forked from adafruit/Adafruit_NeoPixel
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Adafruit_NeoPixel.cpp
3556 lines (3272 loc) · 122 KB
/
Adafruit_NeoPixel.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*!
* @file Adafruit_NeoPixel.cpp
*
* @mainpage Arduino Library for driving Adafruit NeoPixel addressable LEDs,
* FLORA RGB Smart Pixels and compatible devicess -- WS2811, WS2812, WS2812B,
* SK6812, etc.
*
* @section intro_sec Introduction
*
* This is the documentation for Adafruit's NeoPixel library for the
* Arduino platform, allowing a broad range of microcontroller boards
* (most AVR boards, many ARM devices, ESP8266 and ESP32, among others)
* to control Adafruit NeoPixels, FLORA RGB Smart Pixels and compatible
* devices -- WS2811, WS2812, WS2812B, SK6812, etc.
*
* Adafruit invests time and resources providing this open source code,
* please support Adafruit and open-source hardware by purchasing products
* from Adafruit!
*
* @section author Author
*
* Written by Phil "Paint Your Dragon" Burgess for Adafruit Industries,
* with contributions by PJRC, Michael Miller and other members of the
* open source community.
*
* @section license License
*
* This file is part of the Adafruit_NeoPixel library.
*
* Adafruit_NeoPixel is free software: you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* Adafruit_NeoPixel is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with NeoPixel. If not, see
* <http://www.gnu.org/licenses/>.
*
*/
#include "Adafruit_NeoPixel.h"
#if defined(TARGET_LPC1768)
#include <time.h>
#endif
#if defined(NRF52) || defined(NRF52_SERIES)
#include "nrf.h"
// Interrupt is only disabled if there is no PWM device available
// Note: Adafruit Bluefruit nrf52 does not use this option
//#define NRF52_DISABLE_INT
#endif
#if defined(ARDUINO_ARCH_NRF52840)
#if defined __has_include
#if __has_include(<pinDefinitions.h>)
#include <pinDefinitions.h>
#endif
#endif
#endif
/*!
@brief NeoPixel constructor when length, pin and pixel type are known
at compile-time.
@param n Number of NeoPixels in strand.
@param p Arduino pin number which will drive the NeoPixel data in.
@param t Pixel type -- add together NEO_* constants defined in
Adafruit_NeoPixel.h, for example NEO_GRB+NEO_KHZ800 for
NeoPixels expecting an 800 KHz (vs 400 KHz) data stream
with color bytes expressed in green, red, blue order per
pixel.
@return Adafruit_NeoPixel object. Call the begin() function before use.
*/
Adafruit_NeoPixel::Adafruit_NeoPixel(uint16_t n, int16_t p, neoPixelType t)
: begun(false), brightness(0), pixels(NULL), endTime(0) {
updateType(t);
updateLength(n);
setPin(p);
#if defined(ARDUINO_ARCH_RP2040)
// Find a free SM on one of the PIO's
sm = pio_claim_unused_sm(pio, false); // don't panic
// Try pio1 if SM not found
if (sm < 0) {
pio = pio1;
sm = pio_claim_unused_sm(pio, true); // panic if no SM is free
}
init = true;
#endif
}
/*!
@brief "Empty" NeoPixel constructor when length, pin and/or pixel type
are not known at compile-time, and must be initialized later with
updateType(), updateLength() and setPin().
@return Adafruit_NeoPixel object. Call the begin() function before use.
@note This function is deprecated, here only for old projects that
may still be calling it. New projects should instead use the
'new' keyword with the first constructor syntax (length, pin,
type).
*/
Adafruit_NeoPixel::Adafruit_NeoPixel()
:
#if defined(NEO_KHZ400)
is800KHz(true),
#endif
begun(false), numLEDs(0), numBytes(0), pin(-1), brightness(0),
pixels(NULL), rOffset(1), gOffset(0), bOffset(2), wOffset(1), endTime(0) {
}
/*!
@brief Deallocate Adafruit_NeoPixel object, set data pin back to INPUT.
*/
Adafruit_NeoPixel::~Adafruit_NeoPixel() {
free(pixels);
if (pin >= 0)
pinMode(pin, INPUT);
}
/*!
