-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
68 lines (49 loc) · 1.55 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import pickle
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
def pickle_object(python_obj, pickle_path):
with open(pickle_path, 'wb') as f:
pickle.dump(python_obj, f)
return True
def load_pickle(pickle_path):
with open(pickle_path, 'rb') as f:
python_obj = pickle.load(f)
return python_obj
def standard_plot(pd_dataframe,
column_name='Gold',
scatter=False):
# print(pd_dataframe['Date'])
plt.figure(figsize=(12, 6), dpi=100)
if not scatter:
plt.plot(pd_dataframe['Date'],
pd_dataframe[column_name])
if scatter:
plt.scatter(pd_dataframe['Date'],
pd_dataframe[column_name])
plt.xlabel('Date')
plt.ylabel(column_name)
plt.grid()
plt.show()
def concat_two_dfs(df_list):
df = pd.concat(df_list,
axis=0)
df = df.reset_index(drop=True)
return df
def concat_n_dfs(df_list):
if len(df_list) == 2:
return concat_two_dfs(df_list)
else:
df_0_1 = df_list[0:2]
df_cat = concat_two_dfs(df_0_1)
for df_follow in df_list[2:]:
df_cat = concat_two_dfs([df_cat, df_follow])
return df_cat
def make_as_pandas_df(dates_list, content_name, content_list):
data_dict = {'Date': np.array(dates_list, dtype='datetime64[D]'),
content_name: np.array(content_list, dtype='float64')}
df = pd.DataFrame(data_dict)
return df
if __name__ == "__main__":
data = load_pickle("KRW_USD_2017.pkl")
print(data)