forked from JuliaLang/Microbenchmarks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathperf.go
340 lines (301 loc) · 6.4 KB
/
perf.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
// Implementation of the Julia benchmark suite in Go.
//
// Three gonum packages must be installed, and then an additional environment
// variable must be set to use the BLAS installation.
// To install the gonum packages, run:
// go get gonum.org/v1/netlib/blas/netlib
// go get gonum.org/v1/gonum/mat
// go get gonum.org/v1/gonum/stat
// The cgo ldflags must then be set to use the BLAS implementation. As an example,
// download OpenBLAS to ~/software
// git clone https://github.com/xianyi/OpenBLAS
// cd OpenBLAS
// make
// Then edit the environment variable to have
// export CGO_LDFLAGS="-L/$HOME/software/OpenBLAS -lopenblas"
package main
import (
"bufio"
"errors"
"fmt"
"log"
"math"
"math/rand"
"os"
"strconv"
"testing"
"gonum.org/v1/gonum/mat"
"gonum.org/v1/gonum/stat"
"gonum.org/v1/netlib/blas/netlib"
)
func init() {
// Use the BLAS implementation specified in CGO_LDFLAGS. This line can be
// commented out to use the native Go BLAS implementation found in
// gonum.org/v1/gonum/blas/gonum.
//blas64.Use(gonum.Implementation{})
// These are here so that toggling the BLAS implementation does not make imports unused
_ = netlib.Implementation{}
}
// fibonacci
func fib(n int) int {
if n < 2 {
return n
}
return fib(n-1) + fib(n-2)
}
// print to file descriptor
func printfd(n int) {
f, err := os.Create("/dev/null")
if err != nil {
panic(err)
}
defer f.Close()
w := bufio.NewWriter(f)
for i := 0; i < n; i++ {
_, err = fmt.Fprintf(w, "%d %d\n", i, i+1)
}
w.Flush()
f.Close()
}
// quicksort
func qsort_kernel(a []float64, lo, hi int) []float64 {
i := lo
j := hi
for i < hi {
pivot := a[(lo+hi)/2]
for i <= j {
for a[i] < pivot {
i += 1
}
for a[j] > pivot {
j -= 1
}
if i <= j {
a[i], a[j] = a[j], a[i]
i += 1
j -= 1
}
}
if lo < j {
qsort_kernel(a, lo, j)
}
lo = i
j = hi
}
return a
}
var rnd = rand.New(rand.NewSource(1))
// randmatstat
func randmatstat(t int) (float64, float64) {
n := 5
v := make([]float64, t)
w := make([]float64, t)
ad := make([]float64, n*n)
bd := make([]float64, n*n)
cd := make([]float64, n*n)
dd := make([]float64, n*n)
P := mat.NewDense(n, 4*n, nil)
Q := mat.NewDense(2*n, 2*n, nil)
pTmp := mat.NewDense(4*n, 4*n, nil)
qTmp := mat.NewDense(2*n, 2*n, nil)
for i := 0; i < t; i++ {
for i := range ad {
ad[i] = rnd.NormFloat64()
bd[i] = rnd.NormFloat64()
cd[i] = rnd.NormFloat64()
dd[i] = rnd.NormFloat64()
}
a := mat.NewDense(n, n, ad)
b := mat.NewDense(n, n, bd)
c := mat.NewDense(n, n, cd)
d := mat.NewDense(n, n, dd)
P.Copy(a)
P.Slice(0, n, n, n+n).(*mat.Dense).Copy(b)
P.Slice(0, n, 2*n, 3*n).(*mat.Dense).Copy(c)
P.Slice(0, n, 3*n, 4*n).(*mat.Dense).Copy(d)
Q.Copy(a)
Q.Slice(0, n, n, 2*n).(*mat.Dense).Copy(b)
Q.Slice(n, 2*n, 0, n).(*mat.Dense).Copy(c)
Q.Slice(n, 2*n, n, 2*n).(*mat.Dense).Copy(d)
pTmp.Mul(P.T(), P)
pTmp.Pow(pTmp, 4)
qTmp.Mul(Q.T(), Q)
qTmp.Pow(qTmp, 4)
v[i] = mat.Trace(pTmp)
w[i] = mat.Trace(qTmp)
}
mv, stdv := stat.MeanStdDev(v, nil)
mw, stdw := stat.MeanStdDev(v, nil)
return stdv / mv, stdw / mw
}
// randmatmul
func randmatmul(n int) *mat.Dense {
aData := make([]float64, n*n)
for i := range aData {
aData[i] = rnd.Float64()
}
a := mat.NewDense(n, n, aData)
bData := make([]float64, n*n)
for i := range bData {
bData[i] = rnd.Float64()
}
b := mat.NewDense(n, n, bData)
var c mat.Dense
c.Mul(a, b)
return &c
}
// mandelbrot
func abs2(z complex128) float64 {
return real(z)*real(z) + imag(z)*imag(z)
}
func mandel(z complex128) int {
maxiter := 80
c := z
for n := 0; n < maxiter; n++ {
if abs2(z) > 4 {
return n
}
z = z*z + c
}
return maxiter
}
// mandelperf
func mandelperf() int {
mandel_sum := 0
// These loops are constructed as such because mandel is very sensitive to
// its input and this avoids very small floating point issues.
