We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
C:\Users\yinli\miniconda3\envs\bbcn\python.exe D:\实体\pytorch_bert_bilstm_crf_ner-main\main.py {0: 'O', 1: 'B-dep', 2: 'I-dep', 3: 'E-dep', 4: 'S-dep', 5: 'B-dru', 6: 'I-dru', 7: 'E-dru', 8: 'S-dru', 9: 'B-equ', 10: 'I-equ', 11: 'E-equ', 12: 'S-equ', 13: 'B-bod', 14: 'I-bod', 15: 'E-bod', 16: 'S-bod', 17: 'B-ite', 18: 'I-ite', 19: 'E-ite', 20: 'S-ite', 21: 'B-mic', 22: 'I-mic', 23: 'E-mic', 24: 'S-mic', 25: 'B-pro', 26: 'I-pro', 27: 'E-pro', 28: 'S-pro', 29: 'B-sym', 30: 'I-sym', 31: 'E-sym', 32: 'S-sym', 33: 'B-dis', 34: 'I-dis', 35: 'E-dis', 36: 'S-dis'} Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/bert-base-chinese/', crf_lr=0.03, data_dir='./data/CHIP2020', data_name='chip', dropout=0.3, dropout_prob=0.1, eval_batch_size=12, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=150, model_name='bert_bilstm_crf', num_layers=1, num_tags=37, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=32, train_epochs=3, use_crf='True', use_idcnn='False', use_kd='False', use_lstm='True', use_tensorboard='True', warmup_proportion=0.1, weight_decay=0.01) Traceback (most recent call last): File "D:\实体\pytorch_bert_bilstm_crf_ner-main\main.py", line 327, in bertForNer = BertForNer(args, train_loader, dev_loader, dev_loader, id2query) File "D:\实体\pytorch_bert_bilstm_crf_ner-main\main.py", line 36, in init model = bert_ner_model.BertNerModel(args) File "D:\实体\pytorch_bert_bilstm_crf_ner-main\bert_ner_model.py", line 201, in init super(BertNerModel, self).init(bert_dir=args.bert_dir, dropout_prob=args.dropout_prob, model_name=args.model_name) File "D:\实体\pytorch_bert_bilstm_crf_ner-main\bert_base_model.py", line 11, in init assert os.path.exists(bert_dir) and os.path.exists(config_path), AssertionError: pretrained bert file does not exist
Process finished with exit code 1 萌新提问,还麻烦大佬解答
The text was updated successfully, but these errors were encountered:
预训练模型是否已经下载好了。
Sorry, something went wrong.
No branches or pull requests
C:\Users\yinli\miniconda3\envs\bbcn\python.exe D:\实体\pytorch_bert_bilstm_crf_ner-main\main.py
{0: 'O', 1: 'B-dep', 2: 'I-dep', 3: 'E-dep', 4: 'S-dep', 5: 'B-dru', 6: 'I-dru', 7: 'E-dru', 8: 'S-dru', 9: 'B-equ', 10: 'I-equ', 11: 'E-equ', 12: 'S-equ', 13: 'B-bod', 14: 'I-bod', 15: 'E-bod', 16: 'S-bod', 17: 'B-ite', 18: 'I-ite', 19: 'E-ite', 20: 'S-ite', 21: 'B-mic', 22: 'I-mic', 23: 'E-mic', 24: 'S-mic', 25: 'B-pro', 26: 'I-pro', 27: 'E-pro', 28: 'S-pro', 29: 'B-sym', 30: 'I-sym', 31: 'E-sym', 32: 'S-sym', 33: 'B-dis', 34: 'I-dis', 35: 'E-dis', 36: 'S-dis'}
Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/bert-base-chinese/', crf_lr=0.03, data_dir='./data/CHIP2020', data_name='chip', dropout=0.3, dropout_prob=0.1, eval_batch_size=12, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=150, model_name='bert_bilstm_crf', num_layers=1, num_tags=37, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=32, train_epochs=3, use_crf='True', use_idcnn='False', use_kd='False', use_lstm='True', use_tensorboard='True', warmup_proportion=0.1, weight_decay=0.01)
Traceback (most recent call last):
File "D:\实体\pytorch_bert_bilstm_crf_ner-main\main.py", line 327, in
bertForNer = BertForNer(args, train_loader, dev_loader, dev_loader, id2query)
File "D:\实体\pytorch_bert_bilstm_crf_ner-main\main.py", line 36, in init
model = bert_ner_model.BertNerModel(args)
File "D:\实体\pytorch_bert_bilstm_crf_ner-main\bert_ner_model.py", line 201, in init
super(BertNerModel, self).init(bert_dir=args.bert_dir, dropout_prob=args.dropout_prob, model_name=args.model_name)
File "D:\实体\pytorch_bert_bilstm_crf_ner-main\bert_base_model.py", line 11, in init
assert os.path.exists(bert_dir) and os.path.exists(config_path),
AssertionError: pretrained bert file does not exist
Process finished with exit code 1
萌新提问,还麻烦大佬解答
The text was updated successfully, but these errors were encountered: