ngram = tuple(words[i:i+k])
counts[ngram] += 1
return counts
def cook_refs(refs, n=4): ## lhuang: oracle will call with "average"
'''Takes a list of reference sentences for a single segment
and returns an object that encapsulates everything that BLEU
needs to know about them.
:param refs: list of string : reference sentences for some image
:param n: int : number of ngrams for which (ngram) representation is calculated
:return: result (list of dict)
'''
return [precook(ref, n) for ref in refs]
def cook_test(test, n=4):
'''Takes a test sentence and returns an object that
encapsulates everything that BLEU needs to know about it.
:param test: list of string : hypothesis sentence for some image
:param n: int : number of ngrams for which (ngram) representation is calculated
:return: result (dict)
'''
return precook(test, n, True)
class CiderScorer(object):
def __init__(self, refs=None, n=4, sigma=6.0):
self.n = n
self.sigma = sigma
self.crefs = []
self.ref_to_imageId = {}
self.build_cook_refs(refs)
self.document_frequency = defaultdict(float)
self.compute_doc_freq()
def compute_doc_freq(self):
"""
Compute term frequency for reference data.
This will be used to compute idf (inverse document frequency later)
The term frequency is stored in the object
:return: None
"""
print 'done for stats'
for refs in self.crefs:
# refs, k ref captions of one image
for ngram in set([ngram for ref in refs for (ngram, count) in ref.iteritems()]):
self.document_frequency[ngram] += 1
# maxcounts[ngram] = max(maxcounts.get(ngram,0), count)
def Counts2vec(self,cnts):
"""
Function maps counts of ngram to vector of tfidf weights.
The function returns vec, an array of dictionary that store mapping of n-gram and tf-idf weights.
The n-th entry of array denotes length of n-grams.
:param cnts:
:return: vec (array of dict), norm (array of float), length (int)
"""
vec = [defaultdict(float) for _ in range(self.n)]
length = 0
norm = [0.0 for _ in range(self.n)]
for (ngram, term_freq) in cnts.iteritems():
# give word count 1 if it doesn't appear in reference corpus
df = np.log(max(1.0, self.document_frequency[ngram]))
# ngram index
n = len(ngram) - 1
# tf (term_freq) * idf (precomputed idf) for n-grams
vec[n][ngram] = float(term_freq) * (self.ref_len - df)
# compute norm for the vector. the norm will be used for computing similarity
norm[n] += pow(vec[n][ngram], 2)
if n == 1:
length += term_freq
norm = [np.sqrt(n) for n in norm]
return vec, norm, length
def Sim(self, vec_hyp, vec_ref, norm_hyp, norm_ref, length_hyp, length_ref):
"""
Compute the cosine similarity of two vectors.
:param vec_hyp: array of dictionary for vector corresponding to hypothesis
:param vec_ref: array of dictionary for vector corresponding to reference
:param norm_hyp: array of float for vector corresponding to hypothesis
:param norm_ref: array of float for vector corresponding to reference
:param length_hyp: int containing length of hypothesis
:param length_ref: int containing length of reference
:return: array of score for each n-grams cosine similarity
"""
delta = float(length_hyp - length_ref)
# measure consine similarity
val = np.array([0.0 for _ in range(self.n)])
for n in range(self.n):
# ngram
for (ngram, count) in vec_hyp[n].iteritems():
# vrama91 : added clipping
val[n] += min(vec_hyp[n][ngram], vec_ref[n][ngram]) * vec_ref[n][ngram]
if (norm_hyp[n] != 0) and (norm_ref[n] != 0):
val[n] /= (norm_hyp[n] * norm_ref[n])
assert (not math.isnan(val[n]))
# vrama91: added a length based gaussian penalty
val[n] *= np.e ** (-(delta ** 2) / (2 * self.sigma ** 2))
return val
# compute log reference length
def build_cook_refs(self, refs):
count = 0
if refs is not None:
for item in refs:
self.ref_to_imageId[item] = count
self.crefs.append(cook_refs(refs[item], n= self.n))
count = count + 1
def cook_append_test(self, test=None):
self.ctest = []
self.test_to_imageId = {}
Counttest = 0
if test is not None:
for item in test:
self.test_to_imageId[Counttest] = item
self.ctest.append(cook_test(test[item][0], n=self.n))
Counttest = Counttest + 1
else:
self.ctest.append(None)
def compute_cider(self):
def counts2vec(cnts):
"""
Function maps counts of ngram to vector of tfidf weights.