for re := -20.0; re <= 5; re += 1 {
for im := -10.0; im <= 10; im += 1 {
m := mandel(complex(re/10, im/10))
mandel_sum += m
}
}
return mandel_sum
}
// pisum
func pisum() float64 {
var sum float64
for i := 0; i < 500; i++ {
sum = 0.0
for k := 1.0; k <= 10000; k += 1 {
sum += 1.0 / (k * k)
}
}
return sum
}
func print_perf(name string, time float64) {
fmt.Printf("go,%v,%v\n", name, time*1000)
}
// run tests
func assert(b *testing.B, t bool) {
if t != true {
b.Fatal("assert failed")
}
}
func main() {
for _, bm := range benchmarks {
seconds, err := runBenchmarkFor(bm.fn)
if err != nil {
log.Fatalf("%s %s", bm.name, err)
}
print_perf(bm.name, seconds)
}
}
func runBenchmarkFor(fn func(*testing.B)) (seconds float64, err error) {
bm := testing.Benchmark(fn)
if (bm.N == 0) {
return 0, errors.New("failed")
}
return bm.T.Seconds() / float64(bm.N), nil
}
var benchmarks = []struct {
name string
fn func(*testing.B)
}{
{
name: "recursion_fibonacci",
fn: func(b *testing.B) {
for i := 0; i < b.N; i++ {
if fib(20) != 6765 {
b.Fatal("unexpected value for fib(20)")
}
}
},
},
{
name: "parse_integers",
fn: func(b *testing.B) {
for i := 0; i < b.N; i++ {
for k := 0; k < 1000; k++ {
n := rnd.Uint32()
m, _ := strconv.ParseUint(strconv.FormatUint(uint64(n), 16), 16, 32)
if uint32(m) != n {
b.Fatal("incorrect value for m")
}
}
}
},
},
{
name: "userfunc_mandelbrot",
fn: func(b *testing.B) {
for i := 0; i < b.N; i++ {
if mandelperf() != 14791 {
b.Fatal("unexpected value for mandelperf")
}
}
},
},
{
name: "print_to_file",
fn: func(b *testing.B) {
for i := 0; i < b.N; i++ {
printfd(100000)
}
},
},
{
name: "recursion_quicksort",
fn: func(b *testing.B) {
lst := make([]float64, 5000)
b.ResetTimer()
for i := 0; i < b.N; i++ {
for k := range lst {
lst[k] = rnd.Float64()
}
qsort_kernel(lst, 0, len(lst)-1)
}
},
},
{
name: "iteration_pi_sum",
fn: func(b *testing.B) {
for i := 0; i < b.N; i++ {
if math.Abs(pisum()-1.644834071848065) >= 1e-6 {
b.Fatal("pi_sum out of range")
}
}
},
},
{
name: "matrix_statistics",
fn: func(b *testing.B) {
for i := 0; i < b.N; i++ {
c1, c2 := randmatstat(1000)
assert(b, 0.5 < c1)
assert(b, c1 < 1.0)
assert(b, 0.5 < c2)
assert(b, c2 < 1.0)
}
},
},
{
name: "matrix_multiply",
fn: func(b *testing.B) {
for i := 0; i < b.N; i++ {
c := randmatmul(1000)
assert(b, c.At(0, 0) >= 0)
}
},
},
}