Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix avgPool3d #7133

Merged
merged 23 commits into from
Dec 6, 2022
Merged
Show file tree
Hide file tree
Changes from 14 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 3 additions & 2 deletions tfjs-backend-cpu/src/utils/pool_utils.ts
Original file line number Diff line number Diff line change
Expand Up @@ -245,8 +245,9 @@ export function pool3d(
}
}
const outputOffset = outputColOffset + channel;
outputVals[outputOffset] =
poolType === 'avg' ? avgValue / count : minMaxValue;
outputVals[outputOffset] = poolType === 'avg' ?
avgValue / Math.max(count, 1) :
minMaxValue;
}
}
}
Expand Down
7 changes: 5 additions & 2 deletions tfjs-backend-webgl/src/pool_gpu.ts
Original file line number Diff line number Diff line change
Expand Up @@ -342,7 +342,10 @@ export class Pool3DProgram implements GPGPUProgram {
let returnValue = `${poolType}(${poolType}(${poolType}(` +
'minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])';
if (poolType === 'avg') {
returnValue = `avgValue / count`;
// Use `max(count, 1.0)` instead of `count` in case count === 0.0.
// If count === 0.0, `avgValue` is always 0.0 and we change `count`'s
// value to avoid dividing zero.
returnValue = `avgValue / max(count, 1.0)`;
Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

cc @qjia7 @xhcao , WebGPU may have the same issue,

returnValue = `resultValue / count`;

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks @Linchenn . Just curious, is L124 returnValue = avgValue / count; missed for change?

And another question is that it seems that it's not possible to happen that count is zero in

returnValue = `resultValue / count`;
since updateSnippet will increase count. Will there be a situation that the filter window is totally no overlap with the input window?

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Great catch, thanks!

If padding >= filter size, this would happen, as #7122.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

LGTM. Thanks for your explanation.
Can you help to cover the webgpu change in this PR since you already find the right place? :) And it will be great if you add a similar case as #7122 to file avg_pool_3d_test.ts?

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done. Thank you!

}

const filterWidthNearestVec4 = Math.floor(filterWidth / 4) * 4;
Expand Down Expand Up @@ -448,8 +451,8 @@ export class Pool3DProgram implements GPGPUProgram {
${updateSnippet}
}
}
setOutput(${returnValue});
}
setOutput(${returnValue});
Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

setOutput(${returnValue}); should happen out of all loops and just before main returns. Originally, it is within for (int wD = 0; wD < ${effectiveFilterDepth};'s loop

}
`;
}
Expand Down
7 changes: 6 additions & 1 deletion tfjs-core/src/ops/avg_pool_3d.ts
Original file line number Diff line number Diff line change
Expand Up @@ -24,8 +24,8 @@ import {convertToTensor} from '../tensor_util_env';
import {TensorLike} from '../types';
import * as util from '../util';

import {checkPadOnDimRoundingMode} from './conv_util';
import {cast} from './cast';
import {checkPadOnDimRoundingMode} from './conv_util';
import {op} from './operation';
import {reshape} from './reshape';

Expand Down Expand Up @@ -86,6 +86,11 @@ function avgPool3d_<T extends Tensor4D|Tensor5D>(
dataFormat === 'NDHWC',
() => `Error in avgPool3d: Only NDHWC is currently supported, ` +
`but got dataFormat of ${dataFormat}`);
util.assert(
(typeof strides === 'number' && strides > 0) ||
(Array.isArray(strides) && strides[0] > 0 && strides[1] > 0 &&
strides[2] > 0),
() => `Error in avgPool3d: Stride must be > 0, but got '${strides}'`);
checkPadOnDimRoundingMode('avgPool3d', pad, dimRoundingMode);
const inputs: AvgPool3DInputs = {x: x5D};
const attrs:
Expand Down
30 changes: 30 additions & 0 deletions tfjs-core/src/ops/avg_pool_3d_test.ts
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,15 @@ describeWithFlags('avgPool3d', ALL_ENVS, () => {
expectArraysClose(await result.data(), [4.5]);
});

it('x=[2,2,2,1] f=[1,2,2] s=1 p=valid', async () => {
const x = tf.tensor4d([1, 2, 3, 4, 5, 6, 7, 8], [2, 2, 2, 1]);

const result = tf.avgPool3d(x, [1, 2, 2], 1, 'valid');

expect(result.shape).toEqual([2, 1, 1, 1]);
expectArraysClose(await result.data(), [2.5, 6.5]);
});

it('x=[1,1,1,1,1] f=[1,1,1] s=1 [0] => [0]', async () => {
const x = tf.tensor5d([0], [1, 1, 1, 1, 1]);

