-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathctc_beam_search_decoder.cpp
459 lines (391 loc) · 14.3 KB
/
ctc_beam_search_decoder.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
#include "ctc_beam_search_decoder.h"
#include <algorithm>
#include <cmath>
#include <iostream>
#include <limits>
#include <map>
#include <utility>
#include "ThreadPool.h"
#include "fst/fstlib.h"
#include "decoder_utils.h"
#include "path_trie.h"
using FSTMATCH = fst::SortedMatcher<fst::StdVectorFst>;
std::vector<std::pair<double, std::string>> ctc_beam_search_decoder(
const std::vector<std::vector<double>> &probs_seq,
const std::vector<std::string> &vocabulary,
size_t beam_size,
double cutoff_prob,
size_t cutoff_top_n,
Scorer *ext_scorer) {
// dimension check
std::vector<std::tuple<std::string, uint32_t, uint32_t>> wordlist;
size_t num_time_steps = probs_seq.size();
for (size_t i = 0; i < num_time_steps; ++i) {
VALID_CHECK_EQ(probs_seq[i].size(),
vocabulary.size() + 1,
"The shape of probs_seq does not match with "
"the shape of the vocabulary");
}
// assign blank id
size_t blank_id = vocabulary.size();
// assign space id
auto it = std::find(vocabulary.begin(), vocabulary.end(), " ");
int space_id = it - vocabulary.begin();
// if no space in vocabulary
if ((size_t)space_id >= vocabulary.size()) {
space_id = -2;
}
// init prefixes' root
PathTrie root;
root.score = root.log_prob_b_prev = 0.0;
std::vector<PathTrie *> prefixes;
prefixes.push_back(&root);
if (ext_scorer != nullptr && !ext_scorer->is_character_based()) {
auto fst_dict = static_cast<fst::StdVectorFst *>(ext_scorer->dictionary);
fst::StdVectorFst *dict_ptr = fst_dict->Copy(true);
root.set_dictionary(dict_ptr);
auto matcher = std::make_shared<FSTMATCH>(*dict_ptr, fst::MATCH_INPUT);
root.set_matcher(matcher);
}
// prefix search over time
for (size_t time_step = 0; time_step < num_time_steps; ++time_step) {
auto &prob = probs_seq[time_step];
float min_cutoff = -NUM_FLT_INF;
bool full_beam = false;
if (ext_scorer != nullptr) {
size_t num_prefixes = std::min(prefixes.size(), beam_size);
std::sort(
prefixes.begin(), prefixes.begin() + num_prefixes, prefix_compare);
min_cutoff = prefixes[num_prefixes - 1]->score +
std::log(prob[blank_id]) - std::max(0.0, ext_scorer->beta);
full_beam = (num_prefixes == beam_size);
}
std::vector<std::pair<size_t, float>> log_prob_idx =
get_pruned_log_probs(prob, cutoff_prob, cutoff_top_n);
// loop over chars
for (size_t index = 0; index < log_prob_idx.size(); index++) {
auto c = log_prob_idx[index].first;
auto log_prob_c = log_prob_idx[index].second;
for (size_t i = 0; i < prefixes.size() && i < beam_size; ++i) {
auto prefix = prefixes[i];
if (full_beam && log_prob_c + prefix->score < min_cutoff) {
break;
}
// blank
if (c == blank_id) {
prefix->log_prob_b_cur =
log_sum_exp(prefix->log_prob_b_cur, log_prob_c + prefix->score);
continue;
}
// repeated character
if (c == prefix->character) {
prefix->log_prob_nb_cur = log_sum_exp(
prefix->log_prob_nb_cur, log_prob_c + prefix->log_prob_nb_prev);
}
// get new prefix
auto prefix_new = prefix->get_path_trie(c);
if (prefix_new != nullptr) {
float log_p = -NUM_FLT_INF;
if (c == prefix->character &&
prefix->log_prob_b_prev > -NUM_FLT_INF) {
log_p = log_prob_c + prefix->log_prob_b_prev;
} else if (c != prefix->character) {
log_p = log_prob_c + prefix->score;
}
// language model scoring
if (ext_scorer != nullptr &&
(c == space_id || ext_scorer->is_character_based())) {
PathTrie *prefix_to_score = nullptr;
// skip scoring the space
if (ext_scorer->is_character_based()) {
prefix_to_score = prefix_new;
} else {
prefix_to_score = prefix;
}
float score = 0.0;
std::vector<std::string> ngram;
ngram = ext_scorer->make_ngram(prefix_to_score);
score = ext_scorer->get_log_cond_prob(ngram) * ext_scorer->alpha;
log_p += score;
log_p += ext_scorer->beta;
}
prefix_new->log_prob_nb_cur =
log_sum_exp(prefix_new->log_prob_nb_cur, log_p);
}
} // end of loop over prefix
} // end of loop over vocabulary
prefixes.clear();
// update log probs
root.iterate_to_vec(prefixes);
// only preserve top beam_size prefixes
if (prefixes.size() >= beam_size) {
std::nth_element(prefixes.begin(),
prefixes.begin() + beam_size,
prefixes.end(),
prefix_compare);
for (size_t i = beam_size; i < prefixes.size(); ++i) {
prefixes[i]->remove();
}
}
} // end of loop over time
// score the last word of each prefix that doesn't end with space
if (ext_scorer != nullptr && !ext_scorer->is_character_based()) {
for (size_t i = 0; i < beam_size && i < prefixes.size(); ++i) {
auto prefix = prefixes[i];
if (!prefix->is_empty() && prefix->character != space_id) {
float score = 0.0;
std::vector<std::string> ngram = ext_scorer->make_ngram(prefix);
score = ext_scorer->get_log_cond_prob(ngram) * ext_scorer->alpha;
score += ext_scorer->beta;
prefix->score += score;
}
}
}
size_t num_prefixes = std::min(prefixes.size(), beam_size);
std::sort(prefixes.begin(), prefixes.begin() + num_prefixes, prefix_compare);
// compute aproximate ctc score as the return score, without affecting the
// return order of decoding result. To delete when decoder gets stable.
