-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathexperiments.py
678 lines (552 loc) · 25.3 KB
/
experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
import copy
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0, 1"
import time
from aggregation import error_bound_by_plosses_batch, aggr_batch, error_bound_by_plosses_weights_batch
from FL import *
from datasets import generate_dataset, Dataloader, load_bank, load_kdd99, generate_dataset_from_json
from torchvision import datasets, transforms
from regretnet import *
from utils import *
import torch
import torch.nn as nn
import numpy as np
import torch.utils.data as Data
import matplotlib.pyplot as plt
from tqdm import tqdm
from torch.nn.parallel import DataParallel
import math
from client import Clients
from singleminded import baseline_batch
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
torch.manual_seed(42)
torch.cuda.manual_seed_all(42)
np.random.seed(42)
import torch.multiprocessing as mp
torch.multiprocessing.set_sharing_strategy('file_system')
try:
mp.set_start_method('spawn', force=True)
except RuntimeError:
pass
class Exp_Args():
def __init__(self):
self.n_agents = 10
self.budget_rate_step = 0.1
self.max_n_agents = 10
self.n_items_ls = [5, 10, 15, 20]
self.device_rank = 0
self.dataset = "Banking"
self.n_runs = 10
self.batch = -1
self.min_budget_rate = 0.1
self.max_budget_rate = 2.0
self.vary_budget = False
self.rnd_step = 10
self.n_gpus = 2
self.n_processes = 4
self.n_rounds = 100
def make_dir(dir):
if not os.path.exists(dir):
os.makedirs(dir)
return dir
def map_data_dir(dataset_name, iid):
if dataset_name == "Bank":
if iid:
return make_dir("data/bank/iid/")
else:
return make_dir("data/bank/niid/")
elif dataset_name == "NSL-KDD":
if iid:
return make_dir("data/nslkdd/iid/")
else:
return make_dir("data/nslkdd/niid/")
else:
raise ValueError(f"Dataset {dataset_name} is not defined")
def map_result_dir(dataset_name, iid, mech_name):
if dataset_name == "Bank":
if iid:
return make_dir(f"run/bank/iid/{mech_name}/")
else:
return make_dir(f"run/bank/niid/{mech_name}/")
elif dataset_name == "NSL-KDD":
if iid:
return make_dir(f"run/nslkdd/iid/{mech_name}/")
else:
return make_dir(f"run/nslkdd/niid/{mech_name}/")
else:
raise ValueError(f"Dataset {dataset_name} is not defined")
def map_abbr_name(auc_mech_name, aggr_mech_name):
if auc_mech_name == "RegretNet":
abbr_auc_name = "reg"
elif auc_mech_name == "M-RegretNet":
abbr_auc_name = "m-reg"
elif auc_mech_name == "DM-RegretNet":
abbr_auc_name = "dm-reg"
elif auc_mech_name == "All-in":
abbr_auc_name = "allin"
elif auc_mech_name == "FairQuery":
abbr_auc_name = "fairq"
else:
raise ValueError(f"Auction {auc_mech_name} is not defined")
if aggr_mech_name == "OptAggr":
abbr_aggr_name = "opt"
elif aggr_mech_name == "ConvlAggr":
abbr_aggr_name = "convl"
else:
raise ValueError(f"Aggregation {aggr_mech_name} is not defined")
return f"{abbr_auc_name}_{abbr_aggr_name}"
def map_labels(trade_mech_ls):
labels = []
for trade_mech in trade_mech_ls:
label = ""
if trade_mech[0] == "DM-RegretNet":
label += r"$\bf{DM}$-$\bf{RegretNet}$"
elif trade_mech[0] == "All-in":
label += r"$\bf{All-in}$"
else:
