-
Notifications
You must be signed in to change notification settings - Fork 6
/
c3d.R
executable file
·477 lines (447 loc) · 23 KB
/
c3d.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
#!/usr/bin/Rscript
# Copyright 2016 Mathieu Lupien
# This file is part of C3D.
# C3D is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# C3D is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License
# along with C3D. If not, see <http://www.gnu.org/licenses/>.
# Cross Cell-type Correlation in DNaseI hypersensitivity (C3D)
# Written by: Tahmid Mehdi
# Princess Margaret Cancer Centre - University Health Network, December 18, 2016
# Tested on R 3.3.1
# Takes correlations between open regions of chromatin based on DNaseI hypersensitivity signals
# Regions with high correlations are candidates for 3D interactions
# Performs association tests on each candidate & adjusts p-values
# Produces interaction landscapes and tracks in PDF format
library(optparse)
option_list <- list(make_option(c("-d", "--refmapdir"), type="character", default=NULL,
help="Directory of mapped files"),
make_option(c("-o", "--outdir"), type="character", default=NULL,
help="Output directory"),
make_option(c("-a", "--anchor"), type="character", default=NULL,
help="Anchor file (bed)"),
make_option(c("-b", "--bg"), type="character", default=NULL,
help="File with list of bg files"),
make_option(c("-w", "--window"), type="integer", default=NULL,
help="Flanking bps from anchor to search for open regions"),
make_option(c("-r", "--rcut"), type="character", default=NULL,
help="Correlation threshold"),
make_option(c("-p", "--pcut"), type="character", default=NULL,
help="p-value threshold"),
make_option(c("-q", "--qcut"), type="character", default=NULL,
help="q-value threshold"),
make_option(c("-m", "--cormethod"), type="character", default='pearson',
help="Correlation coefficient (pearson, spearman, kendall) [default= %default]"),
make_option(c("-s", "--signalmat"), type="character", default=NULL,
help="Signal data (if available)"),
make_option(c("-g", "--figures"), type="character", default=NULL,
help="'y' if you want interaction landscapes outputted"),
make_option(c("-y", "--figwidth"), type="integer", default=NULL,
help="flanking bps from anchor to display on figure"),
make_option(c("-z", "--zoom"), type="integer", default=NULL,
help="How many flanking bps for zoomed landscapes"),
make_option(c("-c", "--colour"), type="character", default=NULL,
help="Colours for the interaction plots"),
make_option(c("-t", "--tracks"), type="character", default=NULL,
help="'y' if you want tracks outputted"),
make_option(c("-i", "--sample"), type="character", default="UnknownSample",
help="sample name [default=%default]"),
make_option(c("-u", "--tracknum"), type="integer", default=NULL,
help="track number"),
make_option(c("-n", "--numsample"), type="integer", default=NULL,
help="number of samples"),
make_option(c("-j", "--assembly"), type="character", default=NULL,
help="reference genome"),
make_option(c("-x", "--date"), type="character", default=NULL,
help="timestamp for output pdf"),
make_option(c("-k", "--wdir"), type="character", default=NULL,
help="working directory"))
opt_parser <- OptionParser(option_list=option_list)
opt <- parse_args(opt_parser)
refMapDir <- opt$refmapdir
outDir <- opt$outdir
anchor <- opt$anchor
bg <- opt$bg
window <- opt$window
rcut <- opt$rcut
pcut <- opt$pcut
qcut <- opt$qcut