The function returns vec, an array of dictionary that store mapping of n-gram and tf-idf weights.
The n-th entry of array denotes length of n-grams.
:param cnts:
:return: vec (array of dict), norm (array of float), length (int)
"""
vec = [defaultdict(float) for _ in range(self.n)]
length = 0
norm = [0.0 for _ in range(self.n)]
for (ngram, term_freq) in cnts.iteritems():
# give word count 1 if it doesn't appear in reference corpus
df = np.log(max(1.0, self.document_frequency[ngram]))
# ngram index
n = len(ngram) - 1
# tf (term_freq) * idf (precomputed idf) for n-grams
vec[n][ngram] = float(term_freq) * (self.ref_len - df)
# compute norm for the vector. the norm will be used for computing similarity
norm[n] += pow(vec[n][ngram], 2)
if n == 1:
length += term_freq
norm = [np.sqrt(n) for n in norm]
return vec, norm, length
def sim(vec_hyp, vec_ref, norm_hyp, norm_ref, length_hyp, length_ref):
"""
Compute the cosine similarity of two vectors.
:param vec_hyp: array of dictionary for vector corresponding to hypothesis
:param vec_ref: array of dictionary for vector corresponding to reference
:param norm_hyp: array of float for vector corresponding to hypothesis
:param norm_ref: array of float for vector corresponding to reference
:param length_hyp: int containing length of hypothesis
:param length_ref: int containing length of reference
:return: array of score for each n-grams cosine similarity
"""
delta = float(length_hyp - length_ref)
# measure consine similarity
val = np.array([0.0 for _ in range(self.n)])
for n in range(self.n):
# ngram
for (ngram, count) in vec_hyp[n].iteritems():
# vrama91 : added clipping
val[n] += min(vec_hyp[n][ngram], vec_ref[n][ngram]) * vec_ref[n][ngram]
if (norm_hyp[n] != 0) and (norm_ref[n] != 0):
val[n] /= (norm_hyp[n] * norm_ref[n])
assert (not math.isnan(val[n]))
# vrama91: added a length based gaussian penalty
val[n] *= np.e ** (-(delta ** 2) / (2 * self.sigma ** 2))
return val
# compute log reference length
self.ref_len = np.log(float(len(self.crefs)))
scores = []
# for test, refs in zip(self.ctest, self.crefs):
for id in range(len(self.ctest)):
test = self.ctest[id]
refs = self.crefs[self.ref_to_imageId[self.test_to_imageId[id]]]
# compute vector for test captions
vec, norm, length = counts2vec(test)
# compute vector for ref captions
score = np.array([0.0 for _ in range(self.n)])
for ref in refs:
vec_ref, norm_ref, length_ref = counts2vec(ref)
score += sim(vec, vec_ref, norm, norm_ref, length, length_ref)
# change by vrama91 - mean of ngram scores, instead of sum
score_avg = np.mean(score)
# divide by number of references
score_avg /= len(refs)
# multiply score by 10
score_avg *= 10.0
# append score of an image to the score list
scores.append(score_avg)
return scores
def compute_score(self, option=None, verbose=0):
# compute idf
#if first_time == 1:
# assert to check document frequency
#assert (len(self.ctest) >= max(self.document_frequency.values()))
# compute cider score
score = self.compute_cider()
# debug
# print score
return np.mean(np.array(score)), np.array(score)