-
Notifications
You must be signed in to change notification settings - Fork 100
/
models.py
134 lines (107 loc) · 11.5 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import pickle
import numpy as np
import json
import tensorflow as tf
import keras
from keras import backend as K
from keras.models import Model, Sequential, load_model
from keras.layers import Dense, Activation, concatenate, Input, Conv2D, Reshape, Flatten, Dropout, BatchNormalization, Concatenate, LSTM
from keras.optimizers import Adam, RMSprop
from keras.callbacks import EarlyStopping, Callback, ModelCheckpoint
import ipdb
import attention
class baselines:
def __init__(self):
pass
class models:
def __init__(self):
pass
def stdn(self, att_lstm_num, att_lstm_seq_len, lstm_seq_len, feature_vec_len, cnn_flat_size = 128, lstm_out_size = 128,\
nbhd_size = 3, nbhd_type = 2, map_x_num = 10, map_y_num = 20, flow_type = 4, output_shape = 2, optimizer = 'adagrad', loss = 'mse', metrics=[]):
flatten_att_nbhd_inputs = [Input(shape = (nbhd_size, nbhd_size, nbhd_type,), name = "att_nbhd_volume_input_time_{0}_{1}".format(att+1, ts+1)) for ts in range(att_lstm_seq_len) for att in range(att_lstm_num)]
flatten_att_flow_inputs = [Input(shape = (nbhd_size, nbhd_size, flow_type,), name = "att_flow_volume_input_time_{0}_{1}".format(att+1, ts+1)) for ts in range(att_lstm_seq_len) for att in range(att_lstm_num)]
att_nbhd_inputs = []
att_flow_inputs = []
for att in range(att_lstm_num):
att_nbhd_inputs.append(flatten_att_nbhd_inputs[att*att_lstm_seq_len:(att+1)*att_lstm_seq_len])
att_flow_inputs.append(flatten_att_flow_inputs[att*att_lstm_seq_len:(att+1)*att_lstm_seq_len])
att_lstm_inputs = [Input(shape = (att_lstm_seq_len, feature_vec_len,), name = "att_lstm_input_{0}".format(att+1)) for att in range(att_lstm_num)]
nbhd_inputs = [Input(shape = (nbhd_size, nbhd_size, nbhd_type,), name = "nbhd_volume_input_time_{0}".format(ts+1)) for ts in range(lstm_seq_len)]
flow_inputs = [Input(shape = (nbhd_size, nbhd_size, flow_type,), name = "flow_volume_input_time_{0}".format(ts+1)) for ts in range(lstm_seq_len)]
lstm_inputs = Input(shape = (lstm_seq_len, feature_vec_len,), name = "lstm_input")
#short-term part
#1st level gate
#nbhd cnn
nbhd_convs = [Conv2D(filters = 64, kernel_size = (3,3), padding="same", name = "nbhd_convs_time0_{0}".format(ts+1))(nbhd_inputs[ts]) for ts in range(lstm_seq_len)]
nbhd_convs = [Activation("relu", name = "nbhd_convs_activation_time0_{0}".format(ts+1))(nbhd_convs[ts]) for ts in range(lstm_seq_len)]
#flow cnn
flow_convs = [Conv2D(filters = 64, kernel_size = (3,3), padding="same", name = "flow_convs_time0_{0}".format(ts+1))(flow_inputs[ts]) for ts in range(lstm_seq_len)]
flow_convs = [Activation("relu", name = "flow_convs_activation_time0_{0}".format(ts+1))(flow_convs[ts]) for ts in range(lstm_seq_len)]
#flow gate
flow_gates = [Activation("sigmoid", name = "flow_gate0_{0}".format(ts+1))(flow_convs[ts]) for ts in range(lstm_seq_len)]
nbhd_convs = [keras.layers.Multiply()([nbhd_convs[ts], flow_gates[ts]]) for ts in range(lstm_seq_len)]
#2nd level gate
nbhd_convs = [Conv2D(filters = 64, kernel_size = (3,3), padding="same", name = "nbhd_convs_time1_{0}".format(ts+1))(nbhd_convs[ts]) for ts in range(lstm_seq_len)]
nbhd_convs = [Activation("relu", name = "nbhd_convs_activation_time1_{0}".format(ts+1))(nbhd_convs[ts]) for ts in range(lstm_seq_len)]
flow_convs = [Conv2D(filters = 64, kernel_size = (3,3), padding="same", name = "flow_convs_time1_{0}".format(ts+1))(flow_inputs[ts]) for ts in range(lstm_seq_len)]
flow_convs = [Activation("relu", name = "flow_convs_activation_time1_{0}".format(ts+1))(flow_convs[ts]) for ts in range(lstm_seq_len)]
