-
Notifications
You must be signed in to change notification settings - Fork 100
/
file_loader.py
247 lines (207 loc) · 13.8 KB
/
file_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import numpy as np
import pickle
import json
class file_loader:
def __init__(self, config_path = "data.json"):
self.config = json.load(open(config_path, "r"))
# how many timeslots per day (48 here)
self.timeslot_daynum = int(86400 / self.config["timeslot_sec"])
self.threshold = int(self.config["threshold"])
self.isVolumeLoaded = False
self.isFlowLoaded = False
def load_flow(self):
self.flow_train = np.load(open(self.config["flow_train"], "rb"))["flow"] / self.config["flow_train_max"]
self.flow_test = np.load(open(self.config["flow_test"], "rb"))["flow"] / self.config["flow_train_max"]
self.isFlowLoaded = True
def load_volume(self):
# shape (timeslot_num, x_num, y_num, type=2)
self.volume_train = np.load(open(self.config["volume_train"], "rb"))["volume"] / self.config["volume_train_max"]
self.volume_test = np.load(open(self.config["volume_test"], "rb"))["volume"] / self.config["volume_train_max"]
self.isVolumeLoaded = True
#this function nbhd for cnn, and features for lstm, based on attention model
def sample_stdn(self, datatype, att_lstm_num = 3, long_term_lstm_seq_len = 3, short_term_lstm_seq_len = 7,\
hist_feature_daynum = 7, last_feature_num = 48, nbhd_size = 1, cnn_nbhd_size = 3):
if self.isVolumeLoaded is False:
self.load_volume()
if self.isFlowLoaded is False:
self.load_flow()
if long_term_lstm_seq_len % 2 != 1:
print("Att-lstm seq_len must be odd!")
raise Exception
if datatype == "train":
data = self.volume_train
flow_data = self.flow_train
elif datatype == "test":
data = self.volume_test
flow_data = self.flow_test
else:
print("Please select **train** or **test**")
raise Exception
cnn_att_features = []
lstm_att_features = []
flow_att_features = []
for i in range(att_lstm_num):
lstm_att_features.append([])
cnn_att_features.append([])
flow_att_features.append([])
for j in range(long_term_lstm_seq_len):
cnn_att_features[i].append([])
flow_att_features[i].append([])
cnn_features = []
flow_features = []
for i in range(short_term_lstm_seq_len):
cnn_features.append([])
flow_features.append([])
short_term_lstm_features = []
labels = []
time_start = (hist_feature_daynum + att_lstm_num) * self.timeslot_daynum + long_term_lstm_seq_len
time_end = data.shape[0]
volume_type = data.shape[-1]
for t in range(time_start, time_end):
if t%100 == 0:
print("Now sampling at {0} timeslots.".format(t))
for x in range(data.shape[1]):
for y in range(data.shape[2]):
#sample common (short-term) lstm
short_term_lstm_samples = []
for seqn in range(short_term_lstm_seq_len):
# real_t from (t - short_term_lstm_seq_len) to (t-1)
real_t = t - (short_term_lstm_seq_len - seqn)
#cnn features, zero_padding
cnn_feature = np.zeros((2*cnn_nbhd_size+1, 2*cnn_nbhd_size+1, volume_type))
#actual idx in data
for cnn_nbhd_x in range(x - cnn_nbhd_size, x + cnn_nbhd_size + 1):
for cnn_nbhd_y in range(y - cnn_nbhd_size, y + cnn_nbhd_size + 1):
#boundary check
if not (0 <= cnn_nbhd_x < data.shape[1] and 0 <= cnn_nbhd_y < data.shape[2]):
continue
#get features
cnn_feature[cnn_nbhd_x - (x - cnn_nbhd_size), cnn_nbhd_y - (y - cnn_nbhd_size), :] = data[real_t, cnn_nbhd_x, cnn_nbhd_y, :]