label += trade_mech[0]
if trade_mech[1] == "OptAggr":
label += r"+$\bf{OptAggr}$"
else:
label += "+%s" %(trade_mech[1])
labels.append(label)
return labels
def load_auc_model(model_name):
model_dict = torch.load(model_name)
arch = model_dict["arch"]
state_dict = model_dict["state_dict"]
model = RegretNet(arch["n_agents"], arch["n_items"], activation=arch["activation"], hidden_layer_size=arch["hidden_layer_size"],
n_hidden_layers=arch["n_hidden_layers"], p_activation=arch["p_activation"],
a_activation=arch["a_activation"], separate=arch["separate"], normalized_input=arch["normalized_input"])
model = DataParallel(model)
model.load_state_dict(state_dict)
model = model.module
model.deter_train = False
model.eval()
# print(state_dict)
return model
def auction(reports, budget, trade_mech, model=None, expected=False):
batch_size = reports.shape[0]
n_agents = reports.shape[1]
n_items = reports.shape[2] - 2
budget = budget.view(-1, 1)
device = reports.device
sizes = reports[:, :, -1].view(-1, n_agents)
if trade_mech[0] == "All-in" or trade_mech[0] == "FairQuery":
# print(budget.shape)
reports[:, :, 0] = reports[:, :, 0] * reports[:, :, 2]
plosses, payments = baseline_batch(reports, budget, method=trade_mech[0])
else:
reports = reports.reshape(-1, n_agents, n_items + 2)
allocs, payments = model((reports, budget))
pbudgets = reports.view(-1, n_agents, n_items + 2)[:, :, -2]
if expected:
plosses = allocs_to_plosses(allocs, pbudgets)
else:
plosses, _ = allocs_instantiate_plosses(allocs, pbudgets)
weights = aggr_batch(plosses, sizes, method=trade_mech[1])
return plosses, weights
def acc_eval(plosses, weights, fl_model, local_sets, test_data, fl_args, multirnd=-1):
acc_ls = []
for rnd in range(fl_args.rounds):
local_sets_rnd = local_sets[rnd]
fl_model = ldp_fed_sgd(fl_model, fl_args, plosses[rnd, :], weights[rnd, :], local_sets_rnd, rnd)
if multirnd:
if rnd == 0 or rnd % multirnd == multirnd - 1:
acc = test(fl_model, test_data, fl_args, rnd)
acc_ls.append(acc)
if not multirnd:
acc_ls = [test(fl_model, test_data, fl_args, fl_args.rounds - 1)]
return acc_ls
def acc_eval_mechs(trade_mech_ls, train_data, test_data, clients, fl_args, exp_args, run):
torch.manual_seed((os.getpid() * int(time.time())) % 123456789)
torch.cuda.manual_seed_all((os.getpid() * int(time.time())) % 123456789)
np.random.seed((os.getpid() * int(time.time())) % 123456789)
local_sets = clients.return_local_sets_run(train_data, exp_args.n_agents, 0)
del train_data
fl_args.device_rank = run % exp_args.n_gpus
torch.cuda.set_device(fl_args.device_rank)
fl_model = Logistic(fl_args.input_size, fl_args.output_size).to(DEVICE)
# fl_model = fl_model.to(DEVICE)
if exp_args.vary_budget:
acc_budget_mech_ls = []
for trade_mech in trade_mech_ls:
n_items = trade_mech[3]
if trade_mech[0] == "All-in" or trade_mech[0] == "FairQuery":
auc_model = None
else:
model_name = trade_mech[2]
auc_model = load_auc_model(model_name).to(DEVICE)
reports = clients.return_bids_run(n_items, 0)
reports = torch.tensor(reports).float().to(DEVICE).reshape(-1, exp_args.n_agents, n_items + 4)[:, :, :-2]
fl_args.device = reports.device
acc_budget_ls = []
for i in range(exp_args.nb_budget_rate):