@brief Configure NeoPixel pin for output.
*/
void Adafruit_NeoPixel::begin(void) {
if (pin >= 0) {
pinMode(pin, OUTPUT);
digitalWrite(pin, LOW);
}
begun = true;
}
/*!
@brief Change the length of a previously-declared Adafruit_NeoPixel
strip object. Old data is deallocated and new data is cleared.
Pin number and pixel format are unchanged.
@param n New length of strip, in pixels.
@note This function is deprecated, here only for old projects that
may still be calling it. New projects should instead use the
'new' keyword with the first constructor syntax (length, pin,
type).
*/
void Adafruit_NeoPixel::updateLength(uint16_t n) {
free(pixels); // Free existing data (if any)
// Allocate new data -- note: ALL PIXELS ARE CLEARED
numBytes = n * ((wOffset == rOffset) ? 3 : 4);
if ((pixels = (uint8_t *)malloc(numBytes))) {
memset(pixels, 0, numBytes);
numLEDs = n;
} else {
numLEDs = numBytes = 0;
}
}
/*!
@brief Change the pixel format of a previously-declared
Adafruit_NeoPixel strip object. If format changes from one of
the RGB variants to an RGBW variant (or RGBW to RGB), the old
data will be deallocated and new data is cleared. Otherwise,
the old data will remain in RAM and is not reordered to the
new format, so it's advisable to follow up with clear().
@param t Pixel type -- add together NEO_* constants defined in
Adafruit_NeoPixel.h, for example NEO_GRB+NEO_KHZ800 for
NeoPixels expecting an 800 KHz (vs 400 KHz) data stream
with color bytes expressed in green, red, blue order per
pixel.
@note This function is deprecated, here only for old projects that
may still be calling it. New projects should instead use the
'new' keyword with the first constructor syntax
(length, pin, type).
*/
void Adafruit_NeoPixel::updateType(neoPixelType t) {
bool oldThreeBytesPerPixel = (wOffset == rOffset); // false if RGBW
wOffset = (t >> 6) & 0b11; // See notes in header file
rOffset = (t >> 4) & 0b11; // regarding R/G/B/W offsets
gOffset = (t >> 2) & 0b11;
bOffset = t & 0b11;
#if defined(NEO_KHZ400)
is800KHz = (t < 256); // 400 KHz flag is 1<<8
#endif
// If bytes-per-pixel has changed (and pixel data was previously
// allocated), re-allocate to new size. Will clear any data.
if (pixels) {
bool newThreeBytesPerPixel = (wOffset == rOffset);
if (newThreeBytesPerPixel != oldThreeBytesPerPixel)
updateLength(numLEDs);
}
}
// RP2040 specific driver
#if defined(ARDUINO_ARCH_RP2040)
void Adafruit_NeoPixel::rp2040Init(uint8_t pin, bool is800KHz)
{
uint offset = pio_add_program(pio, &ws2812_program);
if (is800KHz)
{
// 800kHz, 8 bit transfers
ws2812_program_init(pio, sm, offset, pin, 800000, 8);
}
else
{
// 400kHz, 8 bit transfers
ws2812_program_init(pio, sm, offset, pin, 400000, 8);
}
}
// Not a user API
void Adafruit_NeoPixel::rp2040Show(uint8_t pin, uint8_t *pixels, uint32_t numBytes, bool is800KHz)
{
if (this->init)
{
// On first pass through initialise the PIO
rp2040Init(pin, is800KHz);
this->init = false;
}
while(numBytes--)
// Bits for transmission must be shifted to top 8 bits
pio_sm_put_blocking(pio, sm, ((uint32_t)*pixels++)<< 24);
}
#endif
#if defined(ESP8266)
// ESP8266 show() is external to enforce ICACHE_RAM_ATTR execution
extern "C" IRAM_ATTR void espShow(uint16_t pin, uint8_t *pixels,
uint32_t numBytes, uint8_t type);
#elif defined(ESP32)
extern "C" void espShow(uint16_t pin, uint8_t *pixels, uint32_t numBytes,
uint8_t type);
#endif // ESP8266
#if defined(K210)
#define KENDRYTE_K210 1
#endif
#if defined(KENDRYTE_K210)
extern "C" void k210Show(uint8_t pin, uint8_t *pixels, uint32_t numBytes,
boolean is800KHz);
#endif // KENDRYTE_K210
/*!
