-
Download and install cuda 9.1
wget https://developer.nvidia.com/compute/cuda/9.1/Prod/local_installers/cuda_9.1.85_387.26_linux sudo sh cuda_9.1.85_387.26_linux
Set up the bashrc file, adding lines to the file
export PATH=/usr/local/cuda-9.1/bin:$PATH export CUDA_INSTALL_PATH=/usr/local/cuda-9.1 export LD_LIBRARY_PATH=$CUDA_INSTALL_PATH/lib64:$LD_LIBRARY_PATH
-
Download the gpgpusim 4.0
sudo apt-get install build-essential xutils-dev bison zlib1g-dev flex libglu1-mesa-dev sudo apt-get install doxygen graphviz sudo apt-get install python-pmw python-ply python-numpy libpng-dev python-matplotlib sudo apt-get install libxi-dev libxmu-dev freeglut3-dev git clone https://github.com/gpgpu-sim/gpgpu-sim_distribution.git Make and build GPGPUSIM: make clean source setup_environment make
-
Download the gpgpusim version cutlass
git clone https://github.com/accel-sim/gpu-app-collection.git
-
Run and build the cutlass benchmark
cd gpu-app-collection/src/cuda/cutlass-bench/ git submodule update --init —recursive mkdir build && cd build cmake .. -DUSE_GPGPUSIM=1 -DCUTLASS_NVCC_ARCHS=70 && make cutlass_perf_test cd tools/test/perf && ln -s ../../../../binary.sh . && ./binary.sh
(Then copy the configs, i.e. cp -a ~/gpgpu-sim_distribution/configs/tested-cfgs/SM7_TITANV/* . )
./cutlass_perf_test --m=1760 --n=16 --k=1760 --kernels=wmma_gemm_nn --iterations=1 —providers=cutlass
Reference and more information at:
https://github.com/accel-sim/gpu-app-collection/tree/release/src/cuda/cutlass-bench