budget_rate = exp_args.budget_rate_step * (i + 1)
model = copy.deepcopy(fl_model)
max_cost = generate_max_cost(reports)
budget = budget_rate * max_cost
plosses, weights = auction(reports, budget, trade_mech, model=auc_model)
acc = acc_eval(plosses, weights, model, local_sets, test_data, fl_args)[-1]
acc_budget_ls.append(acc)
acc_budget_mech_ls.append(acc_budget_ls)
return acc_budget_mech_ls
else:
acc_mech_ls = []
budget_rate = torch.rand((fl_args.rounds, 1)).to(DEVICE) * (exp_args.min_budget_rate - exp_args.max_budget_rate) + exp_args.max_budget_rate
for trade_mech in trade_mech_ls:
n_items = trade_mech[3]
if trade_mech[0] == "All-in" or trade_mech[0] == "FairQuery":
auc_model = None
else:
model_name = trade_mech[2]
auc_model = load_auc_model(model_name).to(DEVICE)
reports = clients.return_bids_run(n_items, 0)
reports = torch.tensor(reports).float().to(DEVICE).reshape(-1, exp_args.n_agents, n_items + 4)[:, :, :-2]
fl_args.device = reports.device
model = copy.deepcopy(fl_model)
max_cost = generate_max_cost(reports)
budget = max_cost * budget_rate
plosses, weights = auction(reports, budget, trade_mech, model=auc_model)
accs = acc_eval(plosses, weights, model, local_sets, test_data, fl_args, multirnd=exp_args.rnd_step)
acc_mech_ls.append(accs)
return acc_mech_ls
def acc_eval_mechs_parallel(trade_mech_ls, title, file_name, labels, exp_args):
fl_args = Arguments()
fl_args.rounds = exp_args.n_rounds
clients = Clients()
clients.dirs = map_data_dir(exp_args.dataset, exp_args.iid)
if exp_args.batch == -1:
clients.filename = f"test_profiles_2mp.json"
else:
clients.filename = f"test_profiles_2mp_{exp_args.batch}.json"
print(clients.filename)
clients.load_json()
if exp_args.dataset == "Bank":
train_data, test_data = load_bank()
fl_args.shape = (-1, 48)
fl_args.input_size = 48
fl_args.output_size = 2
elif exp_args.dataset == "NSL-KDD":
train_data, test_data = load_nslkdd()
fl_args.shape = (-1, 122)
fl_args.input_size = 122
fl_args.output_size = 5
else:
raise ValueError(f"Dataset {dataset_name} is not defined")
nb_processes = exp_args.n_processes
nb_pools = math.ceil(clients.n_runs / nb_processes)
accs_pool_ls = []
# fl_model = Logistic(fl_args.input_size, fl_args.output_size)
for p in tqdm(range(nb_pools)):
pool = mp.Pool(nb_processes)
workers = []
for run in range(p * nb_processes, min((p + 1) * nb_processes, clients.n_runs)):
sub_clients = clients.return_clients_by_run(run)
worker = pool.apply_async(acc_eval_mechs, args=(trade_mech_ls, train_data, test_data, sub_clients, fl_args, exp_args, run))
workers.append(worker)
pool.close()
pool.join()
for worker in workers:
accs_pool_ls.append(worker.get())
accs_np = np.array(accs_pool_ls)
for i in range(len(trade_mech_ls)):
trade_mech = trade_mech_ls[i]
if len(trade_mech) > 4:
content = accs_np[:, i, :].reshape(clients.n_runs, -1)
dir = map_result_dir(exp_args.dataset, exp_args.iid, map_abbr_name(trade_mech[0], trade_mech[1]))
np.save(dir+trade_mech[4], content)
mechs_acc_ls = accs_np.mean(axis=0).tolist()
if exp_args.vary_budget:
budget_ls = [(b + 1.0) * exp_args.budget_rate_step for b in range(exp_args.nb_budget_rate)]
mechs_budget_ls = [budget_ls for _ in trade_mech_ls]
