forked from recommenders-team/recommenders
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_notebooks_python.py
118 lines (100 loc) · 5.09 KB
/
test_notebooks_python.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
import pytest
import papermill as pm
from tests.notebooks_common import OUTPUT_NOTEBOOK, KERNEL_NAME
TOL = 0.05
ABS_TOL = 0.05
@pytest.mark.smoke
def test_sar_single_node_smoke(notebooks):
notebook_path = notebooks["sar_single_node"]
pm.execute_notebook(notebook_path, OUTPUT_NOTEBOOK, kernel_name=KERNEL_NAME)
pm.execute_notebook(
notebook_path,
OUTPUT_NOTEBOOK,
kernel_name=KERNEL_NAME,
parameters=dict(TOP_K=10, MOVIELENS_DATA_SIZE="100k"),
)
results = pm.read_notebook(OUTPUT_NOTEBOOK).dataframe.set_index("name")["value"]
assert results["map"] == pytest.approx(0.110591, rel=TOL, abs=ABS_TOL)
assert results["ndcg"] == pytest.approx(0.382461, rel=TOL, abs=ABS_TOL)
assert results["precision"] == pytest.approx(0.330753, rel=TOL, abs=ABS_TOL)
assert results["recall"] == pytest.approx(0.176385, rel=TOL, abs=ABS_TOL)
@pytest.mark.smoke
def test_baseline_deep_dive_smoke(notebooks):
notebook_path = notebooks["baseline_deep_dive"]
pm.execute_notebook(notebook_path, OUTPUT_NOTEBOOK, kernel_name=KERNEL_NAME)
pm.execute_notebook(
notebook_path,
OUTPUT_NOTEBOOK,
kernel_name=KERNEL_NAME,
parameters=dict(TOP_K=10, MOVIELENS_DATA_SIZE="100k"),
)
results = pm.read_notebook(OUTPUT_NOTEBOOK).dataframe.set_index("name")["value"]
assert results["rmse"] == pytest.approx(1.054252, rel=TOL, abs=ABS_TOL)
assert results["mae"] == pytest.approx(0.846033, rel=TOL, abs=ABS_TOL)
assert results["rsquared"] == pytest.approx(0.136435, rel=TOL, abs=ABS_TOL)
assert results["exp_var"] == pytest.approx(0.136446, rel=TOL, abs=ABS_TOL)
assert results["map"] == pytest.approx(0.052850, rel=TOL, abs=ABS_TOL)
assert results["ndcg"] == pytest.approx(0.248061, rel=TOL, abs=ABS_TOL)
assert results["precision"] == pytest.approx(0.223754, rel=TOL, abs=ABS_TOL)
assert results["recall"] == pytest.approx(0.108826, rel=TOL, abs=ABS_TOL)
@pytest.mark.smoke
def test_surprise_svd_smoke(notebooks):
notebook_path = notebooks["surprise_svd_deep_dive"]
pm.execute_notebook(notebook_path, OUTPUT_NOTEBOOK, kernel_name=KERNEL_NAME)
pm.execute_notebook(
notebook_path,
OUTPUT_NOTEBOOK,
kernel_name=KERNEL_NAME,
parameters=dict(MOVIELENS_DATA_SIZE="100k"),
)
results = pm.read_notebook(OUTPUT_NOTEBOOK).dataframe.set_index("name")["value"]
assert results["rmse"] == pytest.approx(0.96, rel=TOL, abs=ABS_TOL)
assert results["mae"] == pytest.approx(0.75, rel=TOL, abs=ABS_TOL)
assert results["rsquared"] == pytest.approx(0.29, rel=TOL, abs=ABS_TOL)
assert results["exp_var"] == pytest.approx(0.29, rel=TOL, abs=ABS_TOL)
assert results["map"] == pytest.approx(0.013, rel=TOL, abs=ABS_TOL)
assert results["ndcg"] == pytest.approx(0.1, rel=TOL, abs=ABS_TOL)
assert results["precision"] == pytest.approx(0.095, rel=TOL, abs=ABS_TOL)
assert results["recall"] == pytest.approx(0.032, rel=TOL, abs=ABS_TOL)
@pytest.mark.vw
@pytest.mark.smoke
def test_vw_deep_dive_smoke(notebooks):
notebook_path = notebooks["vowpal_wabbit_deep_dive"]
pm.execute_notebook(notebook_path, OUTPUT_NOTEBOOK, kernel_name=KERNEL_NAME)
pm.execute_notebook(
notebook_path,
OUTPUT_NOTEBOOK,
kernel_name=KERNEL_NAME,
parameters=dict(MOVIELENS_DATA_SIZE="100k"),
)
results = pm.read_notebook(OUTPUT_NOTEBOOK).dataframe.set_index("name")["value"]
assert results["rmse"] == pytest.approx(0.985920, rel=TOL, abs=ABS_TOL)
assert results["mae"] == pytest.approx(0.71292, rel=TOL, abs=ABS_TOL)
assert results["rsquared"] == pytest.approx(0.231199, rel=TOL, abs=ABS_TOL)
assert results["exp_var"] == pytest.approx(0.231337, rel=TOL, abs=ABS_TOL)
assert results["map"] == pytest.approx(0.012535, rel=TOL, abs=ABS_TOL)
assert results["ndcg"] == pytest.approx(0.096594, rel=TOL, abs=ABS_TOL)
assert results["precision"] == pytest.approx(0.097770, rel=TOL, abs=ABS_TOL)
assert results["recall"] == pytest.approx(0.037612, rel=TOL, abs=ABS_TOL)
@pytest.mark.smoke
def test_lightgbm_quickstart_smoke(notebooks):
notebook_path = notebooks["lightgbm_quickstart"]
pm.execute_notebook(notebook_path, OUTPUT_NOTEBOOK, kernel_name=KERNEL_NAME)
pm.execute_notebook(
notebook_path,
OUTPUT_NOTEBOOK,
kernel_name=KERNEL_NAME,
parameters=dict(MAX_LEAF = 64,
MIN_DATA = 20,
NUM_OF_TREES = 100,
TREE_LEARNING_RATE = 0.15,
EARLY_STOPPING_ROUNDS = 20,
METRIC = "auc"),
)
results = pm.read_notebook(OUTPUT_NOTEBOOK).dataframe.set_index("name")["value"]
assert results["res_basic"]["auc"] == pytest.approx(0.7674, rel=TOL, abs=ABS_TOL)
assert results["res_basic"]["logloss"] == pytest.approx(0.4669, rel=TOL, abs=ABS_TOL)
assert results["res_optim"]["auc"] == pytest.approx(0.7757, rel=TOL, abs=ABS_TOL)
assert results["res_optim"]["logloss"] == pytest.approx(0.4607, rel=TOL, abs=ABS_TOL)