cnn_features[seqn].append(cnn_feature)
#flow features, 4 type
flow_feature_curr_out = flow_data[0, real_t, x, y, :, :]
flow_feature_curr_in = flow_data[0, real_t, :, :, x, y]
flow_feature_last_out_to_curr = flow_data[1, real_t - 1, x, y, :, :]
#real_t - 1 is the time for in flow in longflow1
flow_feature_curr_in_from_last = flow_data[1, real_t - 1, :, :, x, y]
flow_feature = np.zeros(flow_feature_curr_in.shape+(4,))
flow_feature[:, :, 0] = flow_feature_curr_out
flow_feature[:, :, 1] = flow_feature_curr_in
flow_feature[:, :, 2] = flow_feature_last_out_to_curr
flow_feature[:, :, 3] = flow_feature_curr_in_from_last
#calculate local flow, same shape cnn
local_flow_feature = np.zeros((2*cnn_nbhd_size+1, 2*cnn_nbhd_size+1, 4))
#actual idx in data
for cnn_nbhd_x in range(x - cnn_nbhd_size, x + cnn_nbhd_size + 1):
for cnn_nbhd_y in range(y - cnn_nbhd_size, y + cnn_nbhd_size + 1):
#boundary check
if not (0 <= cnn_nbhd_x < data.shape[1] and 0 <= cnn_nbhd_y < data.shape[2]):
continue
#get features
local_flow_feature[cnn_nbhd_x - (x - cnn_nbhd_size), cnn_nbhd_y - (y - cnn_nbhd_size), :] = flow_feature[cnn_nbhd_x, cnn_nbhd_y, :]
flow_features[seqn].append(local_flow_feature)
#lstm features
# nbhd feature, zero_padding
nbhd_feature = np.zeros((2*nbhd_size+1, 2*nbhd_size+1, volume_type))
#actual idx in data
for nbhd_x in range(x - nbhd_size, x + nbhd_size + 1):
for nbhd_y in range(y - nbhd_size, y + nbhd_size + 1):
#boundary check
if not (0 <= nbhd_x < data.shape[1] and 0 <= nbhd_y < data.shape[2]):
continue
#get features
nbhd_feature[nbhd_x - (x - nbhd_size), nbhd_y - (y - nbhd_size), :] = data[real_t, nbhd_x, nbhd_y, :]
nbhd_feature = nbhd_feature.flatten()
#last feature
last_feature = data[real_t - last_feature_num: real_t, x, y, :].flatten()
#hist feature
hist_feature = data[real_t - hist_feature_daynum*self.timeslot_daynum: real_t: self.timeslot_daynum, x, y, :].flatten()
feature_vec = np.concatenate((hist_feature, last_feature))
feature_vec = np.concatenate((feature_vec, nbhd_feature))
short_term_lstm_samples.append(feature_vec)
short_term_lstm_features.append(np.array(short_term_lstm_samples))
#sample att-lstms
for att_lstm_cnt in range(att_lstm_num):
#sample lstm at att loc att_lstm_cnt
long_term_lstm_samples = []
# get time att_t, move forward for (att_lstm_num - att_lstm_cnt) day, then move back for ([long_term_lstm_seq_len / 2] + 1)
# notice that att_t-th timeslot will not be sampled in lstm
# e.g., **** (att_t - 3) **** (att_t - 2) (yesterday's t) **** (att_t - 1) **** (att_t) (this one will not be sampled)
# sample att-lstm with seq_len = 3
att_t = t - (att_lstm_num - att_lstm_cnt) * self.timeslot_daynum + (long_term_lstm_seq_len - 1) / 2 + 1
att_t = int(att_t)
#att-lstm seq len
for seqn in range(long_term_lstm_seq_len):
# real_t from (att_t - long_term_lstm_seq_len) to (att_t - 1)
real_t = att_t - (long_term_lstm_seq_len - seqn)
#cnn features, zero_padding
cnn_feature = np.zeros((2*cnn_nbhd_size+1, 2*cnn_nbhd_size+1, volume_type))
#actual idx in data
for cnn_nbhd_x in range(x - cnn_nbhd_size, x + cnn_nbhd_size + 1):
for cnn_nbhd_y in range(y - cnn_nbhd_size, y + cnn_nbhd_size + 1):
#boundary check