for (size_t i = 0; i < beam_size && i < prefixes.size(); ++i) {
double approx_ctc = prefixes[i]->score;
if (ext_scorer != nullptr) {
std::vector<int> output;
prefixes[i]->get_path_vec(output);
auto prefix_length = output.size();
auto words = ext_scorer->split_labels(output);
// remove word insert
approx_ctc = approx_ctc - prefix_length * ext_scorer->beta;
// remove language model weight:
approx_ctc -= (ext_scorer->get_sent_log_prob(words)) * ext_scorer->alpha;
}
prefixes[i]->approx_ctc = approx_ctc;
}
return get_beam_search_result(prefixes, vocabulary, beam_size, wordlist);
}
/*
class BeamDecoder {
public:
BeamDecoder(const std::vector<std::string> &vocabulary,
size_t beam_size,
double cutoff_prob = 1.0,
size_t cutoff_top_n = 40,
Scorer *ext_scorer = nullptr);
~BeamDecoder();
// decode a frame
std::vector<std::pair<double, std::string>> decode(const std::vector<std::vector<double>> &probs_seq);
// reset state
void reset();
private:
Scorer *ext_scorer;
size_t beam_size;
double cutoff_prob;
size_t cutoff_top_n;
// state
std::vector<std::string> vocabulary;
size_t blank_id;
int space_id;
PathTrie *root;
std::vector<PathTrie *> prefixes;
}
*/
BeamDecoder::BeamDecoder(const std::vector<std::string> &vocabulary,
size_t beam_size,
double cutoff_prob,
size_t cutoff_top_n,
Scorer *ext_scorer)
{
this->beam_size = beam_size;
this->cutoff_prob = cutoff_prob;
this->cutoff_top_n = cutoff_top_n;
this->ext_scorer = ext_scorer;
this->vocabulary = vocabulary;
this->root = nullptr;
// assign blank id
blank_id = vocabulary.size()-1;
// assign space id
auto it = std::find(vocabulary.begin(), vocabulary.end(), " ");
space_id = it - vocabulary.begin();
// if no space in vocabulary
if ((size_t)space_id >= vocabulary.size()) {
space_id = -2;
}
reset();
}
BeamDecoder::~BeamDecoder()
{
if (root != nullptr) {
delete root;
}
}
void BeamDecoder::reset(bool keep_offset /*default = false*/, bool keep_words /*default = false*/)
{
// init prefixes' root
if (root != nullptr) {
delete root;
}
root = new PathTrie();
root->score = root->log_prob_b_prev = 0.0;
prefixes.clear();
prefixes.push_back(root);
if (ext_scorer != nullptr && !ext_scorer->is_character_based()) {
auto fst_dict = static_cast<fst::StdVectorFst *>(ext_scorer->dictionary);
fst::StdVectorFst *dict_ptr = fst_dict->Copy(true);
root->set_dictionary(dict_ptr);
auto matcher = std::make_shared<FSTMATCH>(*dict_ptr, fst::MATCH_INPUT);
root->set_matcher(matcher);
}
if (keep_offset) {
prev_time_offset += last_decoded_timestep + time_offset;
} else {
prev_time_offset = 0;
}
if (keep_words) {
prev_wordlist.insert(
std::end(prev_wordlist), std::begin(wordlist),
std::end(wordlist));
} else {
prev_wordlist.clear();
}
wordlist.clear();
time_offset = 0;
last_decoded_timestep = 0;
}
std::vector<std::pair<double, std::string>> BeamDecoder::decode(const std::vector<std::vector<double>> &probs_seq)
{
// dimension check
size_t num_time_steps = probs_seq.size();
for (size_t i = 0; i < num_time_steps; ++i) {
VALID_CHECK_EQ(probs_seq[i].size(),
vocabulary.size(),
"The shape of probs_seq does not match with "
"the shape of the vocabulary");
}
// prefix search over time
for (size_t time_step = 0; time_step < num_time_steps; ++time_step) {
auto &prob = probs_seq[time_step];
float min_cutoff = -NUM_FLT_INF;
bool full_beam = false;
// TODO: move sorting to the end of loop
if (ext_scorer != nullptr) {
size_t num_prefixes = std::min(prefixes.size(), beam_size);
std::sort(
prefixes.begin(), prefixes.begin() + num_prefixes, prefix_compare);
min_cutoff = prefixes[num_prefixes - 1]->score +
std::log(prob[blank_id]) - std::max(0.0, ext_scorer->beta);
full_beam = (num_prefixes == beam_size);
