-
Notifications
You must be signed in to change notification settings - Fork 1
/
train_senet.py
377 lines (343 loc) · 14.8 KB
/
train_senet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
'''
one_layer_temporal
vit-B/32
video_clip
'''
import os
import sys
import time
import argparse
from timm import create_model
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torch.nn.parallel import DistributedDataParallel
import torch.distributed as dist
import torch.backends.cudnn as cudnn
from torch.cuda.amp import GradScaler
import torchvision
import torch.optim as optim
from utils.utils import init_distributed_mode, AverageMeter, reduce_tensor, accuracy
from utils.logger import setup_logger
import clip
from pathlib import Path
import yaml
import pprint
from dotmap import DotMap
import numpy as np
import datetime
import shutil
from contextlib import suppress
from modules import cswin
from datasets.dataset import Video_dataset
from modules.video_senet import VideoCLIP
# from modules.cswin_video_bs import video_header,Video_CSwin
from utils.Augmentation import get_augmentation, randAugment
from utils.solver import _lr_scheduler
from modules.text_prompt import text_prompt
'''
对每个epoch训练模型进行保存
'''
def epoch_saving(epoch, model, optimizer, filename):
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
}, filename) #just change to your preferred folder/filename
'''
对目前最好的模型进行保存
'''
def best_saving(working_dir, epoch, model, optimizer):
best_name = '{}/model_best.pt'.format(working_dir)
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
}, best_name) # just change to your preferred folder/filename
'''
去掉参数key中的module.
'''
def update_dict(dict):
new_dict = {}
for k, v in dict.items():
new_dict[k.replace('module.', '')] = v
return new_dict
def get_parser():
parser = argparse.ArgumentParser()
parser.add_argument('--config', '-cfg', type=str, default='', help='global config file')
parser.add_argument('--log_time', default='one_layer_temp')
parser.add_argument('--dist_url', default='env://',
help='url used to set up distributed training')
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument("--local_rank", type=int,
help='local rank for DistributedDataParallel')
parser.add_argument("--gpu_count",type=int,default=1,help="")
parser.add_argument(
"--precision",
choices=["amp", "fp16", "fp32"],
default="amp",
help="Floating point precition."
)
args = parser.parse_args()
return args
'''
获取cswin模型最后norm层的维度
'''
def get_cswinmodel_pa(model):
ks=[]
vs=[]
for k,v in model.named_parameters():
ks.append(k)
vs.append(v)
print("The number of parameters of the cs_model is {}".format(len(ks)))
return vs[-1].shape[0]
def main(args):
global best_prec1
""" Training Program """
init_distributed_mode(args)
if args.distributed:
print('[INFO] turn on distributed train', flush=True)
else:
print('[INFO] turn off distributed train', flush=True)
with open(args.config, 'r') as f:
config = yaml.load(f, Loader=yaml.FullLoader)
working_dir = os.path.join('/mnt/dolphinfs/hdd_pool/docker/user/hadoop-mtcv/zhuyan29/zsvideo_us/records/exp_zero_shot', config['data']['dataset'], config['network']['arch'],args.log_time)
if dist.get_rank() == 0:
Path(working_dir).mkdir(parents=True, exist_ok=True)
# shutil.copy(args.config, working_dir)
# shutil.copy('train_k400_two_ce_loss.py', working_dir)
# build logger, print env and config
## 运行过程中记录的打印文档
logger = setup_logger(output=working_dir,
distributed_rank=dist.get_rank(),
name=f'Clip_cls_video_mean')
logger.info("------------------------------------")
logger.info("Environment Versions:")
logger.info("- Python: {}".format(sys.version))
logger.info("- PyTorch: {}".format(torch.__version__))
logger.info("- TorchVison: {}".format(torchvision.__version__))
logger.info("------------------------------------")
pp = pprint.PrettyPrinter(indent=4)
logger.info(pp.pformat(config))
logger.info("------------------------------------")
logger.info("storing name: {}".format(working_dir))
config = DotMap(config)
device = "cpu"
if torch.cuda.is_available():