@brief Transmit pixel data in RAM to NeoPixels.
@note On most architectures, interrupts are temporarily disabled in
order to achieve the correct NeoPixel signal timing. This means
that the Arduino millis() and micros() functions, which require
interrupts, will lose small intervals of time whenever this
function is called (about 30 microseconds per RGB pixel, 40 for
RGBW pixels). There's no easy fix for this, but a few
specialized alternative or companion libraries exist that use
very device-specific peripherals to work around it.
*/
void Adafruit_NeoPixel::show(void) {
if (!pixels)
return;
// Data latch = 300+ microsecond pause in the output stream. Rather than
// put a delay at the end of the function, the ending time is noted and
// the function will simply hold off (if needed) on issuing the
// subsequent round of data until the latch time has elapsed. This
// allows the mainline code to start generating the next frame of data
// rather than stalling for the latch.
while (!canShow())
;
// endTime is a private member (rather than global var) so that multiple
// instances on different pins can be quickly issued in succession (each
// instance doesn't delay the next).
// In order to make this code runtime-configurable to work with any pin,
// SBI/CBI instructions are eschewed in favor of full PORT writes via the
// OUT or ST instructions. It relies on two facts: that peripheral
// functions (such as PWM) take precedence on output pins, so our PORT-
// wide writes won't interfere, and that interrupts are globally disabled
// while data is being issued to the LEDs, so no other code will be
// accessing the PORT. The code takes an initial 'snapshot' of the PORT
// state, computes 'pin high' and 'pin low' values, and writes these back
// to the PORT register as needed.
// NRF52 may use PWM + DMA (if available), may not need to disable interrupt
// ESP32 may not disable interrupts because espShow() uses RMT which tries to acquire locks
#if !(defined(NRF52) || defined(NRF52_SERIES) || defined(ESP32))
noInterrupts(); // Need 100% focus on instruction timing
#endif
#if defined(__AVR__)
// AVR MCUs -- ATmega & ATtiny (no XMEGA) ---------------------------------
volatile uint16_t i = numBytes; // Loop counter
volatile uint8_t *ptr = pixels, // Pointer to next byte
b = *ptr++, // Current byte value
hi, // PORT w/output bit set high
lo; // PORT w/output bit set low
// Hand-tuned assembly code issues data to the LED drivers at a specific
// rate. There's separate code for different CPU speeds (8, 12, 16 MHz)
// for both the WS2811 (400 KHz) and WS2812 (800 KHz) drivers. The
// datastream timing for the LED drivers allows a little wiggle room each
// way (listed in the datasheets), so the conditions for compiling each
// case are set up for a range of frequencies rather than just the exact
// 8, 12 or 16 MHz values, permitting use with some close-but-not-spot-on
// devices (e.g. 16.5 MHz DigiSpark). The ranges were arrived at based
// on the datasheet figures and have not been extensively tested outside
// the canonical 8/12/16 MHz speeds; there's no guarantee these will work
// close to the extremes (or possibly they could be pushed further).
// Keep in mind only one CPU speed case actually gets compiled; the
// resulting program isn't as massive as it might look from source here.
// 8 MHz(ish) AVR ---------------------------------------------------------
#if (F_CPU >= 7400000UL) && (F_CPU <= 9500000UL)
#if defined(NEO_KHZ400) // 800 KHz check needed only if 400 KHz support enabled
if (is800KHz) {
#endif
volatile uint8_t n1, n2 = 0; // First, next bits out
// Squeezing an 800 KHz stream out of an 8 MHz chip requires code
// specific to each PORT register.
