forked from onlyphantom/assessment
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquiz.html
419 lines (358 loc) · 24.8 KB
/
quiz.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
<!DOCTYPE html><html><head>
<title>quiz</title>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<link rel="stylesheet" href="file:////Users/samuel/.vscode/extensions/shd101wyy.markdown-preview-enhanced-0.4.3/node_modules/@shd101wyy/mume/dependencies/katex/katex.min.css">
<style>
/**
* prism.js Github theme based on GitHub's theme.
* @author Sam Clarke
*/
code[class*="language-"],
pre[class*="language-"] {
color: #333;
background: none;
font-family: Consolas, "Liberation Mono", Menlo, Courier, monospace;
text-align: left;
white-space: pre;
word-spacing: normal;
word-break: normal;
word-wrap: normal;
line-height: 1.4;
-moz-tab-size: 8;
-o-tab-size: 8;
tab-size: 8;
-webkit-hyphens: none;
-moz-hyphens: none;
-ms-hyphens: none;
hyphens: none;
}
/* Code blocks */
pre[class*="language-"] {
padding: .8em;
overflow: auto;
/* border: 1px solid #ddd; */
border-radius: 3px;
/* background: #fff; */
background: #f5f5f5;
}
/* Inline code */
:not(pre) > code[class*="language-"] {
padding: .1em;
border-radius: .3em;
white-space: normal;
background: #f5f5f5;
}
.token.comment,
.token.blockquote {
color: #969896;
}
.token.cdata {
color: #183691;
}
.token.doctype,
.token.punctuation,
.token.variable,
.token.macro.property {
color: #333;
}
.token.operator,
.token.important,
.token.keyword,
.token.rule,
.token.builtin {
color: #a71d5d;
}
.token.string,
.token.url,
.token.regex,
.token.attr-value {
color: #183691;
}
.token.property,
.token.number,
.token.boolean,
.token.entity,
.token.atrule,
.token.constant,
.token.symbol,
.token.command,
.token.code {
color: #0086b3;
}
.token.tag,
.token.selector,
.token.prolog {
color: #63a35c;
}
.token.function,
.token.namespace,
.token.pseudo-element,
.token.class,
.token.class-name,
.token.pseudo-class,
.token.id,
.token.url-reference .token.variable,
.token.attr-name {
color: #795da3;
}
.token.entity {
cursor: help;
}
.token.title,
.token.title .token.punctuation {
font-weight: bold;
color: #1d3e81;
}
.token.list {
color: #ed6a43;
}
.token.inserted {
background-color: #eaffea;
color: #55a532;
}
.token.deleted {
background-color: #ffecec;
color: #bd2c00;
}
.token.bold {
font-weight: bold;
}
.token.italic {
font-style: italic;
}
/* JSON */
.language-json .token.property {
color: #183691;
}
.language-markup .token.tag .token.punctuation {
color: #333;
}
/* CSS */
code.language-css,
.language-css .token.function {
color: #0086b3;
}
/* YAML */
.language-yaml .token.atrule {
color: #63a35c;
}
code.language-yaml {
color: #183691;
}
/* Ruby */
.language-ruby .token.function {
color: #333;
}
/* Markdown */
.language-markdown .token.url {
color: #795da3;
}
/* Makefile */
.language-makefile .token.symbol {
color: #795da3;
}
.language-makefile .token.variable {
color: #183691;
}
.language-makefile .token.builtin {
color: #0086b3;
}
/* Bash */
.language-bash .token.keyword {
color: #0086b3;
}
/* highlight */
pre[data-line] {
position: relative;
padding: 1em 0 1em 3em;
}
pre[data-line] .line-highlight-wrapper {
position: absolute;
top: 0;
left: 0;
background-color: transparent;
display: block;
width: 100%;
}
pre[data-line] .line-highlight {
position: absolute;
left: 0;
right: 0;
padding: inherit 0;
margin-top: 1em;
background: hsla(24, 20%, 50%,.08);
background: linear-gradient(to right, hsla(24, 20%, 50%,.1) 70%, hsla(24, 20%, 50%,0));
pointer-events: none;
line-height: inherit;
white-space: pre;
}
pre[data-line] .line-highlight:before,
pre[data-line] .line-highlight[data-end]:after {
content: attr(data-start);
position: absolute;
top: .4em;
