-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy pathtransformed_kernel.py
503 lines (429 loc) · 20.1 KB
/
transformed_kernel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
# Copyright 2018 The TensorFlow Probability Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""TransformedTransitionKernel Transition Kernel."""
import collections
import tensorflow.compat.v2 as tf
from tensorflow_probability.python.internal import prefer_static
from tensorflow_probability.python.mcmc import kernel as kernel_base
from tensorflow_probability.python.mcmc.internal import util as mcmc_util
from tensorflow.python.util import deprecation # pylint: disable=g-direct-tensorflow-import
__all__ = [
'TransformedTransitionKernel',
]
class TransformedTransitionKernelResults(
mcmc_util.PrettyNamedTupleMixin,
collections.namedtuple('TransformedTransitionKernelResults',
['transformed_state',
'inner_results',
])):
"""Internal state and diagnostics for Transformed kernel."""
__slots__ = ()
def make_log_det_jacobian_fn(bijector, direction):
"""Makes a function which applies a list of Bijectors' `log_det_jacobian`s."""
attr = '{}_log_det_jacobian'.format(direction)
if not mcmc_util.is_list_like(bijector):
dtype = getattr(bijector, '{}_dtype'.format(direction))()
if mcmc_util.is_list_like(dtype):
def multipart_fn(state_parts, event_ndims):
return getattr(bijector, attr)(state_parts, event_ndims)
return multipart_fn
elif tf.nest.is_nested(dtype):
raise ValueError(
'Only list-like multi-part bijectors are currently supported, but '
'got {}.'.format(tf.nest.map_structure(lambda _: '.', dtype)))
bijector = [bijector]
def fn(state_parts, event_ndims):
return sum(
getattr(b, attr)(sp, event_ndims=e)
for b, e, sp in zip(bijector, event_ndims, state_parts)
)
return fn
def make_transform_fn(bijector, direction):
"""Makes a function which applies a list of Bijectors' `forward`s."""
if not mcmc_util.is_list_like(bijector):
dtype = getattr(bijector, '{}_dtype'.format(direction))()
if mcmc_util.is_list_like(dtype):
return getattr(bijector, direction)
elif tf.nest.is_nested(dtype):
raise ValueError(
'Only list-like multi-part bijectors are currently supported, but '
'got {}.'.format(tf.nest.map_structure(lambda _: '.', dtype)))
bijector = [bijector]
def fn(state_parts):
if len(bijector) != len(state_parts):
raise ValueError('State has {} parts, but bijector has {}.'.format(
len(state_parts), len(bijector)))
transformed_parts = [
getattr(b, direction)(sp) for b, sp in zip(bijector, state_parts)]
return tf.nest.pack_sequence_as(state_parts, transformed_parts)
return fn
def make_transformed_log_prob(
log_prob_fn, bijector, direction, enable_bijector_caching=True):
"""Transforms a log_prob function using bijectors.
Note: `direction = 'inverse'` corresponds to the transformation calculation
done in `tfp.distributions.TransformedDistribution.log_prob`.
Args:
log_prob_fn: Python `callable` taking an argument for each state part which
returns a `Tensor` representing the joint `log` probability of those state
parts.
bijector: `tfp.bijectors.Bijector`-like instance (or list thereof)
corresponding to each state part. When `direction = 'forward'` the
`Bijector`-like instance must possess members `forward` and
`forward_log_det_jacobian` (and corresponding when
`direction = 'inverse'`).
direction: Python `str` being either `'forward'` or `'inverse'` which
indicates the nature of the bijector transformation applied to each state
part.
enable_bijector_caching: Python `bool` indicating if `Bijector` caching
should be invalidated.
Default value: `True`.
Returns:
transformed_log_prob_fn: Python `callable` which takes an argument for each
transformed state part and returns a `Tensor` representing the joint `log`
probability of the transformed state parts.
"""
if direction not in {'forward', 'inverse'}:
raise ValueError('Argument `direction` must be either `"forward"` or '
'`"inverse"`; saw "{}".'.format(direction))
fn = make_transform_fn(bijector, direction)
ldj_fn = make_log_det_jacobian_fn(bijector, direction)
def transformed_log_prob_fn(*state_parts):
"""Log prob of the transformed state."""
if not enable_bijector_caching:
state_parts = [tf.identity(sp) for sp in state_parts]
tlp = log_prob_fn(*fn(state_parts))
tlp_rank = prefer_static.rank(tlp)
event_ndims = [(prefer_static.rank(sp) - tlp_rank) for sp in state_parts]
return tlp + ldj_fn(state_parts, event_ndims)
return transformed_log_prob_fn
def _make_kernel_stack(kernel):
kernel_stack = [kernel]
while 'target_log_prob_fn' not in kernel.parameters:
if 'inner_kernel' not in kernel.parameters:
raise ValueError('"None of the nested `inner_kernel`s contains a '
'`target_log_prob_fn`."')
