forked from sergivalverde/PARIETAL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_model.py
executable file
·281 lines (226 loc) · 9.38 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
# --------------------------------------------------
# Skull stripping experiments
# Train a model
#
# Sergi Valverde 2020
#
# --------------------------------------------------
import os
import argparse
import nibabel as nib
import numpy as np
import random
from model import Parietal
from torch.utils.data import DataLoader
from _utils.processing import normalize_data
from _utils.dataset import MRI_DataPatchLoader
def train_skull_model(options):
"""
Train skull-stripping model
Input images are transformed into the cannnical space before training.
"""
# list all training scans in a list
list_scans = sorted(os.listdir(options['training_path']))
if options['randomize_cases']:
random.shuffle(list_scans)
list_scans = list_scans[:int(len(list_scans) * options['perc_training'])]
t_delimiter = int(len(list_scans) * (1 - options['train_split']))
training_data = list_scans[:t_delimiter]
validation_data = list_scans[t_delimiter:]
# precompute brain masks
print('--------------------------------------------------')
print('PREPROCESSING DATA')
print('--------------------------------------------------')
# compute the prebrainmask to guide patch extraction
options['roi_mask'] = 'prebrainmask.nii.gz'
if options['preprocess']:
for scan in list_scans:
image_path = os.path.join(options['training_path'], scan)
if os.path.exists(os.path.join(image_path, 'tmp')) is False:
os.mkdir(os.path.join(image_path, 'tmp'))
current_scan = os.path.join(image_path, options['input_data'][0])
T1 = nib.load(current_scan)
T1.get_data()[:] = compute_pre_mask(T1.get_data())
T1.to_filename(os.path.join(image_path,
'tmp',
options['roi_mask']))
# move training scans to tmp a folder before building the PatchLoader
for scan in list_scans:
scan_names = options['input_data'] + [options['out_scan']] + [options['roi_mask']]
current_scan = os.path.join(options['training_path'], scan)
transform_input_images(current_scan, scan_names)
print('--------------------------------------------------')
print('TRAINING DATA:')
print('--------------------------------------------------')
input_data = {scan: [os.path.join(options['training_path'], scan, 'tmp', d)
for d in options['input_data']]
for scan in training_data}
labels = {scan: [os.path.join(options['training_path'],
scan,
'tmp',
options['out_scan'])]
for scan in training_data}
rois = {scan: [os.path.join(options['training_path'],
scan,
'tmp',
options['roi_mask'])]
for scan in training_data}
# data augmentation
set_transforms = None
# dataset
training_dataset = MRI_DataPatchLoader(
input_data,
labels,
rois,
patch_size=options['train_patch_shape'],
sampling_step=options['training_step'],
sampling_type=options['sampling_type'],
normalize=options['normalize'],
transform=set_transforms)
t_dataloader = DataLoader(training_dataset,
batch_size=options['batch_size'],
shuffle=True,
num_workers=options['workers'])
print('--------------------------------------------------')
print('VALIDATION DATA:')
print('--------------------------------------------------')
input_data = {scan: [os.path.join(options['training_path'], scan, 'tmp', d)
for d in options['input_data']]
for scan in validation_data}
labels = {scan: [os.path.join(options['training_path'],
scan,
'tmp',
options['out_scan'])]
for scan in validation_data}
rois = {scan: [os.path.join(options['training_path'],
scan,
'tmp',
options['roi_mask'])]
for scan in validation_data}
validation_dataset = MRI_DataPatchLoader(
input_data,
labels,
rois,
patch_size=options['train_patch_shape'],
sampling_step=options['training_step'],
sampling_type=options['sampling_type'],
normalize=options['normalize'],
transform=set_transforms)
v_dataloader = DataLoader(validation_dataset,
batch_size=options['batch_size'],
shuffle=True,
num_workers=options['workers'])
# train the model
p = Parietal(input_channels=options['input_channels'],
patch_shape=(32, 32, 32),
scale=options['scale'],
model_name=options['experiment'],
gpu_mode=options['use_gpu'],
gpu_list=options['gpus'])
p.train_model(t_dataloader, v_dataloader)
def transform_canonical_to_orig(canonical, original):
"""
Transform back a nifti file that has been moved to the canonical space
This function is a bit hacky, but so far it's the best way to deal with
transformations between datasets without registration
"""
ori2can = nib.io_orientation(original.affine)
# transform the canonical image back to the original space
ori2ori = nib.io_orientation(canonical.affine)
can2ori = nib.orientations.ornt_transform(ori2ori, ori2can)
return canonical.as_reoriented(can2ori)
def compute_pre_mask(T1_input, hist_bin=1):
"""
Compute the ROI where brain intensities are (brain + skull).
