-
Notifications
You must be signed in to change notification settings - Fork 220
/
op_codes.rs
1017 lines (964 loc) · 43.8 KB
/
op_codes.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2020. The Tari Project
// Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
// following conditions are met:
// 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
// disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
// following disclaimer in the documentation and/or other materials provided with the distribution.
// 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
// products derived from this software without specific prior written permission.
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
// INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
// USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
use std::{fmt, ops::Deref};
use integer_encoding::VarInt;
use tari_crypto::{ristretto::RistrettoPublicKey, tari_utilities::ByteArray};
use tari_utilities::{hex::Hex, ByteArrayError};
use super::ScriptError;
pub type HashValue = [u8; 32];
pub type ScalarValue = [u8; 32];
pub type Message = [u8; MESSAGE_LENGTH];
const PUBLIC_KEY_LENGTH: usize = 32;
const MESSAGE_LENGTH: usize = 32;
type MultiSigArgs = (u8, u8, Vec<RistrettoPublicKey>, Box<Message>, usize);
/// Convert a slice into a HashValue.
///
/// # Panics
///
/// The function does not check slice for length at all. You need to check this / guarantee it yourself.
pub fn slice_to_hash(slice: &[u8]) -> HashValue {
let mut hash = [0u8; 32];
hash.copy_from_slice(slice);
hash
}
/// Convert a slice into a Boxed HashValue
pub fn slice_to_boxed_hash(slice: &[u8]) -> Box<HashValue> {
Box::new(slice_to_hash(slice))
}
/// Convert a slice into a Message.
///
/// # Panics
///
/// The function does not check slice for length at all. You need to check this / guarantee it yourself.
pub fn slice_to_message(slice: &[u8]) -> Message {
let mut msg = [0u8; MESSAGE_LENGTH];
msg.copy_from_slice(slice);
msg
}
/// Convert a slice into a Boxed Message
pub fn slice_to_boxed_message(slice: &[u8]) -> Box<Message> {
Box::new(slice_to_message(slice))
}
/// Convert a slice into a vector of Public Keys.
pub fn slice_to_vec_pubkeys(slice: &[u8], num: usize) -> Result<Vec<RistrettoPublicKey>, ScriptError> {
if slice.len() < num * PUBLIC_KEY_LENGTH {
return Err(ScriptError::InvalidData);
}
let public_keys = slice
.chunks_exact(PUBLIC_KEY_LENGTH)
.take(num)
.map(RistrettoPublicKey::from_canonical_bytes)
.collect::<Result<Vec<RistrettoPublicKey>, ByteArrayError>>()?;
Ok(public_keys)
}
// Opcode constants: Block Height Checks
const OP_CHECK_HEIGHT_VERIFY: u8 = 0x66;
const OP_CHECK_HEIGHT: u8 = 0x67;
const OP_COMPARE_HEIGHT_VERIFY: u8 = 0x68;
const OP_COMPARE_HEIGHT: u8 = 0x69;
// Opcode constants: Stack Manipulation
const OP_DROP: u8 = 0x70;
const OP_DUP: u8 = 0x71;
const OP_REV_ROT: u8 = 0x72;
const OP_PUSH_HASH: u8 = 0x7a;
const OP_PUSH_ZERO: u8 = 0x7b;
const OP_NOP: u8 = 0x73;
const OP_PUSH_ONE: u8 = 0x7c;
const OP_PUSH_INT: u8 = 0x7d;
const OP_PUSH_PUBKEY: u8 = 0x7e;
// Opcode constants: Math Operations
const OP_EQUAL: u8 = 0x80;
const OP_EQUAL_VERIFY: u8 = 0x81;
const OP_ADD: u8 = 0x93;
const OP_SUB: u8 = 0x94;
const OP_GE_ZERO: u8 = 0x82;
const OP_GT_ZERO: u8 = 0x83;
const OP_LE_ZERO: u8 = 0x84;
const OP_LT_ZERO: u8 = 0x85;
// Opcode constants: Boolean Logic
pub const OP_OR_VERIFY: u8 = 0x64;
pub const OP_OR: u8 = 0x65;
// Opcode constants: Cryptographic Operations
const OP_CHECK_SIG: u8 = 0xac;
const OP_CHECK_SIG_VERIFY: u8 = 0xad;
const OP_CHECK_MULTI_SIG: u8 = 0xae;
const OP_CHECK_MULTI_SIG_VERIFY: u8 = 0xaf;
const OP_HASH_BLAKE256: u8 = 0xb0;
const OP_HASH_SHA256: u8 = 0xb1;
const OP_HASH_SHA3: u8 = 0xb2;
const OP_TO_RISTRETTO_POINT: u8 = 0xb3;
const OP_CHECK_MULTI_SIG_VERIFY_AGGREGATE_PUB_KEY: u8 = 0xb4;
// Opcode constants: Miscellaneous
const OP_RETURN: u8 = 0x60;
const OP_IF_THEN: u8 = 0x61;
const OP_ELSE: u8 = 0x62;
const OP_END_IF: u8 = 0x63;
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum Opcode {
// Block Height Checks
/// Compare the current block height to `height`. Fails with
/// `IncompatibleTypes` if u64 is not a valid 64-bit unsigned integer. Fails with `VerifyFailed` if the block
/// height < `height`.
CheckHeightVerify(u64),
/// Pushes the value of (the current tip height - `height`) to the stack. In
/// other words, the top of the stack will hold the height difference between `height` and the current height.
/// If the chain has progressed beyond `height`, the value is positive; and negative if the chain has yet to
/// reach `height`. Fails with `IncompatibleTypes` if u64 is not a valid 64-bit unsigned integer. Fails with
/// `StackOverflow` if the stack would exceed the max stack height.