left: .6em;
min-width: 1em;
padding: 0 .5em;
background-color: hsla(24, 20%, 50%,.4);
color: hsl(24, 20%, 95%);
font: bold 65%/1.5 sans-serif;
text-align: center;
vertical-align: .3em;
border-radius: 999px;
text-shadow: none;
box-shadow: 0 1px white;
}
pre[data-line] .line-highlight[data-end]:after {
content: attr(data-end);
top: auto;
bottom: .4em;
}html body{font-family:"Helvetica Neue",Helvetica,"Segoe UI",Arial,freesans,sans-serif;font-size:16px;line-height:1.6;color:#333;background-color:#fff;overflow:initial;box-sizing:border-box;word-wrap:break-word}html body>:first-child{margin-top:0}html body h1,html body h2,html body h3,html body h4,html body h5,html body h6{line-height:1.2;margin-top:1em;margin-bottom:16px;color:#000}html body h1{font-size:2.25em;font-weight:300;padding-bottom:.3em}html body h2{font-size:1.75em;font-weight:400;padding-bottom:.3em}html body h3{font-size:1.5em;font-weight:500}html body h4{font-size:1.25em;font-weight:600}html body h5{font-size:1.1em;font-weight:600}html body h6{font-size:1em;font-weight:600}html body h1,html body h2,html body h3,html body h4,html body h5{font-weight:600}html body h5{font-size:1em}html body h6{color:#5c5c5c}html body strong{color:#000}html body del{color:#5c5c5c}html body a:not([href]){color:inherit;text-decoration:none}html body a{color:#08c;text-decoration:none}html body a:hover{color:#00a3f5;text-decoration:none}html body img{max-width:100%}html body>p{margin-top:0;margin-bottom:16px;word-wrap:break-word}html body>ul,html body>ol{margin-bottom:16px}html body ul,html body ol{padding-left:2em}html body ul.no-list,html body ol.no-list{padding:0;list-style-type:none}html body ul ul,html body ul ol,html body ol ol,html body ol ul{margin-top:0;margin-bottom:0}html body li{margin-bottom:0}html body li.task-list-item{list-style:none}html body li>p{margin-top:0;margin-bottom:0}html body .task-list-item-checkbox{margin:0 .2em .25em -1.8em;vertical-align:middle}html body .task-list-item-checkbox:hover{cursor:pointer}html body blockquote{margin:16px 0;font-size:inherit;padding:0 15px;color:#5c5c5c;border-left:4px solid #d6d6d6}html body blockquote>:first-child{margin-top:0}html body blockquote>:last-child{margin-bottom:0}html body hr{height:4px;margin:32px 0;background-color:#d6d6d6;border:0 none}html body table{margin:10px 0 15px 0;border-collapse:collapse;border-spacing:0;display:block;width:100%;overflow:auto;word-break:normal;word-break:keep-all}html body table th{font-weight:bold;color:#000}html body table td,html body table th{border:1px solid #d6d6d6;padding:6px 13px}html body dl{padding:0}html body dl dt{padding:0;margin-top:16px;font-size:1em;font-style:italic;font-weight:bold}html body dl dd{padding:0 16px;margin-bottom:16px}html body code{font-family:Menlo,Monaco,Consolas,'Courier New',monospace;font-size:.85em !important;color:#000;background-color:#f0f0f0;border-radius:3px;padding:.2em 0}html body code::before,html body code::after{letter-spacing:-0.2em;content:"\00a0"}html body pre>code{padding:0;margin:0;font-size:.85em !important;word-break:normal;white-space:pre;background:transparent;border:0}html body .highlight{margin-bottom:16px}html body .highlight pre,html body pre{padding:1em;overflow:auto;font-size:.85em !important;line-height:1.45;border:#d6d6d6;border-radius:3px}html body .highlight pre{margin-bottom:0;word-break:normal}html body pre code,html body pre tt{display:inline;max-width:initial;padding:0;margin:0;overflow:initial;line-height:inherit;word-wrap:normal;background-color:transparent;border:0}html body pre code:before,html body pre tt:before,html body pre code:after,html body pre tt:after{content:normal}html body p,html body blockquote,html body ul,html body ol,html