-
Notifications
You must be signed in to change notification settings - Fork 138
/
configure.py
290 lines (236 loc) · 9.17 KB
/
configure.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License .
# ==============================================================================
# Usage: python configure.py
#
import os
import pathlib
import platform
import logging
import tensorflow as tf
try:
from packaging.version import Version
except: # make it compatible for python 3.7
from distutils.version import LooseVersion as Version
_TFRA_BAZELRC = ".bazelrc"
# Maping TensorFlow version to valid Bazel version.
def _VALID_BAZEL_VERSION(tf_version):
if Version(tf_version) < Version("2.0.0"):
target_bazel = "0.26.1"
logging.warn(
'There is only limited support for TensorFlow under version 2.0.0 '
'because its Bazel version, and requiring users to make some Bazel script changes '
'refering to the previous COMMIT to compile properly by themselves.')
return target_bazel
elif Version(tf_version) >= Version("2.0.0"):
target_bazel = "5.1.1"
logging.info(
'To ensure code compatibility with Bazel rules_foreign_cc component, '
'we specify Bazel version greater than 5.1.1 '
'for Tensorflow versions greater than 2.0.0.')
return target_bazel
else:
raise ValueError('Unsupport TensorFlow version {}.'.format(tf_version))
# Writes variables to bazelrc file
def write(line):
with open(_TFRA_BAZELRC, "a") as f:
f.write(line + "\n")
def write_action_env(var_name, var):
write('build --action_env {}="{}"'.format(var_name, var))
def is_macos():
return platform.system() == "Darwin"
def is_windows():
return platform.system() == "Windows"
def is_linux():
return platform.system() == "Linux"
def is_arm64():
return platform.machine() == "arm64"
def is_raspi_arm():
return os.uname()[4] == "armv7l"
def get_cpp_version():
cpp_version = "c++14"
if Version(tf.__version__) >= Version("2.10"):
cpp_version = "c++17"
return cpp_version
def get_tf_header_dir():
if get_tf_version_integer() >= 2000:
tf_header_dir = tf.sysconfig.get_compile_flags()[0][2:]
if is_windows():
tf_header_dir = tf_header_dir.replace("\\", "/")
else:
current_path = os.path.dirname(os.path.abspath(__file__))
tf_header_dir = "{}/build_deps/tf_header/{}/tensorflow".format(
current_path, tf.__version__)
return tf_header_dir
def get_tf_shared_lib_dir():
# OS Specific parsing
if is_windows():
tf_shared_lib_dir = tf.sysconfig.get_compile_flags()[0][2:-7] + "python"
return tf_shared_lib_dir.replace("\\", "/")
elif is_raspi_arm():
return tf.sysconfig.get_compile_flags()[0][2:-7] + "python"
else:
return tf.sysconfig.get_link_flags()[0][2:]
# Converts the linkflag namespec to the full shared library name
def get_shared_lib_name():
namespec = tf.sysconfig.get_link_flags()
if is_macos():
# MacOS
return "lib" + namespec[1][2:] + ".dylib"
elif is_windows():
# Windows
return "_pywrap_tensorflow_internal.lib"
elif is_raspi_arm():
# The below command for linux would return an empty list
return "_pywrap_tensorflow_internal.so"
else:
# Linux
return namespec[1][3:]
def get_tf_version_integer():
"""
Get Tensorflow version as a 4 digits string.
For example:
1.15.2 get 1152
2.4.1 get 2041
2.6.3 get 2063
2.8.3 get 2083
2.15.1 get 2151
The 4-digits-string will be passed to C macro to discriminate different
Tensorflow versions.
We assume that major version has 1 digit, minor version has 2 digits. And
patch version has 1 digit.
"""
try:
version = tf.__version__
except AttributeError:
raise ImportError(
'\nPlease install a TensorFlow on your compiling machine, '
'The compiler needs to know the version of Tensorflow '
'and get TF c++ headers according to the installed TensorFlow. '
'\nNote: Only TensorFlow 2.16.2 2.15.1 2.8.3, 2.6.3, 2.4.1, 1.15.2 are supported.'