CheckHeight(u64),
/// Pops the top of the stack as `height` and compares it to the current block height. Fails with `InvalidInput`
/// if there is not a valid integer value on top of the stack. Fails with `StackUnderflow` if the stack is empty.
/// Fails with `VerifyFailed` if the block height < `height`.
CompareHeightVerify,
/// Pops the top of the stack as `height`, then pushes the value of (the current height - `height`) to the stack.
/// In other words, this opcode replaces the top of the stack with the difference between `height` and the
/// current height. Fails with `InvalidInput` if there is not a valid integer value on top of the stack. Fails
/// with `StackUnderflow` if the stack is empty.
CompareHeight,
// Stack Manipulation
/// No op. Does nothing. Never fails.
Nop,
/// Pushes a zero onto the stack. This is a very common opcode and has the same effect as PushInt(0) but is more
/// compact. Fails with `StackOverflow` if the stack would exceed the max stack height.
PushZero,
/// Pushes a one onto the stack. This is a very common opcode and has the same effect as PushInt(1) but is more
/// compact. Fails with `StackOverflow` if the stack would exceed the max stack height.
PushOne,
/// Pushes the associated 32-byte value onto the stack. Fails with `IncompatibleTypes` if HashValue is not a valid
/// 32 byte sequence. Fails with `StackOverflow` if the stack would exceed the max stack height.
PushHash(Box<HashValue>),
/// Pushes the associated 64-bit signed integer onto the stack Fails with `IncompatibleTypes` if i64 is not a valid
/// 64-bit integer. Fails with `StackOverflow` if the stack would exceed the max stack height.
PushInt(i64),
/// Pushes the associated 32-byte value onto the stack. It will be interpreted as a public key or a commitment.
/// Fails with `IncompatibleTypes` if RistrettoPublicKey is not a valid 32 byte sequence. Fails with
/// `StackOverflow` if the stack would exceed the max stack height.
PushPubKey(Box<RistrettoPublicKey>),
/// Drops the top stack item. Fails with `StackUnderflow` if the stack is empty.
Drop,
/// Duplicates the top stack item. Fails with `StackUnderflow` if the stack is empty. Fails with `StackOverflow` if
/// the stack would exceed the max stack height.
Dup,
/// Reverse rotation. The top stack item moves into 3rd place, e.g. abc => bca. Fails with `StackUnderflow` if the
/// stack has fewer than three items.
RevRot,
// Math Operations
/// Pops the top stack element as `val`. If `val` is greater than or equal to zero, push a 1 to the stack,
/// otherwise push 0. Fails with `StackUnderflow` if the stack is empty. Fails with `InvalidInput` if `val` is
/// not an integer.
GeZero,
/// Pops the top stack element as `val`. If `val` is strictly greater than zero, push a 1 to the stack, otherwise
/// push 0. Fails with `StackUnderflow` if the stack is empty. Fails with `InvalidInput` if the item is not an
/// integer.
GtZero,
/// Pops the top stack element as `val`. If `val` is less than or equal to zero, push a 1 to the stack, otherwise
/// push 0. Fails with `StackUnderflow` if the stack is empty. Fails with `InvalidInput` if the item is not an
/// integer.
LeZero,
/// Pops the top stack element as `val`. If `val` is strictly less than zero, push a 1 to the stack, otherwise push
/// 0. Fails with `StackUnderflow` if the stack is empty. Fails with `InvalidInput` if the items is not an
/// integer.
LtZero,
/// Pops two items from the stack and pushes their sum to the stack. Fails with `StackUnderflow` if the stack has
/// fewer than two items. Fails with `InvalidInput` if the items cannot be added to each other (e.g. an integer and
/// public key).
Add,
/// Pops two items from the stack and pushes the second minus the top to the stack. Fails with `StackUnderflow` if
/// the stack has fewer than two items. Fails with `InvalidInput` if the items cannot be subtracted from each other
/// (e.g. an integer and public key).
Sub,
/// Pops the top two items from the stack, and pushes 1 to the stack if the inputs are exactly equal, 0 otherwise.
/// A 0 is also pushed if the values cannot be compared (e.g. integer and pubkey). Fails with `StackUnderflow` if
/// the stack has fewer than two items.
Equal,
/// Pops the top two items from the stack, and compares their values. Fails with `StackUnderflow` if the stack has
/// fewer than two items. Fails with `VerifyFailed` if the top two stack elements are not equal.
EqualVerify,
// Boolean Logic
/// Pops `n` + 1 items from the stack (with u8 as `n`). If the last item matches at least one of the first `n`
/// items, push 1 onto the stack, otherwise push 0 onto the stack. Fails with `StackUnderflow` if the stack has
/// fewer than `n` + 1 items. Fails with `InvalidInput` if u8 is not a valid 8-bit unsigned integer.
Or(u8),
/// Pops `n` + 1 items from the stack (with u8 as `n`). If the last item matches at least one of the first n items,
/// continue. Fails with `StackUnderflow` if the stack has fewer than `n` + 1 items. Fails with `VerifyFailed`
/// the last item does not match at least one of the first `n` items. Fails with `InvalidInput` if u8 is not a
/// valid 8-bit unsigned integer.
OrVerify(u8),
// Cryptographic Operations
/// Pops the top element, hash it with the Blake2b<U32> hash function and push the result to the stack. Fails with
/// `StackUnderflow` if the stack is empty. Fails with `InvalidInput` if the input is not a valid 32 byte hash
/// value.
HashBlake256,
/// Pops the top element, hash it with the SHA256 hash function and push the result to the stack. Fails with
/// `StackUnderflow` if the stack is empty. Fails with `InvalidInput` if the input is not a valid 32 byte hash
/// value.
HashSha256,
/// Pops the top element, hash it with the SHA-3 hash function and push the result to the stack. Fails with
/// `StackUnderflow` if the stack is empty. Fails with `InvalidInput` if the input is not a valid 32 byte hash
/// value.