device = "cuda"
cudnn.benchmark = True
'''
训练与验证数据加载
'''
transform_train = get_augmentation(True, config)
transform_val = get_augmentation(False, config)
if config.data.randaug.N:
transform_train = randAugment(transform_train, config)
logger.info('train transforms: {}'.format(transform_train.transforms))
logger.info('val transforms: {}'.format(transform_val.transforms))
train_data = Video_dataset(
config.data.train_root, config.data.train_list,
config.data.label_list, num_segments=config.data.num_segments,
modality=config.data.modality,
image_tmpl=config.data.image_tmpl, random_shift=config.data.random_shift,
transform=transform_train,new_length=config.data.seg_length)
train_sampler = torch.utils.data.distributed.DistributedSampler(train_data)
train_loader = DataLoader(train_data,
batch_size=config.data.batch_size, num_workers=config.data.workers,
sampler=train_sampler,drop_last=False)
val_data = Video_dataset(
config.data.val_root, config.data.val_list,
config.data.label_list, num_segments=config.data.num_segments,
modality=config.data.modality,
image_tmpl=config.data.image_tmpl, random_shift=config.data.random_shift,
transform=transform_train,new_length=config.data.seg_length)
val_sampler = torch.utils.data.distributed.DistributedSampler(val_data)
val_loader = DataLoader(val_data,
batch_size=config.data.batch_size, num_workers=config.data.workers,
sampler=val_sampler,drop_last=False)
'''
clip :text_encoder
class feature:分类器
'''
clip_model, clip_state_dict = clip.load(config.network.arch,
device='cpu',jit=False,
internal_modeling=config.network.tm,
T=config.data.num_segments,
dropout=config.network.drop_out,
emb_dropout=config.network.emb_dropout,
pretrain=config.network.init,
joint_st=config.network.joint_st)
classes, _, text_dict = text_prompt(train_data)# classes: 400*77
n_class = text_dict[0].size(0)
clip_model.eval()
with torch.no_grad():
classes_features = clip_model.encode_text(classes)
# classes_features=torch.
'''
模型
'''
# video_head = video_header(config.network.sim_header,clip_state_dict)#sim_header='transfer'
model_full=VideoCLIP(clip_model,config.data.num_segments)#video_head
print('Model loading complete ')
'''
损失函数
'''
criterion = torch.nn.CrossEntropyLoss()
criterion_l2=torch.nn.MSELoss()
'''
优化策略
'''
clip_params = []
other_params = []
freeze_params = []
## 冻结 block1 block2的参数
for name, param in model_full.named_parameters():
if 'visual' in name and 'control_point' not in name:
clip_params.append(param)
# if 'stage1' in name or 'stage2' in name or 'merge1' in name:
# freeze_params.append(name)
# param.requires_grad=False ## 冻结参数
# else:
# cswin_params.append(param)
elif 'logit_scale' in name:
clip_params.append(param)
else:
other_params.append(param)
# print('the number of optimizations is %d' %len(cswin_params))
optimizer = optim.AdamW([{'params': clip_params, 'lr': config.solver.lr * config.solver.clip_ratio},
{'params': other_params, 'lr': config.solver.lr}],
betas=(0.9, 0.98), lr=config.solver.lr, eps=1e-8,
weight_decay=config.solver.weight_decay)
lr_scheduler = _lr_scheduler(config, optimizer)
'''
单机多卡分布
'''
if args.distributed:
model_full = DistributedDataParallel(model_full.cuda(), device_ids=[args.gpu],find_unused_parameters=True)
model_without_ddp = model_full.module
# print(model_full.ratio.device,model_full.all.device)
'''
预测
'''
start_epoch = config.solver.start_epoch
scaler = GradScaler() if args.precision == "amp" else None
best_prec1 = 0.0
## config.solver.evaluate 设置参数
if config.solver.evaluate:
logger.info(("===========evaluate==========="))
prec1 = validate(
start_epoch,
val_loader, device,
model_full, config, classes_features, logger)
return
'''
训练
'''
save_backbone=config.network.arch
save_backbone=save_backbone.replace('/','-')
print(save_backbone)
for epoch in range(start_epoch, config.solver.epochs):
if args.distributed:
train_loader.sampler.set_epoch(epoch)
## 训练一个epoch
train(model_full, train_loader, optimizer, criterion, scaler,
epoch, device, lr_scheduler, config, classes_features, logger,criterion_l2)