corMethod <- opt$cormethod
signalMatrixFile <- opt$signalmat
figures <- opt$figures
figureWidth <- opt$figwidth
zoom <- opt$zoom
colour <- opt$colour
tracks <- opt$tracks
sampleName <- opt$sample
trackNumber <- opt$tracknum
numSamples <- opt$numsample
assembly <- opt$assembly
date <- opt$date
workingDir <- opt$wdir
setwd(workingDir)
suppressMessages(library("GenomicRanges"))
suppressMessages(library("Sushi"))
suppressMessages(library("data.table"))
suppressMessages(library("preprocessCore"))
suppressMessages(library("dynamicTreeCut"))
# PRE: str
# POST: GRange
# converts bed file to a granges object
bed_to_granges = function(file) {
df <- read.table(file, header=F, stringsAsFactors=F)[,1:3]
names(df) <- c('chr','start','end')
gr <- with(df, GRanges(chr, IRanges(start, end)))
return(gr)
}
# PRE: int[>=1] int[>=1] matrix(num)
# POST: vector(num)
# returns correlation and p-value of xth & yth rows of A
getCor = function(x, y, A) {
if (sd(A[x,])==0 || sd(A[y,])==0) { # avoid div by 0
return(c(0,NA))
}
corr <- cor.test(A[x,], A[y,], method=corMethod, alternative="two.sided")
return(c(unname(corr$estimate), corr$p.value))
}
# PRE: df(chr1,start1,end1,chr2,start2,end2,score,q_Value) str int[>=1] int[>=1]
# POST: 0<=num<=1
# returns max score of int on chromosome chr between start & end
get_max_cor = function(int, chr, start, end) {
filteredInt <- int[with(int, chrom1==chr & end1>=start & start1<=end &
chrom2==chr & end2>=start & start2<=end),]
return(max(filteredInt$score))
}
# PRE: str int[>=1]
# POST: vect
# Breaks a string into a vector of strings separated at commas
commaSepStr_to_vector = function(commaSepStr, desiredLength) {
commaSepStr <- as.character(commaSepStr)
vect <- unlist(strsplit(commaSepStr, split=","))
# if the string didn't have desiredLength items,
# then just make a vector with the first element repeated desiredLength times
if (length(vect)!=desiredLength) {
vect <- rep(vect[1], desiredLength)
}
return(vect)
}
# PRE: str
# POST: int or str
# converts strands into numbers for the Sushi package
strand_to_num = function(strand) {
if (strand=="+") {
return(1)
} else if (strand=="-") {
return(-1)
} else {
return(".")
}
}
# PRE: int[>=0] vect[hex]
# POST: str
# Converts the xth element of pal (a palette) to RGB values
getRGB <- function(x, pal) {
rgbValues <- col2rgb(pal[x])
return(paste(rgbValues[1],rgbValues[2],rgbValues[3], sep=","))
}
# PRE: matrix or vector
# POST: vector
# Calculates the mean of each row
rowAvg = function(A) {
if (is.matrix(A)) {
return(rowMeans(A))
} else {
return(A)
}
}
# if signalMatrixFile not provided, generate matrix from mapped files
if (!is.character(signalMatrixFile)) {
# list of files in refMapDir ending in .map.bed
refMapDir <- sub('/$', '', refMapDir)
refMapFiles <- list.files(refMapDir, pattern="*.map.bed", full.names=TRUE)
# granges object with regions from reference file
ref.bed <- bed_to_granges(refMapFiles[1])
# format names of regions from reference file
regionNames <- paste(as.character(seqnames(ref.bed)),":",start(ranges(ref.bed)),
"-",end(ranges(ref.bed)), sep="")
cat("Merging Mapped Files...\n")
# merge scores from bg files
signals <- do.call(cbind, lapply(refMapFiles,
function(f) read.table(f,header=FALSE, sep="\t")[,4]))
rownames(signals) <- regionNames
write.table(signals, paste(outDir,"signalMatrix.txt", sep="/"),
row.names=T, col.names=F, quote=F) # write matrix to file