HashSha3,
/// Pops the public key and then the signature from the stack. If signature validation using the 32-byte message
/// and public key succeeds , push 1 to the stack, otherwise push 0. Fails with `IncompatibleTypes` if Message
/// is not a valid 32-byte sequence. Fails with `StackUnderflow` if the stack has fewer than 2 items. Fails
/// with `InvalidInput` if the top stack element is not a PublicKey. Fails with `InvalidInput` if the second
/// stack element is not a Signature.
CheckSig(Box<Message>),
/// Identical to CheckSig, except that nothing is pushed to the stack if the signature is valid, and the operation
/// fails with `VerifyFailed` if the signature is invalid.
CheckSigVerify(Box<Message>),
/// Pops exactly `m` signatures from the stack. The multiple signature validation will not succeed if the `m`
/// signatures are not unique or if Vec<RistrettoPublicKey> contains a duplicate public key. Each signature is
/// validated using the 32-byte message and a public key that match. If signature validation for m unique
/// signatures succeeds, push 1 to the stack, otherwise push 0.
/// Fails with `IncompatibleTypes` if either `m` (the 1st u8) or `n` (the 2nd u8) is not a valid 8-bit unsigned
/// integer, if Vec<RistrettoPublicKey> contains an invalid public key or if Message is not a valid 32-byte
/// sequence.
/// Fails with `ValueExceedsBounds` if `m` == 0 or if `n` == 0 or if `m` > `n` or if `n` > `MAX_MULTISIG_LIMIT`
/// (32) or if the number of public keys provided != `n`.
/// Fails with `StackUnderflow` if the stack has fewer than m items.
/// Fails with `IncompatibleTypes` if any of the m signatures from the stack is not a valid signature.
/// Fails with `InvalidInput` if each of the top m elements is not a Signature.
CheckMultiSig(u8, u8, Vec<RistrettoPublicKey>, Box<Message>),
/// Identical to CheckMultiSig, except that nothing is pushed to the stack if the multiple signature validation is
/// either valid or invalid. Fails with `VerifyFailed` if any signature is invalid.
CheckMultiSigVerify(u8, u8, Vec<RistrettoPublicKey>, Box<Message>),
/// Identical to CheckMultiSig, except that the aggregate of the public keys is pushed to the stack if multiple
/// signature validation succeeds. Fails with `VerifyFailed` if any signature is invalid.
CheckMultiSigVerifyAggregatePubKey(u8, u8, Vec<RistrettoPublicKey>, Box<Message>),
/// Pops the top element from the stack (either a scalar or a hash), parses it canonically as a Ristretto secret
/// key if possible, computes the corresponding Ristretto public key, and pushes this value to the stack.
/// Fails with `StackUnderflow` if the stack is empty.
/// Fails with `IncompatibleTypes` if the stack item is not either a scalar or a hash.
/// Fails with `InvalidInput` if the stack item cannot be canonically parsed as a Ristretto secret key.
ToRistrettoPoint,
// Miscellaneous
/// Always fails with `Return`.
Return,
/// Pops the top element of the stack into `pred`. If `pred` is 1, the instructions between `IfThen` and `Else` are
/// executed. If `pred` is 0, instructions are popped until `Else` or `EndIf` is encountered. If `Else` is
/// encountered, instructions are executed until `EndIf` is reached. `EndIf` is a marker opcode and a no-op.
/// Fails with `StackUnderflow` if the stack is empty.
/// Fails with `InvalidInput` if pred is anything other than 0 or 1.
/// Fails with the corresponding failure code if any instruction during execution of the clause causes a failure.
IfThen,
/// Marks the beginning of the `Else` branch.
Else,
/// Marks the end of the `IfThen` statement.
EndIf,
}
impl Opcode {
pub fn get_version(&self) -> OpcodeVersion {
match self {
Opcode::CheckHeightVerify(..) |
Opcode::CheckHeight(..) |
Opcode::CompareHeightVerify |
Opcode::CompareHeight |
Opcode::Nop |
Opcode::PushZero |
Opcode::PushOne |
Opcode::PushHash(..) |
Opcode::PushInt(..) |
Opcode::PushPubKey(..) |
Opcode::Drop |
Opcode::Dup |
Opcode::RevRot |
Opcode::GeZero |
Opcode::GtZero |
Opcode::LeZero |
Opcode::LtZero |
Opcode::Add |
Opcode::Sub |
Opcode::Equal |
Opcode::EqualVerify |
Opcode::Or(..) |
Opcode::OrVerify(..) |
Opcode::HashBlake256 |
Opcode::HashSha256 |
Opcode::HashSha3 |
Opcode::CheckSig(..) |
Opcode::CheckSigVerify(..) |
Opcode::CheckMultiSig(..) |
Opcode::CheckMultiSigVerify(..) |
Opcode::CheckMultiSigVerifyAggregatePubKey(..) |
Opcode::ToRistrettoPoint |
Opcode::Return |
Opcode::IfThen |
Opcode::Else |
Opcode::EndIf => OpcodeVersion::V0,
}
}
pub fn parse(bytes: &[u8]) -> Result<Vec<Opcode>, ScriptError> {
let mut script = Vec::new();
let mut bytes_copy = bytes;
while !bytes_copy.is_empty() {
let (opcode, bytes_left) = Opcode::read_next(bytes_copy)?;
script.push(opcode);
bytes_copy = bytes_left;
}
Ok(script)
}
/// Take a byte slice and read the next opcode from it, including any associated data. `read_next` returns a tuple
/// of the deserialised opcode, and an updated slice that has the Opcode and data removed.
fn read_next(bytes: &[u8]) -> Result<(Opcode, &[u8]), ScriptError> {
let code = bytes.first().ok_or(ScriptError::InvalidOpcode)?;
#[allow(clippy::enum_glob_use)]
use Opcode::*;
match *code {
OP_CHECK_HEIGHT_VERIFY => {
let (height, size) = u64::decode_var(&bytes[1..]).ok_or(ScriptError::InvalidData)?;
Ok((CheckHeightVerify(height), &bytes[size + 1..]))