plot_budget_acc(mechs_budget_ls, mechs_acc_ls, labels, title, file_name, "linear")
else:
rnd_ls = [1] + [(r + 1) * exp_args.rnd_step for r in range(exp_args.n_rounds//exp_args.rnd_step)]
mechs_rnd_ls = [rnd_ls for _ in trade_mech_ls]
plot_rnd_acc(mechs_rnd_ls, mechs_acc_ls, labels, title, file_name, "linear")
def acc_load_npy(trade_mech_ls, title, file_name, labels, exp_args):
mechs_acc_ls = []
for trade_mech in trade_mech_ls:
acc_ls = []
dir = map_result_dir(exp_args.dataset, exp_args.iid, map_abbr_name(trade_mech[0], trade_mech[1]))
for root, dirs, files in os.walk(dir):
for f in files:
print(f)
data = np.load(os.path.join(root, f))
print(data.shape)
acc_ls.append(data)
accs = np.concatenate(acc_ls, axis=0).mean(axis=0)
mechs_acc_ls.append(accs)
nb_x = len(mechs_acc_ls[0])
if exp_args.vary_budget:
budget_ls = np.arange(1, nb_x + 1) * exp_args.budget_rate_step
mechs_budget_ls = [budget_ls for _ in mechs_acc_ls]
plot_budget_acc(mechs_budget_ls, mechs_acc_ls, labels, title, file_name, "logit")
else:
rnd_ls = [1] + [(r + 1) * exp_args.rnd_step for r in range(exp_args.n_rounds//exp_args.rnd_step)]
mechs_rnd_ls = [rnd_ls for _ in mechs_acc_ls]
plot_rnd_acc(mechs_rnd_ls, mechs_acc_ls, labels, title, file_name, "linear")
def mse_eval(reports, budget, trade_mech, L=1.0, expected=False):
if trade_mech[0] == "All-in" or trade_mech[0] == "FairQuery":
auc_model = None
else:
auc_model = load_auc_model(trade_mech[2]).to(DEVICE)
plosses, weights = auction(reports, budget, trade_mech, model=auc_model, expected=expected)
sizes = reports[:, :, -1]
error_bounds = error_bound_by_plosses_weights_batch(plosses, sizes, weights, L, train=False)
# print(plosses[plosses.sum(dim=1) > 0.0])
# print(weights[plosses.sum(dim=1) > 0.0])
# print(error_bounds[plosses.sum(dim=1, keepdim=True) > 0.0])
error_bounds[torch.isinf(error_bounds)] = -1
error_bounds[torch.isnan(error_bounds)] = -1
# print((error_bounds == -1).sum())
return error_bounds[error_bounds>0.0]
def mse_budget(trade_mech_ls, title, file_name, labels, exp_args):
clients = Clients()
clients.dirs = map_data_dir(exp_args.dataset, exp_args.iid)
clients.filename = f"test_profiles_2mp.json"
proflies_nb = int(exp_args.n_runs * exp_args.n_rounds)
clients.load_json()
mechs_budget_ls = []
mechs_error_bound_ls = []
for trade_mech in trade_mech_ls:
budget_ls = []
error_bound_ls = []
n_items = trade_mech[3]
bid_data = torch.tensor(clients.return_bids(n_items)).float().to(DEVICE).reshape(-1, exp_args.n_agents, n_items + 4)
bid_data = bid_data[:proflies_nb, :, :-2]
data_loader = Dataloader(bid_data, 10000)
for i in tqdm(range(exp_args.nb_budget_rate)):
budget_rate = exp_args.budget_rate_step * (i + 1)
error_bounds = np.array([])
for j, reports in enumerate(data_loader):
max_cost = generate_max_cost(reports)
budget = budget_rate * max_cost
error_bound = mse_eval(reports, budget, trade_mech)
error_bound = error_bound.detach().to("cpu").numpy()
error_bounds = np.append(error_bounds, error_bound)
error_bound_mean = np.mean(error_bounds)
error_bound_ls.append(error_bound_mean)
budget_ls.append(budget_rate)
mechs_budget_ls.append(budget_ls)