)
try:
major, minor, patch = version.split('.')
assert len(
major
) == 1, "Tensorflow major version must be length of 1. Version: {}".format(
version)
assert len(
minor
) <= 2, "Tensorflow minor version must be less or equal to 2. Version: {}".format(
version)
assert len(
patch
) == 1, "Tensorflow patch version must be length of 1. Version: {}".format(
version)
except:
raise ValueError('got wrong tf.__version__: {}'.format(version))
tf_version_num = str(int(major) * 1000 + int(minor) * 10 + int(patch))
if len(tf_version_num) != 4:
raise ValueError('Tensorflow version flag must be length of 4 (major'
' version: 1, minor version: 2, patch_version: 1). But'
' get: {}'.format(tf_version_num))
return int(tf_version_num)
def _get_installed_and_valid_bazel_version():
stream = os.popen('bazel version |grep label')
output = stream.read()
installed_bazel_version = str(output).split(":")[1].strip()
valid_bazel_version = _VALID_BAZEL_VERSION(tf.__version__)
return installed_bazel_version, valid_bazel_version
def check_bazel_version(is_macos_arm64: bool = False):
installed_bazel_version, valid_bazel_version = _get_installed_and_valid_bazel_version(
)
if Version(installed_bazel_version) < Version(valid_bazel_version):
raise ValueError('Bazel version is {}, but {} is needed.'.format(
installed_bazel_version, valid_bazel_version))
def extract_tf_header():
tf_header_dir = get_tf_header_dir()
tf_version_integer = get_tf_version_integer()
if tf_version_integer < 2000:
_output_dir = tf_header_dir[:-(len(tf.__version__ + "/tensorflow"))]
_tar_path = tf_header_dir.replace("/tensorflow", ".tar.gz")
_cmd = "tar -zxvf {} --directory {} >/dev/null 2>&1".format(
_tar_path, _output_dir)
ret = os.system(_cmd)
if ret != 0:
raise ValueError(
'Error happened when decompressing TF headers tar file:{}.'.format(
_tar_path))
def create_build_configuration():
print()
print("Configuring TensorFlow Recommenders-Addons to be built from source...")
if os.path.isfile(_TFRA_BAZELRC):
os.remove(_TFRA_BAZELRC)
if is_linux():
check_bazel_version()
if is_macos() and is_arm64():
check_bazel_version(is_macos_arm64=True)
extract_tf_header()
logging.disable(logging.WARNING)
write_action_env("TF_HEADER_DIR", get_tf_header_dir())
write_action_env("TF_SHARED_LIBRARY_DIR", get_tf_shared_lib_dir())
write_action_env("TF_SHARED_LIBRARY_NAME", get_shared_lib_name())
write_action_env("TF_CXX11_ABI_FLAG", tf.sysconfig.CXX11_ABI_FLAG)
tf_cxx_standard_compile_flags = [
flag for flag in tf.sysconfig.get_compile_flags() if "-std=" in flag
]
if len(tf_cxx_standard_compile_flags) > 0:
tf_cxx_standard_compile_flag = tf_cxx_standard_compile_flags[-1]
else:
tf_cxx_standard_compile_flag = None
if tf_cxx_standard_compile_flag is None:
tf_cxx_standard = get_cpp_version()
else:
tf_cxx_standard = tf_cxx_standard_compile_flag.split("-std=")[-1]
write_action_env("TF_CXX_STANDARD", tf_cxx_standard)
tf_version_integer = get_tf_version_integer()
# This is used to trace the difference between Tensorflow versions.
write_action_env("TF_VERSION_INTEGER", tf_version_integer)
write_action_env("FOR_TF_SERVING", os.getenv("FOR_TF_SERVING", "0"))
write("build --spawn_strategy=standalone")
write("build --strategy=Genrule=standalone")
write("build -c opt")
if is_windows():
write("build --config=windows")
write("build:windows --enable_runfiles")
write("build:windows --copt=/experimental:preprocessor")
write("build:windows --host_copt=/experimental:preprocessor")
write("build:windows --copt=/arch=AVX")
if is_macos() or is_linux():
if not is_arm64():
write("build --copt=-mavx")
if os.getenv("TF_NEED_CUDA", "0") == "1":
print("> Building GPU & CPU ops")
configure_cuda()
else:
print("> Building only CPU ops")
print()
print("Build configurations successfully written to", _TFRA_BAZELRC, ":\n")
print(pathlib.Path(_TFRA_BAZELRC).read_text())
def configure_cuda():
write_action_env("TF_NEED_CUDA", "1")
write_action_env("CUDA_TOOLKIT_PATH",
os.getenv("CUDA_TOOLKIT_PATH", "/usr/local/cuda"))
write_action_env(
"CUDNN_INSTALL_PATH",
os.getenv("CUDNN_INSTALL_PATH", "/usr/lib/x86_64-linux-gnu"),
)
write_action_env("TF_CUDA_VERSION", os.getenv("TF_CUDA_VERSION", "11.0"))
write_action_env("TF_CUDNN_VERSION", os.getenv("TF_CUDNN_VERSION", "8.0"))
write("test --config=cuda")
write("build --config=cuda")
write("build:cuda --define=using_cuda=true --define=using_cuda_nvcc=true")
write("build:cuda --crosstool_top=@local_config_cuda//crosstool:toolchain")
if __name__ == "__main__":
create_build_configuration()