},
OP_CHECK_HEIGHT => {
let (height, size) = u64::decode_var(&bytes[1..]).ok_or(ScriptError::InvalidData)?;
Ok((CheckHeight(height), &bytes[size + 1..]))
},
OP_COMPARE_HEIGHT_VERIFY => Ok((CompareHeightVerify, &bytes[1..])),
OP_COMPARE_HEIGHT => Ok((CompareHeight, &bytes[1..])),
OP_NOP => Ok((Nop, &bytes[1..])),
OP_PUSH_ZERO => Ok((PushZero, &bytes[1..])),
OP_PUSH_ONE => Ok((PushOne, &bytes[1..])),
OP_PUSH_HASH => {
if bytes.len() < 33 {
return Err(ScriptError::InvalidData);
}
let hash = slice_to_boxed_hash(&bytes[1..33]);
Ok((PushHash(hash), &bytes[33..]))
},
OP_PUSH_INT => {
let (n, size) = i64::decode_var(&bytes[1..]).ok_or(ScriptError::InvalidData)?;
Ok((PushInt(n), &bytes[size + 1..]))
},
OP_PUSH_PUBKEY => {
if bytes.len() < 33 {
return Err(ScriptError::InvalidData);
}
let p = RistrettoPublicKey::from_canonical_bytes(&bytes[1..33])?;
Ok((PushPubKey(Box::new(p)), &bytes[33..]))
},
OP_DROP => Ok((Drop, &bytes[1..])),
OP_DUP => Ok((Dup, &bytes[1..])),
OP_REV_ROT => Ok((RevRot, &bytes[1..])),
OP_GE_ZERO => Ok((GeZero, &bytes[1..])),
OP_GT_ZERO => Ok((GtZero, &bytes[1..])),
OP_LE_ZERO => Ok((LeZero, &bytes[1..])),
OP_LT_ZERO => Ok((LtZero, &bytes[1..])),
OP_ADD => Ok((Add, &bytes[1..])),
OP_SUB => Ok((Sub, &bytes[1..])),
OP_EQUAL => Ok((Equal, &bytes[1..])),
OP_EQUAL_VERIFY => Ok((EqualVerify, &bytes[1..])),
OP_OR => {
if bytes.len() < 2 {
return Err(ScriptError::InvalidData);
}
let n = &bytes[1];
Ok((Or(*n), &bytes[2..]))
},
OP_OR_VERIFY => {
if bytes.len() < 2 {
return Err(ScriptError::InvalidData);
}
let n = &bytes[1];
Ok((OrVerify(*n), &bytes[2..]))
},
OP_HASH_BLAKE256 => Ok((HashBlake256, &bytes[1..])),
OP_HASH_SHA256 => Ok((HashSha256, &bytes[1..])),
OP_HASH_SHA3 => Ok((HashSha3, &bytes[1..])),
OP_CHECK_SIG => {
if bytes.len() < 33 {
return Err(ScriptError::InvalidData);
}
let msg = slice_to_boxed_message(&bytes[1..33]);
Ok((CheckSig(msg), &bytes[33..]))
},
OP_CHECK_SIG_VERIFY => {
if bytes.len() < 33 {
return Err(ScriptError::InvalidData);
}
let msg = slice_to_boxed_message(&bytes[1..33]);
Ok((CheckSigVerify(msg), &bytes[33..]))
},
OP_CHECK_MULTI_SIG => {
let (m, n, keys, msg, end) = Opcode::read_multisig_args(bytes)?;
Ok((CheckMultiSig(m, n, keys, msg), &bytes[end..]))
},
OP_CHECK_MULTI_SIG_VERIFY => {
let (m, n, keys, msg, end) = Opcode::read_multisig_args(bytes)?;
Ok((CheckMultiSigVerify(m, n, keys, msg), &bytes[end..]))
},
OP_CHECK_MULTI_SIG_VERIFY_AGGREGATE_PUB_KEY => {
let (m, n, keys, msg, end) = Opcode::read_multisig_args(bytes)?;
Ok((CheckMultiSigVerifyAggregatePubKey(m, n, keys, msg), &bytes[end..]))
