Skip to content

Latest commit

 

History

History
43 lines (36 loc) · 4.91 KB

README.md

File metadata and controls

43 lines (36 loc) · 4.91 KB

Deformable Convolutional Networks

Introduction

@inproceedings{dai2017deformable,
  title={Deformable Convolutional Networks},
  author={Dai, Jifeng and Qi, Haozhi and Xiong, Yuwen and Li, Yi and Zhang, Guodong and Hu, Han and Wei, Yichen},
  booktitle={Proceedings of the IEEE international conference on computer vision},
  year={2017}
}

@article{zhu2018deformable,
  title={Deformable ConvNets v2: More Deformable, Better Results},
  author={Zhu, Xizhou and Hu, Han and Lin, Stephen and Dai, Jifeng},
  journal={arXiv preprint arXiv:1811.11168},
  year={2018}
}

Results and Models

Backbone Model Style Conv Pool Lr schd Mem (GB) Train time (s/iter) Inf time (fps) box AP mask AP Download
R-50-FPN Faster pytorch dconv(c3-c5) - 1x 3.9 0.594 10.2 40.0 - model
R-50-FPN Faster pytorch mdconv(c3-c5) - 1x 3.7 0.598 10.0 40.2 - model
R-50-FPN Faster pytorch - dpool 1x 4.6 0.714 8.7 37.8 - model
R-50-FPN Faster pytorch - mdpool 1x 5.2 0.769 8.2 38.0 - model
R-101-FPN Faster pytorch dconv(c3-c5) - 1x 5.8 0.811 8.0 42.1 - model
X-101-32x4d-FPN Faster pytorch dconv(c3-c5) - 1x 7.1 1.126 6.6 43.4 - model
R-50-FPN Mask pytorch dconv(c3-c5) - 1x 4.5 0.712 7.7 41.1 37.2 model
R-50-FPN Mask pytorch mdconv(c3-c5) - 1x 4.5 0.712 7.7 41.3 37.3 model
R-101-FPN Mask pytorch dconv(c3-c5) - 1x 6.4 0.939 6.5 43.2 38.7 model
R-50-FPN Cascade pytorch dconv(c3-c5) - 1x 4.4 0.660 7.6 44.0 - model
R-101-FPN Cascade pytorch dconv(c3-c5) - 1x 6.3 0.881 6.8 45.0 - model
R-50-FPN Cascade Mask pytorch dconv(c3-c5) - 1x 6.6 0.942 5.7 44.4 38.3 model
R-101-FPN Cascade Mask pytorch dconv(c3-c5) - 1x 8.5 1.156 5.1 45.7 39.4 model

Notes:

  • dconv and mdconv denote (modulated) deformable convolution, c3-c5 means adding dconv in resnet stage 3 to 5. dpool and mdpool denote (modulated) deformable roi pooling.
  • The dcn ops are modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch, which should be more memory efficient and slightly faster.
  • Memory, Train/Inf time is outdated.