} else { # if signalMatrixFile provided, use that as the matrix
# load matrix
signals <- as.matrix(read.table(signalMatrixFile, header=FALSE, row.names=1))
regionNames <- rownames(signals)
# create granges object from matrix file
partsOfBed <- strsplit(regionNames, ":|-")
chr <- sapply(partsOfBed, function(x) x[1])
start <- sapply(partsOfBed, function(x) as.numeric(x[2]))
end <- sapply(partsOfBed, function(x) as.numeric(x[3]))
df <- data.frame(chr, start, end)
ref.bed <- with(df, GRanges(chr, IRanges(start, end)))
}
if (! is.numeric(signals)) { # if matrix has NAs
stop("There are null values in the signal matrix. Check mapped files.\n")
}
signals.norm <- normalize.quantiles(signals) # quantile normalize the signals
rownames(signals.norm) <- regionNames
# calculate distances between samples (1-correlation)
crossGenomeCors <- as.dist(1-cor(signals.norm, method="pearson"))
dendro <- hclust(crossGenomeCors) # hierarchically cluster the samples
# run the dynamic tree cut algorithm to detect clusters
clusters <- as.character(cutreeDynamic(dendro, minClusterSize=1, verbose=0,
distM=as.matrix(crossGenomeCors), deepSplit=4))
# average normalized signal at each open region for each cluster
avg.norm.signals <- do.call(cbind, lapply(unique(clusters),
function(p) rowAvg(signals.norm[,which(clusters==p)])))
cat("Clustered samples into",length(unique(clusters)),"clusters\n" )
# vector of IDs in same order as anchor file
ids <- read.table(anchor, header=F, stringsAsFactors=F)[,5]
anchorStrands <- read.table(anchor, header=F, stringsAsFactors=F)[,4]
# convert anchor to GRanges object
anchor.bed <- bed_to_granges(anchor)
# find promoters which overlap reference regions
promoterOverlaps <- findOverlaps(anchor.bed, ref.bed)
if (window != "genome") {
window <- as.numeric(window)
# find reference regions within window of each promoter
leftOverlaps <- findOverlaps(flank(anchor.bed, window), ref.bed)
rightOverlaps <- findOverlaps(flank(anchor.bed, window, start=FALSE), ref.bed)
}
# initialize list of interaction candidate
anchorStats <- vector(mode="list", length=length(anchor.bed))
file <- paste(outDir,"/results_",date,".txt", sep="")
# change the first letter in corMethod to uppercase for the arc diagrams
corMethodUpper <- paste(toupper(substr(corMethod, 1, 1)), substr(corMethod, 2, nchar(corMethod)), sep="")
resultsHeader <- paste("COORD_1\tCOORD_2\tR_",corMethodUpper,"\tID\tp_Value\tq_Value" , sep="")
junk <- cat(resultsHeader, file=file, append=FALSE, sep="\n")
for (r in 1:length(anchor.bed)) { # iterate through promoters
COORD_1 <- c() # regions in promoter
COORD_2 <- c() # distal regions from promoter
Correlation <- c() # correlation
p_Value <- c() # p-value
q_Value <- c() # q-value
ID <- c() # ID of the anchors
# regions in rth promoter
regionsInPromoters <- subjectHits(promoterOverlaps[which(queryHits(promoterOverlaps)==r)])
if (window=="genome") { # search the entire genome
candidateRegions <- setdiff(1:length(ref.bed), regionsInPromoters)
} else {
regionsInLeft <- subjectHits(leftOverlaps[which(queryHits(leftOverlaps)==r)])
regionsInRight <- subjectHits(rightOverlaps[which(queryHits(rightOverlaps)==r)])
# regions in window
candidateRegions <- unique(c(regionsInLeft, regionsInRight))
candidateRegions <- candidateRegions[! candidateRegions %in% regionsInPromoters]
}
if (length(regionsInPromoters)==0 || length(candidateRegions)==0) {
cat('\rCalculating Correlations: Processed anchor', r, 'of', length(anchor.bed))
