-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCall_Exp_kNN_Keogh_Adapted.m
56 lines (39 loc) · 3.4 KB
/
Call_Exp_kNN_Keogh_Adapted.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
% This function is used for the following :
% i) The variation of computational time with the increasing number of kNN similarity search
% --> Journal_Exp_1_Fun_kNN();
% ii) The variation of computational time with the increasing sub-sequence length
% --> Journal_Server_2_Func_Sheep_subSeq();
% iii) The variation of computational time with the increasing time series length
% --> Journal_Exp_4_Fun_nFiles();
% iv) The variation of computational time with the increasing number of cores
% --> Journal_Exp_3_Fun_Cores();
% The objective of this function is to compute the computational time by
% adapting Keogh's method i.e. STOMP. Details are mentioend in :
% Tanmoy Mondal, Reza Akbarinia,, and Florent Masseglia, "Matrix Profile
% Based kNN Search over Large Time Series," submitted to:
% "Elsevier Pattern Recognition Journal", 2020.
% https://sites.google.com/view/knnmatrixprofile/home
close
clc
clear
% rand_num = randi(1000);
Call_All_Code_In_Batch(799);
Call_All_Code_In_Batch(2492);
function Call_All_Code_In_Batch(rand_num)
Journal_Server_2_Func_Protien_subSeq_keogh('/local/tmp/tmondal/inputSelf/Matrix_Profile_Server/ProteinData.mat', "/local/tmp/tmondal/outputSelf/" + num2str(rand_num) + "protien_subSeq_SelfJoin_keogh.txt");
fprintf('The protien data processing is done to calculate variable sub-sequence exp for selfjoin case \n');
Journal_Server_2_Func_Sheep_subSeq_keogh('/local/tmp/tmondal/inputSelf/Matrix_Profile_Server/SheepDataFull.mat', "/local/tmp/tmondal/outputSelf/" + num2str(rand_num) + "sheep_subSeq_SelfJoin_keogh.txt");
fprintf('The sheep data processing is done to calculate variable sub-sequence exp for selfjoin case \n');
Journal_Exp_1_Fun_kNN_keogh('/local/tmp/tmondal/inputSelf/Matrix_Profile_Server/seismic_50000.mat', "/local/tmp/tmondal/outputSelf/" + num2str(rand_num) + "seismic_kNN_SelfJoin_keogh.txt");
fprintf('The seismic_5000 data processing is done to calculate kNN for selfjoin case \n');
Journal_Exp_1_Fun_kNN_keogh('/local/tmp/tmondal/inputSelf/Matrix_Profile_Server/randomWalk_50000.mat', "/local/tmp/tmondal/outputSelf/" + num2str(rand_num) + "randomWalk_kNN_SelfJoin_keogh.txt");
fprintf('The randomWalk_5000 data processing is done to calculate kNN for selfjoin case \n');
Journal_Exp_4_Fun_nFiles_keogh('/local/tmp/tmondal/inputSelf/Matrix_Profile_Server/seismic_50000.mat', "/local/tmp/tmondal/outputSelf/" + num2str(rand_num) + "seismic_nFiles_SelfJoin_keogh.txt");
fprintf('The seismic_5000 data processing is done to calculate nFiles exp for selfjoin case \n');
Journal_Exp_4_Fun_nFiles_keogh('/local/tmp/tmondal/inputSelf/Matrix_Profile_Server/randomWalk_50000.mat', "/local/tmp/tmondal/outputSelf/" + num2str(rand_num) + "randomWalk_nFiles_SelfJoin_keogh.txt");
fprintf('The randomWalk_5000 data processing is done to calculate nFiles exp for selfjoin case \n');
Journal_Exp_3_Fun_Cores_Keogh('/local/tmp/tmondal/inputSelf/Matrix_Profile_Server/seismic_50000.mat', "/local/tmp/tmondal/outputSelf/" + num2str(rand_num) + "seismic_nCores_SelfJoin_keogh.txt");
fprintf('The seismic_5000 data processing is done to calculate cores exp for selfjoin case \n');
Journal_Exp_3_Fun_Cores_Keogh('/local/tmp/tmondal/inputSelf/Matrix_Profile_Server/randomWalk_50000.mat', "/local/tmp/tmondal/outputSelf/" + num2str(rand_num) + "randomWalk_nCores_SelfJoin_keogh.txt");
fprintf('The randomWalk_5000 data processing is done to calculate cores exp for selfjoin case \n');
end