mechs_error_bound_ls.append(error_bound_ls)
plot_budget_mse(mechs_budget_ls, mechs_error_bound_ls, labels, title, file_name)
def mse_agents(trade_mech_ls, title, file_name, labels, exp_args):
clients = Clients()
clients.dirs = map_data_dir(exp_args.dataset, exp_args.iid)
clients.filename = f"test_profiles_2mp.json"
clients.load_json()
proflies_nb = int(exp_args.n_runs * exp_args.n_rounds)
mechs_n_agents_ls = []
mechs_error_bound_ls = []
nb_profiles = clients.n_runs * len(clients.data[0]) // exp_args.n_agents
budget_rate = torch.rand((nb_profiles, 1)).to(DEVICE) * (
exp_args.min_budget_rate - exp_args.max_budget_rate) + exp_args.max_budget_rate
for trade_mech in trade_mech_ls:
n_agents_ls = []
error_bound_ls = []
n_items = trade_mech[3]
bid_data = torch.tensor(clients.return_bids(n_items)).float().to(DEVICE).reshape(-1, exp_args.n_agents, n_items + 4)
bid_data = bid_data[:proflies_nb, :, :-2]
batch_size = 10000
data_loader = Dataloader(bid_data, batch_size)
for i in tqdm(range(1, exp_args.max_n_agents)):
n_agents = i + 1
error_bounds = np.array([])
for j, reports in enumerate(data_loader):
reports[:, n_agents:, :] = reports[:, n_agents:, :] * 0.0
max_cost = generate_max_cost(reports[:, :n_agents, :])
budget = max_cost * budget_rate[j*batch_size:(j+1)*batch_size]
if trade_mech[0] == "All-in" or trade_mech[0] == "FairQuery":
reports = reports[:, :n_agents, :]
error_bound = mse_eval(reports, budget, trade_mech)
error_bound = error_bound.detach().to("cpu").numpy()
error_bounds = np.append(error_bounds, error_bound)
error_bound_mean = np.mean(error_bounds)
error_bound_ls.append(error_bound_mean)
n_agents_ls.append(n_agents)
mechs_n_agents_ls.append(n_agents_ls)
mechs_error_bound_ls.append(error_bound_ls)
plot_n_agents_mse(mechs_n_agents_ls, mechs_error_bound_ls, labels, title, file_name, "linear")
def guarantees_eval(reports, budget, val_type, trade_mech, misreport_iter=100, lr=1e-1):
batch_size = reports.shape[0]
misreports = reports.clone().detach().to(DEVICE)
model_name = trade_mech[2]
model = load_auc_model(model_name).to(DEVICE)
optimize_misreports(model, reports, misreports, budget=budget, val_type=val_type, misreport_iter=misreport_iter, lr=lr, train=False, instantiation=True)
allocs, payments = model((reports, budget))
vals = reports[:, :, :-2]
sizes = reports[:, :, -1]
costs = torch.sum(allocs * vals, dim=2) * sizes
truthful_util = calc_agent_util(reports, allocs, payments, instantiation=True)
untruthful_util = tiled_misreport_util(misreports, reports, model, budget, val_type=val_type, instantiation=True)
regrets = torch.clamp(untruthful_util - truthful_util, min=0)
ir_violation = -torch.clamp(truthful_util, max=0)
return regrets / costs, ir_violation / costs
def guarantees(trade_mech_ls, exp_args):
regret_ls = []
ir_ls = []
m_ls = []
clients = Clients()
clients.dirs = map_data_dir(exp_args.dataset, exp_args.iid)
clients.filename = f"test_profiles_2mp.json"
clients.load_json()
proflies_nb = int(exp_args.n_runs * exp_args.n_rounds)
budget_rate = torch.rand((proflies_nb, 1)).to(DEVICE) * (
exp_args.min_budget_rate - exp_args.max_budget_rate) + exp_args.max_budget_rate
for trade_mech in tqdm(trade_mech_ls):