body dl,html body pre{margin-top:0;margin-bottom:16px}html body kbd{color:#000;border:1px solid #d6d6d6;border-bottom:2px solid #c7c7c7;padding:2px 4px;background-color:#f0f0f0;border-radius:3px}@media print{html body{background-color:#fff}html body h1,html body h2,html body h3,html body h4,html body h5,html body h6{color:#000;page-break-after:avoid}html body blockquote{color:#5c5c5c}html body pre{page-break-inside:avoid}html body table{display:table}html body img{display:block;max-width:100%;max-height:100%}html body pre,html body code{word-wrap:break-word;white-space:pre}}.markdown-preview{width:100%;height:100%;box-sizing:border-box}.markdown-preview .pagebreak,.markdown-preview .newpage{page-break-before:always}.markdown-preview pre.line-numbers{position:relative;padding-left:3.8em;counter-reset:linenumber}.markdown-preview pre.line-numbers>code{position:relative}.markdown-preview pre.line-numbers .line-numbers-rows{position:absolute;pointer-events:none;top:1em;font-size:100%;left:0;width:3em;letter-spacing:-1px;border-right:1px solid #999;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none}.markdown-preview pre.line-numbers .line-numbers-rows>span{pointer-events:none;display:block;counter-increment:linenumber}.markdown-preview pre.line-numbers .line-numbers-rows>span:before{content:counter(linenumber);color:#999;display:block;padding-right:.8em;text-align:right}.markdown-preview .mathjax-exps .MathJax_Display{text-align:center !important}.markdown-preview:not([for="preview"]) .code-chunk .btn-group{display:none}.markdown-preview:not([for="preview"]) .code-chunk .status{display:none}.markdown-preview:not([for="preview"]) .code-chunk .output-div{margin-bottom:16px}.scrollbar-style::-webkit-scrollbar{width:8px}.scrollbar-style::-webkit-scrollbar-track{border-radius:10px;background-color:transparent}.scrollbar-style::-webkit-scrollbar-thumb{border-radius:5px;background-color:rgba(150,150,150,0.66);border:4px solid rgba(150,150,150,0.66);background-clip:content-box}html body[for="html-export"]:not([data-presentation-mode]){position:relative;width:100%;height:100%;top:0;left:0;margin:0;padding:0;overflow:auto}html body[for="html-export"]:not([data-presentation-mode]) .markdown-preview{position:relative;top:0}@media screen and (min-width:914px){html body[for="html-export"]:not([data-presentation-mode]) .markdown-preview{padding:2em calc(50% - 457px + 2em)}}@media screen and (max-width:914px){html body[for="html-export"]:not([data-presentation-mode]) .markdown-preview{padding:2em}}@media screen and (max-width:450px){html body[for="html-export"]:not([data-presentation-mode]) .markdown-preview{font-size:14px !important;padding:1em}}@media print{html body[for="html-export"]:not([data-presentation-mode]) #sidebar-toc-btn{display:none}}html body[for="html-export"]:not([data-presentation-mode]) #sidebar-toc-btn{position:fixed;bottom:8px;left:8px;font-size:28px;cursor:pointer;color:inherit;z-index:99;width:32px;text-align:center;opacity:.4}html body[for="html-export"]:not([data-presentation-mode])[html-show-sidebar-toc] #sidebar-toc-btn{opacity:1}html body[for="html-export"]:not([data-presentation-mode])[html-show-sidebar-toc] .md-sidebar-toc{position:fixed;top:0;left:0;width:300px;height:100%;padding:32px 0 48px 0;font-size:14px;box-shadow:0 0 4px rgba(150,150,150,0.33);box-sizing:border-box;overflow:auto;background-color:inherit}html body[for="html-export"]:not([data-presentation-mode])[html-show-sidebar-toc] .md-sidebar-toc::-webkit-scrollbar{width:8px}html body[for="html-export"]:not([data-presentation-mode])[html-show-sidebar-toc] .md-sidebar-toc::-webkit-scrollbar-track{border-radius:10px;background-color:transparent}html