if not (0 <= cnn_nbhd_x < data.shape[1] and 0 <= cnn_nbhd_y < data.shape[2]):
continue
#get features
# import ipdb; ipdb.set_trace()
cnn_feature[cnn_nbhd_x - (x - cnn_nbhd_size), cnn_nbhd_y - (y - cnn_nbhd_size), :] = data[real_t, cnn_nbhd_x, cnn_nbhd_y, :]
cnn_att_features[att_lstm_cnt][seqn].append(cnn_feature)
#flow features, 4 type
flow_feature_curr_out = flow_data[0, real_t, x, y, :, :]
flow_feature_curr_in = flow_data[0, real_t, :, :, x, y]
flow_feature_last_out_to_curr = flow_data[1, real_t - 1, x, y, :, :]
#real_t - 1 is the time for in flow in longflow1
flow_feature_curr_in_from_last = flow_data[1, real_t - 1, :, :, x, y]
flow_feature = np.zeros(flow_feature_curr_in.shape+(4,))
flow_feature[:, :, 0] = flow_feature_curr_out
flow_feature[:, :, 1] = flow_feature_curr_in
flow_feature[:, :, 2] = flow_feature_last_out_to_curr
flow_feature[:, :, 3] = flow_feature_curr_in_from_last
#calculate local flow, same shape cnn
local_flow_feature = np.zeros((2*cnn_nbhd_size+1, 2*cnn_nbhd_size+1, 4))
#actual idx in data
for cnn_nbhd_x in range(x - cnn_nbhd_size, x + cnn_nbhd_size + 1):
for cnn_nbhd_y in range(y - cnn_nbhd_size, y + cnn_nbhd_size + 1):
#boundary check
if not (0 <= cnn_nbhd_x < data.shape[1] and 0 <= cnn_nbhd_y < data.shape[2]):
continue
#get features
local_flow_feature[cnn_nbhd_x - (x - cnn_nbhd_size), cnn_nbhd_y - (y - cnn_nbhd_size), :] = flow_feature[cnn_nbhd_x, cnn_nbhd_y, :]
flow_att_features[att_lstm_cnt][seqn].append(local_flow_feature)
#att-lstm features
# nbhd feature, zero_padding
nbhd_feature = np.zeros((2*nbhd_size+1, 2*nbhd_size+1, volume_type))
#actual idx in data
for nbhd_x in range(x - nbhd_size, x + nbhd_size + 1):
for nbhd_y in range(y - nbhd_size, y + nbhd_size + 1):
#boundary check
if not (0 <= nbhd_x < data.shape[1] and 0 <= nbhd_y < data.shape[2]):
continue
#get features
nbhd_feature[nbhd_x - (x - nbhd_size), nbhd_y - (y - nbhd_size), :] = data[real_t, nbhd_x, nbhd_y, :]
nbhd_feature = nbhd_feature.flatten()
#last feature
last_feature = data[real_t - last_feature_num: real_t, x, y, :].flatten()
#hist feature
hist_feature = data[real_t - hist_feature_daynum*self.timeslot_daynum: real_t: self.timeslot_daynum, x, y, :].flatten()
feature_vec = np.concatenate((hist_feature, last_feature))
feature_vec = np.concatenate((feature_vec, nbhd_feature))
long_term_lstm_samples.append(feature_vec)
lstm_att_features[att_lstm_cnt].append(np.array(long_term_lstm_samples))
#label
labels.append(data[t, x , y, :].flatten())
output_cnn_att_features = []
output_flow_att_features = []
for i in range(att_lstm_num):
lstm_att_features[i] = np.array(lstm_att_features[i])
for j in range(long_term_lstm_seq_len):
cnn_att_features[i][j] = np.array(cnn_att_features[i][j])
flow_att_features[i][j] = np.array(flow_att_features[i][j])
output_cnn_att_features.append(cnn_att_features[i][j])
output_flow_att_features.append(flow_att_features[i][j])
for i in range(short_term_lstm_seq_len):
cnn_features[i] = np.array(cnn_features[i])
flow_features[i] = np.array(flow_features[i])
short_term_lstm_features = np.array(short_term_lstm_features)
labels = np.array(labels)
return output_cnn_att_features, output_flow_att_features, lstm_att_features, cnn_features, flow_features, short_term_lstm_features, labels