kernel = kernel.inner_kernel
kernel_stack.append(kernel)
return kernel_stack
def _find_nested_target_log_prob_recursively(kernel):
kernel_stack = _make_kernel_stack(kernel)
target_log_prob_fn = kernel_stack[-1].parameters['target_log_prob_fn']
return target_log_prob_fn
def _update_target_log_prob(kernel, new_target_log_prob):
"""Replaces `target_log_prob_fn` of outermost `inner_kernel` of `kernel`."""
kernel_stack = _make_kernel_stack(kernel)
# Update to target_log_prob to `new_target_log_prob`.
with deprecation.silence():
prev_kernel = kernel_stack.pop()
prev_kernel = prev_kernel.copy(
target_log_prob_fn=new_target_log_prob)
# Propagate the change upwards by reconstructing wrapper kernels.
while kernel_stack:
curr_kernel = kernel_stack.pop()
updated_kernel = type(prev_kernel)(**prev_kernel.parameters)
curr_kernel = curr_kernel.copy(inner_kernel=updated_kernel)
prev_kernel = curr_kernel
return prev_kernel
class TransformedTransitionKernel(kernel_base.TransitionKernel):
"""TransformedTransitionKernel applies a bijector to the MCMC's state space.
The `TransformedTransitionKernel` `TransitionKernel` enables fitting
a `tfp.bijectors.Bijector` which serves to decorrelate the Markov chain Monte
Carlo (MCMC) event dimensions thus making the chain mix faster. This is
particularly useful when the geometry of the target distribution is
unfavorable. In such cases it may take many evaluations of the
`target_log_prob_fn` for the chain to mix between faraway states.
The idea of training an affine function to decorrelate chain event dims was
presented in [Parno and Marzouk (2014)][1]. Used in conjunction with the
`HamiltonianMonteCarlo` `TransitionKernel`, the [Parno and Marzouk (2014)][1]
idea is an instance of Riemannian manifold HMC [(Girolami and Calderhead,
2011)][2].
The `TransformedTransitionKernel` enables arbitrary bijective transformations
of arbitrary `TransitionKernel`s, e.g., one could use bijectors
`tfp.bijectors.ScaleMatvecTriL`, `tfp.bijectors.RealNVP`, etc. with transition
kernels `tfp.mcmc.HamiltonianMonteCarlo`, `tfp.mcmc.RandomWalkMetropolis`,
etc.
### Transforming nested kernels
`TransformedTransitionKernel` can operate on multiply nested kernels, as in
the following example:
```python
tfp.mcmc.TransformedTransitionKernel(
inner_kernel=tfp.mcmc.SimpleStepSizeAdaptation(
inner_kernel=tfp.mcmc.HamiltonianMonteCarlo(
... # doesn't matter
),
num_adaptation_steps=9)
bijector=tfb.Identity()))
```
Upon construction, `TransformedTransitionKernel` searches the given
`inner_kernel` and the "stack" of nested kernels in any `inner_kernel`
fields thereof until it finds one with a field called `target_log_prob_fn`,
and replaces this with the transformed function. If no
`inner_kernel` has such a target log prob a `ValueError` is raised.
#### Mathematical Details
`TransformedTransitionKernel` enables Markov chains which operate in
"unconstrained space." Since we interpret the bijector as mapping
"unconstrained space" to "user space", this means that the MCMC transformed
`target_log_prob` is:
```python
target_log_prob(bij.forward(x)) + bij.forward_log_det_jacobian(x)
```
Recall that `tfp.distributions.TransformedDistribution` uses the `inverse` to
compute its `log_prob`. Despite this difference, the use of `forward` in
`TransformedTransitionKernel` is perfectly consistent with
`TransformedDistribution` following the TFP convention of "sampling" being
what defines semantics. The apparent difference is because
`TransformedDistribution.log_prob` is derived from a user provided
distribution while in `TransformedTransitionKernel` samples are derived from
`target_log_prob_fn`. That is, in `TransformedDistribution` we do:
```python
x ~ NoiseDistribution()
y = bij.forward(x)
log_prob_y = NoiseDistribution().log_prob(bij.inverse(y))
+ bij.inverse_log_det_jacobian(y)
```
yet in `TransformedTransitionKernel` we do:
```python
x ~ MCMC()
y = bij.forward(x)
log_prob_y = log_prob(y) + bij.forward_log_det_jacobian(x)
```
In other words (and in general), `tfp.mcmc` is derived from a `log_prob`
which what induces a *seeming* direction convention change. Aside from TFP
convention, that Bijectors should adhere to "sample first" semantics is
important because it mitigates pervasive necessity of `tfp.bijectors.Invert`
in user code.