next
}
# calculate correlations between open regions in promoter & distal regions
regionIndices <- cbind(rep(regionsInPromoters,each=length(candidateRegions)),
rep(candidateRegions, length(regionsInPromoters)))
corStats <- apply(regionIndices, 1, function(x) getCor(x[1], x[2], signals))
# record regionNames of anchor DHSs
COORD_1 <- regionNames[regionIndices[,1]]
# record regionNames of distal DHSs
COORD_2 <- regionNames[regionIndices[,2]]
# record correlations, p-values & q-values
Correlation <- corStats[1,]
p_Value <- corStats[2,]
ID <- rep(ids[r], nrow(regionIndices)) # populate ID
q_Value <- p.adjust(p_Value, method="BH")
interactionCandidates <- data.frame(COORD_1, COORD_2, Correlation, ID, p_Value, q_Value)
if (nrow(interactionCandidates)>0) { # stop if genomeStats is empty
junk <- write.table(interactionCandidates, file=file, sep="\t", col.names=F,row.names=F,quote=F, append=TRUE)
}
anchorStats[[r]] <- interactionCandidates
cat('\rCalculating Correlations: Processed anchor', r, 'of', length(anchor.bed))
}
# concatenate anchorStats data.frames
genomeStats <- rbindlist(anchorStats)
# filter genomeStats
genomeStats <- genomeStats[with(genomeStats, Correlation>=rcut & p_Value<=pcut & q_Value<=qcut),]
cat("\n")
# get ref.bed indices corresponding to COORD_1 & COORD_2
regionIndices.Coord1 <- sapply(genomeStats$COORD_1,
function(x) which(regionNames==x))
regionIndices.Coord2 <- sapply(genomeStats$COORD_2,
function(x) which(regionNames==x))
if (length(regionIndices.Coord1)<=0 && figures=="y") {
cat("No interaction candidates passed the filters; No figures generated\n")
}
# get widths for figures & tracks
print("1st usage")
print(paste(figureWidth, length(anchor.bed)))
figureWidth <- as.numeric(commaSepStr_to_vector(figureWidth, length(anchor.bed)))
# extract zoom lengths
print("2nd usage...")
zoom <- as.numeric(commaSepStr_to_vector(zoom, length(anchor.bed)))
# graphics --------------------------------------------------------------------
if (figures=="y" && length(regionIndices.Coord1)>0) {
# create data frame for anchors
chr <- as.character(seqnames(anchor.bed))
start <- start(ranges(anchor.bed))
end <- end(ranges(anchor.bed))
name <- sapply(strsplit(ids, "_"), function(x) head(x, n=1))
strand <- sapply(anchorStrands, function(x) strand_to_num(x))
score <- rep(".", length(name))
p_Value <- q_Value <- rep(0, length(name))
anchor.df <- data.frame(chr,start,end, strand, score, p_Value, q_Value, name, row=1, color="purple")
# extract colours for interactions
print("3rd usage...")
colour <- commaSepStr_to_vector(colour, 4)
# make interaction data frame
chrom1 <- as.character(seqnames(ref.bed[regionIndices.Coord1]))
start1 <- start(ranges(ref.bed[regionIndices.Coord1]))
end1 <- end(ranges(ref.bed[regionIndices.Coord1]))
chrom2 <- as.character(seqnames(ref.bed[regionIndices.Coord2]))
start2 <- start(ranges(ref.bed[regionIndices.Coord2]))
end2 <- end(ranges(ref.bed[regionIndices.Coord2]))
color <- rep("black", length(genomeStats$q_Value))
# make colours based on q-values
color[which(genomeStats$q_Value>0.05)] <- colour[1]
color[which(0.01<genomeStats$q_Value & genomeStats$q_Value<=0.05)] <- colour[2]
color[which(0.001<genomeStats$q_Value & genomeStats$q_Value<=0.01)] <- colour[3]
color[which(genomeStats$q_Value<=0.001)] <- colour[4]
interactions.bedpe <- data.frame(chrom1, start1, end1, chrom2, start2, end2,
score=genomeStats$Correlation, q_Value=genomeStats$q_Value, color)