body[for="html-export"]:not([data-presentation-mode])[html-show-sidebar-toc] .md-sidebar-toc::-webkit-scrollbar-thumb{border-radius:5px;background-color:rgba(150,150,150,0.66);border:4px solid rgba(150,150,150,0.66);background-clip:content-box}html body[for="html-export"]:not([data-presentation-mode])[html-show-sidebar-toc] .md-sidebar-toc a{text-decoration:none}html body[for="html-export"]:not([data-presentation-mode])[html-show-sidebar-toc] .md-sidebar-toc ul{padding:0 1.6em;margin-top:.8em}html body[for="html-export"]:not([data-presentation-mode])[html-show-sidebar-toc] .md-sidebar-toc li{margin-bottom:.8em}html body[for="html-export"]:not([data-presentation-mode])[html-show-sidebar-toc] .md-sidebar-toc ul{list-style-type:none}html body[for="html-export"]:not([data-presentation-mode])[html-show-sidebar-toc] .markdown-preview{left:300px;width:calc(100% - 300px);padding:2em calc(50% - 457px - 150px);margin:0;box-sizing:border-box}@media screen and (max-width:1274px){html body[for="html-export"]:not([data-presentation-mode])[html-show-sidebar-toc] .markdown-preview{padding:2em}}@media screen and (max-width:450px){html body[for="html-export"]:not([data-presentation-mode])[html-show-sidebar-toc] .markdown-preview{width:100%}}html body[for="html-export"]:not([data-presentation-mode]):not([html-show-sidebar-toc]) .markdown-preview{left:50%;transform:translateX(-50%)}html body[for="html-export"]:not([data-presentation-mode]):not([html-show-sidebar-toc]) .md-sidebar-toc{display:none}
/* Please visit the URL below for more information: */
/* https://shd101wyy.github.io/markdown-preview-enhanced/#/customize-css */
.markdown-preview.markdown-preview {
font-size: 0.8rem;
line-height: 1.2rem;
}
.markdown-preview.markdown-preview pre {
font-size: 0.7rem;
}
.markdown-preview.markdown-preview h1 {
font-size: 1.4rem;
margin-bottom: 1%;
}
.markdown-preview.markdown-preview h2 {
font-size: 1.1rem;
margin-bottom: 1%;
}
.markdown-preview.markdown-preview h3,
.markdown-preview.markdown-preview h4,
.markdown-preview.markdown-preview h5,
.markdown-preview.markdown-preview h6 {
margin-bottom: 1%;
}
</style>
</head>
<body for="html-export">
<div class="mume markdown-preview ">
<div><h1 class="mume-header" id="assessment">Assessment</h1>
<p>The following question set is adapted from the pre-interview assessment form used in [Algoritma]'s (<a href="https://algorit.ma">https://algorit.ma</a>) hiring for teaching members of the team.</p>
<h2 class="mume-header" id="fundamentals">Fundamentals</h2>
<ol>
<li>
<p>Assuming a simple linear regression (ordinary least squares) trained on a dataset with one predictor. This model is likely to exhibit:</p>
<ul>
<li class="task-list-item"><input type="checkbox" class="task-list-item-checkbox"> A high bias and high variance</li>
<li class="task-list-item"><input type="checkbox" class="task-list-item-checkbox"> A low bias and low variance</li>
<li class="task-list-item"><input type="checkbox" class="task-list-item-checkbox"> A high bias but low variance</li>
<li class="task-list-item"><input type="checkbox" class="task-list-item-checkbox"> A low bias but high variance</li>
</ul>
</li>
<li>
<p>Which of the following is the most fitting definition of <em>p-value</em>:</p>
<ul>
<li class="task-list-item"><input type="checkbox" class="task-list-item-checkbox"> Probability of obtaining a result or value more extreme than was observed</li>
<li class="task-list-item"><input type="checkbox" class="task-list-item-checkbox"> Probability of a null hypothesis to evaluate to <strong>False</strong></li>
<li class="task-list-item"><input type="checkbox" class="task-list-item-checkbox"> Probability of the alternate hypothesis to be correct</li>