// 10 instruction clocks per bit: HHxxxxxLLL
// OUT instructions: ^ ^ ^ (T=0,2,7)
// PORTD OUTPUT ----------------------------------------------------
#if defined(PORTD)
#if defined(PORTB) || defined(PORTC) || defined(PORTF)
if (port == &PORTD) {
#endif // defined(PORTB/C/F)
hi = PORTD | pinMask;
lo = PORTD & ~pinMask;
n1 = lo;
if (b & 0x80)
n1 = hi;
// Dirty trick: RJMPs proceeding to the next instruction are used
// to delay two clock cycles in one instruction word (rather than
// using two NOPs). This was necessary in order to squeeze the
// loop down to exactly 64 words -- the maximum possible for a
// relative branch.
asm volatile(
"headD:"
"\n\t" // Clk Pseudocode
// Bit 7:
"out %[port] , %[hi]"
"\n\t" // 1 PORT = hi
"mov %[n2] , %[lo]"
"\n\t" // 1 n2 = lo
"out %[port] , %[n1]"
"\n\t" // 1 PORT = n1
"rjmp .+0"
"\n\t" // 2 nop nop
"sbrc %[byte] , 6"
"\n\t" // 1-2 if(b & 0x40)
"mov %[n2] , %[hi]"
"\n\t" // 0-1 n2 = hi
"out %[port] , %[lo]"
"\n\t" // 1 PORT = lo
"rjmp .+0"
"\n\t" // 2 nop nop
// Bit 6:
"out %[port] , %[hi]"
"\n\t" // 1 PORT = hi
"mov %[n1] , %[lo]"
"\n\t" // 1 n1 = lo
"out %[port] , %[n2]"
"\n\t" // 1 PORT = n2
"rjmp .+0"
"\n\t" // 2 nop nop
"sbrc %[byte] , 5"
"\n\t" // 1-2 if(b & 0x20)
"mov %[n1] , %[hi]"
"\n\t" // 0-1 n1 = hi
"out %[port] , %[lo]"
"\n\t" // 1 PORT = lo
"rjmp .+0"
"\n\t" // 2 nop nop
// Bit 5:
"out %[port] , %[hi]"
"\n\t" // 1 PORT = hi
"mov %[n2] , %[lo]"
"\n\t" // 1 n2 = lo
"out %[port] , %[n1]"
"\n\t" // 1 PORT = n1
"rjmp .+0"
"\n\t" // 2 nop nop
"sbrc %[byte] , 4"
"\n\t" // 1-2 if(b & 0x10)
"mov %[n2] , %[hi]"
"\n\t" // 0-1 n2 = hi
"out %[port] , %[lo]"
"\n\t" // 1 PORT = lo
"rjmp .+0"
"\n\t" // 2 nop nop
// Bit 4:
"out %[port] , %[hi]"
"\n\t" // 1 PORT = hi
"mov %[n1] , %[lo]"
"\n\t" // 1 n1 = lo
"out %[port] , %[n2]"
"\n\t" // 1 PORT = n2
"rjmp .+0"
"\n\t" // 2 nop nop
"sbrc %[byte] , 3"
"\n\t" // 1-2 if(b & 0x08)
"mov %[n1] , %[hi]"
"\n\t" // 0-1 n1 = hi
"out %[port] , %[lo]"
"\n\t" // 1 PORT = lo
"rjmp .+0"
"\n\t" // 2 nop nop
// Bit 3:
"out %[port] , %[hi]"
"\n\t" // 1 PORT = hi
"mov %[n2] , %[lo]"
"\n\t" // 1 n2 = lo
"out %[port] , %[n1]"
"\n\t" // 1 PORT = n1
"rjmp .+0"
"\n\t" // 2 nop nop
"sbrc %[byte] , 2"
"\n\t" // 1-2 if(b & 0x04)
"mov %[n2] , %[hi]"
"\n\t" // 0-1 n2 = hi
"out %[port] , %[lo]"
"\n\t" // 1 PORT = lo