zoomOverWidth <- which(zoom>figureWidth)
zoom[zoomOverWidth] <- figureWidth[zoomOverWidth] # truncate values over window to window
noZoom <- which(zoom<=0) # figures with no zoom
corName <- paste(toupper(substr(corMethod, 1, 1)),
substr(corMethod, 2, nchar(corMethod)), sep="")
# make pdf file with figures
pdf(file=paste(outDir,"/figures_",date,".pdf", sep=""), height=11, width=8.5)
for (r in 1:length(anchor.bed)) { # make figure for each anchor
# set up the region
chrom = as.character(seqnames(anchor.bed[r]))
chromstart <- start(ranges(anchor.bed[r])) - figureWidth[r]
chromend <- end(ranges(anchor.bed[r])) + figureWidth[r]
# turn off warnings temporarily
defaultWarn <- getOption("warn")
options(warn = -1)
maxCor <- get_max_cor(interactions.bedpe, chrom,chromstart,chromend)
options(warn = defaultWarn)
if (r %in% noZoom) { # figure with no zoom
layout(matrix(c(1,1,1,1,1,1,1,1,1,1,1,1,2,2), 7,2, byrow=TRUE))
par(mar=c(4,6,1,8), oma=rep(0.75,4), xpd=TRUE)
# landscape plot
intLandscape = plotBedpe(interactions.bedpe, chrom,chromstart,chromend,
heights=interactions.bedpe$score,
lwdby=0.5*dnorm(interactions.bedpe$q_Value, mean=0, sd=0.1), lwdrange=c(0,2),
plottype="loops", color=interactions.bedpe$color, ymax=1/maxCor)
labelgenome(chrom,chromstart,chromend, n=5,scale="bp",
chromline=0.25,scaleline=0.25)
legend("right",inset=-0.16,title=expression(bold("q-value")),
legend=c(expression(""<="1"),expression(""<="0.05"),
expression(""<="0.01"),expression(""<="0.001")),
col=colour,lty=1,lwd=2.5,text.font=2,cex=1.25)
axis(side=2,las=2,at=seq(0,1,0.1), xpd=TRUE)
mtext(paste(corName,"Correlation",sep=" "),side=2,line=2.5,font=2)
# tracks for anchors
par(mar=c(1,6,1,8))
anchorTrack = plotBed(beddata=anchor.df,chrom=chrom,chromstart=chromstart,chromend=chromend,
rownumber=anchor.df$row, type="region", color=anchor.df$color,row="given",
rowlabels=c("Anchors"), rowlabelcol="black", rowlabelcex=1.25)
} else { # figure with zoom
layout(matrix(c(1,1,1,1,1,1,2,2,2,2,2,2,3,3), 7,2, byrow=TRUE))
par(mar=c(4,6,1,8), oma=rep(0.75,4), xpd=TRUE)
# landscape plot
intLandscape = plotBedpe(interactions.bedpe, chrom,chromstart,chromend,
heights=interactions.bedpe$score,
lwdby=0.5*dnorm(interactions.bedpe$q_Value, mean=0, sd=0.1), lwdrange=c(0,2),
plottype="loops", color=interactions.bedpe$color, ymax=1/maxCor)
labelgenome(chrom,chromstart,chromend, n=5,scale="bp",
chromline=0.25,scaleline=0.25)
legend("right",inset=-0.16,title=expression(bold("q-value")),
legend=c(expression(""<="1"),expression(""<="0.05"),
expression(""<="0.01"),expression(""<="0.001")),
col=colour,lty=1,lwd=2.5,text.font=2,cex=1.25)
axis(side=2,las=2,at=seq(0,1,0.1), xpd=TRUE)
mtext(paste(corName,"Correlation",sep=" "),side=2,line=2.5,font=2)
# zoomed region
par(mar=c(1,6,1,8))
regionZoom <- c(start(ranges(anchor.bed[r]))-zoom[r], end(ranges(anchor.bed[r]))+zoom[r])
zoomsregion(regionZoom,extend=c(-1,0.13),wideextend=0,offsets=c(0,0))
options(warn = -1)
maxCor <- get_max_cor(interactions.bedpe, chrom,regionZoom[1],regionZoom[2])
options(warn = defaultWarn)
# zoomed landscape plot
intLandscapeZoom = plotBedpe(interactions.bedpe, chrom,chromstart=regionZoom[1],chromend=regionZoom[2],
heights=interactions.bedpe$score,
lwdby=0.5*dnorm(interactions.bedpe$q_Value, mean=0, sd=0.1), lwdrange=c(0,2),
plottype="loops", color=interactions.bedpe$color, ymax=1/maxCor)
zoombox()