},
OP_TO_RISTRETTO_POINT => Ok((ToRistrettoPoint, &bytes[1..])),
OP_RETURN => Ok((Return, &bytes[1..])),
OP_IF_THEN => Ok((IfThen, &bytes[1..])),
OP_ELSE => Ok((Else, &bytes[1..])),
OP_END_IF => Ok((EndIf, &bytes[1..])),
_ => Err(ScriptError::InvalidOpcode),
}
}
fn read_multisig_args(bytes: &[u8]) -> Result<MultiSigArgs, ScriptError> {
if bytes.len() < 3 {
return Err(ScriptError::InvalidData);
}
let m = &bytes[1];
let n = &bytes[2];
let num = *n as usize;
let len = 3 + num * PUBLIC_KEY_LENGTH;
let end = len + MESSAGE_LENGTH;
if bytes.len() < end {
return Err(ScriptError::InvalidData);
}
let keys = slice_to_vec_pubkeys(&bytes[3..len], num)?;
let msg = slice_to_boxed_message(&bytes[len..end]);
Ok((*m, *n, keys, msg, end))
}
/// Convert an opcode into its binary representation and append it to the array. The function returns the byte slice
/// that matches the opcode as a convenience
pub fn to_bytes<'a>(&self, array: &'a mut Vec<u8>) -> &'a [u8] {
let n = array.len();
#[allow(clippy::enum_glob_use)]
use Opcode::*;
match self {
CheckHeightVerify(height) => {
array.push(OP_CHECK_HEIGHT_VERIFY);
let mut buf = [0u8; 10];
let used = height.encode_var(&mut buf[..]);
array.extend_from_slice(&buf[0..used]);
},
CheckHeight(height) => {
array.push(OP_CHECK_HEIGHT);
let mut buf = [0u8; 10];
let used = height.encode_var(&mut buf[..]);
array.extend_from_slice(&buf[0..used]);
},
CompareHeightVerify => array.push(OP_COMPARE_HEIGHT_VERIFY),
CompareHeight => array.push(OP_COMPARE_HEIGHT),
Nop => array.push(OP_NOP),
PushZero => array.push(OP_PUSH_ZERO),
PushOne => array.push(OP_PUSH_ONE),
PushHash(h) => {
array.push(OP_PUSH_HASH);
array.extend_from_slice(h.deref());
},
PushInt(n) => {
array.push(OP_PUSH_INT);
let mut buf = [0u8; 10];
let used = n.encode_var(&mut buf[..]);
array.extend_from_slice(&buf[0..used]);
},
PushPubKey(p) => {
array.push(OP_PUSH_PUBKEY);
array.extend_from_slice(p.deref().as_bytes());
},
Drop => array.push(OP_DROP),
Dup => array.push(OP_DUP),
RevRot => array.push(OP_REV_ROT),
GeZero => array.push(OP_GE_ZERO),
GtZero => array.push(OP_GT_ZERO),
LeZero => array.push(OP_LE_ZERO),
LtZero => array.push(OP_LT_ZERO),
Add => array.push(OP_ADD),
Sub => array.push(OP_SUB),
Equal => array.push(OP_EQUAL),
EqualVerify => array.push(OP_EQUAL_VERIFY),
Or(n) => {
array.push(OP_OR);
array.push(*n);
},
OrVerify(n) => {
array.push(OP_OR_VERIFY);
array.push(*n);
},
HashBlake256 => array.push(OP_HASH_BLAKE256),
HashSha256 => array.push(OP_HASH_SHA256),
HashSha3 => array.push(OP_HASH_SHA3),
CheckSig(msg) => {
array.push(OP_CHECK_SIG);
array.extend_from_slice(msg.deref());
},
CheckSigVerify(msg) => {
array.push(OP_CHECK_SIG_VERIFY);
array.extend_from_slice(msg.deref());
},
CheckMultiSig(m, n, public_keys, msg) => {
array.extend_from_slice(&[OP_CHECK_MULTI_SIG, *m, *n]);
for public_key in public_keys {
array.extend(public_key.as_bytes());
}
array.extend_from_slice(msg.deref());
},
CheckMultiSigVerify(m, n, public_keys, msg) => {
array.extend_from_slice(&[OP_CHECK_MULTI_SIG_VERIFY, *m, *n]);
for public_key in public_keys {
array.extend(public_key.as_bytes());
}
array.extend_from_slice(msg.deref());
},
CheckMultiSigVerifyAggregatePubKey(m, n, public_keys, msg) => {
array.extend_from_slice(&[OP_CHECK_MULTI_SIG_VERIFY_AGGREGATE_PUB_KEY, *m, *n]);
for public_key in public_keys {
array.extend(public_key.as_bytes());
}
array.extend_from_slice(msg.deref());
},
ToRistrettoPoint => array.push(OP_TO_RISTRETTO_POINT),
Return => array.push(OP_RETURN),
IfThen => array.push(OP_IF_THEN),
Else => array.push(OP_ELSE),
EndIf => array.push(OP_END_IF),
};
&array[n..]
}
}
impl fmt::Display for Opcode {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
#[allow(clippy::enum_glob_use)]
use Opcode::*;
match self {
CheckHeightVerify(height) => write!(fmt, "CheckHeightVerify({})", *height),
CheckHeight(height) => write!(fmt, "CheckHeight({})", *height),
CompareHeightVerify => write!(fmt, "CompareHeightVerify"),
CompareHeight => write!(fmt, "CompareHeight"),
Nop => write!(fmt, "Nop"),
PushZero => write!(fmt, "PushZero"),
PushOne => write!(fmt, "PushOne"),
PushHash(h) => write!(fmt, "PushHash({})", (*h).to_hex()),
PushInt(n) => write!(fmt, "PushInt({})", *n),