"rjmp .+0"
"\n\t" // 2 nop nop
// Bit 2:
"out %[port] , %[hi]"
"\n\t" // 1 PORT = hi
"mov %[n1] , %[lo]"
"\n\t" // 1 n1 = lo
"out %[port] , %[n2]"
"\n\t" // 1 PORT = n2
"rjmp .+0"
"\n\t" // 2 nop nop
"sbrc %[byte] , 1"
"\n\t" // 1-2 if(b & 0x02)
"mov %[n1] , %[hi]"
"\n\t" // 0-1 n1 = hi
"out %[port] , %[lo]"
"\n\t" // 1 PORT = lo
"rjmp .+0"
"\n\t" // 2 nop nop
// Bit 1:
"out %[port] , %[hi]"
"\n\t" // 1 PORT = hi
"mov %[n2] , %[lo]"
"\n\t" // 1 n2 = lo
"out %[port] , %[n1]"
"\n\t" // 1 PORT = n1
"rjmp .+0"
"\n\t" // 2 nop nop
"sbrc %[byte] , 0"
"\n\t" // 1-2 if(b & 0x01)
"mov %[n2] , %[hi]"
"\n\t" // 0-1 n2 = hi
"out %[port] , %[lo]"
"\n\t" // 1 PORT = lo
"sbiw %[count], 1"
"\n\t" // 2 i-- (don't act on Z flag yet)
// Bit 0:
"out %[port] , %[hi]"
"\n\t" // 1 PORT = hi
"mov %[n1] , %[lo]"
"\n\t" // 1 n1 = lo
"out %[port] , %[n2]"
"\n\t" // 1 PORT = n2
"ld %[byte] , %a[ptr]+"
"\n\t" // 2 b = *ptr++
"sbrc %[byte] , 7"
"\n\t" // 1-2 if(b & 0x80)
"mov %[n1] , %[hi]"
"\n\t" // 0-1 n1 = hi
"out %[port] , %[lo]"
"\n\t" // 1 PORT = lo
"brne headD"
"\n" // 2 while(i) (Z flag set above)
: [byte] "+r"(b), [n1] "+r"(n1), [n2] "+r"(n2), [count] "+w"(i)
: [port] "I"(_SFR_IO_ADDR(PORTD)), [ptr] "e"(ptr), [hi] "r"(hi),
[lo] "r"(lo));
#if defined(PORTB) || defined(PORTC) || defined(PORTF)
} else // other PORT(s)
#endif // defined(PORTB/C/F)
#endif // defined(PORTD)
// PORTB OUTPUT ----------------------------------------------------
#if defined(PORTB)
#if defined(PORTD) || defined(PORTC) || defined(PORTF)
if (port == &PORTB) {
#endif // defined(PORTD/C/F)
// Same as above, just switched to PORTB and stripped of comments.
hi = PORTB | pinMask;
lo = PORTB & ~pinMask;
n1 = lo;
if (b & 0x80)
n1 = hi;
asm volatile(
"headB:"
"\n\t"
"out %[port] , %[hi]"
"\n\t"
"mov %[n2] , %[lo]"
"\n\t"
"out %[port] , %[n1]"
"\n\t"
"rjmp .+0"
"\n\t"
"sbrc %[byte] , 6"
"\n\t"
"mov %[n2] , %[hi]"
"\n\t"
"out %[port] , %[lo]"
"\n\t"
"rjmp .+0"
"\n\t"
"out %[port] , %[hi]"
"\n\t"
"mov %[n1] , %[lo]"
"\n\t"
"out %[port] , %[n2]"
"\n\t"
"rjmp .+0"
"\n\t"
"sbrc %[byte] , 5"
"\n\t"
"mov %[n1] , %[hi]"
"\n\t"
"out %[port] , %[lo]"
"\n\t"
"rjmp .+0"
"\n\t"
"out %[port] , %[hi]"
"\n\t"
"mov %[n2] , %[lo]"
"\n\t"
"out %[port] , %[n1]"
"\n\t"
"rjmp .+0"
"\n\t"
"sbrc %[byte] , 4"
"\n\t"
"mov %[n2] , %[hi]"
"\n\t"