labelgenome(chrom,chromstart=regionZoom[1],chromend=regionZoom[2], n=5,scale="bp",
chromline=0.25,scaleline=0.25)
axis(side=2,las=2,at=seq(0,1,0.1), xpd=TRUE)
mtext(paste(corName,"Correlation",sep=" "),side=2,line=2.5,font=2)
# tracks for anchors
par(mar=c(1,6,1,8))
anchorTrack = plotBed(beddata=anchor.df,chrom=chrom,chromstart=regionZoom[1],chromend=regionZoom[2],
rownumber=anchor.df$row, type="region", color=anchor.df$color,row="given",
rowlabels=c("Anchors"), rowlabelcol="black", rowlabelcex=1.25)
}
mtext(paste("Figure ",r,": Interaction Landscape of ", ids[r], sep=""), side=1)
cat('\rGenerating Figures: Created figure', r, 'of', length(anchor.bed))
}
cat("\n")
turnDevOff <- dev.off()
}
# tracks ----------------------------------------------------------------------
if (tracks=="y") {
trackPal <- colorRampPalette(c("blue", "purple", "red", "orange"))(numSamples)
for (r in 1:length(anchor.bed)) {
if (is.null(anchorStats[[r]])) {
cat('\rGenerating Tracks: Created track', r, 'of', length(anchor.bed))
next
}
file <- paste(outDir,"/",ids[r],".anchor", sep="")
# create & print the browser header to a file
browserHeader <- paste("browser position ",as.character(seqnames(anchor.bed[r])),":",
start(anchor.bed[r])-figureWidth[r],"-",end(anchor.bed[r])+figureWidth[r],
"\nbrowser hide all\nbrowser pack refGene\nbrowser full altGraph", sep="")
junk <- cat(browserHeader, file=file, append=FALSE, sep="\n")
# create & print the track header for the anchor
trackHeader <- paste("track type=bedGraph name=\"Anchor\" description=\"",gsub("_.*", "", ids[r]),
"\" visibility=full color=0,0,0 altColor=0,0,0 viewLimits=0:1 autoScale=off gridDefault=on db=", assembly, sep="")
junk <- cat(trackHeader, file=file, append=TRUE, sep="\n")
# write the anchor track
anchorLine <- paste(as.character(seqnames(anchor.bed[r])),start(anchor.bed[r]),end(anchor.bed[r]),1, sep="\t")
junk <- cat(anchorLine, file=file, append=TRUE, sep="\n")
file <- paste(outDir,"/",ids[r],".bedGraph", sep="")
# create & print the track header for the distal DHSs
trackHeader <- paste("track type=bedGraph name=\"",sampleName,"\" description=\" \" visibility=full color=",getRGB(trackNumber, trackPal),
" altColor=0,0,0 viewLimits=0:1 autoScale=off gridDefault=on yLineMark=",rcut," yLineOnOff=on db=", assembly, sep="")
junk <- cat(trackHeader, file=file, append=FALSE, sep="\n")
# create a temporary data frame for storing distal DHSs & their correlations with the anchor
tmp.df <- data.frame(distal=anchorStats[[r]]$COORD_2, corr=anchorStats[[r]]$Correlation)
# if a distal DHS appears more than once, pick the one with the highest correlation
# this will only happen if the promoter has multiple open regions
tmp.df <- tmp.df[with(tmp.df, order(distal, -corr)), ]
tmp.df <- tmp.df[ !duplicated(tmp.df$distal), ]
tmp.df <- tmp.df[tmp.df$corr>=0, ] # filter out negative correlations
# split the distal DHSs by chr, start & stop
distalDHS <- strsplit(as.character(tmp.df$distal), ":|-")
chr <- sapply(distalDHS, function(x) x[1])
start <- sapply(distalDHS, function(x) x[2])
end <- sapply(distalDHS, function(x) x[3])
correlation <- round(tmp.df$corr,2) # round correlations to 2 decimals
# write track to file
track <- data.frame(chr, start, end, correlation)
junk <- write.table(track, file=file, sep="\t", col.names=F,row.names=F,quote=F, append=TRUE)
cat('\rGenerating Tracks: Created track', r, 'of', length(anchor.bed))
}
cat("\n")
}
cat("Done\n")