PushPubKey(h) => write!(fmt, "PushPubKey({})", (*h).to_hex()),
Drop => write!(fmt, "Drop"),
Dup => write!(fmt, "Dup"),
RevRot => write!(fmt, "RevRot"),
GeZero => write!(fmt, "GeZero"),
GtZero => write!(fmt, "GtZero"),
LeZero => write!(fmt, "LeZero"),
LtZero => write!(fmt, "LtZero"),
Add => write!(fmt, "Add"),
Sub => write!(fmt, "Sub"),
Equal => write!(fmt, "Equal"),
EqualVerify => write!(fmt, "EqualVerify"),
Or(n) => write!(fmt, "Or({})", *n),
OrVerify(n) => write!(fmt, "OrVerify({})", *n),
HashBlake256 => write!(fmt, "HashBlake256"),
HashSha256 => write!(fmt, "HashSha256"),
HashSha3 => write!(fmt, "HashSha3"),
CheckSig(msg) => write!(fmt, "CheckSig({})", (*msg).to_hex()),
CheckSigVerify(msg) => write!(fmt, "CheckSigVerify({})", (*msg).to_hex()),
CheckMultiSig(m, n, public_keys, msg) => {
let keys: Vec<String> = public_keys.iter().map(|p| p.to_hex()).collect();
write!(
fmt,
"CheckMultiSig({}, {}, [{}], {})",
*m,
*n,
keys.join(", "),
(*msg).to_hex()
)
},
CheckMultiSigVerify(m, n, public_keys, msg) => {
let keys: Vec<String> = public_keys.iter().map(|p| p.to_hex()).collect();
write!(
fmt,
"CheckMultiSigVerify({}, {}, [{}], {})",
*m,
*n,
keys.join(", "),
(*msg).to_hex()
)
},
CheckMultiSigVerifyAggregatePubKey(m, n, public_keys, msg) => {
let keys: Vec<String> = public_keys.iter().map(|p| p.to_hex()).collect();
write!(
fmt,
"CheckMultiSigVerifyAggregatePubKey({}, {}, [{}], {})",
*m,
*n,
keys.join(", "),
(*msg).to_hex()
)
},
ToRistrettoPoint => write!(fmt, "ToRistrettoPoint"),
Return => write!(fmt, "Return"),
IfThen => write!(fmt, "IfThen"),
Else => write!(fmt, "Else"),
EndIf => write!(fmt, "EndIf"),
}
}
}
#[derive(Debug, Clone, PartialEq, PartialOrd)]
#[repr(u8)]
pub enum OpcodeVersion {
V0 = 0,
}
#[cfg(test)]
mod test {
use crate::op_codes::*;
#[test]
fn empty_script() {
assert_eq!(Opcode::parse(&[]).unwrap(), Vec::new())
}
#[test]
fn parse() {
let script = [0xFF, 0x71, 0x00];
let err = Opcode::parse(&script).unwrap_err();
assert!(matches!(err, ScriptError::InvalidOpcode));
let script = [0x60u8, 0x71];
let opcodes = Opcode::parse(&script).unwrap();
let code = opcodes.first().unwrap();
assert_eq!(code, &Opcode::Return);
let code = opcodes.get(1).unwrap();
assert_eq!(code, &Opcode::Dup);
let err = Opcode::parse(&[0x7a]).unwrap_err();
assert!(matches!(err, ScriptError::InvalidData));
}
#[test]
fn push_hash() {
let (code, b) = Opcode::read_next(b"\x7a/thirty-two~character~hash~val./").unwrap();
assert!(matches!(code, Opcode::PushHash(v) if &*v == b"/thirty-two~character~hash~val./"));
assert!(b.is_empty());
}
#[test]
fn check_height() {
fn test_check_height(op: &Opcode, val: u8, display: &str) {
// Serialize
assert!(matches!(Opcode::read_next(&[val, 255]), Err(ScriptError::InvalidData)));
let s = &[val, 63, 1, 2, 3];
let (opcode, rem) = Opcode::read_next(s).unwrap();
assert_eq!(opcode, *op);
assert_eq!(rem, &[1, 2, 3]);
// Deserialise
let mut arr = vec![1, 2, 3];
op.to_bytes(&mut arr);
assert_eq!(&arr, &[1, 2, 3, val, 63]);
// Format
assert_eq!(format!("{}", op).as_str(), display);
}
test_check_height(&Opcode::CheckHeight(63), 0x67, "CheckHeight(63)");
test_check_height(&Opcode::CheckHeightVerify(63), 0x66, "CheckHeightVerify(63)");
}
#[test]
fn push_int() {
// Serialise
assert!(matches!(Opcode::read_next(&[0x7d, 255]), Err(ScriptError::InvalidData)));
let s = &[OP_PUSH_INT, 130, 4];
let (opcode, rem) = Opcode::read_next(s).unwrap();
let mut arr = vec![];
Opcode::PushInt(257).to_bytes(&mut arr);
assert!(matches!(opcode, Opcode::PushInt(257)));
assert!(rem.is_empty());
// Deserialise
let op = Opcode::PushInt(257);
let mut arr = vec![];
op.to_bytes(&mut arr);
assert_eq!(&arr, &[OP_PUSH_INT, 130, 4]);
// Format
assert_eq!(format!("{}", op).as_str(), "PushInt(257)");
}
#[test]
fn push_pubkey() {
// Serialise
assert!(matches!(
Opcode::read_next(b"\x7eshort_needs_33_bytes"),
Err(ScriptError::InvalidData)
));
let key =
RistrettoPublicKey::from_hex("6c9cb4d3e57351462122310fa22c90b1e6dfb528d64615363d1261a75da3e401").unwrap();
let s = &[
OP_PUSH_PUBKEY,
108,
156,
180,
211,
229,
115,
81,
70,
33,
34,
49,
15,
162,
44,
144,
177,
230,
223,
181,
40,
214,
70,
21,
54,
61,
18,
97,
167,
93,
163,
228,
1,
];
let op = Opcode::PushPubKey(Box::new(key));
let (opcode, rem) = Opcode::read_next(s).unwrap();