"out %[port] , %[lo]"
"\n\t"
"rjmp .+0"
"\n\t"
"out %[port] , %[hi]"
"\n\t"
"mov %[n1] , %[lo]"
"\n\t"
"out %[port] , %[n2]"
"\n\t"
"rjmp .+0"
"\n\t"
"sbrc %[byte] , 3"
"\n\t"
"mov %[n1] , %[hi]"
"\n\t"
"out %[port] , %[lo]"
"\n\t"
"rjmp .+0"
"\n\t"
"out %[port] , %[hi]"
"\n\t"
"mov %[n2] , %[lo]"
"\n\t"
"out %[port] , %[n1]"
"\n\t"
"rjmp .+0"
"\n\t"
"sbrc %[byte] , 2"
"\n\t"
"mov %[n2] , %[hi]"
"\n\t"
"out %[port] , %[lo]"
"\n\t"
"rjmp .+0"
"\n\t"
"out %[port] , %[hi]"
"\n\t"
"mov %[n1] , %[lo]"
"\n\t"
"out %[port] , %[n2]"
"\n\t"
"rjmp .+0"
"\n\t"
"sbrc %[byte] , 1"
"\n\t"
"mov %[n1] , %[hi]"
"\n\t"
"out %[port] , %[lo]"
"\n\t"
"rjmp .+0"
"\n\t"
"out %[port] , %[hi]"
"\n\t"
"mov %[n2] , %[lo]"
"\n\t"
"out %[port] , %[n1]"
"\n\t"
"rjmp .+0"
"\n\t"
"sbrc %[byte] , 0"
"\n\t"
"mov %[n2] , %[hi]"
"\n\t"
"out %[port] , %[lo]"
"\n\t"
"sbiw %[count], 1"
"\n\t"
"out %[port] , %[hi]"
"\n\t"
"mov %[n1] , %[lo]"
"\n\t"
"out %[port] , %[n2]"
"\n\t"
"ld %[byte] , %a[ptr]+"
"\n\t"
"sbrc %[byte] , 7"
"\n\t"
"mov %[n1] , %[hi]"
"\n\t"
"out %[port] , %[lo]"
"\n\t"
"brne headB"
"\n"
: [byte] "+r"(b), [n1] "+r"(n1), [n2] "+r"(n2), [count] "+w"(i)
: [port] "I"(_SFR_IO_ADDR(PORTB)), [ptr] "e"(ptr), [hi] "r"(hi),
[lo] "r"(lo));
#if defined(PORTD) || defined(PORTC) || defined(PORTF)
}
#endif
#if defined(PORTC) || defined(PORTF)
else
#endif // defined(PORTC/F)
#endif // defined(PORTB)
// PORTC OUTPUT ----------------------------------------------------
#if defined(PORTC)
#if defined(PORTD) || defined(PORTB) || defined(PORTF)
if (port == &PORTC) {
#endif // defined(PORTD/B/F)
// Same as above, just switched to PORTC and stripped of comments.
hi = PORTC | pinMask;
lo = PORTC & ~pinMask;
n1 = lo;
if (b & 0x80)
n1 = hi;
asm volatile(
"headC:"
"\n\t"
"out %[port] , %[hi]"
"\n\t"
"mov %[n2] , %[lo]"
"\n\t"
"out %[port] , %[n1]"
"\n\t"
"rjmp .+0"
"\n\t"
"sbrc %[byte] , 6"
"\n\t"
"mov %[n2] , %[hi]"
"\n\t"
"out %[port] , %[lo]"
"\n\t"
"rjmp .+0"
"\n\t"
"out %[port] , %[hi]"
"\n\t"
"mov %[n1] , %[lo]"
"\n\t"
"out %[port] , %[n2]"
"\n\t"
"rjmp .+0"
"\n\t"
"sbrc %[byte] , 5"
"\n\t"
"mov %[n1] , %[hi]"
"\n\t"
"out %[port] , %[lo]"
"\n\t"
"rjmp .+0"
"\n\t"
"out %[port] , %[hi]"
"\n\t"
"mov %[n2] , %[lo]"
"\n\t"
"out %[port] , %[n1]"
"\n\t"
"rjmp .+0"
"\n\t"
"sbrc %[byte] , 4"
"\n\t"
"mov %[n2] , %[hi]"
"\n\t"