flow_gates = [Activation("sigmoid", name = "flow_gate1_{0}".format(ts+1))(flow_convs[ts]) for ts in range(lstm_seq_len)]
nbhd_convs = [keras.layers.Multiply()([nbhd_convs[ts], flow_gates[ts]]) for ts in range(lstm_seq_len)]
#3rd level gate
nbhd_convs = [Conv2D(filters = 64, kernel_size = (3,3), padding="same", name = "nbhd_convs_time2_{0}".format(ts+1))(nbhd_convs[ts]) for ts in range(lstm_seq_len)]
nbhd_convs = [Activation("relu", name = "nbhd_convs_activation_time2_{0}".format(ts+1))(nbhd_convs[ts]) for ts in range(lstm_seq_len)]
flow_convs = [Conv2D(filters = 64, kernel_size = (3,3), padding="same", name = "flow_convs_time2_{0}".format(ts+1))(flow_inputs[ts]) for ts in range(lstm_seq_len)]
flow_convs = [Activation("relu", name = "flow_convs_activation_time2_{0}".format(ts+1))(flow_convs[ts]) for ts in range(lstm_seq_len)]
flow_gates = [Activation("sigmoid", name = "flow_gate2_{0}".format(ts+1))(flow_convs[ts]) for ts in range(lstm_seq_len)]
nbhd_convs = [keras.layers.Multiply()([nbhd_convs[ts], flow_gates[ts]]) for ts in range(lstm_seq_len)]
#dense part
nbhd_vecs = [Flatten(name = "nbhd_flatten_time_{0}".format(ts+1))(nbhd_convs[ts]) for ts in range(lstm_seq_len)]
nbhd_vecs = [Dense(units = cnn_flat_size, name = "nbhd_dense_time_{0}".format(ts+1))(nbhd_vecs[ts]) for ts in range(lstm_seq_len)]
nbhd_vecs = [Activation("relu", name = "nbhd_dense_activation_time_{0}".format(ts+1))(nbhd_vecs[ts]) for ts in range(lstm_seq_len)]
#feature concatenate
nbhd_vec = Concatenate(axis=-1)(nbhd_vecs)
nbhd_vec = Reshape(target_shape = (lstm_seq_len, cnn_flat_size))(nbhd_vec)
lstm_input = Concatenate(axis=-1)([lstm_inputs, nbhd_vec])
#lstm
lstm = LSTM(units=lstm_out_size, return_sequences=False, dropout=0.1, recurrent_dropout=0.1)(lstm_input)
#attention part
att_nbhd_convs = [[Conv2D(filters = 64, kernel_size = (3,3), padding="same", name = "att_nbhd_convs_time0_{0}_{1}".format(att+1,ts+1))(att_nbhd_inputs[att][ts]) for ts in range(att_lstm_seq_len)] for att in range(att_lstm_num)]
att_nbhd_convs = [[Activation("relu", name = "att_nbhd_convs_activation_time0_{0}_{1}".format(att+1,ts+1))(att_nbhd_convs[att][ts]) for ts in range(att_lstm_seq_len)] for att in range(att_lstm_num)]
att_flow_convs = [[Conv2D(filters = 64, kernel_size = (3,3), padding="same", name = "att_flow_convs_time0_{0}_{1}".format(att+1,ts+1))(att_flow_inputs[att][ts]) for ts in range(att_lstm_seq_len)] for att in range(att_lstm_num)]
att_flow_convs = [[Activation("relu", name = "att_flow_convs_activation_time0_{0}_{1}".format(att+1,ts+1))(att_flow_convs[att][ts]) for ts in range(att_lstm_seq_len)] for att in range(att_lstm_num)]
att_flow_gates = [[Activation("sigmoid", name = "att_flow_gate0_{0}_{1}".format(att+1, ts+1))(att_flow_convs[att][ts]) for ts in range(att_lstm_seq_len)] for att in range(att_lstm_num)]
att_nbhd_convs = [[keras.layers.Multiply()([att_nbhd_convs[att][ts], att_flow_gates[att][ts]]) for ts in range(att_lstm_seq_len)] for att in range(att_lstm_num)]
att_nbhd_convs = [[Conv2D(filters = 64, kernel_size = (3,3), padding="same", name = "att_nbhd_convs_time1_{0}_{1}".format(att+1,ts+1))(att_nbhd_convs[att][ts]) for ts in range(att_lstm_seq_len)] for att in range(att_lstm_num)]
att_nbhd_convs = [[Activation("relu", name = "att_nbhd_convs_activation_time1_{0}_{1}".format(att+1,ts+1))(att_nbhd_convs[att][ts]) for ts in range(att_lstm_seq_len)] for att in range(att_lstm_num)]
att_flow_convs = [[Conv2D(filters = 64, kernel_size = (3,3), padding="same", name = "att_flow_convs_time1_{0}_{1}".format(att+1,ts+1))(att_flow_convs[att][ts]) for ts in range(att_lstm_seq_len)] for att in range(att_lstm_num)]