assert_eq!(opcode, op);
assert!(rem.is_empty());
// Deserialise
let mut arr = vec![];
op.to_bytes(&mut arr);
assert_eq!(&arr, s);
// Format
assert_eq!(
format!("{}", op).as_str(),
"PushPubKey(6c9cb4d3e57351462122310fa22c90b1e6dfb528d64615363d1261a75da3e401)"
);
}
#[test]
fn or() {
fn test_or(op: &Opcode, val: u8, display: &str) {
// Serialise
assert!(matches!(Opcode::read_next(&[val]), Err(ScriptError::InvalidData)));
let s = &[val, 5, 83];
let (opcode, rem) = Opcode::read_next(s).unwrap();
assert_eq!(opcode, *op);
assert_eq!(rem, &[83]);
// Deserialise
let mut arr = vec![];
op.to_bytes(&mut arr);
assert_eq!(&arr, &[val, 5]);
// Format
assert_eq!(format!("{}", op).as_str(), display);
}
test_or(&Opcode::Or(5), OP_OR, "Or(5)");
test_or(&Opcode::OrVerify(5), OP_OR_VERIFY, "OrVerify(5)");
}
#[test]
fn check_sig() {
fn test_checksig(op: &Opcode, val: u8, display: &str) {
// Serialise
assert!(matches!(Opcode::read_next(&[val]), Err(ScriptError::InvalidData)));
let msg = &[
val, 108, 156, 180, 211, 229, 115, 81, 70, 33, 34, 49, 15, 162, 44, 144, 177, 230, 223, 181, 40, 214,
70, 21, 54, 61, 18, 97, 167, 93, 163, 228, 1,
];
let (opcode, rem) = Opcode::read_next(msg).unwrap();
assert_eq!(opcode, *op);
assert!(rem.is_empty());
// Deserialise
let mut arr = vec![];
op.to_bytes(&mut arr);
assert_eq!(arr, msg);
// Format
assert_eq!(format!("{}", op).as_str(), display);
}
let msg = &[
108, 156, 180, 211, 229, 115, 81, 70, 33, 34, 49, 15, 162, 44, 144, 177, 230, 223, 181, 40, 214, 70, 21,
54, 61, 18, 97, 167, 93, 163, 228, 1,
];
test_checksig(
&Opcode::CheckSig(Box::new(*msg)),
OP_CHECK_SIG,
"CheckSig(6c9cb4d3e57351462122310fa22c90b1e6dfb528d64615363d1261a75da3e401)",
);
test_checksig(
&Opcode::CheckSigVerify(Box::new(*msg)),
OP_CHECK_SIG_VERIFY,
"CheckSigVerify(6c9cb4d3e57351462122310fa22c90b1e6dfb528d64615363d1261a75da3e401)",
);
}
#[test]
fn check_multisig() {
fn test_checkmultisig(op: &Opcode, val: u8, display: &str) {
// Serialise
assert!(matches!(Opcode::read_next(&[val]), Err(ScriptError::InvalidData)));
let bytes = &[
val, 1, 2, 156, 139, 197, 249, 13, 34, 17, 145, 116, 142, 141, 215, 104, 111, 9, 225, 17, 75, 75, 173,
164, 195, 103, 237, 88, 174, 25, 156, 81, 235, 16, 11, 86, 233, 240, 24, 177, 56, 186, 132, 53, 33,
179, 36, 58, 41, 216, 23, 48, 195, 164, 194, 81, 8, 177, 8, 177, 202, 71, 194, 19, 45, 181, 105, 108,
156, 180, 211, 229, 115, 81, 70, 33, 34, 49, 15, 162, 44, 144, 177, 230, 223, 181, 40, 214, 70, 21, 54,
61, 18, 97, 167, 93, 163, 228, 1,
];
let (opcode, rem) = Opcode::read_next(bytes).unwrap();
assert_eq!(opcode, *op);
assert!(rem.is_empty());
// Deserialise
let mut arr = vec![];
op.to_bytes(&mut arr);
assert_eq!(arr, bytes);
// Format
assert_eq!(format!("{}", op).as_str(), display);
}
let msg = &[
108, 156, 180, 211, 229, 115, 81, 70, 33, 34, 49, 15, 162, 44, 144, 177, 230, 223, 181, 40, 214, 70, 21,
54, 61, 18, 97, 167, 93, 163, 228, 1,
];
let p1 = "9c8bc5f90d221191748e8dd7686f09e1114b4bada4c367ed58ae199c51eb100b";
let p2 = "56e9f018b138ba843521b3243a29d81730c3a4c25108b108b1ca47c2132db569";
let keys = vec![
RistrettoPublicKey::from_hex(p1).unwrap(),
RistrettoPublicKey::from_hex(p2).unwrap(),
];
test_checkmultisig(
&Opcode::CheckMultiSig(1, 2, keys.clone(), Box::new(*msg)),
OP_CHECK_MULTI_SIG,
"CheckMultiSig(1, 2, [9c8bc5f90d221191748e8dd7686f09e1114b4bada4c367ed58ae199c51eb100b, \
56e9f018b138ba843521b3243a29d81730c3a4c25108b108b1ca47c2132db569], \
6c9cb4d3e57351462122310fa22c90b1e6dfb528d64615363d1261a75da3e401)",
);
test_checkmultisig(
&Opcode::CheckMultiSigVerify(1, 2, keys.clone(), Box::new(*msg)),
OP_CHECK_MULTI_SIG_VERIFY,
"CheckMultiSigVerify(1, 2, [9c8bc5f90d221191748e8dd7686f09e1114b4bada4c367ed58ae199c51eb100b, \
56e9f018b138ba843521b3243a29d81730c3a4c25108b108b1ca47c2132db569], \
6c9cb4d3e57351462122310fa22c90b1e6dfb528d64615363d1261a75da3e401)",
);
test_checkmultisig(
&Opcode::CheckMultiSigVerifyAggregatePubKey(1, 2, keys, Box::new(*msg)),
OP_CHECK_MULTI_SIG_VERIFY_AGGREGATE_PUB_KEY,
"CheckMultiSigVerifyAggregatePubKey(1, 2, \
[9c8bc5f90d221191748e8dd7686f09e1114b4bada4c367ed58ae199c51eb100b, \
56e9f018b138ba843521b3243a29d81730c3a4c25108b108b1ca47c2132db569], \
6c9cb4d3e57351462122310fa22c90b1e6dfb528d64615363d1261a75da3e401)",
