Skip to content

Latest commit

 

History

History
62 lines (31 loc) · 1.72 KB

README.md

File metadata and controls

62 lines (31 loc) · 1.72 KB

Run cutlass with gpgpu-sim

  1. Download and install cuda 9.1

       wget https://developer.nvidia.com/compute/cuda/9.1/Prod/local_installers/cuda_9.1.85_387.26_linux
    
       sudo sh cuda_9.1.85_387.26_linux
    

    Set up the bashrc file, adding lines to the file

        export PATH=/usr/local/cuda-9.1/bin:$PATH
        export CUDA_INSTALL_PATH=/usr/local/cuda-9.1
        export LD_LIBRARY_PATH=$CUDA_INSTALL_PATH/lib64:$LD_LIBRARY_PATH 
    
  2. Download the gpgpusim 4.0

        sudo apt-get install build-essential xutils-dev bison zlib1g-dev flex libglu1-mesa-dev
    
        sudo apt-get install doxygen graphviz
    
        sudo apt-get install python-pmw python-ply python-numpy libpng-dev python-matplotlib
    
        sudo apt-get install libxi-dev libxmu-dev freeglut3-dev
    
        git clone https://github.com/gpgpu-sim/gpgpu-sim_distribution.git
    
      Make and build GPGPUSIM:
    
        make clean
    
        source setup_environment
    
        make
    
  3. Download the gpgpusim version cutlass

        git clone https://github.com/accel-sim/gpu-app-collection.git
    
  4. Run and build the cutlass benchmark

        cd gpu-app-collection/src/cuda/cutlass-bench/
    
        git submodule update --init —recursive
    
        mkdir build && cd build
    
        cmake .. -DUSE_GPGPUSIM=1 -DCUTLASS_NVCC_ARCHS=70 && make cutlass_perf_test
    
        cd tools/test/perf && ln -s ../../../../binary.sh . && ./binary.sh
    

    (Then copy the configs, i.e. cp -a ~/gpgpu-sim_distribution/configs/tested-cfgs/SM7_TITANV/* . )

        ./cutlass_perf_test --m=1760 --n=16 --k=1760 --kernels=wmma_gemm_nn --iterations=1 —providers=cutlass
    

    Reference and more information at:

    https://github.com/accel-sim/gpu-app-collection/tree/release/src/cuda/cutlass-bench