#### Examples
##### RealNVP + HamiltonianMonteCarlo
Note: this example is only meant to illustrate how to wire up a
`TransformedTransitionKernel`. As it is this won't work well because:
* a 1-layer RealNVP is a pretty weak density model, since it can't change the
density of the masked dimensions
* we're not actually training the bijector to do anything useful.
```python
import tensorflow as tf
import tensorflow_probability as tfp
tfd = tfp.distributions
tfb = tfp.bijectors
def make_likelihood(true_variances):
return tfd.MultivariateNormalDiag(
scale_diag=tf.sqrt(true_variances))
dims = 10
dtype = np.float32
true_variances = tf.linspace(dtype(1), dtype(3), dims)
likelihood = make_likelihood(true_variances)
realnvp_hmc = tfp.mcmc.TransformedTransitionKernel(
inner_kernel=tfp.mcmc.HamiltonianMonteCarlo(
target_log_prob_fn=likelihood.log_prob,
step_size=0.5,
num_leapfrog_steps=2),
bijector=tfb.RealNVP(
num_masked=2,
shift_and_log_scale_fn=tfb.real_nvp_default_template(
hidden_layers=[512, 512])))
states, kernel_results = tfp.mcmc.sample_chain(
num_results=1000,
current_state=tf.zeros(dims),
kernel=realnvp_hmc,
num_burnin_steps=500)
# Compute sample stats.
sample_mean = tf.reduce_mean(states, axis=0)
sample_var = tf.reduce_mean(
tf.squared_difference(states, sample_mean),
axis=0)
```
#### References
[1]: Matthew Parno and Youssef Marzouk. Transport map accelerated Markov chain
Monte Carlo. _arXiv preprint arXiv:1412.5492_, 2014.
https://arxiv.org/abs/1412.5492
[2]: Mark Girolami and Ben Calderhead. Riemann manifold langevin and
hamiltonian monte carlo methods. In _Journal of the Royal Statistical
Society_, 2011. https://doi.org/10.1111/j.1467-9868.2010.00765.x
"""
def __init__(self, inner_kernel, bijector, name=None):
"""Instantiates this object.
Args:
inner_kernel: `TransitionKernel`-like object that either has a
`target_log_prob_fn` argument, or wraps around another `inner_kernel`
with said argument.
bijector: `tfp.distributions.Bijector` or list of
`tfp.distributions.Bijector`s. These bijectors use `forward` to map the
`inner_kernel` state space to the state expected by
`inner_kernel.target_log_prob_fn`.
name: Python `str` name prefixed to Ops created by this function.
Default value: `None` (i.e., "transformed_kernel").
Returns:
transformed_kernel: Instance of `TransitionKernel` which copies the input
transition kernel then modifies its `target_log_prob_fn` by applying the
provided bijector(s).
"""
self._parameters = dict(
inner_kernel=inner_kernel,
bijector=bijector,
name=name or 'transformed_kernel')
target_log_prob_fn = _find_nested_target_log_prob_recursively(inner_kernel)
new_target_log_prob = make_transformed_log_prob(
target_log_prob_fn,
bijector,
direction='forward',
# TODO(b/72831017): Disable caching until gradient linkage
# generally works.
enable_bijector_caching=False)
self._inner_kernel = _update_target_log_prob(inner_kernel,
new_target_log_prob)
# Prebuild `_forward_transform` which is used by `one_step`.
self._transform_unconstrained_to_target_support = make_transform_fn(
bijector, direction='forward')
# Prebuild `_inverse_transform` which is used by `bootstrap_kernel_results`.
self._transform_target_support_to_unconstrained = make_transform_fn(
bijector, direction='inverse')
@property
def inner_kernel(self):
return self._parameters['inner_kernel']
@property
def bijector(self):
return self._parameters['bijector']
@property
def name(self):
return self._parameters['name']
@property
def parameters(self):
"""Return `dict` of ``__init__`` arguments and their values."""
return self._parameters
@property
def is_calibrated(self):
return self._inner_kernel.is_calibrated
def one_step(self, current_state, previous_kernel_results, seed=None):
"""Runs one iteration of the Transformed Kernel.
Args:
current_state: `Tensor` or Python `list` of `Tensor`s
representing the current state(s) of the Markov chain(s),
_after_ application of `bijector.forward`. The first `r`
dimensions index independent chains,
`r = tf.rank(target_log_prob_fn(*current_state))`. The
`inner_kernel.one_step` does not actually use `current_state`,
rather it takes as input
`previous_kernel_results.transformed_state` (because
`TransformedTransitionKernel` creates a copy of the input
inner_kernel with a modified `target_log_prob_fn` which
internally applies the `bijector.forward`).
previous_kernel_results: `collections.namedtuple` containing `Tensor`s
representing values from previous calls to this function (or from the
`bootstrap_results` function.)
seed: PRNG seed; see `tfp.random.sanitize_seed` for details.
