Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Layer.add_variable (from tensorflow.python.keras.engine.base_layer) is deprecated and will be removed in a future version #623

Open
nbro opened this issue Oct 27, 2019 · 1 comment

Comments

@nbro
Copy link
Contributor

nbro commented Oct 27, 2019

I am getting the following warning

WARNING:tensorflow:From /Users/nbro/Desktop/my_project/venv/lib/python3.7/site-packages/tensorflow_probability/python/layers/util.py:104: Layer.add_variable (from tensorflow.python.keras.engine.base_layer) is deprecated and will be removed in a future version.
Instructions for updating:
Please use layer.add_weight method instead.

and the following one too

WARNING:tensorflow:From /Users/nbro/Desktop/my_project/venv/lib/python3.7/site-packages/tensorflow_core/python/ops/resource_variable_ops.py:1630: calling BaseResourceVariable.init (from tensorflow.python.ops.resource_variable_ops) with constraint is deprecated and will be removed in a future version.
Instructions for updating:
If using Keras pass *_constraint arguments to layers.

when executing the following code

from __future__ import print_function

import tensorflow as tf
import tensorflow_probability as tfp

tf.compat.v1.disable_eager_execution()

def get_bayesian_model(input_shape=None, num_classes=10):
    model = tf.keras.Sequential()
    model.add(tf.keras.layers.Input(shape=input_shape))
    model.add(tfp.layers.Convolution2DFlipout(6, kernel_size=5, padding="SAME", activation=tf.nn.relu))
    model.add(tf.keras.layers.Flatten())
    model.add(tfp.layers.DenseFlipout(84, activation=tf.nn.relu))
    model.add(tfp.layers.DenseFlipout(num_classes))
    return model

def get_mnist_data(normalize=True):
    img_rows, img_cols = 28, 28
    (x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()

    if tf.keras.backend.image_data_format() == 'channels_first':
        x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
        x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
        input_shape = (1, img_rows, img_cols)
    else:
        x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
        x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
        input_shape = (img_rows, img_cols, 1)

    x_train = x_train.astype('float32')
    x_test = x_test.astype('float32')

    if normalize:
        x_train /= 255
        x_test /= 255

    return x_train, y_train, x_test, y_test, input_shape


def train():
    # Hyper-parameters.
    batch_size = 128
    num_classes = 10
    epochs = 1

    # Get the training data.
    x_train, y_train, x_test, y_test, input_shape = get_mnist_data()

    # Get the model.
    model = get_bayesian_model(input_shape=input_shape, num_classes=num_classes)

    # Prepare the model for training.
    model.compile(optimizer=tf.keras.optimizers.Adam(), loss="sparse_categorical_crossentropy",
                  metrics=['accuracy'])

    # Train the model.
    model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1)
    model.evaluate(x_test, y_test, verbose=0)


if __name__ == "__main__":
    train()

If I comment the line tf.compat.v1.disable_eager_execution(), then I get the error mentioned in the following issue #620, which has not yet been solved at the time of writing of this other issue.

I know that this is a warning, but why is this happening and how can I avoid this (that is, use more appropriate source code)?

@prerakmody
Copy link

Hi,
Its been almost a year since this issue was raised. Will this be resolved or is it currently not a priority?
@dynamicwebpaige

Versions

  • tensoflow: 2.3.0
  • tf probab: 0.11.0

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

No branches or pull requests

3 participants