## 每个epoch的模型都进行保存
filename = "{}/{}_epoch{}_model_six_tem.pt".format(working_dir,save_backbone,epoch)
epoch_saving(epoch, model_without_ddp, optimizer, filename)
## 验证一次
if (epoch+1) % config.logging.eval_freq == 0: # and epoch>0 config.logging.eval_freq =1
prec1 = validate(epoch, val_loader, device, model_full, config, classes_features, logger)
if dist.get_rank() == 0:
is_best = prec1 > best_prec1
best_prec1 = max(prec1, best_prec1)
logger.info('Testing: {}/{}'.format(prec1,best_prec1))
logger.info('Saving:')
filename = "{}/{}_last_model_six_tem.pt".format(working_dir,save_backbone)
epoch_saving(epoch, model_without_ddp, optimizer, filename)
if is_best:
best_saving(working_dir, epoch, model_without_ddp, optimizer)
def train(model, train_loader, optimizer, criterion, scaler,
epoch, device, lr_scheduler, config, text_embedding, logger,criterion_l2):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
model.train()
autocast = torch.cuda.amp.autocast if args.precision == 'amp' else suppress
end=time.time()
for i,(images, list_id) in enumerate(train_loader):
if config.solver.type != 'monitor':
if (i + 1) == 1 or (i + 1) % 10 == 0:
lr_scheduler.step(epoch + i / len(train_loader))
data_time.update(time.time() - end)
# b t3 h w
images = images.view((-1, config.data.num_segments*config.data.seg_length, 3) + images.size()[-2:]) # b t 3 h w
b, t, c, h, w = images.size()## b :batch_size t:sample_frames_num 3:RGB
# images= images.view(-1, c, h, w)
with autocast():
images = images.to(device)
logits_after = model(images, text_embedding) # B 400
# loss1 = criterion(logits_new, list_id.to(device))
loss=criterion(logits_after,list_id.to(device))
# loss_l2=criterion_l2(image_emb,image_emb_front)
# loss=loss2+loss1+loss_l2
# loss regularization
loss = loss / config.solver.grad_accumulation_steps
if scaler is not None:
# back propagation
scaler.scale(loss).backward()
if (i + 1) % config.solver.grad_accumulation_steps == 0:
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
else:
loss.backward()
if (i + 1) % config.solver.grad_accumulation_steps == 0:
optimizer.step() # update param
optimizer.zero_grad()
losses.update(loss.item(), logits_after.size(0))
batch_time.update(time.time() - end)
end = time.time()
cur_iter = epoch * len(train_loader) + i
max_iter = config.solver.epochs * len(train_loader)
eta_sec = batch_time.avg * (max_iter - cur_iter + 1)
eta_sec = str(datetime.timedelta(seconds=int(eta_sec)))
if i % config.logging.print_freq == 0:## config.logging.print_freq=10
logger.info(('Epoch: [{0}][{1}/{2}], lr: {lr:.2e}, eta: {3}\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})'.format(
epoch, i, len(train_loader), eta_sec, batch_time=batch_time, data_time=data_time, loss=losses,
lr=optimizer.param_groups[-1]['lr'])))
def validate(epoch, val_loader, device, model, config, text_embedding, logger):
top1 = AverageMeter()
top5 = AverageMeter()
model.eval()
with torch.no_grad():
for i, (images, class_id) in enumerate(val_loader):
images = images.view((-1, config.data.num_segments*config.data.seg_length, 3) + images.size()[-2:])
b, t, c, h, w = images.size()
class_id = class_id.to(device)
text_embedding = text_embedding.to(device)
images = images.to(device)
image_embedding = model.module.encode_image(images)
image_embedding /= image_embedding.norm(dim=-1, keepdim=True)
text_embedding /= text_embedding.norm(dim=-1, keepdim=True)
similarity = (100.0 * image_embedding @ text_embedding.T)
prec = accuracy(similarity, class_id, topk=(1, 5))
prec1 = reduce_tensor(prec[0])
prec5 = reduce_tensor(prec[1])
top1.update(prec1.item(), class_id.size(0))
top5.update(prec5.item(), class_id.size(0))
if i % config.logging.print_freq == 0:
logger.info(
('Test: [{0}/{1}]\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
i, len(val_loader), top1=top1, top5=top5)))
logger.info(('Testing Results: Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f}' .format(top1=top1, top5=top5)))
return top1.avg
if __name__ == '__main__':
args = get_parser()
main(args)