pre_mask = T1_input > min_intensity
The minimum intensity is computed by taking the second bin in the histogram
assuming the first one contains all the background parts
input:
T1_input: np.array containing the T1 image
bin_edge: histogram bin number
"""
hist, edges = np.histogram(T1_input, bins=64)
pre_mask = T1_input > edges[hist_bin]
return pre_mask
def transform_input_images(image_path, scan_names):
"""
Transform input input images for processing
+ n4 normalization between scans
+ move t1 to the canonical space
Images are stored in the tmp/ folder
"""
# check if tmp folder is available
tmp_folder = os.path.join(image_path, 'tmp')
if os.path.exists(tmp_folder) is False:
os.mkdir(tmp_folder)
# normalize images
for s in scan_names:
current_scan = os.path.join(image_path, s)
nifti_orig = nib.load(current_scan)
im_ = nifti_orig.get_data()
processed_scan = nib.Nifti1Image(im_.astype('<f4'),
affine=nifti_orig.affine)
# check for extra dims
if len(nifti_orig.get_data().shape) > 3:
processed_scan = nib.Nifti1Image(
np.squeeze(processed_scan.get_data()),
affine=nifti_orig.affine)
processed_scan.get_data()[:] = normalize_data(
processed_scan.get_data(),
norm_type='zero_one')
t1_nifti_canonical = nib.as_closest_canonical(processed_scan)
t1_nifti_canonical.to_filename(os.path.join(tmp_folder, s))
def get_current_path():
"""
Just get the path to where this script is
"""
return os.path.dirname(os.path.abspath(__file__))
if __name__ == "__main__":
"""
main function
"""
# --------------------------------------------------
# set experimental parameters
# --------------------------------------------------
TRAIN_IMAGE_ROOT = '/home/sergivalverde/DATA/campinas'
options = {}
# training options: can come from different folders
options['training_path'] = os.path.join(TRAIN_IMAGE_ROOT, 'all')
options['input_data'] = ['T1.nii.gz']
options['out_scan'] = 'brainmask_ss.nii.gz'
# experiment number
options['experiment'] = 'campinas_baseline_s2_multires'
options['use_gpu'] = True
# computational resources
options['workers'] = 10
options['gpus'] = [2]
# other options fixed!
options['preprocess'] = False
options['normalize'] = False
options['resample_epoch'] = False
options['data_augmentation'] = False
options['perc_training'] = 1
options['randomize_cases'] = True
options['input_channels'] = len(options['input_data'])
options['train_patch_shape'] = (32, 32, 32)
options['scale'] = 2
options['training_step'] = (16, 16, 16)
options['patch_threshold'] = 0.1
options['num_epochs'] = 200
options['batch_size'] = 32
options['train_split'] = 0.2
options['patience'] = 50
options['l_weight'] = 10
options['resume_training'] = False
options['sampling_type'] = 'balanced+roi'
options['min_sampling_th'] = 0.1
options['verbose'] = 1
parser = argparse.ArgumentParser(
description='PARIETAL: yet Another Skull Stripping Method')
parser.add_argument('--gpu',
type=int,
default=0,
help='Select the GPU number to use (default=0)')
opt = parser.parse_args()
options['gpus'] = [opt.gpu]
train_skull_model(options)