"out %[port] , %[lo]"
"\n\t"
"rjmp .+0"
"\n\t"
"out %[port] , %[hi]"
"\n\t"
"mov %[n1] , %[lo]"
"\n\t"
"out %[port] , %[n2]"
"\n\t"
"rjmp .+0"
"\n\t"
"sbrc %[byte] , 3"
"\n\t"
"mov %[n1] , %[hi]"
"\n\t"
"out %[port] , %[lo]"
"\n\t"
"rjmp .+0"
"\n\t"
"out %[port] , %[hi]"
"\n\t"
"mov %[n2] , %[lo]"
"\n\t"
"out %[port] , %[n1]"
"\n\t"
"rjmp .+0"
"\n\t"
"sbrc %[byte] , 2"
"\n\t"
"mov %[n2] , %[hi]"
"\n\t"
"out %[port] , %[lo]"
"\n\t"
"rjmp .+0"
"\n\t"
"out %[port] , %[hi]"
"\n\t"
"mov %[n1] , %[lo]"
"\n\t"
"out %[port] , %[n2]"
"\n\t"
"rjmp .+0"
"\n\t"
"sbrc %[byte] , 1"
"\n\t"
"mov %[n1] , %[hi]"
"\n\t"
"out %[port] , %[lo]"
"\n\t"
"rjmp .+0"
"\n\t"
"out %[port] , %[hi]"
"\n\t"
"mov %[n2] , %[lo]"
"\n\t"
"out %[port] , %[n1]"
"\n\t"
"rjmp .+0"
"\n\t"
"sbrc %[byte] , 0"
"\n\t"
"mov %[n2] , %[hi]"
"\n\t"
"out %[port] , %[lo]"
"\n\t"
"sbiw %[count], 1"
"\n\t"
"out %[port] , %[hi]"
"\n\t"
"mov %[n1] , %[lo]"
"\n\t"
"out %[port] , %[n2]"
"\n\t"
"ld %[byte] , %a[ptr]+"
"\n\t"
"sbrc %[byte] , 7"
"\n\t"
"mov %[n1] , %[hi]"
"\n\t"
"out %[port] , %[lo]"
"\n\t"
"brne headC"
"\n"
: [byte] "+r"(b), [n1] "+r"(n1), [n2] "+r"(n2), [count] "+w"(i)
: [port] "I"(_SFR_IO_ADDR(PORTC)), [ptr] "e"(ptr), [hi] "r"(hi),
[lo] "r"(lo));
#if defined(PORTD) || defined(PORTB) || defined(PORTF)
}
#endif // defined(PORTD/B/F)
#if defined(PORTF)
else
#endif
#endif // defined(PORTC)
// PORTF OUTPUT ----------------------------------------------------
#if defined(PORTF)
#if defined(PORTD) || defined(PORTB) || defined(PORTC)
if (port == &PORTF) {
#endif // defined(PORTD/B/C)
hi = PORTF | pinMask;
lo = PORTF & ~pinMask;
n1 = lo;
if (b & 0x80)
n1 = hi;
asm volatile(
"headF:"
"\n\t"
"out %[port] , %[hi]"
"\n\t"
"mov %[n2] , %[lo]"
"\n\t"
"out %[port] , %[n1]"
"\n\t"
"rjmp .+0"
"\n\t"
"sbrc %[byte] , 6"
"\n\t"
"mov %[n2] , %[hi]"
"\n\t"
"out %[port] , %[lo]"
"\n\t"
"rjmp .+0"
"\n\t"
"out %[port] , %[hi]"
"\n\t"
"mov %[n1] , %[lo]"
"\n\t"
"out %[port] , %[n2]"
"\n\t"
"rjmp .+0"
"\n\t"
"sbrc %[byte] , 5"
"\n\t"
"mov %[n1] , %[hi]"
"\n\t"
"out %[port] , %[lo]"
"\n\t"
"rjmp .+0"
"\n\t"
"out %[port] , %[hi]"
"\n\t"
"mov %[n2] , %[lo]"
"\n\t"
"out %[port] , %[n1]"
"\n\t"
"rjmp .+0"
"\n\t"
"sbrc %[byte] , 4"
"\n\t"
"mov %[n2] , %[hi]"
"\n\t"
"out %[port] , %[lo]"
"\n\t"
"rjmp .+0"
"\n\t"
"out %[port] , %[hi]"
"\n\t"
