-
Notifications
You must be signed in to change notification settings - Fork 446
/
mnist.py
65 lines (54 loc) · 1.93 KB
/
mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Train models on MNIST data."""
from lingvo import model_registry
from lingvo.core import base_model_params
from lingvo.tasks.image import classifier
from lingvo.tasks.image import input_generator
class Base(base_model_params.SingleTaskModelParams):
"""Input params for MNIST."""
@property
def path(self):
# Generated using lingvo/tools:keras2ckpt.
return '/tmp/mnist/mnist'
def Train(self):
p = input_generator.MnistTrainInput.Params()
p.ckpt = self.path
return p
def Test(self):
p = input_generator.MnistTestInput.Params()
p.ckpt = self.path
return p
def Dev(self):
return self.Test()
@model_registry.RegisterSingleTaskModel
class LeNet5(Base):
"""LeNet params for MNIST classification."""
BN = False
DROP = 0.2
def Task(self):
p = classifier.ModelV1.Params()
p.name = 'lenet5'
# Overall architecture:
# conv, maxpool, conv, maxpool, fc, softmax.
p.filter_shapes = [(5, 5, 1, 20), (5, 5, 20, 50)]
p.window_shapes = [(2, 2), (2, 2)]
p.batch_norm = self.BN
p.dropout_prob = self.DROP
p.softmax.input_dim = 300
p.softmax.num_classes = 10
p.train.save_interval_seconds = 10 # More frequent checkpoints.
p.eval.samples_per_summary = 0 # Eval the whole set.
return p