<li class="task-list-item"><input type="checkbox" class="task-list-item-checkbox"> Probability of a variable being insignificant to the true parameters of a model</li>
</ul>
</li>
<li>
<p>Which is the correct formula for calculating model's <strong>sensitivity</strong>?</p>
<ul>
<li class="task-list-item"><input type="checkbox" class="task-list-item-checkbox"> True Positives / (True Positives + False Negatives)</li>
<li class="task-list-item"><input type="checkbox" class="task-list-item-checkbox"> True Positives / (True Positives + False Positives)</li>
<li class="task-list-item"><input type="checkbox" class="task-list-item-checkbox"> True Positives / Total Predictions</li>
<li class="task-list-item"><input type="checkbox" class="task-list-item-checkbox"> True Negatives / Total Predictions</li>
</ul>
</li>
</ol>
<blockquote>
<p>Refer to <code>threemodels.png</code> directly in the same directory if the image is not rendered for the following question.</p>
</blockquote>
<ol start="4">
<li>You want a model that identify hateful tweets on Twitter and you're presented with three candidates (Model A, Model B, and Model C). You are asked to pick the model with the <strong>highest precision</strong>. Which of the following models have the highest precision?</li>
</ol>
<img src="threemodels.png" title="model-comparison" style="height:300px;">
<pre class="language-text">- <input type="checkbox" class="task-list-item-checkbox" > Model A
- <input type="checkbox" class="task-list-item-checkbox" > Model B
- <input type="checkbox" class="task-list-item-checkbox" > Model C
</pre>
<ol start="5">
<li>
<p>We want to be confident that our model can perform reasonably in real world environments, and not overfitted to the dataset it was trained on. What is a strategy that greatly diminish the possibility of overfitting?</p>
<ul>
<li class="task-list-item"><input type="checkbox" class="task-list-item-checkbox"> Gradient optimization</li>
<li class="task-list-item"><input type="checkbox" class="task-list-item-checkbox"> Grid Search</li>
<li class="task-list-item"><input type="checkbox" class="task-list-item-checkbox"> Train-Test Splitting</li>
</ul>
</li>
<li>
<p>One difference between a supervised learning task and an unsupervised learning task is the presence of a target variable. Which of the following best describes a target variable?</p>
<ul>
<li class="task-list-item"><input type="checkbox" class="task-list-item-checkbox"> A target variable is also an indendent variable</li>
<li class="task-list-item"><input type="checkbox" class="task-list-item-checkbox"> Target variable is an isolated variable taken in a separate data collection process</li>
<li class="task-list-item"><input type="checkbox" class="task-list-item-checkbox"> Target variable is dependent to independent variable</li>
</ul>
</li>
</ol>
<h2 class="mume-header" id="practical-hands-on">Practical Hands-On</h2>
<ol start="7">
<li>
<p>Download <code>analytics.csv</code>, which is export as-is from the company's Google Analytics dashboard. Values in the <code>Language</code> column is formatted to capture both the client (browser) language and keyboard language, but for this exercise we're only interested about the former. A value of <code>en-id</code> should hence be stored as <code>en</code>, and a value of <code>id-jp</code> should similarly be <code>id</code>. Fill missing values with <code>missing</code>. This should result in <code>en</code>, <code>id</code>, <code>th</code> and <code>missing</code> as valid values in the <code>Language</code> column. Which language has on average, the highest <code>Pages / Session</code> count?</p>
<ul>
<li class="task-list-item"><input type="checkbox" class="task-list-item-checkbox"> <code>en</code>, or English</li>