"mov %[n1] , %[lo]"
"\n\t"
"out %[port] , %[n2]"
"\n\t"
"rjmp .+0"
"\n\t"
"sbrc %[byte] , 3"
"\n\t"
"mov %[n1] , %[hi]"
"\n\t"
"out %[port] , %[lo]"
"\n\t"
"rjmp .+0"
"\n\t"
"out %[port] , %[hi]"
"\n\t"
"mov %[n2] , %[lo]"
"\n\t"
"out %[port] , %[n1]"
"\n\t"
"rjmp .+0"
"\n\t"
"sbrc %[byte] , 2"
"\n\t"
"mov %[n2] , %[hi]"
"\n\t"
"out %[port] , %[lo]"
"\n\t"
"rjmp .+0"
"\n\t"
"out %[port] , %[hi]"
"\n\t"
"mov %[n1] , %[lo]"
"\n\t"
"out %[port] , %[n2]"
"\n\t"
"rjmp .+0"
"\n\t"
"sbrc %[byte] , 1"
"\n\t"
"mov %[n1] , %[hi]"
"\n\t"
"out %[port] , %[lo]"
"\n\t"
"rjmp .+0"
"\n\t"
"out %[port] , %[hi]"
"\n\t"
"mov %[n2] , %[lo]"
"\n\t"
"out %[port] , %[n1]"
"\n\t"
"rjmp .+0"
"\n\t"
"sbrc %[byte] , 0"
"\n\t"
"mov %[n2] , %[hi]"
"\n\t"
"out %[port] , %[lo]"
"\n\t"
"sbiw %[count], 1"
"\n\t"
"out %[port] , %[hi]"
"\n\t"
"mov %[n1] , %[lo]"
"\n\t"
"out %[port] , %[n2]"
"\n\t"
"ld %[byte] , %a[ptr]+"
"\n\t"
"sbrc %[byte] , 7"
"\n\t"
"mov %[n1] , %[hi]"
"\n\t"
"out %[port] , %[lo]"
"\n\t"
"brne headF"
"\n"
: [byte] "+r"(b), [n1] "+r"(n1), [n2] "+r"(n2), [count] "+w"(i)
: [port] "I"(_SFR_IO_ADDR(PORTF)), [ptr] "e"(ptr), [hi] "r"(hi),
[lo] "r"(lo));
#if defined(PORTD) || defined(PORTB) || defined(PORTC)
}
#endif // defined(PORTD/B/C)
#endif // defined(PORTF)
#if defined(NEO_KHZ400)
} else { // end 800 KHz, do 400 KHz
// Timing is more relaxed; unrolling the inner loop for each bit is
// not necessary. Still using the peculiar RJMPs as 2X NOPs, not out
// of need but just to trim the code size down a little.
// This 400-KHz-datastream-on-8-MHz-CPU code is not quite identical
// to the 800-on-16 code later -- the hi/lo timing between WS2811 and
// WS2812 is not simply a 2:1 scale!
// 20 inst. clocks per bit: HHHHxxxxxxLLLLLLLLLL
// ST instructions: ^ ^ ^ (T=0,4,10)
volatile uint8_t next, bit;
hi = *port | pinMask;
lo = *port & ~pinMask;
next = lo;
bit = 8;
asm volatile("head20:"
"\n\t" // Clk Pseudocode (T = 0)
"st %a[port], %[hi]"
"\n\t" // 2 PORT = hi (T = 2)
"sbrc %[byte] , 7"
"\n\t" // 1-2 if(b & 128)
"mov %[next], %[hi]"
"\n\t" // 0-1 next = hi (T = 4)
"st %a[port], %[next]"
"\n\t" // 2 PORT = next (T = 6)
"mov %[next] , %[lo]"
"\n\t" // 1 next = lo (T = 7)
"dec %[bit]"
"\n\t" // 1 bit-- (T = 8)
"breq nextbyte20"
"\n\t" // 1-2 if(bit == 0)
"rol %[byte]"
"\n\t" // 1 b <<= 1 (T = 10)