@inproceedings{dai2017deformable,
title={Deformable Convolutional Networks},
author={Dai, Jifeng and Qi, Haozhi and Xiong, Yuwen and Li, Yi and Zhang, Guodong and Hu, Han and Wei, Yichen},
booktitle={Proceedings of the IEEE international conference on computer vision},
year={2017}
}
@article{zhu2018deformable,
title={Deformable ConvNets v2: More Deformable, Better Results},
author={Zhu, Xizhou and Hu, Han and Lin, Stephen and Dai, Jifeng},
journal={arXiv preprint arXiv:1811.11168},
year={2018}
}
Backbone | Model | Style | Conv | Pool | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | mask AP | Download |
---|---|---|---|---|---|---|---|---|---|---|---|
R-50-FPN | Faster | pytorch | dconv(c3-c5) | - | 1x | 3.9 | 0.594 | 10.2 | 40.0 | - | model |
R-50-FPN | Faster | pytorch | mdconv(c3-c5) | - | 1x | 3.7 | 0.598 | 10.0 | 40.2 | - | model |
R-50-FPN | Faster | pytorch | - | dpool | 1x | 4.6 | 0.714 | 8.7 | 37.8 | - | model |
R-50-FPN | Faster | pytorch | - | mdpool | 1x | 5.2 | 0.769 | 8.2 | 38.0 | - | model |
R-101-FPN | Faster | pytorch | dconv(c3-c5) | - | 1x | 5.8 | 0.811 | 8.0 | 42.1 | - | model |
X-101-32x4d-FPN | Faster | pytorch | dconv(c3-c5) | - | 1x | 7.1 | 1.126 | 6.6 | 43.4 | - | model |
R-50-FPN | Mask | pytorch | dconv(c3-c5) | - | 1x | 4.5 | 0.712 | 7.7 | 41.1 | 37.2 | model |
R-50-FPN | Mask | pytorch | mdconv(c3-c5) | - | 1x | 4.5 | 0.712 | 7.7 | 41.3 | 37.3 | model |
R-101-FPN | Mask | pytorch | dconv(c3-c5) | - | 1x | 6.4 | 0.939 | 6.5 | 43.2 | 38.7 | model |
R-50-FPN | Cascade | pytorch | dconv(c3-c5) | - | 1x | 4.4 | 0.660 | 7.6 | 44.0 | - | model |
R-101-FPN | Cascade | pytorch | dconv(c3-c5) | - | 1x | 6.3 | 0.881 | 6.8 | 45.0 | - | model |
R-50-FPN | Cascade Mask | pytorch | dconv(c3-c5) | - | 1x | 6.6 | 0.942 | 5.7 | 44.4 | 38.3 | model |
R-101-FPN | Cascade Mask | pytorch | dconv(c3-c5) | - | 1x | 8.5 | 1.156 | 5.1 | 45.7 | 39.4 | model |
Notes:
dconv
andmdconv
denote (modulated) deformable convolution,c3-c5
means adding dconv in resnet stage 3 to 5.dpool
andmdpool
denote (modulated) deformable roi pooling.- The dcn ops are modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch, which should be more memory efficient and slightly faster.
- Memory, Train/Inf time is outdated.