<li class="task-list-item"><input type="checkbox" class="task-list-item-checkbox"> <code>id</code>, or Indonesian</li>
<li class="task-list-item"><input type="checkbox" class="task-list-item-checkbox"> <code>th</code>, or Thai</li>
</ul>
</li>
<li>
<p>Use any tools of your choice, run a closed-form, simple linear regression to predict <code>Goal Conversion Rate</code> (target) using the values of <code>Pages / Session</code> (predictor). Call this <code>model_A</code>. What is the multiple R-squared from your simple linear regression, <code>model_A</code>, rounded to 3 decimal points? You can retrieve this value through <code>sklearn.metrics.r2_score</code> or <code>summary(model)$r.squared</code></p>
<ul>
<li class="task-list-item"><input type="checkbox" class="task-list-item-checkbox"> 0.786</li>
<li class="task-list-item"><input type="checkbox" class="task-list-item-checkbox"> 0.826</li>
<li class="task-list-item"><input type="checkbox" class="task-list-item-checkbox"> 0.866</li>
</ul>
</li>
<li>
<p>Let <span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>β</mi><mn>0</mn></msub></mrow><annotation encoding="application/x-tex">\beta_0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.05278em;">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span> (beta0) be the intercept and <span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>β</mi><mn>1</mn></msub></mrow><annotation encoding="application/x-tex">\beta_1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.05278em;">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span> be your slope. What is the value of <code>beta0</code>?</p>
<ul>
<li class="task-list-item"><input type="checkbox" class="task-list-item-checkbox"> -25.188</li>
<li class="task-list-item"><input type="checkbox" class="task-list-item-checkbox"> 8.65</li>
<li class="task-list-item"><input type="checkbox" class="task-list-item-checkbox"> 0</li>
<li class="task-list-item"><input type="checkbox" class="task-list-item-checkbox"> 0.00268</li>
</ul>
</li>
<li>
<p>Add <code>Language</code> as an additional predictor to the earlier linear regression model. Call this <code>model_B</code>. Did your <strong>multiple R-squared model</strong> improved as a result? Compare the <strong>adjusted R-squared</strong> of two models <code>model_A</code> and <code>model_B</code>.</p>
<ul>
<li class="task-list-item"><input type="checkbox" class="task-list-item-checkbox"> <code>model_A</code> has a higher multiple <span class="katex"><span class="katex-mathml"><math><semantics><mrow><msup><mi>R</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">R^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span> and adjusted <span class="katex"><span class="katex-mathml"><math><semantics><mrow><msup><mi>R</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">R^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span> value</li>
<li class="task-list-item"><input type="checkbox" class="task-list-item-checkbox"> No, the R-squared did not improved</li>
</ul>
</li>
</ol>
</div>
</div>
<div class="md-sidebar-toc"><ul>
<li><a href="#assessment">Assessment</a>
<ul>
<li><a href="#fundamentals">Fundamentals</a></li>
<li><a href="#practical-hands-on">Practical Hands-On</a></li>
</ul>
</li>
</ul>
</div>
<a id="sidebar-toc-btn">≡</a>
<script>
var sidebarTOCBtn = document.getElementById('sidebar-toc-btn')
sidebarTOCBtn.addEventListener('click', function(event) {
event.stopPropagation()
if (document.body.hasAttribute('html-show-sidebar-toc')) {
document.body.removeAttribute('html-show-sidebar-toc')
} else {
document.body.setAttribute('html-show-sidebar-toc', true)
}
})
</script>
</body></html>