);
}
#[test]
fn deserialise_no_param_opcodes() {
fn test_opcode(code: u8, expected: &Opcode) {
let s = &[code, 1, 2, 3];
let (opcode, rem) = Opcode::read_next(s).unwrap();
assert_eq!(opcode, *expected);
assert_eq!(rem, &[1, 2, 3]);
}
test_opcode(OP_COMPARE_HEIGHT_VERIFY, &Opcode::CompareHeightVerify);
test_opcode(OP_COMPARE_HEIGHT, &Opcode::CompareHeight);
test_opcode(OP_NOP, &Opcode::Nop);
test_opcode(OP_PUSH_ZERO, &Opcode::PushZero);
test_opcode(OP_PUSH_ONE, &Opcode::PushOne);
test_opcode(OP_DROP, &Opcode::Drop);
test_opcode(OP_DUP, &Opcode::Dup);
test_opcode(OP_REV_ROT, &Opcode::RevRot);
test_opcode(OP_GE_ZERO, &Opcode::GeZero);
test_opcode(OP_GT_ZERO, &Opcode::GtZero);
test_opcode(OP_LE_ZERO, &Opcode::LeZero);
test_opcode(OP_LT_ZERO, &Opcode::LtZero);
test_opcode(OP_EQUAL, &Opcode::Equal);
test_opcode(OP_EQUAL_VERIFY, &Opcode::EqualVerify);
test_opcode(OP_HASH_SHA3, &Opcode::HashSha3);
test_opcode(OP_HASH_BLAKE256, &Opcode::HashBlake256);
test_opcode(OP_HASH_SHA256, &Opcode::HashSha256);
test_opcode(OP_TO_RISTRETTO_POINT, &Opcode::ToRistrettoPoint);
test_opcode(OP_IF_THEN, &Opcode::IfThen);
test_opcode(OP_ELSE, &Opcode::Else);
test_opcode(OP_END_IF, &Opcode::EndIf);
test_opcode(OP_ADD, &Opcode::Add);
test_opcode(OP_SUB, &Opcode::Sub);
test_opcode(OP_RETURN, &Opcode::Return);
}
#[test]
fn serialise_no_param_opcodes() {
fn test_opcode(val: u8, opcode: &Opcode) {
let mut arr = vec![];
assert_eq!(opcode.to_bytes(&mut arr), &[val]);
}
test_opcode(OP_COMPARE_HEIGHT_VERIFY, &Opcode::CompareHeightVerify);
test_opcode(OP_COMPARE_HEIGHT, &Opcode::CompareHeight);
test_opcode(OP_NOP, &Opcode::Nop);
test_opcode(OP_PUSH_ZERO, &Opcode::PushZero);
test_opcode(OP_PUSH_ONE, &Opcode::PushOne);
test_opcode(OP_DROP, &Opcode::Drop);
test_opcode(OP_DUP, &Opcode::Dup);
test_opcode(OP_REV_ROT, &Opcode::RevRot);
test_opcode(OP_GE_ZERO, &Opcode::GeZero);
test_opcode(OP_GT_ZERO, &Opcode::GtZero);
test_opcode(OP_LE_ZERO, &Opcode::LeZero);
test_opcode(OP_LT_ZERO, &Opcode::LtZero);
test_opcode(OP_EQUAL, &Opcode::Equal);
test_opcode(OP_EQUAL_VERIFY, &Opcode::EqualVerify);
test_opcode(OP_HASH_SHA3, &Opcode::HashSha3);
test_opcode(OP_HASH_BLAKE256, &Opcode::HashBlake256);
test_opcode(OP_HASH_SHA256, &Opcode::HashSha256);
test_opcode(OP_TO_RISTRETTO_POINT, &Opcode::ToRistrettoPoint);
test_opcode(OP_IF_THEN, &Opcode::IfThen);
test_opcode(OP_ELSE, &Opcode::Else);
test_opcode(OP_END_IF, &Opcode::EndIf);
test_opcode(OP_ADD, &Opcode::Add);
test_opcode(OP_SUB, &Opcode::Sub);
test_opcode(OP_RETURN, &Opcode::Return);
}
#[test]
fn display() {
fn test_opcode(opcode: &Opcode, expected: &str) {
let s = format!("{}", opcode);
assert_eq!(s.as_str(), expected);
}
test_opcode(&Opcode::CompareHeightVerify, "CompareHeightVerify");
test_opcode(&Opcode::CompareHeight, "CompareHeight");
test_opcode(&Opcode::Nop, "Nop");
test_opcode(&Opcode::PushZero, "PushZero");
test_opcode(&Opcode::PushOne, "PushOne");
test_opcode(&Opcode::Drop, "Drop");
test_opcode(&Opcode::Dup, "Dup");
test_opcode(&Opcode::RevRot, "RevRot");
test_opcode(&Opcode::GeZero, "GeZero");
test_opcode(&Opcode::GtZero, "GtZero");
test_opcode(&Opcode::LeZero, "LeZero");
test_opcode(&Opcode::LtZero, "LtZero");
test_opcode(&Opcode::Equal, "Equal");
test_opcode(&Opcode::EqualVerify, "EqualVerify");
test_opcode(&Opcode::HashSha3, "HashSha3");
test_opcode(&Opcode::HashBlake256, "HashBlake256");
test_opcode(&Opcode::HashSha256, "HashSha256");
test_opcode(&Opcode::ToRistrettoPoint, "ToRistrettoPoint");
test_opcode(&Opcode::IfThen, "IfThen");
test_opcode(&Opcode::Else, "Else");
test_opcode(&Opcode::EndIf, "EndIf");
test_opcode(&Opcode::Add, "Add");
test_opcode(&Opcode::Sub, "Sub");
test_opcode(&Opcode::Return, "Return");
}
#[test]
fn test_slice_to_vec_pubkeys() {
let key =
RistrettoPublicKey::from_hex("6c9cb4d3e57351462122310fa22c90b1e6dfb528d64615363d1261a75da3e401").unwrap();
let bytes = key.as_bytes();
let vec = [bytes, bytes, bytes].concat();
let slice = vec.as_bytes();
let vec = slice_to_vec_pubkeys(slice, 3).unwrap();
for pk in vec {
assert_eq!(key, pk);
}
}
#[test]
fn test_read_multisig_args() {
let key =
RistrettoPublicKey::from_hex("6c9cb4d3e57351462122310fa22c90b1e6dfb528d64615363d1261a75da3e401").unwrap();