att_flow_convs = [[Activation("relu", name = "att_flow_convs_activation_time1_{0}_{1}".format(att+1,ts+1))(att_flow_convs[att][ts]) for ts in range(att_lstm_seq_len)] for att in range(att_lstm_num)]
att_flow_gates = [[Activation("sigmoid", name = "att_flow_gate1_{0}_{1}".format(att+1, ts+1))(att_flow_convs[att][ts]) for ts in range(att_lstm_seq_len)] for att in range(att_lstm_num)]
att_nbhd_convs = [[keras.layers.Multiply()([att_nbhd_convs[att][ts], att_flow_gates[att][ts]]) for ts in range(att_lstm_seq_len)] for att in range(att_lstm_num)]
att_nbhd_convs = [[Conv2D(filters = 64, kernel_size = (3,3), padding="same", name = "att_nbhd_convs_time2_{0}_{1}".format(att+1,ts+1))(att_nbhd_convs[att][ts]) for ts in range(att_lstm_seq_len)] for att in range(att_lstm_num)]
att_nbhd_convs = [[Activation("relu", name = "att_nbhd_convs_activation_time2_{0}_{1}".format(att+1,ts+1))(att_nbhd_convs[att][ts]) for ts in range(att_lstm_seq_len)] for att in range(att_lstm_num)]
att_flow_convs = [[Conv2D(filters = 64, kernel_size = (3,3), padding="same", name = "att_flow_convs_time2_{0}_{1}".format(att+1,ts+1))(att_flow_convs[att][ts]) for ts in range(att_lstm_seq_len)] for att in range(att_lstm_num)]
att_flow_convs = [[Activation("relu", name = "att_flow_convs_activation_time2_{0}_{1}".format(att+1,ts+1))(att_flow_convs[att][ts]) for ts in range(att_lstm_seq_len)] for att in range(att_lstm_num)]
att_flow_gates = [[Activation("sigmoid", name = "att_flow_gate2_{0}_{1}".format(att+1, ts+1))(att_flow_convs[att][ts]) for ts in range(att_lstm_seq_len)] for att in range(att_lstm_num)]
att_nbhd_convs = [[keras.layers.Multiply()([att_nbhd_convs[att][ts], att_flow_gates[att][ts]]) for ts in range(att_lstm_seq_len)] for att in range(att_lstm_num)]
att_nbhd_vecs = [[Flatten(name = "att_nbhd_flatten_time_{0}_{1}".format(att+1,ts+1))(att_nbhd_convs[att][ts]) for ts in range(att_lstm_seq_len)] for att in range(att_lstm_num)]
att_nbhd_vecs = [[Dense(units = cnn_flat_size, name = "att_nbhd_dense_time_{0}_{1}".format(att+1,ts+1))(att_nbhd_vecs[att][ts]) for ts in range(att_lstm_seq_len)] for att in range(att_lstm_num)]
att_nbhd_vecs = [[Activation("relu", name = "att_nbhd_dense_activation_time_{0}_{1}".format(att+1,ts+1))(att_nbhd_vecs[att][ts]) for ts in range(att_lstm_seq_len)] for att in range(att_lstm_num)]
att_nbhd_vec = [Concatenate(axis=-1)(att_nbhd_vecs[att]) for att in range(att_lstm_num)]
att_nbhd_vec = [Reshape(target_shape = (att_lstm_seq_len, cnn_flat_size))(att_nbhd_vec[att]) for att in range(att_lstm_num)]
att_lstm_input = [Concatenate(axis=-1)([att_lstm_inputs[att], att_nbhd_vec[att]]) for att in range(att_lstm_num)]
att_lstms = [LSTM(units=lstm_out_size, return_sequences=True, dropout=0.1, recurrent_dropout=0.1, name="att_lstm_{0}".format(att + 1))(att_lstm_input[att]) for att in range(att_lstm_num)]
#compare
att_low_level=[attention.Attention(method='cba')([att_lstms[att], lstm]) for att in range(att_lstm_num)]
att_low_level=Concatenate(axis=-1)(att_low_level)
att_low_level=Reshape(target_shape=(att_lstm_num, lstm_out_size))(att_low_level)
att_high_level = LSTM(units=lstm_out_size, return_sequences=False, dropout=0.1, recurrent_dropout=0.1)(att_low_level)
lstm_all = Concatenate(axis=-1)([att_high_level, lstm])
# lstm_all = Dropout(rate = .3)(lstm_all)
lstm_all = Dense(units = output_shape)(lstm_all)
pred_volume = Activation('tanh')(lstm_all)
inputs = flatten_att_nbhd_inputs + flatten_att_flow_inputs + att_lstm_inputs + nbhd_inputs + flow_inputs + [lstm_inputs,]
# print("Model input length: {0}".format(len(inputs)))
# ipdb.set_trace()
model = Model(inputs = inputs, outputs = pred_volume)
model.compile(optimizer = optimizer, loss = loss, metrics=metrics)
return model