Returns:
next_state: Tensor or Python list of `Tensor`s representing the state(s)
of the Markov chain(s) after taking exactly one step. Has same type and
shape as `current_state`.
kernel_results: `collections.namedtuple` of internal calculations used to
advance the chain.
"""
with tf.name_scope(mcmc_util.make_name(
self.name, 'transformed_kernel', 'one_step')):
inner_kwargs = {} if seed is None else dict(seed=seed)
transformed_prev_state = previous_kernel_results.transformed_state
transformed_next_state, kernel_results = self._inner_kernel.one_step(
transformed_prev_state,
previous_kernel_results.inner_results,
**inner_kwargs)
transformed_next_state_parts = (
transformed_next_state
if mcmc_util.is_list_like(transformed_next_state) else
[transformed_next_state])
next_state_parts = self._transform_unconstrained_to_target_support(
transformed_next_state_parts)
next_state = (
next_state_parts if mcmc_util.is_list_like(transformed_next_state)
else next_state_parts[0])
if mcmc_util.is_list_like(transformed_prev_state):
transformed_next_state = tf.nest.pack_sequence_as(
transformed_prev_state, transformed_next_state)
kernel_results = TransformedTransitionKernelResults(
transformed_state=transformed_next_state,
inner_results=kernel_results)
return next_state, kernel_results
def bootstrap_results(self, init_state=None, transformed_init_state=None):
"""Returns an object with the same type as returned by `one_step`.
Unlike other `TransitionKernel`s,
`TransformedTransitionKernel.bootstrap_results` has the option of
initializing the `TransformedTransitionKernelResults` from either an initial
state, eg, requiring computing `bijector.inverse(init_state)`, or
directly from `transformed_init_state`, i.e., a `Tensor` or list
of `Tensor`s which is interpretted as the `bijector.inverse`
transformed state.
Args:
init_state: `Tensor` or Python `list` of `Tensor`s representing the a
state(s) of the Markov chain(s). Must specify `init_state` or
`transformed_init_state` but not both.
transformed_init_state: `Tensor` or Python `list` of `Tensor`s
representing the a state(s) of the Markov chain(s). Must specify
`init_state` or `transformed_init_state` but not both.
Returns:
kernel_results: A (possibly nested) `tuple`, `namedtuple` or `list` of
`Tensor`s representing internal calculations made within this function.
Raises:
ValueError: if none of the nested `inner_kernel` results contain
the member "target_log_prob".
#### Examples
To use `transformed_init_state` in context of
`tfp.mcmc.sample_chain`, you need to explicitly pass the
`previous_kernel_results`, e.g.,
```python
transformed_kernel = tfp.mcmc.TransformedTransitionKernel(...)
init_state = ... # Doesnt matter.
transformed_init_state = ... # Does matter.
results = tfp.mcmc.sample_chain(
num_results=...,
current_state=init_state,
previous_kernel_results=transformed_kernel.bootstrap_results(
transformed_init_state=transformed_init_state),
trace_fn=None,
kernel=transformed_kernel)
```
"""
if (init_state is None) == (transformed_init_state is None):
raise ValueError('Must specify exactly one of `init_state` '
'or `transformed_init_state`.')
with tf.name_scope(mcmc_util.make_name(
self.name, 'transformed_kernel', 'bootstrap_results')):
if transformed_init_state is None:
init_state_parts = (init_state if mcmc_util.is_list_like(init_state)
else [init_state])
transformed_init_state_parts = (
self._transform_target_support_to_unconstrained(init_state_parts))
transformed_init_state = (
tf.nest.pack_sequence_as(init_state, transformed_init_state_parts)
if mcmc_util.is_list_like(init_state)
else transformed_init_state_parts[0])
else:
if mcmc_util.is_list_like(transformed_init_state):
transformed_init_state = tf.nest.pack_sequence_as(
transformed_init_state,
[tf.convert_to_tensor(s, name='transformed_init_state')
for s in transformed_init_state])
else:
transformed_init_state = tf.convert_to_tensor(
value=transformed_init_state, name='transformed_init_state')
kernel_results = TransformedTransitionKernelResults(
transformed_state=transformed_init_state,
inner_results=self._inner_kernel.bootstrap_results(
transformed_init_state))
return kernel_results
@property
def experimental_shard_axis_names(self):
return self.inner_kernel.experimental_shard_axis_names
def experimental_with_shard_axes(self, shard_axis_names):
return self.copy(
inner_kernel=self.inner_kernel.experimental_with_shard_axes(
shard_axis_names))