Expand Down Expand Up @@ -150,6 +159,27 @@ describeWithFlags('avgPool3d', ALL_ENVS, () => {
expectArraysClose(await result.data(), expected);
});

it('x=[1,1,1,1,1] f=[1,1,3] s=1 p=valid', async () => {
// Output tensor would have a dimension of zero, if a certain filter's
// dimension is larger than the input's.
const x = tf.tensor5d([1], [1, 1, 1, 1, 1]);
const expected: number[] = [];
const result = tf.avgPool3d(x, [1, 1, 3], 1, 'valid');

expect(result.shape).toEqual([1, 1, 1, 0, 1]);
expectArraysClose(await result.data(), expected);
});

it('x=[1,1,1,4,1] f=[1,1,1] s=[1,1,2] p=0', async () => {
// Works if the padding is a number.
const x = tf.ones([1, 1, 1, 4, 1]) as tf.Tensor5D;
const expected = [1, 1];
const result = tf.avgPool3d(x, [1, 1, 1], [1, 1, 2], 0);

expect(result.shape).toEqual([1, 1, 1, 2, 1]);
expectArraysClose(await result.data(), expected);
});

it('throws when x is not rank 5', async () => {
// tslint:disable-next-line:no-any
const x: any = tf.tensor1d([1]);
Expand Down
51 changes: 21 additions & 30 deletions tfjs-core/src/ops/conv_util.ts
Original file line number Diff line number Diff line change
Expand Up @@ -365,24 +365,23 @@ function computeOutputShape2D(
}

function computeOutputShape4D(
inShape: [number, number, number, number], fieldSize: number,
outChannels: number, stride: number, zeroPad?: number,
inShape: [number, number, number, number],
filterShape: [number, number, number], outChannels: number,
strides: [number, number, number], zeroPad?: number,
roundingMode?: 'floor'|'round'|'ceil'): [number, number, number, number] {
if (zeroPad == null) {
zeroPad = computeDefaultPad(inShape, fieldSize, stride);
zeroPad = computeDefaultPad(inShape, filterShape[0], strides[0]);
}
const inputDepth = inShape[0];
const inputRows = inShape[1];
const inputCols = inShape[2];

const outputDepths =
round((inputDepth - fieldSize + 2 * zeroPad) / stride + 1, roundingMode);
const outputRows =
round((inputRows - fieldSize + 2 * zeroPad) / stride + 1, roundingMode);
const outputCols =
round((inputCols - fieldSize + 2 * zeroPad) / stride + 1, roundingMode);

return [outputDepths, outputRows, outputCols, outChannels];
const outShape: [number, number, number, number] = [0, 0, 0, outChannels];
for (let index = 0; index < 3; index++) {
if (inShape[index] + 2 * zeroPad >= filterShape[index]) {
outShape[index] = round(
(inShape[index] - filterShape[index] + 2 * zeroPad) / strides[index] +
1,
roundingMode);
}
}
return outShape;
Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Adds two changes in computeOutputShape4D function:

  1. add a if-branch to make sure all dimensions of outShape are non-negative.
  2. outputDepths, outputRows, outputCols should be computed from the corresponding strides and filterSize respectfully.

}

export function computeDefaultPad(
Expand Down Expand Up @@ -496,6 +495,10 @@ function get3DPadAndOutInfo(
let outHeight: number;
let outWidth: number;

if (pad === 'valid') {
pad = 0;
}
Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

If pad is 'valid', it should have the same result as pad = 0.

By the way, the roundingMode for this case is supposed to be 'truncate', instead of 'ceil', referring to tensorflow.


if (typeof pad === 'number') {
const padType = (pad === 0) ? 'VALID' : 'NUMBER';
padInfo = {
Expand All @@ -508,8 +511,9 @@ function get3DPadAndOutInfo(
type: padType
};
const outShape = computeOutputShape4D(
[inDepth, inHeight, inWidth, 1], filterDepth, 1, strideDepth, pad,
roundingMode);
[inDepth, inHeight, inWidth, 1],
[filterDepth, filterHeight, filterWidth], 1,
[strideDepth, strideHeight, strideWidth], pad, roundingMode);
outDepth = outShape[0];
outHeight = outShape[1];
outWidth = outShape[2];
Expand All @@ -529,19 +533,6 @@ function get3DPadAndOutInfo(
const right = padAlongWidth - left;

padInfo = {top, bottom, left, right, front, back, type: 'SAME'};
} else if (pad === 'valid') {
padInfo = {
top: 0,
bottom: 0,
left: 0,
right: 0,
front: 0,
back: 0,
type: 'VALID'
};
outDepth = Math.ceil((inDepth - filterDepth + 1) / strideDepth);
outHeight = Math.ceil((inHeight - filterHeight + 1) / strideHeight);
outWidth = Math.ceil((inWidth - filterWidth + 1) / strideWidth);
} else {
throw Error(`Unknown padding parameter: ${pad}`);
}
Expand Down
2 changes: 2 additions & 0 deletions tfjs-node/src/run_tests.ts
Original file line number Diff line number Diff line change
Expand Up @@ -84,6 +84,8 @@ const IGNORE_LIST: string[] = [
'avgPool test-tensorflow {} gradient x=[3,3,1] f=[3,3] s=1 p=explicit',
// tslint:disable-next-line:max-line-length
'avgPool3d test-tensorflow {} x=[1,2,2,2,1] f=[2,2,2] s=1 p=1 roundingMode=floor',
// https://github.com/tensorflow/tensorflow/issues/58758
'avgPool3d test-tensorflow {} x=[1,1,1,1,1] f=[1,1,3] s=1 p=valid',
// Node backend which uses TF 2.4.0 doesn't support explicit padding
'maxPool test-tensorflow {} x=[3,3,1] f=[3,3] s=1 p=explicit',
'maxPoolBackprop test-tensorflow {} gradient x=[3,3,1] f=3 s=1 p=explicit',
Expand Down