-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathinterpolate_twoframe.py
52 lines (34 loc) · 1.48 KB
/
interpolate_twoframe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import argparse
import torch
from PIL import Image
from torchvision import transforms
from torchvision.utils import save_image as imwrite
from models.cdfi_adacof import CDFI_adacof
def parse_args():
parser = argparse.ArgumentParser(description='Two-frame Interpolation')
parser.add_argument('--gpu_id', type=int, default=0)
parser.add_argument('--checkpoint', type=str, default='./checkpoints/CDFI_adacof.pth')
parser.add_argument('--kernel_size', type=int, default=11)
parser.add_argument('--dilation', type=int, default=2)
parser.add_argument('--first_frame', type=str, default='./imgs/0.png')
parser.add_argument('--second_frame', type=str, default='./imgs/1.png')
parser.add_argument('--output_frame', type=str, default='./output.png')
return parser.parse_args()
def main():
args = parse_args()
torch.cuda.set_device(args.gpu_id)
model = CDFI_adacof(args).cuda()
print('Loading the model...')
checkpoint = torch.load(args.checkpoint)
model.load_state_dict(checkpoint['state_dict'])
frame_name1 = args.first_frame
frame_name2 = args.second_frame
transform = transforms.Compose([transforms.ToTensor()])
frame1 = transform(Image.open(frame_name1)).unsqueeze(0).cuda()
frame2 = transform(Image.open(frame_name2)).unsqueeze(0).cuda()
model.eval()
with torch.no_grad():
frame_out = model(frame1, frame2)
imwrite(frame_out.clone(), args.output_frame, range=(0, 1))
if __name__ == "__main__":
main()