}
std::vector<std::pair<size_t, float>> log_prob_idx =
get_pruned_log_probs(prob, cutoff_prob, cutoff_top_n);
// loop over chars
for (size_t index = 0; index < log_prob_idx.size(); index++) {
auto c = log_prob_idx[index].first;
auto log_prob_c = log_prob_idx[index].second;
for (size_t i = 0; i < prefixes.size() && i < beam_size; ++i) {
auto prefix = prefixes[i];
if (full_beam && log_prob_c + prefix->score < min_cutoff) {
break;
}
// blank
if (c == blank_id) {
prefix->log_prob_b_cur =
log_sum_exp(prefix->log_prob_b_cur, log_prob_c + prefix->score);
continue;
}
// repeated character
if (c == prefix->character) {
prefix->log_prob_nb_cur = log_sum_exp(
prefix->log_prob_nb_cur, log_prob_c + prefix->log_prob_nb_prev);
}
// get new prefix
auto prefix_new = prefix->get_path_trie(c);
if (prefix_new != nullptr) {
float log_p = -NUM_FLT_INF;
prefix_new->offset = prev_time_offset + time_offset + time_step;
if (c == prefix->character &&
prefix->log_prob_b_prev > -NUM_FLT_INF) {
log_p = log_prob_c + prefix->log_prob_b_prev;
} else if (c != prefix->character) {
log_p = log_prob_c + prefix->score;
}
// language model scoring
if (ext_scorer != nullptr &&
(c == space_id || ext_scorer->is_character_based())) {
PathTrie *prefix_to_score = nullptr;
// skip scoring the space
if (ext_scorer->is_character_based()) {
prefix_to_score = prefix_new;
} else {
prefix_to_score = prefix;
}
float score = 0.0;
std::vector<std::string> ngram;
ngram = ext_scorer->make_ngram(prefix_to_score);
score = ext_scorer->get_log_cond_prob(ngram) * ext_scorer->alpha;
log_p += score;
log_p += ext_scorer->beta;
}
prefix_new->log_prob_nb_cur =
log_sum_exp(prefix_new->log_prob_nb_cur, log_p);
}
} // end of loop over prefix
} // end of loop over vocabulary
prefixes.clear();
// update log probs
root->iterate_to_vec(prefixes);
// only preserve top beam_size prefixes
if (prefixes.size() >= beam_size) {
std::nth_element(prefixes.begin(),
prefixes.begin() + beam_size,
prefixes.end(),
prefix_compare);
for (size_t i = beam_size; i < prefixes.size(); ++i) {
prefixes[i]->remove();
}
}
} // end of loop over time
// TODO: remove sorting here
size_t num_prefixes = std::min(prefixes.size(), beam_size);
std::sort(prefixes.begin(), prefixes.begin() + num_prefixes, prefix_compare);
last_decoded_timestep = num_time_steps;
return get_beam_search_result(prefixes, vocabulary, beam_size, wordlist);
}
void BeamDecoder::get_word_timestamps(
std::vector<std::tuple<std::string, uint32_t, uint32_t>>& words)
{
words.clear();
words.insert(std::end(words), std::begin(prev_wordlist),
std::end(prev_wordlist));
words.insert(
std::end(words), std::begin(wordlist), std::end(wordlist));
}
std::vector<std::vector<std::pair<double, std::string>>>
ctc_beam_search_decoder_batch(
const std::vector<std::vector<std::vector<double>>> &probs_split,
const std::vector<std::string> &vocabulary,
size_t beam_size,
size_t num_processes,
double cutoff_prob,
size_t cutoff_top_n,
Scorer *ext_scorer) {
VALID_CHECK_GT(num_processes, 0, "num_processes must be nonnegative!");
// thread pool
ThreadPool pool(num_processes);
// number of samples
size_t batch_size = probs_split.size();
// enqueue the tasks of decoding
std::vector<std::future<std::vector<std::pair<double, std::string>>>> res;
for (size_t i = 0; i < batch_size; ++i) {
res.emplace_back(pool.enqueue(ctc_beam_search_decoder,
probs_split[i],
vocabulary,
beam_size,
cutoff_prob,
cutoff_top_n,
ext_scorer));
}
// get decoding results
std::vector<std::vector<std::pair<double, std::string>>> batch_results;
for (size_t i = 0; i < batch_size; ++i) {
batch_results.emplace_back(res[i].get());
}
return batch_results;
}