n_items = trade_mech[3]
m_ls.append(n_items)
data = torch.tensor(clients.return_bids(n_items)).float().to(DEVICE).reshape(-1, exp_args.n_agents, n_items + 4)
data = data[:proflies_nb, :, :]
batch_size = min(10000, proflies_nb)
data_loader = Dataloader(data, batch_size)
if type(trade_mech[2]) != list:
trade_mech[2] = [trade_mech[2]]
print(trade_mech[2])
regrets = np.array([])
irs = np.array([])
for model_name in trade_mech[2]:
mech = (trade_mech[0], trade_mech[1], model_name)
for j, batch in enumerate(data_loader):
reports = batch[:, :, :-2]
val_type = batch[:, :, -2:]
max_cost = generate_max_cost(reports)
budget = max_cost * budget_rate[j * batch_size:(j + 1) * batch_size]
regret, ir = guarantees_eval(reports, budget, val_type, mech)
regret = regret.detach().to("cpu").numpy()
ir = ir.detach().to("cpu").numpy()
regrets = np.append(regrets, regret)
irs = np.append(irs, ir)
regret_mean = regrets.mean()
ir_mean = irs.mean()
regret_ls.append(regret_mean)
ir_ls.append(ir_mean)
print("\n--------------------------------------------")
print("\nNormalized regret vector")
print(regret_ls)
print("\nNormalized IR vio. vector")
print(ir_ls)
print("\n--------------------------------------------")
return m_ls, regret_ls, ir_ls
def guarantees_plot(trade_mech_ls, title, file_name, exp_args):
m_ls, regret_ls, ir_ls = guarantees(trade_mech_ls, exp_args)
plot_m_guarantees([m_ls, m_ls], [regret_ls, ir_ls], ["regret", "IR violation"], title, file_name, yscale='linear')
def invalid_rate_budget(trade_mech_ls, title, file_name, labels, exp_args):
clients = Clients()
clients.dirs = map_data_dir(exp_args.dataset, exp_args.iid)
clients.filename = f"test_profiles_2mp.json"
clients.load_json()
proflies_nb = int(exp_args.n_runs * exp_args.n_rounds)
mechs_budget_ls = []
mechs_invalid_rate_ls = []
for trade_mech in trade_mech_ls:
n_items = trade_mech[3]
data = torch.tensor(clients.return_bids(n_items)).float().to(DEVICE).reshape(-1, exp_args.n_agents, n_items + 4)
data = data[:proflies_nb, :, :-2]
data_loader = Dataloader(data, 100000)
model_name = trade_mech[2]
model = load_auc_model(model_name).to(DEVICE)
budget_ls = []
invalid_rate_ls = []
for i in tqdm(range(exp_args.nb_budget_rate)):
budget_rate = exp_args.budget_rate_step * (i + 1)
invalid_rates = np.array([])
for j, reports in enumerate(data_loader):
max_cost = generate_max_cost(reports)
budget = budget_rate * max_cost
allocs, payments = model((reports, budget))
full_allocs = calc_full_allocs(allocs)
invalid_rate = torch.prod(full_allocs[:, :, 0], dim=1)
invalid_rate = invalid_rate.detach().to("cpu").numpy()
invalid_rates = np.append(invalid_rates, invalid_rate)
invalid_rate_mean = invalid_rates.mean()
invalid_rate_ls.append(invalid_rate_mean)
budget_ls.append(budget_rate)
mechs_budget_ls.append(budget_ls)
mechs_invalid_rate_ls.append(invalid_rate_ls)
plot_budget_invalid_rate(mechs_budget_ls, mechs_invalid_rate_ls, labels, title, file_name)
if __name__ == '__main__':
trade_mech_ls = [
FQ_CONVL + ["nslkdd_iid.npy"],
ALLIN_CONVL + ["nslkdd_iid.npy"],
FQ_OPT + ["nslkdd_iid.npy"],
ALLIN_OPT + ["nslkdd_iid.npy"]
]
labels = map_labels(trade_mech_ls)
exp_args = Exp_Args()
