Skip to content

Latest commit

 

History

History
81 lines (65 loc) · 3.15 KB

RELEASE.md

File metadata and controls

81 lines (65 loc) · 3.15 KB

Release 0.12.0

Major Features and Improvements

  • Add support for computing statistics over slices of data.
  • Performance improvement due to optimizing inner loops.
  • Add support for generating statistics from a pandas dataframe.
  • Performance improvement due to pre-allocating tf.Example in TFExampleDecoder.
  • Performance improvement due to merging common stats generator, numeric stats generator and string stats generator as a single basic stats generator.
  • Performance improvement due to merging top-k and uniques generators.
  • Add a validate_instance function, which checks a single example for anomalies.
  • Add a utility method get_statistics_html, which returns HTML that can be used for Facets visualization outside of a notebook.
  • Add support for schema inference of semantic domains.
  • Performance improvement on statistics computation over a pandas dataframe.

Bug Fixes and Other Changes

  • Use constant 'BYTES_VALUE' in the statistics proto to represent a bytes value which cannot be decoded as a utf-8 string.
  • Introduced CombinerFeatureStatsGenerator, a specialized interface for combiners that do not require cross-feature computations.
  • Expand unit test coverage.
  • Add optional frequency threshold that allows keeping only the most frequent values that are present in a minimum number of examples.
  • Add optional desired batch size that allows specification of the number of examples to include in each batch.
  • Depends on numpy>=1.14.5,<2.
  • Depends on protobuf>=3.6.1,<4.
  • Depends on apache-beam[gcp]>=2.10,<3.
  • Depends on tensorflow-metadata>=0.12.1,<0.13.
  • Depends on scikit-learn>=0.18,<1.
  • Depends on IPython>=5.0.
  • Requires pre-installed tensorflow>=1.12,<2.
  • Revise example notebook and update it to be able to run in Colab and Jupyter.

Breaking changes

  • Represent batch as a list of ndarrays instead of ndarrays of ndarrays.
  • Modify decoders to return ndarrays of type numpy.float32 for FLOAT features.

Deprecations

Release 0.11.0

Major Features and Improvements

  • Add option to infer feature types from schema when generating statistics over CSV data.
  • Add utility method set_domain to set the domain of a feature in the schema.
  • Add option to compute weighted statistics by providing a weight feature.
  • Add a PTransform for decoding TF examples.
  • Add utility methods write_schema_text and load_schema_text to write and load the schema protocol buffer.
  • Add option to compute statistics over a sample.
  • Optimize performance of statistics computation (~2x improvement on benchmark datasets).

Bug Fixes and Other Changes

  • Depends on apache-beam[gcp]>=2.8,<3.
  • Depends on tensorflow-transform>=0.11,<0.12.
  • Depends on tensorflow-metadata>=0.9,<0.10.
  • Fix bug in clearing oneof domain_info field in Feature proto.
  • Fix overflow error for large integers by casting them to STRING type.
  • Added API docs.

Breaking changes

  • Requires pre-installed tensorflow>=1.11,<2.
  • Make tf.Example decoder to represent a feature with no value list as a missing value (None).
  • Make StatsOptions as a class.

Deprecations

Release 0.9.0

  • Initial release of TensorFlow Data Validation.