exp_args.n_runs = 100
exp_args.dataset = "NSL-KDD"
exp_args.iid = True
exp_args.budget_rate_step = 0.1
exp_args.nb_budget_rate = 20
exp_args.max_budget_rate = 2.0
# mse_agents(trade_mech_ls, "NSL-KDD (IID)", "figure/n_err_single_nslkdd_iid.png", labels, exp_args)
# acc_eval_mechs_parallel(trade_mech_ls, "NSL-KDD (IID)", "figure/acc_single_nslkdd_iid.png", labels, exp_args)
# mse_budget(trade_mech_ls, "NSL-KDD (IID)", "figure/b_err_single_nslkdd_iid.png", labels, exp_args)
# acc_load_npy(trade_mech_ls, "NSL-KDD (Non-IID)", "figure/acc_single_nslkdd_niid.png", labels, exp_args)
# trade_mech_ls = [
# REG_CONVL_BANK_IID,
# TREG_CONVL_BANK_IID,
# FREG_CONVL_BANK_IID,
# MREG_CONVL_BANK_IID,
# STREG_CONVL_BANK_IID,
# ]
trade_mech_ls = [
REG_CONVL_BANK_IID + ["bank_iid.npy"],
MREG_CONVL_BANK_IID + ["bank_iid.npy"],
DM_CONVL_BANK_IID + ["bank_iid.npy"],
REG_OPT_BANK_IID + ["bank_iid.npy"],
MREG_OPT_BANK_IID + ["bank_iid.npy"],
DM_OPT_BANK_IID + ["bank_iid.npy"]
]
labels = map_labels(trade_mech_ls)
exp_args = Exp_Args()
exp_args.n_runs = 100
exp_args.dataset = "Bank"
exp_args.iid = True
exp_args.budget_rate_step = 0.1
exp_args.nb_budget_rate = 20
exp_args.max_budget_rate = 2.0
# mse_budget(trade_mech_ls, "BANK (IID)", "figure/b_err_general_bank_iid_50r.png", labels, exp_args)
# guarantees(trade_mech_ls, exp_args)
# guarantees_plot(trade_mech_ls, "BANK (IID)", "figure/guarantee_bank_iid_2mp_2mb_mo_0625_50r.png", exp_args)
# acc_eval_mechs_parallel(trade_mech_ls, "BANK (IID)", "figure/acc_general_bank_iid_50r.png", labels, exp_args)
# acc_load_npy(trade_mech_ls, "NSL-KDD (Non-IID)", "figure/acc_general_bank_iid_50r.png", labels, exp_args)
# trade_mech_ls = [
# REG_CONVL_NSLKDD_IID,
# TREG_CONVL_NSLKDD_IID,
# FREG_CONVL_NSLKDD_IID,
# MREG_CONVL_NSLKDD_IID,
# STREG_CONVL_NSLKDD_IID,
# ]
trade_mech_ls = [
REG_CONVL_NSLKDD_IID + ["nslkdd_iid.npy"],
MREG_CONVL_NSLKDD_IID + ["nslkdd_iid.npy"],
DM_CONVL_NSLKDD_IID + ["nslkdd_iid.npy"],
# REG_OPT_NSLKDD_IID + ["nslkdd_iid.npy"],
# MREG_OPT_NSLKDD_IID + ["nslkdd_iid.npy"],
DM_OPT_NSLKDD_IID + ["nslkdd_iid.npy"]
]
lables_for_invalid_rate = [
"RegretNet",
"M-RegretNet",
r"$\bf{DM}$-$\bf{RegretNet}$+ConvlAggr",
r"$\bf{DM}$-$\bf{RegretNet}$+$\bf{OptAggr}$"
]
labels = map_labels(trade_mech_ls)
exp_args = Exp_Args()
exp_args.n_runs = 1000
exp_args.dataset = "NSL-KDD"
exp_args.iid = True
exp_args.budget_rate_step = 0.1
exp_args.nb_budget_rate = 20
exp_args.max_budget_rate = 2.0
# mse_budget(trade_mech_ls, "NSL-KDD (IID)", "figure/b_err_general_nslkdd_iid_50r.png", labels, exp_args)
# mse_agents(trade_mech_ls, "NSL-KDD (IID)", "figure/n_err_general_nslkdd_iid_50r.png", labels, exp_args)
guarantees(trade_mech_ls, exp_args)
# guarantees_plot(M_EFFECT_NSLKDD_IID, "NSL-KDD (IID)", "figure/guarantee_nslkdd_iid_50r.png", exp_args)
# invalid_rate_budget(trade_mech_ls, "NSL-KDD (IID)", "figure/invalid_nslkdd_iid_50r.png", lables_for_invalid_rate, exp_args)
# acc_eval_mechs_parallel(trade_mech_ls, "NSL-KDD (IID)", "figure/acc_general_nslkdd_iid_50r.png", labels, exp_args)
# acc_load_npy(trade_mech_ls, "NSL-KDD (Non-IID)", "figure/acc_general_nslkdd_iid_50r.png", labels, exp_args)